Sample records for absorption fourier transform

  1. The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Orphal, J.; Fellows, C. E.; Flaud, P.-M.

    2003-02-01

    The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.

  2. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  3. An Introduction to Fast Fourier Transforms through the Study of Oscillating Reactions.

    ERIC Educational Resources Information Center

    Eastman, M. P.; And Others

    1986-01-01

    Discusses an experiment designed to introduce students to the basic principles of the fast Fourier transform and Fourier smoothing through transformation of time-dependent optical absorption data from an oscillating reaction. Uses the Belousov-Zhabotinskii reaction. Describes the experimental setup and data analysis techniques.

  4. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  5. Fractional finite Fourier transform.

    PubMed

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  6. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  7. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  8. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  9. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  10. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  11. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  12. The fractional Fourier transform and applications

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  13. Hypercomplex Fourier transforms of color images.

    PubMed

    Ell, Todd A; Sangwine, Stephen J

    2007-01-01

    Fourier transforms are a fundamental tool in signal and image processing, yet, until recently, there was no definition of a Fourier transform applicable to color images in a holistic manner. In this paper, hypercomplex numbers, specifically quaternions, are used to define a Fourier transform applicable to color images. The properties of the transform are developed, and it is shown that the transform may be computed using two standard complex fast Fourier transforms. The resulting spectrum is explained in terms of familiar phase and modulus concepts, and a new concept of hypercomplex axis. A method for visualizing the spectrum using color graphics is also presented. Finally, a convolution operational formula in the spectral domain is discussed.

  14. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  15. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  16. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  17. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  18. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  19. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  20. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  1. An optical Fourier transform coprocessor with direct phase determination.

    PubMed

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  2. Implementation of quantum and classical discrete fractional Fourier transforms.

    PubMed

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  3. Implementation of quantum and classical discrete fractional Fourier transforms

    PubMed Central

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  4. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2

    NASA Astrophysics Data System (ADS)

    de Lange, Arno; Dickenson, Gareth D.; Salumbides, Edcel J.; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-01

    An extensive survey of the D2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90 000-119 000 cm-1 covers the full depth of the potential wells of the B sideset{^1}{+u}{Σ}, B^' } sideset{^1}{+u}{Σ}, and C 1Πu electronic states up to the D(1s) + D(2ℓ) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm-1. Extended calibration methods are employed to extract line positions of D2 lines at absolute accuracies of 0.03 cm-1. The D 1Πu and B^' ' } sideset{^1}{+u}{Σ} electronic states correlate with the D(1s) + D(3ℓ) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D2. The observations are compared with previous studies, both experimental and theoretical.

  5. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  6. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    PubMed

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  7. Gas Measurement Using Static Fourier Transform Infrared Spectrometers

    PubMed Central

    Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.

    2017-01-01

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193

  8. Structure of Co-Doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and Fourier transform infrared spectroscopy.

    PubMed

    Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao

    2011-02-10

    The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.

  9. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    PubMed

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-07

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.

  10. The τq-Fourier transform: Covariance and uniqueness

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikolaos

    2018-05-01

    We propose an alternative definition for a Tsallis entropy composition-inspired Fourier transform, which we call “τq-Fourier transform”. We comment about the underlying “covariance” on the set of algebraic fields that motivates its introduction. We see that the definition of the τq-Fourier transform is automatically invertible in the proper context. Based on recent results in Fourier analysis, it turns that the τq-Fourier transform is essentially unique under the assumption of the exchange of the point-wise product of functions with their convolution.

  11. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  12. Fourier Transform Infrared Absorption Spectroscopy of Gas-Phase and Surface Reaction Products during Si Etching in Inductively Coupled Cl2 Plasmas

    NASA Astrophysics Data System (ADS)

    Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.

  13. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  14. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn; Liu, Xing; Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fouriermore » transforms are the beams themselves.« less

  15. Fourier Transforms for Chemists Part III. Fourier Transforms in Data Treatment.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    Discusses the factors affecting the behavior of a spectral function. Lists some important properties of Fourier transform (FT) pairs that are helpful when using the FT. Notes that these properties of the mathematical formulation have identical counterparts in the physical behavior of FT systems. (TW)

  16. A transform from absorption to Raman excitation profile. A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Y.; Yeo, Robert C. K.

    1994-04-01

    An alternative time-frame approach, which is canonically conjugate to the energy-frame approach, for implementing the transform relations for calculating Raman excitation profiles directly from the optical absorption spectrum is presented. Practical and efficient fast Fourier transformation in the time frame replaces the widely used Chan and Page algorithm for evaluating the Hilbert transform in the energy frame. The time-frame approach is applied to: (a) a two-mode model which illustrates the missing mode effect in both absorption and Raman excitation profiles, (b) carotene, in which both the absorption spectrum and the Raman excitation profile show vibrational structure and (c) hexamethylbenzene: TCNE electron donor—acceptor complex where the same spectra are structureless and the Raman excitation profile for the 168 cm -1 mode poses a problem for the energy-frame approach. A similar time-frame approach can be used for the inverse transform from the Raman excitation profile to the optical absorption spectrum.

  17. Rainbow Fourier Transform

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  18. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    PubMed

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and

  19. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  20. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  1. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  2. [Identification of different Citrus sinensis (L.) Osbeck trees varieties using Fourier transform infrared spectroscopy and hierarchical cluster analysis].

    PubMed

    Yi, Shi-Lai; Deng, Lie; He, Shao-Lan; Shi, You-Ming; Zheng, Yong-Qiang; Lu, Qiang; Xie, Rang-Jin; Wei, Xian-Guoi; Li, Song-Wei; Jian, Shui-Xian

    2012-11-01

    Researched on diversity of the spring leaf samples of seven different Citrus sinensis (L.) Osbeck varieties by Fourier transform infrared (FTIR) spectroscopy technology, the results showed that the Fourier transform infrared spectra of seven varieties leaves was composited by the absorption band of cellulose and polysaccharide mainly, the wave number of characteristics absorption peaks were similar at their FTIR spectra. However, there were some differences in shape of peaks and relatively absorption intensity. The conspicuous difference was presented at the region between 1 500 and 700 cm(-1) by second derivative spectra. Through the hierarchical cluster analysis (HCA) of second derivative spectra between 1 500 and 700 cm(-1), the results showed that the clustering of the different varieties of Citrus sinensis (L.) Osbeck varieties was classification according to genetic relationship. The results showed that FTIR spectroscopy combined with hierarchical cluster analysis could be used to identify and classify of citrus varieties rapidly, it was an extension method to study on early leaves of varieties orange seedlings.

  3. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  4. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  5. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

  6. A discrete Fourier transform for virtual memory machines

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  7. The application and improvement of Fourier transform spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  8. A Comparison of Optical versus Hardware Fourier Transforms.

    DTIC Science & Technology

    1983-10-31

    AD- R136 223 A COMPRISON’OF OPTICAL ERSUS HARDWARE FOURIER i/i.TRANSFORMS(U) VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG DEPT OF PHYSICS S P...transform and its inverse filtered Fourier transform obtained with the Digital Image Processing (DIP) hardware system located at the School of Aerospace...transparencies, and provided to us by Dr. Ralph G. Allen, Director of the Laser Effects Branch (Division of Radiation Sciences). The DIP system consisted of: an

  9. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  10. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  11. Far-infrared Fourier Transform Spectroscopy Measurements of Mn12-acetate.

    NASA Astrophysics Data System (ADS)

    Tu, Jiufeng; Suzuki, Yoko; Mertes, K. M.; Sarachik, M. P.; Agladze, N. I.; Sievers, A. J.; Rumberger, E. M.; Hendrickson, D. N.; Christou, G.

    2004-03-01

    The transmission spectra of both powder samples and assemblies of single crystals of Mn_12-acetate were measured in the far infrared region (2.0 - 20 cm-1) using a Fourier transform technique. The energies of the observed aborption lines agree with those obtained by Mukhin et al. [1] using the backwards wave oscillator technique. The temperature dependence of the aborption lines, as well as the presence of additional absorption lines, will be discussed. [1] A. A. Mukhin, V. D. Travkin, A. K. Zvesdin, A. Caneschi, D. Gatteschi and R. Sessoli, Physica B 284-288 (2000) 1221-1222

  12. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    ERIC Educational Resources Information Center

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  13. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  14. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  15. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-01

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0 mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of Osbnd H in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.

  16. A method of power analysis based on piecewise discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Xin, Miaomiao; Zhang, Yanchi; Xie, Da

    2018-04-01

    The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.

  17. Determination of Fourier Transforms on an Instructional Analog Computer

    ERIC Educational Resources Information Center

    Anderson, Owen T.; Greenwood, Stephen R.

    1974-01-01

    An analog computer program to find and display the Fourier transform of some real, even functions is described. Oscilloscope traces are shown for Fourier transforms of a rectangular pulse, a Gaussian, a cosine wave, and a delayed narrow pulse. Instructional uses of the program are discussed briefly. (DT)

  18. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions.

    PubMed

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Michaelian, Kirk H

    2017-04-01

    The determination of small absorption coefficients of trace gases in the atmosphere constitutes a challenge for analytical air contaminant measurements, especially in the presence of strongly absorbing backgrounds. A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) method was developed to suppress the coherent external noise and spurious photoacoustic (PA) signals caused by strongly absorbing backgrounds. The infrared absorption spectra of acetylene (C2H2) and local air were used to verify the performance of the step-scan DFTIR-PAS method. A linear amplitude response to C2H2 concentrations from 100 to 5000 ppmv was observed, leading to a theoretical detection limit of 5 ppmv. The differential mode was capable of eliminating the coherent noise and dominant background gas signals, thereby revealing the presence of the otherwise hidden C2H2 weak absorption. Thus, the step-scan DFTIR-PAS modality was demonstrated to be an effective approach for monitoring weakly absorbing gases with absorption bands overlapped by strongly absorbing background species.

  19. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  20. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    NASA Technical Reports Server (NTRS)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  1. A Short-Segment Fourier Transform Methodology

    DTIC Science & Technology

    2009-03-01

    defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.

  2. Quantification of DNA in simple eukaryotic cells using Fourier transform infrared spectroscopy.

    PubMed

    Whelan, Donna R; Bambery, Keith R; Puskar, Ljiljana; McNaughton, Don; Wood, Bayden R

    2013-10-01

    A technique capable of detecting and monitoring nucleic acid concentration offers potential in diagnosing cancer and further developing an understanding of the biochemistry of disease. The application of Fourier transform infrared (FTIR) spectroscopy has previously been hindered by the supposed non-Beer-Lambert absorption behavior of DNA in intact cells making elucidation of the DNA bands difficult. We use known composition DNA/hemoglobin standards to successfully estimate the DNA content in avian erythrocyte nuclei (44.2%) and intact erythrocytes (12.8%). Furthermore we demonstrate that the absorption of cellular DNA does follow the Beer-Lambert Law and highlights the role of conformation and hydration in FTIR spectroscopy of biological samples. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. VUV Fourier-Transform absorption study of the npπ1 Πu-, v, N ←X1 Σg+, v″ = 0,N″ transitions in D2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; Ubachs, W.; de Oliveira, N.; Joyeux, D.; Nahon, L.

    2015-09-01

    The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q (N″) (N -N″ = 0) absorption transitions of the D2 molecule. Some 212 Q-lines were assigned and their transition frequencies determined up to excitation energies of 137 000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations which also provide predictions of the autoionization widths of the upper levels.

  4. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  5. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  6. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  7. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  8. Solar radiometry at millimeter wavelengths. [Fast Fourier Transformation solutions

    NASA Technical Reports Server (NTRS)

    Henze, W.

    1974-01-01

    In the area of resolution enhancement, the use of Fast Fourier Transform programs was investigated for possible application to millimeter wavelength maps of the sun. A difficulty arises with the La Posta maps in that they are limited to 35 arc-minutes square while the smeared out solar image is larger than that. A list of possible cometary emission lines near 13 millimeters is presented. Although preparation of the list was inspired by the appearance of Comet Kohoutek, the results are applicable to any future comet. The brightness temperature of the sun at 8.6 millimeters was measured using the moon as a calibration source. The result does not confirm a deep absorption feature as apparently observed by earlier workers.

  9. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  10. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  11. Multichannel Dynamic Fourier-Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  12. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.

    PubMed

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-05

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of OH in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The Fourier transforms for the spatially homogeneous Boltzmann equation and Landau equation

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Liu, Fang

    2018-03-01

    In this paper, we study the Fourier transforms for two equations arising in the kinetic theory. The first equation is the spatially homogeneous Boltzmann equation. The Fourier transform of the spatially homogeneous Boltzmann equation has been first addressed by Bobylev (Sov Sci Rev C Math Phys 7:111-233, 1988) in the Maxwellian case. Alexandre et al. (Arch Ration Mech Anal 152(4):327-355, 2000) investigated the Fourier transform of the gain operator for the Boltzmann operator in the cut-off case. Recently, the Fourier transform of the Boltzmann equation is extended to hard or soft potential with cut-off by Kirsch and Rjasanow (J Stat Phys 129:483-492, 2007). We shall first establish the relation between the results in Alexandre et al. (2000) and Kirsch and Rjasanow (2007) for the Fourier transform of the Boltzmann operator in the cut-off case. Then we give the Fourier transform of the spatially homogeneous Boltzmann equation in the non cut-off case. It is shown that our results cover previous works (Bobylev 1988; Kirsch and Rjasanow 2007). The second equation is the spatially homogeneous Landau equation, which can be obtained as a limit of the Boltzmann equation when grazing collisions prevail. Following the method in Kirsch and Rjasanow (2007), we can also derive the Fourier transform for Landau equation.

  14. Fourier transform-wavefront reconstruction for the pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Correia, Carlos; Esposito, Simone

    The application of Fourier-transform reconstruction techniques to the pyramid wavefront sensor has been investigated. A preliminary study based on end-to-end simulations of an adaptive optics system with ≈40x40 subapertures and actuators shows that the performance of the Fourier-transform reconstructor (FTR) is of the same order of magnitude than the one obtained with a conventional matrix-vector multiply (MVM) method.

  15. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  16. Fourier-transform and global contrast interferometer alignment methods

    DOEpatents

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  17. Rapid update of discrete Fourier transform for real-time signal processing

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.; Kakad, Yogendra P.

    2001-10-01

    In many identification and target recognition applications, the incoming signal will have properties that render it amenable to analysis or processing in the Fourier domain. In such applications, however, it is usually essential that the identification or target recognition be performed in real time. An important constraint upon real-time processing in the Fourier domain is the time taken to perform the Discrete Fourier Transform (DFT). Ideally, a new Fourier transform should be obtained after the arrival of every new data point. However, the Fast Fourier Transform (FFT) algorithm requires on the order of N log2 N operations, where N is the length of the transform, and this usually makes calculation of the transform for every new data point computationally prohibitive. In this paper, we develop an algorithm to update the existing DFT to represent the new data series that results when a new signal point is received. Updating the DFT in this way uses less computational order by a factor of log2 N. The algorithm can be modified to work in the presence of data window functions. This is a considerable advantage, because windowing is often necessary to reduce edge effects that occur because the implicit periodicity of the Fourier transform is not exhibited by the real-world signal. Versions are developed in this paper for use with the boxcar window, the split triangular, Hanning, Hamming, and Blackman windows. Generalization of these results to 2D is also presented.

  18. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  19. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  20. Fast Fourier Transform Spectral Analysis Program

    NASA Technical Reports Server (NTRS)

    Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

    1969-01-01

    Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

  1. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    NASA Astrophysics Data System (ADS)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  2. Application of Fourier transform infrared spectroscopy to silica diagenesis: The opal-A to opal-CT transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.B.; Freund, H.; Huang, W.L.

    An important goal in silica diagenesis research is to understand the kinetics of opal transformation from noncrystalline opal-A to the disordered silica polymorph opal-CT. Because the conventional technique for monitoring the transformation, powder X-ray diffraction (XRD), is applicable only to phases with long-range order, the authors used Fourier transform infrared spectroscopy (FTIR) to monitor the transformation. They applied this technique, combined with XRD and TEM, to experimental run products and natural opals from the Monterey Formation and from siliceous deposits in the western Pacific Ocean. Using a ratio of two infrared absorption intensities ({omega} = I{sub 472 cm{sup {minus}1}}/I{sub 500more » cm{sup {minus}1}}), the relative proportions of opal-A and opal-CT can be determined. The progress of the transformation is marked by changes in slope of {omega} vs. depth or time when a sufficient stratigraphic profile is available. There are three stages in the opal-A to opal-CT reaction: (1) opal-A dissolution; (2) opal-CT precipitation, whose end point is marked by completion of opal-A dissolution; and (3) opal-CT ordering, during which tridymite stacking is eliminated in favor of crystobalite stacking.« less

  3. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  4. Mathematical Investigation of Gamma Ray and Neutron Absorption Grid Patterns for Homeland Defense Related Fourier Imaging Systems

    NASA Technical Reports Server (NTRS)

    Boccio, Dona

    2003-01-01

    Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.

  5. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  6. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    PubMed

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  8. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2009-09-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  9. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2010-05-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  10. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  11. Fourier-transform optical microsystems

    NASA Technical Reports Server (NTRS)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  12. Zero-crossing sampling of Fourier-transform interferograms and spectrum reconstruction using the real-zero interpolation method.

    PubMed

    Minami, K; Kawata, S; Minami, S

    1992-10-10

    The real-zero interpolation method is applied to a Fourier-transformed infrared (FT-IR) interferogram. With this method an interferogram is reconstructed from its zero-crossing information only, without the use of a long-word analog-to-digital converter. We installed a phase-locked loop circuit into an FT-IR spectrometer for oversampling the interferogram. Infrared absorption spectra of polystyrene and Mylar films were measured as binary interferograms by the FT-IR spectrometer, which was equipped with the developed circuits, and their Fourier spectra were successfully reconstructed. The relationship of the oversampling ratio to the dynamic range of the reconstructed interferogram was evaluated through computer simulations. We also discuss the problems of this method for practical applications.

  13. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  14. The short time Fourier transform and local signals

    NASA Astrophysics Data System (ADS)

    Okumura, Shuhei

    In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.

  15. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  16. Study on sampling of continuous linear system based on generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  17. Extracting Micro-Doppler Radar Signatures from Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis

    DTIC Science & Technology

    2014-10-16

    Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency

  18. Analysis of Fusarium mycotoxins by gas chromatography--Fourier transform infrared spectroscopy.

    PubMed

    Young, J C; Games, D E

    1994-03-11

    The Fourier transform infrared (FTIR) spectra of selected Fusarium mycotoxins of various structure types were determined. Absorptions were observed for the following functionalities: hydroxyl at 3625-65 cm-1 and 3482 cm-1, the latter being associated with a 7 alpha-hydroxyl adjacent to an 8-carbonyl in keto trichothecenes; carbonyl at 1760-6 cm-1 for 5-membered rings and at 1695-8 cm-1 for those conjugated to a single C = C in a six-membered ring; acetate carbonyl at 1765 cm-1 and acetate C-O at 1220-9 cm-1; and C = C at 1680 cm-1. Gas chromatography combined with FTIR and mass spectrometry was applied to the identification of some mycotoxins in a F. roseum liquid culture extract.

  19. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  20. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  1. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  2. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics.

    PubMed

    Cao, Zhen; Wang, Zhenjie; Shang, Zhonglin; Zhao, Jiancheng

    2017-01-01

    Fourier-transform infrared spectroscopy (FTIR) with the attenuated total reflectance technique was used to identify Rhodobryum roseum from its four adulterants. The FTIR spectra of six samples in the range from 4000 cm-1 to 600 cm-1 were obtained. The second-derivative transformation test was used to identify the small and nearby absorption peaks. A cluster analysis was performed to classify the spectra in a dendrogram based on the spectral similarity. Principal component analysis (PCA) was used to classify the species of six moss samples. A cluster analysis with PCA was used to identify different genera. However, some species of the same genus exhibited highly similar chemical components and FTIR spectra. Fourier self-deconvolution and discrete wavelet transform (DWT) were used to enhance the differences among the species with similar chemical components and FTIR spectra. Three scales were selected as the feature-extracting space in the DWT domain. The results show that FTIR spectroscopy with chemometrics is suitable for identifying Rhodobryum roseum and its adulterants.

  3. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  4. Abel inversion using fast Fourier transforms.

    PubMed

    Kalal, M; Nugent, K A

    1988-05-15

    A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

  5. [Application of Fourier transform infrared spectroscopy in identification of wine spoilage].

    PubMed

    Zhao, Xian-De; Dong, Da-Ming; Zheng, Wen-Gang; Jiao, Lei-Zi; Lang, Yun

    2014-10-01

    In the present work, fresh and spoiled wine samples from three wines produced by different companies were studied u- sing Fourier transform infrared (FTIR) spectroscopy. We analyzed the physicochemical property change in the process of spoil- age, and then, gave out the attribution of some main FTIR absorption peaks. A novel determination method was explored based on the comparisons of some absorbance ratios at different wavebands although the absorbance ratios in this method were relative. Through the compare of the wine spectra before and after spoiled, the authors found that they were informative at the bands of 3,020~2,790, 1,760~1,620 and 1,550~800 cm(-1). In order to find the relation between these informative spectral bands and the wine deterioration and achieve the discriminant analysis, chemometrics methods were introduced. Principal compounds analysis (PCA) and soft independent modeling of class analogy (SIMCA) were used for classifying different-quality wines. And partial least squares discriminant analysis (PLS-DA) was applied to identify spoiled wines and good wines. Results showed that FTIR technique combined with chemometrics methods could effectively distinguish spoiled wines from fresh samples. The effect of classification at the wave band of 1 550-800 cm(-1) was the best. The recognition rate of SIMCA and PLSDA were respectively 94% and 100%. This study demonstrates that Fourier transform infrared spectroscopy is an effective tool for monitoring red wine's spoilage and provides theoretical support for developing early-warning equipments.

  6. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications

    PubMed Central

    Meier, D.C.; Benkstein, K.D.; Hurst, W.S.; Chu, P.M.

    2016-01-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, −5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals. PMID:28090126

  7. Implementation of the semiclassical quantum Fourier transform in a scalable system.

    PubMed

    Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J

    2005-05-13

    We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

  8. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  9. Application of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.; Truman, W. M.

    1975-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.

  10. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  11. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  12. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  13. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  14. The discrete Fourier transform algorithm for determining decay constants—Implementation using a field programmable gate array

    NASA Astrophysics Data System (ADS)

    Bostrom, G.; Atkinson, D.; Rice, A.

    2015-04-01

    Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.

  15. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    PubMed

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  17. Discrete Fourier transforms of nonuniformly spaced data

    NASA Technical Reports Server (NTRS)

    Swan, P. R.

    1982-01-01

    Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.

  18. Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1978-01-01

    A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.

  19. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  20. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  1. Observation of CO 2 in Fourier transform infrared spectral measurements of living Acholeplasma laidlawii cells

    NASA Astrophysics Data System (ADS)

    Omura, Yoko; Okazaki, Norio

    2003-06-01

    In monitoring the time course of conformational disorder by Fourier transform infrared spectroscopy for intact Acholeplasma laidlawii cells grown at 37 °C on binary fatty acid mixtures containing oleic acid and for cells grown on pure palmitic acid, an absorption band at 2343 cm-1 was observed. The band intensity was found to increase with time. This band was not observed in the spectra for isolated membranes. It is suggested that the 2343 cm-1 band is due to CO2 dissolved in water, most likely produced at the final point of fermentation of amino acid by this microorganism.

  2. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  3. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  4. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  5. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  6. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  7. Fourier transform spectroscopy of cotton and cotton trash

    USDA-ARS?s Scientific Manuscript database

    Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...

  8. The extended Fourier transform for 2D spectral estimation.

    PubMed

    Armstrong, G S; Mandelshtam, V A

    2001-11-01

    We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solution of an ill-conditioned problem, which requires regularization. The regularization depends on a parameter, q, that essentially controls the resolution. By varying q from 0 to infinity one can "tune" the spectrum between a high-resolution spectral estimate and the finite DFT. The optimal value of q is chosen according to how well the data fits the form of a sum of complex sinusoids and, in particular, the signal-to-noise ratio. Both 1D and 2D XFT are presented with applications to experimental NMR signals. Copyright 2001 Academic Press.

  9. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    NASA Technical Reports Server (NTRS)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  10. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  11. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  12. [Continuum based fast Fourier transform processing of infrared spectrum].

    PubMed

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  13. Fourier Transform Methods. Chapter 4

    NASA Technical Reports Server (NTRS)

    Kaplan, Simon G.; Quijada, Manuel A.

    2015-01-01

    This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

  14. Application of the fractional Fourier transform to image reconstruction in MRI.

    PubMed

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  15. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  16. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  17. Ultrafast and versatile spectroscopy by temporal Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.

    2014-06-01

    One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.

  18. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less

  19. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  20. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    PubMed

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  1. Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    Santa Maria, Odilyn L.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  2. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  3. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.

    PubMed

    Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing

    2009-06-01

    Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.

  4. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    PubMed

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  5. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  6. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates

    PubMed Central

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: • The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms. • The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform. • The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time. PMID:26150988

  7. High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N

    NASA Astrophysics Data System (ADS)

    Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.

    2011-12-01

    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.

  8. Fractional Fourier transform of truncated elliptical Gaussian beams.

    PubMed

    Du, Xinyue; Zhao, Daomu

    2006-12-20

    Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.

  9. Geometry and dynamics in the fractional discrete Fourier transform.

    PubMed

    Wolf, Kurt Bernardo; Krötzsch, Guillermo

    2007-03-01

    The N x N Fourier matrix is one distinguished element within the group U(N) of all N x N unitary matrices. It has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators. The dynamical correspondence is exact only in the N-->infinity contraction limit for the integral Fourier transform and its fractional powers. In the finite-N case, several options have been considered in the literature. We compare their fidelity in reproducing the classical harmonic motion of discrete coherent states.

  10. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Florence T.; Post, Jeffrey E.; Heaney, Peter J.

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from Mnsingle bondO lattice vibrations between 400 and 750 cm - 1 yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied tomore » known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~ 1628 cm - 1 may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.« less

  11. Fourier Transform Absorption Spectroscopy of C_3 in the ν_3 Antisymmetric Stretch Mode Region

    NASA Astrophysics Data System (ADS)

    Vervloet, Michel; Martin-Drumel, Marie-Aline; Tokaryk, Dennis W.; Pirali, Olivier

    2017-06-01

    The C_3 molecule has been detected in a variety of astrophysical objects thanks to the well-known 4050 Å (A^1Π_u-X^1Σ ^+ _g) electronic transition as well as the two IR active modes of the electronic ground state: ν_2 (˜ 63.42 cm^{-1}) and ν_3 (˜ 2040.02 cm^{-1}). Previous laboratory data in the ν_3 region, obtained using diode laser spectroscopy and the photolysis of allene to produce C_3, permitted measurement of the fundamental (0,0,1)Σ-(0,0,0)Σ as well as the hot bands: (0,1,1)Π-(0,1,0)Π; (0,2,1)Σ-(0,2,0)Σ; (0,2,1)Δ-(0,2,0)Δ and provided insights on the anharmonicity of the (0,nν_2,1) vibrational pattern. We have recorded the absorption spectrum of C_3 in the 1800-2100 cm^{-1} region (at a resolution of 0.003 cm^{-1}) using the Bruker IFS 125 Fourier Transform spectrometer at the AILES beamline of Synchrotron SOLEIL. C_3 was produced in a DC discharge of methane heavily diluted in helium. The rovibrational temperature of C_3 produced in our discharge is noticeably higher than in Ref. [4], which allowed us to extend measurements to higher J values. More interestingly, we assigned new hot bands involving higher quanta of the ν_2 bending states: (0,nν_2,1) with n ranging from 0 to 5. Despite the absence of Q branches for these bands, which results in a possible ambiguous J-assignment of P and R lines, the large variety of data considered in this work, in addition to our experimental data and including observations of comet spectra, allows confident assignments. L. Gausset, G. Herzberg, A. Lagerqvist, B. Rosen, Astrophysical Journal, 45-81 (1965); T. F. Giesen et al., The Astrophysical Journal, 551, L181-L184 (2001) K. W. Hinkle, J. J. Keady, P. F. Bernath, Science, 241, 1319-1322 (1988) K. Kawaguchi et al., J. Chem. Phys., 91, 1953-1957 (1989)

  12. New scientific results with SpIOMM: a testbed for CFHT's imaging Fourier transform spectrometer SITELLE

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Lagrois, D.; Rousseau-Nepton, L.; Bilodeau, A.; Robert, C.; Joncas, G.; Iglesias-Páramo, J.

    2012-09-01

    We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Québec. Recent technical and data reduction improvements have significantly increased SpIOMM's capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.

  13. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  14. Fourier-transform spectroscopy of HD in the vacuum ultraviolet at λ = 87-112 nm

    NASA Astrophysics Data System (ADS)

    Ivanov, T. I.; Dickenson, G. D.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Ubachs, W.

    2010-03-01

    Absorption spectroscopy in the vacuum ultraviolet (VUV) domain was performed on the hydrogen-deuteride molecule with a novel Fourier-transform spectrometer based upon wavefront division interferometry. This unique instrument, which is a permanent endstation of the undulator-based beamline DESIRS on the synchrotron SOLEIL facility, opens the way to Fourier-transform spectroscopy in the VUV range. The HD spectral lines in the Lyman and Werner bands were recorded in the 87-112 nm range from a quasi-static gas sample in a windowless configuration and with a Doppler-limited resolution. Line positions of some 268 transitions in the ? Lyman bands and 141 transitions in the ? Werner bands were deduced with uncertainties of 0.04 cm-1 (1σ) which correspond to Δλ/λ ∼ 4 × 10-7. This extensive laboratory database is of relevance for comparison with astronomical observations of H2 and HD spectra from highly redshifted objects, with the goal of extracting a possible variation of the proton-to-electron mass ratio (μ = m p /m e ) on a cosmological time scale. For this reason also calculations of the so-called sensitivity coefficients K i were performed in order to allow for deducing constraints on Δμ/μ. The K i coefficients, associated with the line shift that each spectral line undergoes as a result of a varying value for μ, were derived from calculations as a function of μ solving the Schrödinger equation using ab initio potentials.

  15. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  16. A Graphical Presentation to Teach the Concept of the Fourier Transform

    ERIC Educational Resources Information Center

    Besalu, E.

    2006-01-01

    A study was conducted to visualize the reason why the Fourier transform technique is useful to detect the originating frequencies of a complicated superposition of waves. The findings reveal that students respond well when instructors adapt pictorial presentation to show how the time-domain function is transformed into the frequency domain.

  17. Use of the fractional Fourier transform in {pi}/2 converters of laser modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyutin, A A

    2004-02-28

    The possibility of using the fractional Fourier transform (FrFT) in optical schemes for astigmatic {pi}/2 converters of Hermite-Gaussian modes to donut Laguerre-Gaussian modes is considered. Several schemes of converters based on the FrFT of the half-integer and irrational orders are presented. The lowest FrFT order than can be used in astigmatic mode converters is found. The properties of converters based on the fractional and ordinary Fourier transforms are compared. (laser beams)

  18. Technique for the metrology calibration of a Fourier transform spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  19. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  20. Fourier transform (FT)-artifacts and power-function resolution filter in Fourier transform mass spectrometry.

    PubMed

    Kanawati, Basem; Bader, Theresa M; Wanczek, Karl-Peter; Li, Yan; Schmitt-Kopplin, Philippe

    2017-10-15

    Peak picking algorithms in mass spectrometry face the challenge of picking the correct signals from a mass spectrum. In some cases signal wiggles (side lobes) are also chosen in the produced mass list as if they were real signals. Constraints which are defined in such algorithms do not always guarantee wiggle-free accurate mass list generation out of raw mass spectra. This problem intensifies with acquisitions, which are accompanied by longer transients. Thus, the problem represents a contemporary issue, which propagates with modern high-memory digitizers and exists in both MS and MS/MS spectra. A solariX FTMS mass spectrometer with an Infinity ICR cell (Bruker Daltonics, Bremen, Germany) coupled to a 12 Tesla magnet (Magnex, UK) was used for the experimental study. Time-domain transients of several different data point lengths 512k, 1M, 2M, 4M, 8M were obtained and were Fourier-transformed to obtain frequency spectra which show the effect of the transient truncation on sinc wiggle developments in FT-ICR-MS. MATLAB simulations were also performed to investigate the origin of the Fourier transform (FT)-artifacts. A new filter has been developed to identify and remove FT-artifacts (sinc side lobes) from both frequency and mass spectra. The newly developed filter is based on distinguishing between the FWHM of the correct frequency/mass signals and the FWHM of their corresponding wiggles. The filter draws a reliable confidence limit of resolution range, within which a correct frequency/mass signal is identified. The filter is applicable over a wide mass range of metabolic interest (100-1200 amu). The origin of FT-artifacts due to time-domain transient truncations was thoroughly investigated both experimentally and by simulations in this study. A new solution for this problem with automatic recognition and elimination of these FT-artifacts (side lobes/wiggles) is provided, which is independent of any intensity thresholds, magnetic field strengths and time

  1. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  2. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

    PubMed

    Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun

    2009-05-01

    Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.

  3. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  4. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  5. Qualitative and semiquantitative Fourier transformation using a noncoherent system.

    PubMed

    Rogers, G L

    1979-09-15

    A number of authors have pointed out that a system of zone plates combined with a diffuse source, transparent input, lens, and focusing screen will display on the output screen the Fourier transform of the input. Strictly speaking, the transform normally displayed is the cosine transform, and the bipolar output is superimposed on a dc gray level to give a positive-only intensity variation. By phase-shifting one zone plate the sine transform is obtained. Temporal modulation is possible. It is also possible to redesign the system to accept a diffusely reflecting input at the cost of introducing a phase gradient in the output. Results are given of the sine and cosine transforms of a small circular aperture. As expected, the sine transform is a uniform gray. Both transforms show unwanted artifacts beyond 0.1 rad off-axis. An analysis shows this is due to unwanted circularly symmetrical moire patterns between the zone plates.

  6. First characterization of a static Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lacan, A.; Bréon, F.-M.; Rosak, A.; Pierangelo, C.

    2017-11-01

    A new instrument concept for a Static Fourier Transform Spectrometer has been developed and characterized by CNES. This spectrometer is based on a Michelson interferometer concept, but a system of stepped mirrors generates all interference path differences simultaneously, without any moving parts. The instrument permits high spectral resolution measurements (≍0.1 cm-1) adapted to the sounding and the monitoring of atmospheric gases. Moreover, its overall dimensions are compatible with a micro satellite platform. The stepped mirrors are glued using a molecular bonding technique. An interference filter selects a waveband only a few nanometers wide. It limits the number of sampling points (and consequently the steps number) necessary to achieve the high resolution. The instrument concept can be optimized for the detection and the monitoring of various atmospheric constituents. CNES has developed a version whose measurements are centered on the CO2 absorption lines at 1573 nm (6357 cm-1). This model has a theoretical resolution of 40 pm (0.15 cm-1) within a 5 nm (22.5 cm-1) wide spectral window. It is aimed at the feasibility demonstration for atmospheric CO2 column measurements with a very demanding accuracy of better than 1%. Preliminary measurements indicate that, although high quality spectra are obtained, the theoretical performances are not yet achieved. We discuss the causes for the achieved performances and describe foreseen methods for their improvements.

  7. Multipass open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition.

    PubMed

    Schäfer, Klaus; Brockmann, Klaus; Heland, Jörg; Wiesen, Peter; Jahn, Carsten; Legras, Olivier

    2005-04-10

    The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds. The minimum detection limits for a typical turbine plume of 50 cm in diameter are approximately 6 parts per million (ppm) for NO and 9 ppm for NO2 (as well 100 ppm for CO2 and 4 ppm for CO).

  8. Secret sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Huang, Liusheng; Shi, Runhua; He, Libao

    2013-07-01

    Secret sharing plays a fundamental role in both secure multi-party computation and modern cryptography. We present a new quantum secret sharing scheme based on quantum Fourier transform. This scheme enjoys the property that each share of a secret is disguised with true randomness, rather than classical pseudorandomness. Moreover, under the only assumption that a top priority for all participants (secret sharers and recovers) is to obtain the right result, our scheme is able to achieve provable security against a computationally unbounded attacker.

  9. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  10. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  11. Laser Atmospheric Absorption Studies.

    DTIC Science & Technology

    1977-05-01

    A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure

  12. NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS

    PubMed Central

    BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE

    2013-01-01

    The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643

  13. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA.

    PubMed

    Scargle, Jeffrey D; Way, M J; Gazis, P R

    2017-04-10

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  14. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA

    PubMed Central

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys. PMID:29628519

  15. Structure in the 3D Galaxy Distribution: III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  16. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  17. Fourier spectroscopy with a one-million-point transformation

    NASA Technical Reports Server (NTRS)

    Connes, J.; Delouis, H.; Connes, P.; Guelachvili, G.; Maillard, J.; Michel, G.

    1972-01-01

    A new type of interferometer for use in Fourier spectroscopy has been devised at the Aime Cotton Laboratory of the National Center for Scientific Research (CNRS), Orsay, France. With this interferometer and newly developed computational techniques, interferograms comprising as many as one million samples can now be transformed. The techniques are described, and examples of spectra of thorium and holmium, derived from one million-point interferograms, are presented.

  18. Fourier transform inequalities for phylogenetic trees.

    PubMed

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  19. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  20. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  1. Fourier transform methods in local gravity modeling

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Dickinson, M.

    1989-01-01

    New algorithms were derived for computing terrain corrections, all components of the attraction of the topography at the topographic surface and the gradients of these attractions. These algoriithms utilize fast Fourier transforms, but, in contrast to methods currently in use, all divergences of the integrals are removed during the analysis. Sequential methods employing a smooth intermediate reference surface were developed to avoid the very large transforms necessary when making computations at high resolution over a wide area. A new method for the numerical solution of Molodensky's problem was developed to mitigate the convergence difficulties that occur at short wavelengths with methods based on a Taylor series expansion. A trial field on a level surface is continued analytically to the topographic surface, and compared with that predicted from gravity observations. The difference is used to compute a correction to the trial field and the process iterated. Special techniques are employed to speed convergence and prevent oscillations. Three different spectral methods for fitting a point-mass set to a gravity field given on a regular grid at constant elevation are described. Two of the methods differ in the way that the spectrum of the point-mass set, which extends to infinite wave number, is matched to that of the gravity field which is band-limited. The third method is essentially a space-domain technique in which Fourier methods are used to solve a set of simultaneous equations.

  2. Spectral analysis for GNSS coordinate time series using chirp Fourier transform

    NASA Astrophysics Data System (ADS)

    Feng, Shengtao; Bo, Wanju; Ma, Qingzun; Wang, Zifan

    2017-12-01

    Spectral analysis for global navigation satellite system (GNSS) coordinate time series provides a principal tool to understand the intrinsic mechanism that affects tectonic movements. Spectral analysis methods such as the fast Fourier transform, Lomb-Scargle spectrum, evolutionary power spectrum, wavelet power spectrum, etc. are used to find periodic characteristics in time series. Among spectral analysis methods, the chirp Fourier transform (CFT) with less stringent requirements is tested with synthetic and actual GNSS coordinate time series, which proves the accuracy and efficiency of the method. With the length of series only limited to even numbers, CFT provides a convenient tool for windowed spectral analysis. The results of ideal synthetic data prove CFT accurate and efficient, while the results of actual data show that CFT is usable to derive periodic information from GNSS coordinate time series.

  3. Stress wave calculations in composite plates using the fast Fourier transform.

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  4. An Investigation into the Use of Spatially-Filtered Fourier Transforms to Classify Mammary Lesions.

    DTIC Science & Technology

    difference in Fourier space between lesioned breast tissue which would enable accurate computer classification of benign and malignant lesions. Low...separate benign and malignant breast tissue. However, no success was achieved when using two-dimensional Fourier transform and power spectrum analysis. (Author)

  5. Partial differential equation transform — Variational formulation and Fourier analysis

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The

  6. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  7. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  8. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  9. Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.

    2017-12-01

    Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.

  10. Three-dimensional Fourier transform evaluation of sequences of spatially and temporally modulated speckle interferograms.

    PubMed

    Trillo, C; Doval, A F; López-Vázquez, J C

    2010-07-05

    Phase evaluation methods based on the 2D spatial Fourier transform of a speckle interferogram with spatial carrier usually assume that the Fourier spectrum of the interferogram has a trimodal distribution, i. e. that the side lobes corresponding to the interferential terms do not overlap the other two spectral terms, which are related to the intensity of the object and reference beams, respectively. Otherwise, part of the spectrum of the object beam is inside the inverse-transform window of the selected interference lobe and induces an error in the resultant phase map. We present a technique for the acquisition and processing of speckle interferogram sequences that separates the interference lobes from the other spectral terms when the aforementioned assumption does not apply and regardless of the temporal bandwidth of the phase signal. It requires the recording of a sequence of interferograms with spatial and temporal carriers, and their processing with a 3D Fourier transform. In the resultant 3D spectrum, the spatial and temporal carriers separate the conjugate interferential terms from each other and from the term related to the object beam. Experimental corroboration is provided through the measurement of the amplitude of surface acoustic waves in plates with a double-pulsed TV holography setup. The results obtained with the proposed method are compared to those obtained with the processing of individual interferograms with the regular spatial-carrier 2D Fourier transform method.

  11. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  12. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  13. Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Masłowski, Piotr; Johansson, Alexandra C.; Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2018-01-01

    Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadband high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution matched to the comb mode spacing. Here we describe in detail the experimental and numerical steps needed to achieve sub-nominal resolution and retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3ν1 + ν3 band of CO2 around 1575 nm with line widths narrower than the nominal resolution. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.

  14. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  15. Fourier transform spectrometry for fiber-optic sensor systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.

    1993-01-01

    An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.

  16. The Absorption Refrigerator as a Thermal Transformer

    ERIC Educational Resources Information Center

    Herrmann, F.

    2009-01-01

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential. (Contains 1 footnote and 6 figures.)

  17. Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.

    PubMed

    Gordillo-Delgado, Fernando; Marín, Ernesto; Cortés-Hernández, Diego Mauricio; Mejía-Morales, Claudia; García-Salcedo, Angela Janet

    2012-08-30

    Procedures for the evaluation of the origin and quality of ground and roasted coffee are constantly needed for the associated industry due to complexity of the related market. Conventional Fourier transform infrared (FTIR) spectroscopy can be used for detecting changes in functional groups of compounds, such as coffee. However, dispersion, reflection and non-homogeneity of the sample matrix can cause problems resulting in low spectral quality. On the other hand, sample preparation frequently takes place in a destructive way. To overcome these difficulties, in this work a photoacoustic cell has been adapted as a detector in a FTIR spectrophotometer to perform a study of roasted and ground coffee from three varieties of Coffea arabica grown by organic and conventional methods. Comparison between spectra of coffee recorded by FTIR-photoacoustic spectrometry (PAS) and by FTIR spectrophotometry showed a better resolution of the former method, which, aided by principal components analysis, allowed the identification of some absorption bands that allow the discrimination between organic and conventional coffee. The results obtained provide information about the spectral behavior of coffee powder which can be useful for establishing discrimination criteria. It has been demonstrated that FTIR-PAS can be a useful experimental tool for the characterization of coffee. Copyright © 2012 Society of Chemical Industry.

  18. A Discussion of the Discrete Fourier Transform Execution on a Typical Desktop PC

    NASA Technical Reports Server (NTRS)

    White, Michael J.

    2006-01-01

    This paper will discuss and compare the execution times of three examples of the Discrete Fourier Transform (DFT). The first two examples will demonstrate the direct implementation of the algorithm. In the first example, the Fourier coefficients are generated at the execution of the DFT. In the second example, the coefficients are generated prior to execution and the DFT coefficients are indexed at execution. The last example will demonstrate the Cooley- Tukey algorithm, better known as the Fast Fourier Transform. All examples were written in C executed on a PC using a Pentium 4 running at 1.7 Ghz. As a function of N, the total complex data size, the direct implementation DFT executes, as expected at order of N2 and the FFT executes at order of N log2 N. At N=16K, there is an increase in processing time beyond what is expected. This is not caused by implementation but is a consequence of the effect that machine architecture and memory hierarchy has on implementation. This paper will include a brief overview of digital signal processing, along with a discussion of contemporary work with discrete Fourier processing.

  19. Apodizing functions for Fourier transform spectroscopy.

    PubMed

    Naylor, David A; Tahic, Margaret K

    2007-11-01

    Apodizing functions are used in Fourier transform spectroscopy (FTS) to reduce the magnitude of the sidelobes in the instrumental line shape (ILS), which are a direct result of the finite maximum optical path difference in the measured interferogram. Three apodizing functions, which are considered optimal in the sense of producing the smallest loss in spectral resolution for a given reduction in the magnitude of the largest sidelobe, find frequent use in FTS [J. Opt. Soc. Am.66, 259 (1976)]. We extend this series to include optimal apodizing functions corresponding to increases in the width of the ILS ranging from factors of 1.1 to 2.0 compared with its unapodized value, and we compare the results with other commonly used apodizing functions.

  20. Four Forms of the Fourier Transform - for Freshmen, using Matlab

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Maloof, A. C.

    2016-12-01

    In 2015, a Fall "Freshman Seminar" at Princeton University (http://geoweb.princeton.edu/people/simons/FRS-SESC.html) taught students to combine field observations of the natural world with quantitative modeling and interpretation, to answer questions like: "How have Earth and human histories been recorded in the geology of Princeton, the Catskills, France and Spain?" (where we took the students on a data-gathering field trip during Fall Break), and "What experiments and analysis can a first-year (possibly non-future-major) do to query such archives of the past?" In the classroom, through problem sets, and around campus, students gained practical experience collecting geological and geophysical data in a geographic context, and analyzing these data using statistical techniques such as regression, time-series and image analysis, with the programming language Matlab. In this presentation I will detail how we instilled basic Matlab skills for quantitative geoscience data analysis through a 6-week progression of topics and exercises. In the 6 weeks after the Fall Break trip, we strengthened these competencies to make our students fully proficient for further learning, as evidenced by their end-of-term independent research work.The particular case study is focused on introducing power-spectral analysis to Freshmen, in a way that even the least quantitative among them could functionally understand. Not counting (0) "inspection", the four ways by which we have successfully instilled the concept of power-spectral analysis in a hands-on fashion are (1) "correlation", (2) "inversion", (3) "stacking", and formal (4) "Fourier transformation". These four provide the main "mappings". Along the way, of course, we also make sure that the students understand that "power-spectral density estimation" is not the same as "Fourier transformation", nor that every Fourier transform has to be "Fast". Hence, concepts from analysis-of-variance techniques, regression, and hypothesis testing

  1. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    ERIC Educational Resources Information Center

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  2. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  3. Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation

    NASA Astrophysics Data System (ADS)

    Bueno Mario, A.; Alvarez-Borrego, Josue; Acho, L.

    2004-10-01

    A new autofocus algorithm based on one-dimensional Fourier transform and Pearson correlation for Z automatized microscope is proposed. Our goal is to determine in fast response time and accuracy, the best focused plane through an algorithm. We capture in bright and dark field several images set at different Z distances from biological organism sample. The algorithm uses the one-dimensional Fourier transform to obtain the image frequency content of a vectors pattern previously defined comparing the Pearson correlation of these frequency vectors versus the reference image frequency vector, the most out of focus image, we find the best focusing. Experimental results showed the algorithm has fast response time and accuracy in getting the best focus plane from captured images. In conclusions, the algorithm can be implemented in real time systems due fast response time, accuracy and robustness. The algorithm can be used to get focused images in bright and dark field and it can be extended to include fusion techniques to construct multifocus final images beyond of this paper.

  4. Corroded surface roughness of copper analyzed by Fourier transform infrared mapping microscopy and optical profilometric study.

    PubMed

    Kasperek, J; Lefez, B; Beucher, E

    2004-02-01

    This study shows the effects of roughness on infrared spectra shapes of thin corrosion products on metallic substrates. The calculated spectra show that the baseline is mainly affected by increasing roughness and that such effects do not shift the position of the absorption bands. The model obtained has been used to extract data of artificial patina on a copper surface. Surface defects of copper substrates can be distinguished on the whole surface, from the morphological and chemical points of view, using optical profilometry and infrared microspectroscopy. An homogeneous layer of cuprite covers the surface except in the linear defects. Fourier transform infrared (FT-IR) analysis indicates that a mixture of atacamite and clinoatacamite is mainly located in these scratches. The width of these particular areas is in good agreement with profilometric observations.

  5. Detecting the spatial chirp signals by fractional Fourier lens with transformation materials

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, J.

    2018-02-01

    Fractional Fourier transform (FrFT) is the general form of the Fourier transform and is an important tool in signal processing. As one typical application of FrFT, detecting the chirp rate (CR, or known as the rate of frequency change) of a chirp signal is important in many optical measurements. The optical FrFT that based on graded index lens fails to detect the high CR chirp because the short wave propagation distance of the impulse in the lens will weaken the paraxial approximation condition. With the help of transformation optics, the improved FrFT lens is proposed to adjust the high CR as well as the impulse location of the given input chirp signal. The designed transformation materials can implement the effect of space compression, making the input chirp signal is equivalent to have lower CR, therefore the system can satisfy the paraxial approximation better. As a result, this lens can improve the detection precision for the high CR. The numerical simulations verified the design. The proposed device may have both theoretical and practical values, and the design demonstrates the ability and flexibility of TO in spatial signal processing.

  6. Fourier-transform imaging of cotton and botanical and field trash mixtures

    USDA-ARS?s Scientific Manuscript database

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  7. Fizeau Fourier transform imaging spectroscopy: missing data reconstruction.

    PubMed

    Thurman, Samuel T; Fienup, James R

    2008-04-28

    Fizeau Fourier transform imaging spectroscopy yields both spatial and spectral information about an object. Spectral information, however, is not obtained for a finite area of low spatial frequencies. A nonlinear reconstruction algorithm based on a gray-world approximation is presented. Reconstruction results from simulated data agree well with ideal Michelson interferometer-based spectral imagery. This result implies that segmented-aperture telescopes and multiple telescope arrays designed for conventional imaging can be used to gather useful spectral data through Fizeau FTIS without the need for additional hardware.

  8. Fast Fourier Transform Co-Processor (FFTC)- Towards Embedded GFLOPs

    NASA Astrophysics Data System (ADS)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Wite, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland

    2012-08-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co- Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment.In frame of the ESA activity “Fast Fourier Transform DSP Co-processor (FFTC)” (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following:Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP.The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance.The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT- based processing tasks.A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses.The presentation will give and overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  9. Fast Fourier Transform Co-processor (FFTC), towards embedded GFLOPs

    NASA Astrophysics Data System (ADS)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Witte, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland; Kopp, Nicholas

    2012-10-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co-Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment. In frame of the ESA activity "Fast Fourier Transform DSP Co-processor (FFTC)" (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following: • Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP. • The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance. The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT-based processing tasks. A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses. The paper will give an overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  10. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  11. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    PubMed

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  12. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    PubMed

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Improved digital filters for evaluating Fourier and Hankel transform integrals

    USGS Publications Warehouse

    Anderson, Walter L.

    1975-01-01

    New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms

  14. CF2 Detection in Radio-Frequency Ar/CHF3 Plasmas by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.

    1999-01-01

    CFx radicals, in particular CF2, are instrumental in anisotropic etching of SiO2. In order to optimize the CFx radical population in a given process environment, it is imperative that we understand their production mechanism. Towards this goal, we have conducted a series of quantitative measurements of CF2 radicals in low pressure RF plasmas similar to those used in SiO2 etching. In this study, we present preliminary results for Ar/CHF3 plasmas operating at pressures ranging from 10-50 mTorr and powers ranging from 100-500 W in the GEC reference cell, modified for inductive (transformer) coupling. Fourier transform infrared (FTIR) spectroscop) is used to observe the absorption features of the CF2 radical in the 1114 cm-1 and 1096 cm-1 spectral regions. The FTIR spectrometer is equipped with a high-sensitivity mercury cadmium telluride (MCT) detector and has afixed resolution of 0.125 cm- 1. The CF2 concentrations are measured for a range of operating pressures and discharge power levels, and are compared to measurements of the relative CF2 concentrations made by mass spectrometry using the method of appearance potential for radical selectivity.

  15. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  16. [Measurements of the concentration of atmospheric CO2 based on OP/FTIR method and infrared reflecting scanning Fourier transform spectrometry].

    PubMed

    Wei, Ru-Yi; Zhou, Jin-Song; Zhang, Xue-Min; Yu, Tao; Gao, Xiao-Hui; Ren, Xiao-Qiang

    2014-11-01

    The present paper describes the observations and measurements of the infrared absorption spectra of CO2 on the Earth's surface with OP/FTIR method by employing a mid-infrared reflecting scanning Fourier transform spectrometry, which are the first results produced by the first prototype in China developed by the team of authors. This reflecting scanning Fourier transform spectrometry works in the spectral range 2 100-3 150 cm(-1) with a spectral resolution of 2 cm(-1). Method to measure the atmospheric molecules was described and mathematical proof and quantitative algorithms to retrieve molecular concentration were established. The related models were performed both by a direct method based on the Beer-Lambert Law and by a simulating-fitting method based on HITRAN database and the instrument functions. Concentrations of CO2 were retrieved by the two models. The results of observation and modeling analyses indicate that the concentrations have a distribution of 300-370 ppm, and show tendency that going with the variation of the environment they first decrease slowly and then increase rapidly during the observation period, and reached low points in the afternoon and during the sunset. The concentrations with measuring times retrieved by the direct method and by the simulating-fitting method agree with each other very well, with the correlation of all the data is up to 99.79%, and the relative error is no more than 2.00%. The precision for retrieving is relatively high. The results of this paper demonstrate that, in the field of detecting atmospheric compositions, OP/FTIR method performed by the Infrared reflecting scanning Fourier transform spectrometry is a feasible and effective technical approach, and either the direct method or the simulating-fitting method is capable of retrieving concentrations with high precision.

  17. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  18. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  19. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE PAGES

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  20. Transition dipole-moment of the ν1 +ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Okubo, Sho; Iwakuni, Kana; Yamada, Koichi M. T.; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki

    2017-11-01

    The ν1 +ν3 vibration band of acetylene (C2H2) in the near infrared region was recorded with a dual-comb Fourier-transform spectrometer. We observed 56 transitions from P (26) to R (29) at six different column densities. The integral line intensity was determined for each recorded absorption line by fitting the line profile to Lambert-Beer's law with a Voigt function. Thanks to the outstanding capability of dual-comb spectroscopy to cover a broad spectrum in a relatively short time with high resolution and high frequency precision, we determined the reliable line strength for each ro-vibrational transition as well as the transition dipole moment for this band.

  1. Fourier transform infrared evanescent wave (FTIR-FEW) spectroscopy of tissue

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Sukuta, Sydney; Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.

    1997-05-01

    A new Fourier transform infrared fiberoptic evanescent wave (FTIR-FEW) spectroscopy method has been developed for tissue diagnostics in the middle infrared (MIR) wavelength range (3 to 20 micrometers). Specific novel fiberoptical chemical and biological sensors have been studied and used for spectroscopic diagnostic purposes. These nontoxic and nonhygroscopic fiber sensors are characterized by (1) low optical losses (0.05 to 0.2 dB/m at about 10 micrometer) and (2) high flexibility. Our new fiber optical devices can be utilized with standard commercially available Fourier transform spectrometers including attenuated total reflection (ATR) techniques. They are in particular ideally suited for noninvasive, fast, direct, sensitive investigations of in vivo and ex vivo medical diagnostics applications. Here we present data on IR spectra of skin tissue in vivo for various cases of melanoma and nevus in the range of 1480 - 1800 cm-1. The interpretation of the spectra of healthy and different stages of tumor and cancer skin tissue clearly indicates that this technique can be used for precancer and cancer diagnostics. This technique can be designed for real-time and on-line computer modeling and analysis of tissue changes.

  2. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  3. Fast Fourier transformation results from gamma-ray burst profiles

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.

  4. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  5. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  6. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  7. A Fourier-Transform Infrared Study of Biochar Aging in Soils

    PubMed Central

    Singh, B.; Fang, Y.; Johnston, C.T.

    2018-01-01

    We used diffuse reflectance Fourier-transform infrared (DR-FTIR) spectroscopy, X-ray diffraction (XRD), and chemical and isotopic analyses to characterize the light fraction of four contrasting soils (control and biocharamended soils) to determine changes in biochar properties after aging. Two Eucalyptus saligna Sm. wood biochars, produced at 450°C (B450) and 550°C (B550), were incubated separately in each of the four soils for up to 12 mo at 20, 40, and 60°C. Total C and isotopic (δ13C) methods were used to quantify the amounts of biochar C and native C mineralized during incubation. The DR-FTIR spectra of the light fraction showed distinct absorption bands representing native soil organic C, biochar C, and mineral constituents present in the soils; the mineral bands were consistent with XRD data of the clay fraction of the four soils. Analysis of the DR-FTIR spectra in the ν(C–H) bands showed that the ratio of the aromatic ν(C–H) bands systematically increased relative to the aliphatic ν(C–H) bands with increasing mineralization of biochar C in the B550 amended soils, and this relationship was unique for each soil type. In contrast, this relationship was not observed for the B450 amended soils that contained a relatively smaller proportion of aromatic C. PMID:29657354

  8. An algorithm for the basis of the finite Fourier transform

    NASA Technical Reports Server (NTRS)

    Santhanam, Thalanayar S.

    1995-01-01

    The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.

  9. Adaptive synchrosqueezing based on a quilted short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Berrian, Alexander; Saito, Naoki

    2017-08-01

    In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.

  10. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    PubMed Central

    Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David

    2016-01-01

    Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175

  11. The Fourier analysis of biological transients.

    PubMed

    Harris, C M

    1998-08-31

    With modern computing technology the digital implementation of the Fourier transform is widely available, mostly in the form of the fast Fourier transform (FFT). Although the FFT has become almost synonymous with the Fourier transform, it is a fast numerical technique for computing the discrete Fourier transform (DFT) of a finite sequence of sampled data. The DFT is not directly equivalent to the continuous Fourier transform of the underlying biological signal, which becomes important when analyzing biological transients. Although this distinction is well known by some, for many it leads to confusion in how to interpret the FFT of biological data, and in how to precondition data so as to yield a more accurate Fourier transform using the FFT. We review here the fundamentals of Fourier analysis with emphasis on the analysis of transient signals. As an example of a transient, we consider the human saccade to illustrate the pitfalls and advantages of various Fourier analyses.

  12. Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo

    Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l 1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l 1 regularization terms. The Split Bregman Algorithm provides a fastmore » explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l 1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l 1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.« less

  13. Fourier Transform Spectroscopy of two trace gases namely Methane and Carbon monoxide for planetary and atmospheric research application

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.; Tyuterev, AV Nikitin G., VI; Sung, K.; Smith, M. A. H.; Devi, V. M.; Predoi-Cross, A.

    2017-02-01

    Two atmospheric trace gases, namely methane and carbon monoxide have been considered in this study. Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the associated temperature dependence have been measured in an multi-spectrum non-linear least squares analysis using Voigt profiles with an asymmetric profile due to line mixing. The measured CO2-broadening and CO2-shift parameters were compared with theoretical values, calculated by collaborators. In addition, the CO2-broadening and shift coefficients have been calculated for individual temperatures using the Exponential Power Gap (EPG) semi-empirical method. We also discuss the retrieved line shape parameters for Methane transitions in the spectral range known as the Methane Octad. We used high resolution spectra of pure methane and of dilute mixtures of methane in dry air, recorded with high signal to noise ratio at temperatures between 148 K and room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. Theoretical calculations for line parameters have been performed and the results are compared with the previously published values and with the line parameters available in the GEISA2015 [1] and HITRAN2012 [2] databases.

  14. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  16. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

    PubMed Central

    Chan, Kenny K. H.; Tang, Shuo

    2010-01-01

    The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551

  17. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR) Applied to Study the Distribution of Ink Components in Printed Newspapers.

    PubMed

    Gómez, Nuria; Molleda, Cristina; Quintana, Ester; Carbajo, José M; Rodríguez, Alejandro; Villar, Juan C

    2016-09-01

    A new method was developed to study how the oil and cyan pigments of cold-set ink are distributed in newspaper thickness. The methodology involved laboratory printing followed by delamination of the printed paper. The unprinted side, printed side, and resulting layers were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). Three commercial newspapers and black and cyan cold-set inks were chosen for the study. Attenuated total reflection Fourier transform infrared spectroscopy enabled the proportion of oil and cyan pigment on the printed surface and throughout the sheet thickness to be measured. Oil percentage was evaluated as the area increment of the region from 2800 cm(-1) to 3000 cm(-1) The relative amount of cyan pigment was determined as the area of the absorption band at 730 cm(-1) The ink oil was found mainly below half the paper thickness, whereas the pigment was detected at the layers closer to the printed surface, at a depth penetration of less than 15 µm (20% of thickness). Distribution of these two components in paper thickness depended on the type of cold-set ink, the amount of ink transferred, and the newspaper properties. © The Author(s) 2016.

  18. Fourier transform spectrometer observations of solar carbon monoxide. III - Time-resolved spectroscopy of the Delta V = 1 bands

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Brault, James W.

    1990-11-01

    Time series of the 2100/cm Delta v = 1 absorption bands of CO at the center of the solar disk and at the extreme limb have been recorded by Fourier transform spectrometer. The photospheric 5-min oscillation appears prominently at sun center. The peak-to-peak brightness temperature amplitude is roughly 300 K, and the peak-to-peak Doppler shift is roughly 1100 m/s. The 70 deg phase lag of maximum core intensity with respect to maximum redshift for the strongest Delta v = 1 absorptions is less than the 90 deg expected in the adiabatic limit. No dominant four-minute signal in the line intensity like that reported by Deming et al. (1984, 1986, and 1987) is found, nor is evidence for extreme fluctuations on short time scales like those proposed by Kalkofen et al. (1984). The strong Delta v = 1 lines exhibit systematic Doppler shifts of less than about 1 km/s, contrary to the predictions of transonic redshifts if the CO 'clouds' are associated with a dynamic cooling phase of the Ca II 'cell flashes.'

  19. FTS: Fourier transform spectrometer onboard ASTRO-F/FIS

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Kawada, Mitsunobu; Murakami, Noriko; Ozawa, Keita; Shibai, Hiroshi; Nakagawa, Takao

    2003-03-01

    Far-Infrared Surveyor (FIS) is one of the two focal plane instruments of ASTRO-F which is a Japanese infrared astronomical satellite and is planned to launch in 2004. The FIS has spectroscopic capability by a Fourier transform spectrometer (FTS) covering 50-200cm-1 with spectral resolution of 0.2-0.33 cm-1 in addition to the primary purpose of FIS (an all-sky photometric survey). The Martin-Puplett interferometer is adopted as the method for spectroscopy in order to achieve high optical efficiency in a wide wavelength range. The most important issue of the FTS is the development of driving mechanism in order to scan a moving mirror with high optical performances. By the present we succeed to develop the driving mechanism satisfying a lot of limitations and requirements as a instrument onboard satellite. Furthermore the wire-grid polarizers are evaluated in optical performance, these are usable for polarized interferomter. We also measure FIR spectrum using Spectroscopy mode of FIS, and many absorption lines of H2O are detected on continuum spectrum of atmosphere. And the interferogram and spectrum are derived at low temperature (2K) that is practically used in space. The spectrum resembles expected one which are considered with optical components for flight model. The detection limit are estimated combining performances of optical components and detectors, the FISP has sufficient performance to archive objective sciences. FTS will provide a lot of astronomical information; determination of the SED in high-z objects detected by the survey observation of ASTRO-F, the redshift of such objects, and the physical conditions that are hard to be derived by optical/NIR-MIR observations, from FIR lines.

  20. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fouriermore » transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.« less

  1. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    PubMed

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  2. Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.

    2013-12-01

    This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs

  3. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy.

    PubMed

    Zhang, Qing; Liu, Cheng; Sun, Zhijian; Hu, Xiaosong; Shen, Qun; Wu, Jihong

    2012-06-01

    The application of Fourier Transform Infrared (FTIR) Spectroscopy to authenticate edible vegetable oils (corn, peanut, rapeseed and soybean oil) adulterated with used frying oil was introduced in this paper. The FTIR spectrum of oil was divided into 22 regions which corresponded to the constituents and molecular structures of vegetable oils. Samples of calibration set were classified into four categories for corn and peanut oils and five categories for rapeseed and soybean oils by cluster analysis. Qualitative analysis of validation set was obtained by discriminant analysis. Area ratio between absorption band 19 and 20 and wavenumber shift of band 19 were treated by linear regression for quantitative analysis. For four adulteration types, LODs of area ratio were 6.6%, 7.2%, 5.5%, 3.6% and wavenumber shift were 8.1%, 9.0%, 6.9%, 5.6%, respectively. The proposed methodology is a useful tool to authenticate the edible vegetable oils adulterated with used frying oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  5. HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)

    NASA Astrophysics Data System (ADS)

    Lebron, G. B.; Tan, T. L.

    2013-09-01

    The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.

  6. Uncertainty relation for the discrete Fourier transform.

    PubMed

    Massar, Serge; Spindel, Philippe

    2008-05-16

    We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form UV=e(i phi) VU. Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous variables position and momentum. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper's equation, a discrete version of the harmonic oscillator equation.

  7. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    PubMed

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  8. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    PubMed

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  9. Fourier transform for fermionic systems and the spectral tensor network.

    PubMed

    Ferris, Andrew J

    2014-07-04

    Leveraging the decomposability of the fast Fourier transform, I propose a new class of tensor network that is efficiently contractible and able to represent many-body systems with local entanglement that is greater than the area law. Translationally invariant systems of free fermions in arbitrary dimensions as well as 1D systems solved by the Jordan-Wigner transformation are shown to be exactly represented in this class. Further, it is proposed that these tensor networks be used as generic structures to variationally describe more complicated systems, such as interacting fermions. This class shares some similarities with the Evenbly-Vidal branching multiscale entanglement renormalization ansatz, but with some important differences and greatly reduced computational demands.

  10. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  11. Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features

    NASA Astrophysics Data System (ADS)

    Dixit, Rahul; Naskar, Ruchira

    2018-03-01

    In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.

  12. Real-Time Fourier Transformed Holographic Associative Memory With Photorefractive Material

    NASA Astrophysics Data System (ADS)

    Changsuk, Oh; Hankyu, Park

    1989-02-01

    We describe a volume holographic associative memory using photorefractive material and conventional planar mirror. Multiple hologram is generated with two angular multiplexed writing beams and Fourier transformed object beam in BaTiO3 crystal at 0.6328 μm. Complete image can be recalled successfully by partial input of original stored image. It is proved that our system is useful for optical implementation of real-time associative memory and location addressable memory.

  13. Bilayer free-standing beam splitter for Fourier transform infrared spectrometry.

    PubMed

    Rowell, N L; Wang, E A

    1996-06-01

    We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).

  14. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  15. Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry

    PubMed Central

    Bunaciu, Andrei A.; Udristioiu, Gabriela Elena; Ruţă, Lavinia L.; Fleschin, Şerban; Aboul-Enein, Hassan Y.

    2009-01-01

    A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of diosmin in different pharmaceutical drugs. Conventional KBr-spectra were compared for best determination of active substance in commercial preparations. The Beer–Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were tried in data processing. PMID:23960715

  16. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  17. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158more » molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).« less

  18. Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.

    NASA Astrophysics Data System (ADS)

    Earnest, Thomas Nixon

    Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes

  19. Search for molecular absorptions with the Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1995-01-01

    The objective of this research was a search for water molecules in the gas phase in molecular clouds. Water should be among the most abundant gases in the clouds and is of fundamental importance in gas chemistry, cloud cooling, shock wave chemistry, and gas-grain interactions of interstellar dust. Detection of water in Comet Halley in the 2.7 micron v(3) band in 1986 had shown that airborne H2O observations are feasible (ground-based observations of H2O are impossible because of the massive water content of the atmosphere). We planned to observe the v(3) band in interstellar clouds where a number of lines of this band should be in absorption. The search for H2O commenced in 1988 with a two flight program on the KAO. this resulted in a detection of interstellar H2O with S/N of 2-4 in the v(3) 1(01)-2(02) line at 3801.42/cm. A subsequent flight series of two flights in 1989 resulted in confirmation to the 3801.42/cm line detection and the detection of altogether four strong lines in the 000-001 v(3) vibration-rotation band of H2O.

  20. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  1. Applications of the VUV Fourier Transform Spectrometer at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    de Oliveira, Nelson; Joyeux, Denis; Ito, Kenji; Gans, Berenger; Nahon, Laurent

    2015-06-01

    Fourier transform spectrometers (FTS) are usually based upon amplitude division interferometers through beamsplitters (BS) as in the Michelson interferometer geometry. However, the manufacture of broadband BS is difficult and even impossible in the far VUV (below λ = 140 nm). We therefore conceived an instrument based upon an original design involving only reflective plane surfaces, giving access to the whole VUV range without the restrictions associated with BS. The VUV- FTS is a permanent endstation connected to one of the three experimental branches of the DESIRS beamline and devoted to high resolution photoabsorption in the UV-VUV spectral range, typically between λ = 300 and 40 nm Since 2008, a large international community of users interested in laboratory measurements with applications in astrophysics, molecular physics or planetary atmospheres has been attracted by the VUV - FTS capabilities including its efficiency in terms of signal to noise ratio, even when high spectral resolution was not an issue. A large number of dedicated gas phase sample environments have been developed including a windowless cell that can be cooled down, a heated windowless cell, a free molecular jet set-up and various windowed cells. Besides, a new discharge gas cell for production and study of transient species gave recently its first results. As an illustration, the VUV absorption spectrum of the CH_3 radical down to 140 nm will be shown in this presentation. Nahon et al., J. Synchrotron Radiat., 19, 508(2012) De Oliveira et al., Nat. Photonics, 5, 149(2011)

  2. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  3. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.

    PubMed

    Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai

    2015-12-01

    The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Bradley G.; Schofield, Ian; Tompkins, Gregory; Davis, Gary R.

    2003-02-01

    Astronomical spectroscopy at submillimeter wavelengths holds much promise for fields as diverse as the study of planetary atmospheres, molecular clouds and extragalactic sources. Fourier transform spectrometers (FTS) represent an important class of spectrometers well suited to observations that require broad spectral coverage at intermediate spectral resolution. In this paper we present the design and performance of a novel FTS, which has been developed for use at the James Clerk Maxwell Telescope (JCMT). The design uses two broadband intensity beamsplitters in a Mach-Zehnder configuration, which provide access to all four interferometer ports while maintaining a high and uniform efficiency over a broad spectral range. Since the interferometer processes both polarizations it is twice as efficient as the Martin-Puplett interferometer (MPI). As with the MPI, the spatial separation of the two input ports allows a reference blackbody to be viewed at all times in one port, while continually viewing the astronomical source in the other. Furthermore, by minimizing the size of the optical beam at the beamsplitter, the design is well suited to imaging Fourier transform spectroscopy (IFTS) as evidenced by its selection for the SPIRE instrument on Herschel.

  5. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.

    PubMed

    Volkov, V V; Han, M G; Zhu, Y

    2013-11-01

    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.

  6. Long Open Path Fourier Transform Spectroscopy Measurements of Greenhouse Gases in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Griffith, D. W. T.

    2015-12-01

    Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. Most in situ measurements are made at a point, but how representative are such measurements in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. In this paper we assess the precision, accuracy and reliability of long open path measurements by Fourier Transform Spectroscopy in the near infrared from a 5-month continuous record of measurements over a 1.5 km pathlength. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher

  7. Evaluation of photostability of solid-state nicardipine hydrochloride polymorphs by using Fourier-transformed reflection-absorption infrared spectroscopy - effect of grinding on the photostability of crystal form.

    PubMed

    Teraoka, Reiko; Otsuka, Makoto; Matsuda, Yoshihisa

    2004-11-22

    Photostability and physicochemical properties of nicardipine hydrochloride polymorphs (alpha- and beta-form) were studied by using Fourier-transformed reflection-absorption infrared spectroscopy (FT-IR-RAS) of the tablets, X-ray powder diffraction analysis, differential scanning calorimetry (DSC), and color difference measurement. It was clear from the results of FT-IR-RAS spectra after irradiation that nicardipine hydrochloride in the solid state decomposed to its pyridine derivative when exposed to light. The photostability of the ground samples of two forms was also measured in the same manner. The two crystalline forms of the drug changed to nearly amorphous form after 150 min grinding in a mixer mill. X-ray powder diffraction patterns of those ground samples showed almost halo patterns. The nicardipine hydrochloride content on the surface of the tablet was determined based on the absorbance at 1700 cm(-1) attributable to the C=O stretch vibration in FT-IR-RAS spectra before and after irradiation by fluorescent lamp (3500 lx). The photodegradation followed apparently the first-order kinetics for any sample. The apparent photodegradation rate constant of beta-form was greater than that of alpha-form. The ground samples decomposed rapidly under the same light irradiation as compared with the intact crystalline forms. The photodegradation rate constant decreased with increase of the heat of fusion. copyright 2004 Elsevier B.V.

  8. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    PubMed

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  9. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  10. Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry

    NASA Astrophysics Data System (ADS)

    Biesalski, Markus; Rühe, Jürgen; Johannsmann, Diethelm

    1999-10-01

    We describe a method for the explicit determination of the segment density profile φ(z) of surface-attached polymer brushes with multiple angle of incidence null-ellipsometry. Because the refractive index contrast between the brush layer and the solvent is weak, multiple reflections are of minor influence and the ellipsometric spectrum is closely related to the Fourier transform of the refractive index profile, thereby allowing for explicit inversion of the ellipsometric data. We chose surface-attached monolayers of polymethacrylic acid (PMAA), a weak polyelectrolyte, as a model system and determined the segment density profile of this system as a function of the pH value of the surrounding medium by the Fourier method. Complementary to the Fourier analysis, fits with error functions are given as well. The brushes were prepared on the bases of high refractive index prisms with the "grafting-from" technique. In water, the brushes swell by more than a factor of 30. The swelling increases with increasing pH because of a growing fraction of dissociated acidic groups leading to a larger electrostatic repulsion.

  11. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  12. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  13. Digital watermarking algorithm research of color images based on quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    An, Mali; Wang, Weijiang; Zhao, Zhen

    2013-10-01

    A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.

  14. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    PubMed

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  15. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  16. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  17. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  18. Fourier transform vibrational circular dichroism of small pharmaceutical molecules

    NASA Astrophysics Data System (ADS)

    Long, Fujin; Freedman, Teresa B.; Nafie, Laurence A.

    1998-06-01

    Fourier transform vibrational circular dichroism (FT-VCD) spectra of the small pharmaceutical molecules propanolol, ibuprofen and naproxen have been measured in the hydrogen stretching and mid-infrared regions to obtain information on solution conformation and to identify markers for absolute configuration determination. Ab initio molecular orbital calculations of low energy conformations, vibrational frequencies and VCD intensities for fragments of the drugs were utilized in interpreting the spectra. Features characteristic of five conformers of propranolol were identified. The weak positive CH stretching VCD signal in ibuprofen and naproxen is characteristic of the S-configuration of the chiral center common to these two analgesics.

  19. A fractional Fourier transform analysis of a bubble excited by an ultrasonic chirp.

    PubMed

    Barlow, Euan; Mulholland, Anthony J

    2011-11-01

    The fractional Fourier transform is proposed here as a model based, signal processing technique for determining the size of a bubble in a fluid. The bubble is insonified with an ultrasonic chirp and the radiated pressure field is recorded. This experimental bubble response is then compared with a series of theoretical model responses to identify the most accurate match between experiment and theory which allows the correct bubble size to be identified. The fractional Fourier transform is used to produce a more detailed description of each response, and two-dimensional cross correlation is then employed to identify the similarities between the experimental response and each theoretical response. In this paper the experimental bubble response is simulated by adding various levels of noise to the theoretical model output. The method is compared to the standard technique of using time-domain cross correlation. The proposed method is shown to be far more robust at correctly sizing the bubble and can cope with much lower signal to noise ratios.

  20. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  1. Metabolic fingerprinting of lichen Usnea baileyi by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakar, Siti Zaharah Abu; Latip, Jalifah; bin Din, Laily; Samsuddin, Mohd Wahid

    2014-09-01

    The lichen Usnea baileyi collected from different environments was characterised using Fourier transform infrared spectroscopy. This preliminary study was done to determine the effects of different environment populations on U. baileyi chemical composition. Results showed that the absorbance peaks of Golf Course 2 (GCU2) are more intense compared to Taman Awana (TA), Jalan Awana (JA) and Jalan Gohtong (JG). U. baileyi contains of dibenzofurans, depsides, depsidones, xanthones and terpenoids.

  2. Estimation of phase derivatives using discrete chirp-Fourier-transform-based method.

    PubMed

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-08-15

    Estimation of phase derivatives is an important task in many interferometric measurements in optical metrology. This Letter introduces a method based on discrete chirp-Fourier transform for accurate and direct estimation of phase derivatives, even in the presence of noise. The method is introduced in the context of the analysis of reconstructed interference fields in digital holographic interferometry. We present simulation and experimental results demonstrating the utility of the proposed method.

  3. Matching-pursuit/split-operator-Fourier-transform computations of thermal correlation functions.

    PubMed

    Chen, Xin; Wu, Yinghua; Batista, Victor S

    2005-02-08

    A rigorous and practical methodology for evaluating thermal-equilibrium density matrices, finite-temperature time-dependent expectation values, and time-correlation functions is described. The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically adaptive coherent-state representations.

  4. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  5. Ordered fast fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1989-01-01

    Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.

  6. A fractional Fourier transform analysis of the scattering of ultrasonic waves.

    PubMed

    Tant, Katherine M M; Mulholland, Anthony J; Langer, Matthias; Gachagan, Anthony

    2015-03-08

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time-frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time-frequency domain framework to assist in flaw identification and classification.

  7. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    PubMed Central

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  8. Double passing the Kitt Peak 1-m Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hubbard, R.; Brault, J. W.

    1985-01-01

    Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.

  9. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  10. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  11. Stepwise Iterative Fourier Transform: The SIFT

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.; Benignus, G.

    1975-01-01

    A program, designed specifically to study the respective effects of some common data problems on results obtained through stepwise iterative Fourier transformation of synthetic data with known waveform composition, was outlined. Included in this group were the problems of gaps in the data, different time-series lengths, periodic but nonsinusoidal waveforms, and noisy (low signal-to-noise) data. Results on sinusoidal data were also compared with results obtained on narrow band noise with similar characteristics. The findings showed that the analytic procedure under study can reliably reduce data in the nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, and (3) sinusoids in noise with substantial gaps in the data. The program was also able to analyze narrow-band noise well, but with increased interpretational problems. The procedure was shown to be a powerful technique for analysis of periodicities, in comparison with classical spectrum analysis techniques. However, informed use of the stepwise procedure nevertheless requires some background of knowledge concerning characteristics of the biological processes under study.

  12. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  13. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  14. Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Yanbin; Zhang, Feng; Li, Yuanchao; Tao, Ran

    2015-09-01

    A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.

  15. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  16. Advances in data processing for open-path Fourier transform infrared spectrometry of greenhouse gases.

    PubMed

    Shao, Limin; Griffiths, Peter R; Leytem, April B

    2010-10-01

    The automated quantification of three greenhouse gases, ammonia, methane, and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 min is demonstrated. Spectral pretreatment, including the automated detection and correction of the effect of interrupting the infrared beam, is by a moving object, and the automated correction for the nonlinear detector response is applied to the measured interferograms. Two ways of obtaining quantitative data from OP/FT-IR data are described. The first, which is installed in a recently acquired commercial OP/FT-IR spectrometer, is based on classical least-squares (CLS) regression, and the second is based on partial least-squares (PLS) regression. It is shown that CLS regression only gives accurate results if the absorption features of the analytes are located in very short spectral intervals where lines due to atmospheric water vapor are absent or very weak; of the three analytes examined, only ammonia fell into this category. On the other hand, PLS regression works allowed what appeared to be accurate results to be obtained for all three analytes.

  17. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  18. Determination of layer ordering using sliding-window Fourier transform of x-ray reflectivity data

    NASA Astrophysics Data System (ADS)

    Smigiel, E.; Knoll, A.; Broll, N.; Cornet, A.

    1998-01-01

    X-ray reflectometry allows the determination of the thickness, density and roughness of thin layers on a substrate from several Angstroms to some hundred nanometres. The thickness is determined by simulation with trial-and-error methods after extracting initial values of the layer thicknesses from the result of a classical Fast Fourier Transform (FFT) of the reflectivity data. However, the order information of the layers is lost during classical FFT. The order of the layers has then to be known a priori. In this paper, it will be shown that the order of the layers can be obtained by a sliding-window Fourier transform, the so-called Gabor representation. This joint time-frequency analysis allows the direct determination of the order of the layers and, therefore, the use of a more appropriate starting model for refining simulations. A simulated and a measured example show the interest of this method.

  19. Identification of geographical origin of Lignosus samples using Fourier transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Choong, Yew-Keong; Xu, Chang-Hua; Lan, Jin; Chen, Xiang-Dong; Jamal, Jamia Azdina

    2014-07-01

    Lignosus spp. is a medicinal mushroom that has been used as a folk remedy for 'clearing heat', eliminating phlegm, 'moistening the lungs' and as an anti-breast cancer agent. The objective of this study was to identify the active chemical constituents of the mushroom limited number of sample by using Fourier transform infrared (FTIR) and two-dimensional correlation Fourier transform infrared spectroscopy (2DIR). The sample M26/08 was purchased from a Chinese medicine shop in Kuala Lumpur, while M49/07 and M23/08 were collected from Semenyih and Kuala Lipis respectively. The three samples have strong absorption peaks corresponding to the stretching vibration of conjugated carbonyl Cdbnd O group. Both fresh sample M49/07 and M23/08 showed an identical peak of 1655 cm-1, whereby M26/08 contained stretching vibration of 1648 cm-1. The peaks from 1260 cm-1 onwards were assignation of carbohydrate content including saccharides. Spectrum of M26/08 showed region from 1260 cm-1 to 950 cm-1 which was 99.4% similar to M23/08. The chemical constitutes of M26/08 and M23/08 were closely correlated (r = 0.97), whereas the correlation coefficient of M26/08 and M49/07 was 0.94. The use of second derivative and 2DIR spectroscopy enhanced the distinct differences to a more significant level. Although the geographical origin of M26/08 was unknown, its origin was determined by comparing with M49/07 and M23/08. The visual and colorful 2DIR spectra provided dynamic structural information of the chemical components analyzed and demonstrated a powerful and useful approach using the spectroscopy of different samples.

  20. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  1. Tests of various colorants for application of a Fourier transform infrared imaging system to deciphering obliterated writings

    NASA Astrophysics Data System (ADS)

    Sugawara, Shigeru

    2015-10-01

    Obliterated writing is writing that has been obscured by different-colored materials. There are obliterated writings that cannot be detected by conventional methods. A method for deciphering such obliterated writings was developed in this study. Mid-infrared spectroscopic imaging in the wavelength range of 2.5-14 μm was used for deciphering because the infrared spectrum differs among different brands of colorants. Obliterated writings were made by pressing information protection stamps onto characters written by 4 kinds of colorants. The samples were tested for deciphering by the Fourier-transform infrared imaging system. Two peak areas of two specific wavenumber regions of each reflectance spectrum were calculated and the ratio of the two values is displayed as a unique gray scale in the spectroscopic image. As a result, the absorption peak at various wavenumbers could be used to decipher obliterated writings that could not be detected by the conventional methods. Ten different parameters for deciphering obliterated writing were found in this study.

  2. Flow-through Fourier transform infrared sensor for total hydrocarbons determination in water.

    PubMed

    Pérez-Palacios, David; Armenta, Sergio; Lendl, Bernhard

    2009-09-01

    A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18 non-polar sorbent is placed inside the sensor and is able to retain hydrocarbons from water samples. The system does not require the use of chlorinated solvents, reducing the environmental impact, and the minimal sample handling stages serve to ensure sample integrity whilst reducing exposure of the analyst to any toxic hydrocarbons present within the samples. Fourier transform infrared (FT-IR) spectra were recorded by co-adding 32 scans at a resolution of 4 cm(-1) and the band located at 1462 cm(-1) due to the CH(2) bending was integrated from 1475 to 1450 cm(-1) using a baseline correction established between 1485 and 1440 cm(-1) using the areas as analytical signal. The technique, which provides a limit of detection (LOD) of 22 mg L(-1) and a precision expressed as relative standard deviation (RSD) lower than 5%, is considerably rapid and allows for a high level of automation.

  3. Hyperspectral imaging using the single-pixel Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  4. Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy.

    PubMed Central

    Fahmy, K

    1998-01-01

    Fourier transform infrared difference spectroscopy combined with the attenuated total reflection technique allows the monitoring of the association of transducin with bovine photoreceptor membranes in the dark. Illumination causes infrared absorption changes linked to formation of the light-activated rhodopsin-transducin complex. In addition to the spectral changes normally associated with meta II formation, prominent absorption increases occur at 1735 cm-1, 1640 cm-1, 1550 cm-1, and 1517 cm-1. The D2O sensitivity of the broad carbonyl stretching band around 1735 cm-1 indicates that a carboxylic acid group becomes protonated upon formation of the activated complex. Reconstitution of rhodopsin into phosphatidylcholine vesicles has little influence on the spectral properties of the rhodopsin-transducin complex, whereas pH affects the intensity of the carbonyl stretching band. AC-terminal peptide comprising amino acids 340-350 of the transducin alpha-subunit reproduces the frequencies and isotope sensitivities of several of the transducin-induced bands between 1500 and 1800 cm-1, whereas an N-terminal peptide (aa 8-23) does not. Therefore, the transducin-induced absorption changes can be ascribed mainly to an interaction between the transducin-alpha C-terminus and rhodopsin. The 1735 cm-1 vibration is also seen in the complex with C-terminal peptides devoid of free carboxylic acid groups, indicating that the corresponding carbonyl group is located on rhodopsin. PMID:9726932

  5. Program for the analysis of time series. [by means of fast Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Brown, T. J.; Brown, C. G.; Hardin, J. C.

    1974-01-01

    A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.

  6. A Fast Fourier transform stochastic analysis of the contaminant transport problem

    USGS Publications Warehouse

    Deng, F.W.; Cushman, J.H.; Delleur, J.W.

    1993-01-01

    A three-dimensional stochastic analysis of the contaminant transport problem is developed in the spirit of Naff (1990). The new derivation is more general and simpler than previous analysis. The fast Fourier transformation is used extensively to obtain numerical estimates of the mean concentration and various spatial moments. Data from both the Borden and Cape Cod experiments are used to test the methodology. Results are comparable to results obtained by other methods, and to the experiments themselves.

  7. Characterization of ceramic matrix composite degradation using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, Christine; Criner, Amanda Keck; Imel, Megan; King, Derek

    2018-04-01

    Data collected with a handheld Fourier Transform Infrared (FTIR) device is analyzed and considered as a useful method for detecting and quantifying oxidation on the surface of ceramic matrix composite (CMC) materials. Experiments examine silicon carbide (SiC) coupons, looking for changes in chemical composition before and after thermal exposure. Using mathematical, physical and statistical models for FTIR reflectance data, this research seeks to quantify any detected spectral changes as an indicator of surface oxidation on the CMC coupon.

  8. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  9. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    EPA Science Inventory

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  10. Joint transform correlator optical encryption system: Extensions of the recorded encrypted signal and its inverse Fourier transform

    NASA Astrophysics Data System (ADS)

    Galizzi, Gustavo E.; Cuadrado-Laborde, Christian

    2015-10-01

    In this work we study the joint transform correlator setup, finding two analytical expressions for the extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition, the effect on the decrypted image when the detection area is lower than the encrypted signal extension was analyzed. We illustrate these results through several numerical examples.

  11. Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)

    NASA Astrophysics Data System (ADS)

    Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.

    2017-11-01

    Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.

  12. Beyond Fourier

    NASA Astrophysics Data System (ADS)

    Hoch, Jeffrey C.

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development.

  13. Understanding Microbe-Mineral Reactions Using Synchrotron Radiation Fourier Transform Infrared Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Lehman, R. M.; Martin, M. C.; Bauer, W. F.

    2002-12-01

    Microorganisms are able to alter their surrounding microenvironment to an extent not predicted by the thermodynamics of the macro-environment chemistry. Microbially induced environmental alterations include weathering, biomineralization and mobilization or immobilization of authegenic metals or contaminants. Microbial colonization of surfaces, followed by biofilm formation, are the first steps in alteration processes. With the exception of iron oxides and iron-reducing bacteria, the fundamentals of how microbes react with various mineral surfaces is not well understood. Synchrotron radiation Fourier transform infrared spectromicroscopy (SR-FTIR) is a non-destructive analytical technique capable of probing, in situ, the microbe-mineral interface. The SR-FTIR beamline 1.4.3, at the Advanced Light Source, Berkeley, CA, has a diffraction-limited spatial resolution of 10 um, is 2-3 orders of magnitude brighter than traditional FTIR, and is not harmful to living samples. Aliquots of pure cultures of Burkholderia cepacia G4 were deposited on four individual mineral surfaces (plagioclase, ilmenite, augite and olivine) and spectra were collected within 20-40 min. Reference spectra were collected from the same pure cultures deposited on gold-coated glass slides. Additionally, reference spectra were collected of commercially available biomolecules deposited on the four individual mineral specimens. The spectra of the bacterial cells on gold and the spectra of the separate biomolecules contained all the relevant peaks documented in the literature. However, the spectra collected from the microbe-mineral interfaces were markedly different from the reference spectra and varied between the four mineral surfaces. Bacterial cells in contact with plagioclase exhibited predominantly absorption bands associated with phosphate groups, while the spectra of olivine and bacterial cells were limited to absorption bands associated with bacterial proteins. Spectra of the same bacterial cells

  14. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  15. Optical design of the ATMOS Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.

    1979-01-01

    The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.

  16. Criteria for confirming sequence periodicity identified by Fourier transform analysis: application to GCR2, a candidate plant GPCR?

    PubMed

    Illingworth, Christopher J R; Parkes, Kevin E; Snell, Christopher R; Mullineaux, Philip M; Reynolds, Christopher A

    2008-03-01

    Methods to determine periodicity in protein sequences are useful for inferring function. Fourier transformation is one approach but care is required to ensure the periodicity is genuine. Here we have shown that empirically-derived statistical tables can be used as a measure of significance. Genuine protein sequences data rather than randomly generated sequences were used as the statistical backdrop. The method has been applied to G-protein coupled receptor (GPCR) sequences, by Fourier transformation of hydrophobicity values, codon frequencies and the extent of over-representation of codon pairs; the latter being related to translational step times. Genuine periodicity was observed in the hydrophobicity whereas the apparent periodicity (as inferred from previously reported measures) in the translation step times was not validated statistically. GCR2 has recently been proposed as the plant GPCR receptor for the hormone abscisic acid. It has homology to the Lanthionine synthetase C-like family of proteins, an observation confirmed by fold recognition. Application of the Fourier transform algorithm to the GCR2 family revealed strongly predicted seven fold periodicity in hydrophobicity, suggesting why GCR2 has been reported to be a GPCR, despite negative indications in most transmembrane prediction algorithms. The underlying multiple sequence alignment, also required for the Fourier transform analysis of periodicity, indicated that the hydrophobic regions around the 7 GXXG motifs commence near the C-terminal end of each of the 7 inner helices of the alpha-toroid and continue to the N-terminal region of the helix. The results clearly explain why GCR2 has been understandably but erroneously predicted to be a GPCR.

  17. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    PubMed Central

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  18. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  19. A Fourier transform method for Vsin i estimations under nonlinear Limb-Darkening laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levenhagen, R. S., E-mail: ronaldo.levenhagen@gmail.com

    Star rotation offers us a large horizon for the study of many important physical issues pertaining to stellar evolution. Currently, four methods are widely used to infer rotation velocities, namely those related to line width calibrations, on the fitting of synthetic spectra, interferometry, and on Fourier transforms (FTs) of line profiles. Almost all of the estimations of stellar projected rotation velocities using the Fourier method in the literature have been addressed with the use of linear limb-darkening (LD) approximations during the evaluation of rotation profiles and their cosine FTs, which in certain cases, lead to discrepant velocity estimates. In thismore » work, we introduce new mathematical expressions of rotation profiles and their Fourier cosine transforms assuming three nonlinear LD laws—quadratic, square-root, and logarithmic—and study their applications with and without gravity-darkening (GD) and geometrical flattening (GF) effects. Through an analysis of He I models in the visible range accounting for both limb and GD, we find out that, for classical models without rotationally driven effects, all the Vsin i values are too close to each other. On the other hand, taking into account GD and GF, the Vsin i obtained with the linear law result in Vsin i values that are systematically smaller than those obtained with the other laws. As a rule of thumb, we apply these expressions to the FT method to evaluate the projected rotation velocity of the emission B-type star Achernar (α Eri).« less

  20. Beyond Fourier.

    PubMed

    Hoch, Jeffrey C

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.

    PubMed

    Mendlovic, D; Ozaktas, H M; Lohmann, A W

    1994-09-10

    Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.

  2. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry

    PubMed Central

    Adamson, Hope

    2017-01-01

    Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry. PMID:28804798

  3. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Hyperspectral Data

    DTIC Science & Technology

    2003-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer ( GIFTS ) Hyperspectral Data Dr. Allen H.-L. Huang...ssec.wisc.edu Award Number: N000140110850 Grant Number: 144KE70 http://www.ssec.wisc.edu/ gifts /navy/ LONG-TERM GOALS This Office of Naval...objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS hyperspectral data processing system with the potential for a

  4. A Simple Approach to Fourier Aliasing

    ERIC Educational Resources Information Center

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and…

  5. Application of the one-dimensional Fourier transform for tracking moving objects in noisy environments

    NASA Technical Reports Server (NTRS)

    Rajala, S. A.; Riddle, A. N.; Snyder, W. E.

    1983-01-01

    In Riddle and Rajala (1981), an algorithm was presented which operates on an image sequence to identify all sets of pixels having the same velocity. The algorithm operates by performing a transformation in which all pixels with the same two-dimensional velocity map to a peak in a transform space. The transform can be decomposed into applications of the one-dimensional Fourier transform and therefore can gain from the computational advantages of the FFT. The aim of this paper is the concern with the fundamental limitations of that algorithm, particularly as relates to its sensitivity to image-disturbing parameters as noise, jitter, and clutter. A modification to the algorithm is then proposed which increases its robustness in the presence of these disturbances.

  6. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  7. Data characteristic analysis of air conditioning load based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  8. Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    NASA Technical Reports Server (NTRS)

    Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.

    1977-01-01

    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.

  9. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    USDA-ARS?s Scientific Manuscript database

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  11. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    USDA-ARS?s Scientific Manuscript database

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  12. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-03-01

    We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.

  13. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.

    PubMed

    Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J

    2015-10-26

    Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  14. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  15. Randomly displaced phase distribution design and its advantage in page-data recording of Fourier transform holograms.

    PubMed

    Emoto, Akira; Fukuda, Takashi

    2013-02-20

    For Fourier transform holography, an effective random phase distribution with randomly displaced phase segments is proposed for obtaining a smooth finite optical intensity distribution in the Fourier transform plane. Since unitary phase segments are randomly distributed in-plane, the blanks give various spatial frequency components to an image, and thus smooth the spectrum. Moreover, by randomly changing the phase segment size, spike generation from the unitary phase segment size in the spectrum can be reduced significantly. As a result, a smooth spectrum including sidebands can be formed at a relatively narrow extent. The proposed phase distribution sustains the primary functions of a random phase mask for holographic-data recording and reconstruction. Therefore, this distribution is expected to find applications in high-density holographic memory systems, replacing conventional random phase mask patterns.

  16. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2011-03-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  17. Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin

    2010-07-01

    The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.

  18. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  19. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  20. Generalization and modularization of two-dimensional adaptive coordinate transformations for the Fourier modal method.

    PubMed

    Küchenmeister, Jens

    2014-04-21

    The Fourier modal method (FMM) has advanced greatly by using adaptive coordinates and adaptive spatial resolution. The convergence characteristics were shown to be improved significantly, a construction principle for suitable meshes was demonstrated and a guideline for the optimal choice of the coordinate transformation parameters was found. However, the construction guidelines published so far rely on a certain restriction that is overcome with the formulation presented in this paper. Moreover, a modularization principle is formulated that significantly eases the construction of coordinate transformations in unit cells with reappearing shapes and complex sub-structures.

  1. Performance of the Fourier transform spectrometer (FTS) for FIS onboard ASTRO-F

    NASA Astrophysics Data System (ADS)

    Murakami, Noriko; Kawada, Mitsunobu; Takahashi, Hidenori; Ozawa, Keita; Imamura, Tetsuo; Shibai, Hiroshi; Nakagawa, Takao

    2004-10-01

    We have developed the imaging Fourier Transform Spectrometer (FTS) for the FIS (Far-Infrared Surveyor) onboard the ASTRO-F satellite. A Martin-Puplett interferometer is adopted to achieve high optical efficiency in a wide wavelength range. The total optical efficiency of this spectrometer is achieved 40-80% of the ideal value which is 25% of the incident flux. The wavelength range of 50-200μm is covered with two kinds of detector; the monolithic Ge:Ga photoconductor array for short wavelength (50-110μm) and the stressed Ge:Ga photoconductor array for long wavelength (110-200μm). The spectral resolution expected from the maximum optical path difference is 0.18cm-1. In order to evaluate the spectral resolution of the FTS, we measured absorption lines of H2O in atmosphere using the optics of the FTS with a bolometer at the room temperature. The measured line widths are consistent with the expected instrumental resolution of 0.18 cm-1. Some spectral measurements at the cryogenic temperature were carried out by using cold blackbody sources whose temperatures are controlled in a range from 20 to 50 K. The derived spectra considering with the spectral response of the system are consistent with expected ones. Spectroscopic observations with the FTS will provide a lot of astronomical information; SED of galaxies detected in the all sky survey and the physical diagnostics of the interstellar matter by using the excited atomic or molecular lines.

  2. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    NASA Astrophysics Data System (ADS)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  3. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.

    PubMed

    Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander

    2017-07-01

    We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quantum-classical analogies in waveguide arrays: From Fourier transforms to ion-laser interactions

    NASA Astrophysics Data System (ADS)

    Moya-Cessa, Héctor M.

    2018-04-01

    By using the fact that infinite and semi-infinite systems of differential equations may be casted as Schrödinger-like equations we show how quantum-classical analogies may be achieved. In particular we show how the analogies of ion-laser, functions of a phase operator and quantised-field-two-level-atom interactions may be emulated. We also show a realization of the fractional discrete Fourier transform.

  5. Industrial realization of a direct Fourier transform in automated experimental data processing systems

    NASA Technical Reports Server (NTRS)

    Lyubashevskiy, G. S.

    1973-01-01

    Fourier processing of automatic signals transforms direct current voltage into a numerical form through bandpass filtration in time-pulse multiplying devices. It is shown that the ratio of the interference energy to the useful signal energy is inversely proportional to the square of the product of the depth of the width modulation and the ratio of the time constant averaging to the cross-multiplied signals.

  6. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    PubMed

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  7. FFTDC2: a one-dimensional Fourier transform with forward and inverse data conditioning for non-complex data

    USGS Publications Warehouse

    Bracken, Robert E.

    2004-01-01

    A subroutine (FFTDC2) coded in Fortran 77 is described, which performs a Fast Fourier Transform or Discrete Fourier Transform together with necessary conditioning steps of trend removal, extension, and windowing. The source code for the entire library of required subroutines is provided with the digital release of this report. But, there is only one required entry point, the subroutine call to FFTDC2; all the other subroutines are operationally transparent to the user. Complete instructions for use of FFTDC2.F (as well as for all the other subroutines) and some practical theoretical discussions are included as comments at the beginning of the source code. This subroutine is intended to be an efficient tool for the programmer in a variety of production-level signal-processing applications.

  8. Fourier removal of stripe artifacts in IRAS images

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave

    1987-01-01

    By working in the Fourier plane, approximate removal of stripe artifacts in IRAS images can be effected. The image of interest is smoothed and subtracted from the original, giving the high-spatial-frequency part. This 'filtered' image is then clipped to remove point sources and then Fourier transformed. Subtracting the Fourier components contributing to the stripes in this image from the Fourier transform of the original and transforming back to the image plane yields substantial removal of the stripes.

  9. Effect of Fourier transform on the streaming in quantum lattice gas algorithms

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min

    2018-04-01

    All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.

  10. Multi-dimensional quantum state sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tso, Raylin; Dai, Yuewei

    2018-03-01

    A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.

  11. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  12. Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2018-02-01

    In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.

  13. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  14. High-resolution Fourier transform measurements of air-induced broadening and shift coefficients in the 0002-0000 main isotopologue band of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker

    2018-06-01

    In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.

  15. Detection and quantification of anionic detergent (lissapol) in milk using attenuated total reflectance-Fourier Transform Infrared spectroscopy.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Jaspreet; Borah, Anjan

    2017-04-15

    Adulteration of milk to gain economic benefit is rampant. Addition of detergent in milk can cause food poisoning and other complications. Fourier Transform Infrared spectroscopy was evaluated as rapid method for detection and quantification of anionic detergent (lissapol) in milk. Spectra of pure and artificially adulterated milk (0.2-2.0% detergent) samples revealed clear differences in wavenumber range of 4000-500cm -1 . The apparent variations observed in region of 1600-995 and 3040-2851cm -1 corresponds to absorption frequencies of common constituents of detergent (linear alkyl benzene sulphonate). Principal component analysis showed discrete clustering of samples based on level of detergent (p⩽0.05) in milk. The classification efficiency for test samples were recorded to be >93% using Soft Independent Modelling of Class Analogy approach. Maximum coefficient of determination for prediction of detergent was 0.94 for calibration and 0.93 for validation, using partial least square regression in wavenumber combination of 1086-1056, 1343-1333, 1507-1456, 3040-2851cm -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Teaching Fourier optics through ray matrices

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Sánchez-López, M. M.; Ferreira, C.; Davis, J. A.; Mateos, F.

    2005-03-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics.

  17. Removal of the Gibbs phenomenon and its application to fast-Fourier-transform-based mode solvers.

    PubMed

    Wangüemert-Pérez, J G; Godoy-Rubio, R; Ortega-Moñux, A; Molina-Fernández, I

    2007-12-01

    A simple strategy for accurately recovering discontinuous functions from their Fourier series coefficients is presented. The aim of the proposed approach, named spectrum splitting (SS), is to remove the Gibbs phenomenon by making use of signal-filtering-based concepts and some properties of the Fourier series. While the technique can be used in a vast range of situations, it is particularly suitable for being incorporated into fast-Fourier-transform-based electromagnetic mode solvers (FFT-MSs), which are known to suffer from very poor convergence rates when applied to situations where the field distributions are highly discontinuous (e.g., silicon-on-insulator photonic wires). The resultant method, SS-FFT-MS, is exhaustively tested under the assumption of a simplified one-dimensional model, clearly showing a dramatic improvement of the convergence rates with respect to the original FFT-based methods.

  18. A Study of Derivative Filters Using the Discrete Fourier Transform. Final Report M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.

    1980-01-01

    Important properties of derivative (difference) filters using the discrete Fourier transform are investigated. The filters are designed using the derivative theorem of Fourier analysis. Because physical data are generally degraded by noise, the derivative filter is modified to diminish the effects of the noise, especially the noise amplification which normally occurs while differencing. The basis for these modifications is the reduction of those Fourier components for which the noise most dominates the data. The various filters are tested by applying them to find differences of two-dimensional data to which various amounts of signal dependent noise, as measured by a root mean square value, have been added. The modifications, circular and square ideal low-pass filters and a cut-off pyramid filter, are all found to reduce noise in the derivative without significantly degrading the result.

  19. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  20. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander

    2016-10-01

    A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.

  1. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  2. Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform

    PubMed Central

    Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong

    2018-01-01

    Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm. PMID:29438317

  3. Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.

    PubMed

    Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong

    2018-02-13

    Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.

  4. Infrared absorption cross sections of propane broadened by hydrogen

    NASA Astrophysics Data System (ADS)

    Wong, A.; Hargreaves, R. J.; Billinghurst, B.; Bernath, P. F.

    2017-09-01

    Fourier transform infrared absorption cross-sections of pure propane (C3H8) and propane broadened with H2 have been calculated from transmittance spectra recorded at temperatures from 292 K to 205 K. Transmittance spectra were recorded at the Canadian Light Source (CLS) Far-Infrared beamline, utilizing both the synchrotron source and the internal glowbar source. The absorption cross-sections have been calibrated to Pacific Northwest National Laboratory (PNNL) reference cross-sections of propane and can be used to interpret astronomical observations of giant planets such as Jupiter and Saturn as well as exoplanets.

  5. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform.

    PubMed

    Tripathy, Rajesh K; Zamora-Mendez, Alejandro; de la O Serna, José A; Paternina, Mario R Arrieta; Arrieta, Juan G; Naik, Ganesh R

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  6. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform

    PubMed Central

    Tripathy, Rajesh K.; Zamora-Mendez, Alejandro; de la O Serna, José A.; Paternina, Mario R. Arrieta; Arrieta, Juan G.; Naik, Ganesh R.

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  7. Colorectal Cancer and Colitis Diagnosis Using Fourier Transform Infrared Spectroscopy and an Improved K-Nearest-Neighbour Classifier.

    PubMed

    Li, Qingbo; Hao, Can; Kang, Xue; Zhang, Jialin; Sun, Xuejun; Wang, Wenbo; Zeng, Haishan

    2017-11-27

    Combining Fourier transform infrared spectroscopy (FTIR) with endoscopy, it is expected that noninvasive, rapid detection of colorectal cancer can be performed in vivo in the future. In this study, Fourier transform infrared spectra were collected from 88 endoscopic biopsy colorectal tissue samples (41 colitis and 47 cancers). A new method, viz., entropy weight local-hyperplane k-nearest-neighbor (EWHK), which is an improved version of K-local hyperplane distance nearest-neighbor (HKNN), is proposed for tissue classification. In order to avoid limiting high dimensions and small values of the nearest neighbor, the new EWHK method calculates feature weights based on information entropy. The average results of the random classification showed that the EWHK classifier for differentiating cancer from colitis samples produced a sensitivity of 81.38% and a specificity of 92.69%.

  8. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    PubMed

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  9. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  10. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  11. Parameterized Spectral Bathymetric Roughness Using the Nonequispaced Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fabre, David Hanks

    The ocean and acoustic modeling community has specifically asked for roughness from bathymetry. An effort has been undertaken to provide what can be thought of as the high frequency content of bathymetry. By contrast, the low frequency content of bathymetry is the set of contours. The two-dimensional amplitude spectrum calculated with the nonequispaced fast Fourier transform (Kunis, 2006) is exploited as the statistic to provide several parameters of roughness following the method of Fox (1996). When an area is uniformly rough, it is termed isotropically rough. When an area exhibits lineation effects (like in a trough or a ridge line in the bathymetry), the term anisotropically rough is used. A predominant spatial azimuth of lineation summarizes anisotropic roughness. The power law model fit produces a roll-off parameter that also provides insight into the roughness of the area. These four parameters give rise to several derived parameters. Algorithmic accomplishments include reviving Fox's method (1985, 1996) and improving the method with the possibly geophysically more appropriate nonequispaced fast Fourier transform. A new composite parameter, simply the overall integral length of the nonlinear parameterizing function, is used to make within-dataset comparisons. A synthetic dataset and six multibeam datasets covering practically all depth regimes have been analyzed with the tools that have been developed. Data specific contributions include possibly discovering an aspect ratio isotropic cutoff level (less than 1.2), showing a range of spectral fall-off values between about -0.5 for a sandybottomed Gulf of Mexico area, to about -1.8 for a coral reef area just outside of the Saipan harbor. We also rank the targeted type of dataset, the best resolution gridded datasets, from smoothest to roughest using a factor based on the kernel dimensions, a percentage from the windowing operation, all multiplied by the overall integration length.

  12. Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells

    NASA Astrophysics Data System (ADS)

    Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.

    1995-12-01

    We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.

  13. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  14. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  15. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  16. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.

    PubMed

    Hausel, Tamás

    2006-04-18

    A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on C2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.

  17. Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.

    PubMed

    Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José

    2015-12-14

    We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.

  18. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  19. Relativistic elliptic matrix tops and finite Fourier transformations

    NASA Astrophysics Data System (ADS)

    Zotov, A.

    2017-10-01

    We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.

  20. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resultingmore » Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources.« less

  1. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  2. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  3. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  4. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform.

    PubMed

    Klaseboer, Evert; Sepehrirahnama, Shahrokh; Chan, Derek Y C

    2017-08-01

    The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an arbitrary configuration of targets is treated by employing a recently developed non-singular boundary integral method to solve the Helmholtz equation in the frequency domain from which the space-time solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary integral solution can enforce the radiation boundary condition at infinity exactly and can account for multiple scattering effects at all spacings between scatterers without adverse effects on the numerical precision. More generally, the absence of singular kernels in the non-singular integral equation confers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast Fourier transform to obtain the time dependence is not constrained to discrete time steps and is particularly efficient for studying the response to different incident pulses by the same configuration of scatterers. The precision that can be attained using a smaller number of Fourier components is also quantified.

  5. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  6. Fast quality control of Herba Epimedii by using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Pei, Li-Kuan; Sun, Su-Qin; Guo, Bao-Lin; Huang, Wen-Hua; Xiao, Pei-Gen

    2008-07-01

    Herba Epimedii is a well-known traditional Chinese medicine (TCM) having the effect of nourishing the kidney and strengthening the 'Yang'. Its primary effective constituents are considered to be the 8-prenyl flavonols, which can be assorted into 4'-methoxyl-prenylflavonols (MPFs) and 4'-hydroxyl-prenylflavonols (HPFs), according to the group (methoxyl or hydroxyl) located at 4' in their structures. The Fourier transform infrared spectroscopy (FT-IR) has been widely used in the researches of TCMs. In the present study, the FT-IR was attempted to be applied in the quality control of Herba Epimedii. We compared the IR spectra of 17 pure flavonoids, of which eight were derived from Herba Epimedii, and found a characteristic absorption peak at 1259 ± 1 cm -1, corresponding to the MPFs, the major 8-prenyl flavonols in the aerial parts of the Epimedium species. This peak could also be found in the IR spectra of both the herbal samples and their 70% ethanol extracts. Moreover, the intensity of this peak was in the direct correlation with the total content of MPFs. The correlation values, representing the semblance of two spectra, of the IR spectrum of herbal sample and icariin, in the range of 1280-1200 cm -1, had been established to be a good index for the quality control of the herbs. Accordingly, a correlation value of not less than 0.50 could be used as the essential screening criteria for the herbs. The FT-IR could be used for the fast and effective quality control of Herba Epimedii.

  7. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  8. An improved model for whole genome phylogenetic analysis by Fourier transform.

    PubMed

    Yin, Changchuan; Yau, Stephen S-T

    2015-10-07

    DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees

  9. Calculation of the equilibrium distribution for a deleterious gene by the finite Fourier transform.

    PubMed

    Lange, K

    1982-03-01

    In a population of constant size every deleterious gene eventually attains a stochastic equilibrium between mutation and selection. The individual probabilities of this equilibrium distribution can be computed by an application of the finite Fourier transform to an appropriate branching process formula. Specific numerical examples are discussed for the autosomal dominants, Huntington's chorea and chondrodystrophy, and for the X-linked recessive, Becker's muscular dystrophy.

  10. Radiometric errors in complex Fourier transform spectrometry.

    PubMed

    Sromovsky, Lawrence A

    2003-04-01

    A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, +/- X is the delay range measured with N samples averaging for a time tau per sample, eta is the system optical efficiency, and Aomega is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance sigmaL2 = sigmaR2 + sigma(c)2 (Lh - Ls)2/(Lh - Lc)2 + sigma(h)2 (Ls - Lc)2/(Lh - Lc)2, valid for sigmaR, sigma(c), and sigma(h) small compared with Lh - Lc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and sigma(c) and sigma(h) are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.

  11. Application of point-to-point matching algorithms for background correction in on-line liquid chromatography-Fourier transform infrared spectrometry (LC-FTIR).

    PubMed

    Kuligowski, J; Quintás, G; Garrigues, S; de la Guardia, M

    2010-03-15

    A new background correction method for the on-line coupling of gradient liquid chromatography and Fourier transform infrared spectrometry has been developed. It is based on the use of a point-to-point matching algorithm that compares the absorption spectra of the sample data set with those of a previously recorded reference data set in order to select an appropriate reference spectrum. The spectral range used for the point-to-point comparison is selected with minimal user-interaction, thus facilitating considerably the application of the whole method. The background correction method has been successfully tested on a chromatographic separation of four nitrophenols running acetonitrile (0.08%, v/v TFA):water (0.08%, v/v TFA) gradients with compositions ranging from 35 to 85% (v/v) acetonitrile, giving accurate results for both, baseline resolved and overlapped peaks. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  12. Modified slanted-edge method for camera modulation transfer function measurement using nonuniform fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin

    2018-01-01

    ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.

  13. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  14. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  15. Fourier-transform infrared derivative spectroscopy with an improved signal-to-noise ratio.

    PubMed

    Fetterman, M R

    2005-09-01

    Infrared derivative spectroscopy is a useful technique for finding peaks hidden in broad spectral features. A data acquisition technique is shown that will improve the signal-to-noise ratio (SNR) of Fourier-transform infrared (FTIR) derivative spectroscopy. Typically, in a FTIR measurement one samples each point for the same time interval. The effect of using a graded time interval is studied. The simulations presented show that the SNR of first-derivative FTIR spectroscopy will improve by 15% and that the SNR of second-derivative FTIR will improve by 34%.

  16. Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.

    1988-06-01

    The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

  17. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  18. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  19. LABORATORY MEASUREMENTS OF NiH BY FOURIER TRANSFORM DISPERSED FLUORESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallon, Raphael; Richard, Cyril; Crozet, Patrick

    2009-05-01

    Red and orange bands of laser-induced fluorescence in NiH have been recorded on a Fourier transform interferometer at Doppler resolution. The spectra show strong transitions to low-lying vibronic states which are not thermally populated in a laboratory source, and therefore do not appear in laser excitation spectra, but which would be expected to contribute significantly to any stellar spectrum. The strongest bands belong to the G[{omega}' 5/2]-X {sub 2} {sup 2}{delta}{sub 3/2}, I[{omega}' 3/2]-X {sub 2}, and {sup 2}{delta}{sub 3/2} I[{omega}' 3/2]-W {sub 1} {sup 2}{pi}{sub 3/2} systems. Measurements are reported for {sup 58}NiH, {sup 60}NiH, and {sup 62}NiH.

  20. A Fourier transform spectrometer for site testing at Dome A

    NASA Astrophysics Data System (ADS)

    Li, Xin-Xing; Paine, Scott; Yao, Qi-Jun; Shi, Sheng-Cai; Matsuo, Hiroshi; Yang, Ji; Zhang, Qi-Zhou

    2009-07-01

    Observations in tera-hertz astronomy can only be done at a site with good atmospheric transmission at millimeter and submillimeter wavelengths. With extremely dry weather and calm atmosphere resulted by high altitude and cold temperature, Dome A (or Dome Argus), Antarctica, is possibly the best site on this earth for THz astronomy. To evaluate the site condition there, we are constructing a Fourier Transform Spectrometer (FTS) based on Martin-Puplett interferometer to measure the atmospheric transmission in the frequency range of 0.75~15THz. The whole FTS system is designed for unattended and outdoor (temperatures even below -70 degrees Celsius) operation. Its total power consumption is estimated to be approximately 200W. This contribution will give a brief overview of this FTS development.

  1. Process control using fiber optics and Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kemsley, E. K.; Wilson, Reginald H.

    1992-03-01

    A process control system has been constructed using optical fibers interfaced to a Fourier transform infrared (FT-IR) spectrometer, to achieve remote spectroscopic analysis of food samples during processing. The multichannel interface accommodates six fibers, allowing the sequential observation of up to six samples. Novel fiber-optic sampling cells have been constructed, including transmission and attenuated total reflectance (ATR) designs. Different fiber types have been evaluated; in particular, plastic clad silica (PCS) and zirconium fluoride fibers. Processes investigated have included the dilution of fruit juice concentrate, and the addition of alcohol to fruit syrup. Suitable algorithms have been written which use the results of spectroscopic measurements to control and monitor the course of each process, by actuating devices such as valves and switches.

  2. Mass measurement errors of Fourier-transform mass spectrometry (FTMS): distribution, recalibration, and application.

    PubMed

    Zhang, Jiyang; Ma, Jie; Dou, Lei; Wu, Songfeng; Qian, Xiaohong; Xie, Hongwei; Zhu, Yunping; He, Fuchu

    2009-02-01

    The hybrid linear trap quadrupole Fourier-transform (LTQ-FT) ion cyclotron resonance mass spectrometer, an instrument with high accuracy and resolution, is widely used in the identification and quantification of peptides and proteins. However, time-dependent errors in the system may lead to deterioration of the accuracy of these instruments, negatively influencing the determination of the mass error tolerance (MET) in database searches. Here, a comprehensive discussion of LTQ/FT precursor ion mass error is provided. On the basis of an investigation of the mass error distribution, we propose an improved recalibration formula and introduce a new tool, FTDR (Fourier-transform data recalibration), that employs a graphic user interface (GUI) for automatic calibration. It was found that the calibration could adjust the mass error distribution to more closely approximate a normal distribution and reduce the standard deviation (SD). Consequently, we present a new strategy, LDSF (Large MET database search and small MET filtration), for database search MET specification and validation of database search results. As the name implies, a large-MET database search is conducted and the search results are then filtered using the statistical MET estimated from high-confidence results. By applying this strategy to a standard protein data set and a complex data set, we demonstrate the LDSF can significantly improve the sensitivity of the result validation procedure.

  3. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  4. Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1992-01-01

    Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.

  5. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Treesearch

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  6. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  7. Theoretical analysis of the sound absorption characteristics of periodically stiffened micro-perforated plates

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-An; Wang, Xiao-Ming; Mei, Yu-Lin

    2014-10-01

    The vibro-acoustic responses and sound absorption characteristics of two kinds of periodically stiffened micro-perforated plates are analyzed theoretically. The connected periodical structures of the stiffened plates can be ribs or block-like structures. Based on fundamental acoustic formulas of the micro-perforated plate of Maa and Takahashi, semi-analytical models of the vibrating stiffened plates are developed in this paper. Approaches like the space harmonicmethod, Fourier transforms and finite elementmethod (FEM) are adopted to investigate both kinds of the stiffened plates. In the present work, the vibro-acoustic responses of micro-perforated stiffened plates in the wavenumber space are expressed as functions of plate displacement amplitudes. After approximate numerical solutions of the amplitudes, the vibration equations and sound absorption coefficients of the two kinds of stiffened plates in the physical space are then derived by employing the Fourier inverse transform. In numerical examples, the effects of some physical parameters, such as the perforation ratio, incident angles and periodical distances etc., on the sound absorption performance are examined. The proposed approaches are also validated by comparing the present results with solutions of Takahashi and previous studies of stiffened plates. Numerical results indicate that the flexural vibration of the plate has a significant effect on the sound absorption coefficient in the water but has little influence in the air.

  8. Early Salt Stress Effects on the Changes in Chemical Composition in Leaves of Ice Plant and Arabidopsis. A Fourier Transform Infrared Spectroscopy Study1

    PubMed Central

    Yang, Jyisy; Yen, Hungchen E.

    2002-01-01

    A technique based on Fourier transform infrared (FT-IR) spectrometry was developed to detect the corresponding changes in chemical composition associated with the rapid changes in sodium and water content in 200 mm NaCl-stressed halophyte ice plants (Mesembryanthemum crystallinum). The changes in glycophyte Arabidopsis stressed with 50 mm NaCl were also examined for comparison. The obtained IR spectra were further processed by deconvolution and curve fitting to examine the chemical nature of the responding sources in the leaves. Using three stages of ice plant leaves, absorption bands corresponding to carbohydrates, cell wall pectin, and proteins were identified, with distinct IR spectra representing each developmental stage. Within 48 h of mild salt stress, the absorption band intensities in the fingerprint region increased continuously in both plants, suggesting that the carbon assimilation was not affected at the early stage of stress. The intensities of ester and amide I absorption bands decreased slightly in Arabidopsis but increased in ice plant, suggesting that the cell expansion and protein synthesis ceased in Arabidopsis but continued in ice plant. In both plants, the shift in amide I absorption band was observed hourly after salt stress, indicating a rapid conformational change of cellular proteins. Analyses of the ratio between major and minor amide I absorption band revealed that ice plant was able to maintain a higher-ordered form of proteins under stress. Furthermore, the changes in protein conformation showed a positive correlation to the leaf sodium contents in ice plant, but not in Arabidopsis. PMID:12376666

  9. Fourier transform microwave spectroscopy of the SiCl+ ion

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Cabezas, Carlos; Endo, Yasuki

    2018-03-01

    Fourier transform microwave spectra for the J = 1 ← 0 and 2 ← 1 rotational transitions of the SiCl+ ion were observed for two isotopologues (35 Cl and 37 Cl) in the ground and the first excited vibrational states of the ground 1Σ+ electronic state. Thanks to the high resolution of the FTMW spectrometer, hyperfine structures due to the quadrupole moment of the chlorine nucleus and the nuclear spin-rotation interaction were fully resolved. The observed FTMW spectra were combined with previously reported MMW and diode laser spectra in an analysis to determine the mass-independent Dunham coefficients Uk,l as well as a mass scaling parameter Δ01Cl = - 0.856 (30) . The equilibrium bond length of SiCl+ determined is re = 1.9439729 (10) Å and the nuclear quadrupole coupling constant of Si35 Cl+ is eQqe = - 11.8788 (23) MHz.

  10. A Fourier transform with speed improvements for microprocessor applications

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C.; Rochelle, R.

    1980-01-01

    A fast Fourier transform algorithm for the RCA 1802microprocessor was developed for spacecraft instrument applications. The computations were tailored for the restrictions an eight bit machine imposes. The algorithm incorporates some aspects of Walsh function sequency to improve operational speed. This method uses a register to add a value proportional to the period of the band being processed before each computation is to be considered. If the result overflows into the DF register, the data sample is used in computation; otherwise computation is skipped. This operation is repeated for each of the 64 data samples. This technique is used for both sine and cosine portions of the computation. The processing uses eight bit data, but because of the many computations that can increase the size of the coefficient, floating point form is used. A method to reduce the alias problem in the lower bands is also described.

  11. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  12. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  13. Dispersive Fourier transformation for megahertz detection of coherent stokes and anti-stokes Raman spectra

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.

    2017-11-01

    In many fields of study, from coherent Raman microscopy on living cells to time-resolved coherent Raman spectroscopy of gas-phase turbulence and combustion reaction dynamics, the need for the capability to time-resolve fast dynamical and nonrepetitive processes has led to the continued development of high-speed coherent Raman methods and new high-repetition rate laser sources, such as pulse-burst laser systems. However, much less emphasis has been placed on our ability to detect shot to shot coherent Raman spectra at equivalently high scan rates, across the kilohertz to megahertz regime. This is beyond the capability of modern scientific charge coupled device (CCD) cameras, for instance, as would be employed with a Czerny-Turner type spectrograph. As an alternative detection strategy with megahertz spectral detection rate, we demonstrate dispersive Fourier transformation detection of pulsed (∼90 ps) coherent Raman signals in the time-domain. Instead of reading the frequency domain signal out using a spectrometer and CCD, the signal is transformed into a time-domain waveform through dispersive Fourier transformation in a long single-mode fiber and read-out with a fast sampling photodiode and oscilloscope. Molecular O- and S-branch rotational sideband spectra from both N2 and H2 were acquired employing this scheme, and the waveform is fitted to show highly quantitative agreement with a molecular model. The total detection time for the rotational spectrum was 20 ns, indicating an upper limit to the detection frequency of ∼50 MHz, significantly faster than any other reported spectrally-resolved coherent anti-Stokes Raman detection strategy to date.

  14. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    PubMed Central

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.

    2016-01-01

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. PMID:26732243

  15. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems

    DOE PAGES

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; ...

    2016-02-15

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less

  16. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less

  17. Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods

    NASA Astrophysics Data System (ADS)

    Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud

    2012-01-01

    The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.

  18. Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy

    PubMed Central

    Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.

    2017-01-01

    Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168

  19. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2009-05-01

    OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.

  20. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems.

    PubMed

    Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-02-08

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.

  1. H∞ Robust Control of a Large-Piston MEMS Micromirror for Compact Fourier Transform Spectrometer Systems

    PubMed Central

    Li, Mengyuan; Zhang, Yi; Chen, Chang; Peng, Zhangming; Su, Shaohui

    2018-01-01

    Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. PMID:29419765

  2. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  3. Secure multi-party quantum summation based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Yi; Ye, Tian-Yu

    2018-06-01

    In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.

  4. Vesicle sizing by static light scattering: a Fourier cosine transform approach

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Hallett, F. Ross

    1995-08-01

    A Fourier cosine transform method, based on the Rayleigh-Gans-Debye thin-shell approximation, was developed to retrieve vesicle size distribution directly from the angular dependence of scattered light intensity. Its feasibility for real vesicles was partially tested on scattering data generated by the exact Mie solutions for isotropic vesicles. The noise tolerance of the method in recovering unimodal and biomodal distributions was studied with the simulated data. Applicability of this approach to vesicles with weak anisotropy was examined using Mie theory for anisotropic hollow spheres. A primitive theory about the first four moments of the radius distribution about the origin, excluding the mean radius, was obtained as an alternative to the direct retrieval of size distributions.

  5. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  6. Motion detection using extended fractional Fourier transform and digital speckle photography.

    PubMed

    Bhaduri, Basanta; Tay, C J; Quan, C; Sheppard, Colin J R

    2010-05-24

    Digital speckle photography is a useful tool for measuring the motion of optically rough surfaces from the speckle shift that takes place at the recording plane. A simple correlation based digital speckle photographic system has been proposed that implements two simultaneous optical extended fractional Fourier transforms (EFRTs) of different orders using only a single lens and detector to simultaneously detect both the magnitude and direction of translation and tilt by capturing only two frames: one before and another after the object motion. The dynamic range and sensitivity of the measurement can be varied readily by altering the position of the mirror/s used in the optical setup. Theoretical analysis and experiment results are presented.

  7. Fast Fourier transform-based Retinex and alpha-rooting color image enhancement

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.; Gonzales, Analysa M.

    2015-05-01

    Efficiency in terms of both accuracy and speed is highly important in any system, especially when it comes to image processing. The purpose of this paper is to improve an existing implementation of multi-scale retinex (MSR) by utilizing the fast Fourier transforms (FFT) within the illumination estimation step of the algorithm to improve the speed at which Gaussian blurring filters were applied to the original input image. In addition, alpha-rooting can be used as a separate technique to achieve a sharper image in order to fuse its results with those of the retinex algorithm for the sake of achieving the best image possible as shown by the values of the considered color image enhancement measure (EMEC).

  8. Reference ultraviolet wavelengths of CrIII measured by Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Smith, P. L.

    2008-10-01

    We report CrIII ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d34s-3d34p CrIII transition lines, in the spectral range 38000 to 49000 cm-1 (2632 to 2041 Å), the strongest having wavelength uncertainties less than one part in 107, are presented.

  9. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  10. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  11. Matrix form for the instrument line shape of Fourier-transform spectrometers yielding a fast integration algorithm to theoretical spectra.

    PubMed

    Desbiens, Raphaël; Tremblay, Pierre; Genest, Jérôme; Bouchard, Jean-Pierre

    2006-01-20

    The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O(N log2 N), based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.

  12. A Ka-band chirped-pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2012-10-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.

  13. Identification of the sex pheromone secreted by a nettle moth, Monema flavescens, using gas chromatography/fourier transform infrared spectroscopy.

    PubMed

    Shibasaki, Hiroshi; Yamamoto, Masanobu; Yan, Qi; Naka, Hideshi; Suzuki, Toshiro; Ando, Tetsu

    2013-03-01

    The nettle moth Monema flavescens (Limacodidae) is a defoliator of fruit trees, such as Chinese plum and persimmon. The larvae of this species have spines containing a poison that causes serious irritation and inflammation in humans. Coupled gas chromatography-electroantennogram detection and gas chromatography/mass spectrometry analyses of a crude pheromone extract, combined with derivatization, indicated that female moths produced 8-decen-1-ol and 7,9-decadien-1-ol at a ratio of approximately 9:1. The E configuration of the double bonds was assigned for both components from infrared spectra, recorded on a gas chromatograph/Fourier transform-infrared spectrophotometer equipped with a zinc selenide disk cooled to -30 °C. The monoenyl and dienyl alcohols had absorptions characteristic of E geometry at 966 and 951 cm(-1), respectively. A band chromatogram at 951 cm(-1) was useful for distinguishing geometric isomers, because terminal conjugated diene are difficult to resolve, even on high polarity columns. Furthermore, we identified the Z configuration of the same 7,9-dienyl alcohol secreted by another nettle moth, Parasa lepida lepida, through the absence of this absorption. In field trials, lures baited with a 9:1 mixture of (E)-8-decen-1-ol and (E)-7,9-decadien-1-ol attracted M. flavescens males. Furthermore, the field trials indicated that contamination with the (Z)-diene reduced catches to the pheromone mixture more than did contamination with the (Z)-monoene.

  14. Solubilization of spider silk proteins and its structural analysis using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Osbin, K.; Jayan, Manuel; Bhadrakumari, S.; Predeep, P.

    2017-06-01

    This study investigates the presence of various amide bands present in different spider silk species, which provides extraordinary physical properties. Three different spider silks were collected from Western Ghats region. The collected spider silks samples belonging to the spider Heteropoda venatoria (species 1), Hersilia savignyi (species 2) and Pholcus phalangioides (species 3). Fourier transform infrared (FTIR) spectra reveals the protein peaks in the amide I, II, and III regions in all the three types of spider silk species.

  15. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, J.

    1999-11-01

    The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.

  17. Kinetics of lisinopril intramolecular cyclization in solid phase monitored by Fourier transform infrared microscopy.

    PubMed

    Widjaja, Effendi; Tan, Wei Jian

    2008-08-01

    The solid-state intramolecular cyclization of lisinopril to diketopiperazine was investigated by in situ Fourier transform infrared (FT-IR) microscopy. Using a controllable heating cell, the isothermal transformation was monitored in situ at 147.5, 150, 152.5, 155, and 157.5 degrees C. The collected time-dependent FT-IR spectra at each isothermal temperature were preprocessed and analyzed using a multivariate chemometric approach. The pure component spectra of the observable component (lisinopril and diketopiperazine) were resolved and their time-dependent relative contributions were also determined. Model-free and various model fitting methods were implemented in the kinetic analysis to estimate the activation energy of the intramolecular cyclization reaction. Arrhenius plots indicate that the activation energy is circa 327 kJ/mol.

  18. Retrieval Analysis of the CO2 1.6 μm Band in Solar Absorption Spectra Measured by a Ground-Based High-Resolution Fourier Transform Spectrometer at Tsukuba

    NASA Astrophysics Data System (ADS)

    Ohyama, H.; Morino, I.; Nagahama, T.; Suto, H.; Oguma, H.; Machida, T.; Sugimoto, N.; Nakane, H.; Nakagawa, K.

    2006-12-01

    The global measurements of greenhouse gases from space are being planned, such as GOSAT (Greenhouse gases Observing SATellite) and OCO (Orbiting Carbon Observatory). Satellite remote sensing needs validations with other measurement techniques, for example, in-situ or sampling measurement by aircraft or ground station, or remote sensing measurement by ground-based Fourier Transform Spectrometer (FTS). The ground-based FTS measurement can provide the column amounts of atmospheric composition by a retrieval analysis with relatively high precision. In 2001, we started a project to observe the atmospheric compositions in solar absorption spectra by a ground- based high-resolution FTS (Bruker IFS 120 HR) located at Tsukuba, Japan. Three years ago, optical components of the FTS were replaced for measuring greenhouse gases such as carbon dioxide (CO2) and methane (CH4) in the near-infrared region: a CaF2 beam splitter, an InSb detector, and a 1.4-2.4 μm optical filter. The measurements were carried out once a day for ~100 days per year. We also made simultaneous FTS and aircraft in-situ measurements on August 10, 2004 and March 30, 2005. The retrieval analysis was performed for the measured spectra in the CO2 1.6 μm band. We used SEASCRAPE PLUS (Sequential Evaluation Algorithm for Simultaneous and Concurrent Retrieval of Atmospheric Parameter Estimates PLUS, Remote Sensing Analysis Systems, Inc.) as a retrieval analysis program. The column amounts were compared with those derived from in-situ measurements complemented by model data; differences are less than 1%. We have derived the diurnal variations of CO2 on the same days as in-situ measurements, and they showed tendencies similar to the tower measurements at the Meteorological Research Institute in Tsukuba.

  19. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    PubMed

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. (q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe

    2010-10-15

    From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.

  1. SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Bernier, A.-P.; Rousseau-Nepton, L.; Alarie, A.; Robert, C.; Joncas, G.; Thibault, S.; Grandmont, F.

    2010-07-01

    We describe the concept of a new instrument for the Canada-France-Hawaii telescope (CFHT), SITELLE (Spectromètre Imageur à Transformée de Fourier pour l'Etude en Long et en Large de raies d'Emission), as well as a science case and a technical study of its preliminary design. SITELLE will be an imaging Fourier transform spectrometer capable of obtaining the visible (350 nm - 950 nm) spectrum of every source of light in a field of view of 15 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R = 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional integral field spectrographs, such as GMOS-IFU on Gemini or the future MUSE on the VLT. It is a legacy from BEAR, the first imaging FTS installed on the CFHT and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  2. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  3. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  4. Determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.

  5. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    NASA Astrophysics Data System (ADS)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-10-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  6. An automatic frequency control loop using overlapping DFTs (Discrete Fourier Transforms)

    NASA Technical Reports Server (NTRS)

    Aguirre, S.

    1988-01-01

    An automatic frequency control (AFC) loop is introduced and analyzed in detail. The new scheme is a generalization of the well known Cross Product AFC loop that uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve. Linear analysis is included and supported with computer simulations. The algorithm is tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of loss of lock is estimated via computer simulations. The algorithm discussed is a suboptimum tracking scheme with a larger frequency error variance compared to an optimum strategy, but offers simplicity of implementation and a very low operating threshold CNR. This technique can be applied during the carrier acquisition and re-acquisition process in the Advanced Receiver.

  7. Fourier transform infrared emission spectra of MnH and MnD

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  8. Reference Ultraviolet Wavelengths of Cr III Measured by Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Smillie, D.G.; Pickering, J.C.; Smith, P.L.

    2008-01-01

    We report Cr III ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d(exp 3)4s- 3d(exp 3)4p Cr III transition lines, in the spectral range 38,000 to 49,000 cm(exp -1) (2632 to 2041 A), the strongest having wavelength uncertainties less than one part in 10(exp 7), are presented.

  9. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.

  10. Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transformed Mid-Infrared Spectroscopy (FT-IR).

    PubMed

    Badhan, Ajay; Wang, Yuxi; McAllister, Tim A

    2017-01-01

    Fourier transformed mid-infrared spectroscopy (FTIR) is a powerful tool for compositional analysis of plant cell walls (Acebes et al., Front Plant Sci 5:303, 2014; Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Badhan et al., BioMed Res Int 2015: 562952, 2015; Roach et al., Plant Physiol 156:1351-1363, 2011). The infrared spectrum generates a fingerprint of a sample with absorption peaks corresponding to the frequency of vibrations between the bonds of the atoms making up the material. Here, we describe a method focused on the use of FTIR in combination with principal component analysis (PCA) to characterize the composition of the plant cell wall. This method has been successfully used to study complex enzyme saccharification processes like rumen digestion to identify recalcitrant moieties in low-quality forage which resist rumen digestion (Badhan et al., BioMed Res Int 2015: 562952, 2015), as well as to characterize cell wall mutant lines or transgenic lines expressing exogenous hydrolases (Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Roach et al., Plant Physiol 156:1351-1363, 2011). The FTIR method described here facilitates high-throughput identification of the major compositional differences across a large set of samples in a low cost and nondestructive manner.

  11. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    PubMed

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  12. High Resolution Far Infrared Fourier Transform Spectroscopy of the NH_2 Radical.

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Pirali, O.; Balcon, D.; Vervloet, M.

    2011-06-01

    First identified toward Sgr B2, the NH_2 radical has recently been detected in the interstellar medium by the HIFI instrument on board of Herschel. Despite the fact that this radical has not been detected in brown dwarfs and exoplanets yet, it is already included in physical and chemical models of those environments (temperature higher than 2000 K expected in several objects). Its detection in those objects will depend on the existence of a reliable high temperature and high resolution spectroscopic database on the NH_2 radical.The absorption spectrum of NH_2 has been recorded between 15 and 700 Cm-1 at the highest resolution available using the Bruker IFS125HR Fourier transform interferometer connected to the far infrared AILES beamline at SOLEIL (R=0.001 Cm-1). The radical was produced by an electrical discharge (DC) through a continuous flow of NH_3 and He using the White-type discharge cell developped on the beamline (optical path: 24m). Thanks to the brilliance of the synchrotron radiation, more than 700 pure rotational transitions of NH_2 have been identified with high N values (NMax=25) in its fundamental and first excited vibrational modes. By comparison to the previous FT spectroscopic study on that radical in the FIR spectral range, asymmetric splitting as well as fine and hyperfine structure have been resolved for several transitions. E. F. Van Dishoeck, D. J. Jansen, P. Schilke, T. G. Phillips The Astrophysical Journal 416, L83-L86 (1993) C. M. Persson, J. H. Black, J. Cernicharo et al. Astronomy and Astrophysics 521, L45 (2010) K. Lodders and B. Fegley, Jr Icarus 155, 393-424 (2002) I. Morino and K. Kawaguchi Journal of Molecular Spectroscopy 182, 428-438 (1997)

  13. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  14. Fourier Transform Infrared Analysis of Urinary Calculi and Metabolic Studies in a Group of Sicilian Children.

    PubMed

    D'Alessandro, Maria Michela; Gennaro, Giuseppe; Tralongo, Pietro; Maringhini, Silvio

    2017-05-01

    Prevalence of urinary calculi in children has been increasing in the past years. We performed an analysis of the chemical composition of stones formers of the pediatric population in our geographical area over the years 2005 to 2013. Fourier transform infrared spectroscopy was employed for the determination of the calculus composition of a group of Sicilian children, and metabolic studies were performed to formulate the correct diagnosis and establish therapy. The prevalence of stone formation was much higher for boys than for girls, with a sex ratio of 1.9:1. The single most frequent component was found to be calcium oxalate monohydrate, and calcium oxalates (pure or mixed calculi) were the overall most frequent components. Calcium phosphates ranked 2nd for frequency, most often in mixed calculi, while urates ranked 3rd. The metabolic disorder most often associated with pure calcium oxalate monohydrate calculi was hypocitraturia, while hyperoxaluria was predominantly associated with calcium oxalate dihydrate calculi. Mixed calculi had the highest prevalence in our pediatric population. Our data showed that Fourier transform infrared spectroscopy was a useful tool for the determination of the calculi composition.

  15. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  16. Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.

    PubMed

    Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng

    2018-06-04

    In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.

  17. The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Vladimirov, Gleb; Zherebker, Alexander; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2017-04-01

    We report the investigation of the hydrothermal liquefaction products of the Spirulina platensis microalgae by using the Fourier transform ion cyclotron resonance mass spectrometry. The hydrothermal liquefaction produced two fractions: one with boiling temperature below 300℃ and the dense residue that remained in the reactor. It was observed that N 2 and N classes of compounds that dominate in the positive ESI Fourier transform ion cyclotron resonance spectra for both fractions, and that the light fraction is considerably more saturated then the heavy one. The performed hydrogen/deuterium exchange reaction indicated the presence of the onium compounds in the bio-oil.

  18. Classification of footwear outsole patterns using Fourier transform and local interest points.

    PubMed

    Richetelli, Nicole; Lee, Mackenzie C; Lasky, Carleen A; Gump, Madison E; Speir, Jacqueline A

    2017-06-01

    Successful classification of questioned footwear has tremendous evidentiary value; the result can minimize the potential suspect pool and link a suspect to a victim, a crime scene, or even multiple crime scenes to each other. With this in mind, several different automated and semi-automated classification models have been applied to the forensic footwear recognition problem, with superior performance commonly associated with two different approaches: correlation of image power (magnitude) or phase, and the use of local interest points transformed using the Scale Invariant Feature Transform (SIFT) and compared using Random Sample Consensus (RANSAC). Despite the distinction associated with each of these methods, all three have not been cross-compared using a single dataset, of limited quality (i.e., characteristic of crime scene-like imagery), and created using a wide combination of image inputs. To address this question, the research presented here examines the classification performance of the Fourier-Mellin transform (FMT), phase-only correlation (POC), and local interest points (transformed using SIFT and compared using RANSAC), as a function of inputs that include mixed media (blood and dust), transfer mechanisms (gel lifters), enhancement techniques (digital and chemical) and variations in print substrate (ceramic tiles, vinyl tiles and paper). Results indicate that POC outperforms both FMT and SIFT+RANSAC, regardless of image input (type, quality and totality), and that the difference in stochastic dominance detected for POC is significant across all image comparison scenarios evaluated in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  20. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    PubMed

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  1. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  2. Fourier transform spectroscopy of the nu3 band of the N3 radical

    NASA Technical Reports Server (NTRS)

    Brazier, C. R.; Bernath, P. F.; Burkholder, James B.; Howard, Carleton J.

    1988-01-01

    The nu3 transitions of N3 radicals produced by HN3-Cl reactions in a multipass cell (effective path length 100 m) are investigated experimentally using a Fourier-transform spectrometer with maximum resolution 0.004/cm. A total of 176 rotation-vibration lines are listed in a table and used, in combination with published data on 240 optical lines (Douglas and Jones, 1965), to determine the nu3 molecular constants. The lower-than-expected value of the nu3 fundamental frequency (1644.6784/cm) is attributed to the vibronic interaction discussed by Kawaguchi et al. (1981).

  3. Analysis of the Advantages and Limitations of Stationary Imaging Fourier Transform Spectrometer. Revised

    NASA Technical Reports Server (NTRS)

    Beecken, Brian P.; Kleinman, Randall R.

    2004-01-01

    New developments in infrared sensor technology have potentially made possible a new space-based system which can measure far-infrared radiation at lower costs (mass, power and expense). The Stationary Imaging Fourier Transform Spectrometer (SIFTS) proposed by NASA Langley Research Center, makes use of new detector array technology. A mathematical model which simulates resolution and spectral range relationships has been developed for analyzing the utility of such a radically new approach to spectroscopy. Calculations with this forward model emulate the effects of a detector array on the ability to retrieve accurate spectral features. Initial computations indicate significant attenuation at high wavenumbers.

  4. Laser and Fourier transform spectroscopy of 7Li88Sr

    NASA Astrophysics Data System (ADS)

    Schwanke, Erik; Knöckel, Horst; Stein, Alexander; Pashov, Asen; Ospelkaus, Silke; Tiemann, Eberhard

    2017-12-01

    LiSr was produced in a heat-pipe oven and its thermal emission spectrum around 9300 cm-1 was recorded by a high resolution Fourier transform spectrometer. In addition, selected lines of the spectrum of deeply bound vibrational levels of the {1}2{{{Σ }}}+ and {2}2{{{Σ }}}+ states were studied using laser excitation to facilitate the assignment of the lines. The ground state could be described for {v}{\\prime\\prime }=0 to 2, {N}{\\prime\\prime } up to 105 and the {2}2{{{Σ }}}+ state for {v}{\\prime }=0 up to {N}{\\prime }=68. For both states, Dunham coefficients, spin-rotation parameters and potential energy curves were evaluated. A coupling of the {2}2{{{Σ }}}+ state to the {1}2{{\\Pi }} state was observed, allowing a local description with Dunham coefficients of the {1}2{{\\Pi }} state and an approximate evaluation of the coupling strength.

  5. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can

  6. Fourier transform infrared spectroscopy for Kona coffee authentication.

    PubMed

    Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X

    2009-06-01

    Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.

  7. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver.

    PubMed

    Bamba, Takeshi; Fukusaki, Ei-Ichiro; Nakazawa, Yoshihisa; Kobayashi, Akio

    2002-10-01

    The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.

  8. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  9. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er, A.; Güzelçimen, F.; Başar, Gö.

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the firstmore » time.« less

  10. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  11. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  12. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGES

    Paul, J.; Dey, P.; Tokumoto, T.; ...

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  13. High-resolution Fourier transform spectroscopy of the Meinel system of OH

    NASA Technical Reports Server (NTRS)

    Abrams, Mark C.; Davis, Sumner P.; Rao, M. L. P.; Engleman, Rolf, Jr.; Brault, James W.

    1994-01-01

    The infrared spectrum of the hydroxyl radical OH, between 1850 and 9000/cm has been measured with a Fourier transform spectrometer. The source, a hydrogen-ozone diffusion flame, was designed to study the excitation of rotation-vibration levels of the OH Meinel bands under conditions similar to those in the upper atmosphere which produce the nighttime OH airglow emission. Twenty-three bands were observed: nine bands in the Delta upsilon = 1 sequence, nine bands in the Delta upsilon = 2 sequence, and five bands in the Delta upsilon = 3 sequence. A global nonlinear least-squares fit of 1696 lines yielded molecular parameters with a standard deviation of 0.003/cm. Term values are computed, and transition frequencies in the Delta upsilon = 3, 4, 5, 6 sequences in the near-infrared are predicted.

  14. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    PubMed Central

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  15. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    NASA Astrophysics Data System (ADS)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  16. a Low-Cost Chirped-Pulse Fourier Transform Microwave Spectrometer for Undergraduate Physical Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Finneran, Ian; Blake, Geoffrey

    2014-06-01

    We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.

  17. Using the Fast Fourier Transform to Accelerate the Computational Search for RNA Conformational Switches

    PubMed Central

    Senter, Evan; Sheikh, Saad; Dotu, Ivan; Ponty, Yann; Clote, Peter

    2012-01-01

    Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/. PMID:23284639

  18. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    PubMed

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer

    NASA Astrophysics Data System (ADS)

    Georges, James A., III

    2007-09-01

    This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

  20. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  1. Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Lang, Jun

    2015-03-01

    In this paper, we propose a novel color image encryption method by using Color Blend (CB) and Chaos Permutation (CP) operations in the reality-preserving multiple-parameter fractional Fourier transform (RPMPFRFT) domain. The original color image is first exchanged and mixed randomly from the standard red-green-blue (RGB) color space to R‧G‧B‧ color space by rotating the color cube with a random angle matrix. Then RPMPFRFT is employed for changing the pixel values of color image, three components of the scrambled RGB color space are converted by RPMPFRFT with three different transform pairs, respectively. Comparing to the complex output transform, the RPMPFRFT transform ensures that the output is real which can save storage space of image and convenient for transmission in practical applications. To further enhance the security of the encryption system, the output of the former steps is scrambled by juxtaposition of sections of the image in the reality-preserving multiple-parameter fractional Fourier domains and the alignment of sections is determined by two coupled chaotic logistic maps. The parameters in the Color Blend, Chaos Permutation and the RPMPFRFT transform are regarded as the key in the encryption algorithm. The proposed color image encryption can also be applied to encrypt three gray images by transforming the gray images into three RGB color components of a specially constructed color image. Numerical simulations are performed to demonstrate that the proposed algorithm is feasible, secure, sensitive to keys and robust to noise attack and data loss.

  2. Evaluation of hydrogen absorption cells for observations of the planetary coronas

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Taguchi, M.; Yoshioka, K.; Ishida, T.; de Oliveira, N.; Ito, K.; Kameda, S.; Suzuki, F.; Yoshikawa, I.

    2018-02-01

    Newly designed Lyman-alpha absorption cells for imaging hydrogen planetary corona were characterized using an ultra high resolution Fourier transform spectrometer installed on the DESIRS (Dichroïsme Et Spectroscopie par Interaction avec le Rayonnement Synchrotron) beamline of Synchrotron SOLEIL in France. The early absorption cell installed in the Japanese Mars orbiter NOZOMI launched in 1998 had not been sufficiently optimized due to its short development time. The new absorption cells are equipped with the ability to change various parameters, such as filament shape, applied power, H2 gas pressure, and geometrical configuration. We found that the optical thickness of the new absorption cell was ˜4 times higher than the earlier one at the center wavelength of Lyman-alpha absorption, by optimizing the condition to promote thermal dissociation of H2 molecules into two H atoms on a hot tungsten filament. The Doppler temperature of planetary coronas could be determined with an accuracy better than 100 K with the performance of the newly developed absorption cell.

  3. Chiral Process Monitoring Using Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Neill, Justin L.; Muckle, Matt; Pate, Brooks

    2017-06-01

    We present the application of Fourier transform microwave (FTMW) spectroscopy in monitoring the chiral purity of components in a reaction mixture. This is of particular interest due to the increasing use of continuous pharmaceutical manufacturing processes, in which a number of attributes (including the chiral purity of the product) can change on short time scales. Therefore, new techniques that can accomplish this measurement rapidly are desired. The excellent specificity of FTMW spectroscopy, coupled with newly developed techniques for measuring enantiomeric excess in a mixture, have motivated this work. In collaboration with B. Frank Gupton (Virginia Commonwealth University), we are testing this application first with the synthesis of artemisinin. Artemisinin, a common drug for malaria treatment, is of high global health interest and subject to supply shortages, and therefore a strong candidate for continuous manufacturing. It also has moderately high molecular weight (282 amu) and seven chiral centers, making it a good candidate to test the capabilities of FTMW spectroscopy. Using a miniature cavity-enhanced FTMW spectrometer design, we aim to demonstrate selective component quantification in the reaction mixture. Future work that will be needed to fully realize this application will be discussed. R.D. Suenram, J.U. Grabow, A.Zuban, and I.Leonov, Rev. Sci. Instrum. 70, 2127 (1999).

  4. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) Hyperspectral Data

    DTIC Science & Technology

    2002-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager ( GIFTS -IOMI) Hyperspectral Data...water quality assessment. OBJECTIVES The objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS - IOMI...environment once GIFTS -IOMI is stationed over the Indian Ocean. The system will provide specialized methods for the characterization of the atmospheric

  5. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  6. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  7. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  8. Using the fast fourier transform in binding free energy calculations.

    PubMed

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Predicted Deepwater Bathymetry from Satellite Altimetry: Non-Fourier Transform Alternatives

    NASA Astrophysics Data System (ADS)

    Salazar, M.; Elmore, P. A.

    2017-12-01

    Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb's phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of the step and saw-tooth functions and resulted in lower RMS error with fewer coefficients. This investigation, thus, examined the feasibility of utilizing sparser base functions such as the Mexican Hat Wavelet, which is local in space, to first calculate the gravitational potential, and then relate it to sea-floor topography.

  10. Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.

    2002-01-01

    This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).

  11. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  12. A near-infrared Fourier transform Raman spectroscopy of epidermal keratinocytes: changes in the protein?DNA structure following malignant transformation

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoling; Butler, Ian S.; Kremer, Richard

    2005-01-01

    We report here the use of near-infrared (NIR) Fourier transform (FT) Raman spectroscopy to analyze normal human epidermal keratinocytes prior to and following malignant transformation. Our analysis indicates specific Raman spectral differences between immortalized (HPK1A) and malignant ras transformed (HPK1A- ras) cells. In addition, striking spectral differences are seen in the DNA isolated from these cells and particularly in the 843/810 cm -1 ratio with values of 1.6 ± 0.13 in HPK1A cells and 0.68 ± 0.09 in HPK1A- ras cells (mean ± S.D., n = 12, P < 0.001) indicating specific alterations in the backbone conformation markers following malignant transformation. Subsequently, we analysed the effect of a strong inhibitor of keratinocyte growth, the Vitamin D analog EB1089, on the Raman spectra of intact cells and on the 843/810 cm -1 ratio in the DNA isolated from both cell lines. Specific changes were observed in intact cells in the 1300-750 cm -1 region. Furthermore, the 843/810cm -1 ratio of isolated DNA from HPK1A cells was not affected by EB1089 but significantly increased in DNA isolated from HPK1A-ras cells so much that it became closer to the value observed for HPK1A cells (1.07 ± 0.10). Our data suggest that Raman analysis of DNA and in particular the 843/810cm -1 ratio can provide useful indices of malignant transformation and efficacy of anticancer agents.

  13. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  14. Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallacher, K.; Millar, R. W.; Paul, D. J., E-mail: Douglas.Paul@glasgow.ac.uk

    2016-02-29

    Mid-infrared intersubband absorption from p-Ge quantum wells with Si{sub 0.5}Ge{sub 0.5} barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm.

  15. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  16. Fourier analysis and signal processing by use of the Moebius inversion formula

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.

    1990-01-01

    A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.

  17. Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.

    2018-07-01

    We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind dispersion measure search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero false alarm rate. The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multibeam observations made by telescopes equipped with phased array feeds.

  18. Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.

    2018-04-01

    We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind DM search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero False Alarm Rate (FAR). The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multi-beam observations made by telescopes equipped with phased array feeds.

  19. Internal calibration on adjacent samples (InCAS) with Fourier transform mass spectrometry.

    PubMed

    O'Connor, P B; Costello, C E

    2000-12-15

    Using matrix-assisted laser desorption/ionization (MAL DI) on a trapped ion mass spectrometer such as a Fourier transform mass spectrometer (FTMS) allows accumulation of ions in the cell from multiple laser shots prior to detection. If ions from separate MALDI samples are accumulated simultaneously in the cell, ions from one sample can be used to calibrate ions from the other sample. Since the ions are detected simultaneously in the cell, this is, in effect, internal calibration, but there are no selective desorption effects in the MALDI source. This method of internal calibration with adjacent samples is demonstrated here on cesium iodide clusters, peptides, oligosaccharides, poly(propylene glycol), and fullerenes and provides typical FTMS internal calibration mass accuracy of < 1 ppm.

  20. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.