Sample records for absorption features related

  1. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  2. The Mysterious 6565 Å Absorption Feature of the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Sethi, Shiv K.; Shchekinov, Yuri; Nath, Biman B.

    2017-12-01

    We consider various possible scenarios to explain the recent observation of what has been called a broad Hα absorption in our Galactic halo, with peak optical depth τ ≃ 0.01 and equivalent width W≃ 0.17 \\mathringA . We show that the absorbed feature cannot arise from the circumgalactic and ISM Hα absorption. As the observed absorption feature is quite broad ({{Δ }}λ ≃ 30 \\mathringA ), we also consider CNO lines that lie close to Hα as possible alternatives to explain the feature. We show that such lines could also not account for the observed feature. Instead, we suggest that it could arise from diffuse interstellar bands (DIBs) carriers or polyaromatic hydrocarbons (PAHs) absorption. While we identify several such lines close to the Hα transition, we are unable to determine the molecule responsible for the observed feature, partly because of selection effects that prevent us from identifying DIBs/PAHs features close to Hα using local observations. Deep integration of a few extragalactic sources with high spectral resolution might allow us to distinguish between different possible explanations.

  3. Spatially Resolved HCN Absorption Features in the Circumnuclear Region of NGC 1052

    NASA Astrophysics Data System (ADS)

    Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Kameno, Seiji; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon

    2016-10-01

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s-1, redshifted by 149 and 212 km s-1 with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 1015-1016 cm-2, assuming an excitation temperature of 100-230 K. The absorption features show high optical depth localized on the receding jet side, where the free-free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.

  4. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  5. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  6. SPATIALLY RESOLVED HCN ABSORPTION FEATURES IN THE CIRCUMNUCLEAR REGION OF NGC 1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s{sup −1}, redshifted by 149 and 212 km s{sup −1} with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 10{sup 15}–10{sup 16} cm{sup −2}, assuming an excitation temperature ofmore » 100–230 K. The absorption features show high optical depth localized on the receding jet side, where the free–free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.« less

  7. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  8. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Gaffey, Michael J.

    1989-01-01

    Absorption features having depths up to 5 percent are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  9. UV absorption investigation of ferromagnetically filled ultra-thick carbon onions, carriers of the 217.5 nm Interstellar Absorption Feature

    NASA Astrophysics Data System (ADS)

    Boi, Filippo S.; Zhang, Xiaotian; Ivaturi, Sameera; Liu, Qianyang; Wen, Jiqiu; Wang, Shanling

    2017-12-01

    Carbon nano-onions (CNOs) are fullerene-like structures which consist of quasi-spherical closed carbon shells. These structures have become a subject of great interest thanks to their characteristic absorption feature of interstellar origin (at 217.5 nm, 4.6 μm-1). An additional extinction peak at 3.8 μm-1 has also been reported and attributed to absorption by graphitic residues between the as-grown CNOs. Here, we report the ultraviolet absorption properties of ultra-thick CNOs filled with FePt3 crystals, which also exhibit two main absorption peaks—features located at 4.58 μm-1 and 3.44 μm-1. The presence of this additional feature is surprising and is attributed to nonmagnetic graphite flakes produced as a by-product in the pyrolysis experiment (as confirmed by magnetic separation methods). Instead, the feature at 4.58 μm-1 is associated with the π-plasmonic resonance of the CNOs structures. The FePt3 filled CNOs were fabricated in situ by an advanced one-step fast process consisting in the direct sublimation and pyrolysis of two molecular precursors, namely, ferrocene and dichloro-cyclooctadiene-platinum in a chemical vapour deposition system. The morphological, structural, and magnetic properties of the as-grown filled CNOs were characterized by a means of scanning and transmission electron microscopy, X-ray diffraction, and magnetometry.

  10. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    NASA Astrophysics Data System (ADS)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  11. The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin.

    PubMed

    Farag, Marwa H; Jansen, Thomas L C; Knoester, Jasper

    2018-05-09

    In rhodopsin, the absorption of a photon causes the isomerization of the 11-cis isomer of the retinal chromophore to its all-trans isomer. This isomerization is known to occur through a conical intersection (CI) and the internal conversion through the CI is known to be vibrationally coherent. Recently measured two-dimensional electronic spectra (2DES) showed dramatic absorptive spectral features at early waiting times associated with the transition through the CI. The common two-state two-mode model Hamiltonian was unable to elucidate the origin of these features. To rationalize the source of these features, we employ a three-state three-mode model Hamiltonian where the hydrogen out-of plane (HOOP) mode and a higher-lying electronic state are included. The 2DES of the retinal chromophore in rhodopsin are calculated and compared with the experiment. Our analysis shows that the source of the observed features in the measured 2DES is the excited state absorption to a higher-lying electronic state and not the HOOP mode.

  12. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  13. Ferric iron in primitive asteroids - A 0.43-micron absorption feature

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Hatch, Erin C.; Larson, Stephen M.; Sawyer, Scott R.; Gaffey, Michael J.

    1993-01-01

    A search of reflectance spectra of C- P-, D- and S-class asteroids to hunt for the Soret band near 0.4 micron that is indicative of porphyrins yielded an identification of an 0.43 micron absorption feature in 11 primitive asteroids of the C, P, and G classes and in one S-class asteroid. It is proposed that the feature is an Fe(3+) spin-forbidden transition in aqueously altered material, possibly located near 0.43 micron due to an enhancement effect similar to the mechanism operating in jarosite. The significance of the feature for the aqueous alteration history of these asteroids is addressed.

  14. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A.; Jumper, Chanelle C.

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to amore » simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.« less

  15. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  16. Derivative Analysis of Absorption Features in Hyperspectral Remote Sensing Data of Carbonate Sediments

    DTIC Science & Technology

    2002-12-30

    reflectance of carbonate sediments and application to shallow water benthic habitat classification,” Doctoral Dissertation, University of Miami. Chap.3...resolve overlapping features. A primary application has been to analyze pigment and chemical composition of leaves in order to track physiological...final absorption feature was observed at 630 nm, in a region associated with the biliprotein, phycocyanin [16,17]. As biliproteins are water soluble

  17. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  18. Balmer and Metal Absorption Feature Gradients in M32

    NASA Astrophysics Data System (ADS)

    Worthey, Guy

    2004-12-01

    New data sources are used to assess Lick/IDS feature strength gradients inside the half-light radius Re of the compact Local Group elliptical galaxy M32. A Hubble Space Telescope (HST) STIS spectrum seemed to indicate ionized gas and a very young central stellar population. In fact, this conclusion is entirely spurious because of incomplete removal of ion hits. More robust ground-based spectra taken at the MDM Observatory are, in contrast, the most accurate measurements of Lick/IDS indices yet obtained for M32. All but a few (of 24 measured) indices show a statistically significant gradient. The CN indices show a maximum at 4" radius, dropping off both toward the nucleus and away from it. At 2" radius there is a discontinuity in the surface brightness profile, but this feature is not reflected in any spectral feature. Comparing with models, the index gradients indicate a mean age and abundance gradient in the sense that the nucleus is a factor of 2.5 younger and a factor of 0.3 dex more metal-rich than at 1Re. This conclusion is only weakly dependent on which index combinations are used and is robust to high accuracy. Stars near the M32 nucleus have a mean age and heavy element abundance [M/H] of (4.7 Gyr, +0.02), judging from models by Worthey with variable abundance ratios. This result has very small formal random errors, although, of course, there is significant age-metallicity degeneracy along an (age, abundance) line segment from (5.0 Gyr, 0.00) to (4.5 Gyr, +0.05). An abundance pattern of [C/M]=+0.077 (carbon abundance affects CN, C24668, and the bluer Balmer features), [N/M]=-0.13, [Mg/M]=-0.18, [Fe/M]~0.0, and [Na/M]=+0.12 is required to fit the feature data, with a fitting precision of about 0.01 dex (with two caveats: the [Fe/M] guess has about twice this precision because of the relative insensitivity of the Fe5335 feature to iron, and the [Na/M] value may be falsely amplified because of interstellar absorption). Model uncertainties make the accuracies

  19. Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Serlemitsos, Peter

    2005-01-01

    We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.

  20. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1985-01-01

    Previous attempts to explain the effect of aerosols on satellite measurements of surface properties for the visible and near-infrared spectrum have emphasized the amount of aerosols without consideration of their absorption properties. In order to estimate the importance of absorption, the radiances of the sunlight scattered from models of the earth-atmosphere system are computed as functions of the aerosol optical thickness and absorption. The absorption effect is small where the surface reflectance is weak, but is important for strong reflectance. These effects on classification of surface features, measuring vegetation index, and measuring surface reflectance are presented.

  1. Interstellar proteins and the discovery of a new absorption feature at lambda = 2800 A

    NASA Astrophysics Data System (ADS)

    Karim, L. M.; Hoyle, F.; Wickramasinghe, N. C.

    1983-07-01

    In order to check the presence of biogenic materials in interstellar grains, the spectra of three early-type, heavily reddened stars recorded by the IUE were examined. These stars showed comparatively weak absorption at 2200 A, minimizing the effect of graphite grains. A broad absorption feature centered on 2800 A is discovered in HD 14250 and interpreted to be due to the amino acid tryptophan. Comparison of the spectrum with that of the calculated extinction behavior of graphite spheres of radii 0.02 microns suggests that the latter are not responsible for the observed spectrum.

  2. Classification by diagnosing all absorption features (CDAF) for the most abundant minerals in airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Mobasheri, Mohammad Reza; Ghamary-Asl, Mohsen

    2011-12-01

    Imaging through hyperspectral technology is a powerful tool that can be used to spectrally identify and spatially map materials based on their specific absorption characteristics in electromagnetic spectrum. A robust method called Tetracorder has shown its effectiveness at material identification and mapping, using a set of algorithms within an expert system decision-making framework. In this study, using some stages of Tetracorder, a technique called classification by diagnosing all absorption features (CDAF) is introduced. This technique enables one to assign a class to the most abundant mineral in each pixel with high accuracy. The technique is based on the derivation of information from reflectance spectra of the image. This can be done through extraction of spectral absorption features of any minerals from their respected laboratory-measured reflectance spectra, and comparing it with those extracted from the pixels in the image. The CDAF technique has been executed on the AVIRIS image where the results show an overall accuracy of better than 96%.

  3. Airborne spectroradiometry: The application of AIS data to detecting subtle mineral absorption features

    NASA Technical Reports Server (NTRS)

    Cocks, T. D.; Green, A. A.

    1986-01-01

    Analysis of Airborne Imaging Spectrometer (AIS) data acquired in Australia has revealed a number of operational problems. Horizontal striping in AIS imagery and spectral distortions due to order overlap were investigated. Horizontal striping, caused by grating position errors can be removed with little or no effect on spectral details. Order overlap remains a problem that seriously compromises identification of subtle mineral absorption features within AIS spectra. A spectrometric model of the AIS was developed to assist in identifying spurious spectral features, and will be used in efforts to restore the spectral integrity of the data.

  4. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it

  5. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Baas, F.; Allamandola, L. J.; Van De Bult, C. E. P.; Persson, S. E.; Mcgregor, P. J.; Lonsdale, C. J.; Geballe, T. R.

    1984-01-01

    Spectra obtained at a resolving power of 840, for seven protostellar sources in the region of the 4.67-micron fundamental vibrational band of CO, indicate that the deep absorption feature in W33A near 4.61 microns consists of three features which are seen in other sources, but with varying relative strength. UV-irradiation laboratory experiments with 'dirty ice' temperature cycling allow the identification of two of the features cited with solid CO and CO complexed to other molecules. Cyano group-containing molecules have a lower vapor pressure than CO, and can therefore survive in much warmer environments. The formation and location of the CO- and CN-bearing grain mantles and sources of UV irradiation in cold molecular clouds are discussed. Plausible UV light sources can produce the observed cyano group features, but only under conditions in which local heat sources do not cause evaporation of the CO molecules prior to their photoprocessing.

  6. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  7. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong

    2017-11-01

    Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.

  8. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang

    2016-12-01

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  9. The 4.5 micron Sulfate Absorption Feature on Mars and Its Relationship to Formation Environment

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2001-01-01

    The 4.5 micron sulfate absorption feature on Mars is spatially variable. It is a sensitive composition and hydration state and can be used to identify different types of aqueous environments. Additional information is contained in the original extended abstract.

  10. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  11. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  12. Mg I absorption features in the solar spectrum near 9 and 12 microns

    NASA Technical Reports Server (NTRS)

    Glenar, David A.; Reuter, Dennis C.; Deming, Drake; Chang, Edward S.

    1988-01-01

    High-resolution FTS observations from the Kitt Peak National Solar Observatory and the Spacelab 3 ATMOS experiment have revealed additional infrared transitions due to Mg I in the spectra of both quiet sun and sunspot penumbra. In contrast to previous observations, these transitions are seen in absorption, not emission. Absorption intensities range from 1 to 7 percent of the continuum in the quiet sun. In the penumbra, the same features appear to show Zeeman splitting. Modeling of the line profiles in the photospheric spectrum shows evidence for a factor of three overabundance in the n = 5 or more levels of Mg I in the upper photosphere, but with no deviations from a Planck source function. It is concluded that whatever the process that produces the emission (including the Lemke and Holweger mechanism), it must occur well above the tau(5000) = 0.01 level.

  13. Relative f-values from interstellar absorption lines: advantages and pitfalls

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward B.

    2009-05-01

    Interstellar absorption features seen in the ultraviolet and visible spectra of stars provide opportunities for comparing the strengths of different transitions out of the ground electronic states of atoms, ions and simple molecules. In principle, such measurements are straightforward since the radiative transfer is manifested as a simple exponential absorption law at any given radial velocity. Complications arise when the velocity structures of the lines are not completely resolved, or when the lines are either very strongly saturated or too weak to observe. Dynamic range limitations can compromise the comparisons of two transitions that have very different absorption f-values, but they can be mitigated if there are examples with very different column densities and transitions of intermediate strength that can help to bridge the large gap in line strengths. Attempts to unravel the effects of saturation include the use of a curve of growth when only equivalent widths are available, or the measurements of the 'apparent optical depth' when the line is mostly resolved by the instrument. Unfortunately, the application of the curve of growth for one constituent to that of another can sometimes create systematic errors, since the two may have different velocity structures. Likewise, unresolved fine velocity structures in features that have large optical depths can make the apparent optical depths misrepresent the smoothed versions of the true optical depths. One method to compare the strength of a very weak line to that of a very strong one is to measure the total absorption of the former and compare it with the strength of the damping wings of the latter. However in many circumstances, small amounts of gas at velocities well displaced from the line center can masquerade as damping wings. For this reason, it is important to check that these wings have the proper shape.

  14. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  15. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  16. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  17. IUE detector saturation and the new 2800 A absorption feature 'discovered' by Karim, Hoyle, and Wickramasinghe

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sitko, M. L.

    1984-03-01

    The 2800 A feature of Karim et al. (1983) is shown to be the result of IUE detector saturation effects in overexposed spectra. A properly exposed spectrum and an overexposed one are shown. The latter shows a broad absorption peak at 2800 A while the former does not.

  18. Radial measurements of IMF-sensitive absorption features in two massive ETGs

    NASA Astrophysics Data System (ADS)

    Vaughan, Sam P.; Davies, Roger L.; Zieleniewski, Simon; Houghton, Ryan C. W.

    2018-03-01

    We make radial measurements of stellar initial mass function (IMF) sensitive absorption features in the two massive early-type galaxies NGC 1277 and IC 843. Using the Oxford Short Wavelength Integral Field specTrogaph (SWIFT), we obtain resolved measurements of the Na I 0.82 and FeH 0.99 indices, amongst others, finding both galaxies show strong gradients in Na I absorption combined with flat FeH profiles at ˜0.4 Å. We find these measurements may be explained by radial gradients in the IMF, appropriate abundance gradients in [Na/Fe] and [Fe/H], or a combination of the two, and our data are unable to break this degeneracy. We also use full spectral fitting to infer global properties from an integrated spectrum of each object, deriving a unimodal IMF slope consistent with Salpeter in IC 843 (x = 2.27 ± 0.17) but steeper than Salpeter in NGC 1277 (x = 2.69 ± 0.11), despite their similar FeH equivalent widths. Independently, we fit the strength of the FeH feature and compare to the E-MILES and CvD12 stellar population libraries, finding agreement between the models. The IMF values derived in this way are in close agreement with those from spectral fitting in NGC 1277 (x_{CvD}=2.59^{+0.25}_{-0.48}, x_{E-MILES}=2.77± 0.31), but are less consistent in IC 843, with the IMF derived from FeH alone leading to steeper slopes than when fitting the full spectrum (x_{CvD}=2.57^{+0.30}_{-0.41}, x_{E-MILES}=2.72± 0.25). This work highlights the importance of a large wavelength coverage for breaking the degeneracy between abundance and IMF variations, and may bring into doubt the use of the Wing-Ford band as an IMF index if used without other spectral information.

  19. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  20. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent andmore » serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less

  1. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.

    2016-10-02

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential mechanisms explored for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plas-ma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES yields congested spectra from which the U I 356.18 nm transition is prominent and servesmore » as the basis for signal tracking. LA-OES signal and per-sistence vary negligibly between the test gases (air and N 2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. In conclusion, investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less

  2. Shaping Relations: Exploiting Relational Features for Visuospatial Priming

    ERIC Educational Resources Information Center

    Livins, Katherine A.; Doumas, Leonidas A. A.; Spivey, Michael J.

    2016-01-01

    Although relational reasoning has been described as a process at the heart of human cognition, the exact character of relational representations remains an open debate. Symbolic-connectionist models of relational cognition suggest that relations are structured representations, but that they are ultimately grounded in feature sets; thus, they…

  3. Effect of cell-size on the energy absorption features of closed-cell aluminium foams

    NASA Astrophysics Data System (ADS)

    Nammi, S. K.; Edwards, G.; Shirvani, H.

    2016-11-01

    The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.

  4. Inherited Fe and Ti electron transition spectroscopic features in altered ultramafic-carbonatite intrusives

    NASA Astrophysics Data System (ADS)

    Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.

    2016-12-01

    Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated

  5. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  6. Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).

    PubMed

    Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-24

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  7. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  8. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  9. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  10. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  11. Io: Near-Infrared Absorptions Not Attributable to SO2

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Clark, R. N.; Soderblom, L. A.; Carlson, R. W.; Kamp, L. W.; Galileo NIMS Team

    2001-11-01

    The Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft imaged the leading side of Jupiter's satellite Io at full spectral resolution and with triple Nyquist spatial sampling during the fifteenth orbital encounter (E15). New despiking and "dejittering" algorithms have been applied to this high S/N observation (15INHRSPEC01A). Spectral absorption features not attributable to SO2 are found between 3.0-3.4 microns and near 4.65 microns. The patterns of the spatial distributions of both absorbers differ from that of the omnipresent SO2. The broad 3.0-3.4 micron absorption is most pronounced in polar regions. Preliminary work suggests that the 4.65 micron feature may be associated with an unidentified sulfate mineral, while the 3.0-3.4 micron feature may result from the presence of more than one absorbing material. Hydrogen-bearing species are likely candidates. For example, H2O ice provides a good match for the absorption near 3.2 microns, but the absorption is shifted to wavelengths longer than that in pure H2O ice. If only one absorber is present, then hydrogen bonding of small numbers of H2O molecules could perhaps account for the shift. The absorption is weak; if H20 related, optical path lengths of a fraction of a micron are indicated. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  12. Special Features of Light Absorption by the Dimer of Bilayer Microparticles

    NASA Astrophysics Data System (ADS)

    Geints, Yu. É.; Panina, E. K.; Zemlyanov, A. A.

    2018-05-01

    Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.

  13. Time-varying sodium absorption in the Type Ia supernova 2013gh

    DOE PAGES

    Ferretti, Raphael; Amanullah, R.; Goobar, A.; ...

    2016-07-18

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all ofmore » which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. In this paper, we have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 10 19 cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. Finally, the nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those

  14. Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars

    NASA Technical Reports Server (NTRS)

    Worthey, Guy; Faber, S. M.; Gonzalez, J. Jesus; Burstein, D.

    1994-01-01

    Twenty-one optical absorption features, 11 of which have been previously defined, are automatically measured in a sample of 460 stars. Following Gorgas et al., the indices are summarized in fitting functions that give index strengths as functions of stellar temperature, gravity, and (Fe/H). This project was carried out with the purpose of predicting index strengths in the integrated light of stellar populations of different ages and metallicities, but the data should be valuable for stellar studies in the Galaxy as well. Several of the new indices appear to be promising indicators of metallicity for old stellar populations. A complete list of index data and atmospheric parameters is available in computer-readable form.

  15. Toward Detecting the 2175 Å Dust Feature Associated with Strong High-redshift Mg II Absorption Lines

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Zhou, Hongyan; Wang, Junxian; Wang, Tinggui

    2011-05-01

    We report detections of 39 2175 Å dust extinction bump candidates associated with strong Mg II absorption lines at z~ 1-1.8 on quasar spectra in Sloan Digital Sky Survey (SDSS) DR3. These strong Mg II absorption line systems are detected among 2951 strong Mg II absorbers with a rest equivalent width Wr λ2796> 1.0 Å at 1.0 < z < 1.86, which is part of a full sample of 7421 strong Mg II absorbers compiled by Prochter et al. The redshift range of the absorbers is chosen to allow the 2175 Å extinction features to be completely covered within the SDSS spectrograph operation wavelength range. An upper limit of the background quasar emission redshift at z = 2.1 is set to prevent the Lyα forest lines from contaminating the sensitive spectral region for the 2175 Å bump measurements. The FM90 parameterization is applied to model the optical/UV extinction curve in the rest frame of Mg II absorbers of the 2175 Å bump candidates. The simulation technique developed by Jiang et al. is used to derive the statistical significance of the candidate 2175 Å bumps. A total of 12 absorbers are detected with 2175 Å bumps at a 5σ level of statistical significance, 10 are detected at a 4σ level, and 17 are detected at a 3σ level. Most of the candidate bumps in this work are similar to the relatively weak 2175 Å bumps observed in the Large Magellanic Cloud LMC2 supershell rather than the strong ones observed in the Milky Way. This sample has greatly increased the total number of 2175 Å extinction bumps measured on SDSS quasar spectra. Follow-up observations may rule out some of the possible false detections and reveal the physical and chemical natures of 2175 Å quasar absorbers.

  16. Guilt by Association: The 13 micron Dust Feature in Circumstellar Shells and Related Spectral Features

    NASA Astrophysics Data System (ADS)

    Sloan, G. C.; Kraemer, K. E.; Goebel, J. H.; Price, S. D.

    A study of spectra from the SWS on ISO of optically thin oxygen-rich dust shells shows that the strength of the 13 micron dust emission feature is correlated with the CO2 bands (13--17 microns) and dust emission features at 19.8 and 28.1 microns. SRb variables tend to show stronger 13 micron features than Mira variables, suggesting that the presence of the 13 micron and related features depends on pulsation mode and mass-loss rate. The absence of any correlation to dust emission features at 16.8 and 32 microns makes spinel an unlikely carrier. The most plausible carrier of the 13 micron feature remains crystalline alumina, and we suggest that the related dust features may be crystalline silicates. When dust forms in regions of low density, it may condense into crystalline grain structures.

  17. Alternating absorption features during attosecond-pulse propagation in a laser-controlled gaseous medium

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.

    2013-11-01

    Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.

  18. The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells.

    PubMed

    Cappel, Ute B; Feldt, Sandra M; Schöneboom, Jan; Hagfeldt, Anders; Boschloo, Gerrit

    2010-07-07

    The dye-sensitized solar cell (DSC) challenges conventional photovoltaics with its potential for low-cost production and its flexibility in terms of color and design. Transient absorption spectroscopy is widely used to unravel the working mechanism of DSCs. A surprising, unexplained feature observed in these studies is an apparent bleach of the ground-state absorption of the dye, under conditions where the dye is in the ground state. Here, we demonstrate that this feature can be attributed to a change of the local electric field affecting the absorption spectrum of the dye, an effect related to the Stark effect first reported in 1913. We present a method for measuring the effect of an externally applied electric field on the absorption of dye monolayers adsorbed on flat TiO(2) substrates. The measured signal has the shape of the first derivative of the absorption spectra of the dyes and reverses sign along with the reversion of the direction of the change in dipole moment upon excitation relative to the TiO(2) surface. A very similar signal is observed in photoinduced absorption spectra of dye-sensitized TiO(2) electrodes under solar cell conditions, demonstrating that the electric field across the dye molecules changes upon illumination. This result has important implications for the analysis of transient absorption spectra of DSCs and other molecular optoelectronic devices and challenges the interpretation of many previously published results.

  19. Consistency relations for sharp features in the primordial spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris

    We study the generation of sharp features in the primordial spectra within the framework of effective field theory of inflation, wherein curvature perturbations are the consequence of the dynamics of a single scalar degree of freedom. We identify two sources in the generation of features: rapid variations of the sound speed c{sub s} (at which curvature fluctuations propagate) and rapid variations of the expansion rate H during inflation. With this in mind, we propose a non-trivial relation linking these two quantities that allows us to study the generation of sharp features in realistic scenarios where features are the result ofmore » the simultaneous occurrence of these two sources. This relation depends on a single parameter with a value determined by the particular model (and its numerical input) responsible for the rapidly varying background. As a consequence, we find a one-parameter consistency relation between the shape and size of features in the bispectrum and features in the power spectrum. To substantiate this result, we discuss several examples of models for which this one-parameter relation (between c{sub s} and H) holds, including models in which features in the spectra are both sudden and resonant.« less

  20. Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African craton)

    NASA Astrophysics Data System (ADS)

    Smit, Karen V.; D'Haenens-Johansson, Ulrika F. S.; Howell, Daniel; Loudin, Lorne C.; Wang, Wuyi

    2018-06-01

    Zimmi diamonds (Sierra Leone) have 500 million year mantle residency times whose origin is best explained by rapid tectonic exhumation to shallower depths in the mantle, associated with continental collision but prior to kimberlite eruption. Here we present spectroscopic data for a new suite of Zimmi sulphide-bearing diamonds that allow us to evaluate the link between their spectroscopic features and their unusual geological history. Cathodoluminesence (CL) imaging of these diamonds revealed irregular patterns with abundant deformation lamellae, associated with the diamonds' tectonic exhumation. Vacancies formed during deformation were subsequently naturally annealed to form vacancy clusters, NV0/- centres and H3 (NVN0). The brownish-yellow to greenish-yellow colours observed in Zimmi Ib-IaA diamonds result from visible absorption by a combination of isolated substitutional nitrogen ( {N}S^0 ) and deformation-related vacancy clusters. Colour-forming centres and other spectroscopic features can all be attributed to the unique geological history of Zimmi Ib-IaA diamonds and their rapid exhumation after formation.

  1. Time-varying sodium absorption in the Type Ia supernova 2013gh

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Johansson, J.; Vreeswijk, P. M.; Butler, R. P.; Cao, Y.; Cenko, S. B.; Doran, G.; Filippenko, A. V.; Freeland, E.; Hosseinzadeh, G.; Howell, D. A.; Lundqvist, P.; Mattila, S.; Nordin, J.; Nugent, P. E.; Petrushevska, T.; Valenti, S.; Vogt, S.; Wozniak, P.

    2016-07-01

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims: To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods: We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results: Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions: Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances. Full Tables 2 and 3 are only

  2. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury.

    PubMed

    Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A

    2010-12-01

    Greater total energy absorption by the lower extremity musculature during landing may reduce stresses placed on capsuloligamentous tissues with differences in joint contributions to energy absorption potentially affecting anterior cruciate ligament injury risk. However, the relationships between energy absorption and prospectively identified biomechanical factors associated with non-contact anterior cruciate ligament injury have yet to be demonstrated. Sagittal plane total, hip, knee and ankle energy absorption, and peak vertical ground reaction force, anterior tibial shear force, knee flexion and knee valgus angles, and internal hip extension and knee varus moments were measured in 27 individuals (14 females, 13 males) performing double leg jump landings. Correlation coefficients assessed the relationships between energy absorption during three time intervals (initial impact phase, terminal phase, and total landing) and biomechanical factors related to anterior cruciate ligament injury. More favorable values of biomechanical factors related to non-contact anterior cruciate ligament injury were associated with: 1) Lesser total (R(2)=0.178-0.558), hip (R(2)=0.229-0.651) and ankle (R(2)=0.280), but greater knee (R(2)=0.147) energy absorption during the initial impact phase; 2) Greater total (R(2)=0.170-0.845), hip (R(2)=0.599), knee (R(2)=0.236-0.834), and ankle (R(2)=0.276) energy absorption during the terminal phase of landing; and 3) Greater knee (R(2)=0.158-0.709), but lesser hip (R(2)=0.309) and ankle (R(2)=0.210-0.319) energy absorption during the total landing period. These results suggest that biomechanical factors related to anterior cruciate ligament injury are influenced by both the magnitude and timing of lower extremity energy absorption during landing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  4. Numerical indicators of absorption spectra of green leaf extract obtained from plants of different life forms.

    PubMed

    Koldaev, Vladimir M; Manyakhin, Artem Yu

    2018-06-05

    The study was carried out using 58 species of terrestrial plants of different life forms at the start of their fruiting stage. Photoreceptive systems of the leaves were assessed by means of unconventional numerical indicators of absorption spectra, relative photoabsorption coefficient, photosynthetic pigments' integral absorption intensity and relative absorption intensity coefficient. As the study showed, the leaves of all trees and light-demanding grasses favoring open spaces, which were subjected to the study were featured by the lowest values of numerical indicators of absorption spectra (NIAS). Shade-demanding grasses, which grow beneath the canopy, by contrast, were featured by the highest NIAS values. These values of the shrub leaves were in between those of light-demanding plants and shade-demanding ones. The results obtained are consistent with modern visions concerning the biochemistry and the physiology of plants' photoreceptive system. It is appropriate to apply the NIAS, which were used in this study and reflect a leaf's photoreceptive properties, as spectrophotometric criteria for monitoring and environmental management of natural plant resources and agricultural plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Event-related potentials reveal the relations between feature representations at different levels of abstraction.

    PubMed

    Hannah, Samuel D; Shedden, Judith M; Brooks, Lee R; Grundy, John G

    2016-11-01

    In this paper, we use behavioural methods and event-related potentials (ERPs) to explore the relations between informational and instantiated features, as well as the relation between feature abstraction and rule type. Participants are trained to categorize two species of fictitious animals and then identify perceptually novel exemplars. Critically, two groups are given a perfectly predictive counting rule that, according to Hannah and Brooks (2009. Featuring familiarity: How a familiar feature instantiation influences categorization. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 63, 263-275. Retrieved from http://doi.org/10.1037/a0017919), should orient them to using abstract informational features when categorizing the novel transfer items. A third group is taught a feature list rule, which should orient them to using detailed instantiated features. One counting-rule group were taught their rule before any exposure to the actual stimuli, and the other immediately after training, having learned the instantiations first. The feature-list group were also taught their rule after training. The ERP results suggest that at test, the two counting-rule groups processed items differently, despite their identical rule. This not only supports the distinction that informational and instantiated features are qualitatively different feature representations, but also implies that rules can readily operate over concrete inputs, in contradiction to traditional approaches that assume that rules necessarily act on abstract inputs.

  6. Rare-gas impurities in alkali metals: Relation to optical absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meltzer, D.E.; Pinski, F.J.; Stocks, G.M.

    1988-04-15

    An investigation of the nature of rare-gas impurity potentials in alkali metals is performed. Results of calculations based on simple models are presented, which suggest the possibility of resonance phenomena. These could lead to widely varying values for the exponents which describe the shape of the optical-absorption spectrum at threshold in the Mahan--Nozieres--de Dominicis theory. Detailed numerical calculations are then performed with the Korringa-Kohn-Rostoker coherent-potential-approximation method. The results of these highly realistic calculations show no evidence for the resonance phenomena, and lead to predictions for the shape of the spectra which are in contradiction to observations. Absorption and emission spectramore » are calculated for two of the systems studied, and their relation to experimental data is discussed.« less

  7. Causal relations and feature similarity in children's inductive reasoning.

    PubMed

    Hayes, Brett K; Thompson, Susan P

    2007-08-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations as a basis for property induction, although the proportion of causal inferences increased with age. Subsequent experiments pitted causal relations against featural similarity in induction. It was found that adults and 8-year-olds, but not 5-year-olds, preferred shared causal relations over strong featural similarity as a basis for induction. The implications for models of inductive reasoning and development are discussed.

  8. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  9. TOWARD DETECTING THE 2175 A DUST FEATURE ASSOCIATED WITH STRONG HIGH-REDSHIFT Mg II ABSORPTION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Peng; Zhou Hongyan; Wang Junxian

    2011-05-10

    We report detections of 39 2175 A dust extinction bump candidates associated with strong Mg II absorption lines at z{approx} 1-1.8 on quasar spectra in Sloan Digital Sky Survey (SDSS) DR3. These strong Mg II absorption line systems are detected among 2951 strong Mg II absorbers with a rest equivalent width W{sub r} {lambda}2796> 1.0 A at 1.0 < z < 1.86, which is part of a full sample of 7421 strong Mg II absorbers compiled by Prochter et al. The redshift range of the absorbers is chosen to allow the 2175 A extinction features to be completely covered withinmore » the SDSS spectrograph operation wavelength range. An upper limit of the background quasar emission redshift at z = 2.1 is set to prevent the Ly{alpha} forest lines from contaminating the sensitive spectral region for the 2175 A bump measurements. The FM90 parameterization is applied to model the optical/UV extinction curve in the rest frame of Mg II absorbers of the 2175 A bump candidates. The simulation technique developed by Jiang et al. is used to derive the statistical significance of the candidate 2175 A bumps. A total of 12 absorbers are detected with 2175 A bumps at a 5{sigma} level of statistical significance, 10 are detected at a 4{sigma} level, and 17 are detected at a 3{sigma} level. Most of the candidate bumps in this work are similar to the relatively weak 2175 A bumps observed in the Large Magellanic Cloud LMC2 supershell rather than the strong ones observed in the Milky Way. This sample has greatly increased the total number of 2175 A extinction bumps measured on SDSS quasar spectra. Follow-up observations may rule out some of the possible false detections and reveal the physical and chemical natures of 2175 A quasar absorbers.« less

  10. Relative Pose Estimation Using Image Feature Triplets

    NASA Astrophysics Data System (ADS)

    Chuang, T. Y.; Rottensteiner, F.; Heipke, C.

    2015-03-01

    A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, demonstrating its satisfactory performance and revealing the effectiveness of image feature integration.

  11. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    NASA Astrophysics Data System (ADS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-02-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ˜15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ˜15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  12. Munitions related feature extraction from LIDAR data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Barry L.

    2010-06-01

    The characterization of former military munitions ranges is critical in the identification of areas likely to contain residual unexploded ordnance (UXO). Although these ranges are large, often covering tens-of-thousands of acres, the actual target areas represent only a small fraction of the sites. The challenge is that many of these sites do not have records indicating locations of former target areas. The identification of target areas is critical in the characterization and remediation of these sites. The Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) of the DoD have been developing and implementing techniquesmore » for the efficient characterization of large munitions ranges. As part of this process, high-resolution LIDAR terrain data sets have been collected over several former ranges. These data sets have been shown to contain information relating to former munitions usage at these ranges, specifically terrain cratering due to high-explosives detonations. The location and relative intensity of crater features can provide information critical in reconstructing the usage history of a range, and indicate areas most likely to contain UXO. We have developed an automated procedure using an adaptation of the Circular Hough Transform for the identification of crater features in LIDAR terrain data. The Circular Hough Transform is highly adept at finding circular features (craters) in noisy terrain data sets. This technique has the ability to find features of a specific radius providing a means of filtering features based on expected scale and providing additional spatial characterization of the identified feature. This method of automated crater identification has been applied to several former munitions ranges with positive results.« less

  13. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  14. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  15. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  16. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  17. [Study on intestinal absorption features of oligosaccharides in Morinda officinalis How. with sigle-pass perfusion].

    PubMed

    Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran

    2015-01-01

    To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum.

  18. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Astrophysics Data System (ADS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-12-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The AV/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in

  19. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous

  20. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1983-01-01

    The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.

  1. Spatial Relation Predicates in Topographic Feature Semantics

    USGS Publications Warehouse

    Varanka, Dalia E.; Caro, Holly K.

    2013-01-01

    Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.

  2. Electron photodetachment from gas phase peptide dianions. Relation with optical absorption properties.

    PubMed

    Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe

    2008-02-07

    Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.

  3. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    PubMed

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  4. Fourier Transform Infrared Absorption Spectroscopy of Gas-Phase and Surface Reaction Products during Si Etching in Inductively Coupled Cl2 Plasmas

    NASA Astrophysics Data System (ADS)

    Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.

  5. Detailed Spectral Analysis of the 260 ks XMM-Newton Data of 1E 1207.4-5209 and Significance of a 2.1 keV Absorption Feature

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Chonko, James C.; Hailey, Charles J.

    2005-10-01

    We have reanalyzed the 260 ks XMM-Newton observation of 1E 1207.4-5209. There are several significant improvements over previous work. First, a much broader range of physically plausible spectral models was used. Second, we have used a more rigorous statistical analysis. The standard F-distribution was not employed, but rather the exact finite statistics F-distribution was determined by Monte Carlo simulations. This approach was motivated by the recent work of Protassov and coworkers and Freeman and coworkers. They demonstrated that the standard F-distribution is not even asymptotically correct when applied to assess the significance of additional absorption features in a spectrum. With our improved analysis we do not find a third and fourth spectral feature in 1E 1207.4-5209 but only the two broad absorption features previously reported. Two additional statistical tests, one line model dependent and the other line model independent, confirmed our modified F-test analysis. For all physically plausible continuum models in which the weak residuals are strong enough to fit, the residuals occur at the instrument Au M edge. As a sanity check we confirmed that the residuals are consistent in strength and position with the instrument Au M residuals observed in 3C 273.

  6. Consistency relations for sharp inflationary non-Gaussian features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris

    If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less

  7. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, S. A.; Spencer, J. R.; Shinn, A.

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectralmore » absorption on Charon is also reported.« less

  8. Generalized Landauer equation: Absorption-controlled diffusion processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-05-01

    The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal, free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of particles, such as neutrons, moving through a weak absorbing media, Landuer's formula is modified due to the absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In this latter case one may therefore speak of absorption-controlled diffusive processes.

  9. Identification of Absorption Features in an Extrasolar Planet Atmosphere

    NASA Astrophysics Data System (ADS)

    Barman, T.

    2007-06-01

    Water absorption is identified in the atmosphere of HD 209458b by comparing models for the planet's transmitted spectrum to recent, multiwavelength, eclipse-depth measurements (from 0.3 to 1 μm) published by Knutson et al. A cloud-free model that includes solar abundances, rainout of condensates, and photoionization of sodium and potassium is in good agreement with the entire set of eclipse-depth measurements from the ultraviolet to near-infrared. Constraints are placed on condensate removal by gravitational settling, the bulk metallicity, and the redistribution of absorbed stellar flux. Comparisons are also made to the Charbonneau et al. sodium measurements.

  10. Rapidly variable relatvistic absorption

    NASA Astrophysics Data System (ADS)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  11. Effect of X-ray irradiation on the optical absorption of СdSe1-xTex nanocrystals embedded in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2012-07-01

    The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.

  12. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance.

    PubMed

    Judycka-Proma, U; Bober, L; Gajewicz, A; Puzyn, T; Błażejowski, J

    2015-03-05

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH=2.5 and pH=7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Extracted facial feature of racial closely related faces

    NASA Astrophysics Data System (ADS)

    Liewchavalit, Chalothorn; Akiba, Masakazu; Kanno, Tsuneo; Nagao, Tomoharu

    2010-02-01

    Human faces contain a lot of demographic information such as identity, gender, age, race and emotion. Human being can perceive these pieces of information and use it as an important clue in social interaction with other people. Race perception is considered the most delicacy and sensitive parts of face perception. There are many research concerning image-base race recognition, but most of them are focus on major race group such as Caucasoid, Negroid and Mongoloid. This paper focuses on how people classify race of the racial closely related group. As a sample of racial closely related group, we choose Japanese and Thai face to represents difference between Northern and Southern Mongoloid. Three psychological experiment was performed to study the strategies of face perception on race classification. As a result of psychological experiment, it can be suggested that race perception is an ability that can be learn. Eyes and eyebrows are the most attention point and eyes is a significant factor in race perception. The Principal Component Analysis (PCA) was performed to extract facial features of sample race group. Extracted race features of texture and shape were used to synthesize faces. As the result, it can be suggested that racial feature is rely on detailed texture rather than shape feature. This research is a indispensable important fundamental research on the race perception which are essential in the establishment of human-like race recognition system.

  14. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  15. Universal relations for range corrections to Efimov features

    DOE PAGES

    Ji, Chen; Braaten, Eric; Phillips, Daniel R.; ...

    2015-09-09

    In a three-body system of identical bosons interacting through a large S-wave scattering length a, there are several sets of features related to the Efimov effect that are characterized by discrete scale invariance. Effective field theory was recently used to derive universal relations between these Efimov features that include the first-order correction due to a nonzero effective range r s. We reveal a simple pattern in these range corrections that had not been previously identified. The pattern is explained by the renormalization group for the effective field theory, which implies that the Efimov three-body parameter runs logarithmically with the momentummore » scale at a rate proportional to r s/a. The running Efimov parameter also explains the empirical observation that range corrections can be largely taken into account by shifting the Efimov parameter by an adjustable parameter divided by a. Furthermore, the accuracy of universal relations that include first-order range corrections is verified by comparing them with various theoretical calculations using models with nonzero range.« less

  16. Influence of the absorption behavior of sunscreens in the short-wavelength UV range (UVB) and the long-wavelength UV range (UVA) on the relation of the UVB absorption to sun protection factor

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Schanzer, Sabine; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2010-09-01

    The absorption of filter substances in sunscreens, reducing the incident ultraviolet (UV) radiation, is the basis for the protecting ability of such formulations. The erythema-correlated sun protection factor (SPF), depending mainly on the intensity of the UVB radiation, is the common value to quantify the efficacy of the formulations avoiding sunburn. An ex vivo method combining tape stripping and optical spectroscopy is applied to measure the absorption of sunscreens in the entire UV spectral range. The obtained relations between the short-wavelength UV (UVB) absorption and the SPF confirm a clear influence of the long-wavelength UV (UVA) absorption on the SPF values. The data reflect the historical development of the relation of the concentration of UVB and UVA filters in sunscreens and points to the influence of additional ingredients, e.g., antioxidants and cell-protecting agents on the efficacy of the products.

  17. Feature-Specific Event-Related Potential Effects to Action- and Sound-Related Verbs during Visual Word Recognition

    PubMed Central

    Popp, Margot; Trumpp, Natalie M.; Kiefer, Markus

    2016-01-01

    Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance. PMID:28018201

  18. Feature-Specific Event-Related Potential Effects to Action- and Sound-Related Verbs during Visual Word Recognition.

    PubMed

    Popp, Margot; Trumpp, Natalie M; Kiefer, Markus

    2016-01-01

    Grounded cognition theories suggest that conceptual representations essentially depend on modality-specific sensory and motor systems. Feature-specific brain activation across different feature types such as action or audition has been intensively investigated in nouns, while feature-specific conceptual category differences in verbs mainly focused on body part specific effects. The present work aimed at assessing whether feature-specific event-related potential (ERP) differences between action and sound concepts, as previously observed in nouns, can also be found within the word class of verbs. In Experiment 1, participants were visually presented with carefully matched sound and action verbs within a lexical decision task, which provides implicit access to word meaning and minimizes strategic access to semantic word features. Experiment 2 tested whether pre-activating the verb concept in a context phase, in which the verb is presented with a related context noun, modulates subsequent feature-specific action vs. sound verb processing within the lexical decision task. In Experiment 1, ERP analyses revealed a differential ERP polarity pattern for action and sound verbs at parietal and central electrodes similar to previous results in nouns. Pre-activation of the meaning of verbs in the preceding context phase in Experiment 2 resulted in a polarity-reversal of feature-specific ERP effects in the lexical decision task compared with Experiment 1. This parallels analogous earlier findings for primed action and sound related nouns. In line with grounded cognitions theories, our ERP study provides evidence for a differential processing of action and sound verbs similar to earlier observation for concrete nouns. Although the localizational value of ERPs must be viewed with caution, our results indicate that the meaning of verbs is linked to different neural circuits depending on conceptual feature relevance.

  19. Doppler-free satellites of resonances of electromagnetically induced transparency and absorption on the D 2 lines of alkali metals

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Sarkisyan, D.; Staedter, D.; Akulshin, A. M.

    2006-11-01

    The peculiarities of intra-Doppler structures that are observed in the atomic absorption spectrum of alkali metals with the help of two independent lasers have been studied. These structures accompany ultranarrow coherent resonances of electromagnetically induced transparency and absorption. With the D 2 line of rubidium taken as an example, it is shown that, in the scheme of unidirectional waves, the maximum number of satellite resonances caused by optical pumping selective with respect to the atomic velocity is equal to seven, while only six resonances are observed in the traditional scheme of saturated absorption with counterpropagating waves of the same frequency. The spectral position of the resonances and their polarity depend on the frequency of the saturating radiation, while their number and relative amplitude depend also on the experimental geometry. These features are of general character and should show themselves in the absorption spectrum on the D 2 lines of all alkali metals. An explanation of these features is given. The calculated spectral separations between the resonances are compared to the experimental ones, and their possible application is discussed.

  20. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorptionmore » and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.« less

  1. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    NASA Technical Reports Server (NTRS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  2. Detection of absorption lines in the spectra of X-ray bursts from X1608-52

    NASA Astrophysics Data System (ADS)

    Nakamura, Norio; Inoue, Hajime; Tanaka, Yasuo

    X-ray bursts from X 1608-52 were observed with the gas scintillation proportional counters on the Tenma satellite. Absorption features were detected in the spectra of three bursts among 17 bursts observed. These absorption features are consistent with a common absorption line at 4.1 keV. The energy and the properties of the absorption lines of the X 1608-52 bursts are very similar to those observed from the X 1636-53 bursts by Waki et al. (1984). Near equality of the absorption-line energies for X 1636-53 and X 1608-52 would imply that mass and radius of the neutron stars in these two systems are very similar to each other.

  3. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    PubMed

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Christiansen effect in disperse systems with resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Isaeva, Elmira A; Isaeva, A A

    We discuss the results of experimental studies of competition of absorption and scattering of laser radiation propagating in dispersive media with resonant absorption. As media under study, use is made of a suspension of polystyrene particles in solutions of rhodamine 6G in ethylene glycol probed by laser light with a wavelength of 532 nm. It is found that an increase in the dye concentration leads to an increase in optical transmittance of suspensions and an increase in speckle modulation of the forward-scattered radiation. We interpret these features as a manifestation of Christiansen effect in disperse systems with resonance absorption.

  5. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  6. Drug marker absorption in relation to pellet size, gastric motility and viscous meals in humans

    NASA Technical Reports Server (NTRS)

    Rhie, J. K.; Hayashi, Y.; Welage, L. S.; Frens, J.; Wald, R. J.; Barnett, J. L.; Amidon, G. E.; Putcha, L.; Amidon, G. L.

    1998-01-01

    PURPOSE: The objective of this study was to evaluate drug marker absorption in relation to the gastric emptying (GE) of 0.7 mm and 3.6 mm enteric coated pellets as a function of viscosity and the underlying gastric motility. METHODS: Twelve subjects were evaluated in a 3-way crossover study. 0.7 mm caffeine and 3.6 mm acetaminophen enteric coated pellets were concurrently administered with a viscous caloric meal at the levels of 4000, 6000 and 8000 cP. Gastric motility was simultaneously measured with antral manometry and compared to time events in the plasma profiles of the drug markers. RESULTS: Caffeine, from the 0.7 mm pellets, was observed significantly earlier in the plasma than acetaminophen, from the 3.6 mm pellets, at all levels of viscosity. Motility related size differentiated GE was consistently observed at all viscosity levels, however, less variability was observed with the 4000 cP meal. Specifically, the onset of absorption from the of 3.6 mm pellets correlated with the onset of Phase II fasted state contractions (r = 0.929, p < 0.01). CONCLUSIONS: The timeframe of drug marker absorption and the onset of motility events were not altered within the range of viscosities evaluated. Rather, the differences in drug marker profiles from the non-digestible solids were most likely the result of the interaction between viscosity and motility influencing antral flow dynamics. The administration of the two sizes of pellets and a viscous caloric meal with subsequent monitoring of drug marker profiles is useful as a reference to assess the influence of motility patterns on the absorption profile of orally administered agents.

  7. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  8. Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection

    PubMed Central

    Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe

    2012-01-01

    This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461

  9. Extreme Variability in a Broad Absorption Line Quasar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Daniel; Jun, Hyunsung D.; Graham, Matthew J.

    CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar withmore » extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.« less

  10. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans

    USDA-ARS?s Scientific Manuscript database

    Calcium absorption efficiency and bone mineral mass are increased in adolescents who regularly consume inulin-type fructans (ITF). The mechanism of action in increasing absorption is unknown but may be related to increased colonic calcium absorption. We conducted a study in young adults designed to ...

  11. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  12. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  13. Exocomet Orbit Fitting: Accelerating Coma Absorption During Transits of β Pictoris

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.

    2018-06-01

    Comets are a remarkable feature in our night sky, visible on their passage through the inner Solar system as the Sun's energy sublimates ices and liberates surface material, generating beautiful comae, dust, and ion tails. Comets are also thought to orbit other stars, and are the most promising interpretation of sporadic absorption features (i.e. transits) seen in spectra of stars such as β Pictoris and 49 Ceti. These "exocomets" are thought to form and evolve in the same way as in the Solar system, and as in the Solar system we may gain insight into their origins by deriving their orbits. In the case of β Pictoris, orbits have been estimated indirectly, using the radial velocity of the absorption features coupled with a physical evaporation model to estimate the stellocentric distance at transit dtr. Here, we note that the inferred dtr imply that some absorption signatures should accelerate over several hours, and show that this acceleration is indeed seen in HARPS spectra. This new constraint means that orbital characteristics can be obtained directly, and the pericentre distance and longitude constrained when parabolic orbits are assumed. The results from fitting orbits to 12 accelerating features, and a handful of non-accelerating ones, are in broad agreement with previous estimates based on an evaporation model, thereby providing some validation of the exocomet hypothesis. A prediction of the evaporation model, that coma absorption is deeper for more distant transits, is also seen here.

  14. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers.

    PubMed Central

    Bunker, G; Stern, E A; Blankenship, R E; Parson, W W

    1982-01-01

    Measurements were made of the extended x-ray absorption fine structure (EXAFS) of the iron site in photosynthetic reaction centers from the bacterium Rhodopseudomonas sphaeroides. Forms with two quinones, two quinones with added o-phenanthroline, and one quinone were studied. Only the two forms containing two quinones maintained their integrity and were analyzed. The spectra show directly that the added o-phenanthroline does not chelate the iron atom. Further analysis indicates that the iron is octahedrally coordinated by nitrogen and/or oxygen atoms located at various distances, with the average value of about 2.14 A. The analysis suggests that most of the ligands are nitrogens and that three of the nitrogen ligands belong to histidine rings. This interpretation accounts for several unusual features of the EXAFS spectrum. We speculate that the quinones are bound to the histidine rings in some manner. Qualitative features of the absorption edge spectra also are discussed and are related to the Fe-ligand distance. PMID:6977382

  15. Absorption fever characteristics due to percutaneous renal biopsy-related hematoma.

    PubMed

    Hu, Tingyang; Liu, Qingquan; Xu, Qin; Liu, Hui; Feng, Yan; Qiu, Wenhui; Huang, Fei; Lv, Yongman

    2016-09-01

    This study aims to describe the unique characteristics of absorption fever in patients with a hematoma after percutaneous renal biopsy (PRB) and distinguish it from secondary infection of hematoma.We retrospectively studied 2639 percutaneous renal biopsies of native kidneys. We compared the clinical characteristics between 2 groups: complication group (gross hematuria and/or perirenal hematoma) and no complication group. The axillary temperature of patients with a hematoma who presented with fever was measured at 06:00, 10:00, 14:00, and 18:00. The onset and duration of fever and the highest body temperature were recorded. Thereafter, we described the time distribution of absorption fever and obtained the curve of fever pattern.Of 2639 patients, PRB complications were observed in 154 (5.8%) patients. Perirenal hematoma was the most common complication, which occurred in 118 (4.5%) of biopsies, including 74 small hematoma cases (thickness ≤3 cm) and 44 large hematoma cases (thickness >3 cm). Major complications were observed in only 6 (0.2%) cases resulting from a large hematoma. Of 118 patients with a perirenal hematoma, absorption fever was observed in 48 cases. Furthermore, large hematomas had a 5.23-fold higher risk for absorption fever than the small ones.Blood pressure, renal insufficiency, and prothrombin time could be risk factors for complications. Fever is common in patients with hematoma because of renal biopsy and is usually noninfectious. Evaluation of patients with post-biopsy fever is necessary to identify any obvious infection sources. If no focus is identified, empiric antibiotic therapy should not be initiated nor should prophylactic antibiotics be extended for prolonged durations. Absorption fevers will resolve in time without specific therapeutic interventions.

  16. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  17. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  18. Detection of H I absorption in the dwarf galaxy Haro 11

    NASA Astrophysics Data System (ADS)

    MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie

    2014-02-01

    We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).

  19. H I absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  20. Electromagnetic-radiation absorption by water.

    PubMed

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  1. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  2. Face Inversion Disproportionately Impairs the Perception of Vertical but Not Horizontal Relations between Features

    ERIC Educational Resources Information Center

    Goffaux, Valerie; Rossion, Bruno

    2007-01-01

    Upside-down inversion disrupts the processing of spatial relations between the features of a face, while largely preserving local feature analysis. However, recent studies on face inversion failed to observe a clear dissociation between relational and featural processing. To resolve these discrepancies and clarify how inversion affects face…

  3. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  4. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  5. Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal

    USGS Publications Warehouse

    Sanches, Ieda Del´Arco; Souza Filho, Carlos Roberto de; Kokaly, Raymond F.

    2014-01-01

    This paper explores the use of spectral feature analysis to detect plant stress in visible/near infrared wavelengths. A time series of close range leaf and canopy reflectance data of two plant species grown in hydrocarbon-contaminated soil was acquired with a portable spectrometer. The ProSpecTIR-VS airborne imaging spectrometer was used to obtain far range hyperspectral remote sensing data over the field experiment. Parameters describing the chlorophyll 680 nm absorption feature (depth, width, and area) were derived using continuum removal applied to the spectra. A new index, the Plant Stress Detection Index (PSDI), was calculated using continuum-removed values near the chlorophyll feature centre (680 nm) and on the green-edge (560 and 575 nm). Chlorophyll feature’s depth, width and area, the PSDI and a narrow-band normalised difference vegetation index were evaluated for their ability to detect stressed plants. The objective was to analyse how the parameters/indices were affected by increasing degrees of plant stress and to examine their utility as plant stress indicators at the remote sensing level (e.g. airborne sensor). For leaf data, PSDI and the chlorophyll feature area revealed the highest percentage (67–70%) of stressed plants. The PSDI also proved to be the best constraint for detecting the stress in hydrocarbon-impacted plants with field canopy spectra and airborne imaging spectroscopy data. This was particularly true using thresholds based on the ASD canopy data and considering the combination of higher percentage of stressed plants detected (across the thresholds) and fewer false-positives.

  6. Chemical-induced disease relation extraction with various linguistic features.

    PubMed

    Gu, Jinghang; Qian, Longhua; Zhou, Guodong

    2016-01-01

    Understanding the relations between chemicals and diseases is crucial in various biomedical tasks such as new drug discoveries and new therapy developments. While manually mining these relations from the biomedical literature is costly and time-consuming, such a procedure is often difficult to keep up-to-date. To address these issues, the BioCreative-V community proposed a challenging task of automatic extraction of chemical-induced disease (CID) relations in order to benefit biocuration. This article describes our work on the CID relation extraction task on the BioCreative-V tasks. We built a machine learning based system that utilized simple yet effective linguistic features to extract relations with maximum entropy models. In addition to leveraging various features, the hypernym relations between entity concepts derived from the Medical Subject Headings (MeSH)-controlled vocabulary were also employed during both training and testing stages to obtain more accurate classification models and better extraction performance, respectively. We demoted relation extraction between entities in documents to relation extraction between entity mentions. In our system, pairs of chemical and disease mentions at both intra- and inter-sentence levels were first constructed as relation instances for training and testing, then two classification models at both levels were trained from the training examples and applied to the testing examples. Finally, we merged the classification results from mention level to document level to acquire final relations between chemicals and diseases. Our system achieved promisingF-scores of 60.4% on the development dataset and 58.3% on the test dataset using gold-standard entity annotations, respectively. Database URL:https://github.com/JHnlp/BC5CIDTask. © The Author(s) 2016. Published by Oxford University Press.

  7. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  8. Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fakhardji, W.; Gustafsson, M.

    2017-02-01

    We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.

  9. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  10. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  11. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  12. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    PubMed

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-11

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  13. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    NASA Astrophysics Data System (ADS)

    Liu, Jonathan T. C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-11-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34 1.47 μm spectral region (2v1 and v1+v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

  14. Finite temperature effects on the X-ray absorption spectra of energy related materials

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  15. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.

    PubMed

    Huang, Houjin; Kajiura, Hisashi; Maruyama, Ryuichiro; Kadono, Koji; Noda, Kazuhiro

    2006-03-16

    While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.

  16. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  17. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the regionmore » from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.« less

  18. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  19. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-07-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measurement of DOC, absorption spectrum of CDOM, Chla concentration, suspended sediment (SS), and salinity from cruises in different seasons around the Changjiang estuary. Our results show that around the Changjiang estuary the absorption coefficients of CDOM in general have the similar spatial and temporal characteristics as that of DOC, but the strength of the correlation between CDOM and DOC varies locally and seasonally. The input of pollutants from outside the estuary, the bloom of phytoplankton in spring, re-suspension of deposited sediment, and light bleaching all contribute to the local and seasonal variation of the correlation between DOC and CDOM. An inversion model for the determination of DOC from CDOM is established, but the stability of model parameters and its application in different environments need further study. We find that relative to the absorption coefficient of CDOM, the fitted parameters of the absorption spectrum of DOM are better indictors for the composition of DOC. In addition, it is found that the terrestrial input of DOC to Changjiang estuary is a typical two-stage dilution process instead of a linear diffusion process.

  20. Beliefs about unmet interpersonal needs mediate the relation between conflictual family relations and borderline personality features in young adult females.

    PubMed

    Kalpakci, Allison; Venta, Amanda; Sharp, Carla

    2014-01-01

    Central to most theories of borderline personality disorder (BPD) is the notion that the family environment interacts with genetically-based vulnerabilities to influence the development of BPD, with particular attention given to risk conferred by conflictual familial relations. However, the extent to which family conflict may relate to the development of BPD via related interpersonal beliefs is currently unknown. This study sought to test the hypothesis that the concurrent relation between conflictual family relations and borderline features in female college students is explained by beliefs associated with real or perceived unmet interpersonal needs (captured by Joiner's [2005] Interpersonal Psychological Theory, specifically thwarted belongingness and perceived burdensomeness). The sample included 267 female undergraduates ages 18-25 years (M = 20.86; SD = 1.80). Level of borderline personality features, unmet interpersonal needs, and family conflict were assessed. Bivariate analyses revealed significant relations between both thwarted belongingness and perceived burdensomeness, conflictual family relations, and borderline features. Multivariate analyses revealed that thwarted belongingness and perceived burdensomeness both mediated the relation between family conflict and borderline personality features, thus supporting a multiple mediation model. This cross-sectional study is a preliminary step towards confirming the broad theoretical hypothesis that conflictual family relations relate to beliefs about thwarted belongingness and perceived burdensomeness, which, in turn, relate to borderline personality pathology. Limitations and areas of future research are discussed.

  1. Environmental temperature effect on the far-infrared absorption features of aromatic-based Titan's aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2017-01-01

    Benzene detection has been reported in Titan's atmosphere both in the stratosphere at ppb levels by remote sensing (Coustenis et al., 2007; Vinatier et al., 2007) and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer (Waite et al., 2007). This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500 cm-1, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared (Anderson and Samuelson 2011, and references therein). In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titan's stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  2. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara; Nojima, S.

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables themore » efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and

  3. ABSORPTION OF NUTRIENTS AND PLANT GROWTH IN RELATION TO HYDROGEN ION CONCENTRATION

    PubMed Central

    Arrhenius, Olof

    1922-01-01

    The absorption of nutrients depends to a large extent on the reaction of the substrate. At maximal growth the intake of salt is at minimum. Different ions are very differently affected. The intake of water is independent of the absorption of salts. PMID:19871980

  4. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline

  5. The widetilde{A}←widetilde{X} ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan; Takematsu, Kana; Okumura, Mitchio

    2009-06-01

    The nitrate radical is an important atmospheric oxidant in the nighttime sky. Nitrate radicals react by addition to alkenes, and in the presence of oxygen form nitrooxyalkyl peroxy radicals. The peroxy radical formed from the reaction of 2-butene, nitrate radical, and oxygen was detected by cavity ringdown spectroscopy (CRDS) via its widetilde{A}←widetilde{X} electronic absorption spectrum. The widetilde{A}←widetilde{X} electronic transition is a bound-bound transition with enough structure to distinguish between different peroxy radicals as well as different conformers of the same peroxy radical. Two conformers of the nitrooxybutyl peroxy radical have been observed; the absorption features are red shifted from the same absorption features of sec-butyl peroxy radical. Calculations on the structure of nitrooxyalkyl peroxy radicals and general trends of the position of the widetilde{A}←widetilde{X} absorption transitions have also been performed and compared to those of unsubstituted peroxy radicals.

  6. Icy Moon Absorption Signatures: Probes of Saturnian Magnetospheric Dynamics and Moon Activity

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Jones, G. H.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Motschmann, U.; Dougherty, M. K.; Lagg, A.; Woch, J.

    2006-12-01

    After the first flybys at the outer planets by the Pioneer and Voyager probes, it became evident that energetic charged particle absorption features in the radiation belts are important tracers of magnetospheric dynamical features and parameters. Absorption signatures are especially important for characterizing the Saturnian magnetosphere. Due to the spin and magnetic axes' near-alignment, losses of particles to the icy moon surfaces and rings are higher compared to the losses at other planetary magnetospheres. The refilling rate of these absorption features (termed "micorsignatures") can be associated with particle diffusion. In addition, as these microsignatures drift with the properties of the pre-depletion electrons, they provide us direct information on the drift shell structure in the radiation belts and the factors that influence their shape. The multiple icy moon L-shell crossings by the Cassini spacecraft during the first 2 years of the mission provided us with almost 100 electron absorption events by eight different moons, at various longitudinal separations from each one and at various electron energies. Their analysis seems to give a consistent picture of the electron diffusion source and puts aside a lot of inconsistencies that resulted from relevant Pioneer and Voyager studies. The presence of non-axisymmetric particle drift shells even down to the orbit of Enceladus (3.98 Rs), also revealed through this analysis, suggests either large ring current disturbances or the action of global or localized electric fields. Finally, despite these absorption signatures being observed far from the originating moons, they can give us hints on the nature of the local interaction between each moon and the magnetospheric plasma. It is, nevertheless, beyond any doubt that energetic charged particle absorption signatures are a very powerful tool that can be used to effectively probe a series of dynamical processes in the Saturnian magnetosphere.

  7. The hot DOA1 degenerate HZ 21 - A search for circumstellar/photospheric metals and peculiar absorption at He II

    NASA Technical Reports Server (NTRS)

    Fritz, M. L.; Leckenby, H.; Sion, E. M.; Vauclair, G.; Liebert, J.

    1990-01-01

    A high-resolution IUE spectrum of the hot DO1 degenerate HZ 21 was obtained by combining US1 + European 2 low-background observing shifts. The SWP image reveals a rich spectrum of interstellar absorption lines with an average velocity in the line of sight to HZ 21 of -30 km/s. However, there is no clear evidence of any highly or lowly ionized metal features which could be attributed to circumstellar, wind, or photospheric absorption. There is, however, a broad absorption trough at He II (1640) which was not unexpected, given the clear presence of He II (4686) absorption in this star's optical spectrum. The velocity width of He II (1640) appears consistent with photospheric absorption wings which appear to flank the geocoronal Ly-alpha emission feature. The He II (1640) feature reveals what appears to be a broad (310 km/s) emission reversal. Evidence is provided that the emission reversal is probably real.

  8. Absorption characteristics of forest fire particulate matter

    Treesearch

    E.M. Patterson; Charles K. McMahon

    1984-01-01

    Abstract. Absorption properties of smokes from laboratory fires that represent prescription hums in the Southern states have been quantified to relate variations in measured absorption parameters to variation in fire conditions and to estimate emission factors for elemental carbon. Results showed significant differences in absorption of the smoke...

  9. Precise Modelling of Telluric Features in Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Seifahrt, A.; Käufl, H. U.; Zängl, G.; Bean, J.; Richter, M.; Siebenmorgen, R.

    2010-12-01

    Ground-based astronomical observations suffer from the disturbing effects of the Earth's atmosphere. Oxygen, water vapour and a number of atmospheric trace gases absorb and emit light at discrete frequencies, shaping observing bands in the near- and mid-infrared and leaving their fingerprints - telluric absorption and emission lines - in astronomical spectra. The standard approach of removing the absorption lines is to observe a telluric standard star: a time-consuming and often imperfect solution. Alternatively, the spectral features of the Earth's atmosphere can be modelled using a radiative transfer code, often delivering a satisfying solution that removes these features without additional observations. In addition the model also provides a precise wavelength solution and an instrumental profile.

  10. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  11. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated

  12. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.

    2015-09-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was

  13. Absorption spectroscopy at the limb of small transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Ehrenreich, D.; Lecavelier Des Etangs, A.

    2005-12-01

    Planetary transits are a tremendous tool to probe into exoplanet atmospheres using the light from their parent stars (from 0.2 μm to ˜1 μm). The detection of atmospheric components in an extra-solar giant planet was performed using the Hubble Space Telescope (HST) with a sensitivity reaching ˜10-4 in relative absorption depth over ˜1 Å-wide features (Charbonneau et al., 2002). The next step is the detection and the characterization of smaller, possibly Earth-like worlds, which will require a sensitivity of ˜10-6. Fortunately, ˜0.1 μm-wide absorption bands of particular interest for small exoplanets do exist in this spectral domain. We developed a model to quantify the detectability of a variety of Earth-size planets harboring different kind of atmospheres. Key parameters are the density of the planet and the thickness of the atmosphere. We also evaluate in consequence the number of potential targets for a future space mission, and also find that K stars are best candidates. See Ehrenreich et al. (2005) for a complete description.

  14. To v∞ and beyond! The He I absorption variability across the 2014.6 periastron passage of η Carinae

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Madura, Thomas I.; St-Jean, Lucas; Moffat, Anthony F. J.; Gull, Theodore R.; Russell, Christopher M. P.; Damineli, Augusto; Teodoro, Mairan; Corcoran, Michael F.; Walter, Frederick M.; Clementel, Nicola; Groh, José H.; Hamaguchi, Kenji; Hillier, D. John

    2016-09-01

    We have monitored the massive binary star η Carinae with the CTIO/Small and Moderate Aperture Research Telescope System 1.5 m telescope and CHIRON spectrograph from the previous apastron passage of the system through the recent 2014.6 periastron passage. Our monitoring has resulted in a large, homogeneous data set with an unprecedented time-sampling, spectral resolving power, and signal to noise. This allowed us to investigate temporal variability previously unexplored in the system and discover a kinematic structure in the P Cygni absorption troughs of neutral helium wind lines. The features observed occurred prior to the periastron passage and are seen as we look through the trailing arm of the wind-wind collision shock cone. We show that the bulk of the variability is repeatable across the last five periastron passages, and that the absorption occurs in the inner 230 au of the system. In addition, we found an additional, high-velocity absorption component superimposed on the P Cygni absorption troughs that has been previously unobserved in these lines, but which bears resemblance to the observations of the He I λ10830 Å feature across previous cycles. Through a comparison of the current smoothed particle hydrodynamical simulations, we show that the observed variations are likely caused by instabilities in the wind-wind collision region in our line of sight, coupled with stochastic variability related to clumping in the winds.

  15. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  16. Absorption dynamics and delay time in complex potentials

    NASA Astrophysics Data System (ADS)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  17. Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee; King, Anthea L.; Webster, Rachel L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2018-06-01

    A key to understanding quasar unification paradigms is the emission properties of broad absorption line quasars (BALQs). The fact that only a small fraction of quasar spectra exhibit deep absorption troughs blueward of the broad permitted emission lines provides a crucial clue to the structure of quasar emitting regions. To learn whether it is possible to discriminate between the BALQ and non-BALQ populations given the observed spectral properties of a quasar, we employ two approaches: one based on statistical methods and the other supervised machine learning classification, applied to quasar samples from the Sloan Digital Sky Survey. The features explored include continuum and emission line properties, in particular the absolute magnitude, redshift, spectral index, line width, asymmetry, strength, and relative velocity offsets of high-ionisation C IV λ1549 and low-ionisation Mg II λ2798 lines. We consider a complete population of quasars, and assume that the statistical distributions of properties represent all angles where the quasar is viewed without obscuration. The distributions of the BALQ and non-BALQ sample properties show few significant differences. None of the observed continuum and emission line features are capable of differentiating between the two samples. Most published narrow disk-wind models are inconsistent with these observations, and an alternative disk-wind model is proposed. The key feature of the proposed model is a disk-wind filling a wide opening angle with multiple radial streams of dense clumps.

  18. MRI Features of Hepatocellular Carcinoma Related to Biologic Behavior

    PubMed Central

    Cho, Eun-Suk

    2015-01-01

    Imaging studies including magnetic resonance imaging (MRI) play a crucial role in the diagnosis and staging of hepatocellular carcinoma (HCC). Several recent studies reveal a large number of MRI features related to the prognosis of HCC. In this review, we discuss various MRI features of HCC and their implications for the diagnosis and prognosis as imaging biomarkers. As a whole, the favorable MRI findings of HCC are small size, encapsulation, intralesional fat, high apparent diffusion coefficient (ADC) value, and smooth margins or hyperintensity on the hepatobiliary phase of gadoxetic acid-enhanced MRI. Unfavorable findings include large size, multifocality, low ADC value, non-smooth margins or hypointensity on hepatobiliary phase images. MRI findings are potential imaging biomarkers in patients with HCC. PMID:25995679

  19. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  20. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O 3 and α-pinene + NO x + O 3 systems in the presence ofmore » neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O 3 + NO 3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O 3 and α-pinene + NO x + O 3 systems do not form light-absorbing SOA under typical atmospheric conditions.« less

  1. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  2. Maladaptive Personality and Neuropsychological Features of Highly Relationally Aggressive Adolescent Girls

    ERIC Educational Resources Information Center

    Savage, Michael; DiBiase, Anne-Marie

    2016-01-01

    The maladaptive personality and neuropsychological features of highly relationally aggressive females were examined in a group of 30 grade 6, 7, and 8 girls and group-matched controls. Employing a multistage cluster sampling procedure, a group of highly, yet almost exclusively, relationally aggressive females were identified and matched on a…

  3. Age-related interference from irrelevant distracters in visual feature search among heterogeneous distracters.

    PubMed

    Merrill, Edward C; Conners, Frances A

    2013-08-01

    We evaluated age-related variations in the influence of heterogeneous distracters during feature target. Participants in three age groups-6-year-old children, 9-year-old children, and young adults-completed three conditions of search. In a singleton search condition, participants searched for a circle among squares of the same color. In two feature mode search conditions, participants searched for a gray circle or a black circle among gray and black squares. Singleton search was performed at the same level of efficiency for all age groups. In contrast, the two feature mode search conditions yielded age-related performance differences in both conditions. Younger children exhibited a steeper slope than young adults when searching for a gray or black circle. Older children exhibited a steeper slope than young adults when searching for a gray circle but not when searching for a black circle. We concluded that these differences revealed age-related improvements in the relative abilities of adults and children to execute attentional control processes during visual search. In particular, it appears that children found it more difficult to maintain the goal of searching for a circle target than adults and were distracted by the presence of the irrelevant feature dimension of color. Published by Elsevier Inc.

  4. Some aspects of coupling-induced sound absorption in enclosures.

    PubMed

    Sum, K S; Pan, J

    2003-08-01

    It is known that the coupling between a modally reactive boundary structure of an enclosure and the enclosed sound field induces absorption in the sound field. However, the effect of this absorption on the sound-field response can vary significantly, even when material properties of the structure and dimensions of the coupled system are not changed. Although there have been numerous investigations of coupling between a structure and an enclosed sound field, little work has been done in the area of sound absorption induced by the coupling. Therefore, characteristics of the absorption are not well understood and the extent of its influence on the behavior of the sound-field response is not clearly known. In this paper, the coupling of a boundary structure and an enclosed sound field in frequency bands above the low-frequency range is considered. Three aspects of the coupling-induced sound absorption are studied namely, the effects of exciting either the structure or the sound field directly, damping in the uncoupled sound field and damping in the uncoupled structure. The results provide an understanding of some features of the coupling-induced absorption and its significance to the sound-field response.

  5. Credibility judgments of narratives: language, plausibility, and absorption.

    PubMed

    Nahari, Galit; Glicksohn, Joseph; Nachson, Israel

    2010-01-01

    Two experiments were conducted in order to find out whether textual features of narratives differentially affect credibility judgments made by judges having different levels of absorption (a disposition associated with rich visual imagination). Participants in both experiments were exposed to a textual narrative and requested to judge whether the narrator actually experienced the event he described in his story. In Experiment 1, the narrative varied in terms of language (literal, figurative) and plausibility (ordinary, anomalous). In Experiment 2, the narrative varied in terms of language only. The participants' perceptions of the plausibility of the story described and the extent to which they were absorbed in reading were measured. The data from both experiments together suggest that the groups applied entirely different criteria in credibility judgments. For high-absorption individuals, their credibility judgment depends on the degree to which the text can be assimilated into their own vivid imagination, whereas for low-absorption individuals it depends mainly on plausibility. That is, high-absorption individuals applied an experiential mental set while judging the credibility of the narrator, whereas low-absorption individuals applied an instrumental mental set. Possible cognitive mechanisms and implications for credibility judgments are discussed.

  6. Systematic review: Helicobacter pylori infection and impaired drug absorption.

    PubMed

    Lahner, E; Annibale, B; Delle Fave, G

    2009-02-15

    Impaired acid secretion may affect drug absorption and may be consequent to corporal Helicobacter pylori-gastritis, which may affect the absorption of orally administered drugs. To focus on the evidence of impaired drug absorption associated with H. pylori infection. Data sources were the systematic search of MEDLINE/EMBASE/SCOPUS databases (1980-April 2008) for English articles using the keywords: drug malabsorption/absorption, stomach, Helicobacter pylori, gastritis, gastric acid, gastric pH, hypochlorhydria, gastric hypoacidity. Study selection was made from 2099 retrieved articles, five studies were identified. Data were extracted from selected papers, investigated drugs, study type, main features of subjects, study design, intervention type and results were extracted. In all, five studies investigated impaired absorption of l-dopa, thyroxine and delavirdine in H. pylori infection. Eradication treatment led to 21-54% increase in l-dopa in Parkinson's disease. Thyroxine requirement was higher in hypochlorhydric goitre with H. pylori-gastritis and thyrotropin levels decreased by 94% after treatment. In H. pylori- and HIV-positive hypochlorhydric subjects, delavirdine absorption increased by 57% with orange juice administration and by 150% after eradication. A plausible mechanism of impaired drug absorption is decreased acid secretion in H. pylori-gastritis patients. Helicobacter pylori infection and hypochlorhydria should be considered in prescribing drugs the absorption of which is potentially affected by intragastric pH.

  7. Popular Nutrition-Related Mobile Apps: A Feature Assessment

    PubMed Central

    Fallaize, Rosalind; Lovegrove, Julie A; Hwang, Faustina

    2016-01-01

    Background A key challenge in human nutrition is the assessment of usual food intake. This is of particular interest given recent proposals of eHealth personalized interventions. The adoption of mobile phones has created an opportunity for assessing and improving nutrient intake as they can be used for digitalizing dietary assessments and providing feedback. In the last few years, hundreds of nutrition-related mobile apps have been launched and installed by millions of users. Objective This study aims to analyze the main features of the most popular nutrition apps and to compare their strategies and technologies for dietary assessment and user feedback. Methods Apps were selected from the two largest online stores of the most popular mobile operating systems—the Google Play Store for Android and the iTunes App Store for iOS—based on popularity as measured by the number of installs and reviews. The keywords used in the search were as follows: calorie(s), diet, diet tracker, dietician, dietitian, eating, fit, fitness, food, food diary, food tracker, health, lose weight, nutrition, nutritionist, weight, weight loss, weight management, weight watcher, and ww calculator. The inclusion criteria were as follows: English language, minimum number of installs (1 million for Google Play Store) or reviews (7500 for iTunes App Store), relation to nutrition (ie, diet monitoring or recommendation), and independence from any device (eg, wearable) or subscription. Results A total of 13 apps were classified as popular for inclusion in the analysis. Nine apps offered prospective recording of food intake using a food diary feature. Food selection was available via text search or barcode scanner technologies. Portion size selection was only textual (ie, without images or icons). All nine of these apps were also capable of collecting physical activity (PA) information using self-report, the global positioning system (GPS), or wearable integrations. Their outputs focused

  8. Popular Nutrition-Related Mobile Apps: A Feature Assessment.

    PubMed

    Franco, Rodrigo Zenun; Fallaize, Rosalind; Lovegrove, Julie A; Hwang, Faustina

    2016-08-01

    A key challenge in human nutrition is the assessment of usual food intake. This is of particular interest given recent proposals of eHealth personalized interventions. The adoption of mobile phones has created an opportunity for assessing and improving nutrient intake as they can be used for digitalizing dietary assessments and providing feedback. In the last few years, hundreds of nutrition-related mobile apps have been launched and installed by millions of users. This study aims to analyze the main features of the most popular nutrition apps and to compare their strategies and technologies for dietary assessment and user feedback. Apps were selected from the two largest online stores of the most popular mobile operating systems-the Google Play Store for Android and the iTunes App Store for iOS-based on popularity as measured by the number of installs and reviews. The keywords used in the search were as follows: calorie(s), diet, diet tracker, dietician, dietitian, eating, fit, fitness, food, food diary, food tracker, health, lose weight, nutrition, nutritionist, weight, weight loss, weight management, weight watcher, and ww calculator. The inclusion criteria were as follows: English language, minimum number of installs (1 million for Google Play Store) or reviews (7500 for iTunes App Store), relation to nutrition (ie, diet monitoring or recommendation), and independence from any device (eg, wearable) or subscription. A total of 13 apps were classified as popular for inclusion in the analysis. Nine apps offered prospective recording of food intake using a food diary feature. Food selection was available via text search or barcode scanner technologies. Portion size selection was only textual (ie, without images or icons). All nine of these apps were also capable of collecting physical activity (PA) information using self-report, the global positioning system (GPS), or wearable integrations. Their outputs focused predominantly on energy balance between dietary

  9. Causal Relations and Feature Similarity in Children's Inductive Reasoning

    ERIC Educational Resources Information Center

    Hayes, Brett K.; Thompson, Susan P.

    2007-01-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations…

  10. Synthesis temperature effect on the structural features and optical absorption of Zn(1-x)Co(x)Al2O4 oxides.

    PubMed

    Gaudon, M; Apheceixborde, A; Ménétrier, M; Le Nestour, A; Demourgues, A

    2009-10-05

    Zinc/cobalt aluminates with spinel-type structure were prepared by a polymeric route, leading to a pure phase with controlled grain size. The prepared pigments were characterized by powder X-ray diffraction Rietveld analyses in order to determine structural features, scanning electron microscopy for morphological investigation, helium pycnometry and (27)Al MAS NMR in order to highlight the occurrence of defects inside the structure, and UV-visible-near-IR spectroscopy to identify electronic transitions responsible for the compounds' color. The green-blue coloration of these pigments is known to be dependent on the sample thermal history. Here, for the first time, the Zn(1-x)Co(x)Al(2)O(4) color is newly interpreted. The pigment is green once synthesized at low temperature (i.e., with diminution of the pigment grain size); this variation was attributed to the appearance of a new absorption band located at about 500 nm, linked to a complex network feature involving Co ions in octahedral sites as well as oxygen and cationic vacancies. Hence, this work shows the possibility of easily getting a nonstoichiometric network with an abnormal cationic distribution from "chimie douce" processes with moderate synthesis temperature, and so various colorations for the same composition.

  11. Hippocampal Sleep Features: Relations to Human Memory Function

    PubMed Central

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  12. IUE's View of Callisto: Detection of an SO2 Absorption Correlated to Possible Torus Neutral Wind Alterations

    NASA Technical Reports Server (NTRS)

    Lane, Arthur L.; Domingue, Deborah L.

    1997-01-01

    Observations taken with the International Ultraviolet Explorer (IUE) detected a 0.28 micron absorption feature on Callisto's leading and Jupiter-facing hemispheres. This feature is similar to Europa's 0.28 micron feature, however it shows no correlation with magnetospheric ion bombardment. The strongest 0.28 micron signature is seen in the region containing the Valhalla impact. This absorption feature also shows some spatial correlation to possible neutral wind interactions, suggestive of S implantation (rather than S(sub x)) into Callisto's water ice surface, Indications of possible temporal variations (on the 10% level) are seen at other wavelengths between the 1984-1986 and the 1996 observations.

  13. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph;more » (iii) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.« less

  14. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    2017-09-01

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (I) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (II) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (III) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (IV) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (VI) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.

  15. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  16. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  17. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  18. Relational Network for Knowledge Discovery through Heterogeneous Biomedical and Clinical Features

    PubMed Central

    Chen, Huaidong; Chen, Wei; Liu, Chenglin; Zhang, Le; Su, Jing; Zhou, Xiaobo

    2016-01-01

    Biomedical big data, as a whole, covers numerous features, while each dataset specifically delineates part of them. “Full feature spectrum” knowledge discovery across heterogeneous data sources remains a major challenge. We developed a method called bootstrapping for unified feature association measurement (BUFAM) for pairwise association analysis, and relational dependency network (RDN) modeling for global module detection on features across breast cancer cohorts. Discovered knowledge was cross-validated using data from Wake Forest Baptist Medical Center’s electronic medical records and annotated with BioCarta signaling signatures. The clinical potential of the discovered modules was exhibited by stratifying patients for drug responses. A series of discovered associations provided new insights into breast cancer, such as the effects of patient’s cultural background on preferences for surgical procedure. We also discovered two groups of highly associated features, the HER2 and the ER modules, each of which described how phenotypes were associated with molecular signatures, diagnostic features, and clinical decisions. The discovered “ER module”, which was dominated by cancer immunity, was used as an example for patient stratification and prediction of drug responses to tamoxifen and chemotherapy. BUFAM-derived RDN modeling demonstrated unique ability to discover clinically meaningful and actionable knowledge across highly heterogeneous biomedical big data sets. PMID:27427091

  19. Relational Network for Knowledge Discovery through Heterogeneous Biomedical and Clinical Features

    NASA Astrophysics Data System (ADS)

    Chen, Huaidong; Chen, Wei; Liu, Chenglin; Zhang, Le; Su, Jing; Zhou, Xiaobo

    2016-07-01

    Biomedical big data, as a whole, covers numerous features, while each dataset specifically delineates part of them. “Full feature spectrum” knowledge discovery across heterogeneous data sources remains a major challenge. We developed a method called bootstrapping for unified feature association measurement (BUFAM) for pairwise association analysis, and relational dependency network (RDN) modeling for global module detection on features across breast cancer cohorts. Discovered knowledge was cross-validated using data from Wake Forest Baptist Medical Center’s electronic medical records and annotated with BioCarta signaling signatures. The clinical potential of the discovered modules was exhibited by stratifying patients for drug responses. A series of discovered associations provided new insights into breast cancer, such as the effects of patient’s cultural background on preferences for surgical procedure. We also discovered two groups of highly associated features, the HER2 and the ER modules, each of which described how phenotypes were associated with molecular signatures, diagnostic features, and clinical decisions. The discovered “ER module”, which was dominated by cancer immunity, was used as an example for patient stratification and prediction of drug responses to tamoxifen and chemotherapy. BUFAM-derived RDN modeling demonstrated unique ability to discover clinically meaningful and actionable knowledge across highly heterogeneous biomedical big data sets.

  20. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    PubMed

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  1. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials

    PubMed Central

    Rubrice, Kevin; Castel, Xavier; Himdi, Mohamed; Parneix, Patrick

    2016-01-01

    Nowadays, many types of materials are elaborated for microwave absorption applications. Carbon-based nanoparticles belong to these types of materials. Among these, graphene presents some distinctive features for electromagnetic radiation absorption and thus microwave isolation applications. In this paper, the dielectric characteristics and microwave absorption properties of epoxy resin loaded with graphene particles are presented from 2 GHz to 18 GHz. The influence of various parameters such as particle size (3 µm, 6–8 µm, and 15 µm) and weight ratio (from 5% to 25%) are presented, studied, and discussed. The sample loaded with the smallest graphene size (3 µm) and the highest weight ratio (25%) exhibits high loss tangent (tanδ = 0.36) and a middle dielectric constant ε′ = 12–14 in the 8–10 GHz frequency range. As expected, this sample also provides the highest absorption level: from 5 dB/cm at 4 GHz to 16 dB/cm at 18 GHz. PMID:28773948

  2. Particle agglomerated 3-d nanostructures for photon absorption

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan

    when compared with the previous nanostructures used in photovoltaic conversion. Several features of nanostructures contribute to the enhancement of this light absorption. The special feature of the structure is that ease to fabricate and modify the properties by varying the laser parameters could make it competitive among other nanostructures available for solar cells.

  3. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  4. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  5. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  6. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Relational Uncertainty and Message Production within Courtship: Features of Date Request Messages

    ERIC Educational Resources Information Center

    Knobloch, Leanne K.

    2006-01-01

    This paper theorizes about how relational uncertainty may predict features of date request messages within courtship. It reports a study in which 248 individuals role-played leaving a date request voice mail message for their partner. Relational uncertainty was negatively associated with the fluency (H1), affiliativeness (H2), relationship focus…

  8. Prevalence and correlates of binge eating disorder related features in the community.

    PubMed

    Mustelin, Linda; Bulik, Cynthia M; Kaprio, Jaakko; Keski-Rahkonen, Anna

    2017-02-01

    Binge eating disorder (BED) is associated with high levels of obesity and psychological suffering, but little is known about 1) the distribution of features of BED in the general population and 2) their consequences for weight development and psychological distress in young adulthood. We investigated the prevalence of features of BED and their association with body mass index (BMI) and psychological distress among men (n = 2423) and women (n = 2825) from the longitudinal community-based FinnTwin16 cohort (born 1975-1979). Seven eating-related cognitions and behaviors similar to the defining features of BED were extracted from the Eating Disorder Inventory-2 and were assessed at a mean age of 24. BMI and psychological distress, measured with the General Health Questionnaire, were assessed at ages 24 and 34. We assessed prevalence of the features and their association with BMI and psychological distress cross-sectionally and prospectively. More than half of our participants reported at least one feature of BED; clustering of several features in one individual was less common, particularly among men. The most frequently reported feature was 'stuffing oneself with food', whereas the least common was 'eating or drinking in secrecy'. All individual features of BED and their clustering particularly were associated with higher BMI and more psychological distress cross-sectionally. Prospectively, the clustering of features of BED predicted increase in psychological distress but not additional weight gain when baseline BMI was accounted for. In summary, although some features of BED were common, the clustering of several features in one individual was not. The features were cumulatively associated with BMI and psychological distress and predicted further increase in psychological distress over ten years of follow-up. Copyright © 2016. Published by Elsevier Ltd.

  9. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  10. Unified analysis of optical absorption spectra of carotenoids based on a stochastic model.

    PubMed

    Uragami, Chiasa; Saito, Keisuke; Yoshizawa, Masayuki; Molnár, Péter; Hashimoto, Hideki

    2018-05-03

    The chemical structures of the carotenoid molecules are very simple and one might think that the electronic feature of it is easily predicted. However, it still has so much unknown information except the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulating it from the resonance Raman spectra is also the effective way. From this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different kinds of cyclic carotenoid molecules, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated based on a stochastic model using Brownian oscillators. The parameters obtained from the simulation made it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively. Copyright © 2018. Published by Elsevier Inc.

  11. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  12. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  13. Parenting, relational aggression, and borderline personality features: associations over time in a Russian longitudinal sample.

    PubMed

    Nelson, David A; Coyne, Sarah M; Swanson, Savannah M; Hart, Craig H; Olsen, Joseph A

    2014-08-01

    Crick, Murray-Close, and Woods (2005) encouraged the study of relational aggression as a developmental precursor to borderline personality features in children and adolescents. A longitudinal study is needed to more fully explore this association, to contrast potential associations with physical aggression, and to assess generalizability across various cultural contexts. In addition, parenting is of particular interest in the prediction of aggression or borderline personality disorder. Early aggression and parenting experiences may differ in their long-term prediction of aggression or borderline features, which may have important implications for early intervention. The currrent study incorporated a longitudinal sample of preschool children (84 boys, 84 girls) living in intact, two-parent biological households in Voronezh, Russia. Teachers provided ratings of children's relational and physical aggression in preschool. Mothers and fathers also self-reported their engagement in authoritative, authoritarian, permissive, and psychological controlling forms of parenting with their preschooler. A decade later, 70.8% of the original child participants consented to a follow-up study in which they completed self-reports of relational and physical aggression and borderline personality features. The multivariate results of this study showed that preschool relational aggression in girls predicted adolescent relational aggression. Preschool aversive parenting (i.e., authoritarian, permissive, and psychologically controlling forms) significantly predicted aggression and borderline features in adolescent females. For adolescent males, preschool authoritative parenting served as a protective factor against aggression and borderline features, whereas authoritarian parenting was a risk factor for later aggression.

  14. Influences of Rhythm- and Timbre-Related Musical Features on Characteristics of Music-Induced Movement

    PubMed Central

    Burger, Birgitta; Thompson, Marc R.; Luck, Geoff; Saarikallio, Suvi; Toiviainen, Petri

    2013-01-01

    Music makes us move. Several factors can affect the characteristics of such movements, including individual factors or musical features. For this study, we investigated the effect of rhythm- and timbre-related musical features as well as tempo on movement characteristics. Sixty participants were presented with 30 musical stimuli representing different styles of popular music, and instructed to move along with the music. Optical motion capture was used to record participants’ movements. Subsequently, eight movement features and four rhythm- and timbre-related musical features were computationally extracted from the data, while the tempo was assessed in a perceptual experiment. A subsequent correlational analysis revealed that, for instance, clear pulses seemed to be embodied with the whole body, i.e., by using various movement types of different body parts, whereas spectral flux and percussiveness were found to be more distinctly related to certain body parts, such as head and hand movement. A series of ANOVAs with the stimuli being divided into three groups of five stimuli each based on the tempo revealed no significant differences between the groups, suggesting that the tempo of our stimuli set failed to have an effect on the movement features. In general, the results can be linked to the framework of embodied music cognition, as they show that body movements are used to reflect, imitate, and predict musical characteristics. PMID:23641220

  15. Influences of rhythm- and timbre-related musical features on characteristics of music-induced movement.

    PubMed

    Burger, Birgitta; Thompson, Marc R; Luck, Geoff; Saarikallio, Suvi; Toiviainen, Petri

    2013-01-01

    Music makes us move. Several factors can affect the characteristics of such movements, including individual factors or musical features. For this study, we investigated the effect of rhythm- and timbre-related musical features as well as tempo on movement characteristics. Sixty participants were presented with 30 musical stimuli representing different styles of popular music, and instructed to move along with the music. Optical motion capture was used to record participants' movements. Subsequently, eight movement features and four rhythm- and timbre-related musical features were computationally extracted from the data, while the tempo was assessed in a perceptual experiment. A subsequent correlational analysis revealed that, for instance, clear pulses seemed to be embodied with the whole body, i.e., by using various movement types of different body parts, whereas spectral flux and percussiveness were found to be more distinctly related to certain body parts, such as head and hand movement. A series of ANOVAs with the stimuli being divided into three groups of five stimuli each based on the tempo revealed no significant differences between the groups, suggesting that the tempo of our stimuli set failed to have an effect on the movement features. In general, the results can be linked to the framework of embodied music cognition, as they show that body movements are used to reflect, imitate, and predict musical characteristics.

  16. Human papillomavirus-related carcinoma with adenoid cystic-like features: a series of five cases expanding the pathological spectrum.

    PubMed

    Hang, Jen-Fan; Hsieh, Min-Shu; Li, Wing-Yin; Chen, Jo-Yu; Lin, Shih-Yao; Liu, Shih-Hao; Pan, Chin-Chen; Kuo, Ying-Ju

    2017-12-01

    Human papillomavirus (HPV)-related carcinoma with adenoid cystic-like features is a newly described entity of the sinonasal tract. In this study, we evaluated histomorphology, immunophenotype and molecular testing to identify potentially helpful features in distinguishing it from classic adenoid cystic carcinoma (AdCC). We retrospectively collected five HPV-related carcinomas with adenoid cystic-like features and 14 AdCCs of the sinonasal tract. All histological slides were retrieved for morphological evaluation. As comparing with AdCC, HPV-related carcinomas with adenoid cystic-like features were associated with squamous dysplasia of surface epithelium (80% versus 0%, P < 0.01) and the presence of a solid growth pattern (100% versus 29%, P = 0.01), but less densely hyalinized tumour stroma (20% versus 86%, P = 0.02). Squamous differentiation in the invasive tumour was seen in three HPV-related carcinomas with adenoid cystic-like features, two of them showing abrupt keratinization and one with scattered non-keratinizing squamous nests. Diffuse p16 staining in ≥75% of tumour cells was noted in all HPV-related carcinomas with adenoid cystic-like features but in only one AdCC (100% versus 7%, P < 0.01). High-risk HPV testing gave positive results in all HPV-related carcinomas with adenoid cystic-like features (four associated with type 33 and one associated with type 16) but not in AdCCs. MYB rearrangement was tested in four HPV-related carcinomas with adenoid cystic-like features, and all were negative. This study has further clarified the histological spectrum of this tumour type, and reports the first HPV type 16-related case. Diffuse p16 staining followed by HPV molecular testing is useful in distinguishing HPV-related carcinomas with adenoid cystic features from classic AdCCs. © 2017 John Wiley & Sons Ltd.

  17. Inattentional blindness: A combination of a relational set and a feature inhibition set?

    PubMed

    Goldstein, Rebecca R; Beck, Melissa R

    2016-07-01

    Two experiments were conducted to directly test the feature set hypothesis and the relational set hypothesis in an inattentional blindness task. The feature set hypothesis predicts that unexpected objects that match the to-be-attended stimuli will be reported most. The relational set hypothesis predicts that unexpected objects that match the relationship between the to-be-attended and the to-be-ignored stimuli will be reported the most. Experiment 1 manipulated the luminance of the stimuli. Participants were instructed to monitor the gray letter shapes and to ignore either black or white letter shapes. The unexpected objects that exhibited the luminance relation of the to-be-attended to the to-be-ignored stimuli were reported by participants the most. Experiment 2 manipulated the color of the stimuli. Participants were instructed to monitor the yellower orange or the redder orange letter shapes and to ignore the redder orange or yellower letter shapes. The unexpected objects that exhibited the color relation of the to-be-attended to the to-be-ignored stimuli were reported the most. The results do not support the use of a feature set to accomplish the task and instead support the use of a relational set. In addition, the results point to the concurrent use of multiple attentional sets that are both excitatory and inhibitory.

  18. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  19. Two-photon absorption in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Zhang, Saifeng; Li, Yuanxin; Wang, Jun

    2018-02-01

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) exhibit unique nonlinear optical (NLO) features and have becoming intriguing and promising candidate materials for photonic and optoelectronic devices with high performance and unique functions. Owing to layered geometry and the thickness-dependent bandgap, we studied the ultrafast NLO properties of a range of TMDCs. TMDCs with high-quality layered nanosheets were prepared through chemical vapor deposition (CVD) technique and vapor-phase growth method. Saturable absorption, two photon absorption (TPA) and two photon pumped frequency up-converted luminescence were observed from these 2D nanostructures. The exciting results open up the door to 2D photonic devices, such as passive mode-lockers, Q-switchers, optical limiters, light emitters, etc.

  20. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to themore » excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.« less

  1. External and internal facial features modulate processing of vertical but not horizontal spatial relations.

    PubMed

    Meinhardt, Günter; Kurbel, David; Meinhardt-Injac, Bozana; Persike, Malte

    2018-03-22

    Some years ago an asymmetry was reported for the inversion effect for horizontal (H) and vertical (V) relational face manipulations (Goffaux & Rossion, 2007). Subsequent research examined whether a specific disruption of long-range relations underlies the H/V inversion asymmetry (Sekunova & Barton, 2008). Here, we tested how detection of changes in interocular distance (H) and eye height (V) depends on cardinal internal features and external feature surround. Results replicated the H/V inversion asymmetry. Moreover, we found very different face cue dependencies for both change types. Performance and inversion effects did not depend on the presence of other face cues for detecting H changes. In contrast, accuracy for detecting V changes strongly depended on internal and external features, showing cumulative improvement when more cues were added. Inversion effects were generally large, and larger with external feature surround. The cue independence in detecting H relational changes indicates specialized local processing tightly tuned to the eyes region, while the strong cue dependency in detecting V relational changes indicates a global mechanism of cue integration across different face regions. These findings suggest that the H/V asymmetry of the inversion effect rests on an H/V anisotropy of face cue dependency, since only the global V mechanism suffers from disruption of cue integration as the major effect of face inversion. Copyright © 2018. Published by Elsevier Ltd.

  2. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2017-04-01

    A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.

  3. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  4. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission: Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1984-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  5. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission - Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1985-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  6. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.

  8. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  9. MULTI-WAVELENGTH STUDIES OF SPECTACULAR RAM PRESSURE STRIPPING OF A GALAXY: DISCOVERY OF AN X-RAY ABSORPTION FEATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Liyi; Makishima, Kazuo; Yagi, Masafumi

    We report the detection of an X-ray absorption feature near the galaxy M86 in the Virgo cluster. The absorber has a column density of 2-3 × 10{sup 20} cm{sup –2}, and its position coincides with the peak of an intracluster H I cloud which was removed from the galaxy NGC 4388 presumably by ram pressure. These results indicate that the H I cloud is located in front of M86 along the line-of-sight, and suggest that the stripping was primarily created by an interaction between NGC 4388 and the hot plasmas of the Virgo cluster, not the M86 halo. By calculatingmore » an X-ray temperature map, we further detected an X-ray counterpart of the H I cloud up to ≈3' south of M86. It has a temperature of 0.89 keV and a mass of ∼4.5 × 10{sup 8} M {sub ☉}, exceeding the estimated H I gas mass. The high hot-to-cold gas ratio in the cloud indicates a significant evaporation of the H I gas, probably by thermal conduction from the hotter cluster plasma with a sub-Spitzer rate.« less

  10. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  11. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  12. Feature-based and statistical methods for analyzing the Deepwater Horizon oil spill with AVIRIS imagery

    USGS Publications Warehouse

    Rand, R.S.; Clark, R.N.; Livo, K.E.

    2011-01-01

    The Deepwater Horizon oil spill covered a very large geographical area in the Gulf of Mexico creating potentially serious environmental impacts on both marine life and the coastal shorelines. Knowing the oil's areal extent and thickness as well as denoting different categories of the oil's physical state is important for assessing these impacts. High spectral resolution data in hyperspectral imagery (HSI) sensors such as Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) provide a valuable source of information that can be used for analysis by semi-automatic methods for tracking an oil spill's areal extent, oil thickness, and oil categories. However, the spectral behavior of oil in water is inherently a highly non-linear and variable phenomenon that changes depending on oil thickness and oil/water ratios. For certain oil thicknesses there are well-defined absorption features, whereas for very thin films sometimes there are almost no observable features. Feature-based imaging spectroscopy methods are particularly effective at classifying materials that exhibit specific well-defined spectral absorption features. Statistical methods are effective at classifying materials with spectra that exhibit a considerable amount of variability and that do not necessarily exhibit well-defined spectral absorption features. This study investigates feature-based and statistical methods for analyzing oil spills using hyperspectral imagery. The appropriate use of each approach is investigated and a combined feature-based and statistical method is proposed.

  13. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  14. Three-dimensional propagation and absorption of high frequency Gaussian beams in magnetoactive plasmas

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Orefice, A.

    1994-05-01

    In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.

  15. Small-bowel absorption of D-tagatose and related effects on carbohydrate digestibility: an ileostomy study.

    PubMed

    Normén, L; Laerke, H N; Jensen, B B; Langkilde, A M; Andersson, H

    2001-01-01

    The ketohexose D-tagatose is a new sweetener with a low energy content. This low energy content may be due to either low absorption of the D-tagatose or decreased absorption of other nutrients. The aims of this study were to measure the excretion of D-tagatose from the human small bowel, to calculate the apparent absorption of D-tagatose, and to study the effects of D-tagatose on the small-bowel excretion of other carbohydrates. A controlled diet was served for 2 periods of 2 d during 3 consecutive weeks to 6 ileostomy subjects. In one of the periods, 15 g D-tagatose was added to the diet daily. Duplicate portions of the diet and ileostomy effluents were freeze-dried and analyzed to calculate the apparent net absorption of D-tagatose and carbohydrates. Median D-tagatose excretion was 19% (range: 12-31%), which corresponded to a calculated apparent absorption of 81% (69-88%). Of the total amount of D-tagatose excreted [2.8 g (1.7-4.4 g)], 60% (8-88%) was excreted within 3 h. Between 3 and 5 h, 32% (11-82%) was excreted. Excretion of wet matter increased by 41% (24-52%) with D-tagatose ingestion. Sucrose and D-glucose excretion increased to a small extent, whereas no significant changes were found in the excretion of dry matter, energy, starch, or D-fructose. The apparent absorption of 15 g D-tagatose/d was 81%. D-Tagatose had only a minor influence on the apparent absorption of other nutrients.

  16. Vibrational effects in x-ray absorption and resonant inelastic x-ray scattering using a semiclassical scheme

    NASA Astrophysics Data System (ADS)

    Ljungberg, Mathias P.

    2017-12-01

    A method is presented for describing vibrational effects in x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) using a combination of the classical Franck-Condon (FC) approximation and classical trajectories run on the core-excited state. The formulation of RIXS is an extension of the semiclassical Kramers-Heisenberg formalism of Ljungberg et al. [Phys. Rev. B 82, 245115 (2010), 10.1103/PhysRevB.82.245115] to the resonant case, retaining approximately the same computational cost. To overcome difficulties with connecting the absorption and emission processes in RIXS, the classical FC approximation is used for the absorption, which is seen to work well provided that a zero-point-energy correction is included. In the case of core-excited states with dissociative character, the method is capable of closely reproducing the main features for one-dimensional test systems, compared to the quantum-mechanical formulation. Due to the good accuracy combined with the relatively low computational cost, the method has great potential of being used for complex systems with many degrees of freedom, such as liquids and surface adsorbates.

  17. Opening the Learning Process: The Potential Role of Feature Film in Teaching Employment Relations

    ERIC Educational Resources Information Center

    Lafferty, George

    2016-01-01

    This paper explores the potential of feature film to encourage more inclusive, participatory and open learning in the area of employment relations. Evaluations of student responses in a single postgraduate course over a five-year period revealed how feature film could encourage participatory learning processes in which students reexamined their…

  18. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  19. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  20. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  1. Acetaminophen (paracetamol) oral absorption and clinical influences.

    PubMed

    Raffa, Robert B; Pergolizzi, Joseph V; Taylor, Robert; Decker, John F; Patrick, Jeffrey T

    2014-09-01

    Acetaminophen (paracetamol) is a widely used nonopioid, non-NSAID analgesic that is effective against a variety of pain types, but the consequences of overdose can be severe. Because acetaminophen is so widely available as a single agent and is increasingly being formulated in fixed-ratio combination analgesic products for the potential additive or synergistic analgesic effect and/or reduced adverse effects, accidental cumulative overdose is an emergent concern. This has rekindled interest in the sites, processes, and pharmacokinetics of acetaminophen oral absorption and the clinical factors that can influence these. The absorption of oral acetaminophen occurs primarily along the small intestine by passive diffusion. Therefore, the rate-limiting step is the rate of gastric emptying into the intestines. Several clinical factors can affect absorption per se or the rate of gastric emptying, such as diet, concomitant medication, surgery, pregnancy, and others. Although acetaminophen does not have the abuse potential of opioids or the gastrointestinal bleeding or organ adverse effects of NSAIDs, excess amounts can produce serious hepatic injury. Thus, an understanding of the sites and features of acetaminophen absorption--and how they might be influenced by factors encountered in clinical practice--is important for pain management using this agent. It can also provide insight for design of formulations that would be less susceptible to clinical variables. © 2013 World Institute of Pain.

  2. Feature-based attention is functionally distinct from relation-based attention: The double dissociation between color-based capture and color-relation-based capture of attention.

    PubMed

    Du, Feng; Jiao, Jun

    2016-04-01

    The present study used a spatial blink task and a cuing task to examine the boundary between feature-based capture and relation-based capture. Feature-based capture occurs when distractors match the target feature such as target color. The occurrence of relation-based capture is contingent upon the feature relation between target and distractor (e.g., color relation). The results show that color distractors that match the target-nontarget color relation do not consistently capture attention when they appear outside of the attentional window, but distractors appearing outside the attentional window that match the target color consistently capture attention. In contrast, color distractors that best match the target-nontarget color relation but not the target color, are more likely to capture attention when they appear within the attentional window. Consistently, color cues that match the target-nontarget color relation produce a cuing effect when they appear within the attentional window, while target-color matched cues do not. Such a double dissociation between color-based capture and color-relation-based capture indicates functionally distinct mechanisms for these 2 types of attentional selection. This also indicates that the spatial blink task and the uninformative cuing task are measuring distinctive aspects of involuntary attention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Bicarbonate absorption by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-02-01

    The rate of transport of bicarbonate was studied in isolated perfused rabbit cortical collecting tubules that were absorbing bicarbonate in vitro. Acetazolamide completely inhibited bicarbonate absorption, as was previously observed with isolated proximal tubules. Therefore, carbonic anhydrase probably is important for bicarbonate absorption in both the proximal tubules and collecting tubules. Inhibition of sodium transport by ouabain or elimination of its transport by completely removing the sodium did not cause a decrease in bicarbonate absorption by the collecting tubules. We previously found that inhibition of sodium transport caused a great decrease in bicarbonate absorption by proximal tubules. Therefore, absorption of bicarbonate is not directly related to sodium transport in collecting tubules, but it probably is related to sodium transport in isolated perfused rabbit proximal tubules. Amiloride inhibited bicarbonate absorption by the collecting tubules consistent with previous observations that the drug inhibits urinary acidification. Although amiloride also inhibits sodium transport and reduces the transepithelial voltage across the collecting tubules, the effect of the drug on bicarbonate transport apparently is independent of the other effects.

  4. Automatic Identification of Messages Related to Adverse Drug Reactions from Online User Reviews using Feature-based Classification.

    PubMed

    Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie

    2014-11-01

    User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.

  5. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  6. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  7. Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

    NASA Astrophysics Data System (ADS)

    Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto

    Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.

  8. Absorption spectroscopy at the ultimate quantum limit from single-photon states

    NASA Astrophysics Data System (ADS)

    Whittaker, R.; Erven, C.; Neville, A.; Berry, M.; O'Brien, J. L.; Cable, H.; Matthews, J. C. F.

    2017-02-01

    Absorption spectroscopy is routinely used to characterise chemical and biological samples. For the state-of-the-art in laser absorption spectroscopy, precision is theoretically limited by shot-noise due to the fundamental Poisson-distribution of photon number in laser radiation. In practice, the shot-noise limit can only be achieved when all other sources of noise are eliminated. Here, we use wavelength-correlated and tuneable photon pairs to demonstrate how absorption spectroscopy can be performed with precision beyond the shot-noise limit and near the ultimate quantum limit by using the optimal probe for absorption measurement—single photons. We present a practically realisable scheme, which we characterise both the precision and accuracy of by measuring the response of a control feature. We demonstrate that the technique can successfully probe liquid samples and using two spectrally similar types of haemoglobin we show that obtaining a given precision in resolution requires fewer heralded single probe photons compared to using an idealised laser.

  9. High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui

    2017-05-01

    This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.

  10. Estimation of water absorption coefficient using the TDR method

    NASA Astrophysics Data System (ADS)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  11. Landing gear energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Christopher P. (Inventor)

    1994-01-01

    A landing pad system is described for absorbing horizontal and vertical impact forces upon engagement with a landing surface where circumferentially arranged landing struts respectively have a clevis which receives a slidable rod member and where the upper portion of a slidable rod member is coupled to the clevis by friction washers which are force fit onto the rod member to provide for controlled constant force energy absorption when the rod member moves relative to the clevis. The lower end of the friction rod is pivotally attached by a ball and socket to a support plate where the support plate is arranged to slide in a transverse direction relative to a housing which contains an energy absorption material for absorbing energy in a transverse direction.

  12. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential

  13. Optical absorption and disorder in delafossites

    DOE PAGES

    Senty, Tess R.; Haycock, Barry; Lekse, Jonathan; ...

    2017-07-06

    Here, we present compelling experimental results of the optical characteristics of transparent oxide CuGaO 2 and related CuGa 1-xFe xO 2 (with 0.00 ≤ x ≤ 0.05) alloys, whereby the forbidden electronic transitions for CuGaO 2 become permissible in the presence of B-site (Ga sites) alloying with Fe. Our computational structural results imply a correlation between the global strain on the system and a decreased optical absorption edge. However, herein, we show that the relatively ordered CuGa 1-xFe xO 2 (for 0.00 ≤ x ≤ 0.04) structures exhibit much weaker vis-absorption compared to the relatively disordered CuGa 0.95Fe 0.05O 2.

  14. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon.

  15. Large-scale oscillation of structure-related DNA sequence features in human chromosome 21

    NASA Astrophysics Data System (ADS)

    Li, Wentian; Miramontes, Pedro

    2006-08-01

    Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.

  16. Nonheme-iron absorption in first-degree relatives is highly correlated: a stable-isotope study in mother-child pairs.

    PubMed

    Zimmermann, Michael B; Harrington, Mary; Villalpando, Salvador; Hurrell, Richard F

    2010-03-01

    Iron absorption in humans is highly variable even after iron status and dietary components that influence iron absorption are controlled for. Inherited factors may help explain this variance. Our objective was to compare nonheme-iron absorption from a noninhibitory, stable-isotope-labeled test meal in preschool-aged children and their mothers. We provided 72 test meals based on degermed maize flour and milk powder and fortified with [(57)Fe]ferrous fumarate or [(58)Fe]ferrous sulfate to healthy Mexican preschool children [n = 18; mean (+/-SD) age: 3.6 +/- 1.0 y] and their mothers [n = 18; mean (+/-SD) age: 28.0 +/- 5.2 y]. Iron absorption was calculated on the basis of incorporation of isotopes into erythrocytes after 14 d and was adjusted for differences in iron status. There was a wide variation in iron absorption from the test meals: in the mothers and children, the median fractional absorption of ferrous sulfate was 22.55% (range: 1.65-54.83%) and 5.51% (range: 2.23-17.20%), respectively (P < 0.0001). After adjustment for serum ferritin, the significant difference in absorption between mothers and their children disappeared. Despite this broad range of iron absorption, corrected fractional iron absorption from the ferrous fumarate-fortified (r(2) = 0.582) and the ferrous sulfate-fortified test meals (r(2) = 0.557) was strongly correlated in mothers and their children (P < 0.0001). There was a striking positive correlation between the mean corrected fractional iron absorption from both test meals in mothers and their children (r(2) = 0.782, P < 0.0001). In regression analyses that included age, sex, and hemoglobin, the only significant predictor of corrected fractional iron absorption in children was corrected fractional iron absorption in their mothers (standardized beta = 0.884, P < 0.001). Nonheme-iron absorption exhibits a strong familial tendency. After differences in meal matrix and serum ferritin are accounted for, these data suggest that inheritance and

  17. Theoretical infrared and electronic absorption spectra of C16H10 isomers, their ions and doubly ions

    NASA Astrophysics Data System (ADS)

    Naganathappa, Mahadevappa; Chaudhari, Ajay

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) or PAH-related molecules are considered to be responsible for the unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, 8.6 and 11.2 μm. However, the exact identification of PAH or PAH-related molecules is difficult. There have been several investigations on the spectroscopic characterization of PAH molecules. But none of them compared the spectra of isomers of PAHs, which might have help in the identification of the UIR emission features. This work presents the infrared and electronic absorption spectra of isomers of C16H10. The aim of the present work is to compare infrared and electronic absorption spectra of four isomers of C16H10 PAH viz. pyrene, aceanthrylene, acephenanthrylene and fluoranthene, their ions and doubly ions. We also compare the spectra of pyrene in the gas-phase and in H2O ice. We have used the density functional theory with B3LYP exchange and correlation functional and 6-311++g** basis set to study the infrared spectra. The time-dependent density functional theory (TDDFT) has been used to obtain the electronic absorption spectra. Significant difference in the CC stretching, CH in-plane bending and CH out-of-plane bending vibration modes is observed for the isomers of C16H10 whereas there is no large difference in the CH stretching vibration band. A significant change in the vibrational band is observed for pyrene in H2O ice compared to gas-phase pyrene. Though isomers of C16H10 PAH have the same number of carbon and hydrogen atoms, their spectroscopic characteristics are different. This study should help in identifying the isomers of C16H10, their ions and doubly cation in the interstellar medium.

  18. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  19. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  20. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE PAGES

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...

    2016-01-18

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  1. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  2. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  3. Temperature dependence of the ClONO2 UV absorption spectrum

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  4. Micro-pulse, differential absorption lidar (dial) network for measuring the spatial and temporal distribution of water vapor in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Hayman, Matt; Nehrir, Amin

    2018-04-01

    The National Center for Atmospheric Research (NCAR) and Montana State Univeristy (MSU) are developing a test network of five micro-pulse differential absorption lidars to continuously measure high-vertical-resolution water vapor in the lower atmosphere. The instruments are accurate, yet low-cost; operate unattended, and eye-safe - all key features to enable the larger network needed to characterize atmospheric moisture variability which influences important processes related to weather and climate.

  5. Using Methane Absorption to Probe Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. The effects of wheelchair-seating stiffness and energy absorption on occupant frontal impact kinematics and submarining risk using computer simulation.

    PubMed

    Bertocci, Gina; Souza, Aaron L; Szobota, Stephanie

    2003-01-01

    Many wheelchair users must travel in motor vehicles while seated in their wheelchairs. The safety features of seat assemblies are key to motor vehicle occupant crash protection. Seating system properties such as strength, stiffness, and energy absorbance have been shown to have significant influence on risk of submarining. This study investigated the effects of wheelchair seat stiffness and energy absorption properties on occupant risk of submarining during a frontal motor vehicle 20 g/30 mph impact using a validated computer crash simulation model. The results indicate that wheelchair-seating stiffness and energy absorption characteristics influence occupant kinematics associated with the risk of submarining. Softer seat surfaces and relatively high energy absorption/permanent deformation were found to produce pelvis excursion trajectories associated with increased submarining risk. Findings also suggest that the current American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America (ANSI/RESNA) WC-19 seating integrity may not adequately assess submarining risk.

  7. The IR Absorption Spectra of Aqueous Solutions of Dimethylsulfoxide over the Frequency Range 50-300 cm-1 and the Mobility of Water Molecules

    NASA Astrophysics Data System (ADS)

    Klemenkova, Z. S.; Novskova, T. A.; Lyashchenko, A. K.

    2008-04-01

    The IR absorption spectra of aqueous solutions of dimethylsulfoxide (DMSO) with concentrations from 100% H2O to 100% DMSO were recorded over the frequency range 50-500 cm-1. The absorption spectra were described using the theoretical scheme of hindered rotators. A model was developed according to which orientation relaxation in solution was related to separate rotations of H2O and DMSO molecules through fixed small and (or) large angles in a unified network of H-bonds consisting of several subsystems ordered to various degrees. The calculated absorption spectra were in agreement with the experimental data in the far IR region. Elementary motions of molecules were found to slow down in the passage from pure dimethylsulfoxide to its aqueous solutions. The special features of the hydrophilic and hydrophobic hydration of DMSO polar and nonpolar groups were considered.

  8. Testing the diagnosis of dissociative identity disorder through measures of dissociation, absorption, hypnotizability and PTSD: a Norwegian pilot study.

    PubMed

    Dale, Karl Yngvar; Berg, Renate; Elden, Ake; Ødegård, Atle; Holte, Arne

    2009-01-01

    A total of 14 women meeting criteria for dissociative identity disorder (DID) based on the Diagnostic and Statistical Manual of Mental Disorders (4th ed. [DSM-IV]) were compared to a group of women (n = 10) with other dissociative diagnoses and a group of normal controls (n = 14) with regard to dissociativity, absorption, trauma related symptoms and hypnotizability. Both of the clinical groups reported histories of childhood trauma and attained high PTSD scores. The DID group differed significantly from the group with other dissociative diagnoses and the non-diagnosed comparison group with regard to hypnotizability, the variety of dissociative symptomatology, and the magnitude of dissociative symptomatology. However, no significant differences between the two clinical groups were detected with regard to absorption, general dissociative level, or symptoms related to traumatic stress. Results support the notion that DID can be regarded as a clinical entity which is separable from other dissociative disorders. Results also indicated that hypnotizability is the most important clinical feature of DID.

  9. Bicarbonate secretion and solute absorption in forestomach of the llama.

    PubMed

    Rübsamen, K; Engelhardt, W V

    1978-07-01

    Bicarbonate appearance in the lumen and its relationship to solute absorption were studied in a Pavlov pouch in the cardiac region of the first compartment of the llama forestomach. HCO3- appearance showed no diurnal variation. HCO3- accumulation was highly dependent on the pH of the solution used. The HCO3- ion probably is formed from CO2 diffusing into the lumen from the serosal side, as a result of cell metabolism and of OH- ions. HCO3- accumulation was closely related to volatile fatty acid (VFA) absorption. The ratio of HCO3- appearance to VFA absorption depended on the pH of the solution. At a pH of 6.6, about 0.1 mol HCO3- and, at a pH of 7.8, 0.9 mol HCO3- appeared per mole absorbed VFA, indicating that at slightly alkaline pH nearly all H+ ions required for the nonionic absorption of VFA appeared to be delivered from the dissociation of H2CO3. Bicarbonate gain and VFA absorption were increased when animals were not fed for 48 h. Sodium absorption was related to VFA as well as water absorption.

  10. Effects of Self-Paced Encoding and Practice on Age-Related Deficits in Binding Three Features

    ERIC Educational Resources Information Center

    Kinjo, Hikari

    2010-01-01

    Although much literature suggests that the age-related decline in episodic memory could be due to difficulties in binding features of information, previous studies focused mainly on memory of paired associations rather than memory of multiple bound features. In reality, however, there are many situations that require binding multiple features…

  11. The application of reduced absorption cross section on the identification of the compounds with similar function-groups

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Zuo, Jian; Mu, Kai-jun; Zhang, Zhen-wei; Zhang, Liang-liang; Zhang, Lei-wei; Zhang, Cun-lin

    2013-08-01

    Terahertz spectroscopy is a powerful tool for materials investigation. The low frequency vibrations were usually investigated by means of absorption coefficient regardless of the refractive index. It leads to the disregard of some inherent low-frequency vibrational information of the chemical compounds. Moreover, due to the scattering inside the sample, there are some distortions of the absorption features, so that the absorption dependent material identification is not valid enough. Here, a statistical parameter named reduced absorption cross section (RACS) is introduced. This can not only help us investigate the molecular dynamics but also distinguish one chemical compound with another which has similar function-groups. Experiments are carried out on L-Tyrosine and L-Phenylalanine and the different mass ratios of their mixtures as an example of the application of RACS. The results come out that the RACS spectrum of L-Tyrosine and L-Phenylalanine reserve the spectral fingerprint information of absorption spectrum. The log plot of RACSs of the two amino acids show power-law behavior σR(~ν) ~ (ν~α), and there is a linear relation between the wavenumber and the RACS in the double logarithmic plot. The exponents α, at the same time, are the slopes of the RACS curves in the double logarithmic plot. The big differences of the exponents α between the two amino acids and their mixtures can be seen visually from the slopes of the RACS curves. So we can use RACS analytical method to distinguish some complex compounds with similar function-groups and mixtures from another which has similar absorption peaks in THz region.

  12. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  13. Assessing environmental features related to mental health: a reliability study of visual streetscape images.

    PubMed

    Wu, Yu-Tzu; Nash, Paul; Barnes, Linda E; Minett, Thais; Matthews, Fiona E; Jones, Andy; Brayne, Carol

    2014-10-22

    An association between depressive symptoms and features of built environment has been reported in the literature. A remaining research challenge is the development of methods to efficiently capture pertinent environmental features in relevant study settings. Visual streetscape images have been used to replace traditional physical audits and directly observe the built environment of communities. The aim of this work is to examine the inter-method reliability of the two audit methods for assessing community environments with a specific focus on physical features related to mental health. Forty-eight postcodes in urban and rural areas of Cambridgeshire, England were randomly selected from an alphabetical list of streets hosted on a UK property website. The assessment was conducted in July and August 2012 by both physical and visual image audits based on the items in Residential Environment Assessment Tool (REAT), an observational instrument targeting the micro-scale environmental features related to mental health in UK postcodes. The assessor used the images of Google Street View and virtually "walked through" the streets to conduct the property and street level assessments. Gwet's AC1 coefficients and Bland-Altman plots were used to compare the concordance of two audits. The results of conducting the REAT by visual image audits generally correspond to direct observations. More variations were found in property level items regarding physical incivilities, with broad limits of agreement which importantly lead to most of the variation in the overall REAT score. Postcodes in urban areas had lower consistency between the two methods than rural areas. Google Street View has the potential to assess environmental features related to mental health with fair reliability and provide a less resource intense method of assessing community environments than physical audits.

  14. Sound absorption of low-temperature reusable surface insulation candidate materials

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  15. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  16. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  17. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model.

    PubMed

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range 250-1100 nm using the Kramers-Kronig (KK) relations, and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  18. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  19. Thermal Analysis of Unusual Local-scale Features on the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Capaccioni, F.; Palomba, E.; Zambon, F.; Ammannito, E.; Blewett, D. T.; Combe, J.-Ph.; Denevi, B. W.; hide

    2013-01-01

    At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times.

  20. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  1. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  2. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  3. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  4. Accounts of bullying on Twitter in relation to dentofacial features and orthodontic treatment.

    PubMed

    Chan, A; Antoun, J S; Morgaine, K C; Farella, M

    2017-04-01

    Social media offers an accessible resource for gaining valuable insights into the social culture of bullying. The purpose of this study was to qualitatively analyse Twitter posts for common themes relating to dentofacial features, braces and bullying. Twitter's database was searched from 2010 to 2014 using keywords relevant to bullying, teeth and orthodontics. Two investigators assessed the Twitter posts, and selected those that conveyed the experiences or opinions of bullying victims. The posts were qualitatively analysed using thematic analysis. Of the 548 posts screened, 321 were included in the final sample. Four primary categories relating to 'dental-related bullying' were identified: (i) morphological features, (ii) psychological and psychosocial impact, (iii) coping mechanisms and (iv) the role of family. Bullied individuals reported a diverse range of psychological impacts and coping mechanisms. Secondary categories were also identified. Family members, for example, were found to play both a contributory and mediatory role in bullying. In summary, social media can provide new and valuable information about the causal factors and social issues associated with oral health-related bullying. Importantly, some coping mechanisms may mitigate the negative effects of bullying. © 2017 John Wiley & Sons Ltd.

  5. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    NASA Astrophysics Data System (ADS)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  6. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  7. Terahertz Absorption and Circular Dichroism Spectroscopy of Solvated Biopolymers

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Plaxco, Kevin; Allen, S. James

    2006-03-01

    Biopolymers are expected to exhibit broad spectral features in the terahertz frequency range, corresponding to their functionally relevant, global and sub-global collective vibrational modes with ˜ picosecond timescale. Recent advances in terahertz technology have stimulated researchers to employ terahertz absorption spectroscopy to directly probe these postulated collective modes. However, these pioneering studies have been limited to dry and, at best, moist samples. Successful isolation of low frequency vibrational activities of solvated biopolymers in their natural water environment has remained elusive, due to the overwhelming attenuation of the terahertz radiation by water. Here we have developed a terahertz absorption and circular dichroism spectrometer suitable for studying biopolymers in biologically relevant water solutions. We have precisely isolated, for the first time, the terahertz absorption of solvated prototypical proteins, Bovine Serum Albumin and Lysozyme, and made important direct comparison to the existing molecular dynamic simulations and normal mode calculations. We have also successfully demonstrated the magnetic circular dichroism in semiconductors, and placed upper bounds on the terahertz circular dichroism signatures of prototypical proteins in water solution.

  8. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  9. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  10. Optical absorption of suspended graphene based metal plasmonic grating in the visible range

    NASA Astrophysics Data System (ADS)

    Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.

    2018-05-01

    We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.

  11. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Grace O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it,more » from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.« less

  12. Constraints on the OH-to-H Abundance Ratio in Infrared-bright Galaxies Derived from the Strength of the OH 35 μm Absorption Feature

    NASA Astrophysics Data System (ADS)

    Stone, Myra; Veilleux, Sylvain; González-Alfonso, Eduardo; Spoon, Henrik; Sturm, Eckhard

    2018-02-01

    We analyze Spitzer/InfraRed Spectrograph (IRS) observations of the OH 35 μm feature in 15 nearby (z ≲ 0.06) (ultra-)luminous infrared galaxies (U/LIRGs). All objects exhibit OH 35 μm purely in absorption, as expected. The small optical depth of this transition makes the strength of this feature a good indicator of the true OH column density. The measured OH 35 μm equivalent widths imply an average OH column density and a 1-σ standard deviation to the mean of {N}{OH}=1.31+/- 0.22× {10}17 cm‑2. This number is then compared with the hydrogen column density for a typical optical depth at 35 μm of ∼0.5 and gas-to-dust ratio of 125 to derive an OH-to-H abundance ratio of {X}{OH}=1.01+/- 0.15× {10}-6. This abundance ratio is formally a lower limit. It is consistent with the values generally assumed in the literature. The OH 35 μm line profiles predicted from published radiative transfer models constrained by observations of OH 65, 79, 84, and 119 μm in 5 objects (Mrk 231, Mrk 273, IRAS F05189-2524, IRAS F08572+3915, and IRAS F20551-4250) are also found to be consistent with the IRS OH 35 μm spectra.

  13. Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains

    NASA Astrophysics Data System (ADS)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu

    2018-01-01

    In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.

  14. Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter HD 189733b

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.

    2015-09-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of Beq = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.

  15. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  16. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  17. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  18. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  20. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  1. Laser-absorption sensing of gas composition of products from coal gasification

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  2. Absorption and Reflection Experiments on High-Mobility 2DEGs in the Regime of Microwave-Induced Resistance Oscillations

    NASA Astrophysics Data System (ADS)

    Studenikin, S. A.; Potemski, M.; Sachrajda, A. S.; Hilke, M.; Pfeiffer, L. N.; West, K. W.

    2005-04-01

    We have performed microwave absorption and near-field reflection experiments on a high mobility GaAs/AlGaAs heterostructure for the same conditions for which Microwave-Induced Resistance Oscillations (MIROs) are observed. It is shown that the electrodynamic aspect of the problem is important in these experiments. In the absorption experiments a broad CR line was observed due to a large reflection from the highly conductive electron gas. There were no additional features observed related to absorption at harmonics of the cyclotron resonance. In near-field reflection experiments a very different oscillation pattern was revealed when compared to MIROs. The oscillation pattern observed in the reflection experiments is probably due to plasma effects occurring in a finite-size sample. The whole microscopic picture of MIROs is more complicated than simply a resonant absorption at harmonics of the cyclotron resonance. Nevertheless, the experimental observations are in good agreement with the model by Durst et al. involving the photo-assisted scattering in the presence of a crossed magnetic field and dc bias. The observed damping factor of MIROs may be attributed to a change in the electron mobility as a function of temperature. MIROs may be considered as a light-induced drift effect, a broad class of phenomena associated with a light-induced asymmetry in the velocity distribution function.

  3. Absorption and Reflection Experiments on High-Mobility 2DEGs in the Regime of Microwave-Induced Resistance Oscillations

    NASA Astrophysics Data System (ADS)

    Studenikin, S. A.; Potemski, M.; Sachrajda, A. S.; Hilke, M.; Pfeiffer, L. N.; West, K. W.

    We have performed microwave absorption and near-field reflection experiments on a high mobility GaAs/AlGaAs heterostructure for the same conditions for which Microwave-Induced Resistance Oscillations (MIROs) are observed. It is shown that the electrodynamic aspect of the problem is important in these experiments. In the absorption experiments a broad CR line was observed due to a large reflection from the highly conductive electron gas. There were no additional features observed related to absorption at harmonics of the cyclotron resonance. In near-field reflection experiments a very different oscillation pattern was revealed when compared to MIROs. The oscillation pattern observed in the reflection experiments is probably due to plasma effects occurring in a finite-size sample. The whole microscopic picture of MIROs is more complicated than simply a resonant absorption at harmonics of the cyclotron resonance. Nevertheless, the experimental observations are in good agreement with the model by Durst et al. involving the photo-assisted scattering in the presence of a crossed magnetic field and dc bias. The observed damping factor of MIROs may be attributed to a change in the electron mobility as a function of temperature. MIROs may be considered as a light-induced drift effect, a broad class of phenomena associated with a light-induced asymmetry in the velocity distribution function.

  4. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  5. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  6. A Review: Characteristics of Noise Absorption Material

    NASA Astrophysics Data System (ADS)

    Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.

    2017-10-01

    Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.

  7. ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, A.; Kawakita, H.; Shinnaka, Y.

    2016-10-10

    We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less

  8. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Temperature dependence of the ClONO{sub 2} UV absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R.

    1994-04-01

    The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant atmore » the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.« less

  10. Human papillomavirus-related carcinoma with adenoid cystic-like features of the inferior turbinate: a case report.

    PubMed

    Hwang, Sun Jin; Ok, Sohea; Lee, Heung-Man; Lee, Eunjung; Park, Il-Ho

    2015-02-01

    Sinonasal malignancies are uncommon, but are of many different histologic types. Recently, Human papillomavirus (HPV)-related carcinoma with adenoid cystic features was reported as a new histologic form. Although this histologic type resembles an adenoid cystic carcinoma, it differs from adenoid cystic carcinomas with regard to its association with HPV. Here, we present a case of HPV-related carcinoma with adenoid cystic features in the nasal cavity. We also review the histological characters of the tumor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    PubMed Central

    Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-01

    A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082

  12. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  13. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espada, D.; Matsushita, S.; Sakamoto, K.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dishmore » observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.« less

  14. The 5-day wave and ionospheric absorption

    NASA Technical Reports Server (NTRS)

    Fraser, G. J.

    1977-01-01

    In a previous paper, Fraser and Thorpe (1976) indicated that the average partial-coherence spectra for three summers and the average for three winters at a southern mid-latitude site had a dominant peak at a period of about six days. This peak in coherence between absorption and temperature is anomalous, and the present paper explains how some of the unexpected coherence features can be explained by the five-day wave described by Geisler and Dickinson (1976) and whose existence in the upper stratosphere was discussed by Rodgers (1976).

  15. Effect of idler absorption in pulsed optical parametric oscillators.

    PubMed

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  16. Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming.

    PubMed

    Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus

    2014-02-01

    Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.

  17. Effect of absorption recovery in bismuth-doped silica glass at 1450 nm on soliton grouping in fiber laser

    PubMed Central

    Gumenyuk, R.; Melkumov, M. A.; Khopin, V. F.; Dianov, E. M.; Okhotnikov, O. G.

    2014-01-01

    Saturable absorption in bismuth-doped glasses was found to have a noticeable influence on soliton interaction and group formation. This phenomenon, observed in 1450 nm mode-locked bismuth-doped fiber laser, shows the distinct feature of the multiple pulse regime, which appears as a stationary pulse group whose length can be spread over the whole cavity length by variation of the pump power and polarization. Pulse positioning within the ensemble depends on the saturation fluence and the relatively fast recovery dynamics of bismuth fiber. PMID:25391808

  18. A novel multiplex absorption spectrometer for time-resolved studies

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  19. A SEARCH FOR Hα ABSORPTION AROUND KELT-3 b AND GJ 436 b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G., E-mail: pcauley@wesleyan.edu

    2017-02-01

    Observations of extended atmospheres around hot planets have generated exciting results concerning the dynamics of escaping planetary material. The configuration of the escaping planetary gas can result in asymmetric transit features, producing both pre- and post-transit absorption in specific atomic transitions. Measuring the velocity and strength of the absorption can provide constraints on the mass loss mechanism, and potentially clues to the interactions between the planet and the host star. Here we present a search for H α absorption in the circumplanetary environments of the hot planets KELT-3 b and GJ 436 b. We find no evidence for absorption aroundmore » either planet at any point during the two separate transit epochs for which each system was observed. We provide upper limits on the radial extent and density of the excited hydrogen atmospheres around both planets. The null detection for GJ 436 b contrasts with the strong Ly α absorption measured for the same system, suggesting that the large cloud of neutral hydrogen is almost entirely in the ground state. The only confirmed exoplanetary H α absorption to date has been made around the active star HD 189733 b. KELT-3 and GJ 436 are less active than HD 189733, hinting that exoplanet atmospheres exposed to EUV photons from active stars are better suited for detection of H α absorption.« less

  20. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    NASA Astrophysics Data System (ADS)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  1. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  2. High durability solar absorptive coating and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron C.; Adams, David P.

    The present invention relates to solar absorptive coatings including a ceramic material. In particular, the coatings of the invention are laser-treated to further enhance the solar absorptivity of the material. Methods of making and using such materials are also described.

  3. Gambling disorder in financial markets: Clinical and treatment-related features.

    PubMed

    Shin, Young-Chul; Choi, Sam-Wook; Ha, Juwon; Choi, Jung-Seok; Kim, Dai-Jin

    2015-12-01

    To date, few studies have examined the clinical manifestation of disordered gamblers in financial markets. This study examined the differences in the clinical and treatment-related features of gambling disorder between financial markets and horse races. Subjects who met the DSM-IV criteria for pathological gambling (PG) and who sought treatment were assessed by retrospective chart review. One hundred forty-four subjects were included in this sample, which consisted of the following groups: financial markets (n = 45; 28.6%) and horse races (n = 99; 71.4%). Multiple similar manifestations were found between the groups, including severity of PG, age of PG onset, amounts of gambling debts, drinking days per week, depressive mood, duration of seeking treatment after the onset of PG, and treatment follow-up duration. However, disordered gamblers who invested in the financial market were significantly more likely to be educated (p = 0.003), live with their spouses (p = 0.007), have full-time jobs (p = 0.006), and they were more likely to participate in the first type of gambling than the horse races group (p<0.001). Furthermore, the financial markets group received the anti-craving medication less often than the horse races group (p = 0.04). These findings suggest that disordered gamblers in financial markets show different socio-demographic, clinical and treatment-related features compared with the horse race gamblers, despite a similar severity of gambling disorder. Understanding these differential manifestations may provide insight into prevention and treatment development for specific types of gambling.

  4. Multi-wavelength differential absorption measurements of chemical species

    NASA Astrophysics Data System (ADS)

    Brown, David M.

    The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional

  5. Outskirts of Distant Galaxies in Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.

  6. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek; Kopačková, Veronika; Koucká, Lucie; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Bakker, Wim H.

    2018-02-01

    The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while hyperspectral data allow to quantify this. As input to most image classification or spectral processing approach, endmembers are required. An alternative approach to classification is to derive absorption feature characteristics such as the wavelength position of the deepest absorption, depth of the absorption and symmetry of the absorption feature from hyperspectral data. Two approaches are presented, tested and compared in this paper: the 'Wavelength Mapper' and the 'QuanTools'. Although these algorithms use a different mathematical solution to derive absorption feature wavelength and depth, and use different image post-processing, the results are consistent, comparable and reproducible. The wavelength images can be directly linked to mineral type and abundance, but more importantly also to mineral chemical composition and subtle changes thereof. This in turn allows to interpret hyperspectral data in terms of mineral chemistry changes which is a proxy to pressure-temperature of formation of minerals. We show the case of the Rodalquilar epithermal system of the southern Spanish Gabo de Gata volcanic area using HyMAP airborne hyperspectral images.

  7. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  8. A Hubble Space Telescope Survey of Intrinsic Absorption in Nearby AGN

    NASA Astrophysics Data System (ADS)

    Dashtamirova, Dzhuliya; Dunn, Jay P.; Crenshaw, D. Michael

    2017-01-01

    We present a survey of the intrinsic UV absorption lines in active galactic nuclei (AGN). We limit our study to the ultraviolet spectra of type 1 AGN with a redshift of z < 0.15 as a continuation of the Dunn et al. (2007, 2008) and Crenshaw et al. (1999) studies of smaller samples. We identify approximately 90 AGN fit our redshift specifications in the Mikulski Archive for Space Telescopes (MAST) database with Cosmic Origin Spectrograph (COS) observations. We download and co-add all of the COS spectra. We find that about 80 of these are type 1 AGN. We normalize the COS spectra and identify all of the intrinsic Lyman-alpha, N V, Si IV, and C IV intrinsic absorption features. From these data, we determine the fraction of type 1 AGN with intrinsic absorption in this redshift range and find the global covering factors of the absorbers. We also identify low ionization species as well as excited state lines. A number of objects have multiple epoch COS and/or Space Telescope Imaging Spectrograph (STIS) observations, which we use to investigate the absorption variability.

  9. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  10. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  11. Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

    DOE PAGES

    Sneeden, Eileen Y.; Hackett, Mark J.; Cotelesage, Julien J. H.; ...

    2017-07-27

    Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s → 3p transition tomore » the singly occupied molecular orbital of the free radical. In conclusion, our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.« less

  12. A Concise Guide to Feature Histograms with Applications to LIDAR-Based Spacecraft Relative Navigation

    NASA Astrophysics Data System (ADS)

    Rhodes, Andrew P.; Christian, John A.; Evans, Thomas

    2017-12-01

    With the availability and popularity of 3D sensors, it is advantageous to re-examine the use of point cloud descriptors for the purpose of pose estimation and spacecraft relative navigation. One popular descriptor is the oriented unique repeatable clustered viewpoint feature histogram (OUR-CVFH), which is most often utilized in personal and industrial robotics to simultaneously recognize and navigate relative to an object. Recent research into using the OUR-CVFH descriptor for spacecraft navigation has produced favorable results. Since OUR-CVFH is the most recent innovation in a large family of feature histogram point cloud descriptors, discussions of parameter settings and insights into its functionality are spread among various publications and online resources. This paper organizes the history of feature histogram point cloud descriptors for a straightforward explanation of their evolution. This article compiles all the requisite information needed to implement OUR-CVFH into one location, as well as providing useful suggestions on how to tune the generation parameters. This work is beneficial for anyone interested in using this histogram descriptor for object recognition or navigation - may it be personal robotics or spacecraft navigation.

  13. OPTICAL HYDROGEN ABSORPTION CONSISTENT WITH A THIN BOW SHOCK LEADING THE HOT JUPITER HD 189733B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on themore » morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 R{sub p}. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of B{sub eq} = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.« less

  14. Transient absorption phenomena and related structural transformations in femtosecond laser-excited Si

    NASA Astrophysics Data System (ADS)

    Kudryashov, Sergey I.

    2004-09-01

    Analysis of processes affecting transient optical absorption and photogeneration of electron-hole plasma in silicon pumped by an intense NIR or visible femtosecond laser pulse has been performed taking into account the most important electron-photon, electron-electron and electron-phonon interactions and, as a result, two main regimes of such laser-matter interaction have been revealed. The first regime is concerned with indirect interband optical absorption in Si, enhanced by a coherent shrinkage of its smallest indirect bandgap due to dynamic Franz-Keldysh effect (DFKE). The second regime takes place due to the critical renormalization of the Si direct bandgap along Λ-axis of its first Brillouin zone because of DFKE and the deformation potential electron-phonon interaction and occurs as intense direct single-photon excitation of electrons into one of the quadruplet of equivalent Λ-valleys in the lowest conduction band, which is split down due to the electron-phonon interaction.

  15. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  16. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotso, H. F.; Dobrovitski, V. V.

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  17. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE PAGES

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  18. Intestinal fluid absorption in spontaneously hypertensive rats.

    PubMed Central

    Dorey, P G; King, J; Munday, K A; Parsons, B J; Poat, J A

    1983-01-01

    A comparison has been made of intestinal fluid absorption between male Okamoto spontaneously hypertensive rats (s.h.r.) and normotensive male Wistar controls. S.h.r. show enhanced fluid absorption both in hypertensive adults and in young s.h.r. before hypertension has developed. Several potential causes for increased fluid transport in s.h.r. were tested using pharmacological antagonists. It is unlikely that enhanced fluid absorption is due to high sympathetic nervous activity, the renin-angiotensin system or is secondary to hypertension. Intestine from s.h.r. have a high short-circuit current indicating a change in ion pump activity. These results are discussed in relation to the possible causes of increased fluid (ion) transport by the intestine of s.h.r. PMID:6361232

  19. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  20. Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity

    NASA Astrophysics Data System (ADS)

    Pogosyan, S. I.; Durgaryan, A. M.; Konyukhov, I. V.; Chivkunova, O. B.; Merzlyak, M. N.

    2009-12-01

    A device for integrating cavity absorption measurements (ICAM) with an internal diameter of 80 mm suitable for field research is described. The spectral features of the light absorption by some cyanobacteria, green algae, and diatoms in the integrating sphere were studied and the dependences of the absorption on the cell concentration were determined in comparison with the conventional measurements in a 1-cm cuvette. The sensitivity of the chlorophyll estimation with the ICAM reached 0.2-0.5 mg m-3. The results of the ICAM application for the direct analysis of the natural phytoplankton and dissolved organic (“yellow“) matter in the Black Sea and the Sea of Japan are described.

  1. Photoluminescence and gain/absorption spectra of a driven-dissipative electron-hole-photon condensate

    NASA Astrophysics Data System (ADS)

    Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji

    2018-06-01

    We investigate theoretically nonequilibrium effects on photoluminescence and gain/absorption spectra of a driven-dissipative exciton-polariton condensate, by employing the combined Hartree-Fock-Bogoliubov theory with the generalized random phase approximation extended to the Keldysh formalism. Our calculated photoluminescence spectra is in semiquantitative agreement with experiments, where features such as a blue shift of the emission from the condensate, the appearance of the dispersionless feature of a diffusive Goldstone mode, and the suppression of the dispersive profile of the mode are obtained. We show that the nonequilibrium nature of the exciton-polariton condensate strongly suppresses the visibility of the Bogoliubov dispersion in the negative energy branch (ghost branch) in photoluminescence spectra. We also show that the trace of this branch can be captured as a hole burning effect in gain/absorption spectra. Our results indicate that the nonequilibrium nature of the exciton-polariton condensate strongly reduces quantum depletion, while a scattering channel to the ghost branch is still present.

  2. Health Communication in Social Media: Message Features Predicting User Engagement on Diabetes-Related Facebook Pages.

    PubMed

    Rus, Holly M; Cameron, Linda D

    2016-10-01

    Social media provides unprecedented opportunities for enhancing health communication and health care, including self-management of chronic conditions such as diabetes. Creating messages that engage users is critical for enhancing message impact and dissemination. This study analyzed health communications within ten diabetes-related Facebook pages to identify message features predictive of user engagement. The Common-Sense Model of Illness Self-Regulation and established health communication techniques guided content analyses of 500 Facebook posts. Each post was coded for message features predicted to engage users and numbers of likes, shares, and comments during the week following posting. Multi-level, negative binomial regressions revealed that specific features predicted different forms of engagement. Imagery emerged as a strong predictor; messages with images had higher rates of liking and sharing relative to messages without images. Diabetes consequence information and positive identity predicted higher sharing while negative affect, social support, and crowdsourcing predicted higher commenting. Negative affect, crowdsourcing, and use of external links predicted lower sharing while positive identity predicted lower commenting. The presence of imagery weakened or reversed the positive relationships of several message features with engagement. Diabetes control information and negative affect predicted more likes in text-only messages, but fewer likes when these messages included illustrative imagery. Similar patterns of imagery's attenuating effects emerged for the positive relationships of consequence information, control information, and positive identity with shares and for positive relationships of negative affect and social support with comments. These findings hold promise for guiding communication design in health-related social media.

  3. Temperature dependence of the fundamental optical absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-04-01

    We present a first principles theory of the temperature dependence of the Urbach optical absorption edge in crystals and disordered semiconductors which incorporates the effects of short range correlated static disorder and the non-adiabatic quantum dynamics of the coupled electron-phonon system. At finite temperatures the dominant features of the Urbach tail are accounted for by multiple phonon absorption and emission side bands which accompany the optically induced electronic transition and which provide a dynamic polaronic potential well that localizes the electron. Excellent agreement is found with experimental data on both crystalline and amorphous silicon.

  4. Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability.

    PubMed

    Glynn, Kelly M; Anderson, Penny; Fast, David J; Koedam, James; Rebhun, John F; Velliquette, Rodney A

    2018-06-15

    Glycation and advanced glycation endproducts (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine if GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses, and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) activation. Inflammatory targets, nuclear factor kappa light chain enhancer of activated B cells (NFκB) and tumor necrosis factor alpha (TNFα), were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation, and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. First evidence of a prospective relation between avoidance of internal states and borderline personality disorder features in adolescents.

    PubMed

    Sharp, Carla; Kalpakci, Allison; Mellick, William; Venta, Amanda; Temple, Jeff R

    2015-03-01

    At least two leading developmental models of borderline personality disorder (BPD) emphasize the role of accurate reflection and understanding of internal states as significant to the development of BPD features (Fonagy, Int J Psycho-Anal 72:639-656, 1991; Linehan, Cognitive-behavioral treatment of borderline personality disorder, 1993). The current study used the construct of experiential avoidance (EA) to operationalize avoidance of internal states and sought to examine (1) the concurrent relations between EA and borderline features in a large and diverse community sample; and (2) the prospective relation between EA and borderline features over a 1-year follow-up, controlling for baseline levels of borderline features. N = 881 adolescents recruited from public schools in a large metropolitan area participated in baseline assessments and N = 730 completed follow-up assessments. Two main findings were reported. First, EA was associated with borderline features, depressive, and anxiety symptoms at the bivariate level, but when all variables were considered together, depression and anxiety no longer remained significantly associated with borderline features, suggesting that the relations among these symptom clusters may be accounted for by EA as a cross-cutting underlying psychological process. Second, EA predicted levels of borderline symptoms at 1-year follow-up, controlling for baseline levels of borderline symptoms, and symptoms of anxiety and depression. Results are interpreted against the background of developmental theories of borderline personality disorder.

  6. Energy absorption in composite materials for crashworthy structures

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Crash energy-absorption processes in composite materials have been studied as part of a research program aimed at the development of energy absorbing subfloor beams for crashworthy military helicopters. Based on extensive tests on glass/epoxy, graphite/epoxy, and Kevlar/epoxy composites, it is shown that the energy-absorption characteristics and crushing modes of composite beams are similar to those exhibited by tubular specimens of similar material and architecture. The crushing mechanisms have been determined and related to the mechanical properties of the constituent materials and specimen architecture. A simple and accurate method for predicting the energy-absorption capability of composite beams has been developed.

  7. Two-Photon Absorption in Pentacene Dimers: The Importance of the Spacer Using Upconversion as an Indirect Route to Singlet Fission.

    PubMed

    Garoni, Eleonora; Zirzlmeier, Johannes; Basel, Bettina S; Hetzer, Constantin; Kamada, Kenji; Guldi, Dirk M; Tykwinski, Rik R

    2017-10-11

    In this proof of concept study, we show that intramolecular singlet fission (iSF) can be initiated from a singlet excited state accessed by two-photon absorption, rather than through a traditional route of direct one-photon excitation (OPE). Thus, iSF in pentacene dimers 2 and 3 is enabled through NIR irradiation at 775 nm, a wavelength where neither dimer exhibits linear absorption of light. The adamantyl and meta-phenylene spacers 2 and 3, respectively, are designed to feature superimposable geometries, which establishes that the electronic coupling between the two pentacenes is the significant structural feature that dictates iSF efficiency.

  8. Constraint on a varying proton-to-electron mass ratio from molecular hydrogen absorption towards quasar SDSS J123714.60+064759.5

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Bagdonaite, J.; Murphy, M. T.; Ubachs, W.

    2015-11-01

    Molecular hydrogen transitions in the sub-damped Lyman α absorber at redshift zabs ≃ 2.69, towards the background quasar SDSS J123714.60+064759.5, were analysed in order to search for a possible variation of the proton-to-electron mass ratio μ over a cosmological time-scale. The system is composed of three absorbing clouds where 137 H2 and HD absorption features were detected. The observations were taken with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph with a signal-to-noise ratio of 32 per 2.5 km s-1 pixel, covering the wavelengths from 356.6 to 409.5 nm. A comprehensive fitting method was used to fit all the absorption features at once. Systematic effects of distortions to the wavelength calibrations were analysed in detail from measurements of asteroid and `solar twin' spectra, and were corrected for. The final constraint on the relative variation in μ between the absorber and the current laboratory value is Δμ/μ = (-5.4 ± 6.3stat ± 4.0syst) × 10-6, consistent with no variation over a look-back time of 11.4 Gyr.

  9. Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption.

    PubMed

    Li, Lina; Shang, Xiaoying; Wang, Sasa; Dong, Ningning; Ji, Chengmin; Chen, Xueyuan; Zhao, Sangen; Wang, Jun; Sun, Zhihua; Hong, Maochun; Luo, Junhua

    2018-06-06

    Perovskite ferroelectrics with prominent nonlinear optical absorption have attracted great attention in the field of photonics. However, they are traditionally dominated by inorganic oxides and exhibit relatively small nonlinear optical absorption coefficients, which hinder their further applications. Herein, we report a new organic-inorganic hybrid bilayered perovskite ferroelectric, (C 4 H 9 NH 3 ) 2 (NH 2 CHNH 2 )Pb 2 Br 7 (1), showing an above-room-temperature Curie temperature (∼322 K) and notable spontaneous polarization (∼3.8 μC cm -2 ). Significantly, the unique quantum-well structure of 1 results in intriguing two-photon absorption properties with a giant nonlinear optical absorption coefficient as high as 5.76 × 10 3 cm GW -1 , which is almost two-orders of magnitude larger than those of mostly traditional all-inorganic perovskite ferroelectrics. To our best knowledge, 1 is the first example of hybrid ferroelectrics with giant two-photon absorption coefficient. The mechanisms for ferroelectric and two-photon absorption are revealed. This work will shed light on the design of new ferroelectrics with two-photon absorption and promote their potentials in the photonic application.

  10. Intraband magneto-optical absorption in InAs/GaAs quantum dots: Orbital Zeeman splitting and the Thomas-Reiche-Kuhn sum rule

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.; Galbraith, I.

    2008-05-01

    Using perturbation theory, intraband magneto-optical absorption is calculated for InAs/GaAs truncated pyramidal quantum dots in a magnetic field applied parallel to the growth direction z . The effects of the magnetic field on the electronic states as well as the intraband transitions are systematically studied. Selection rules governing the intraband transitions are discussed based on the symmetry properties of the electronic states. While the broadband z -polarized absorption is almost insensitive to the magnetic field, the orbital Zeeman splitting is the dominant feature in the in-plane polarized spectrum. Strong in-plane polarized magneto-absorption features are located in the far-infrared region, while z -polarized absorption occurs at higher frequencies. This is due to the dot geometry (the base length is much larger than the height) yielding different quantum confinement in the vertical and lateral directions. The Thomas-Reiche-Kuhn sum rule, including the magnetic field effect, is applied together with the selection rules to the absorption spectra. The orbital Zeeman splitting depends on both the dot size and the confining potential—the splitting decreases as the dot size or the confining potential decreases. Our calculated Zeeman splittings are in agreement with experimental data.

  11. Probing quantum correlation functions through energy-absorption interferometry

    NASA Astrophysics Data System (ADS)

    Withington, S.; Thomas, C. N.; Goldie, D. J.

    2017-08-01

    An interferometric technique is described for determining the spatial forms of the individual degrees of freedom through which a many-body system can absorb energy from its environment. The method separates out the spatial forms of the coherent excitations present at any single frequency; it is not necessary to sweep the frequency and then infer the spatial forms of possible excitations from resonant absorption features. The system under test is excited with two external sources, which create generalized forces, and the fringe in the total power dissipated is measured as the relative phase between the sources is varied. If the complex fringe visibility is measured for different pairs of source locations, the anti-Hermitian part of the complex-valued nonlocal correlation tensor can be determined, which can then be decomposed to give the natural dynamical modes of the system and their relative responsivities. If each source in the interferometer creates a different kind of force, the spatial forms of the individual excitations that are responsible for cross-correlated response can be found. The technique is related to holography, but measures the state of coherence to which the system is maximally sensitive. It can be applied across a wide range of wavelengths, in a variety of ways, to homogeneous media, thin films, patterned structures, and components such as sensors, detectors, and energy-harvesting absorbers.

  12. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-07-01

    We investigate the limitations of statistical absorption measurements with the Sloan Digital Sky Survey (SDSS) optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about 1 per cent. We show that these features originate from inaccuracy in the fitting of modelled F-star spectra used for flux calibration. The best-fitting models for those stars are found to systematically overestimate the strength of metal lines and underestimate that of Lithium. We also identify the existence of artefacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature is solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  13. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-04-01

    We investigate the limitations of statistical absorption measurements with the SDSS optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about one percent. We show that these features originate from inaccuracy in the fitting of modeled F-star spectra used for flux calibration. The best-fit models for those stars are found to systematically over-estimate the strength of metal lines and under-estimate that of Lithium. We also identify the existence of artifacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest-frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature are solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  14. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  15. Gambling disorder in financial markets: Clinical and treatment-related features

    PubMed Central

    Shin, Young-Chul; Choi, Sam-Wook; Ha, Juwon; Choi, Jung-Seok; Kim, Dai-Jin

    2015-01-01

    Background and Aims To date, few studies have examined the clinical manifestation of disordered gamblers in financial markets. This study examined the differences in the clinical and treatment-related features of gambling disorder between financial markets and horse races. Methods Subjects who met the DSM-IV criteria for pathological gambling (PG) and who sought treatment were assessed by retrospective chart review. One hundred forty-four subjects were included in this sample, which consisted of the following groups: financial markets (n = 45; 28.6%) and horse races (n = 99; 71.4%). Results Multiple similar manifestations were found between the groups, including severity of PG, age of PG onset, amounts of gambling debts, drinking days per week, depressive mood, duration of seeking treatment after the onset of PG, and treatment follow-up duration. However, disordered gamblers who invested in the financial market were significantly more likely to be educated (p = 0.003), live with their spouses (p = 0.007), have full-time jobs (p = 0.006), and they were more likely to participate in the first type of gambling than the horse races group (p<0.001). Furthermore, the financial markets group received the anti-craving medication less often than the horse races group (p = 0.04). Discussion and Conclusions: These findings suggest that disordered gamblers in financial markets show different socio-demographic, clinical and treatment-related features compared with the horse race gamblers, despite a similar severity of gambling disorder. Understanding these differential manifestations may provide insight into prevention and treatment development for specific types of gambling. PMID:26690619

  16. A novel design for maskless direct laser writing nanolithography: Combination of diffractive optical element and nonlinear absorption inorganic resists

    NASA Astrophysics Data System (ADS)

    Zha, Yikun; Wei, Jingsong; Gan, Fuxi

    2013-09-01

    Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.

  17. Characteristic analysis of surface waves in a sensitive plasma absorption probe

    NASA Astrophysics Data System (ADS)

    You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong

    2018-01-01

    With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.

  18. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  19. A Case For Free-free Absorption In The GPS Sources 1321+410 And 0026+346

    NASA Astrophysics Data System (ADS)

    Marr, Jonathan M.; Perry, T. M.; Read, J. W.; Taylor, G. B.

    2010-05-01

    We report on the results of VLBI observations of two gigahertz-peaked spectrum sources, 1321+410 and 0026+346, at five frequencies bracketing the spectral peaks. By comparing the three lower-frequency flux-density maps with extrapolations of the high frequency spectra we obtained maps of the optical depths as a function of frequency. The morphologies of the optical depth maps of 1321+410, at all frequencies, are strikingly uniform, consistent with there being a foreground screen of absorbing gas. We also find that the flux densities across the map fit free-free absorption spectra within the uncertainties. The required free-free optical depths are satisfied with reasonable gas parameters (ne 4000 cm-3, T 104 K, and L 1 pc). We conclude that the case for free-free absorption in 1321+410 is strong. In 0026+346, there is a compact feature with an inverted spectrum at the highest frequencies which we take to be the core. The optical depth maps, even excluding the possible core component, exhibit a noticeable amount of structure, but the morphology does not correlate with that in the flux-density maps, as would be expected if the absorption was due to synchrotron self-absorption. Additionally, the spectra (except at the core component) are consistent with free-free absorption, to within the uncertainties, and require column depths about one half of that in 1321+410. We conclude that free-free absorption by a relatively thin amount of gas with structure apparent on the scale of our maps in 0026+346 is likely, although the case is weaker than in 1321+410. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and by a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Excited state absorption spectra of dissolved and aggregated distyrylbenzene: A TD-DFT state and vibronic analysis

    NASA Astrophysics Data System (ADS)

    Oliveira, Eliezer Fernando; Shi, Junqing; Lavarda, Francisco Carlos; Lüer, Larry; Milián-Medina, Begoña; Gierschner, Johannes

    2017-07-01

    A time-dependent density functional theory study is performed to reveal the excited state absorption (ESA) features of distyrylbenzene (DSB), a prototype π-conjugated organic oligomer. Starting with a didactic insight to ESA based on simple molecular orbital and configuration considerations, the performance of various density functional theory functionals is tested to reveal the full vibronic ESA features of DSB at short and long probe delay times.

  1. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.

    PubMed

    Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans

    2018-03-01

    Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. VNIR spectral features observed by the Mars Exploration Rover Opportunity in hematite-bearing materials at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Bell, J. F.; Morris, R. V.; Joliff, B. L.; Squyres, S. W.; Souza, P. A.

    2004-12-01

    The Mars Exploration Rover Opportunity was sent to Meridiani Planum based largely on MGS TES spectroscopic evidence of a large surface exposure of coarse grained gray hematite. The presence of hematite at Meridiani Planum has been confirmed through thermal infrared spectroscopy by the rover's Mini-TES instrument and by in-situ measurements by its Moessbauer (MB) spectrometer. Several types of hematite, as expressed by differences in MB spectral parameters, have been associated with various rocks and soils examined in Eagle crater and on the surrounding plains. The host materials include the small spherules (informally known as "blueberries") littering the floor of Eagle crater and the plains of Meridiani, the outcrop rock itself, specific types of soils, and two measurements on unique rocks in the Shoemaker's Patio area of Eagle crater. At the visible to near infrared (VNIR) wavelengths covered by the rover's multispectral Panoramic camera (Pancam), gray hematite is spectrally neutral. However, multispectral observations by Pancam of some of these hematite-bearing materials show discernable spectral features. Specifically, portions of the outcrop visible in the walls of Eagle crater display a strong 535 nm absorption feature. This feature resembles a similar feature in laboratory spectra of red hematite, but the characteristic 860 nm absorption of red hematite is either absent or is instead replaced by a longer wavelength absorption centered on Pancam's 900 nm channel. The blueberries display a deep and broad absorption centered on 900 nm and as well as an increase in reflectance in the 1009 nm band. The shape of the absorption feature in the blueberries is consistent with that seen in red hematite, but again the band minimum is displaced to a longer wavelength than would be expected for red hematite. The blueberries also lack the prominent absorption at the shortest wavelengths that would be expected of red hematite. The unique hematite-bearing (or coated) rocks

  3. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  4. H-modulated microwave absorption and resistive transition in the high- Tc superconductor YBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Buluggiu, E.; Vera, A.; Amoretti, G.

    1990-11-01

    The derivative microwave absorption near Tc in presence of a sufficiently high field ( H⩾1 kOe) is related to the temperature variation of resistivity. This idea, originally proposed by Kim et al. (1988), is extended to take into account the effects of the anomalous resistive tail by using the thermoactivated flux-creep model proposed by Tinkham (1988). This gives a simple explanation for some relevant features observed in the temperature behaviour of the ESR absorption, as the asymmetry of the peak at Tc, with the long tail extending toward low temperatures, and the field dependence of height and linewidth, for which the model provides H-1 and H2/3 behaviour, respectively, ESR data on YBa 2Cu 3O 7 powder are in satisfactory agreement with this picture, when the role of the intrinsic 2D-character of this compound is properly taken into account. This allows us to deduce consistent values for the parameters a‖ and a⊥ of the anisotropic resistivity.

  5. Dynamically tunable extraordinary light absorption in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis

    2017-10-01

    The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.

  6. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  7. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  8. The 11 micron Silicon Carbide Feature in Carbon Star Shells

    NASA Technical Reports Server (NTRS)

    Speck, A. K.; Barlow, M. J.; Skinner, C. J.

    1996-01-01

    Silicon carbide (SiC) is known to form in circumstellar shells around carbon stars. SiC can come in two basic types - hexagonal alpha-SiC or cubic beta-SiC. Laboratory studies have shown that both types of SiC exhibit an emission feature in the 11-11.5 micron region, the size and shape of the feature varying with type, size and shape of the SiC grains. Such a feature can be seen in the spectra of carbon stars. Silicon carbide grains have also been found in meteorites. The aim of the current work is to identity the type(s) of SiC found in circumstellar shells and how they might relate to meteoritic SiC samples. We have used the CGS3 spectrometer at the 3.8 m UKIRT to obtain 7.5-13.5 micron spectra of 31 definite or proposed carbon stars. After flux-calibration, each spectrum was fitted using a chi(exp 2)-minimisation routine equipped with the published laboratory optical constants of six different samples of small SiC particles, together with the ability to fit the underlying continuum using a range of grain emissivity laws. It was found that the majority of observed SiC emission features could only be fitted by alpha-SiC grains. The lack of beta-SiC is surprising, as this is the form most commonly found in meteorites. Included in the sample were four sources, all of which have been proposed to be carbon stars, that appear to show the SiC feature in absorption.

  9. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  10. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westre, Tami E.

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been appliedmore » to the study of non-heme iron enzyme active sites.« less

  11. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    NASA Astrophysics Data System (ADS)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 < log N < 13.7), and strong absorbers (log N > 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 < log N < 15.0 of Ω _{{{Ne {VIII}}}} = 2.2 ^{+1.6 }_{ _-1.2} × 10^{-8}, a value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  12. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; hide

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  13. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  14. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    PubMed

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  15. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  16. The effect of equalizing landing task demands on sex differences in lower extremity energy absorption.

    PubMed

    Montgomery, Melissa M; Shultz, Sandra J; Schmitz, Randy J

    2014-08-01

    Less lean mass and strength may result in greater relative task demands on females compared to males when landing from a standardized height and could explain sex differences in energy absorption strategies. We compared the magnitude of sex differences in energy absorption when task demands were equalized relative to the amount of lower extremity lean mass available to dissipate kinetic energy upon landing. Male-female pairs (n=35) were assessed for lower extremity lean mass with dual-energy X-ray absorptiometry. Relative task demands were calculated when landing from a standardized height. Based on the difference in lower extremity lean mass within each pair, task demands were equalized by increasing the drop height for males. Joint energetics were measured while landing from the two heights. Multivariate repeated measures ANOVAs compared the magnitude of sex differences in joint energetics between conditions. The multivariate test for absolute energy absorption was significant (P<0.01). The magnitude of sex difference in energy absorption was greater at the hip and knee (both P<0.01), but not the ankle (P=0.43) during the equalized condition compared to the standardized and exaggerated conditions (all P<0.01). There was no difference in the magnitude of sex differences between equalized, standardized and exaggerated conditions for relative energy absorption (P=0.18). Equalizing task demands increased the difference in absolute hip and knee energy absorption between sexes, but had no effect on relative joint contributions to total energy absorption. Sex differences in energy absorption are likely influenced by factors other than differences in relative task demands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    PubMed Central

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  18. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    PubMed

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  19. Vanishing absorption and blueshifted emission in FeLoBAL quasars

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin

    2016-07-01

    We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.

  20. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  1. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.

    PubMed

    Yang, Lin; Somesfalean, Gabriel; He, Sailing

    2014-02-10

    An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.

  2. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity.

    PubMed

    Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P

    1999-01-01

    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions

  3. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations.

    PubMed

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  4. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  5. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  6. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  7. Constraining the Intergalactic and Circumgalactic Media with Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Sorini, Daniele; Onorbe, Jose; Hennawi, Joseph F.; Lukic, Zarija

    2018-01-01

    Lyman-alpha (Ly-a) absorption features detected in quasar spectra in the redshift range 0absorption in the IGM with large N-body cosmological simulations. The technique developed is more accurate than previous attempts in the literature, and can be applied to Gpc-scale N-body simulations, allowing an accurate investigation of the Ly-a absorption on unprecedentedly large scales. In the second part of my thesis, I compare predictions of state-of-the-art hydrodynamic cosmological simulations with observations of the mean Ly-a absorption around foreground quasars, damped Ly-a absorbers, and Lyman-break galaxies, at different transverse distances (~20kpc-20Mpc) from background quasars. Far from galaxies >2Mpc, the simulations asymptotically match the observations, because the ΛCDM model successfully describes the ambient IGM. This represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations are present on scales 20kpc-2Mpc, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as ~2Mpc, indicating that the `sphere-of-influence' of galaxies could extend to approximately ~20 times the halo virial radius (~100kpc). Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. I demonstrate that the Ly-a absorption profile is primarily sensitive to the underlying temperature-density relationship of diffuse gas around galaxies, and argue that it

  8. Realistic absorption coefficient of ultrathin films

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  9. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    PubMed

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in

  10. [Consideration of drug absorption in customizing drug therapy].

    PubMed

    Walter-Sack, I; Haefeli, W E

    2000-09-01

    The rate and extent of drug absorption from the small intestine are related to the release of the active ingredient from a dosage form, its solubility in the liquid phase of gastrointestinal contents, and the transport of the dissolved compound or the intact dosage form from the stomach into the duodenum. With pharmaceutical preparations releasing the active compound within the stomach, and enteric-coated "micro"-formulations (micropellets), gastric emptying is possible during the interdigestive and the digestive period. Potential differences of drug absorption between fasting administration and intake during the digestive period are unpredictable, because they are related to the release characteristics of the dosage form. However, larger enteric-coated preparations like tablets can leave the stomach only with a phase 3 contraction of fasting motility; intake during the digestive period will result in gastric retention of this type of dosage form until all food has left the stomach and fasting motility is restored. Consequently the onset of drug absorption is delayed. This interaction between food and large enteric-coated dosage forms is predictable from pyloric function in relation to the gastric motility. As it occurs regularly, it can be taken into account when prescribing enteric-coated dosage forms. If concomitant intake of food and enteric-coated drugs is unavoidable, but a rapid onset of drug absorption is necessary, micropellets are the dosage form of choice. When the therapeutic effect is insufficient, drug dosage form and timing of drug administration should be checked before prescribing a different active compound.

  11. Absorption and scattering by fractal aggregates and by their equivalent coated spheres

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Heng, Ri-Liang; Pilon, Laurent

    2015-01-01

    This paper demonstrates that the absorption and scattering cross-sections and the asymmetry factor of randomly oriented fractal aggregates of spherical monomers can be rapidly estimated as those of coated spheres with equivalent volume and average projected area. This was established for fractal aggregates with fractal dimension ranging from 2.0 to 3.0 and composed of up to 1000 monodisperse or polydisperse monomers with a wide range of size parameter and relative complex index of refraction. This equivalent coated sphere approximation was able to capture the effects of both multiple scattering and shading among constituent monomers on the integral radiation characteristics of the aggregates. It was shown to be superior to the Rayleigh-Debye-Gans approximation and to the equivalent coated sphere approximation proposed by Latimer. However, the scattering matrix element ratios of equivalent coated spheres featured large angular oscillations caused by internal reflection in the coating which were not observed in those of the corresponding fractal aggregates. Finally, the scattering phase function and the scattering matrix elements of aggregates with large monomer size parameter were found to have unique features that could be used in remote sensing applications.

  12. Surface-plasmon mediated total absorption of light into silicon.

    PubMed

    Yoon, Jae Woong; Park, Woo Jae; Lee, Kyu Jin; Song, Seok Ho; Magnusson, Robert

    2011-10-10

    We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.

  13. Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives.

    PubMed

    Win, Aung Ko; Buchanan, Daniel D; Rosty, Christophe; MacInnis, Robert J; Dowty, James G; Dite, Gillian S; Giles, Graham G; Southey, Melissa C; Young, Joanne P; Clendenning, Mark; Walsh, Michael D; Walters, Rhiannon J; Boussioutas, Alex; Smyrk, Thomas C; Thibodeau, Stephen N; Baron, John A; Potter, John D; Newcomb, Polly A; Le Marchand, Loïc; Haile, Robert W; Gallinger, Steven; Lindor, Noralane M; Hopper, John L; Ahnen, Dennis J; Jenkins, Mark A

    2015-01-01

    To estimate risk of colorectal cancer (CRC) for first-degree relatives of CRC cases based on CRC molecular subtypes and tumour pathology features. We studied a cohort of 33,496 first-degree relatives of 4853 incident invasive CRC cases (probands) who were recruited to the Colon Cancer Family Registry through population cancer registries in the USA, Canada and Australia. We categorised the first-degree relatives into four groups: 28,156 of 4095 mismatch repair (MMR)-proficient probands, 2302 of 301 MMR-deficient non-Lynch syndrome probands, 1799 of 271 suspected Lynch syndrome probands and 1239 of 186 Lynch syndrome probands. We compared CRC risk for first-degree relatives stratified by the absence or presence of specific tumour molecular pathology features in probands across each of these four groups and for all groups combined. Compared with first-degree relatives of MMR-proficient CRC cases, a higher risk of CRC was estimated for first-degree relatives of CRC cases with suspected Lynch syndrome (HR 2.06, 95% CI 1.59 to 2.67) and with Lynch syndrome (HR 5.37, 95% CI 4.16 to 6.94), but not with MMR-deficient non-Lynch syndrome (HR 1.04, 95% CI 0.82 to 1.31). A greater risk of CRC was estimated for first-degree relatives if CRC cases were diagnosed before age 50 years, had proximal colon cancer or if their tumours had any of the following: expanding tumour margin, peritumoral lymphocytes, tumour-infiltrating lymphocytes or synchronous CRC. Molecular pathology features are potentially useful to refine screening recommendations for first-degree relatives of CRC cases and to identify which cases are more likely to be caused by genetic or other familial factors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  15. Lower limb flexion posture relates to energy absorption during drop landings with soldier-relevant body borne loads.

    PubMed

    Brown, T N; O'Donovan, M; Hasselquist, L; Corner, B; Schiffman, J M

    2016-01-01

    Fifteen military personnel performed 30-cm drop landings to quantify how body borne load (light, ∼6 kg, medium, ∼20 kg, and heavy, ∼40 kg) impacts lower limb kinematics and knee joint energy absorption during landing, and determine whether greater lower limb flexion increases energy absorption while landing with load. Participants decreased peak hip (P = 0.002), and knee flexion (P = 0.007) posture, but did not increase hip (P = 0.796), knee (P = 0.427) or ankle (P = 0.161) energy absorption, despite exhibiting greater peak hip (P = 0.003) and knee (P = 0.001) flexion, and ankle (P = 0.003) dorsiflexion angular impulse when landing with additional load. Yet, when landing with the light and medium loads, greater hip (R(2) = 0.500, P = 0.003 and R(2) = 0.314, P = 0.030) and knee (R(2) = 0.431, P = 0.008 and R(2) = 0.342, P = 0.022) flexion posture predicted larger knee joint energy absorption. Thus, military training that promotes hip and knee flexion, and subsequently greater energy absorption during landing, may potentially reduce risk of musculoskeletal injury and optimize soldier performance. Published by Elsevier Ltd.

  16. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE PAGES

    Wu, M.; Xin, Houlin L.; Wang, J. O.; ...

    2018-04-24

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  17. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Xin, Houlin L.; Wang, J. O.

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  18. Assessing the Extent of Black Carbon Absorption Enhancements from Field Observations

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Zhang, X.; Metcalf, A. R.; Kim, H.; Zhang, Q.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Russell, L. M.

    2013-12-01

    Black carbon (BC) and brown carbon (BrC) play important roles as short-lived climate forcers (SLCFs) as a result of their short atmospheric lifetimes and ability to absorb solar radiation. The direct impacts of BC on climate depend on just how efficiently a given BC particle absorbs solar radiation, while the impacts of BrC depend on the specific properties of the BrC. The addition of 'coatings' to BC particles can theoretically increase the absorption by a given particle, and this theoretical 'lensing' enhancement has been confirmed through laboratory experiments. However, recent field observations (from the CalNex and CARES studies; Cappa et al. 2012), using a novel thermodenuder-absorption method, have suggested that the actual enhancement for ambient particles is substantially less than theoretically expected. Here, we will discuss results from similar measurements made during two recent field studies, the 2013 DISCOVER-AQ Fresno study and the 2013 SOAS Look Rock study. DISCOVER-AQ took place in Jan/Feb 2013 in Fresno, CA. This region is severely impacted by particulate matter from local and regional residential biomass burning, and thus provides a sharp contrast to the previous CalNex and CARES studies. SOAS took place during June/July 2013 at Look Rock National Park, TN, a relatively remote region strongly impacted by biogenic emissions (predominately isoprene) and located approximately 30 miles away from Knoxville, TN. The difference in absorption for dry, ambient particles will be compared with absorption measured for particles that have been passed through a thermodenuder. Additionally, variations in the mass absorption coefficient, determined from comparison of the measured light absorption and refractory black carbon concentrations, will be examined. The relative contributions of BrC and BC to total absorption at 405 nm, 532 nm and 870 nm will be discussed. The overall measurements suggest a relatively small role for lensing-induced absorption

  19. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  20. Absorption from iron tablets given with different types of meals.

    PubMed

    Hallberg, L; Björn-Rasmussen, E; Ekenved, G; Garby, L; Rossander, L; Pleehachinda, R; Suwanik, R; Arvidsson, B

    1978-09-01

    The absorption of iron from tablets given with 5 types of meals was studied in 153 subjects. The meals were: a hamburger meal with beans and potatoes, a simple breakfast meal, a Latin American meal composed of black beans, rice and maize and two Southeast Asian meals composed of rice, vegetables and spices served with and without fish. The groups were directly compared by relating the absorption from the iron tablets to the absorption from a standardized reference dose of iron given on an empty stomach. The composition of meals with respect to content of meat or fish or the presence of large amounts of phytates seemed to have no influence on the absorption of iron from tablets. The absorption from iron tablets was about 40% higher when they were given with rice meals than when they were given with the other meals studied. The average decrease in absorption by meals was about 50-60% based on a comparison when tablets were given on an empty stomach. When tablets from which the iron was released more slowly were used, the absorption increased by about 30% except when they were given with rice meals, where the absorption was unchanged. The differences among the meals in their effect on the absorption of iron from tablets thus disappeared when the slow-release tablets were given.

  1. Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor.

    PubMed

    Banerjee, Amit; Misra, Milind; Pai, Deepa; Shih, Liang-Yu; Woodley, Rohan; Lu, Xiang-Jun; Srinivasan, A R; Olson, Wilma K; Davé, Rajesh N; Venanzi, Carol A

    2007-01-01

    Six rigid-body parameters (Shift, Slide, Rise, Tilt, Roll, Twist) are commonly used to describe the relative displacement and orientation of successive base pairs in a nucleic acid structure. The present work adapts this approach to describe the relative displacement and orientation of any two planes in an arbitrary molecule-specifically, planes which contain important pharmacophore elements. Relevant code from the 3DNA software package (Nucleic Acids Res. 2003, 31, 5108-5121) was generalized to treat molecular fragments other than DNA bases as input for the calculation of the corresponding rigid-body (or "planes") parameters. These parameters were used to construct feature vectors for a fuzzy relational clustering study of over 700 conformations of a flexible analogue of the dopamine reuptake inhibitor, GBR 12909. Several cluster validity measures were used to determine the optimal number of clusters. Translational (Shift, Slide, Rise) rather than rotational (Tilt, Roll, Twist) features dominate clustering based on planes that are relatively far apart, whereas both types of features are important to clustering when the pair of planes are close by. This approach was able to classify the data set of molecular conformations into groups and to identify representative conformers for use as template conformers in future Comparative Molecular Field Analysis studies of GBR 12909 analogues. The advantage of using the planes parameters, rather than the combination of atomic coordinates and angles between molecular planes used in our previous fuzzy relational clustering of the same data set (J. Chem. Inf. Model. 2005, 45, 610-623), is that the present clustering results are independent of molecular superposition and the technique is able to identify clusters in the molecule considered as a whole. This approach is easily generalizable to any two planes in any molecule.

  2. Quasi-static energy absorption of hollow microlattice structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, YL; Schaedler, TA; Jacobsen, AJ

    2014-12-01

    We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then themore » strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.« less

  3. Dynamics of water absorption through superabsorbent polymer

    NASA Astrophysics Data System (ADS)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  4. Agonistic sounds in the skunk clownfish Amphiprion akallopisos: size-related variation in acoustic features.

    PubMed

    Colleye, O; Frederich, B; Vandewalle, P; Casadevall, M; Parmentier, E

    2009-09-01

    Fourteen individuals of the skunk clownfish Amphiprion akallopisos of different sizes and of different sexual status (non-breeder, male or female) were analysed for four acoustic features. Dominant frequency and pulse duration were highly correlated with standard length (r = 0.97), and were not related to sex. Both the dominant frequency and pulse duration were signals conveying information related to the size of the emitter, which implies that these sound characteristics could be useful in assessing size of conspecifics.

  5. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  6. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  7. Absorption in Sport: A Cross-Validation Study

    PubMed Central

    Koehn, Stefan; Stavrou, Nektarios A. M.; Cogley, Jeremy; Morris, Tony; Mosek, Erez; Watt, Anthony P.

    2017-01-01

    , reliability, and validity of the sport-specific measure of absorption. The MASC provides rich research opportunities in sport psychology that can enhance the theoretical understanding between absorption and related constructs and facilitate future intervention studies. PMID:28883802

  8. Nonlinearly enhanced linear absorption under filamentation in mid-infrared (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shipilo, Daniil; Panov, Nicolay; Andreeva, Vera; Kosareva, Olga G.; Saletski, Alexander M.; Xu, Huai-Liang; Polynkin, Pavel

    2017-05-01

    The mid-infrared OPCPA-based laser facilities have recently reached the critical power for self-focusing in air [1]. This ensures the demonstration of the major difference between the mid- and near-infrared filamentation in air: the odd optical harmonics, harshly suppressed by the material dispersion and phase-mismatch in the near-infrared (800 nm), gain reliable energies in the mid-infrared (3.9 µm) filament [1,2]. Another issue that makes mid-infrared filamentation different from the near-infrared one is a lot of molecular vibrational lines belonging to atmospheric constituents and located in the mid-infrared range [3]. As the result the mid-infrared region of interest becomes subdivided into the bands of normal and anomalous dispersion, the former of which leads to the pulse splitting in temporal domain, while the latter produces the confined light bullet. We simulate the 3.9-µm filamentation using Forward Maxwell equation. We include the tunnel ionization and transient photocurrent as the collapse arresting mechanism, which balances dynamically the instantaneous third-order medium response (similarly to 800-nm filamentation). The key feature that allows us to quantify the losses due to absorption bands is the accurate account of the complex linear absorption index. The absorption index obtained from Mathar model [3] is interpolated to the fine frequency grid (step of about 0.1 THz), and the refractive index is matched according to Kramers-Krönig relations [4]. If the initial Gaussian pulse has a center wavelength of 3.9 µm and a duration of 80 fs FWHM, the energy loss in the carbon dioxide (CO_2) absorption band at 4.3 µm is about 1% in the linear propagation regime. But when we take the 80-mJ pulse (about 3 critical powers for self-focusing), the Kerr-induced spectral broadening develops significantly before the clamping level of intensity is reached. In the collimated beam geometry about 2% of the initial pulse energy is absorbed on the CO_2 band before

  9. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.

    PubMed

    Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin

    2018-05-03

    The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were

  10. Efficient energy absorption of intense ps-laser pulse into nanowire target

    NASA Astrophysics Data System (ADS)

    Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.

    2016-06-01

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  11. Efficient energy absorption of intense ps-laser pulse into nanowire target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habara, H.; Honda, S.; Katayama, M.

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less

  12. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  13. Occupational absorption of tellurium: a report of two cases.

    PubMed Central

    Blackadder, E S; Manderson, W G

    1975-01-01

    Industrial uses of tellurium are limited, and reported cases of tellurium absorption of occupational origin are rare. Two such cases are reported here. Both showed typical signs and symptoms of intoxication; in particular, the stench of sour garlic was noted on breath and from excreta. An unusual feature was the bluish-black discoloration of the webs of the fingers and streaks on the face and neck. Full hospital investigation was negative. No permanent damage resulted and each patient made a spontaneous recovery without treatment. Images PMID:123755

  14. Terrestrial Analogs to Wind-Related Features at the Viking and Pathfinder Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bridges, Nathan T.; Kuzmin, Ruslan O.; Laity, Julie E.

    2002-01-01

    Features in the Mojave Desert and Iceland provide insight into the characteristics and origin of Martian wind-related landforms seen by the Viking and Pathfinder landers. The terrestrial sites were chosen because they exhibit diverse wind features that are generally well understood. These features have morphologies comparable to those on Mars and include origins by deposition and erosion, with erosional processes modifying both soils and rocks. Duneforms and drifts are the most common depositional features seen at the Martian landing sites and indicate supplies of sand-sized particles blown by generally unidirectional winds. Erosional features include lag deposits, moat-like depressions around some rocks, and exhumed soil horizons. They indicate that wind can deflate at least some sediments and that this process is particularly effective where the wind interacts with rocks. The formation of ripples and wind tails involves a combination of depositional and erosional processes. Rock erosional features, or ventifacts, are recognized by their overall shapes, erosional flutes, and characteristic surface textures resulting from abrasion by windblown particles. The physics of saltation requires that particles in ripples and duneforms are predominantly sand-sized (60-2000 microns). The orientations of duneforms, wind tails, moats, and ventifacts are correlated with surface winds above particle threshold. Such winds are influenced by local topography and are correlated with winds at higher altitudes predicted by atmospheric models.

  15. Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Huang, Wenjiang; Zhou, Xianfeng

    2017-04-01

    Hyperspectral absorption features are important indicators of characterizing plant biophysical variables for the automatic diagnosis of crop diseases. Continuous wavelet analysis has proven to be an advanced hyperspectral analysis technique for extracting absorption features; however, specific wavelet features (WFs) and their relationship with pathological characteristics induced by different infestations have rarely been summarized. The aim of this research is to determine the most sensitive WFs for identifying specific pathological lesions from yellow rust and powdery mildew in winter wheat, based on 314 hyperspectral samples measured in field experiments in China in 2002, 2003, 2005, and 2012. The resultant WFs could be used as proxies to capture the major spectral absorption features caused by infestation of yellow rust or powdery mildew. Multivariate regression analysis based on these WFs outperformed conventional spectral features in disease detection; meanwhile, a Fisher discrimination model exhibited considerable potential for generating separable clusters for each infestation. Optimal classification returned an overall accuracy of 91.9% with a Kappa of 0.89. This paper also emphasizes the WFs and their relationship with pathological characteristics in order to provide a foundation for the further application of this approach in monitoring winter wheat diseases at the regional scale.

  16. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Technical Reports Server (NTRS)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  17. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors. Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy. Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature

  18. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  19. Search for gravitational redshifted absorption lines in LMXB Serpens X-1

    NASA Astrophysics Data System (ADS)

    Yoneda, Hiroki; Done, Chris; Paerels, Frits; Takahashi, Tadayuki; Watanabe, Shin

    2018-04-01

    The equation of state for ultradense matter can be tested from observations of the ratio of mass to radius of neutron stars. This could be measured precisely from the redshift of a narrow line produced on the surface. X-rays bursts have been intensively searched for such features, but so far without detection. Here instead we search for redshifted lines in the persistent emission, where the accretion flow dominates over the surface emission. We discuss the requirements for narrow lines to be produced, and show that narrow absorption lines from highly ionized iron can potentially be observable in accreting low-mass X-ray binaries (LMXBs; low B field) that have either low spin or low inclination so that Doppler broadening is small. This selects Serpens X-1 as the only potential candidate persistent LMXB due to its low inclination. Including surface models in the broad-band accretion flow model predicts that the absorption line from He-like iron at 6.7 keV should be redshifted to ˜5.1-5.7 keV (10-15 km for 1.4 M⊙) and have an equivalent width of 0.8-8 eV for surface temperatures of 7-10 × 106 K. We use the high-resolution Chandra grating data to give a firm upper limit of 2-3 eV for an absorption line at ˜5 keV. We discuss possible reasons for this lack of detection (the surface temperature and the geometry of the boundary layer etc.). Future instruments with better sensitivity are required in order to explore the existence of such features.

  20. Improvement of depth resolution on photoacoustic imaging using multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Fujiwara, Katsuji; Takamatsu, Tetsuro

    2007-07-01

    Commercial imaging systems, such as computed tomography and magnetic resonance imaging, are frequently used powerful tools for observing structures deep within the human body. However, they cannot precisely visualized several-tens micrometer-sized structures for lack of spatial resolution. In this presentation, we propose photoacoustic imaging using multiphoton absorption technique to generate ultrasonic waves as a means of improving depth resolution. Since the multiphoton absorption occurs at only the focus point and the employed infrared pulses deeply penetrate living tissues, it enables us to extract characteristic features of structures embedded in the living tissue. When nanosecond pulses from a 1064-nm Nd:YAG laser were focused on Rhodamine B/chloroform solution (absorption peak: 540 nm), the peak intensity of the generated photoacoustic signal was proportional to the square of the input pulse energy. This result shows that the photoacoustic signals can be induced by the two-photon absorption of infrared nanosecond pulse laser and also can be detected by a commercial low-frequency MHz transducer. Furthermore, in order to evaluate the depth resolution of multiphoton-photoacoustic imaging, we investigated the dependence of photoacoustic signal on depth position using a 1-mm-thick phantom in a water bath. We found that the depth resolution of two-photon photoacoustic imaging (1064 nm) is greater than that of one-photon photoacoustic imaging (532 nm). We conclude that evolving multiphoton-photoacoustic imaging technology renders feasible the investigation of biomedical phenomena at the deep layer in living tissue.

  1. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  2. Rates and features of methamphetamine-related presentations to emergency departments: An integrative literature review.

    PubMed

    Jones, Rikki; Woods, Cindy; Usher, Kim

    2018-07-01

    To review the clinical impact methamphetamine has on emergency departments by assessing the available research on the rates and features of methamphetamine-related presentations. Globally, methamphetamine availability, distribution and use have rapidly increased. As a result, the number of methamphetamine-related presentations to emergency departments has also increased. In this context, it is timely to review the rate and features of methamphetamine-related presentations to understand the impact of methamphetamine on emergency departments and facilitate the allocation of services, staff and resources. An integrative literature review. This study presents an integrated literature review, following the systematic review process as outlined in the PRISMA flow chart. Several databases were searched using a combination of search terms. Articles were measured against inclusion and exclusion criteria, and the final ten articles were subjected to quality appraisal and outcomes reported. Methamphetamine accounted for 2.3% or less of all emergency departments presentations. The majority of methamphetamine users presenting to emergency departments were males, with a mean age 31-37. Methamphetamine-related presentations to emergency departments were more likely to present with trauma, psychosis, and be placed on 24-hr psychiatric hold. Methamphetamine-related presentations were more likely to present with agitation, aggression and homicidal behaviour and present to emergency departments out of hours and accompanied by police compared with other emergency departments substance-related presentations. Several important themes were highlighted in this review that has an impact on emergency departments services, resources and staff. Understanding the rate and patterns of methamphetamine-related presentations can help to provide evidence for policy development and staff education in emergency departments. Methamphetamine-related presenters are more aggressive and agitated and more

  3. Distribution of the 3.1 micron feature in Cepheus A

    NASA Technical Reports Server (NTRS)

    Hodapp, Klaus-Werner; Eiroa, Carlos

    1989-01-01

    Near-IR absorption features produced by core-mantle dust grains are observed in many protostellar objects. The high spatial resolution observations (less or equal to 3 in.) could be helpful to monitor the expected changes of the features. Cep A/IRS 6 is a suitable candidate to carry out such a kind of study. It is located in an active star formation region and consists of a young object associated with an extended reflection nebula. The ice feature was observed in four positions of Cep A/IRS 6 with a 2.7 in. aperture. The observations were carried out at the IRTF using the cooled grating array spectrometer CGAS. The 2.4 to 3.8 micron spectra of two positions are presented.

  4. Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea

    1992-01-01

    The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job.

  5. Serendipitous Detection of {\\rm{H}}\\,{\\rm{I}} Absorption Sets the True Redshift of 4C +15.05 to z = 0.833

    NASA Astrophysics Data System (ADS)

    Jones, K. M.; Ghosh, T.; Salter, C. J.

    2018-06-01

    4C+15.05 (also known as NRAO 91, PKS 0202+14, or J0204+15) is a quintessential blazar. It has a luminous, variable radio spectrum, a super-luminal jet, and gamma-ray detections. Arecibo observations with the 700–800 MHz receiver on the 305 m diameter William E. Gordon Telescope detected, serendipitously, H I in absorption against 4C+15.05 while using it as a bandpass calibrator for another object in an H I absorption project. Although the redshift we derive is different from that commonly in use in the literature (nominally z = 0.405), it agrees very well with the value of z = 0.833 determined by Stickel et al. This absorption feature is best fitted by a sum of three Gaussians, which yield an average redshift of z = 0.8336 ± 0.0004, although without corresponding high-resolution imaging it is not possible to say whether the components are parts of outflows or inflows. A total column density of N(H I) = 2.39 ± 0.13 × 1021 cm‑2 is derived, relatively high compared to many radio-loud sources. These results are compared to various relationships in the literature.

  6. Distinct features of trampoline-related orthopedic injuries in children aged under 6 years.

    PubMed

    Choi, Eun Seok; Hong, Jin Heon; Sim, Jae Ang

    2018-02-01

    Concern has been growing about trampoline-related injuries among young children. Several published policy statements have repeatedly recommended that children younger than 6 years should not use trampolines. However, few studies have investigated the injuries caused by trampoline-related accidents among young children. This study aimed to identify the distinct features of trampoline-related orthopedic injuries in children younger than 6 years. We retrospectively reviewed the medical records of pediatric patients aged between 0 and 16 years who visited our regional emergency center due to trampoline-related orthopedic injuries between 2012 and 2015. Patients were divided into two groups: a preschool group (younger than 6 years) and a school group (older than 6 years). We compared the features of the injuries in the two groups. Among 208 patients, 108 (52%) were male and 100 (48%) were female. The mean age was 5.4 years. The preschool group accounted for 66%. There were no seasonal variations. Fractures were sustained in 96 patients (46%). The anatomical locations of injuries differed significantly between the two age groups. Proximal tibia fractures were more frequent in the preschool group than the school group (34% and 6%, respectively). Distal tibia fractures were more prevalent in the school group than the preschool group (44% vs. 13%, respectively). Surgical treatment was needed more frequently in the school group (p = 0.035, hazard ratio 2.52, 95% confidence interval: 1.03-6.17). Most of the injuries (82%) occurred at trampoline parks. The anatomical locations of trampoline-related orthopedic injuries differed significantly between age groups. Fractures were more common around the knee in younger children and the ankle in older children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  8. Glucose Absorption by the Bacillary Band of Trichuris muris.

    PubMed

    Hansen, Tina V A; Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M

    2016-09-01

    A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  9. Fine-scale structure in the -185 kilometers per second absorption by HCO(+) in the Galactic center

    NASA Technical Reports Server (NTRS)

    Marr, Jonathan M.; Rudolph, Alexander L.; Pauls, Thomas A.; Wright, Melvyn C. H.; Backer, Donald C.

    1992-01-01

    We present a high-resolution study of the HCO(+) (J = 1-0) absorption by the 'high-velocity gas' at velocities between -170 and -200 km/s in Sgr A West. The absorption against the continuum radiation from the ionized gas features in Sgr A West (in particular the 'bar') is stronger than it is against Sgr A which is separated from the ionized gas by a few arcseconds. The positions of peak HCO(+) opacity coincide with the positions of Ne II emission at these velocities. These observations suggest that, even though emission is detected from gas at these high velocities over several arcminutes, some of the absorbing molecular gas may be mixed in with the ionized gas close to Sgr A. Simple calculations show that sufficient shielding can exist in the ionized features to allow molecules to survive very close to the ionizing source.

  10. Neutron absorption constraints on the composition of 4 Vesta

    USGS Publications Warehouse

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-01-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  11. Neutron absorption constraints on the composition of 4 Vesta

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Peplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-11-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's "dark" hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  12. Evaluation of Enthalpy Diagrams for NH3-H2O Absorption Refrigerator

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Saito, Kiyoshi; Kawai, Sunao

    The protection of environment is becoming a grave problem nowadays and an absorption refrigerator, which does not use fleon as a refrigerant, is acquiring a close attention. Among the absorption refrigerators, a number of ammonia-water absorption refrigerators are being used in realm such as refrigeration and ice accumulation, since this type of refrigerator can produce below zero degree products. It is essential to conduct an investigation on the characteristics of ammonia-water absorption refrigerator in detail by means of computer simulation in order to realize low cost, highly efficient operation. Unfortunately, there have been number of problems in order to conduct computer simulations. Firstly, Merkel's achievements of enthalpy diagram does not give the relational equations. And secondly, although relational equation are being proposed by Ziegler, simpler equations that can be applied to computer simulation are yet to be proposed. In this research, simper equations based on Ziegler's equations have been derived to make computer simulation concerning the performance of ammonia-water absorption refrigerator possible-Both results of computer simulations using simple equations and Merkel's enthalpy diagram respectively, have been compared with the actual experimental data of one staged ammonia-water absorption refrigerator. Consequently, it is clarified that the results from Ziegler's equations agree with experimental data better than those from Merkel's enthalpy diagram.

  13. Quantitative prediction of drug side effects based on drug-related features.

    PubMed

    Niu, Yanqing; Zhang, Wen

    2017-09-01

    Unexpected side effects of drugs are great concern in the drug development, and the identification of side effects is an important task. Recently, machine learning methods are proposed to predict the presence or absence of interested side effects for drugs, but it is difficult to make the accurate prediction for all of them. In this paper, we transform side effect profiles of drugs as their quantitative scores, by summing up their side effects with weights. The quantitative scores may measure the dangers of drugs, and thus help to compare the risk of different drugs. Here, we attempt to predict quantitative scores of drugs, namely the quantitative prediction. Specifically, we explore a variety of drug-related features and evaluate their discriminative powers for the quantitative prediction. Then, we consider several feature combination strategies (direct combination, average scoring ensemble combination) to integrate three informative features: chemical substructures, targets, and treatment indications. Finally, the average scoring ensemble model which produces the better performances is used as the final quantitative prediction model. Since weights for side effects are empirical values, we randomly generate different weights in the simulation experiments. The experimental results show that the quantitative method is robust to different weights, and produces satisfying results. Although other state-of-the-art methods cannot make the quantitative prediction directly, the prediction results can be transformed as the quantitative scores. By indirect comparison, the proposed method produces much better results than benchmark methods in the quantitative prediction. In conclusion, the proposed method is promising for the quantitative prediction of side effects, which may work cooperatively with existing state-of-the-art methods to reveal dangers of drugs.

  14. Absorption degree analysis on biogas separation with ionic liquid systems.

    PubMed

    Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping

    2015-01-01

    For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line indexmore » versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.« less

  16. Io's Thermal Regions and Non-SO2 Spectral Features

    NASA Technical Reports Server (NTRS)

    Smythe, W. D.; Soderblom, L. A.; Lopes, R. M. C.

    2003-01-01

    Several absorptions have been identified in the Galileo NIMS spectra of Io that are not related to SO2. [1,2]. These absorptions have band centers at 2.97, 3.15, 3.85, and 3.91 microns. There are also broad absorptions in the regions 1-1.3 and 3- 3.4 microns. Patterning noise in wavelength registration, arising from the pushbroom imaging and grating motion of the NIMS instrument have previously inhibited reliable mapping of weak absorptions. Recent improvements in techniques to remove the coherent pattern noise from the NIMS dataset have been made by Soderblom. This greatly improves the signal to noise ratio and enables mapping of weak spectral signatures such as the 3.15 micron absorption on Io.

  17. Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Trcera, Nicolas; Cabaret, Delphine; Rossano, Stéphanie; Farges, François; Flank, Anne-Marie; Lagarde, Pierre

    2009-05-01

    X-ray absorption spectroscopy at the Mg K-edge is used to obtain information on magnesium environment in minerals, silicate and alumino-silicate glasses. First-principles XANES calculations are performed for minerals using a plane-wave density functional formalism with core-hole effects treated in a supercell approach. The good agreement obtained between experimental and theoretical spectra provides useful information to interpret the spectral features. With the help of calculation, the position of the first peak of XANES spectra is related to both coordination and polyhedron distortion changes. In alumino-silicate glasses, magnesium is found to be mainly 5-fold coordinated to oxygen whatever the aluminum saturation index value. In silicate glasses, magnesium coordination increases from 4 in Cs-, Rb- and K-bearing glasses to 5 in Na- and Li-bearing glasses but remains equal as the polymerization degree of the glass varies. The variation of the C feature (position and intensity) is strongly related to the alkali type providing information on the medium range order.

  18. The Role of Trait and State Absorption in the Enjoyment of Music

    PubMed Central

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener’s music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content. PMID:27828970

  19. The Role of Trait and State Absorption in the Enjoyment of Music.

    PubMed

    Hall, Sarah E; Schubert, Emery; Wilson, Sarah J

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener's music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content.

  20. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  1. Increased intestinal absorption in the rat caused by sodium lauryl sulphate, and its possible relation to the cAMP system.

    PubMed

    Briseid, G; Briseid, K; Kirkevold, K

    1976-01-01

    The increases in the absorption of ouabain, phenolsulphonphthalein and pralidoxime caused by 17 mM sodium lauryl sulphate (SLS) from jejunal loops of anaesthetized rats were significantly reduced if sodium and chloride (Briseid et al., 1974) or chloride and bicarbonate were replaced by other ions in the loop fluid. Separate substitutions of sodium, chloride of bicarbonate did not significantly alter the SLS-caused absorption, except that the substitution of choline for sodium reduced the absorption of pralidoxime, both in the presence and in the absence of SLS. The increases in the absorption of phenolsulphonphthalein and pralidoxime caused by SLS were potentiated by theophylline (25 mM) and reduced by imidazole (25 mM). The addition of dibutyryl cyclic AMP (2.5 mM) to the loop fluid increased this absorption of the test substances. This effect was reduced by imidazole, but under the experimental conditions it was not potentiated by theophylline. Determinations of cyclic AMP in the rat intestinal mucosa showed that the level of this substance was significantly higher in the presence than in the absence of SLS. The experimental conditions were as described for the absorption experiments. It is concluded that the data obtained support the idea of an increased level of cyclic AMP as the main basis for the effect of SLS on the absorption.

  2. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE PAGES

    Ally, Moonis Raza; Sharma, Vishaldeep

    2017-11-02

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  3. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza; Sharma, Vishaldeep

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  4. Pioneer 11 observations of trapped particle absorption by the Jovian ring and the satellites 1979, J1, J2, and J3

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Mckibben, R. B.; Simpson, J. A.

    1983-01-01

    Pioneer 11 low energy telescope observation of charged particles around the Jovian satellites Amalthea, 1979 J1, J2, and J3, and the Jupiter ring are examined in the light of Voyager optical data from the same region. Good agreement was found in the absorption features of 0.5-8.7 MeV protons, electrons with energies of 3.4 MeV or more, and medium-Z nuclei. The heavier nuclei are suggested to be oxygen and sulfur particles with energies exceeding 70 MeV/nucleon. The observed intensity features in the regularly spaced radiation bands are interpreted as ring and satellite absorption.

  5. Etiological features of borderline personality related characteristics in a birth cohort of 12-year-old children

    PubMed Central

    BELSKY, DANIEL W.; CASPI, AVSHALOM; ARSENEAULT, LOUISE; BLEIDORN, WIEBKE; FONAGY, PETER; GOODMAN, MARIANNE; HOUTS, RENATE; MOFFITT, TERRIE E.

    2012-01-01

    It has been reported that borderline personality related characteristics can be observed in children, and that these characteristics are associated with increased risk for the development of borderline personality disorder. It is not clear whether borderline personality related characteristics in children share etiological features with adult borderline personality disorder. We investigated the etiology of borderline personality related characteristics in a longitudinal cohort study of 1,116 pairs of same-sex twins followed from birth through age 12 years. Borderline personality related characteristics measured at age 12 years were highly heritable, were more common in children who had exhibited poor cognitive function, impulsivity, and more behavioral and emotional problems at age 5 years, and co-occurred with symptoms of conduct disorder, depression, anxiety, and psychosis. Exposure to harsh treatment in the family environment through age 10 years predicted borderline personality related characteristics at age 12 years. This association showed evidence of environmental mediation and was stronger among children with a family history of psychiatric illness, consistent with diathesis–stress models of borderline etiology. Results indicate that borderline personality related characteristics in children share etiological features with borderline personality disorder in adults and suggest that inherited and environmental risk factors make independent and interactive contributions to borderline etiology. PMID:22293008

  6. Etiological features of borderline personality related characteristics in a birth cohort of 12-year-old children.

    PubMed

    Belsky, Daniel W; Caspi, Avshalom; Arseneault, Louise; Bleidorn, Wiebke; Fonagy, Peter; Goodman, Marianne; Houts, Renate; Moffitt, Terrie E

    2012-02-01

    It has been reported that borderline personality related characteristics can be observed in children, and that these characteristics are associated with increased risk for the development of borderline personality disorder. It is not clear whether borderline personality related characteristics in children share etiological features with adult borderline personality disorder. We investigated the etiology of borderline personality related characteristics in a longitudinal cohort study of 1,116 pairs of same-sex twins followed from birth through age 12 years. Borderline personality related characteristics measured at age 12 years were highly heritable, were more common in children who had exhibited poor cognitive function, impulsivity, and more behavioral and emotional problems at age 5 years, and co-occurred with symptoms of conduct disorder, depression, anxiety, and psychosis. Exposure to harsh treatment in the family environment through age 10 years predicted borderline personality related characteristics at age 12 years. This association showed evidence of environmental mediation and was stronger among children with a family history of psychiatric illness, consistent with diathesis-stress models of borderline etiology. Results indicate that borderline personality related characteristics in children share etiological features with borderline personality disorder in adults and suggest that inherited and environmental risk factors make independent and interactive contributions to borderline etiology.

  7. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  8. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, A. D., E-mail: adc87@cornell.edu; Hoyt, C. L., E-mail: adc87@cornell.edu; Shelkovenko, T. A., E-mail: adc87@cornell.edu

    2014-12-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emittedmore » by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.« less

  9. Molecfit: A general tool for telluric absorption correction. II. Quantitative evaluation on ESO-VLT/X-Shooterspectra

    NASA Astrophysics Data System (ADS)

    Kausch, W.; Noll, S.; Smette, A.; Kimeswenger, S.; Barden, M.; Szyszka, C.; Jones, A. M.; Sana, H.; Horst, H.; Kerber, F.

    2015-04-01

    Context. Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT/X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, Ioff and Ires, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with molecfit to the classical method based on a telluric standard star. Results: The evaluation of the telluric correction with molecfit shows a convincing removal of atmospheric absorption features. The comparison with the classical method reveals that molecfit performs better because it is not prone to the bad continuum reconstruction, noise, and

  10. Striations, Polish, and Related Features from Clasts in Impact-Ejecta Deposits and the "Tillite Problem"

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Ernstson, K.; Anguita, F.; Claudin F.

    1997-01-01

    Proximal ejecta deposits related to three large terrestrial impacts, the 14.8-Ma Ries impact structure in Germany (the Bunte Breccia), the 65-Ma Chicxulub impact structure in the Yucatan (the Albion and Pook's Hill Diamictites in Belize) and the mid-Tertiary Azuara impact structure in Spain (the Pelarda Fm.) occur in the form of widespread debris-flow deposits most likely originating from ballistic processes. These impact-related diamictites typically are poorly sorted, containing grain sizes from clay to large boulders and blocks, and commonly display evidence of mass flow, including preferred orientation of long axes of clasts, class imbrication, flow noses, plugs and pods of coarse debris, and internal shear planes. Clasts of various lithologies show faceting, various degrees of rounding, striations (including nailhead striae), crescentic chattermarks, mirror-like polish, percussion marks, pitting, and penetration features. Considering the impact history of the Earth, it is surprising that so few ballistic ejecta, deposits have been discovered, unless the preservation potential is extremely low, or such materials exist but have been overlooked or misidentified as other types of geologic deposits . Debris-flow diamictites of various kinds have been reported in the geologic record, but these are commonly attributed to glaciation based on the coarse and poorly sorted nature of the deposits and, in many cases, on the presence of clasts showing features considered diagnostic of glacial action, including striations of various kinds, polish, and pitting. These diamictites are the primary evidence for ancient ice ages. We present evidence of the surface features on clasts from known proximal ejecta debris-flow deposits and compare these features with those reported in diamictites. interpreted as ancient glacial deposits (tillites). Our purpose is to document the types of features seen on clasts in diamictites of ejecta origin in order to help in the interpretation of

  11. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  12. Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach.

    PubMed

    Kityk, Andriy V

    2012-03-22

    Long-range-corrected (LC) DFT/TDDFT methods may provide adequate description of ground and excited state properties; however, accuracy of such an approach depends much on a range separation (exchange screening) representing adjustable model parameter. Its relation to a size or specific of molecular systems has been explored in numerous studies, whereas the effect of solvent environment is usually ignored during the evaluation of state properties. To benchmark and assess the quality of the LC-DFT/TDDFT formalism, we report the optical absorption and fluorescence emission energies of organic heterocyclic isomers, DPIPQ and PTNA, calculated by LC-BLYP DFT/TDDFT method in the polarizable continuum (PCM) approach. The calculations are compared with the optical absorption and fluorescence spectra measured in organic solvents of different polarity. Despite a considerable structural difference, both dyes exhibit quite similar range separations being somewhat different for the optical absorption and fluorescence emission processes. Properly parametrized LC-BLYP xc-potential well reproduces basic features of the optical absorption spectra including the electronic transitions to higher excited states. The DFT/TDDFT/PCM analysis correctly predicts the solvation trends although solvatochromic shifts of the electronic transition energies appear to be evidently underestimated in most cases, especially for the fluorescence emission. Considering the discrepancy between the experiment and theory, evaluated state dipole moments and solvation corrections to the exchange screening are analyzed. The results of the present study emphasize the importance of a solvent-dependent range separation in DFT/TDDFT/PCM calculations for investigating excited state properties. © 2012 American Chemical Society

  13. Absorption spectra of deuterated water at DF laser wavelengths.

    PubMed

    Bruce, C W; Jelinek, A V

    1982-11-15

    Absorption coefficients for deuterated water have been measured at twenty-two deuterium fluoride (DF) laser wavelengths and presented for atmospheric conditions classified as midlatitude-summer (14.3 T water vapor, standard temperature, and pressure). The HDO vapor was produced from a liquid mixture of H(2)O and D(2)O. The proportions of the resulting equilibrium mixture involving these constituents and HDO were calculated using previously measured constants and produced strong HDO absorption at the 3.5-4.1-microm DF laser wavelengths relative to those of the H(2)O and D(2)O vapors. Predicted and measured pressure dependencies at constant mixing ratios are compared for several laser wavelengths having strong HDO absorption. Absorption coefficients are in fairly close agreement with those of the current Air Force Geophysical Laboratory line-by-line model for standard temperature and pressure conditions. At lower total pressures, the comparison is less satisfactory and suggests inaccurate line parameters in the predictive data base.

  14. Distant supervision for neural relation extraction integrated with word attention and property features.

    PubMed

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Brown carbon absorption in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  16. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  17. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  18. On the state of the emitter of the 3.3 micron unidentified infrared band - Absorption spectroscopy of polycyclic aromatic hydrocarbon species

    NASA Technical Reports Server (NTRS)

    Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.

    1991-01-01

    Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.

  19. Anatomical Features of the Interscapular Area Where Wet Cupping Therapy Is Done and Its Possible Relation to Acupuncture Meridians.

    PubMed

    Ghods, Roshanak; Sayfouri, Nasrin; Ayati, Mohammad Hossein

    2016-12-01

    Although wet cupping has been a treatment for centuries, its mechanism of action is not well understood. Because the anatomical features of the wet-cupping area might play a role in its mechanism, we focus on the features of the interscapular area in which a common type of wet-cupping therapy (WCT), called Hijamat-e-Aam in Iranian medicine, is usually applied and discuss the possible relation of those features to the acupuncture meridians. We gathered and analyzed data from reliable textbooks on modern medicine with a focus on the anatomical features of the interscapular area, topics related to WTC in Iranian medicine, and acupuncture sources obtained by searching PubMed, Google-Scholar, and Science Direct. The interscapular area used for WCT was found to have special features: brown adipose tissue, immediate proximity to sympathetic ganglia, passage of the thoracic duct, two important acupuncture meridians, and proximity to the main vessel divisions carrying blood from the heart and the brain. These features indicate that the interscapular application of WCT not only discharges waste materials through a shifting of blood to the site after application of a traction force but also invigorates the body's metabolism, increases immunity, and regulates blood biochemistry, which are desired therapeutic effects of WCT. Copyright © 2016. Published by Elsevier B.V.

  20. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  1. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  2. Path integral Monte Carlo study on the structure and absorption spectra of alkali atoms (Li, Na, K) attached to superfluid helium clusters

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Yamashita, Koichi

    2001-01-01

    Path integral Monte Carlo calculations have been performed to investigate the microscopic structure and thermodynamic properties of the AkṡHeN (Ak=Li, Na, K,N⩽300) clusters at T=0.5 K. Absorption spectra which correspond to the 2P←2S transitions of alkali atoms are also calculated within a pairwise additive model, which employs diatomic Ak-He potential energy curves. The size dependences of the cluster structure and absorption spectra that show the influence of the helium cluster environment are examined in detail. It is found that alkali atoms are trapped in a dimple on the helium cluster's surface and that, from the asymptotic behavior, the AkṡHe300 cluster, at least semiquantitatively, mimics the local structure of experimentally produced large helium clusters in the vicinity of alkali atoms. We have successfully reproduced the overall shapes of the spectra and explained their features from a static and structural point of view. The positions, relative intensities, and line widths of the absorption maxima are calculated to be in moderate agreement with experiments [F. Stienkemeier, J. Higgins, C. Callegari, S. I. Kanorsky, W. E. Ernst, and G. Scoles, Z. Phys. D 38, 253 (1996)].

  3. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  4. Birefringence and anisotropic optical absorption in porous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efimova, A. I., E-mail: efimova@vega.phys.msu.ru; Krutkova, E. Yu.; Golovan', L. A.

    2007-10-15

    The refractive indices and the coefficients of optical absorption by free charge carriers and local vibrations in porous silicon (por-Si) films, comprising nanometer-sized silicon residues (nanocrystals) separated by nanometer-sized pores (nanopores) formed in the course of electrochemical etching of the initial single crystal silicon, have been studied by polarization-resolved IR absorption spectroscopy techniques. It is shown that the birefringence observed in por-Si is related to the anisotropic shapes of nanocrystals and nanopores, while the anisotropy (dichroism) of absorption by the local vibrational modes is determined predominantly by the microrelief of the surface of nanocrystals. It is demonstrated that silicon-hydrogen surfacemore » bonds in nanocrystals can be restored by means of selective hydrogen thermodesorption with the formation of a considerable number of H-terminated surface Si-Si dimers.« less

  5. [Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu].

    PubMed

    Zhang, Yun-lin; Qin, Bo-qiang; Ma, Rong-hua; Zhu, Guang-wei; Zhang, Lu; Chen, Wei-min

    2005-03-01

    Chromophoric dissolved organic matter (CDOM) represents one of the primary light-absorbing species in natural waters and plays a critical in determining the aquatic light field. CDOM shows a featureless absorption spectrum that increases exponentially with decreasing wavelength, which limits the penetration of biologically damaging UV-B radiation (wavelength from 280 to 320 nm) in the water column, thus shielding aquatic organisms. CDOM absorption measurements and their relationship with dissolved organic carbon (DOC), and fluorescence are presented in typical macrophyte and algae lake zone of Lake Taihu based on a field investigation in April in 2004 and lab analysis. Absorption spectral of CDOM was measured from 240 to 800 nm using a Shimadzu UV-2401PC UV-Vis recording spectrophotometer. Fluorescence with an excitation wavelength of 355 nm, an emission wavelength of 450 nm is measured using a Shimadzu 5301 spectrofluorometer. Concentrations of DOC ranged from 6.3 to 17.2 mg/L with an average of 9.08 +/- 2.66 mg/L. CDOM absorption coefficients at 280 nm and 355 nm were in the range of 11.2 - 32.6 m(-1) (average 17.46m(-1) +/- 5.75 m(-1) and 2.4 - 8.3 m(-1) (average 4.17m(-1) +/- 1.47 m(-l)), respectively. The values of the DOC-specific absorption coefficient at 355 nm ranged from 0.31 to 0.64 L x (mg x m)-1. Fluorescence emission at 450 nm, excited at 355 nm, had a mean value of 1.32nm(-1) +/- 0.84 nm(-1). A significant lake zone difference is found in DOC concentration, CDOM absorption coefficient and fluorescence, but not in DOC-specific absorption coefficient and spectral slope coefficient. This regional distribution pattern is in agreement with the location of sources of yellow substance: highest concentrations close to river mouth under the influence of river inflow, lower values in East Lake Taihu. The values of algae lake zone are obvious larger than those of macrophyte lake zone. In Meiliang Bay, CDOM absorption, DOC concentration and fluorescence tend to

  6. Molecular hydrogen absorption systems in Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Klimenko, V. V.; Ivanchik, A. V.; Varshalovich, D. A.; Petitjean, P.; Noterdaeme, P.

    2014-05-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS)-II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Lyα forest can effectively mimic H2 absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H2 absorption systems can be confidently identified. We find that H2 absorption systems with column densities log NH2 > 19 can be detected in only less than 3 per cent of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H2 absorption systems (NH2 > 19) in damped Lyα (DLA) systems to be about 7 per cent. We provide a sample of 23 confident H2 absorption system candidates that would be interesting to follow up with high-resolution spectrographs. There is a 1σ r - i colour excess and non-significant AV extinction excess in quasar spectra with an H2 candidate compared to standard DLA-bearing quasar spectra. The equivalent widths of C II, Si II and Al III (but not Fe II) absorptions associated with H2 candidate DLAs are larger compared to standard DLAs. This is probably related to a larger spread in velocity of the absorption lines in the H2-bearing sample.

  7. Training and business performance: the mediating role of absorptive capacities.

    PubMed

    Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito

    2016-01-01

    Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.

  8. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; hide

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  9. How to Modify (Implicit) Evaluations of Fear-Related Stimuli: Effects of Feature-Specific Attention Allocation

    PubMed Central

    Vanaelst, Jolien; Spruyt, Adriaan; De Houwer, Jan

    2016-01-01

    We demonstrate that feature-specific attention allocation influences the way in which repeated exposure modulates implicit and explicit evaluations toward fear-related stimuli. During an exposure procedure, participants were encouraged to assign selective attention either to the evaluative meaning (i.e., Evaluative Condition) or a non-evaluative, semantic feature (i.e., Semantic Condition) of fear-related stimuli. The influence of the exposure procedure was captured by means of a measure of implicit evaluation, explicit evaluative ratings, and a measure of automatic approach/avoidance tendencies. As predicted, the implicit measure of evaluation revealed a reduced expression of evaluations in the Semantic Condition as compared to the Evaluative Condition. Moreover, this effect generalized toward novel objects that were never presented during the exposure procedure. The explicit measure of evaluation mimicked this effect, although it failed to reach conventional levels of statistical significance. No effects were found in terms of automatic approach/avoidance tendencies. Potential implications for the treatment of anxiety disorders are discussed. PMID:27242626

  10. How to Modify (Implicit) Evaluations of Fear-Related Stimuli: Effects of Feature-Specific Attention Allocation.

    PubMed

    Vanaelst, Jolien; Spruyt, Adriaan; De Houwer, Jan

    2016-01-01

    We demonstrate that feature-specific attention allocation influences the way in which repeated exposure modulates implicit and explicit evaluations toward fear-related stimuli. During an exposure procedure, participants were encouraged to assign selective attention either to the evaluative meaning (i.e., Evaluative Condition) or a non-evaluative, semantic feature (i.e., Semantic Condition) of fear-related stimuli. The influence of the exposure procedure was captured by means of a measure of implicit evaluation, explicit evaluative ratings, and a measure of automatic approach/avoidance tendencies. As predicted, the implicit measure of evaluation revealed a reduced expression of evaluations in the Semantic Condition as compared to the Evaluative Condition. Moreover, this effect generalized toward novel objects that were never presented during the exposure procedure. The explicit measure of evaluation mimicked this effect, although it failed to reach conventional levels of statistical significance. No effects were found in terms of automatic approach/avoidance tendencies. Potential implications for the treatment of anxiety disorders are discussed.

  11. Sound absorption by subwavelength membrane structures: A geometric perspective

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Yong; Meng, Chong; Fu, Caixing; Mei, Jun; Yang, Zhiyu; Sheng, Ping

    2015-12-01

    Decorated membranes comprising a thin layer of elastic film with small rigid platelets fixed on top have been found to be efficient absorbers of low-frequency sound. In this work we consider the problem of sound absorption from a perspective aimed at deriving upper bounds under different scenarios, i.e., whether the sound is incident from one side only or from both sides, and whether there is a reflecting surface on the back side of the membrane. By considering the negligible thickness of the membrane, usually on the order of a fraction of one millimeter, we derive a relation showing that the sum of the incoming sound waves' (complex) pressure amplitudes, averaged over the area of the membrane, must be equal to that of the outgoing waves. By using this relation, and without going to any details of the wave solutions, it is shown that the maximum absorption achievable from one-sided incidence is 50%, while the maximum absorption with a back-reflecting surface can reach 100%. The latter was attained by the hybridized resonances. All the results are shown to be in excellent agreement with the experiments. This generalized perspective, when used together with the Green function's formalism, can be useful in gaining insights into the constraints on what are achievable in scatterings and absorption by thin film structures and delineating them.

  12. Exploring the origin of high optical absorption in conjugated polymers.

    PubMed

    Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-07-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  13. Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals

    NASA Astrophysics Data System (ADS)

    Ildefonse, P.; Cabaret, D.; Sainctavit, P.; Calas, G.; Flank, A.-M.; Lagarde, P.

    Aluminium K-edge X-ray absorption near edge spectra (XANES) of a suite of silicate and oxides minerals consist of electronic excitations occurring in the edge region, and multiple scattering resonances at higher energies. The main XANES feature for four-fold Al is at around 2 eV lower energy than the main XANES feature for six-fold Al. This provides a useful probe for coordination numbers in clay minerals, gels, glasses or material with unknown Al-coordination number. Six-fold aluminium yields a large variety of XANES features which can be correlated with octahedral point symmetry, number of aluminium sites and distribution of Al-O distances. These three parameters may act together, and the quantitative interpretation of XANES spectra is difficult. For a low point symmetry (1), variations are mainly related to the number of Al sites and distribution of Al-O distances: pyrophyllite, one Al site, is clearly distinguished from kaolinite and gibbsite presenting two Al sites. For a given number of Al-site (1), variations are controlled by changes in point symmetry, the number of XANES features being increased as point symmetry decreases. For a given point symmetry (1) and a given number of Al site (1), variations are related to second nearest neighbours (gibbsite versus kaolinite). The amplitude of the XANES feature at about 1566 eV is a useful probe for the assessment of AlIV/Altotal ratios in 2/1 phyllosilicates. Al-K XANES has been performed on synthetic Al-bearing goethites which cannot be studied by 27Al NMR. At low Al content, Al-K XANES is very different from that of α-AlOOH but at the highest level, XANES spectrum tends to that of diaspore. Al-K XAS is thus a promising tool for the structural study of poorly ordered materials such as clay minerals and natural alumino-silicate gels together with Al-subsituted Fe-oxyhydroxides.

  14. Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Chen, Jiajia; Zhou, Zigang; Yi, Zao; Ye, Xin

    2018-04-01

    In this paper, we propose a wavelength-tunable absorber consisting of electric split-ring resonators (eSRRs)-shaped graphene arrays deposited on a SiO2/Si substrate in the far-infrared and terahertz regions. The simulation results exhibit that two resonance modes are supported by the structure. In terms of the resonance at longer wavelength, the light absorption declines while the period a or length L increases. However, absorption contrarily improves with enlargement of incident angle under the transverse magnetic (TM) polarization. And in terms of resonance at shorter wavelengths, absorption enhances with increasing length L and incident angle θ. Generally, the light absorption enhances with Fermi level E F of graphene, accompanied by blue shift. The aforementioned results unquestionably provide a distinctive source of inspiration for how to design and manufacture devices related to absorption such as filters, spatial light modulator and sensors.

  15. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    PubMed

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  16. Alpha-lactalbumin and casein-glycomacropeptide do not affect iron absorption from formula in healthy term infants

    USDA-ARS?s Scientific Manuscript database

    Iron absorption from infant formula is relatively low. Alpha-lactalbumin and casein-glycomacropeptide have been suggested to enhance mineral absorption. We therefore assessed the effect of alpha-lactalbumin and casein-glycomacropeptide on iron absorption from infant formula in healthy term infants. ...

  17. Rocket-borne instrumentation using the resonant absorption technique to study the geocoronal and interplanetary helium emissions.

    PubMed

    Crifo, J F; Fahr, H J; Seidi, P; Wulf-Mathies, C

    1979-09-01

    A rocket payload able to perform a thorough and independent analysis of the He I 58.43340-nm geocoronal and interplanetary emissions is presented. It includes a sun-pointed resonant absorption spectrometer and a sky-scanning resonant absorption photometer. Both incorporate a similar helium resonance cell of original design featuring a most flexible pressure scanning capability and an accurate pressure measuring device, so that scanning by wavelength bandpasses from 20 down to 1 pm can be achieved. A description of the design and calibration of the instrument is given, followed by an indication of its successful operation in flight.

  18. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The

  19. Water absorption characteristics and structural properties of rice for sake brewing.

    PubMed

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  20. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds

  1. From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li

    2018-05-01

    Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.

  2. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as themore » state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to

  3. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  4. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions.

    PubMed

    Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S

    2012-06-18

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

  5. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  6. The Associated Absorption Features in Quasar Spectra of the Sloan Digital Sky Survey. I. Mg II Absorption Doublets

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Huang, Wei-Rong; Pang, Ting-Ting; Huang, Hong-Yan; Pan, Da-Sheng; Yao, Min; Nong, Wei-Jing; Lu, Mei-Mei

    2018-03-01

    Using the SDSS spectra of quasars included in the DR7Q or DR12Q catalogs, we search for Mg II λλ2796, 2803 narrow absorption doublets in the spectra data around Mg II λ2798 emission lines. We obtain 17,316 Mg II doublets, within the redshift range of 0.3299 ≤ z abs ≤ 2.5663. We find that a velocity offset of υ r < 6000 km s‑1 is a safe boundary to constrain the vast majority of associated Mg II systems, although we find some doublets at υ r > 6000 km s‑1. If associated Mg II absorbers are defined by υ r < 6000 km s‑1, ∼33.3% of the absorbers are supposed to be contaminants of intervening systems. Removing the 33.3% contaminants, ∼4.5% of the quasars present at least one associated Mg II system with {W}{{r}}λ 2796≥slant 0.2 \\mathringA . The fraction of associated Mg II systems with high-velocity outflows correlates with the average luminosities of their central quasars, indicating a relationship between outflows and the quasar feedback power. The υ r distribution of the outflow Mg II absorbers is peaked at 1023 km s‑1, which is smaller than the corresponding value of the outflow C IV absorbers. The redshift number density evolution of absorbers (dn/dz) limited by υ r > ‑3000 km s‑1 differs from that of absorbers constrained by υ r > 2000 km s‑1. Absorbers limited by υ r > 2000 km s‑1 and higher values exhibit profiles similar to dn/dz. In addition, the dn/dz is smaller when absorbers are constrained with larger υ r . The distributions of equivalent widths, and the ratio of {W}rλ 2796/{W}rλ 2803, are the same for associated and intervening systems, and independent of quasar luminosity.

  7. Biomass Burning Dominates Brown Carbon Absorption in the Rural Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Guo, H.; Weber, R. J. J.; Xu, L.; Ng, N. L.; Stone, E. A.; Edgerton, E. S.; Baumann, K.; Hu, W.; Palm, B. B.; Jimenez, J. L.; Fry, J.; Ayres, B. R.; Draper, D.; Allen, H.

    2014-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Brown carbon has a wavelength-dependent absorption that increases in the UV spectral region, and its major atmospheric sources include biomass burning, anthropogenic combustion of fossil fuels, and secondary organic aerosol. The rural Southeastern U.S. is influenced by high isoprene concentrations and varying concentrations of biomass burning aerosol, making it an ideal place to compare the relative contributions of these two sources to the brown carbon absorption budget. During the Southern Oxidant and Aerosol Study in summer 2013, we deployed a new field instrument that uses cavity enhanced spectroscopy with a broadband light source to measure aerosol optical extinction as a function of wavelength. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We combine these data with direct absorption measurements of water-soluble organic carbon obtained from a novel UV/VIS-WSOC instrument, and with aerosol composition measurements. We examine these data sets to determine: 1) the optical closure between measured dry aerosol extinction and values calculated from aerosol composition and size distribution; 2) the magnitude of brown and black carbon absorption; 3) the relative contributions of biomass burning, anthropogenic, and secondary organic aerosol contributions to brown carbon absorption in the Southeast U.S. during the summer. We conclude that biomass burning is a major contributor to optical absorption by organic aerosol in the rural southeastern U.S.

  8. Electromagnetically Induced Absorption (EIA) and a ``Twist'' on Nonlinear Magneto-optical Rotation (NMOR) with Cold Atoms

    NASA Astrophysics Data System (ADS)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia

    2015-05-01

    Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.

  9. In situ measurements of the optical absorption of dioxythiophene-based conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Schwendeman, I.; Ihas, B. C.; Clark, R. J.; Cornick, M.; Nikolou, M.; Argun, A.; Reynolds, J. R.; Tanner, D. B.

    2011-05-01

    Conjugated polymers can be reversibly doped by electrochemical means. This doping introduces new subband-gap optical absorption bands in the polymer while decreasing the band-gap absorption. To study this behavior, we have prepared an electrochemical cell allowing in situ measurements of the optical properties of the polymer. The cell consists of a thin polymer film deposited on gold-coated Mylar behind which is another polymer that serves as a counterelectrode. An infrared transparent window protects the upper polymer from ambient air. By adding a gel electrolyte and making electrical connections to the polymer-on-gold films, one may study electrochromism in a wide spectral range. As the cell voltage (the potential difference between the two electrodes) changes, the doping level of the conjugated polymer films is changed reversibly. Our experiments address electrochromism in poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-dimethylpropylenedioxythiophene) (PProDOT-Me2). This closed electrochemical cell allows the study of the doping induced subband-gap features (polaronic and bipolaronic modes) in these easily oxidized and highly redox switchable polymers. We also study the changes in cell spectra as a function of polymer thickness and investigate strategies to obtain cleaner spectra, minimizing the contributions of water and gel electrolyte features.

  10. Optimization of effective absorption enhancement of paired-strips gold nanoantennas arrays in organic thin-films

    NASA Astrophysics Data System (ADS)

    Yang, Zih-Ying; Su, Chen-Wei; Chen, Kuo-Ping

    2018-01-01

    This study sought to optimize the dimensional characteristics of paired-strips gold nanoantennas embedded in a P3HT: PCBM thin-film by taking into account the tradeoff between the size of the nanostructures and absorber layer as well as the gaps between nanoparticles, to maximize the effective absorption enhancement. The average enhancement behavior within the working region was discussed using integral analysis, which is important for overall enhancement. The discussion would focus on comparing the bands' features of paired-strips nanoantennas embedded in a dielectric thin-film, and in air. By the average absorption 3D slices plots, in which the dimension width, height, and gap are changed with a fixed wavelength; the optimized dimension of paired-strips nanoantennas could be realized. Fixing the period (400 nm) of paired-strips nanoantennas embedded in P3HT:PCBM thin-films (120 nm in thickness) enhanced absorption by 9.8 times.

  11. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  12. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  13. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  14. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  15. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  16. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  17. TIME-VARIABLE ALUMINUM ABSORPTION IN THE POLAR AR URSAE MAJORIS, AND AN UPDATED ESTIMATE FOR THE MASS OF THE WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yu; Justham, Stephen; Liu, JiFeng

    2016-09-01

    We present spectra of the extreme polar AR Ursae Majoris (AR UMa), which display a clear Al i absorption doublet, alongside spectra taken less than a year earlier in which that feature is not present. Re-examination of earlier SDSS spectra indicates that the Al i absorption doublet was also present ≈8 years before our first non-detection. We conclude that this absorbing material is unlikely to be on the surface of either the white dwarf (WD) or the donor star. We suggest that this Al i absorption feature arises in circumstellar material, perhaps produced by the evaporation of asteroids as theymore » approach the hot WD. The presence of any remaining reservoir of rocky material in AR UMa might help to constrain the prior evolution of this unusual binary system. We also apply spectral decomposition to find the stellar parameters of the M dwarf companion, and attempt to dynamically measure the mass of the WD in AR UMa by considering both the radial velocity curves of the H {sub β} emission line and the Na i absorption line. Thereby we infer a mass range for the WD in AR UMa of 0.91 M {sub ⊙} < M {sub WD} < 1.24 M {sub ⊙}.« less

  18. Time-variable Aluminum Absorption in the Polar AR Ursae Majoris, and an Updated Estimate for the Mass of the White Dwarf

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Justham, Stephen; Liu, JiFeng; Guo, JinCheng; Gao, Qing; Gong, Hang

    2016-09-01

    We present spectra of the extreme polar AR Ursae Majoris (AR UMa), which display a clear Al I absorption doublet, alongside spectra taken less than a year earlier in which that feature is not present. Re-examination of earlier SDSS spectra indicates that the Al I absorption doublet was also present ≈8 years before our first non-detection. We conclude that this absorbing material is unlikely to be on the surface of either the white dwarf (WD) or the donor star. We suggest that this Al I absorption feature arises in circumstellar material, perhaps produced by the evaporation of asteroids as they approach the hot WD. The presence of any remaining reservoir of rocky material in AR UMa might help to constrain the prior evolution of this unusual binary system. We also apply spectral decomposition to find the stellar parameters of the M dwarf companion, and attempt to dynamically measure the mass of the WD in AR UMa by considering both the radial velocity curves of the H β emission line and the Na I absorption line. Thereby we infer a mass range for the WD in AR UMa of 0.91 M ⊙ < M WD < 1.24 M ⊙.

  19. Investigation into the absorptivity change in metals with increased laser power

    NASA Astrophysics Data System (ADS)

    Blidegn, M. Sc. K.; Olsen, Flemming O.

    1997-04-01

    At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.

  20. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  1. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  2. Iodine Absorption Cells Purity Testing.

    PubMed

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-06

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

  3. Iodine Absorption Cells Purity Testing

    PubMed Central

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-01

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834

  4. Coding of visual object features and feature conjunctions in the human brain.

    PubMed

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  5. Relations between Automatically Extracted Motion Features and the Quality of Mother-Infant Interactions at 4 and 13 Months

    PubMed Central

    Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S.; Køppe, Simo; Cohen, David; Chetouani, Mohamed

    2017-01-01

    Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features. PMID:29326626

  6. Relations between Automatically Extracted Motion Features and the Quality of Mother-Infant Interactions at 4 and 13 Months.

    PubMed

    Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S; Køppe, Simo; Cohen, David; Chetouani, Mohamed

    2017-01-01

    Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features.

  7. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  8. Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide

    PubMed Central

    Cui, Yudong; Lu, Feifei; Liu, Xueming

    2017-01-01

    Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313

  9. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    NASA Astrophysics Data System (ADS)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  10. Using a Weak CN Spectral Feature as a Marker for Massive AGB Stars in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Hays, Jon; PHAT Collaboration; SPLASH Collaboration

    2017-01-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) survey has produced six-filter photometry at near-ultraviolet, optical and nearly infrared wavelengths (F275W, F336W, F475W, F814W, F110W and F160W) for over 100 million stars in the disk of the of the Andromeda galaxy (M31). As part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey, medium resolution (R ~ 2000) spectra covering the wavelength range 4500-9500A were obtained for over 5000 relatively bright stars from the PHAT source catalog using the Keck II 10-meter telescope and DEIMOS spectrograph. While searching for carbon stars in the spectroscopic data set, we discovered a rare population of stars that show a weak CN spectral absorption feature at ~7900A (much weaker than the CN feature in typical carbon stars) along with other spectral absorption features like TiO and the Ca triplet that are generally not present/visible in carbon star spectra but that are typical for normal stars with oxygen rich atmospheres. These 150 or so "weak CN" stars appear to be fairly localized in six-filter space (i.e., in various color-color and color-magnitude diagrams) but are generally offset from carbon stars. Comparison to PARSEC model stellar tracks indicates that these weak CN stars are probably massive (5-10 Msun) asymptotic giant branch (AGB) stars in a relatively short-lived core helium burning phase of their evolution. Careful spectroscopic analysis indicates that the details of the CN spectral feature are about 3-4x weaker in weak CN stars than in carbon stars. The kinematics of weak CN stars are similar to those of other young stars (e.g., massive main sequence stars) and reflect the well ordered rotation of M31's disk.This research project is funded in part by NASA/STScI and the National Science Foundation. Much of this work was carried out by high school students and undergraduates under the auspices of the Science Internship Program and LAMAT program at the University of

  11. Internal versus external features in triggering the brain waveforms for conjunction and feature faces in recognition.

    PubMed

    Nie, Aiqing; Jiang, Jingguo; Fu, Qiao

    2014-08-20

    Previous research has found that conjunction faces (whose internal features, e.g. eyes, nose, and mouth, and external features, e.g. hairstyle and ears, are from separate studied faces) and feature faces (partial features of these are studied) can produce higher false alarms than both old and new faces (i.e. those that are exactly the same as the studied faces and those that have not been previously presented) in recognition. The event-related potentials (ERPs) that relate to conjunction and feature faces at recognition, however, have not been described as yet; in addition, the contributions of different facial features toward ERPs have not been differentiated. To address these issues, the present study compared the ERPs elicited by old faces, conjunction faces (the internal and the external features were from two studied faces), old internal feature faces (whose internal features were studied), and old external feature faces (whose external features were studied) with those of new faces separately. The results showed that old faces not only elicited an early familiarity-related FN400, but a more anterior distributed late old/new effect that reflected recollection. Conjunction faces evoked similar late brain waveforms as old internal feature faces, but not to old external feature faces. These results suggest that, at recognition, old faces hold higher familiarity than compound faces in the profiles of ERPs and internal facial features are more crucial than external ones in triggering the brain waveforms that are characterized as reflecting the result of familiarity.

  12. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  13. Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna D.; Lucht, Robert P.

    2017-03-01

    We discuss the results of high-resolution, sub-Doppler two-photon-absorption laser-induced fluorescence (TPALIF) spectroscopy of nitric oxide at low pressure and room temperature. The measurements were performed using the single-longitudinal mode output of a diode-laser-seeded optical parametric generator (OPG) system with a measured frequency bandwidth of 220 MHz. The measurements were performed using a counter-propagating pump beam geometry, resulting in sub-Doppler TPALIF spectra of NO for various rotational transitions in the (0,0) vibrational band of the A2Σ+ - X2Π electronic transition. The experimental results are compared with the results of a perturbative treatment of the rotational line strengths for the 20 different rotational branches of the X2Π(v″ = 0) → A2Σ+(v' = 0) two-photon absorption band. In the derivation of the expressions for the two-photon transition absorption strength, the closure relation is used for rotational states in the intermediate levels of the two-photon transition in analogy with the Placzek treatment of Raman transitions. The theoretical treatment of the effect of angular momentum coupling on the two-photon rotational line strengths features the use of irreducible spherical tensors and 3j symbols. The final results are expressed in terms of the Hund's case (a) coupling coefficients aJ and bJ for the X2Π(v″ = 0) rotational level wavefunctions, which are intermediate between Hund's case (a) and case (b). Considerable physical insight is provided by this final form of the equations for the rotational line strengths. Corrections to the two-photon absorption rotational line strength for higher order effects such as centrifugal stretching can be included in a straightforward fashion in the analysis by incorporating higher order terms in these coupling coefficients aJ and bJ, although these corrections are essentially negligible for J < 50. The theoretical calculations of relative line intensities are in good agreement both

  14. Molecular basis of structural make-up of feeds in relation to nutrient absorption in ruminants, revealed with advanced molecular spectroscopy: A review on techniques and models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Md. Mostafizar; Yu, Peiqiang

    Progress in ruminant feed research is no more feasible only based on wet chemical analysis, which is merely able to provide information on chemical composition of feeds regardless of their digestive features and nutritive value in ruminants. Studying internal structural make-up of functional groups/feed nutrients is often vital for understanding the digestive behaviors and nutritive values of feeds in ruminant because the intrinsic structure of feed nutrients is more related to its overall absorption. In this article, the detail information on the recent developments in molecular spectroscopic techniques to reveal microstructural information of feed nutrients and the use of nutritionmore » models in regards to ruminant feed research was reviewed. The emphasis of this review was on (1) the technological progress in the use of molecular spectroscopic techniques in ruminant feed research; (2) revealing spectral analysis of functional groups of biomolecules/feed nutrients; (3) the use of advanced nutrition models for better prediction of nutrient availability in ruminant systems; and (4) the application of these molecular techniques and combination of nutrient models in cereals, co-products and pulse crop research. The information described in this article will promote better insight in the progress of research on molecular structural make-up of feed nutrients in ruminants.« less

  15. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  16. A Statistical Study of the Southern Fermi Bubble in UV Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Karim, Md. Tanveer; Fox, Andrew; Jenkins, Edward; Bordoloi, Rongmon; Wakker, Bart; Savage, Blair D.; Lockman, Felix; Crawford, Steve; Bland-Hawthorn, Joss; Jorgenson, Regina A.

    2018-01-01

    The Fermi Bubbles are two giant lobes of plasma situated at the center of the Milky Way, extending 55° above and below the Galactic Midplane. Although the Bubbles have been widely studied in multiple wavelengths, few studies have been done in UV absorption. Here we present a statistical study of the Southern Fermi Bubble using 17 QSO sightlines — 6 inside the Bubble, 11 outside — using UV absorption spectra from the Hubble Space Telescope Cosmic Origins Spectrograph (HST/COS). We searched for high-velocity clouds (HVCs) in 11 metal lines from ions of Aluminium, Carbon and Silicon. We detected HVCs in 83% of the sightlines inside the Bubble and 64% outside the Bubble, showing an enhancement in the covering fraction of HVCs in the Southern Bubble region. We also observed a decrease in vLSR of the HVCs as a function of the galactic latitude, consistent with a scenario where the identified HVCs trace the Galactic nuclear outflow, as sightlines closer to the central engine are expected to show a higher velocity. Combined with previous studies, our analysis indicates that the Southern Fermi Bubble is a dynamic environment giving rise to complex absorption features.

  17. Spatial analysis of geologic and hydrologic features relating to sinkhole occurrence in Jefferson County, West Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Doctor, Katarina Z.

    2012-01-01

    In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.

  18. All-metal meta-surfaces for narrowband light absorption and high performance sensing

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang

    2016-11-01

    We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849  ×  10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.

  19. JCE Feature Columns

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  20. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    NASA Astrophysics Data System (ADS)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.