Sample records for absorption inhibitors anion-exchange

  1. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  2. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  3. Transcellular oxalate and Cl− absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate

    PubMed Central

    Freel, Robert W.; Whittamore, Jonathan M.

    2013-01-01

    Active transcellular oxalate transport in the mammalian intestine contributes to the homeostasis of this important lithogenic anion. Several members of the Slc26a gene family of anion exchangers have a measurable oxalate affinity and are expressed along the gut, apically and basolaterally. Mouse Slc26a6 (PAT1) targets to the apical membrane of enterocytes in the small intestine, and its deletion results in net oxalate absorption and hyperoxaluria. Apical exchangers of the Slc26a family that mediate oxalate absorption have not been established, yet the Slc26a3 [downregulated in adenoma (DRA)] protein is a candidate mediator of oxalate uptake. We evaluated the role of DRA in intestinal oxalate and Cl− transport by comparing unidirectional and net ion fluxes across short-circuited segments of small (ileum) and large (cecum and distal colon) intestine from wild-type (WT) and DRA knockout (KO) mice. In WT mice, all segments demonstrated net oxalate and Cl− absorption to varying degrees. In KO mice, however, all segments exhibited net anion secretion, which was consistently, and solely, due to a significant reduction in the absorptive unidirectional fluxes. In KO mice, daily urinary oxalate excretion was reduced 66% compared with that in WT mice, while urinary creatinine excretion was unchanged. We conclude that DRA mediates a predominance of the apical uptake of oxalate and Cl− absorbed in the small and large intestine of mice under short-circuit conditions. The large reductions in urinary oxalate excretion underscore the importance of transcellular intestinal oxalate absorption, in general, and, more specifically, the importance of the DRA exchanger in oxalate homeostasis. PMID:23886857

  4. Pu Anion Exchange Process Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through themore » large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.« less

  5. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  6. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  7. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics

    DOEpatents

    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.

    2000-01-01

    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  8. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    PubMed

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  9. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.

    1986-01-01

    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  10. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization

    PubMed Central

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Reimold, Fabian; Heneghan, John F.; Nakakuki, M.; Akhavein, Arash; Ko, Shigeru; Ishiguro, Hiroshi

    2011-01-01

    The secretin-stimulated human pancreatic duct secretes HCO3−-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO3− secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl−/HCO3− exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO3− or more, mouse and rat ducts secrete ∼40–70 mM HCO3−. Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO3− secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl−/Cl− exchange and electroneutral Cl−/HCO3− exchange. gpSlc26a6 in Xenopus oocytes mediated Cl−/Cl− exchange and bidirectional exchange of Cl− for oxalate and sulfate, but Cl−/HCO3− exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl−, oxalate, and sulfate transport but no detectable Cl−/HCO3− exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of 36Cl− influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO3− secretion in species that share a high HCO3− secretory output. PMID:21593449

  11. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  12. Water permeation through anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  13. A protein with anion exchange properties found in the kidney proximal tubule.

    PubMed

    Soleimani, M; Bizal, G L; Anderson, C C

    1993-09-01

    One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.

  14. Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.

    PubMed

    Ibrahim, Mohammed E A; Lucy, Charles A

    2012-10-15

    Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Statins, fibrates, nicotinic acid, cholesterol absorption inhibitors, anion-exchange resins, omega-3 fatty acids: which drugs for which patients?

    PubMed

    Drexel, Heinz

    2009-12-01

    Classes of lipid lowering drugs differ strongly with respect to the types of lipids or lipoproteins they predominantly affect. Statins inhibit the de-novo synthesis of cholesterol. Consequently, the liver produces less VLDL, and the serum concentration primarily of LDL cholesterol (but, to a lesser extent, also of triglycerides) is lowered. Further, statins somewhat increase HDL cholesterol. There is abundant evidence that statins lower the rate of cardiovascular events. Cardiovascular risk reduction is the better, the lower the LDL cholesterol values achieved with statin therapy are. Some evidence is available that anion exchange resins which also decrease LDL cholesterol decrease vascular risk, too. This is not the case for the ezetimibe, which strongly lowers LDL cholesterol: its potential to decrease vascular risk remains to be proven. In contrast evidence for cardiovascular risk reduction through the mainly triglyceride lowering fibrates as well as for niacin is available. Niacin is the most potent HDL increasing drug currently available and besides increasing HDL cholesterol efficaciously lowers triglycerides and LDL cholesterol. Large ongoing trials address the decisive question whether treatment with fibrates and niacin provides additional cardiovascular risk reduction when given in addition to statin treatment.

  16. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  17. 8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  18. Organotin-mediated exchange diffusion of anions in human red cells

    PubMed Central

    1979-01-01

    Organotin cations (R3Sn+) form electrically neutral ion pairs with monovalent anions. It is demonstrated that the tin derivatives induce exchange diffusion of chloride in red cells and resealed ghosts, without any detectable increase of membrane permeability to net movements of chloride ions. The obligatory anion exchange is believed to be due to the permeation of electroneural ion pairs, whereas the organic cation (R3Sn+) has an extremely low membrane permeability. Exchange fluxes of chloride increased with the lipophilicity of the substituting group (R3). At the same molar concentration of organotin, the relative potencies of the tin derivatives as anion carriers (with trimethyltin as a reference) were: methyl 1, ethyl 30, propyl = phenyl 1,00, and butyl 10,000. Tributyltin-mediated anion exchange was studied in detail. The organotin-induced anion transport increased through the sequence: F- less than Cl- less than Br- less than I- = SCN- less than OH-. Partitioning of tributyltin into red cell membranes was greater in iodide than in chloride media (partition coefficients 6.6 and 1.7 x 10(- 3) cm, respectively). Bicarbonate, fluoride, nitrate, phosphate, and sulphate did not exchange with chloride in the presence of tributyltin. Chloride exchange fluxes increased linearly with tributylin concentrations up to 10(-5) M, and with chloride concentrations up to at least 0.9 M. The apparent turnover number for tributyltin-mediated chloride exchange increased from 15 to 1,350 s-1 between 0 and 38 degrees C. These figures are minimum turnover numbers, because it is not known what fraction of the organotin in the membrane exists as chloride ion pairs. PMID:479814

  19. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    NASA Astrophysics Data System (ADS)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  20. Fundamental characteristics study of anion-exchange PVDF-SiO(2) membranes.

    PubMed

    Zuo, Xingtao; Shi, Wenxin; Yu, Shuili; He, Jiajie

    2012-01-01

    A new type of poly(vinylidene fluoride)(PVDF)-SiO(2) hybrid anion-exchange membrane was prepared by blending method. The anion-exchange groups were introduced by the reaction of epoxy groups with trimethylamine (TMA). Contact angle between water and the membrane surface was measured to characterize the hydrophilicity change of the membrane surface. The effects of nano-sized SiO(2) particles in the membrane-forming materials on the membrane mechanical properties and conductivity were also investigated. The experimental results indicated that PVDF-SiO(2) anion-exchange membranes exhibited better water content, ion-exchange capacity, conductivity and mechanic properties, and so may find potential applications in alkaline membrane fuel cells and water treatment processes.

  1. Anion-exchange high-performance liquid chromatography of water-soluble chromium (VI) and chromium (III) complexes in biological materials.

    PubMed

    Suzuki, Y

    1987-04-10

    A high-performance anion-exchange liquid chromatograph coupled to visible-range (370 nm) and UV (280 nm) detectors and an atomic-absorption spectrometer allowed the rapid determination of CrVI and/or complexes of CrIII in rat plasma, erythrocyte lysate and liver supernatant treated with CrVI or CrIII in vitro. CrVI in the eluates was determined using both the visible-range detector and atomic-absorption spectrometer (AAS). The detection limits of CrVI in standard solutions using these methods were 2 and 5 ng (signal-to-noise ratio = 2), respectively. Separations of the biological components and of CrIII complexes were monitored by UV and AAS analyses, respectively. Time-related decreases of CrVI accompanied by increases in CrIII complexes were observed, indicating the reduction of CrVI by some of the biological components. The reduction rates were considerably higher in the liver supernatant and erythrocyte lysate than in the plasma. These results indicate that the anion-exchange high-performance liquid chromatographic system is useful for simultaneous determination of CrVI and CrIII complexes in biological materials.

  2. Nitrosamine, dimethylnitramine, and chloropicrin formation during strong base anion-exchange treatment.

    PubMed

    Kemper, Jerome M; Westerhoff, Paul; Dotson, Aaron; Mitch, William A

    2009-01-15

    Strong base anion-exchange resins represent an important option for water utilities and homeowners to address growing concerns with nitrate, arsenate, and perchlorate contamination of source waters. Most commercially available anion-exchange resins employ quaternary amine functional groups. Previous research has provided contradictory evidence regarding whether these resins serve as sources of nitrosamines, considered as highly carcinogenic nitrogenous disinfection byproducts (N-DBPs), even without disinfectants. For three common varieties of commercial anion-exchange resins, we evaluated the importance of releases of nitrosamines, and two other N-DBPs (dimethylnitramine and chloropicrin), when the resins were subjected to typical column flow conditions with and without free chlorine or chloramine application upstream or downstream of the columns. In the absence of disinfectants, fresh trimethylamine- and tributylamine-based type 1 and dimethylethanolamine-based type 2 anion-exchange resins usually released 2-10 ng/L nitrosamines, likely due to shedding of manufacturing impurities, with excursions of up to 20 ng/L following regeneration. However, the lack of significant nitrosamine release in a full-scale anion-exchange treatment system after multiple regeneration cycles indicates that releases may eventually subside. Resins also shed organic precursors that might contribute to nitrosamine formation within distribution systems when chloramines are applied downstream. With free chlorine or chloramine application upstream, nitrosamine concentrations were more significant, at 20-100 ng/L for the type 1 resins and approximately 400 ng/L for the type 2 resin. However, chloropicrin formation was lowest for the type 2 resin. Dimethylnitramine formation was significant with free chlorine application upstream but negligible with chloramines. Although no N-DBPs were detected in cation-exchange-based consumer point-of-use devices exposed to chlorinated or chloraminated waters

  3. Near-monodisperse sodium polymethacrylates: characterization by linear salt gradient anion-exchange chromatography

    PubMed

    Freydank; Krasia; Tiddy; Patrickios

    2000-05-01

    A family of six near-monodisperse homopolymers of sodium methacrylate (Mn = 1100, 3200, 5500, 7200, 14100, and 21000) is characterized by linear salt gradient anion-exchange chromatography. Although the retention times depend on the initial and final salt concentrations of the gradient, they are almost independent of the molecular weight of poly(sodium methacrylate). This suggests that anion-exchange chromatography is incapable of resolving mixtures of a given polyelectrolyte to their components of various molecular weights, and it is therefore impossible to identify the polydispersity of such a sample using this method. The independence of the retention times from molecular weight is also predicted by a theory based on stoichiometric mass-action ion-exchange. Using this theory and our experimental retention times, the equilibrium anion-exchange constant and the corresponding Gibbs free energy of anion-exchange of the monomer repeat unit are calculated to be around 2.1 and -1.8 kJ/mol, respectively.

  4. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    DOEpatents

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  5. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    DTIC Science & Technology

    2013-06-25

    membranes (AEMs) are being developed for potential use in fuel cell systems which include portable power applications. In a fuel cell , these membranes...Alkaline Anion Exchange Membranes Report Title ABSTRACT Anion exchange membranes (AEMs) are being developed for potential use in fuel cell systems which...include portable power applications. In a fuel cell , these membranes transport hydroxide ions from the cathode to the anode. If carbon dioxide is

  6. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  7. Suppression of H-/O2- exchange by incorporated nitride anions in the perovskite lattice

    NASA Astrophysics Data System (ADS)

    Takeiri, Fumitaka; Yajima, Takeshi; Yamamoto, Takafumi; Kobayashi, Yoji; Matsui, Toshiaki; Hester, James; Kageyama, Hiroshi

    2017-12-01

    We investigate the low temperature anion exchange behavior of hydride and oxide in perovskite oxynitrides. CaH2 reduction of (Sr1-xLax)Ti(O3-xNx) (0anion exchange of hydride for oxide rather than nitride, yielding the oxyhydride-nitride (Sr1-xLax)Ti(O3-x-yHyNx). However, the exchange of hydride is drastically suppressed with increasing nitrogen content and is completely impeded when the nitride content reaches 10% of the anionic site. This implies that the N3- anions in the oxide lattice play a crucial role in lowering diffusion of O2- (and H-). The present study indicates the necessity to consider kinetic aspects when manipulating anion compositions, in particular in a mixed anion system with a small amount of anion vacancies.

  8. Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites.

    PubMed

    Razaq, Aamir; Mihranyan, Albert; Welch, Ken; Nyholm, Leif; Strømme, Maria

    2009-01-15

    The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.

  9. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  10. Determination of dietary cadmium-induced metallothioneins in rabbit kidneys and cadmium in metallothioneins by anion-exchange high-performance liquid chromatography coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Peng, S; Shan, X Q; Zheng, Y; Jin, L Z; Xu, W B

    1991-12-06

    A rapid method is described for the determination of dietary cadmium-induced metallothioneins (MTs) in rabbit kidneys by anion-exchange high-performance liquid chromatography. Rabbit kidney MT-I and MT-II were eluted at ca. 15.0 and 18.8 min, respectively, from a DEAE-5PW anion-exchange column with a Tris-HCl buffer (0.01-0.25 M, pH 8.6) and detected by ultraviolet absorbance at 254 nm. A standard calibration curve was constructed using purified standard MT isoforms, which demonstrated an excellent linear correlation between UV absorbance peak heights and the amounts of MT isoforms. Feeding a dose of cadmium for some days resulted in an increase in MT concentrations in rabbit kidneys, but not in the livers. The cadmium concentrations in MT-I and MT-II elutions were determined by graphite furnace atomic absorption spectrometry. MT-I and MT-II showed some differences associated with the oral intake of cadmium. Dietary cadmium also caused zinc to accumulate in kidneys to some extent. The effects of dietary oleic acid on the synthesis of MTs were also studied. Based on the method of standard additions, the recovery of MTs exceeded 93% and replicated injection of samples yielded a relative standard deviation of 2.4% at an MT level of 280 micrograms/g.

  11. New Gel-Like Polymers as Selective Weak-Base Anion Exchangers

    PubMed Central

    Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej

    2015-01-01

    A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220

  12. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5.

    PubMed

    Arakawa, Hiroshi; Shirasaka, Yoshiyuki; Haga, Makoto; Nakanishi, Takeo; Tamai, Ikumi

    2012-09-01

    Fluoroquinolone antimicrobial drugs are absorbed efficiently after oral administration despite of their hydrophilic nature, implying an involvement of carrier-mediated transport in their membrane transport process. It has been that several fluoroquinolones are substrates of organic anion transporter polypeptides OATP1A2 expressed in human intestine derived Caco-2 cells. In the present study, to clarify the involvement of OATP in intestinal absorption of ciprofloxacin, the contribution of Oatp1a5, which is expressed at the apical membranes of rat enterocytes, to intestinal absorption of ciprofloxacin was investigated in rats. The intestinal membrane permeability of ciprofloxacin was measured by in situ and the vascular perfused closed loop methods. The disappeared and absorbed amount of ciprofloxacin from the intestinal lumen were increased markedly in the presence of 7,8-benzoflavone, a breast cancer resistance protein inhibitor, and ivermectin, a P-glycoprotein inhibitor, while it was decreased significantly in the presence of these inhibitors in combination with naringin, an Oatp1a5 inhibitor. Furthermore, the Oatp1a5-mediated uptake of ciprofloxacin was saturable with a K(m) value of 140 µm, and naringin inhibited the uptake with an IC(50) value of 18 µm by Xenopus oocytes expressing Oatp1a5. Naringin reduced the permeation of ciprofloxacin from the mucosal-to-serosal side, with an IC(50) value of 7.5 µm by the Ussing-type chamber method. The estimated IC(50) values were comparable to that of Oatp1a5. These data suggest that Oatp1a5 is partially responsible for the intestinal absorption of ciprofloxacin. In conclusion, the intestinal absorption of ciprofloxacin could be affected by influx transporters such as Oatp1a5 as well as the efflux transporters such as P-gp and Bcrp. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Anion exchange of the cationic layered material [Pb2F2]2+.

    PubMed

    Fei, Honghan; Pham, Catherine H; Oliver, Scott R J

    2012-07-04

    We demonstrate the complete exchange of the interlamellar anions of a 2-D cationic inorganic material. The α,ω-alkanedisulfonates were exchanged for α,ω-alkanedicarboxylates, leading to two new cationic materials with the same [Pb(2)F(2)](2+) layered architecture. Both were solved by single crystal X-ray diffraction and the transformation also followed by in situ optical microscopy and ex situ powder X-ray diffraction. This report represents a rare example of metal-organic framework displaying highly efficient and complete replacement of its anionic organic linker while retaining the original extended inorganic layer. It also opens up further possibilities for introducing other anions or abatement of problematic anions such as pharmaceuticals and their metabolites.

  14. Synthesis and Characterization of Perfluoro Quaternary Ammonium Anion Exchange Membranes

    DTIC Science & Technology

    2012-01-01

    study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer with various quaternary ammonium cations attached with...ammonium anion exchange membranes Report Title ABSTRACT In this study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer...exchange membranes were prepared from the perfluorinated 3M ionomer with vari- ous quaternary ammonium cations attached with sulfonamide linkage. The

  15. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.

    PubMed

    Creutz, Sidney E; Crites, Evan N; De Siena, Michael C; Gamelin, Daniel R

    2018-02-14

    Concerns about the toxicity and instability of lead-halide perovskites have driven a recent surge in research toward alternative lead-free perovskite materials, including lead-free double perovskites with the elpasolite structure and visible bandgaps. Synthetic approaches to this class of materials remain limited, however, and no examples of heterometallic elpasolites as nanomaterials have been reported. Here, we report the synthesis and characterization of colloidal nanocrystals of Cs 2 AgBiX 6 (X = Cl, Br) elpasolites using a hot-injection approach. We further show that postsynthetic modification through anion exchange and cation extraction can be used to convert these nanocrystals to new materials including Cs 2 AgBiI 6 , which was previously unknown experimentally. Nanocrystals of Cs 2 AgBiI 6 , synthesized via a novel anion-exchange protocol using trimethylsilyl iodide, have strong absorption throughout the visible region, confirming theoretical predictions that this material could be a promising photovoltaic absorber. The synthetic methodologies presented here are expected to be broadly generalizable. This work demonstrates that nanocrystal ion-exchange reactivity can be used to discover and develop new lead-free halide perovskite materials that may be difficult or impossible to access through direct synthesis.

  16. Anion exchange pathways for Cl sup minus transport in rabbit renal microvillus membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karniski, L.P.; Aronson, P.S.

    1987-09-01

    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO{sub 3}, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anionmore » exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment.« less

  17. Self-exchange reactions of radical anions in n-hexane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werst, D. W.; Chemistry

    The formation and reactions of radical anions in n-hexane at 190 K were investigated by pulse radiolysis and time-resolved fluorescence-detected magnetic resonance (FDMR). Electron attachment was found to occur for compounds with gas-phase electron affinities (EA) more positive than -1.1 {+-} 0.1 eV. The FDMR concentration and time dependence are interpreted as evidence for self-exchange electron-transfer reactions, indicating that formation of dimer radical anions is not prevalent for the range of molecules studied. FDMR detection of radical anions is mainly restricted to electron acceptors with EA less than approximately 0.5 eV.

  18. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  19. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOEpatents

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  20. Anion-exchange behavior of several alkylsilica reversed-phase columns.

    PubMed

    Marchand, D H; Snyder, L R

    2008-10-31

    Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.

  1. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less

  2. Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.

    PubMed

    Cho, Hyeongrae; Krieg, Henning M; Kerres, Jochen A

    2018-06-19

    Both cation-exchange membranes and anion-exchange membranes are used as ion conducting membranes in vanadium redox flow batteries (VRFBs). Anion-exchange membranes (AEMs) are applied in vanadium redox flow batteries due to the high blocking property of vanadium ions via the Donnan exclusion effect. In this study, novel anion-exchange blend membranes (AEBMs) were prepared, characterized, and applied in VRFBs. Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide), poly[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole] (PBI-OO) and sulfonated polyether sulfone polymer were combined to prepare 3-component AEBMs with 1,2,4,5-tetramethylimidazole (TMIm) for quaternization. 3-component AEBMs showed significantly enhanced chemical and mechanical properties compared with those of 2-component AEBMs, resulting in an improved performance in VRFBs. The compositions of the anion-exchange polymers in 3-component AEBMs were systematically varied to optimize the AEBMs for the redox-flow battery application. While the 3-component AEBMs showed comparable efficiencies with Nafion ® 212 membranes, they displayed improved vanadium ions cross-over as was confirmed by open circuit voltage tests and capacity fade tests conducted in VRFBs. In addition, one of the synthesized 3-component AEBM had a superior coulombic efficiency and capacity retention in a charging⁻discharging test over 300 cycles at a current density of 40 mA/cm². It can thus be concluded that 3-component AEBMs are promising candidates for long-term operation in VRFBs.

  3. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  4. Can the tricyanomethanide anion improve CO2 absorption by acetate-based ionic liquids?

    PubMed

    Lepre, L F; Szala-Bilnik, J; Pison, L; Traïkia, M; Pádua, A A H; Ando, R A; Costa Gomes, M F

    2017-05-17

    Carbon dioxide absorption by mixtures of two ionic liquids with a common cation-1-butyl-3-methylimidazolium acetate, [C 4 C 1 Im][OAc], and 1-butyl-3-methylimidazolium tricyanomethanide, [C 4 C 1 Im][C(CN) 3 ]-was determined experimentally at pressures below atmospheric pressure as a function of temperature between 303 K and 343 K, and at 303 K as a function of pressure up to 10 bar. It is observed that the absorption of carbon dioxide decreases with increasing tricyanomethanide anion concentration and with increasing temperature, showing a maximum of 0.4 mole fraction of carbon dioxide in pure [C 4 C 1 Im][OAc] at 303 K. At this temperature, the CO 2 absorption in the mixtures [C 4 C 1 Im][OAc] (1-x) [C(CN) 3 ] x is approximately the mole-fraction average of that in the pure ionic liquids. By applying an appropriate thermodynamic treatment, after identification of the species in solution, it was possible to calculate both the equilibrium constant, K eq , and Henry's law constant, K H , in the different mixtures studied thus obtaining an insight into the relative contribution of chemical and physical absorption of the gas. It is shown that chemical sorption proceeds through a 1 : 2 stoichiometry between CO 2 and acetate-based ionic liquid. The presence of the C(CN) 3 - anion does not significantly affect the chemical reaction of the gas with the solvent (K eq = 75 ± 2 at 303 K) but leads to lower Henry's law constants (from K H = 77.8 ± 0.6 bar to K H = 49.5 ± 0.5 bar at 303 K), thus pointing towards larger physical absorption of the gas. The tricyanomethanide anion considerably improves the mass transfer by increasing the fluidity of the absorbent as proven by the larger diffusivities of all the ions when the concentration of the C(CN) 3 - anion increases in the mixtures.

  5. First Cationic Uranyl-Organic Framework with Anion-Exchange Capabilities.

    PubMed

    Bai, Zhuanling; Wang, Yanlong; Li, Yuxiang; Liu, Wei; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-07-05

    By controlling the extent of hydrolysis during the self-assembly process of a zwitterionic-based ligand with uranyl cations, we observed a structural evolution from the neutral uranyl-organic framework [(UO2)2(TTTPC)(OH)O(COOH)]·1.5DMF·7H2O (SCU-6) to the first cationic uranyl-organic framework with the formula of [(UO2)(HTTTPC)(OH)]Br·1.5DMF·4H2O (SCU-7). The crystal structures of SCU-6 and SCU-7 are layers built with tetranuclear and dinuclear uranyl clusters, respectively. Exchangeable halide anions are present in the interlaminar spaces balancing the positive charge of layers in SCU-7. Therefore, SCU-7 is able to effectively remove perrhenate anions from aqueous solution. Meanwhile, the H2PO4(-)-exchanged SCU-7 material exhibits a moderate proton conductivity of 8.70 × 10(-5) S cm(-1) at 50 °C and 90% relative humidity, representing nearly 80 times enhancement compared to the original material.

  6. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    PubMed

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are

  7. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    PubMed

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    DOEpatents

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.

    2002-01-01

    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  9. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  10. Absorption spectrum of the firefly luciferin anion isolated in vacuo.

    PubMed

    Støchkel, Kristian; Milne, Bruce F; Brøndsted Nielsen, Steen

    2011-03-24

    The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 μs and up to 3 ms) and on a short time scale (0-3 μs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.

  11. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  12. Sevelamer and other anion-exchange resins in the prevention and treatment of hyperphosphataemia in chronic renal failure.

    PubMed

    Wrong, Oliver; Harland, Clive

    2007-01-01

    Sevelamer, or more precisely 'sevelamer hydrochloride', is a weakly basic anion-exchange resin in the chloride form that was introduced in 1997 for the treatment of the hyperphosphataemia of patients with end-stage renal failure, usually those on long-term haemodialysis. The rationale for this therapy was that sevelamer would sequester phosphate within the gastrointestinal tract, so preventing its absorption and enhancing its faecal excretion. Over the succeeding years, large numbers of patients have been treated with sevelamer, and it has fulfilled expectations in helping to control the hyperphosphataemia of end-stage renal failure. However, it is only one of many anion-exchange resins that could be used for this purpose, some of which are currently available for clinical use and are much less costly than sevelamer. Theoretical considerations suggest that some of these other resins might be at least as efficient as sevelamer in sequestering phosphate in the gastrointestinal tract. Neither sevelamer, nor any of these other agents, has been submitted to a proper metabolic balance study to measure the amount of phosphate sequestered by the resin in the bowel, and without this information it is impossible to judge which is the ideal resin for this purpose. Copyright 2007 S. Karger AG, Basel.

  13. Increasing Photovoltaic Performance of an Organic Cationic Chromophore by Anion Exchange

    PubMed Central

    Gesevičius, Donatas; Neels, Antonia; Jenatsch, Sandra; Hack, Erwin; Viani, Lucas; Athanasopoulos, Stavros; Heier, Jakob

    2017-01-01

    Abstract A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate‐based anions and the bulky bistriflylimide anion are introduced to the 2‐[5‐(1,3‐dihydro‐1,3,3‐trimethyl‐2H‐indol‐2‐ylidene)‐1,3‐pentadien‐1‐yl]‐1,3,3‐trimethyl‐3H‐indolium chromophore using an Amberlyst A26 (OH− form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar. Evidence is given that the negative charge of the anion distributed over a large number of atoms is significantly more important than the size of the organic moieties of the sulfonate charge carrying group. This provides a clear strategy for future design of more efficient cyanine dyes for OPV applications. PMID:29610723

  14. Combined strong anion-exchange HPLC and PAGE approach for the purification of heparan sulphate oligosaccharides.

    PubMed

    Vivès, R R; Goodger, S; Pye, D A

    2001-02-15

    Heparan sulphates are highly sulphated linear polysaccharides involved in many cellular functions. Their biological properties stem from their ability to interact with a wide range of proteins. An increasing number of studies, using heparan sulphate-derived oligosaccharides, suggest that specific structural features within the polysaccharide are responsible for ligand recognition and regulation. In the present study, we show that strong anion-exchange HPLC alone, a commonly used technique for purification of heparan sulphate-derived oligosaccharides, may not permit the isolation of highly pure heparan sulphate oligosaccharide species. This was determined by PAGE analysis of hexa-, octa- and decasaccharide samples deemed to be pure by strong anion-exchange HPLC. In addition, subtle differences in the positioning of sulphate groups within heparan sulphate hexasaccharides were impossible to detect by strong anion-exchange HPLC. PAGE analysis on the other hand afforded excellent resolution of these structural isomers. The precise positioning of specific sulphate groups has been implicated in determining the specificity of heparan sulphate interactions and biological activities; hence, the purification of oligosaccharide species that differ in this way becomes an important issue. In this study, we have used strong anion-exchange HPLC and PAGE techniques to allow production of the homogeneous heparan sulphate oligosaccharide species that will be required for the detailed study of structure/activity relationships.

  15. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  16. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  17. Ionic species produced on gamma radiolysis: Studies by matrix isolation technique—I. Electronic absorption spectra of perfluorosubstituted aromatic radical anions

    NASA Astrophysics Data System (ADS)

    Shou-te, Lian C. T.; Mittal, Jai P.

    The absorption spectra of several perfluorosubstituted aromatic radical anions are compared with the corresponding perhydro compounds in which the various transitions involved have been assigned to those predicted theoretically. The electronic absorption spectra were obtained for pentafluorostyrene, pentafluorobenzaldehyde, pentafluorobenzoic acid, pentafluorobenzonitride, tetrafluorophthalic acid and pentafluoroaniline, by gamma radiolysis in 2-methyltetrahydrofuran at 77 K. A general similarity in the absorption spectra between the perfluorinated and the corresponding perhydro radical anion is observed except for a shift in the absorption band.

  18. Preparation and performance evaluation of novel alkaline stable anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen

    2017-07-01

    Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.

  19. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswick, Timothy; Jones, William; Pacula, Aleksandra

    2006-01-15

    Anion exchange reactions of four structurally related hydroxy salts, Cu{sub 2}(OH){sub 3}NO{sub 3}, Mg{sub 2}(OH){sub 3}NO{sub 3}, Ni{sub 2}(OH){sub 3}NO{sub 3} and Zn{sub 3}(OH){sub 4}(NO{sub 3}){sub 2} are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure frommore » one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides. -- Graphical abstract: PXRD patterns of exchange products of (a) Zn{sub 3}(OH){sub 4}(NO{sub 3}){sub 2} (b) Zn{sub 5}(OH){sub 8}(NO{sub 3}){sub 2}.2H{sub 2}O and (c) Cu{sub 2}(OH){sub 3}NO{sub 3} with benzoate anions.« less

  20. Enhanced anion exchange for selective sulfate extraction: overcoming the Hofmeister bias.

    PubMed

    Fowler, Christopher J; Haverlock, Tamara J; Moyer, Bruce A; Shriver, James A; Gross, Dustin E; Marquez, Manuel; Sessler, Jonathan L; Hossain, Md Alamgir; Bowman-James, Kristin

    2008-11-05

    In this communication, a new approach to enhancing the efficacy of liquid-liquid anion exchange is demonstrated. It involves the concurrent use of appropriately chosen hydrogen-bond-donating (HBD) anion receptors in combination with a traditional quaternary ammonium extractant. The fluorinated calixpyrroles 1 and 2 and the tetraamide macrocycle 4 were found to be particularly effective receptors. Specifically, their use allowed the extraction of sulfate by tricaprylmethylammonium nitrate to be effected in the presence of excess nitrate. As such, the present work provides a rare demonstration of overcoming the Hofmeister bias in a competitive environment and the first to the authors' knowledge wherein this difficult-to-achieve objective is attained using a neutral HBD-based anion binding agent under conditions of solvent extraction.

  1. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    PubMed

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  3. Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins.

    PubMed

    Gomes, Helena I; Jones, Ashley; Rogerson, Mike; Greenway, Gillian M; Lisbona, Diego Fernandez; Burke, Ian T; Mayes, William M

    2017-02-01

    Leachable vanadium (V) from steel production residues poses a potential environmental hazard due to its mobility and toxicity under the highly alkaline pH conditions that characterise these leachates. This work aims to test the efficiency of anion exchange resins for vanadium removal and recovery from steel slag leachates at a representative average pH of 11.5. Kinetic studies were performed to understand the vanadium sorption process. The sorption kinetics were consistent with a pseudo-first order kinetic model. The isotherm data cannot differentiate between the Langmuir and Freundlich models. The maximum adsorption capacity (Langmuir value q max ) was 27 mg V g -1 resin. In column anion exchange, breakthrough was only 14% of the influent concentration after passing 90 L of steel slag leachate with 2 mg L -1 V through the column. When eluting the column 57-72% of vanadium was recovered from the resin with 2 M NaOH. Trials on the reuse of the anion exchange resin showed it could be reused 20 times without loss of efficacy, and on average 69% of V was recovered during regeneration. The results document for the first time the use of anion exchange resins to remove vanadium from steel slag leachate. As an environmental contaminant, removal of V from leachates may be an obligation for long-term management requirements of steel slag repositories. Vanadium removal coupled with the recovery can potentially be used to offset long-term legacy treatment costs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Hydrophilic Strong Anion Exchange (hSAX) Chromatography for Highly Orthogonal Peptide Separation of Complex Proteomes

    PubMed Central

    2013-01-01

    Due to its compatibility and orthogonality to reversed phase (RP) liquid chromatography (LC) separation, ion exchange chromatography, and mainly strong cation exchange (SCX), has often been the first choice in multidimensional LC experiments in proteomics. Here, we have tested the ability of three strong anion exchanger (SAX) columns differing in their hydrophobicity to fractionate RAW264.7 macrophage cell lysate. IonPac AS24, a strong anion exchange material with ultralow hydrophobicity, demonstrated to be superior to other materials by fractionation and separation of tryptic peptides from both a mixture of 6 proteins as well as mouse cell lysate. The chromatography displayed very high orthogonality and high robustness depending on the hydrophilicity of column chemistry, which we termed hydrophilic strong anion exchange (hSAX). Mass spectrometry analysis of 34 SAX fractions from RAW264.7 macrophage cell lysate digest resulted in an identification of 9469 unique proteins and 126318 distinct peptides in one week of instrument time. Moreover, when compared to an optimized high pH/low pH RP separation approach, the method presented here raised the identification of proteins and peptides by 10 and 28%, respectively. This novel hSAX approach provides robust, reproducible, and highly orthogonal separation of complex protein digest samples for deep coverage proteome analysis. PMID:23294059

  5. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  6. Review of cell performance in anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  7. Thin Robust Anion Exchange Membranes for Fuel Cell Applications

    DTIC Science & Technology

    2014-01-01

    water diffsuion. Here we use a Polyphenylene Oxide dibock polymer co-polymerized with polyvinyl benzyl trimethyl ammonium blocks ( PPO -b-PVBTMA[F...in PPO -b-PVBTMA[F-] AEM under saturated humidity environment ECS Transactions, 64 (3) 1185-1194 (2014) 1191 Conductivity of this membrane was...makes it a promising material for applications in anion exchange membrane fuel cells. Figure 5: Conductivity of PPO -b-PVBTMA[F-] under 95% Relative

  8. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    PubMed

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    PubMed Central

    Aoyagi, Wataru; Omiya, Masaki

    2016-01-01

    An ionic polymer-metal composite (IPMC) actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators. PMID:28773599

  10. OXIDATIVE STRESS ACTIVATES ANION EXCHANGE PROTEIN 2 AND AP-1 IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Anion exchange protein 2 (AE2) is a membrane-bound protein that mediates chloride-bicarbonate exchange. In addition to regulating intracellular pH and cell volume, AE2 exports superoxide (O.) to the extracellular matrix in an HCO-dependent process. Given this ability to export O....

  11. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    NASA Astrophysics Data System (ADS)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  12. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  13. Na+/H+ exchanger 3 inhibitor diminishes hepcidin-enhanced duodenal calcium transport in hemizygous β-globin knockout thalassemic mice.

    PubMed

    Charoenphandhu, Narattaphol; Kraidith, Kamonshanok; Lertsuwan, Kornkamon; Sripong, Chanakarn; Suntornsaratoon, Panan; Svasti, Saovaros; Krishnamra, Nateetip; Wongdee, Kannikar

    2017-03-01

    Recent investigation has shown that the liver-derived iron-regulating hormone, hepcidin, can potentiate intestinal calcium absorption in hemizygous β-globin knockout thalassemic (BKO) mice. Since the upregulation of Fe 2+ and H + cotransporter, divalent metal transporter (DMT)-1, has been shown to correlate with thalassemia-induced intestinal calcium absorption impairment, the inhibition of the apical Na + /H + exchanger (NHE)-3 that is essential for cytoplasmic pH regulation and transepithelial sodium absorption was hypothesized to negatively affect hepcidin action. Herein, the positive effect of hepcidin on the duodenal calcium transport was evaluated using Ussing chamber technique. The results showed that BKO mice had lower absorptive surface area and duodenal calcium transport than wild-type mice. Besides, paracellular transport of zinc in BKO mice was compromised. Hepcidin administration completely restored calcium transport. Since this hepcidin action was totally abolished by inhibitors of the basolateral calcium transporters, Na + /Ca 2+ exchanger (NCX1) and plasma membrane Ca 2+ -ATPase (PMCA 1b ), the enhanced calcium flux potentially occurred through the transcellular pathway rather than paracellular pathway. Interestingly, the selective NHE3 inhibitor, 100 nM tenapanor, markedly inhibited hepcidin-enhanced calcium transport. Accordingly, hepcidin is one of the promising therapeutic agents for calcium malabsorption in β-thalassemia. It mainly stimulates the transcellular calcium transport across the duodenal epithelium in an NHE3-dependent manner.

  14. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    PubMed

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  15. Anion exchange of organic carboxylate by soils responsible for positive Km-fc relationship from methanol mixture.

    PubMed

    Kim, Minhee; Han, Junho; Hyun, Seunghun

    2013-09-01

    The cosolvency model was not applicable for predicting the sorption of organic carboxylic acids. The reason of inapplicability was investigated by analyzing the solubility (Sm) and sorption (Km) of benzoic acid, 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,6-trichlorophenol (2,4,6-TCP). The Sm and Km by two iron-rich soils was measured as a function of methanol volume fraction (fc), electrolyte compositions, and pH(app). For 2,4,6-TCP, the Km of both neutral and anion species was well-explainable by the cosolvency model, exemplifying the knowledge of cosolvency power (σ) being sufficient to describe its sorption. However, for benzoic acid and 2,4-D, the Km of organic anions increased with fc, illustrating the organic carboxylate to be responsible for the deviation. The Sm of organic anions was not affected by the ionic valence (Ca(2+) vs. K(+)) of liquid phase. Among hydrophilic quantities of the 2,4-D sorption, the fraction of anion exchange increased with fc while the fraction of Ca-bridge decreased in the same range. Adding solvent in soil-water system is likely to render soil surface charge more positive, fortifying the anion exchange, but opposing the formation of Ca-bridging. Therefore, it can be concluded that the positive Km-fc relationship is due to the anion exchange of organic carboxylate with positively charged soil surface, whose contribution is >50% of overall sorption at solvent-free system and becomes greater with fc up to 82%. Copyright © 2013. Published by Elsevier Ltd.

  16. Preparation and Characterization of Various Poly(ether ether ketone) Containing Imidazolium Moiety for Anion Exchange Membrane Fuel Cell Application.

    PubMed

    Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong

    2018-09-01

    In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.

  17. Determination of "net carbohydrates" using high-performance anion exchange chromatography.

    PubMed

    Lilla, Zach; Sullivan, Darryl; Ellefson, Wayne; Welton, Kevin; Crowley, Rick

    2005-01-01

    For labeling purposes, the carbohydrate content of foods has traditionally been determined by difference. This value includes sugars, starches, fiber, dextrins, sugar alcohols, polydextrose, and various other organic compounds. In some cases, the current method may lack sufficient specificity, precision, and accuracy. These are subsequently quantitated by high performance anion exchange chromatography with pulsed amperometric detection and expressed as total nonfiber saccharides or percent "net carbohydrates." In this research, a new method was developed to address this need. The method consists of enzyme digestions to convert starches, dextrins, sugars, and polysaccharides to their respective monosaccharide components. These are subsequently quantified by high-performance anion exchange chromatography with pulsed amperometric detector and expressed as total nonfiber saccharides or percent "net carbohydrates." Hydrolyzed end products of various novel fibers and similar carbohydrates have been evaluated to ensure that they do not register as false positives in the new test method. The data generated using the "net carbohydrate" method were, in many cases, significantly different than the values produced using the traditional methodology. The recoveries obtained in a fortified drink matrix ranged from 94.9 to 105%. The coefficient of variation was 3.3%.

  18. Weak partitioning chromatography for anion exchange purification of monoclonal antibodies.

    PubMed

    Kelley, Brian D; Tobler, Scott A; Brown, Paul; Coffman, Jonathan L; Godavarti, Ranga; Iskra, Timothy; Switzer, Mary; Vunnum, Suresh

    2008-10-15

    Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved. (c) 2008 Wiley Periodicals, Inc.

  19. Poly(phenylene)-based anion exchange membrane

    DOEpatents

    Hibbs, Michael [Albuquerque, NM; Cornelius, Christopher J [Albuquerque, NM; Fujimoto, Cy H [Albuquerque, NM

    2011-02-15

    A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.

  20. Systematization, condensed description, and prediction of sets of anion exchange extraction constants on the basis of their statistical treatment by computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Reimarov, G.A.; Rubisov, V.N.

    1987-05-01

    On the basis of a statistical treatment of the entire set of published data on anion exchange extraction constants, the authors have refined and expanded the scale of the hydration parameters for the anions ..delta..G/sub hydr/ (the effective free energies of hydration for the anions). The authors have estimated the parameters ..delta..G for 93 anions and the coefficients % for 94 series of extraction systems, which are distinguished within each series only by the nature of the exchanging anions. The series are distinguished from one another by the nature of the cation extraction agent and the diluent.

  1. Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1

    PubMed Central

    Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad

    2016-01-01

    Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377

  2. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed Central

    Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  3. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    PubMed

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  4. Optimized anion exchange membranes for vanadium redox flow batteries.

    PubMed

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance.

  5. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  6. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics.

    PubMed

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur

    2015-07-08

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.

  7. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    PubMed Central

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  8. Highly durable direct hydrazine hydrate anion exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tomokazu; Serov, Alexey; Masuda, Teruyuki; Kamakura, Masaki; Yoshimoto, Koji; Omata, Takuya; Kishi, Hirofumi; Yamaguchi, Susumu; Hori, Akihiro; Horiuchi, Yousuke; Terada, Tomoaki; Artyushkova, Kateryna; Atanassov, Plamen; Tanaka, Hirohisa

    2018-01-01

    The factors influenced on degradation of direct hydrazine hydrate fuel cells (DHFCs) under operation conditions are analyzed by in situ soft X-ray radiography. A durability of DHFCs is significantly improved by multi-step reaction DHFCs (MSR-DHFCs) approach designed to decrease the crossover of liquid fuel. An open circuit voltage (OCV) as well as cell voltage at 5 mA cm-2 of MSR-DHFC construct with commercial anion exchange membrane (AEM) maintained for over of 3500 h at 60 °C. Furthermore, the commercial proton exchange membrane (PEM) is integrated into AEM of MSR-DHFCs resulting in stable power output of MSR-DHFCs for over than 2800 h at 80 °C.

  9. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    PubMed

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  11. Understanding Anion, Water, and Methanol Transport in a Polyethylene- b -poly(vinylbenzyl trimethylammonium) Copolymer Anion-Exchange Membrane for Electrochemical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarode, Himanshu N.; Yang, Yuan; Motz, Andrew R.

    Herein, we report the anion and water transport properties of an anion-exchange membrane (AEM) comprising a block copolymer of polyethylene and poly- (vinylbenzyl trimethylammonium) (PE-b-PVBTMA) with an ion-exchange capacity (IEC) of 1.08 mequiv/g. The conductivity varied little among the anions CO3 2-, HCO3 -, and F-, with a value of Ea ≈ 20 kJ/mol and a maximum fluoride conductivity of 34 mS/cm at 90 °C and 95% relative humidity. The Br- conductivity showed a transition at 60 °C. Pulsed gradient stimulated spin echo nuclear magnetic resonance (PGSE NMR) experiments showed that water diffusion in this AEM is heterogeneous and ismore » affected by the anion present, being fastest in the presence of F-. We determined the methanol self-diffusion in this membrane and observed that it is lower than that in Nafion 117, because of the lower water uptake. This article reports the first measurements of 13C-labeled bicarbonate self-diffusion in an AEM using PGSE NMR spectrometry, which was found to be significantly slower than F- self-diffusion. Back-calculation of the bicarbonate conductivity using the Nernst-Einstein equation gave a value that was significantly lower than the measured value, implying that bicarbonate transport involves OH- in the transport mechanism. Fourier transform infrared spectroscopy, PGSE NMR spectrometry, and small-angle X-ray scattering (SAXS) indicated the presence of different types of waters present in the membrane at different length scales. The SAXS data indicated that there is a water-rich region within the hydrophilic domains of the polymer that has a temperature dependence in intensity at 95% relative humidity (RH).« less

  12. Rapid sequential determination of Pu, 90Sr and 241Am nuclides in environmental samples using an anion exchange and Sr-Spec resins.

    PubMed

    Lee, M H; Ahn, H J; Park, J H; Park, Y J; Song, K

    2011-02-01

    This paper presents a quantitative and rapid method of sequential separation of Pu, (90)Sr and (241)Am nuclides in environmental soil samples with an anion exchange resin and Sr Spec resin. After the sample solution was passed through an anion exchange column connected to a Sr Spec column, Pu isotopes were purified from the anion exchange column. Strontium-90 was separated from other interfering elements by the Sr Spec column. Americium-241 was purified from lanthanides by the anion exchange resin after oxalate co-precipitation. Measurement of Pu and Am isotopes was carried out using an α-spectrometer. Strontium-90 was measured by a low-level liquid scintillation counter. The radiochemical procedure of Pu, (90)Sr and (241)Am nuclides investigated in this study validated by application to IAEA reference materials and environmental soil samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Anion exchange membrane fuel cell modelling

    NASA Astrophysics Data System (ADS)

    Fragiacomo, P.; Astorino, E.; Chippari, G.; De Lorenzo, G.; Czarnetzki, W. T.; Schneider, W.

    2018-04-01

    A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.

  14. Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.

    PubMed

    Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando

    2010-07-01

    Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Characterisation of gunshot residue from three ammunition types using suppressed anion exchange chromatography.

    PubMed

    Gilchrist, Elizabeth; Jongekrijg, Fleur; Harvey, Laura; Smith, Norman; Barron, Leon

    2012-09-10

    Gunshot residue (GSR) is commonly analysed in forensic casework using either scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) or gas chromatography-mass spectrometry (GC-MS). Relatively little work has been reported on the post-discharge GSR content of non-metallic inorganic or low molecular weight organic anions to distinguish between different ammunition types. The development of an analytical method using suppressed micro-bore anion exchange chromatography (IC) is presented for the analysis of GSR. A hydroxide gradient was optimised for the separation of 19 forensically relevant organic and inorganic anions in <23min and sensitivities of the order of 0.12-3.52ng of anion detected for all species were achieved. Along with an optimised extraction procedure, this method was applied to the analysis of post-ignition residues from three selected ammunition types. By profiling and comparing the anionic content in each ammunition residue, the possibility to distinguish between each type using their anionic profiles and absolute weight is presented. The potential for interference is also discussed with respect to sample types which are typically problematic in the analysis of GSR using SEM-EDX and GC-MS. To the best of our knowledge this represents the first study on the analysis of inorganic anions in GSR using suppressed ion chromatography. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2.

    PubMed

    Wang, Wei; Ren, Xiaofei; Cai, Yi; Chen, Lihong; Zhang, Weiping; Xu, Jianming

    2016-01-01

    Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.

  17. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.

    2018-01-01

    Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.

  18. Poly(vinylbenzylchloride) Based Anion-Exchange Blend Membranes (AEBMs): Influence of PEG Additive on Conductivity and Stability

    PubMed Central

    Kerres, Jochen A.; Krieg, Henning M.

    2017-01-01

    In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM’s composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications. PMID:28621717

  19. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.

    PubMed

    Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang

    2009-05-01

    A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.

  20. Yb3O(OH)6Cl·2H2O: an anion-exchangeable hydroxide with a cationic inorganic framework structure.

    PubMed

    Goulding, Helen V; Hulse, Sarah E; Clegg, William; Harrington, Ross W; Playford, Helen Y; Walton, Richard I; Fogg, Andrew M

    2010-10-06

    The first anion-exchangeable framework hydroxide, Yb(3)O(OH)(6)Cl·2H(2)O, has been synthesized hydrothermally. This material has a three-dimensional cationic ytterbium oxyhydroxide framework with one-dimensional channels running through the structure in which the chloride anions and water molecules are located. The framework is thermally stable below 200 °C and can be reversibly dehydrated and rehydrated with no loss of crystallinity. Additionally, it is able to undergo anion-exchange reactions with small ions such as carbonate, oxalate, and succinate with retention of the framework structure.

  1. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    NASA Astrophysics Data System (ADS)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  2. Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells.

    PubMed

    Zhang, Yanmei; Fang, Jun; Wu, Yongbin; Xu, Hankun; Chi, Xianjun; Li, Wei; Yang, Yixu; Yan, Ge; Zhuang, Yongze

    2012-09-01

    A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke

    2014-12-01

    Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.

  4. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism

    PubMed Central

    Faraldo-Gómez, José D.

    2017-01-01

    The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. PMID:29167180

  5. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  6. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  7. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less

  8. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors

    PubMed Central

    Pain, Margaret; Fuller, Alexandra W.; Basore, Katherine; Pillai, Ajay D.; Solomon, Tsione; Bokhari, Abdullah A. B.; Desai, Sanjay A.

    2016-01-01

    Malaria parasites increase their host erythrocyte’s permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel’s structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing. PMID:26866812

  9. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed Central

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-01-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption. PMID:6401766

  10. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-02-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.

  11. Triple loop heat exchanger for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  12. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. VI. Design, chromatographic performance and application of non-porous silica-based anion exchangers.

    PubMed

    Jilge, G; Unger, K K; Esser, U; Schäfer, H J; Rathgeber, G; Müller, W

    1989-08-04

    The linear solvent strength model of Snyder was applied to describe fast protein separations on 2.1-micron non-porous, silica-based strong anion exchangers. It was demonstrated on short columns packed with these anion exchangers that (i) a substantially higher resolution of proteins and nucleotides was obtained at gradient times of less than 5 min than on porous anion exchangers; (ii) the low external surface area of the non-porous anion exchanger is not a critical parameter in analytical separations and (iii) microgram-amounts of enzymes of high purity and full biological activity were isolated.

  13. Heat exchanger bypass system for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  14. Nitrate determination using anion exchange membrane and mid-infrared spectroscopy.

    PubMed

    Linker, Raphael; Shaviv, Avi

    2006-09-01

    This study investigates the combined use of an anion exchange membrane and transmittance mid-infrared spectroscopy for determining nitrate concentration in aqueous solutions and soil pastes. The method is based on immersing a small piece (2 cm(2)) of anion exchange membrane into 5 mL of solution or soil paste for 30 minutes, after which the membrane is removed, rinsed, and wiped dry. The absorbance spectrum of the charged membrane is then used to determine the amount of nitrate sorbed on the membrane. At the levels tested, the presence of carbonate or phosphate does not affect the nitrate sorption or the spectrum of the charged membrane in the vicinity of the nitrate band. Sulfate affects the spectrum of the charged membrane but does not prevent nitrate determination. For soil pastes, nitrate sorption is remarkably independent of the soil composition and is not affected by the level of soil constituents such as organic matter, clay, and calcium carbonate. Partial least squares analysis of the membrane spectra shows that there exists a strong correlation between the nitrate charge and the absorbance in the 1000-1070 cm(-1) interval, which includes the v(1) nitrate band located around 1040 cm(-1). The prediction errors range from 0.8 to 2.1 mueq, which, under the specific experimental conditions, corresponds to approximately 2 to 6 ppm N-NO(3)(-) on a solution basis or 2 to 5 mg [N]/kg [dry soil] on a dry soil basis.

  15. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic

  16. Separation of the rare earths by anion-exchange in the presence of lactic acid

    NASA Technical Reports Server (NTRS)

    Faris, J. P.

    1969-01-01

    Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.

  17. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  18. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOEpatents

    Gu, Baohua; Brown, Gilbert M.

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  19. Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanqin, Wu; Zepeng, Zhang, E-mail: unite508@163.com; Yunhua, Wang

    Graphical abstract: This picture shows the distribution of organic modifier (CTAB and SDS) in Mt interlayer and the basal spacing changes of Mt modified by CTAB and SDS. Organic modifier molecule in Mt interlayer is more and more orderly. The basal spacing of Mt is from 1.5 nm to 5 nm as modifier added. - Highlights: • The d{sub 001} of Ca-Mt, R-Na-Mt, Na-Mt modified by CTAB and SDS can reach 5 nm. • It is easier to get cation–anion OMt with greater d{sub 001} if CEC is lower. • The organic molecules distribution in cation–anion OMt was analyzed. •more » The influence mechanism of Ca-Mt CEC on the d{sub 001} was discussed. - Abstract: With cationic and anionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (SDS) as modifiers, Ca-montmorillonites (Ca-Mt), artificial Na-montmorillonites (R-Na-Mt) and natural Na-montmorillonites (Na-Mt) with different cation exchange capacity (CEC) were modified by solution intercalation method, respectively. Then cation–anion organo-montmorillonites (OMt) were prepared. The influence of CEC on the basal spacing of cation–anion OMt and the influence mechanism were discussed by X-ray diffraction (XRD) and zeta potential testing. The results indicate that the basal spacing of cation–anion OMt is related to CEC. For the same type montmorillonites, the basal spacing of cation–anion OMt decreases with the increase of CEC and it is easier to get cation–anion OMt with greater basal spacing when CEC is lower. Moreover, the CEC of Na-Mt has the greatest influence on the basal spacing of cation–anion OMt.« less

  20. Purification of Bacteriophages Using Anion-Exchange Chromatography.

    PubMed

    Vandenheuvel, Dieter; Rombouts, Sofie; Adriaenssens, Evelien M

    2018-01-01

    In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM ® ) monoliths. Afterward, the column is washed to remove impurities from the CIM ® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.

  1. Precipitation synthesis of lanthanide hydroxynitrate anion exchange materials, Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O (Ln=Y, Eu-Er)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindocha, Sheena A.; McIntyre, Laura J.; Fogg, Andrew M., E-mail: afogg@liverpool.ac.u

    2009-05-15

    Layered lanthanide hydroxynitrate anion exchange host lattices have been prepared via a room temperature precipitation synthesis. These materials have the composition Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O and are formed for Y and the lanthanides from Eu to Er and as such include the first Eu containing nitrate anion exchange host lattice. The interlayer separation of these materials, approximately 8.5 A, is lower than in the related phases Ln{sub 2}(OH){sub 5}NO{sub 3}.1.5H{sub 2}O which have a corresponding value of 9.1 A and is consistent with the reduction in the co-intercalated water content of these materials. These new intercalation hosts have beenmore » shown to undergo facile anion exchange reactions with a wide range of organic carboxylate and sulfonate anions. These reactions produce phases with up to three times the interlayer separation of the host lattice demonstrating the flexibility of these materials. - Graphical abstract: New anion exchangeable layered hydroxynitrates, Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O (Ln=Y, Eu - Er) have been synthesized via a precipitation route. These materials have been shown to be very flexible intercalation hosts undergoing facile exchange reactions with organic carboxylate and sulfonate anions.« less

  2. Eu(III) complexes as anion-responsive luminescent sensors and paramagnetic chemical exchange saturation transfer agents.

    PubMed

    Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R

    2011-06-06

    The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the (1)H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate, and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate, and carbonate. These anions have weak dissociation constants that range from 19 to 38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate, and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at p

  3. Investigation of Anion-Exchange and Immunoaffinity Particle-Loaded Membranes for the Isolation of Charged Organic Analytes from Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.

    1998-01-01

    Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.

  4. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    PubMed

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  5. Towards high conductivity in anion-exchange membranes for alkaline fuel cells.

    PubMed

    Li, Nanwen; Guiver, Michael D; Binder, Wolfgang H

    2013-08-01

    Quaternized poly(2,6-dimethylphenylene oxide) materials (PPOs) containing clicked 1,2,3-triazoles were first prepared through Cu(I) -catalyzed "click chemistry" to improve the anion transport in anion-exchange membranes (AEMs). Clicked 1,2,3-triazoles incorporated into AEMs provided more sites to form efficient and continuous hydrogen-bond networks between the water/hydroxide and the triazole for anion transport. Higher water uptake was observed for these triazole membranes. Thus, the membranes showed an impressive enhancement of the hydroxide diffusion coefficient and, therefore, the anion conductivities. The recorded hydroxide conductivity was 27.8-62 mS cm(-1) at 20 °C in water, which was several times higher than that of a typical PPO-based AEM (TMA-20) derived from trimethylamine (5 mS cm(-1) ). Even at reduced relative humidity, the clicked membrane showed superior conductivity to a trimethylamine-based membrane. Moreover, similar alkaline stabilities at 80 °C in 1 M NaOH were observed for the clicked and non-clicked membranes. The performance of a H2 /O2 single cell assembled with a clicked AEM was much improved compared to that of a non-clicked TMA-20 membrane. The peak power density achieved for an alkaline fuel cell with the synthesized membrane 1a(20) was 188.7 mW cm(-2) at 50 °C. These results indicated that clicked AEM could be a viable strategy for improving the performance of alkaline fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. ABH antigens as recognition sites for the activation of red blood cell anion exchange by the lectin ulex europaeus agglutinin I.

    PubMed

    Engelmann, B

    1993-11-01

    The blood group antigen H (blood group O) and fucose-specific lectin Ulex europaeus agglutinin I (UEA1) (10 micrograms/ml) was found to increase the rate constant of Cl- efflux into 100 mM Na+ oxalate media by about 40% in erythrocytes taken from antigen H donors. In 100 mM K+ oxalate, 150 mM Na+ pyruvate and in 150 mM Na+ acetate media the lectin elevated the rate constant of Cl- efflux by 20-50%. The acceleration of Cl- efflux by UEA1 was completely blocked by 10 microM 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) indicating that the effect of the lectin is mediated by the anion exchanger of human erythrocytes (band 3 protein). In antigen A1 erythrocytes no significant stimulation of anion exchange by UEA1 was seen. The activation of Cl- efflux was completely prevented by addition of 1 mM fucose to the medium. These results suggest that the effect of UEA1 is mediated through interaction with the fucose residues of H antigens. Increasing extracellular Ca++ from 0.5 to 5 mM in Na+ pyruvate or Na+ acetate media slightly reduced the acceleration of anion exchange by the lectin. On the other hand, replacing part of extracellular chloride by bicarbonate did not considerably alter the (previously reported) stimulatory effect of UEA1 on red blood cell Ca++ uptake. This suggests that the acceleration of anion exchange and of Ca++ uptake by UEA1, respectively, are mediated by different mechanisms. It is concluded that UEA1 activates anion exchange of human erythrocytes most probably by a direct interaction with H antigens present on extracellular domains of the band 3 protein.

  7. POTENT INHIBITORS OF HUMAN ORGANIC ANION TRANSPORTERS 1 AND 3 FROM CLINICAL DRUG LIBRARIES: DISCOVERY AND MOLECULAR CHARACTERIZATION

    PubMed Central

    Duan, Peng; Li, Shanshan; Ai, Ni; Hu, Longqin; Welsh, William J.; You, Guofeng

    2012-01-01

    Transporter-mediated drug-drug interactions in the kidney dramatically influence the pharmacokinetics and other clinical effects of drugs. Human organic anion transporters 1 (hOAT1) and 3 (hOAT3) are the major transporters in the basolateral membrane of kidney proximal tubules, mediating the rate-limiting step in the elimination of a broad spectrum of drugs. In the present study, we screened two clinical drug libraries against hOAT1 and hOAT3. Of the 727 compounds screened, 92 compounds inhibited hOAT1 and 262 compounds inhibited hOAT3. When prioritized based on the peak unbound plasma concentrations of these compounds, three inhibitors for hOAT1 and seven inhibitors for hOAT3 were subsequently identified with high inhibitory potency (>95%). Computational analyses revealed that inhibitors and non-inhibitors can be differentiated from each other on the basis of several physico-chemical features, including: number of hydrogen-bond donors, number of rotatable bonds, and topological polar surface area (TPSA) for hOAT1; and molecular weight, number of hydrogen-bond donors and acceptors, TPSA, partition coefficient (Log P7.4), and polarizability for hOAT3. Pharmacophore modeling identified two common structural features associated with inhibitors for hOAT1 and hOAT3, viz., an anionic hydrogen-bond acceptor atom, and an aromatic center separated by ~5.7 Å. Such model provides mechanistic insights for predicting new OAT inhibitors. PMID:22973893

  8. Influence of acidic eluent for retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography on a weakly acidic cation-exchange resin in the H+ -form.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Satori, Tatsuya; Ikedo, Mikaru; Hu, Wenzhi; Itabashi, Hideyuki

    2006-06-16

    Influence of acidic eluent on retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography (ion-exclusion/CEC) were investigated on a weakly acidic cation-exchange resin in the H(+)-form with conductivity. Sensitivities of analyte ions, especially weak acid anions (F(-) and HCOO(-)), were affected with degree of background conductivity level with pK(a1) (first dissociation constant) of acid in eluent. The retention behaviors of anions and cations were related to that of elution dip induced after eluting acid to separation column and injecting analyte sample. These results were largely dependent on the natures of acid as eluent. Through this study, succinic acid as the eluent was suitable for simultaneous separation of strong acid anions (SO(4)(2-), Cl(-), NO(3)(-) and I(-)), weak acid anions (F(-), HCOO(-) and CH(3)COO(-)), and cations (Na(+), K(+), NH(4)(+), Mg(2+) and Ca(2+)). The separation was achieved in 20 min under the optimum eluent condition, 20 mM succinic acid/2 mM 18-crown-6. Detection limits at S/N=3 ranged from 0.10 to 0.51 microM for strong acid anions, 0.20 to 5.04 microM for weak acid anions and 0.75 to 1.72 microM for cations. The relative standard deviations of peak areas in the repeated chromatographic runs (n=10) were in the range of 1.1-2.9% for anions and 1.8-4.5% for cations. This method was successfully applied to hot spring water containing strong acid anions, weak acid anions and cations, with satisfactory results.

  9. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    PubMed Central

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  10. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane.

    PubMed

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-17

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl - /SO 4 2- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl - /SO 4 2- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm 2 30 minutes later.

  11. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  12. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  13. Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cursino, Ana Cristina Trindade, E-mail: anacursino@ufpr.br; Rives, Vicente, E-mail: vrives@usal.es; Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx

    2015-10-15

    Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescentmore » materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.« less

  14. Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.

    2018-02-01

    A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.

  15. Preparation and Characterization of an Alkaline Anion Exchange Membrane from Chlorinated Poly(propylene) Aminated with Branched Poly(ethyleneimine)

    DTIC Science & Technology

    2013-01-01

    exchange resins and as membranes for water purification [1], Li–air batteries, and in polymer exchange membrane ( PEM ) fuel cells [2]. PEM Fuel cells show...SUBJECT TERMS Anion exchange membrane, Fuel Cell , Poly(ethyleneimine), Quaternary ammonium caton, Hydroxide Ashley M. Maes, Tara P. Pandey, Melissa...membrane Fuel cell Poly(ethyleneimine) Quaternary ammonium cation Hydroxide a b s t r a c t A new randomly crosslinked polymer is investigated

  16. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials.

    PubMed

    Orlando, U S; Baes, A U; Nishijima, W; Okada, M

    2002-07-01

    Two lignocellulosic agricultural waste materials (LCM), sugarcane bagasse (BG) and rice hull (RH), were converted into weak-base anion exchanger and evaluated for their exchanger capacity for nitrate. Pure cellulose (PC) and pure alkaline lignin (PL) were also used as reference materials to elucidate possible reactivity in LCM. Epoxy and amino groups were introduced into BG, RH, PC and PL substrates after the reaction with epichlorohydrin and dimethylamine in the presence of pyridine and an organic solvent N,N-dimethylformamide (DMF). Amino group incorporation into cellulose decreased with the presence of water in the reaction mixture and increased with the reaction time and presence of a catalyst (pyridine). The highest maximum nitrate exchange capacity (Qmax) and yields of the prepared exchangers was obtained from PL (1.8 mmol g(-1) and 412.5%), followed by BG (1.41 mmol g(-1) and 300%), PC (1.34 mmol g(-1) and 166%) and RH (1.32 mmol g(-1) and 180%). The proposed synthetic procedure was effective in modifying PL, PC and LCM chemically resulting in a higher yield and nitrate removal capacity.

  17. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    PubMed

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  18. Synthesis and evaluation of novel amide amino-β-lactam derivatives as cholesterol absorption inhibitors.

    PubMed

    Dražić, Tonko; Sachdev, Vinay; Leopold, Christina; Patankar, Jay V; Malnar, Martina; Hećimović, Silva; Levak-Frank, Sanja; Habuš, Ivan; Kratky, Dagmar

    2015-05-15

    The β-lactam cholesterol absorption inhibitor ezetimibe is so far the only representative of this class of compounds on the market today. The goal of this work was to synthesize new amide ezetimibe analogs from trans-3-amino-(3R,4R)-β-lactam and to test their cytotoxicity and activity as cholesterol absorption inhibitors. We synthesized six new amide ezetimibe analogs. All new compounds exhibited low toxicity in MDCKIIwt, hNPC1L1/MDCKII and HepG2 cell lines and showed significant inhibition of cholesterol uptake in hNPC1L1/MDCKII cells. In addition, we determined the activity of the three compounds to inhibit cholesterol absorption in vivo. Our results demonstrate that these compounds considerably reduce cholesterol concentrations in liver and small intestine of mice. Thus, our newly synthesized amide ezetimibe analogs are cholesterol absorption inhibitors in vitro and in vivo. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization.

    PubMed

    Duan, Peng; Li, Shanshan; Ai, Ni; Hu, Longqin; Welsh, William J; You, Guofeng

    2012-11-05

    Transporter-mediated drug-drug interactions in the kidney dramatically influence the pharmacokinetics and other clinical effects of drugs. Human organic anion transporters 1 (hOAT1) and 3 (hOAT3) are the major transporters in the basolateral membrane of kidney proximal tubules, mediating the rate-limiting step in the elimination of a broad spectrum of drugs. In the present study, we screened two clinical drug libraries against hOAT1 and hOAT3. Of the 727 compounds screened, 92 compounds inhibited hOAT1 and 262 compounds inhibited hOAT3. When prioritized based on the peak unbound plasma concentrations of these compounds, three inhibitors for hOAT1 and seven inhibitors for hOAT3 were subsequently identified with high inhibitory potency (>95%). Computational analyses revealed that inhibitors and noninhibitors can be differentiated from each other on the basis of several physicochemical features, including number of hydrogen-bond donors, number of rotatable bonds, and topological polar surface area (TPSA) for hOAT1; and molecular weight, number of hydrogen-bond donors and acceptors, TPSA, partition coefficient (log P(7.4)), and polarizability for hOAT3. Pharmacophore modeling identified two common structural features associated with inhibitors for hOAT1 and hOAT3, viz., an anionic hydrogen-bond acceptor atom, and an aromatic center separated by ∼5.7 Å. Such model provides mechanistic insights for predicting new OAT inhibitors.

  20. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  1. Absorption characteristics of anions (I-, Br-, and Te2-) into zeolite in molten LiCl-KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Uozumi, Koichi; Sugihara, Kei; Kinoshita, Kensuke; Koyama, Tadafumi; Tsukada, Takeshi; Terai, Takayuki; Suzuki, Akihiro

    2014-04-01

    The behaviors of anion fission product (FP) elements to be absorbed into zeolite in molten LiCl-KCl eutectic salt were studied using iodine, bromine, and tellurium. First, the type-A zeolite was selected as the most suitable type of zeolite among type-A, type-X, and type-Y zeolites through experiments in which zeolites were heated together with LiCl-KCl-KI salt. As the next step, experiments in which the type-A zeolite was immersed in molten LiCl-KCl salt containing various concentrations of iodine, bromine, or tellurium were performed. The degree of absorption of the anion FP elements was evaluated using the separation factor (SF) value versus chlorine. Although the SF values for iodine and tellurium were higher than 1.0, which meant that these elements were absorbed into the type-A zeolite more intensively than chlorine in the salt, the corresponding value for bromine was approximately 1.0. The effects of coexisting cation FPs were also examined using cesium, strontium, and neodymium, and it was revealed that the SF values for iodine were less than those in the case without cation addition. On the other hand, the SF values for tellurium were not affected by the coexistence of cesium and strontium. Finally, the feasibility of the present pyroprocess flowsheet was evaluated by calculating the inventory of each anion FP in an electrorefiner based on the obtained SF values instead of temporary values for the anion FPs absorption, which were set due to lack of experimental data.

  2. Anion exchange composite membrane based on octa quaternary ammonium Polyhedral Oligomeric Silsesquioxane for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Elumalai, Vijayakumar; Sangeetha, Dharmalingam

    2018-01-01

    A series of novel composite anion exchange membranes were prepared via simple solution casting method using synthesized quaternary ammonium functionalized Polyhedral Oligomeric Silsesquioxane (QA-POSS) with Quaternary polysulfone (QPSU). QA-POSS was synthesized from prepared Cl-POSS and well characterized by FT-IR, NMR, SEM and TEM analyses to confirm the chemical modifications and cubic morphologies. The QA-POSS nano particles have dual role in the membrane providing additional ion conducting groups and reinforcing the membrane in molecular level for the overall improvement of composite membrane. Additionally, the composite membranes were characterized by XRD, SEM, Ion exchange capacity (IEC), water uptake and conductivity to ensure the suitability of its use as an electrolyte in alkaline fuel cell. Finally, membrane electrode assembly (MEA) was fabricated using Pt anode (0.25 mg/cm2), Ag cathode (0.375 mg/cm2) and various synthesized composite membranes, and then it was tested in real time fuel cell setup. The membrane with 15% QA-POSS showed the maximum power density of 321 mW/cm2. The results showed that QA-POSS possess the ability to enhance the performance of the anion exchange membrane significantly.

  3. Na+/H+ exchanger 3 inhibitor diminishes the amino-acid-enhanced transepithelial calcium transport across the rat duodenum.

    PubMed

    Thammayon, Nithipak; Wongdee, Kannikar; Lertsuwan, Kornkamon; Suntornsaratoon, Panan; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2017-04-01

    Na + /H + exchanger (NHE)-3 is important for intestinal absorption of nutrients and minerals, including calcium. The previous investigations have shown that the intestinal calcium absorption is also dependent on luminal nutrients, but whether aliphatic amino acids and glucose, which are abundant in the luminal fluid during a meal, similarly enhance calcium transport remains elusive. Herein, we used the in vitro Ussing chamber technique to determine epithelial electrical parameters, i.e., potential difference (PD), short-circuit current (Isc), and transepithelial resistance, as well as 45 Ca flux in the rat duodenum directly exposed on the mucosal side to glucose or various amino acids. We found that mucosal glucose exposure led to the enhanced calcium transport, PD, and Isc, all of which were insensitive to NHE3 inhibitor (100 nM tenapanor). In the absence of mucosal glucose, several amino acids (12 mM in the mucosal side), i.e., alanine, isoleucine, leucine, proline, and hydroxyproline, markedly increased the duodenal calcium transport. An inhibitor for NHE3 exposure on the mucosal side completely abolished proline- and leucine-enhanced calcium transport, but not transepithelial transport of both amino acids themselves. In conclusion, glucose and certain amino acids in the mucosal side were potent stimulators of the duodenal calcium absorption, but only amino-acid-enhanced calcium transport was NHE3-dependent.

  4. Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.

    2014-02-03

    The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia Rivermore » was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex™ 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a

  5. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    PubMed

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  6. Anionic salts in the prepartum diet and addition of sodium bicarbonate to colostrum replacer, and their effects on immunoglobulin G absorption in the neonate.

    PubMed

    Morrill, K M; Marston, S P; Whitehouse, N L; Van Amburgh, M E; Schwab, C G; Haines, D M; Erickson, P S

    2010-05-01

    The objectives of this experiment were to determine whether feeding anionic salts to prepartum Holstein cows affected their calf's colostral IgG passive transfer and whether adding sodium bicarbonate to a colostrum replacer (CR) would increase the efficiency of IgG absorption. Forty Holstein cows and their resulting calves were assigned to a 2 x 2 factorial arrangement of treatments in a randomized complete block design based on expected date of calving. Three weeks before the projected due date, cows were placed on 1 of 2 treatments: a diet without anionic salts (dietary cation-anion difference of +77 mEq/kg) or a diet with anionic salts (dietary cation-anion difference of -100 mEq/kg). Within 45 min after birth, all calves received 1 dose of a commercially available CR (132g of IgG) without or with supplemental sodium bicarbonate (19.5 g/dose). A half-dose of CR (66g of IgG) and sodium bicarbonate (9.75g) was fed at 6h of age. Calves received milk replacer at 12, 24, 36, and 48h. Blood samples were obtained from calves at 0, 6, 12, 24, and 48h and were analyzed for IgG concentration. Cows fed the diet supplemented with anionic salts had lower DMI on d 8, 5, 4, and 1 and lower urine pH 2 and 1 wk before parturition compared with cows fed the diet without supplemental anionic salts. Calves born from dams receiving anionic salts had similar IgG concentrations (15.1 vs. 14.4g/L) and apparent efficiency of absorption values (29.2 vs. 28.2%) compared with calves born from dams not fed anionic salts. Calves receiving supplemental sodium bicarbonate in the CR had higher serum IgG concentrations at 12 (14.4 vs. 12.0g/L), 24 (16.3 vs. 13.2g/L), and 48h (14.6 vs. 11.2g/L) and higher apparent efficiency of absorption values (31.2 vs. 26.1%) than calves that did not receive sodium bicarbonate in the CR. Calves receiving sodium bicarbonate also had greater area under the curve values for IgG absorption compared with calves not receiving sodium bicarbonate. There was a trend

  7. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  8. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    NASA Astrophysics Data System (ADS)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  9. Anion exchange membrane fuel cells: Current status and remaining challenges

    NASA Astrophysics Data System (ADS)

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung

    2018-01-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.

  10. Anion exchange membrane fuel cells: Current status and remaining challenges

    DOE PAGES

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; ...

    2017-09-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less

  11. Intracellular pH recovery from alkalinization. Characterization of chloride and bicarbonate transport by the anion exchange system of human neutrophils

    PubMed Central

    1990-01-01

    The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl- /HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization. PMID:2280252

  12. Arsenate removal from water by a weak-base anion exchange fibrous adsorbent.

    PubMed

    Awual, Md Rabiul; Urata, Shinya; Jyo, Akinori; Tamada, Masao; Katakai, Akio

    2008-02-01

    A weak-base anion exchange fiber named FVA with primary amino groups for selective and rapid removal of arsenate species was prepared by means of electron irradiation induced liquid phase graft polymerization of N-vinylformamide onto polyethylene coated polypropylene fibers and by the subsequent alkaline hydrolysis of amide group on the grafted polymer chains. Two types of FVA were prepared. One was a non-woven cloth type named FVA-c for the batch-mode study, which clarified that uptake of arsenate species decreases with an increase in pH, and chloride and sulfate do not strongly interfere with uptake of arsenate species different from conventional anion exchange resins based on crosslinked polystyrene matrices. The other was a filamentary type one named FVA-f used in the column-mode study, which clarified that arsenate species were successfully removed from neutral pH arsenate solutions containing 1.0-99 mg of As/L at feed flow rates of 100-1050 h(-1) in space velocity (SV). The most important findings are that the 1% breakthrough point in uptake from the arsenate solution containing 1.0mg of As/L at the high feed flow rate of 1050h(-1) in SV was as large as 4670 bed volumes, giving the 1% breakthrough capacity of 0.298 mmol/g of FVA-f. Adsorbed arsenate was able to be quantitatively eluted with 1M hydrochloric acid and FVA-f was simultaneously regenerated. Then, the repeated use of FVA-f was possible.

  13. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies.

    PubMed

    Liu, Zhaoping; Ma, Renzhi; Osada, Minoru; Iyi, Nobuo; Ebina, Yasuo; Takada, Kazunori; Sasaki, Takayoshi

    2006-04-12

    This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films. Co-Al-CO3 LDH hexagonal platelets of 4 mum in lateral size were synthesized by the urea method under optimized reaction conditions. The as-prepared CO3(2-)-LDH was converted to Cl- -LDH by treating with a NaCl-HCl mixed solution, retaining its high crystallinity and hexagonal platelike morphology. LDHs intercalated with a variety of anions (such as NO3-, ClO4-, acetate, lactate, dodecyl sulfate, and oleate) were further prepared from Cl- -LDH via an anion-exchange process employing corresponding salts. Exchanged products in various anion forms were found to show different delamination behaviors in formamide. Among them, best results were observed for NO3- -LDH in terms of the exfoliating degree and the quality of the exfoliated nanosheets. The delamination gave a pink transparent suspension containing well-defined nanosheets with lateral sizes of up to 2 microm. The resulting nanosheets were assembled layer-by-layer with an anionic polymer, poly(sodium styrene 4-sulfonate) (PSS), onto quartz glass substrates to produce composite films. Magnetic circular dichroism (MCD) measurements revealed that the assembled multilayer films exhibited an interesting magneto-optical response.

  14. On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry.

    PubMed

    González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M

    2003-04-01

    A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.

  15. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.

    PubMed

    Cornelissen, E R; Moreau, N; Siegers, W G; Abrahamse, A J; Rietveld, L C; Grefte, A; Dignum, M; Amy, G; Wessels, L P

    2008-01-01

    Early elimination of natural organic matter (NOM) by ion exchange (IEX) in water treatment is expected to improve subsequent water treatment processes and the final drinking water quality. Nine anionic exchange resins were investigated to remove NOM and specific NOM fractions determined by liquid chromatography in combination with organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (EEM). Breakthrough of NOM was predicted by model calculations using Freundlich isotherms and IEX rate experiments. The time to breakthrough varied from 4 to 38 days. Removal of specific NOM fractions proved to vary considerably for the different types of IEX resins, ranging from 1% to almost 60%. The removal of NOM fractions, specifically humic substances, increased with an increase in water content of the investigated IEX resins and with a decrease in resin size. The best-performing IEX resins consisted of the smallest resins and/or those with the highest water content. The worst-performing IEX resins reflected the highest exchanging capacities and the lowest water contents.

  16. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simulation-aided molecular design.

    PubMed

    Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua

    2013-07-01

    The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Flavonoids Are Inhibitors of Human Organic Anion Transporter 1 (OAT1)–Mediated Transport

    PubMed Central

    An, Guohua; Wang, Xiaodong

    2014-01-01

    Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 μM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway. PMID:25002746

  18. High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids.

    PubMed

    Bhattacharyya, Shubhankar; Filippov, Andrei; Shah, Faiz Ullah

    2017-11-29

    The effect of CO 2 absorption on the aromaticity and hydrogen bonding in ionic liquids is investigated. Five different ionic liquids with choline based cations and aprotic N-heterocyclic anions were synthesized. Purity and structures of the synthesized ionic liquids were characterized by 1 H and 13 C NMR spectroscopy. CO 2 capture performance was studied at 20 °C and 40 °C under three different pressures (1, 3, 6 bar). The IL [N 1,1,6,2OH ][4-Triz] showed the highest CO 2 capture capacity (28.6 wt%, 1.57 mol of CO 2 per mol of the IL, 6.48 mol of CO 2 per kg of the ionic liquid) at 20 °C and 1 bar. The high CO 2 capture capacity of the [N 1,1,6,2OH ][4-Triz] IL is due to the formation of carbonic acid (-OCO 2 H) together with carbamate by participation of the -OH group of the [N 1,1,6,2OH ] + cation in the CO 2 capture process. The structure of the adduct formed by CO 2 reaction with the IL [N 1,1,6,2OH ][4-Triz] was probed by using IR, 13 C NMR and 1 H- 13 C HMBC NMR experiments utilizing 13 C labeled CO 2 gas. 1 H and 13 C PFG NMR studies were performed before and after CO 2 absorption to explore the effect of cation-anion structures on the microscopic ion dynamics in ILs. The ionic mobility was significantly increased after CO 2 reaction due to lowering of aromaticity in the case of ILs with aromatic N-heterocyclic anions.

  19. TREATMENT FOR IMPROVING THE OPERATION OF STRONG BASE ANION EXCHANGE RESINS

    DOEpatents

    Stevenson, P.C.

    1960-11-29

    A process is offered for improving quaternary ammonium type strongly basic anion exchange resins so that centain zinc and cadmium residues, which normally stick to and "poison" this type of resin, can be removed by elution. Specifically, the resin as obtained commercially is treated with an aqueous solution of sodium hydroxide of about 1 to 4 M concentration by heating therein and periodically adding small amounts of oxidizing agent selected from hydrogen peroxide, sodium peroxide and hypochlorite. Zinc and cadmium values may then be adsorbed onto the resin from a 0.1 to 3 M HCl and thereafter eluted therefrom with very dilute HCl solutions.

  20. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  1. Enhancement of anion-exchange chromatography of DNA using compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2003-01-01

    The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.

  2. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  3. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  4. Graphene-supported platinum catalyst prepared with ionomer as surfactant for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; An, L.; Zhao, G.; Yan, X. H.; Jung, C. Y.

    2015-02-01

    In this work, we have synthesized an ionomer-coated graphene-supported platinum catalyst for anion exchange membrane fuel cells. Unlike the common surfactant stabilized colloidal method, we employ a home-made anion exchange ionomer (AEI), namely quaternary ammonia poly (2, 6-dimethyl-1, 4-phenylene oxide) (QAPPO), as the surfactant. The AEI coated on reduced graphene oxide (rGO) surfaces serves as a stabilizer to anchor the platinum precursor on rGO surfaces due to electrostatic interactions. As a result, platinum nanoparticles (Pt NPs) can be easily deposited onto rGO surfaces with a uniform distribution. The remarkable feature of the present synthesis method is that the surfactant, the coated AEI, does not need to be removed from the catalyst, but serves as hydroxide-conductive paths in the catalyst layer, leading to enhanced triple phase boundaries. It is demonstrated that the use of the catalyst obtained with the present method enables a H2/O2 AEMFC to yield a peak power density of 264.8 mW cm-2 at 60 °C, which is 30% higher than that produced from the same fuel cell but with the use of the catalyst synthesized by the conventional synthesis method.

  5. Spatially resolved multicolor CsPbX 3 nanowire heterojunctions via anion exchange

    DOE PAGES

    Dou, Letian; Lai, Minliang; Kley, Christopher S.; ...

    2017-06-26

    Halide perovskites are promising semiconductor materials for solution-processed optoelectronic devices. Their strong ionic bonding nature results in highly dynamic crystal lattices, inherently allowing rapid ion exchange at the solid–vapor and solid–liquid interface. In this paper, we show that the anion-exchange chemistry can be precisely controlled in single-crystalline halide perovskite nanomaterials when combined with nanofabrication techniques. We demonstrate spatially resolved multicolor CsPbX 3 (X = Cl, Br, I, or alloy of two halides) nanowire heterojunctions with a pixel size down to 500 nm with the photoluminescence tunable over the entire visible spectrum. In addition, the heterojunctions show distinct electronic states acrossmore » the interface, as revealed by Kelvin probe force microscopy. Finally, these perovskite heterojunctions represent key building blocks for high-resolution multicolor displays beyond current state-of-the-art technology as well as high-density diode/transistor arrays.« less

  6. A direct ascorbate fuel cell with an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  7. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  8. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    PubMed

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  9. Hydroxide Solvation and Transport in Anion Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less

  10. Effects of Organic Anion, Organic Cation, and Dipeptide Transport Inhibitors on Cefdinir in the Isolated Perfused Rat Kidney

    PubMed Central

    Lepsy, Christopher S.; Guttendorf, Robert J.; Kugler, Alan R.; Smith, David E.

    2003-01-01

    Cefdinir (Omnicef; Abbott Laboratories) is a cephalosporin antibiotic primarily eliminated by the kidney. Nonlinear renal elimination of cefdinir has been previously reported. Cefdinir renal transport mechanisms were studied in the erythrocyte-free isolated perfused rat kidney. Studies were performed with drug-free perfusate and perfusate containing cefdinir alone to establish the baseline physiology and investigate cefdinir renal elimination characteristics. To investigate cefdinir renal transport mechanisms, inhibition studies were conducted by coperfusing cefdinir with inhibitors of the renal organic anion (probenecid), organic cation (tetraethylammonium), or dipeptide (glycylsarcosine) transport system. Cefdinir concentrations in biological samples were determined using reversed-phase high-performance liquid chromatography. Differences between treatments and controls were evaluated using analysis of variance and Dunnett's test. The excretion ratio (ER; the renal clearance corrected for the fraction unbound and glomerular filtration rate) for cefdinir was 5.94, a value indicating net renal tubular secretion. Anionic, cationic, and dipeptide transport inhibitors all significantly affected the cefdinir ER. With probenecid, the ER was reduced to 0.59, clearly demonstrating a significant reabsorptive component to cefdinir renal disposition. This finding was confirmed by glycylsarcosine studies, in which the ER was elevated to 7.95, indicating that reabsorption was mediated, at least in part, by the dipeptide transporter system. The effects of the organic cation tetraethylammonium, in which the ER was elevated to 7.53, were likely secondary in nature. The anionic secretory pathway was found to be the predominant mechanism for cefdinir renal excretion. PMID:12543679

  11. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  12. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion playsmore » a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.« less

  13. The Effect of Ambient Carbon Dioxide on Anion-Exchange Membrane Fuel Cells.

    PubMed

    Ziv, Noga; Mustain, William E; Dekel, Dario R

    2018-04-09

    Over the past 10 years, there has been a surge of interest in anion-exchange membrane fuel cells (AEMFCs) as a potentially lower cost alternative to proton-exchange membrane fuel cells (PEMFCs). Recent work has shown that AEMFCs achieve nearly identical performance to that of state-of-the-art PEMFCs; however, much of that data has been collected while feeding CO 2 -free air or pure oxygen to the cathode. Usually, removing CO 2 from the oxidant is done to avoid the detrimental effect of CO 2 on AEMFC performance, through carbonation, whereby CO 2 reacts with the OH - anions to form HCO 3 - and CO 3 2- . In spite of the crucial importance of this topic for the future development and commercialization of AEMFCs, unfortunately there have been very few investigations devoted to this phenomenon and its effects. Much of the data available is widely spread out and there currently does not exist a resource that researchers in the field, or those looking to enter the field, can use as a reference text that explains the complex influence of CO 2 and HCO 3 - /CO 3 2- on all aspects of AEMFC performance. The purpose of this Review is to summarize the experimental and theoretical work reported to date on the effect of ambient CO 2 on AEMFCs. This systematic Review aims to create a single comprehensive account of what is known regarding how CO 2 behaves in AEMFCs, to date, as well as identify the most important areas for future work in this field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai

    The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less

  15. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin.

    PubMed

    Zheng, Shaokui; Li, Xiaofeng; Zhang, Xueyu; Wang, Wei; Yuan, Shengliu

    2017-09-01

    This study investigated the potential effect of four frequently used inorganic regenerant properties (i.e., ionic strength, cation type, anion type, and regeneration solution volume) on the desorption and adsorption performance of 14 pharmaceuticals, belonging to 12 therapeutic classes with different predominant chemical forms and hydrophobicities, using polymeric anion exchange resin (AER)-packed fixed-bed column tests. After preconditioning with NaCl, NaOH, or saline-alkaline (SA) solutions, all resulting mobile counterion types of AERs effectively adsorbed all 14 pharmaceuticals, where the preferential magnitude of OH - -type = Cl -  + OH - -type > Cl - -type. During regeneration, ionic strength (1 M versus 3 M NaCl) had no significant influence on desorption performance for any of the 14 pharmaceuticals, while no regenerant cation (HCl versus NaCl) or anion type (NaCl versus NaOH and SA) achieved higher desorption efficiencies for all pharmaceuticals. A volumetric increase in 1 M or 3 M NaCl solutions significantly improved the desorption efficiencies of most pharmaceuticals, irrespective of ionic strength. The results indicate that regeneration protocols, including regenerant cation type, anion type and volume, should be optimized to improve pharmaceutical removal by AERs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dissociation of Rac1(GDP)·RhoGDI Complexes by the Cooperative Action of Anionic Liposomes Containing Phosphatidylinositol 3,4,5-Trisphosphate, Rac Guanine Nucleotide Exchange Factor, and GTP*

    PubMed Central

    Ugolev, Yelena; Berdichevsky, Yevgeny; Weinbaum, Carolyn; Pick, Edgar

    2008-01-01

    Rac plays a pivotal role in the assembly of the superoxide-generating NADPH oxidase of phagocytes. In resting cells, Rac is found in the cytosol in complex with Rho GDP dissociation inhibitor (RhoGDI). NADPH oxidase assembly involves dissociation of the Rac·RhoGDI complex and translocation of Rac to the membrane. We reported that liposomes containing high concentrations of monovalent anionic phospholipids cause Rac·RhoGDI complex dissociation (Ugolev, Y., Molshanski-Mor, S., Weinbaum, C., and Pick, E. (2006) J. Biol. Chem.281 ,19204 -1921916702219). We now designed an in vitro model mimicking membrane phospholipid remodeling during phagocyte stimulation in vivo. We showed that liposomes of “resting cell membrane” composition (less than 20 mol % monovalent anionic phospholipids), supplemented with 1 mol % of polyvalent anionic phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in conjunction with constitutively active forms of the guanine nucleotide exchange factors (GEFs) for Rac, Trio, or Tiam1 and a non-hydrolyzable GTP analogue, cause dissociation of Rac1(GDP)·RhoGDI complexes, GDP to GTP exchange on Rac1, and binding of Rac1(GTP) to the liposomes. Complexes were not dissociated in the absence of GEF and GTP, and optimal dissociation required the presence of PtdIns(3,4,5)P3 in the liposomes. Dissociation of Rac1(GDP)·RhoGDI complexes was correlated with the affinity of particular GEF constructs, via the N-terminal pleckstrin homology domain, for PtdIns(3,4,5)P3 and involved GEF-mediated GDP to GTP exchange on Rac1. Phagocyte membranes enriched in PtdIns(3,4,5)P3 responded by NADPH oxidase activation upon exposure in vitro to Rac1(GDP)·RhoGDI complexes, p67phox, GTP, and Rac GEF constructs with affinity for PtdIns(3,4,5)P3 at a level superior to that of native membranes. PMID:18505730

  18. Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.

    PubMed

    Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław

    2017-11-01

    Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).

  19. Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa

    2011-11-01

    In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.

  20. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm -1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that theremore » is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH - form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO 2 with OH - as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  1. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane.

    PubMed

    Pandey, Tara P; Maes, Ashley M; Sarode, Himanshu N; Peters, Bethanne D; Lavina, Sandra; Vezzù, Keti; Yang, Yuan; Poynton, Simon D; Varcoe, John R; Seifert, Soenke; Liberatore, Matthew W; Di Noto, Vito; Herring, Andrew M

    2015-02-14

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm(-1) at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition (19)F pulse field gradient spin echo NMR indicates that there is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH(-) form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH(-) as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.

  2. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE PAGES

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; ...

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm -1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that theremore » is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH - form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO 2 with OH - as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  3. Effects of pH, conductivity, host cell protein, and DNA size distribution on DNA clearance in anion exchange chromatography media

    PubMed Central

    Stone, Melani C.; Borman, Jon; Ferreira, Gisela

    2017-01-01

    Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 PMID:28884511

  4. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  5. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  6. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    PubMed

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  7. Optical absorption, electron spin resonance, and electron spin echo studies of the photoionization of tetramethylbenzidine in cationic and anionic synthetic vesicles: comparison with analogous micellar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, A.S.W.; Kevan, L.

    1983-09-07

    The photoionization of N,N,N',N'-tetramethylbenzidine (TMB) in dihexadecylphosphate anionic vesicles and in dioctadecyldimethylammonium chloride cationic vesicles has been studied by optical absorption and electron spin resonance in liquid and frozen solutions. The TMB cation has been observed to be stabilized in both types of vesicles. The photoionization efficiency is about twofold greater in the cationic vesicles compared to the anionic vesicles. Shifts in the optical absorption maximum between micellar and vesicle solutions indicate that TMB is in a less polar environment in the vesicle systems. Electron spin echo modulation spectrometry has been used to detect TMB cation-water interactions that are foundmore » to be weaker than in previously studied micellar solutions. This is consistent with the optical absorption results and with an asymmetric solubilization site for TMB and TMB/sup +/ within the vesicular structure. A new absorption in the photoionized vesicles is assigned to a nonparamagnetic diamine-diimine charge-transfer complex between two TMB cations in the same vesicle. This complex is not formed in micellar systems. 5 figures.« less

  8. Anionic pH-Sensitive Lipoplexes.

    PubMed

    Mignet, Nathalie; Scherman, Daniel

    2017-01-01

    To provide long circulating nanoparticles able to carry a gene to tumors, we have designed anionic pegylated lipoplexes which are pH sensitive. Anionic pegylated lipoplexes have been prepared from the combined formulation of cationic lipoplexes and pegylated anionic liposomes. The neutralization of the particle surface charge as a function of the pH was monitored by light scattering in order to determine the ratio between anionic and cationic lipids that would give pH sensitive complexes. This ratio has been optimized to form particles sensitive to pH change in the range 5.5-6.5. Compaction of DNA into these newly formed anionic complexes is checked by DNA accessibility to picogreen. The transfection efficiency and pH sensitive property of these formulations has been shown in vitro using bafilomycin, a vacuolar H + -ATPase inhibitor.

  9. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    PubMed

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  10. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  11. Removal of chromium (VI) from electroplating wastewater using an anion exchanger derived from rice straw.

    PubMed

    Cao, Wei; Dang, Zhi; Yia, Xiao-Yun; Yang, Chen; Lu, Gui-Ning; Liu, Yun-Feng; Huang, Se-Yan; Zheng, Liu-Chun

    2013-01-01

    An anion exchanger from rice straw was used to remove Cr (VI) from synthetic wastewater and electroplating effluent. The exchanger was characterized using Fourier transform infrared (FTIR) spectrum and scanning electron microscopy (SEM), and it was found that the quaternary amino group and hydroxyl group are the main functional groups on the fibrous surface of the exchanger. The effect of contact time, initial concentration and pH on the removal of Cr (VI), and adsorption isotherms at different temperature, was investigated. The results showed that the removal of Cr (VI) was very rapid and was significantly affected by the initial pH of the solution. Although acidic conditions (pH = 2-6) facilitated Cr (VI) adsorption, the exchanger was effective in neutral solution and even under weak base conditions. The equilibrium data fitted well with Langmuir adsorption model, and the maximum Cr (VI) adsorption capacities at pH 6.4 were 0.35, 0.36 and 0.38 mmol/g for 15, 25 and 35 degrees C, respectively. The exchanger was finally tested with real electroplating wastewater, and at sorbent dosage of 10 g/L, the removal efficiencies for Cr (VI) and total Cr were 99.4% and 97.8%, respectively. In addition, the positive relationship between adsorbed Cr (VI) and desorbed Cl- suggested that Cr (VI) was mainly removed by ion exchange with chlorine.

  12. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  13. Steady state and transient simulation of anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  14. A thermostable trypsin inhibitor with antiproliferative activity from small pinto beans.

    PubMed

    Chan, Yau Sang; Zhang, Yanbo; Sze, Stephen Cho Wing; Ng, Tzi Bun

    2014-08-01

    Small pinto bean is a cultivar of Phaseolus vulgaris. It produces a 16-kDa trypsin inhibitor that could be purified using anion exchange and size chromatography. Q-Sepharose, Mono Q and Superdex 75 columns were employed for the isolation process. Small pinto bean trypsin inhibitor demonstrated moderate pH stability (pH 2-10) and marked heat stability, with its trypsin inhibitory activity largely retained after exposure to 100 °C for half an hour. The activity was abolished in the presence of dithiothreitol, in a dose-dependent manner, implying that disulfide bonds in small pinto bean trypsin inhibitor are crucial for the activity. The trypsin inhibitor showed a blocked N-terminus. The trypsin inhibitor only slightly inhibited the viability of breast cancer MCF7 and hepatoma HepG2 cells at 125 μM.

  15. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE PAGES

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; ...

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  16. Effect of pore structure on the removal of clofibric acid by magnetic anion exchange resin.

    PubMed

    Tan, Liang; Shuang, Chendong; Wang, Yunshu; Wang, Jun; Su, Yihong; Li, Aimin

    2018-01-01

    The effect of pore structure of resin on clofibric acid (CA) adsorption behavior was investigated by using magnetic anion exchange resins (ND-1, ND-2, ND-3) with increasing pore diameter by 11.68, 15.37, 24.94 nm. Resin with larger pores showed faster adsorption rates and a higher adsorption capacity because the more opened tunnels provided by larger pores benefit the CA diffusion into the resin matrix. The ion exchange by the electrostatic interactions between Cl-type resin and CA resulted in chloride releasing to the solution, and the ratio of released chloride to CA adsorption amount decreased from 0.90 to 0.65 for ND-1, ND-2 and ND-3, indicating that non-electrostatic interactions obtain a larger proportional part of the adsorption into the pores. Co-existing inorganic anions and organic acids reduced the CA adsorption amounts by the competition effect of electrostatic interaction, whereas resins with more opened pore structures weakened the negative influence on CA adsorption because of the existence of non-electrostatic interactions. 85.2% and 65.1% adsorption amounts decrease are calculated for resin ND-1 and ND-3 by the negative influence of 1 mmol L -1 NaCl. This weaken effect of organic acid is generally depends on its hydrophobicity (Log Kow) for carboxylic acid and its ionization degree (pKb) for sulfonic acid. The resins could be reused with the slightly decreases by 1.9%, 3.2% and 5.4% after 7 cycles of regeneration, respectively for ND-1, ND-2 and ND-3, suggesting the ion exchange resin with larger pores are against its reuse by the brine solution regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Absorption and resonance Raman study of the pyromellitic diahydride anion via density functional theory

    NASA Astrophysics Data System (ADS)

    Andruniow, T.; Pawlikowski, M.

    2000-05-01

    The electronic structure of the low-energy states of the pyromellitic diahydride (PMDA) anion is investigated in terms of the VWN (Vosco-Wilk-Nusair) the BP (Becke-Perdew) and the B3LYP density functional (DF) methods employed with 6-31G * basis sets. All the methods are shown to reproduce correctly the absorption and resonance Raman spectra in the region corresponding to the low-energy 1 2Au→1 2B3g transition. The discrepancies between the theory and experiment are attributed to a (weak) Dushinsky effect predominately due to a mixing of the ν3=1593 cm -1 and ν4=1342 cm -1 vibrations in the 1 2B3 g state of the PMDA radical.

  18. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    PubMed

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  19. Photo-Cross-Linked Anion Exchange Membranes with Improved Water Management and Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, S. Piril; Tsai, Tsung-Han; Donahue, Melissa M.

    Robust, cross-linked anion exchange membranes (AEMs) were prepared from solvent-processable polyisoprene- ran -poly(vinylbenzyltrimethylammonium chloride) (PI- ran -P- [VBTMA][Cl]) ionomers via photoinitiated thiol - ene chem- istry. Two series of membranes were prepared choosing two dithiol cross-linkers, 1,10-decanedithiol and 2,2 ' - (ethylenedioxy)diethanethiol, selected for their di ff erent hydro- phobicities. A strong correlation was found between the choice of dithiol cross-linker, water uptake, morphology, and the ion conductivity of the membranes. Results were compared with previous fi ndings of thermally cross-linked AEMs from analogous random copolymers. Comparably high chloride ion conductivities were obtained at low to moderate ion exchange capacitiesmore » (IECs) with signi fi cantly low water uptake values. It was shown that by choosing a hydrophilic cross-linker ion cluster formation may be suppressed and ion conduction improved. This study highlights that it is possible to promote ion conductivities for low IEC membranes (<1 mmol/g) by forming well- connected, ion conducting network morphology. This observation paves the way for mechanically robust ion conducting membranes with enhanced conductivities and better water management.« less

  20. High-mobility group box 1 inhibits HCO3− absorption in the medullary thick ascending limb through RAGE-Rho-ROCK-mediated inhibition of basolateral Na+/H+ exchange

    PubMed Central

    Watts, Bruns A.; George, Thampi; Badalamenti, Andrew

    2016-01-01

    High-mobility group box 1 (HMGB1) is a nuclear protein released extracellularly in response to infection or injury, where it activates immune responses and contributes to the pathogenesis of kidney dysfunction in sepsis and sterile inflammatory disorders. Recently, we demonstrated that HMGB1 inhibits HCO3− absorption in perfused rat medullary thick ascending limbs (MTAL) through a basolateral receptor for advanced glycation end products (RAGE)-dependent pathway that is additive to Toll-like receptor 4 (TLR4)-ERK-mediated inhibition by LPS (Good DW, George T, Watts BA III. Am J Physiol Renal Physiol 309: F720–F730, 2015). Here, we examined signaling and transport mechanisms that mediate inhibition by HMGB1. Inhibition of HCO3− absorption by HMGB1 was eliminated by the Rho-associated kinase (ROCK) inhibitor Y27632 and by a specific inhibitor of Rho, the major upstream activator of ROCK. HMGB1 increased RhoA and ROCK1 activity. HMGB1-induced ROCK1 activation was eliminated by the RAGE antagonist FPS-ZM1 and by inhibition of Rho. The Rho and ROCK inhibitors had no effect on inhibition of HCO3− absorption by bath LPS. Inhibition of HCO3− absorption by HMGB1 was eliminated by bath amiloride, 0 Na+ bath, and the F-actin stabilizer jasplakinolide, three conditions that selectively prevent inhibition of MTAL HCO3− absorption mediated through NHE1. HMGB1 decreased basolateral Na+/H+ exchange activity through activation of ROCK. We conclude that HMGB1 inhibits HCO3− absorption in the MTAL through a RAGE-RhoA-ROCK1 signaling pathway coupled to inhibition of NHE1. The HMGB1-RAGE-RhoA-ROCK1 pathway thus represents a potential target to attenuate MTAL dysfunction during sepsis and other inflammatory disorders. HMGB1 and LPS inhibit HCO3− absorption through different receptor signaling and transport mechanisms, which enables these pathogenic mediators to act directly and independently to impair MTAL function. PMID:27358052

  1. Alkaline dehydration of anion-exchanged human urine: Volume reduction, nutrient recovery and process optimisation.

    PubMed

    Simha, Prithvi; Senecal, Jenna; Nordin, Annika; Lalander, Cecilia; Vinnerås, Björn

    2018-06-02

    In urine-separating sanitation systems, bacterial urease enzymes can hydrolyse urea to ammonia during the pipe transport and storage of urine. The present study investigated whether it was possible to reduce the urine volume without losing the nitrogen as ammonia. A method for stabilising the urine prior to dehydration was developed. Briefly, fresh human urine was stabilised by passage through an anion-exchanger, added to an alkaline media (wood ash or alkalised biochar), and dehydrated. Urine dehydration was investigated at three temperatures: 40, 45 and 50 °C. The influence of various factors affecting the dehydration process was modelled and the rate of urine dehydration was optimised. Results indicated that 75% (v/v) of the urine has to pass through the ion-exchanger for alkaline stabilisation of urine to occur. At all investigated temperatures, the dehydrator accomplished >90% volume reduction of ion-exchanged urine, > 70% N retention and 100% recovery of P and K. To realise high degree of nutrient valorisation, this study proposes combining source-separation of human urine with alkaline dehydration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances.

    PubMed

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-25

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co 9 S 8 aerogel with a high surface area (274.2 m 2 g -1 ) and large pore volume (0.87 cm 3 g -1 ) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co 9 S 8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g -1 at 1 A g -1 ), good rate capability (74.3% capacitance retention from 1 to 20 A g -1 ) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  3. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    NASA Astrophysics Data System (ADS)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  4. Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform.

    PubMed

    O'Hara, Matthew J; Murray, Nathaniel J; Carter, Jennifer C; Morrison, Samuel S

    2018-04-13

    Zirconium-89 ( 89 Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( nat Y), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89 Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5 ) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89 Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89 Zr present in the foils. The anion exchange column method described here is intended to be the first 89 Zr isolation stage in a dual-column purification process. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Optimized anion exchange column isolation of zirconium-89 ( 89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.

    Zirconium-89 ( 89Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its abilitymore » to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89Zr present in the foils. The anion exchange column method described here is intended to be the first 89Zr isolation stage in a dual-column purification process.« less

  6. Optimized anion exchange column isolation of zirconium-89 ( 89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    DOE PAGES

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.; ...

    2018-02-24

    Zirconium-89 ( 89Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its abilitymore » to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89Zr present in the foils. The anion exchange column method described here is intended to be the first 89Zr isolation stage in a dual-column purification process.« less

  7. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    PubMed

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  8. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    PubMed

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  9. Purification of bacteriophage M13 by anion exchange chromatography.

    PubMed

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Anion-π Catalysis on Fullerenes.

    PubMed

    López-Andarias, Javier; Frontera, Antonio; Matile, Stefan

    2017-09-27

    Anion-π interactions on fullerenes are about as poorly explored as the use of fullerenes in catalysis. However, strong exchange-correlation contributions and the localized π holes on their surface promise unique selectivities. To elaborate on this promise, tertiary amines are attached nearby. Dependent on their positioning, the resulting stabilization of anionic transition states on fullerenes is shown to accelerate disfavored enolate addition and exo Diels-Alder reactions enantioselectively. The found selectivities are consistent with computational simulations, particularly concerning the discrimination of differently planarized and charge-delocalized enolate tautomers by anion-π interactions. Enolate-π interactions on fullerenes are much shorter than standard π-π interactions and anion-π interactions on planar surfaces, and alternative cation-π interactions are not observed. These findings open new perspectives with regard to anion-π interactions in general and the use of carbon allotropes in catalysis.

  11. Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2017-09-01

    The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl - /[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35 [Formula: see text] and 36 Cl - fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm -2 ·h -1 ], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl - , and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion ( U SO4 ) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas U SO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis. NEW & NOTEWORTHY Sulfate is an essential anion that is

  12. Phase separation and ion conductivity in the bulk and at the surface of anion exchange membranes with different ion exchange capacities at different humidities

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Akiyama, Ryo; Miyatake, Kenji; Inukai, Junji

    2018-01-01

    For higher performances of anion exchange membrane (AEM) fuel cells, understanding the phase-separated structures inside AEMs is essential, as well as those at the catalyst layer/membrane interfaces. The AEMs based on quaternized aromatic semi-block copolymers with different ion exchange capacities (IECs) were systematically investigated. With IECs of 1.23 and 1.95 mequiv g-1, the water uptakes at room temperature were 37% and 98%, and the anion conductivities 23.6 and 71.4 mS cm-1, respectively. The increases were not proportional to the IEC. Images obtained by transmission electron microscopy in vacuum were similar with both IEC values, but the development of a clear phase separation in humidified nitrogen was observed in the profiles only with 1.95 mequiv g-1obtained by small-angle X-ray scattering. At the temperature of 40 °C and the relative humidity (RH) of 30%, the average currents observed at the tip apex by current-sensing atomic force microscopy were <0.5 and 10 pA with 1.23 and 1.95 mequiv g-1, respectively, and those at 70% RH were 10 and 15 pA, respectively. The humidity gave a larger influence on the bulk structure with 1.95 mequiv g-1, whereas a larger influence on the surface conductivity with 1.23 mequiv g-1.

  13. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-02

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  14. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    PubMed Central

    Hassan, Refat M.; Zaafarany, Ishaq A.

    2013-01-01

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper. PMID:28809282

  15. Retention characteristics of a new butylimidazolium-based stationary phase. Part II: anion exchange and partitioning.

    PubMed

    Van Meter, David S; Sun, Yaqin; Parker, Kevin M; Stalcup, Apryll M

    2008-02-01

    A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.

  16. A novel multi-hyphenated analytical method to simultaneously determine xanthine oxidase inhibitors and superoxide anion scavengers in natural products.

    PubMed

    Qi, Jin; Sun, Li-Qiong; Qian, Steven Y; Yu, Bo-Yang

    2017-09-01

    Natural products, such as rosmarinic acid and apigenin, can act as xanthine oxidase inhibitors (XOIs) as well as superoxide anion scavengers, and have potential for treatment of diseases associated with high uric acid levels and oxidative stress. However, efficient simultaneous screening of these two bioactivities in natural products has been challenging. We have developed a novel method by assembling a multi-hyphenated high performance liquid chromatography (HPLC) system that combines a photo-diode array, chemiluminescence detector and a HPLC system with a variable wavelength detector, to simultaneously detect components that act as both XOIs and superoxide anion scavengers in natural products. Superoxide anion scavenging activity in the analyte was measured by on-line chemiluminescence chromatography based on pyrogallol-luminol oxidation, while xanthine oxidase inhibitory activity was determined by semi-on-line HPLC analysis. After optimizing multiple elements, including chromatographic conditions (e.g., organic solvent concentration and mobile phase pH), concentrations of xanthine/xanthine oxidase and reaction temperature, our validated analytical method was capable of mixed sample analysis. The final results from our method are presented in an easily understood visual format including comprehensive bioactivity data of natural products. Copyright © 2017. Published by Elsevier B.V.

  17. Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction.

    PubMed

    Song, Shiming; Zhang, Cuifang; Chen, Zhaojie; He, Fengmei; Wei, Jie; Tan, Huihua; Li, Xuesheng

    2018-07-06

    In this study, we developed an anion exchanger-disposable pipette extraction (DPX) method to detect the residual concentrations of eight neonicotinoid insecticides (dinotefuran, acetamiprid, clothianidin, thiacloprid, imidachloprid, imidaclothiz, nitenpyram, and thiamethoxam) and eight insect growth regulators (IGRs; triflumuron, cyromazine, buprofezin, methoxyfenozide, tebufenozide, chromafenozide, fenoxycarb, and RH 5849) in Chinese honey samples collected from different floral sources and different geographical regions using liquid chromatography tandem mass spectrometry (LC-MS/MS). QAE Sephadex A-25 was used as the anion exchanger in the DPX column for the purification and cleanup of honey samples. Analytes were eluted with a mixture of acetonitrile and 0.1 M HCl, and the elution was subjected to LC analysis. This method was thoroughly validated for its reproducibility, linearity, trueness, and recovery. Satisfactory recovery of pesticides was obtained ranging from 72% to 111% with intraday RSDs (n = 5) of 1%-10%. High linearity (R 2  ≥ 0.9987) was observed for all 16 pesticides. Limits of detection and quantification for all 16 compounds ranged from 0.3 to 3 μg/kg and from 1 to 10 μg/kg, respectively. Pesticide residues (9-113 μg/kg) were found in Chinese honey samples. The anion exchanger-DPX method was effective for removing sugars and retaining target analytes. Moreover, this method was highly reliable and sensitive for detecting neonicotinoids and IGRs in different floral sources of honey and will be applicable to matrixes with high sugar content. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    NASA Astrophysics Data System (ADS)

    Duan, Qiongjuan; Ge, Shanhai; Wang, Chao-Yang

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34.

  19. Intermolecular electron-transfer mechanisms via quantitative structures and ion-pair equilibria for self-exchange of anionic (dinitrobenzenide) donors.

    PubMed

    Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K

    2005-05-25

    Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.

  20. Recovering gold from thiosulfate leach pulps via ion exchange

    NASA Astrophysics Data System (ADS)

    Nicol, Michael J.; O'Malley, Glen

    2002-10-01

    Increasing environmental and occupational safety concerns about the use of cyanide in gold processing has increased interest in more acceptable alternative lixiviants, the most promising of which is thiosulfate. However, the thiosulfate process lacks a proven inpulp method of recovering the dissolved gold because activated carbon is not effective for the absorption of the gold-thiosulfate complex. This paper describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps.

  1. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations.

    PubMed

    Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G

    2007-06-11

    The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.

  2. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    PubMed

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    PubMed

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Adsorption of plasmid DNA on anion exchange chromatography media.

    PubMed

    Tarmann, Christina; Jungbauer, Alois

    2008-08-01

    Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.

  5. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  6. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  7. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites.

    PubMed

    Stanić, Marina; Križak, Strahinja; Jovanović, Mirna; Pajić, Tanja; Ćirić, Ana; Žižić, Milan; Zakrzewska, Joanna; Antić, Tijana Cvetić; Todorović, Nataša; Živić, Miroslav

    2017-03-01

    Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.

  8. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several

  9. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optimized anion exchange column isolation of zirconium-89 ( 89 Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.

    Zirconium-89 (89Zr), produced by the (p,n) reaction from naturally monoisotopic yttrium (natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capturemore » Zr from a load solution that is high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>105) and has been shown to separate Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the performance of the method was evaluated using cyclotron bombarded Y foil targets. The separation method was shown to achieve >95% recovery of the 89Zr present in the foils. The 89Zr eluent, however, was in a chemical matrix not immediately conducive to labeling onto proteins. The main intent of this study was to develop a tandem column 89Zr purification process, wherein the anion exchange column method described here is the first separation in a dual-column purification process.« less

  11. Inhibition of nuclear waste solutions containing multiple aggressive anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.

    1988-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion.

  12. Inhibition of nuclear waste solutions containing multiple aggressive anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.

    1988-05-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions; however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion.

  13. Mixed retention mechanism of proteins in weak anion-exchange chromatography.

    PubMed

    Liu, Peng; Yang, Haiya; Geng, Xindu

    2009-10-30

    Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.

  14. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    PubMed

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  15. Extraction of acidic degradation products of organophosphorus chemical warfare agents. Comparison between silica and mixed-mode strong anion-exchange cartridges.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Gupta, A K; Kumar, Rajesh; Srivastava, R K; Dubey, D K

    2007-08-17

    The analysis of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the hydrolyzed products of nerve agents, constitutes an important aspect for verifying the compliance to the Chemical weapons convention (CWC). This work devotes on the development of solid-phase extraction method using polymeric mixed-mode strong anion-exchange (Oasis MAX) cartridges for extraction of AAPAs and APAs from water. The extracted analytes were analyzed by GC-MS under full scan and selected ion monitoring mode. The extraction efficiencies of MAX and silica-based anion-exchange cartridges were compared, and results revealed that MAX sorbents yielded better recoveries. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 1 mL of acidic methanol (0.1 M), and limits of detection could be achieved up to 5 x 10(-4) microg mL(-1) (in SIM) and 0.05 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of alkylphosphonic acids present in soil sample sent by the Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests.

  16. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-04-03

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.

  17. Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air.

    PubMed

    Shi, Xiaoyang; Li, Qibin; Wang, Tao; Lackner, Klaus S

    2017-01-01

    This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H2O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures.

  18. Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air

    PubMed Central

    Shi, Xiaoyang; Li, Qibin; Lackner, Klaus S.

    2017-01-01

    This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H2O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures. PMID:28640914

  19. Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

    NASA Astrophysics Data System (ADS)

    Singare, P. U.

    2014-07-01

    Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.

  20. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  1. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  2. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.

    PubMed

    Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.

  3. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles.

    PubMed

    Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen

    2016-01-15

    Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    NASA Technical Reports Server (NTRS)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  5. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  6. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    PubMed Central

    Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin

    2018-01-01

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188

  7. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.

    PubMed

    Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin

    2018-04-05

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  8. Determination of 129I in environmental samples by AMS and NAA using an anion exchange resin disk

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Banba, Shigeru; Kitamura, Toshikatsu; Kabuto, Shoji; Isogai, Keisuke; Amano, Hikaru

    2007-06-01

    We have developed a new extraction method for the measurement of 129I by accelerator mass spectrometry (AMS) utilizing an anion exchange resin disk. In comparison to traditional methods such as solvent extraction and ion exchange, this method provides for simple and quick sample handling. This extraction method was tested on soil, seaweed and milk samples, but because of disk clogging, the milk samples and some of the seaweed could not be applied successfully. Using this new extraction method to prepare samples for AMS analysis produced isotope ratios of iodine in good agreement with neutron activation analysis (NAA). The disk extraction method which take half an hour is faster than previous techniques, such as solvent extraction or ion exchange which take a few hours. The combination of the disk method and the AMS measurement is a powerful tool for the determination of 129I. Furthermore, these data will be available for the environmental monitoring before and during the operation of a new nuclear fuel reprocessing plant in Japan.

  9. Radioimmunoassay of a new angiotensin-converting enzyme inhibitor (perindopril) in human plasma and urine: Advantages of coupling anion-exchange column chromatography with radioimmunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, L.; De Veyrac, B.; Delaage, M.

    1990-08-01

    Perindopril (P) is a prodrug whose active metabolite perindoprilat (PT) is an antihypertensive agent which acts by inhibition of angiotensin-converting enzyme (ACE). Anti-PT antiserum was produced in a rabbit immunized against PT that was covalently linked to bovine serum albumin. The radioligand is an iodinated ({sup 125}I) derivative of PT-glycyltyrosinamide. Both the drug (PT) and the prodrug (P) are assayed in the same sample; PT is assayed as is and P is assayed after quantitative alkaline hydrolysis into PT. Certain data obtained from such assays suggest the occurrence in plasma and urine of a third immunoreactive component. A chromatographic fractionationmore » of samples allowed us to isolate a new immunoreactive metabolite which was further identified as a glucuronide of PT (PT-G). Therefore, the whole assay was carried out as follows: biological samples were fractionated by stepwise chromatography on a anion-exchange resin (the first fraction contained P, the second contained PT, and the third contained PT-G); and RIA was performed on fractions 2 and 3 as is, and on fraction 1 after alkaline hydrolysis. Performances and assessments of this method are presented together with an example of a pharmacokinetic profile.« less

  10. Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting CFTR Cl- channel and Luminal Anion Exchangers

    PubMed Central

    Pallagi, Petra; Venglovecz, Viktória; Rakonczay, Zoltán; Borka, Katalin; Korompay, Anna; Ózsvári, Béla; Judák, Linda; Sahin-Tóth, Miklós; Geisz, Andrea; Schnúr, Andrea; Maléth, József; Takács, Tamás; Gray, Mike A.; Argent, Barry E.; Mayerle, Julia; Lerch, Markus M.; Wittmann, Tibor; Hegyi, Péter

    2012-01-01

    Background & Aims The effects of trypsin on pancreatic ductal epithelial cells (PDEC) vary among species and depend on localization of proteinase-activated receptor-2 (PAR-2). Bicarbonate secretion is similar in human and guinea pig PDEC; we compared its localization in these cell types and isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on this process. Methods PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease). Functions of guinea pig PDEC were studied by microperfusion of isolated ducts, measurements of intracellular pH (pHi) and Ca2+ concentration [Ca2+]i, and patch clamp analysis. The effect of pH on trypsinogen autoactivation was assessed using recombinant human cationic trypsinogen. Results PAR-2 localized to the apical membrane of human and guinea pig PDEC. Trypsin increased [Ca2+]i and pHi, and inhibited secretion of bicarbonate by the luminal anion exchanger and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Autoactivation of human cationic trypsinogen accelerated when the pH was reduced from 8.5 to 6.0. PAR-2 expression was strongly down-regulated, at transcriptional and protein levels, in the ducts of patients with chronic pancreatitis, consistent with increased activity of intraductal trypsin. Importantly, in PAR-2 knockout mice, the effects of trypsin were PAR-2 dependent. Conclusions Trypsin reduces pancreatic ductal bicarbonate secretion via PAR-2–dependent inhibition of the apical anion exchanger and the CFTR Cl- channel. This could contribute to the development of chronic pancreatitis, decreasing luminal pH and promoting premature activation of trypsinogen in the pancreatic ducts. PMID:21893120

  11. Poly(terphenylene) Anion Exchange Membranes: The Effect of Backbone Structure on Morphology and Membrane Property

    DOE PAGES

    Lee, Woo-Hyung; Park, Eun Joo; Han, Junyoung; ...

    2017-05-05

    A new design concept for ion-conducting polymers in anion exchange membranes (AEMs) fuel cells is proposed based on structural studies and conformational analysis of polymers and their effect on the properties of AEMs. Thermally, chemically, and mechanically stable terphenyl-based polymers with pendant quaternary ammonium alkyl groups were synthesized to investigate the effect of varying the arrangement of the polymer backbone and cation-tethered alkyl chains. The results demonstrate that the microstructure and morphology of these polymeric membranes significantly influence ion conductivity and fuel cell performance. Finally, the results of this study provide new insights that will guide the molecular design ofmore » polymer electrolyte materials to improve fuel cell performance.« less

  12. Concerted ligand exchange and the roles of counter anions in the reversible structural switching of crystalline peptide metallo-macrocycles.

    PubMed

    Miyake, Ryosuke; Shionoya, Mitsuhiko

    2014-06-02

    To understand reversible structural switching in crystalline materials, we studied the mechanism of reversible crystal-to-crystal transformation of a tetranuclear Ni(II) macrocycle consisting of artificial β-dipeptides. On the basis of detailed structural analyses and thermodynamic measurements made in a comparison of pseudo-isostructural crystals (NO3 and BF4 salts), we herein discuss how ligand-exchange reactions take place in the crystal due to changes in water content and temperature. Observations of the structural transformation of NO3 salt indicated that a pseudo crystalline phase transformation takes place through concerted ligand-exchange reactions at the four Ni(II) centers of the macrocycle with hydrogen bond switching. A mechanism for this ligand exchange was supported by IR spectroscopy. Thermodynamic measurements suggested that the favorable compensation relationship of the enthalpy changes due to water uptake and structural changes are keys to the reversible structural transformation. On the basis of a comparison with the pseudo-isostructural crystals, it is apparent that the crystal packing structure and the types of counter anions are important factors for facilitating reversible ligand exchange with single crystallinity.

  13. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    PubMed

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  14. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    PubMed

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  15. Pulse Radiolysis and Computational Studies on a Pyrrolidinium Dicyanamide Ionic Liquid: Detection of the Dimer Radical Anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Laboni; Kumar, Rahul; Maity, Dilip K.

    A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less

  16. Pulse Radiolysis and Computational Studies on a Pyrrolidinium Dicyanamide Ionic Liquid: Detection of the Dimer Radical Anion

    DOE PAGES

    Das, Laboni; Kumar, Rahul; Maity, Dilip K.; ...

    2018-03-06

    A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less

  17. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    PubMed

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-02-29

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  18. Ionic liquids comprising heteraromatic anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  19. Characteristics of competitive uptake between Microcystin-LR and natural organic matter (NOM) fractions using strongly basic anion exchange resins.

    PubMed

    Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid

    2018-08-01

    Microcystins are the most commonly occurring cyanotoxins, and have been extensively studied across the globe. In the present study, a strongly basic anion exchange resin was employed to investigate the removal of Microcystin-LR (MCLR), one of the most toxic microcystin variants. Factors influencing the uptake behavior included the MCLR and resin concentrations, resin dosage, and natural organic matter (NOM) characteristics, specifically, the charge density and molecular weight distribution of source water NOM. Equivalent background concentration (EBC) was employed to evaluate the competitive uptake between NOM and MCLR. The experimental data were compared with different mathematical and physical models and pore diffusion was determined as the rate-limiting step. The resin dose/solute concentration ratio played a key role in the MCLR uptake process and MCLR removal was attributed primarily to electrostatic attractions. Charge density and molecular weight distribution of the background NOM fractions played a major role in MCLR removal at lower resin dosages (200 mg/L ∼ 1 mL/L and below), where a competitive uptake was observed due to the limited exchange sites. Further, evidences of pore blockage and site reduction were also observed in the presence of humics and larger molecular weight organic fractions, where a four-fold reduction in the MCLR uptake was observed. Comparable results were obtained for laboratory studies on synthetic laboratory water and surface water under similar conditions. Given their excellent performance and low cost, anion exchange resins are expected to present promising potentials for applications involving the removal of removal of algal toxins and NOM from surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Thromboxane synthesis inhibitors and postprandial jejunal capillary exchange capacity.

    PubMed

    Mangino, M J; Chou, C C

    1988-05-01

    The effects of thromboxane synthesis inhibitors (imidazole and U 63557A; Upjohn) and the cyclooxygenase inhibitor, mefenamic acid, on jejunal capillary filtration coefficients (Kfc) were determined in dogs before and during the presence of predigested food in the jejunal lumen. The jejunal Kfc increased significantly soon after the placement of a predigested test food containing all major constituents of diet. The Kfc remained elevated as long as the food was present in the lumen (15 min). Mefenamic acid (10 mg/kg iv) did not significantly alter resting jejunal Kfc or alter the food-induced increase in Kfc. Imidazole (5.0 mg/min ia) or U 63557A (5.0 mg/kg iv) per se significantly increased jejunal Kfc. Placement of digested food further increased the Kfc to levels significantly higher than those observed before administration of the two thromboxane synthase inhibitors. Production of thromboxane B2 by jejunal tissue was significantly reduced and 6-ketoprostaglandin F1 alpha (the stable hydrolysis product of prostacyclin) production was significantly increased after administration of U 63557A. Our study indicates that the relative production of endogenous thromboxanes and other prostanoids modulates jejunal capillary exchange capacity in the absence or presence of digested food in the jejunal lumen.

  1. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes.

    PubMed

    Weiber, E Annika; Jannasch, Patric

    2014-09-01

    A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    PubMed

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inhibition of nuclear waste solutions containing multiple aggressive anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10more » refs., 5 figs., 2 tabs.« less

  4. Stimulating effects of a diet negative in dietary cation-anion difference on calcium absorption from the rumen in sheep.

    PubMed

    Wilkens, M R; Praechter, C; Breves, G; Schröder, B

    2016-02-01

    The concept of feeding anionic salts in late gestation is widely used to prevent milk fever in dairy cows. While the effects of these diets on renal Ca excretion and tissue responsiveness towards parathyroid hormone have clearly been demonstrated, data on a potential impact on gastrointestinal Ca absorption are conflicting. Therefore, the aim of this study was to investigate the influence of feeding a diet negative in dietary cation-anion difference (DCAD) on ruminal mineral concentrations, fermentation products, electrophysiological properties of rumen epithelia and Ca flux rates. For this purpose, sheep were kept for 3 weeks on diets that were either positive or negative in DCAD. The induction of a compensated hyperchloremic metabolic acidosis could be demonstrated by increased plasma Cl and enhanced concentrations of ionised Ca, while plasma concentrations of HCO3- and base excess were decreased with the low DCAD diet. Neither transmural potential differences nor fermentation products were affected, but ruminal concentrations of Cl and Mg as well as the relation of ionised to total Ca were increased. Ussing chamber experiments revealed alterations of electrophysiological parameters and an increase in the electroneutral component of Ca flux rates from the mucosal to the serosal side of rumen epithelium. As plasma calcitriol concentrations were not affected, it can be concluded that the administration of anionic salts results in a vitamin D-independent stimulation of ruminal Ca transport. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  5. Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy.

    PubMed

    Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Supuran, Claudiu T; Fais, Stefano

    2017-12-23

    Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.

  6. Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy

    PubMed Central

    Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Fais, Stefano

    2017-01-01

    Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer. PMID:29295495

  7. Effects of Polymer Structure and Relaxations on Ionic Conductivity in Anion Exchange Membranes with Quaternary Ammonium Functional Groups

    NASA Astrophysics Data System (ADS)

    Maes, Ashley M.

    Anion exchange membranes (AEMs) are of considerable interest to developers and researchers of electrochemical conversion and storage devices such as anion exchange membrane fuel cells (AAEMFCs), alkaline polymer electrolyte electrolysers, redox flow batteries and bioelectrochemical devices. AEMs are generally in competition with more established proton exchange membranes (PEMs), but offer the potential for reduction of materials costs and greater fuel flexibility across these applications. This work includes an introduction to AEMs in the context of fuel cell technologies and some key techniques for AEM characterization. There are many synthetic strategies to incorporate cationic functional groups, which promote anion transport, into a polymer matrix. Two membrane chemistries are investigated in the following chapters. The first is based on a simple synthesis procedure that produced a membrane consisting of random, crosslinked polypropylene- ran-polyethyleneimine with quaternary ammonium functional groups. This membrane had moderate chloride ionic conductivity of 0.03 S cm -1 at 95 °C and high water uptake with minimal dimensional swelling. However, the lack of control of crosslink location and density during synthesis produced a material with a very random nature, making it a poor candidate for more fundamental transport studies. The second membrane chemistry is a block copolymer with a hydrophobic and hydrophilic block. The hydrophobic block was selected to provide favorable mechanical and barrier characteristics while a hydrophilic block was selected to provide water uptake and anion conducting functionalities. Poly(vinyl benzyl trimethyl ammonium bromide)-b-poly(methylbutylene) ([PVBTMA][Br]- b-PMB) was synthesized by partners at the University of Massachusetts-Amherst with varied degrees of functionalization (DF) along the hydrophilic block, resulting in ion exchange capacities ranging from 0.77 to 2.20 mmol g -1. Water uptake, in-plane ionic conductivity and

  8. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.

    PubMed

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2015-12-01

    Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Li-Wei; Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan; Luo, Tzuoo-Tsair

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presencemore » of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.« less

  11. Proximal bicarbonate absorption independent of Na+-H+ exchange: effect of bicarbonate load.

    PubMed

    Bank, N; Aynedjian, H S; Mutz, B F

    1989-04-01

    To study proximal tubule bicarbonate absorption that is not due to the neutral Na+-H+ antiporter, mid to late proximal convolutions of the rat kidney were microperfused in vivo with a sodium-free choline solution containing 10(-3) M amiloride. The average sodium concentration resulting from sodium influx was 12 mM. At such low intraluminal [Na+], 10(-3) M amiloride should have inhibited the Na+-H+ antiporter by greater than 95%. When 25 mM HCO3- was in the perfusion fluid, measured total CO2 absorption was 100 pmol.mm-1.min-1. When luminal [HCO3-] was raised to 50 mM, and blood [HCO3-] was also raised to approximately 50 mM to avoid a transepithelial HCO3- concentration gradient, total CO2 absorption increased to greater than 300 pmol.mm-1.min-1. Thus raising intraluminal HCO3- concentration caused a marked increase in total CO2 absorption even though intraluminal [Na+] was low and amiloride was present. Control perfusions containing 140 mM Na+ yielded total CO2 absorption that was approximately 100 pmol.mm-1.min-1 higher than with the respective sodium-free perfusion solutions. In additional experiments, either DCCD or NEM was added to sodium-free perfusion solutions to inhibit H+-ATPase. These inhibitors reduced Na+-H+ independent total CO2 absorption markedly. Our observations suggest that under physiological acid-base conditions, sodium-independent H+ secretion can account for approximately 50% of total HCO3- absorption in mid to late proximal convolutions. This mechanism is stimulated by an increase in ambient HCO(-3) concentration to a degree that might account for the load-dependency of proximal HCO(-3) absorption in these segments of the proximal tubule.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  14. Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis.

    PubMed

    Quilty, Janne A; Cordat, Emmanuelle; Reithmeier, Reinhart A F

    2002-12-15

    Autosomal dominant distal renal tubular acidosis (dRTA) has been associated with several mutations in the anion exchanger AE1 gene. The effect of an 11-amino-acid C-terminal dRTA truncation mutation (901 stop) on the expression of kidney AE1 (kAE1) and erythroid AE1 was examined in transiently transfected HEK-293 cells. Unlike the wild-type proteins, kAE1 901 stop and AE1 901 stop mutants exhibited impaired trafficking from the endoplasmic reticulum to the plasma membrane as determined by immunolocalization, cell-surface biotinylation, oligosaccharide processing and pulse-chase experiments. The 901 stop mutants were able to bind to an inhibitor affinity resin, suggesting that these mutant membrane proteins were not grossly misfolded. Co-expression of wild-type and mutant kAE1 or AE1 resulted in intracellular retention of the wild-type proteins in a pre-medial Golgi compartment. This dominant negative effect was due to hetero-oligomer formation of the mutant and wild-type proteins. Intracellular retention of kAE1 in the alpha-intercalated cells of the kidney would account for the impaired acid secretion into the urine characteristic of dRTA.

  15. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  16. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; ...

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm 2.« less

  17. Evaluation of an anion exchange resin-based method for concentration of F-RNA coliphages (enteric virus indicators) from water samples.

    PubMed

    Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D

    2014-08-01

    Enteric viral contaminants in water represent a public health concern, thus methods for detecting these viruses or their indicator microorganisms are needed. Because enteric viruses and their viral indicators are often found at low concentrations in water, their detection requires upfront concentration methods. In this study, a strong basic anion exchange resin was evaluated as an adsorbent material for the concentration of F-RNA coliphages (MS2, Qβ, GA, and HB-P22). These coliphages are recognized as enteric virus surrogates and fecal indicator organisms. Following adsorption of the coliphages from 50ml water samples, direct RNA isolation and real time RT-PCR detection were performed. In water samples containing 10(5)pfu/ml of the F-RNA coliphages, the anion exchange resin (IRA-900) adsorbed over 96.7% of the coliphages present, improving real time RT-PCR detection by 5-7 cycles compared to direct testing. F-RNA coliphage RNA recovery using the integrated method ranged from 12.6% to 77.1%. Resin-based concentration of samples with low levels of the F-RNA coliphages allowed for 10(0)pfu/ml (MS2 and Qβ) and 10(-1)pfu/ml (GA and HB-P22) to be detected. The resin-based method offers considerable advantages in cost, speed, simplicity and field adaptability. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several differentmore » eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.« less

  19. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wan; Liang, Na; Peng, Pai

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based onmore » quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.« less

  20. Assessing the influence of side-chain and main-chain aromatic benzyltrimethyl ammonium on anion exchange membranes.

    PubMed

    Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun

    2014-05-28

    3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.

  1. Synthesis and anion exchange properties of a Zn/Ni double hydroxide salt with a guarinoite structure

    NASA Astrophysics Data System (ADS)

    Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.; Beny, C.; Jean-Prost, V.; Martineau, D.

    2009-09-01

    In this study, the first route to synthesize a compound with the guarinoite structure (Zn,Co,Ni) 6(SO 4)(OH,Cl) 10·5H 2O is reported. Zn/Ni guarinoite is obtained from the reaction of NiSO 4·7H 2O with solid ZnO in aqueous solution. The resulting green Zn/Ni guarinoite ((Zn 3.52Ni 1.63)(SO 4) 1.33(OH 7.64)·4.67H 2O) was characterized by X-ray diffraction, infrared spectrometry, UV-Visible spectrometry and thermal analysis. It is shown that its structure is similar to the one described for the layered Zn sulfate hydroxide hydrate, i.e. brucite layers with {1}/{4} empty octahedra presenting tetrahedrally coordinated divalent atoms above and below the empty octahedra. Ni atoms are located in the octahedra and zinc atoms in tetrahedra and octahedra. In this structure the exchangeable anions are located at the apex of tetrahedra. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that the Zn/Ni guarinoite is composed of aggregates of hexagonal plates of several hundreds of nanometers. Due to its interest for industrial or environmental applications, the exchange of sulfate groups by carbonates has been investigated. Results show a limited exchange and a higher affinity of the Zn/Ni guarinoite for sulfates compared to carbonates.

  2. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin

    2014-12-01

    The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.

  3. P39-T Analysis of Oligosaccharides by Capillary-Scale High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (CHPAEC-PAD) and On-Line Electrospray-Ionization Ion-Trap Mass Spectrometry (CHPAEC-ITMS)

    PubMed Central

    Bruggink, C.; Koeleman, C.; Barreto, V.; Lui, Y.; Pohl, C.; Ingendoh, A.; Wuhrer, M.; Hokke, C.; Deelder, A.

    2007-01-01

    High-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is an established technique for selective separation and analysis of underivatized carbohydrates. The miniaturization of chromatographic techniques by means of capillary columns, and on-line coupling to mass spectrometry are critical to the further development of glycan analysis methods that are compatible with the current requirements in clinical settings. A system has been developed based on the Dionex BioLC equipped with a microbore gradient pump with PEEK flow splitter, a FAMOS micro autosampler, a modified electrochemical cell for on-line capillary PAD, and a capillary column (380 μm i.d.) packed with a new type of anion-exchange resin. This system operates with sensitivity in the low femtomol range. In addition, an on-line capillary desalter has been developed to allow direct coupling to the Bruker Esquire 3000 ion-trap mass spectrometer with electrospray ionization interface (ESI-IT-MS). Both systems have been evaluated using oligosaccharide standards as well as urine samples exhibiting various lysosomal oligosaccharide storage diseases. Initial data indicate that the robust and selective anion-exchange system, in combination with ESI-IT-MS for structure confirmation and analysis, provides a powerful platform that complements existing nano/capillary LC-MS methods for analytical determination of oligosaccharides in biological matrices.

  4. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    NASA Astrophysics Data System (ADS)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  5. High sodium intake increases HCO3− absorption in medullary thick ascending limb through adaptations in basolateral and apical Na+/H+ exchangers

    PubMed Central

    George, Thampi; Watts, Bruns A.

    2011-01-01

    A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO3−. Here, we examined the role of the apical NHE3 and basolateral NHE1 Na+/H+ exchangers in this adaptation. MTALs from rats drinking H2O or 0.28 M NaCl for 5–7 days were perfused in vitro. High sodium intake increased HCO3− absorption rate by 60%. The increased HCO3− absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO3− absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na+/H+ exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na+/H+ exchange activity by 30% under conditions in which basolateral Na+/H+ exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO3− absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO3− absorption. The adaptive increases in Na+/H+ exchange activity and HCO3− absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance. PMID:21613418

  6. The distribution of the anti-HIV drug, 2'3'-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors.

    PubMed

    Gibbs, J E; Thomas, S A

    2002-02-01

    The brain and CSF distribution of the HIV reverse transcriptase inhibitor, 2'3'-dideoxycytidine (ddC), was investigated by the in situ brain perfusion and isolated incubated choroid plexus methods in the guinea pig. Multiple-time brain perfusions indicated that the distribution of [3H]ddC to the brain and CSF was low and the unidirectional rate constant (K(in)) for the brain uptake of this nucleoside analogue (0.52 +/- 0.10 microL/min/g) was not significantly different to that for the vascular marker, [14C]mannitol (0.44 +/- 0.09 microL/min/g). The influence of unlabelled ddC, six organic anion transport inhibitors and 3'-azido 3'-deoxythymidine (AZT) on the CNS uptake of [3H]ddC was examined in situ and in vitro. ddC, probenecid and 2,4-dichlorophenoxyacetic acid altered the distribution of [3H]ddC into the brain and choroid plexuses, indicating that the limited distribution of [3H]ddC was a result of an organic anion efflux transporter, in addition to the low lipophilicity of this drug (octanol-saline partition coefficient, 0.047 +/- 0.001). The CNS distribution was also sensitive to p-aminohippurate and deltorphin II, but not digoxin, suggesting the involvement of organic anion transporters (OAT1/OAT3-like) and organic anion transporting polypeptides (OATP1/OATPA-like). AZT did not effect the accumulation of [3H]ddC, indicating that when these nucleoside analogues are used in anti-HIV combination therapy, the CNS distribution of ddC is unchanged.

  7. A quantitative analysis of electrolyte exchange in the salivary duct

    PubMed Central

    Catalán, Marcelo A.; Melvin, James E.; Yule, David I.; Crampin, Edmund J.; Sneyd, James

    2012-01-01

    A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na+ and Cl−. In the second stage, the ducts exchange Na+ and Cl− for K+ and HCO3−, producing a hypotonic final saliva with no apparent loss in volume. We have developed a tool that aims to understand how the ducts achieve this electrolyte exchange while maintaining the same volume. This tool is part of a larger multiscale model of the salivary gland and can be used at the duct or gland level to investigate the effects of genetic and chemical alterations. In this study, we construct a radially symmetric mathematical model of the mouse salivary gland duct, representing the lumen, the cell, and the interstitium. For a given flow and primary saliva composition, we predict the potential differences and the luminal and cytosolic concentrations along a duct. Our model accounts well for experimental data obtained in wild-type animals as well as knockouts and chemical inhibitors. Additionally, the luminal membrane potential of the duct cells is predicted to be very depolarized compared with acinar cells. We investigate the effects of an electrogenic vs. electroneutral anion exchanger in the luminal membrane on concentration and the potential difference across the luminal membrane as well as how impairing the cystic fibrosis transmembrane conductance regulator channel affects other ion transporting mechanisms. Our model suggests the electrogenicity of the anion exchanger has little effect in the submandibular duct. PMID:22899825

  8. Purification of adenoviral vectors by combined anion exchange and gel filtration chromatography.

    PubMed

    Eglon, Marc N; Duffy, Aoife M; O'Brien, Timothy; Strappe, Padraig M

    2009-11-01

    Adenoviral vectors are used extensively in human gene therapy trials and in vaccine development. Large-scale GMP production requires a downstream purification process, and liquid chromatography is emerging as the most powerful mode of purification, enabling the production of vectors at a clinically relevant scale and quality. The present study describes the development of a two-step high-performance liquid chromatography (HPLC) process combining anion exchange (AIEX) and gel filtration (GF) in comparison with the caesium chloride density gradient method. HEK-293 cells were cultured in ten-layer CellStacks() and infected with 10 pfu/cell of adenoviral vector expressing green fluorescent protein (Ad5-GFP). Cell-bound virus was harvested and benzonase added to digest DNA, crude lysate was clarified by centrifugation and filtration prior to HPLC. Chromatography fractions were added to HEK-293 cells and GFP expression measured using a fluorescent plate reader. Using AIEX then GF resulted in an adenoviral vector with purity comparable to Ad5-GFP purified by CsCl, whereas the reverse process (GF-AIEX) showed a reduced purity by electrophoresis and required further buffer exchange of the product. The optimal process (AIEX-GF) resulted in a vector yield of 2.3 x 10(7) pfu/cm(2) of cell culture harvested compared to 3.3 x 10(7) pfu/cm(2) for CsCl. The process recovery for the HPLC process was 36% compared to 27.5% for CsCl and total virion to infectious particle ratios of 18 and 11, respectively, were measured. We present a simple two-step chromatography process that is capable of producing high-quality adenovirus at a titre suitable for scale-up and clinical translation.

  9. Octamethyl-octaundecylcyclo[8]pyrrole: A Promising Sulfate Anion Extractant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eller, Leah R; Stepien, Marcin; Fowler, Christopher J

    The diprotonated form of an organic-solubilized cyclo[8]pyrrole derivative, bearing eight undecyl chains on the {beta}-pyrrolic positions, was found to extract sulfate anion effectively from neutral aqueous media into a toluene organic phase. The kinetics of sulfate anion exchange between the two phases were found to be exceedingly slow in the absence of the phase-transfer catalyst, Aliquat 336-nitrate (A336N), but appreciable in its presence. The bisnitrate anion bound form of this cyclo[8]pyrrole could be generated in situ by subjecting the toluene phase containing initially 0.5 mM of the sulfate anion bound form and 0.1 mM trioctylamine (TOA) to successive equilibrations withmore » aqueous 0.1 M HNO{sub 3} until sulfate was no longer detected in the aqueous phase. This bisnitrate complex, when studied as a 0.5 mM solution in toluene in the presence of 0.1 mM (TOAH){sup +}(NO{sub 3}{sup -}), was also found to be an effective extractant for sulfate anion. D{sub SO4} values of 0.001 and 1000 were observed at 1 M NaNO{sub 3}(aq) and 0.3 mM NaNO{sub 3}(aq), respectively, and the logarithm of the conditional exchange constant, log(K{prime}{sub exch}), was calculated to be 4.9 {+-} 0.4. The present cyclo[8]pyrrole system is thus noteworthy as being the first synthetic receptor that displays a high selectivity for sulfate anion in the presence of excess nitrate under conditions of solvent extraction.« less

  10. Anion-Exchange Membrane Fuel Cells with Improved CO2 Tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption.

    PubMed

    Katayama, Yu; Yamauchi, Kosuke; Hayashi, Kohei; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Kikkawa, Yuuki; Negishi, Takayuki; Watanabe, Shin; Isomura, Takenori; Eguchi, Koichi

    2017-08-30

    Over the last few decades, because of the significant development of anion exchange membranes, increasing efforts have been devoted the realization of anion exchange membrane fuel cells (AEMFCs) that operate with the supply of hydrogen generated on-site. In this paper, ammonia was selected as a hydrogen source, following which the effect of conceivable impurities, unreacted NH 3 and atmospheric CO 2 , on the performance of AEMFCs was established. As expected, we show that these impurities worsen the performance of AEMFCs significantly. Furthermore, with the help of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, it was revealed that the degradation of the cell performance was primarily due to the inhibition of the hydrogen oxidation reaction (HOR). This is attributed to the active site occupation by CO-related adspecies derived from (bi)carbonate adspecies. Interestingly, this degradation in the HOR activity is suppressed in the presence of both NH 3 and HCO 3 - because of the bicarbonate ion consumption reaction induced by the existence of NH 3 . Further analysis using in situ ATR-IR and electrochemical methods revealed that the poisonous CO-related adspecies were completely removed under NH 3 -HCO 3 - conditions, accompanied by the improvement in HOR activity. Finally, a fuel cell test was conducted by using the practical AEMFC with the supply of NH 3 -contained H 2 gas to the anode and ambient air to the cathode. The result confirmed the validity of this positive effect of NH 3 -HCO 3 - coexistence on CO 2 -tolerence of AEMFCs. The cell performance achieved nearly 95% of that without any impurity in the fuels. These results clearly show the impact of the chemically induced bicarbonate ion consumption reaction on the realization of highly CO 2 -tolerent AEMFCs.

  11. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.

    2017-01-01

    The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less

  12. High-performance cation-exchange chromatofocusing of proteins.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  13. Mixed anion materials and compounds for novel proton conducting membranes

    DOEpatents

    Poling, Steven Andrew; Nelson, Carly R.; Martin, Steve W.

    2006-09-05

    The present invention provides new amorphous or partially crystalline mixed anion chalcogenide compounds for use in proton exchange membranes which are able to operate over a wide variety of temperature ranges, including in the intermediate temperature range of about 100 .degree. C. to 300.degree. C., and new uses for crystalline mixed anion chalcogenide compounds in such proton exchange membranes. In one embodiment, the proton conductivity of the compounds is between about 10.sup.-8 S/cm and 10.sup.-1 S/cm within a temperature range of between about -60 and 300.degree. C. and a relative humidity of less than about 12%..

  14. Accounting for host cell protein behavior in anion-exchange chromatography.

    PubMed

    Swanson, Ryan K; Xu, Ruo; Nettleton, Daniel S; Glatz, Charles E

    2016-11-01

    Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016. © 2016 American Institute of Chemical Engineers.

  15. Selective separation of uranium using alizarin red S (ARS)-modified anion-exchange resin or by flotation of U-ARS chelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, M.E.

    An alizarin red S (ARS)-modified anion exchange resin was prepared by a simple reaction of ARS with the anion exchange Doulite A101 and used for the efficient sorption of uranium from aqueous media. The effect of various parameters on the sorption of U(VI) (pH effect, sorption kinetics, resin capacity and breakthrough curves) was investigated. The modified resin sorbs U(VI) over a wide range of pH (2.8--5) with a maximum sorption capacity of 0.68 mmol/g at pH 3.2 to 4.0. Iron(III), Zr(IV), Ti(IV), Cu(II), and Th(IV) ions are also sorbed to different extents, but Be(II), Bi(III), Ca(II), Mg(II), Pb(II), Hg(II), Zn(II),more » Cd(II), Al(III), Mn(II), Co(II) and Ni(II) are not sorbed; thus, conditions for separating U(VI) from these metal ions have been identified. For eluting U(VI) from the resin, 0.2 mol/L HCl was used and the recovery recorded was as high as 99.9%. The use of ARS is extended to float uranium quantitatively and selectively from aqueous media at pH {approx} 4 by using oleic acid as a surfactant. The different parameters affecting the flotation process have also been investigated. Uranium(VI) has been effectively separated from natural water samples and certified uranium ores using both procedures.« less

  16. Architecture for Absorption Based Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  17. Accelerated Analyte Uptake on Single Beads in Microliter-scale Batch Separations using Acoustic Streaming: Plutonium Uptake by Anion Exchange for Analysis by Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, Walter F.; O'Hara, Matthew J.; Peper, Shane M.

    2008-06-01

    The use of acoustic streaming as a non-contact mixing platform to accelerate mass transport-limited diffusion processes in small volume heterogeneous reactions has been investigated. Single bead anion exchange of plutonium at nanomolar and sub-picomolar concentrations in 20 microliter liquid volumes was used to demonstrate the effect of acoustic mixing. Pu uptake rates on individual ~760 micrometer diameter AG 1x4 anion exchange resin beads were determined using acoustic mixing and compared with Pu uptake rates achieved by static diffusion alone. An 82 MHz surface acoustic wave (SAW) device was placed in contact with the underside of a 384-well microplate containing flat-bottomedmore » semiconical wells. Acoustic energy was coupled into the solution in the well, inducing acoustic streaming. Pu uptake rates were determined by the plutonium remaining in solution after specific elapsed time intervals, using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass spectrometry (TIMS) analysis for the sub-picomolar concentration experiments. It was found that this small batch uptake reaction could be accelerated by a factor of about five-fold or more, depending on the acoustic power applied.« less

  18. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    PubMed

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  19. Tens of micron-sized unilamellar nanosheets of Y/Eu layered rare-earth hydroxide: efficient exfoliation via fast anion exchange and their self-assembly into oriented oxide film with enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhu, Qi; Li, Ji-Guang; Li, Xiaodong; Sun, Xudong; Qi, Yang; Zhu, Miaoyong; Sakka, Yoshio

    2014-02-01

    Layered rare-earth hydroxide (LRH) crystals of (Y0.95Eu0.05)2(OH)5NO3·nH2O with a lateral size of ˜ 300 μm and a thickness of ˜ 9 μm have been synthesized via a hydrothermal reaction of mixed nitrate solutions in the presence of mineralizer NH4NO3 at 200 °C for 24 h. LRH exhibits the ability to undergo intercalation and anion exchange with DS- (C12H25OSO3-) via hydrothermal treatment. Compared with traditional anion exchange at room temperature, hydrothermal processing not only shortens the anion exchange time from 720 to 24 h but also increases the basal spacing. The arrangements of DS- in the interlayer of LRH are significantly affected by the DS- concentration and reaction temperature, and the basal spacing of the LRH-DS sample in the crystal edge is assumed to be larger than that in the crystal center. A higher DS- concentration and reaction temperature both induce more intercalation of DS- anions into the interlayer gallery, thus yielding a larger basal spacing. Unilamellar nanosheets with a lateral size of ⩾60 μm and a thickness of ˜ 1.6 nm can be obtained by delaminating LRH-DS in formamide. The resultant unilamellar nanosheets are single crystalline. Transparent (Y0.95Eu0.05)2O3 phosphor films with a uniform [111] orientation and a layer thickness of ˜ 90 nm were constructed with the nanosheets as building blocks via spin-coating, followed by proper annealing. The oriented oxide film exhibits a strong red emission at 614 nm (the 5D0-7F2 transition of Eu3+), whose intensity is ˜ 2 times that of the powder form owing to the significant exposure of the (222) facets.

  20. Development and characterization of direct ethanol fuel cells using alkaline anion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Lim, Peck Cheng

    2009-08-01

    Alkaline membrane fuel cell (AMFC) is a relatively new fuel cell technology that is generating considerable interests. It offers the electrocatalytic advantages of conventional alkaline fuel cells, and the manufacturing and cost advantages of solid polymer electrolyte fuel cells. This project was carried out to develop and characterize high performance membrane electrode assemblies (MEAs) for all-solid-state AMFCs. The primary fuel of interests is ethanol, but hydrogen was used in the development stages to facilitate the diagnostic and evaluation of the fuel cell performance. In the preliminary investigation, AMFC was assembled using off-the-shelf electrodes and anion-exchange membrane (AEM). It was found that the performance of AMFC operating on ethanol fuel was limited by a large high-frequency resistance (HFR) value. The advantage of using non-toxic ethanol fuel was also compromised by the need to add hydrazine and potassium hydroxide to the fuel blend. Subsequently, a high performance MEA was developed for an all-solid-state AMFC, in which liquid electrolyte or other additives were not required during the operation of the fuel cell. Ionomer was incorporated in the formulation of catalyst ink, and the catalyst ink was directly coated on the anion-exchange membrane (AEM). An ionomer content of 20 wt.% was found to be the optimum amount required in the catalyst layers. It was demonstrated that the AMFC generated a maximum power density of 365 mW/cm2 and 213 mW/cm 2 with the use of hydrogen/oxygen and hydrogen/pure air, respectively. The performance of the AMFC was also found to be influenced by exposure to carbon dioxide in the air. Hence, the CCMs were pre-treated in potassium hydroxide solution and pure oxygen was used to condition the fuel cell to maximize the power output from the AMFCs. Although satisfactory performance was demonstrated in the AMFC, its stability during cell operation remains a major issue. The poor stability was attributed to degradation of

  1. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design

    PubMed Central

    Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen

    2014-01-01

    Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843

  2. Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design

    NASA Astrophysics Data System (ADS)

    Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen

    2014-09-01

    Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability.

  3. The efficiency of Amberjet 4200 resin in removing nitrate in the presence of competitive anions from Shiraz drinking water.

    PubMed

    Dehghani, M; Haghighi, A Binaee; Zamanian, Z

    2010-06-01

    The aim of this research is to study the feasibility of removing nitrates from water by means of anion exchange. In the purposed work an attempt was made to utilize strong basic anion resin to remove nitrate in the presence of competitive anion. Amberjet Cl- 4200 ion exchange resin was used in a batch scale. The fixation rate of nitrate without the presences of any competitive anion was almost constant (94.60-96.43) when the nitrate concentrations are in the range of 100-150 mg L(-1). The fixation rate of nitrate in the presences of two competitive anions (sulphate and chloride) was reduced to 82% when the concentration of nitrate was 100 mg L(-1).

  4. HCO3− secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo

    PubMed Central

    Cooper, Christopher A.; Wilson, Rod W.

    2010-01-01

    The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO3− secretion. This is suggested to drive additional fluid absorption directly (via Cl−/HCO3− exchange) and indirectly by precipitating ingested Ca2+ as CaCO3, thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca2+]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca2+), where almost all secreted HCO3− was excreted as CaCO3. This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na+-independent fluid absorption and total HCO3− secretion was consistent with the predicted roles for anion exchange and CaCO3 precipitation. Further analysis suggested that Na+-independent fluid absorption could be accounted for by net Cl− and H+ absorption (from Cl−/HCO3− exchange and CO2 hydration, respectively). There was no evidence to suggest that CaCO3 alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca2+ it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO3− buffers the absorbed H+ (from HCO3− production), and consequently reduces the osmolarity of the absorbed fluid entering the body. PMID:20130226

  5. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    PubMed

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  6. Detoxification of Organosolv-Pretreated Pine Prehydrolysates with Anion Resin and Cysteine for Butanol Fermentation.

    PubMed

    Li, Jing; Shi, Suan; Tu, Maobing; Via, Brain; Sun, Fubao Fuelbio; Adhikari, Sushil

    2018-05-02

    Bioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study. Six detoxification approaches were studied and compared, including overliming, anion exchange resin, nonionic resin, laccase, activated carbon, and cysteine. It was observed that detoxification by anion exchange resin was the most effective method. The final butanol yield after anion exchange resin treatment was comparable to the control group, but the fermentation was delayed for 72 h. The addition of Ca(OH) 2 was found to alleviate this delay and improve the fermentation efficiency. The combination of Ca(OH) 2 and anion exchange resin resulted in completion of fermentation within 72 h and acetone-butanol-ethanol (ABE) production of 11.11 g/L, corresponding to a yield of 0.21 g/g sugar. The cysteine detoxification also resulted in good detoxification performance, but promoted fermentation towards acid production (8.90 g/L). The effect of salt on ABE fermentation was assessed and the possible role of Ca(OH) 2 was to remove the salts in the prehydrolysates by precipitation.

  7. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  8. Enhancement of 6-pentyl-α-pyrone fermentation activity in an extractive liquid-surface immobilization (Ext-LSI) system by mixing anion-exchange resin microparticles.

    PubMed

    Oda, Shinobu; Michihata, Sayumi; Sakamoto, Naoki; Horibe, Hideo; Kono, Akihiko; Ohashi, Shinichi

    2012-12-01

    The addition of anion-exchange resin microparticles into a polyacrylonitrile (PAN) ballooned microsphere layer drastically enhanced the fermentative activity of Trichoderma atroviride AG2755-5NM398 in an extractive liquid-surface immobilization (Ext-LSI) system. The production of 6-pentyl-α-pyrone (6PP), a fungicidal secondary metabolite, was 1.92-fold higher than the control (PAN alone). Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    PubMed

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Masson, Glenn R.; Maslen, Sarah L.

    2017-01-01

    Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics. PMID:28381646

  11. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).

  12. Separation of anionic oligosaccharides by high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, E.D.; Baenziger, J.U.

    1986-10-01

    The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since themore » latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (..cap alpha..2,3 vs ..cap alpha..2,6) and/or location of ..cap alpha..2,3- and ..cap alpha..2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties.« less

  13. Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions

    PubMed Central

    2015-01-01

    Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange. PMID:25960605

  14. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  15. A computational study of anion-modulated cation-π interactions.

    PubMed

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  16. Purification of a 6.5 kDa protease inhibitor from Amazon Inga umbratica seeds effective against serine proteases of the boll weevil Anthonomus grandis.

    PubMed

    Calderon, L A; Teles, R C L; Leite, J R S A; Franco, O L; Grossi-de-Sá, M F; Medrano, F J; Bloch, C; Freitas, S M

    2005-08-01

    A 6.5 kDa serine protease inhibitor was purified by anion-exchange chromatography from the crude extract of the Inga umbratica seeds, containing inhibitor isoforms ranging from 6.3 to 6.7 kDa and protease inhibitors of approximately 19 kDa. The purified protein was characterized as a potent inhibitor against trypsin and chymotrypsin and it was named I. umbratica trypsin and chymotrypsin inhibitor (IUTCI). MALDI-TOF spectra of the IUTCI, in the presence of DTT, showed six disulfide bonds content, suggesting that this inhibitor belongs to Bowman-Birk family. The circular dichroism spectroscopy indicates that IUTCI is predominantly formed by unordered and beta-sheet secondary structure. It was also characterized, by fluorescence spectroscopy, as a stable protein at range of pH from 5.0 to 7.0. Moreover, this inhibitor at concentration of 75 microM presented a remarkable inhibitory activity (60%) against digestive serine proteases from boll weevil Anthonomus grandis, an important economical cotton pest.

  17. A versatile tripodal amide receptor for the encapsulation of anions or hydrated anions via formation of dimeric capsules.

    PubMed

    Arunachalam, M; Ghosh, Pradyut

    2010-02-01

    A bowl-shaped tripodal receptor with an appropriately positioned amide functionality on the benzene platform and electron-withdrawing p-nitrophenyl terminals (L(1)) has been designed, synthesized, and studied for the anion binding properties. The single-crystal X-ray crystallographic analysis on crystals of L(1) with tetrabutylammonium salts of nitrate (1), acetate (2), fluoride (3), and chloride (4) obtained in moist dioxane medium showed encapsulation of two NO(3)(-), [(AcO)(2)(H(2)O)(4)](2-), [F(2)(H(2)O)(6)](2-), and [Cl(2)(H(2)O)(4)](2-) respectively as the anionic guests inside the staggered dimeric capsular assembly of L(1). The p-nitro substitution in the aryl terminals assisted the formation of dimeric capsular assembly of L(1) exclusively upon binding/encapsulating above different guests. Though L(1) demonstrates capsule formation upon anion or hydrated anion complexation for all of the anions studied here, its positional isomer with the o-nitro-substituted tripodal triamide receptor L(2) selectively formed the dimeric capsular assembly upon encapsulation of [F(2)(H(2)O)(6)](2-) and noncapsular aggregates in the cases of other anions such as Cl(-), NO(3)(-), and AcO(-). Interestingly, structural investigations upon anion exchange of the complexes revealed that both isomers have selectivity toward the formation of a [F(2)(H(2)O)(6)](2-) encapsulated dimeric capsule. In contrast, solution-state (1)H NMR titration studies of L(1) and L(2) in DMSO-d(6) with AcO(-) indicated 1:3 (host:guest) binding.

  18. Quantification of urinary zwitterionic organic acids using weak-anion exchange chromatography with tandem MS detection.

    PubMed

    Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A

    2007-04-01

    A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (

  19. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay

    2013-01-01

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  20. Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.

    PubMed

    Tsujita, Takahiro

    2016-01-01

    Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.

  1. Improvements to in-line desalting of oligosaccharides separated by high-pH anion exchange chromatography with pulsed amperometric detection.

    PubMed

    Thayer, J R; Rohrer, J S; Avdalovic, N; Gearing, R P

    1998-02-15

    High-pH anion exchange chromatography with pulsed amperometric detection (HPAEC/PAD) (1) is routinely used to separate neutral and charged oligosaccharides differing by branch, linkage, and positional isomerism. Oligosaccharides are eluted in 0.1 M NaOH with gradients of sodium acetate (up to 0.25 M). Analyses of HPAEC/PAD-purified oligosaccharides generally require neutralization and removal of eluent salts. To facilitate the process, we designed and produced a cation-exchange system to remove sodium ions (Na+) from the eluent after oligosaccharide detection [the Carbohydrate Membrane Desalter (CMD), with a volatile regenerant]. Exchange of >99.5% of eluent Na+ for hydronium ions (H3O+) within the CMD generates dilute acetic acid (removable by vacuum evaporation). The exchange process desalts up to 0.35 M Na+ at 1.0 ml/min. Oligosaccharides collected after on-line desalting, evaporated and resuspended in their original volume of deionized water contained < or = 350 muM residual Na+ when the eluting sodium concentration was 300 mM. This represents a desalting efficiency of >99.8%. Recovery of neutral and sialylated oligosaccharides under these conditions ranged from 75 to 100%. With the CMD system and postcollection evaporation, HPAEC/PAD can purify oligosaccharides ready for further characterization. As a proof test, oligosaccharides from a human monoclonal antibody were separated by HPAEC/PAD, desalted with the CMD system, dried, and analyzed by matrix-assisted laser desorption-ionization, time-of-flight mass spectrometry. Copyright 1998 Academic Press.

  2. Ion Exchange Polymeric Coatings for Selective Capacitive Deionization

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Kim, Jun; Li, Qilin; Verduzco, Rafael

    Capacitive deionization (CDI) is an energy-efficient technology for adsorbing and removing scalants and foulants from water by utilizing electric potential between porous carbon electrodes. Currently, industrial application of CDI is limited to low salinity waters due to the limited absorption capacities of carbon electrodes. However, CDI can potentially be used as a low-cost approach to selectively remove divalent ions from high salinity water. Divalent ions such as sulfonates and carbonates cause scaling and thus performance deterioration of membrane-based desalination systems. In this work, we investigated ion-exchange polymer coatings for use in a membrane capacitive deionization (MCDI) process for selective removal of divalent ions. Poly-Vinyl Alcohol (PVA) base polymer was crosslinked and charged using sulfo-succinic acid (SSA) to give a cation exchange layer. 50 um thick standalone polymer films had a permeability of 4.25*10-7 cm2/s for 10mM NaCl feed. Experiments on electrodes with as low as 10 υm thick coating of cation exchange polymer are under progress and will be evaluated on the basis of their selective salt removal efficiency and charge efficiency, and in future we will extend this work to sulfonated block copolymers and anion exchange polymers.

  3. Squarylium-based chromogenic anion sensors

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A.; Kim, Sung-Hoon

    2012-09-01

    A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN- as compared with F-, CHCO2-, Br-, HPO4-, Cl-, and NO3- in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN- coordination complex, the formation of which was supported by the calculated geometry of the complex.

  4. Encapsulation of Ionic Liquids with an Aprotic Heterocyclic Anion (AHA-IL) for CO2 Capture: Preserving the Favorable Thermodynamics and Enhancing the Kinetics of Absorption.

    PubMed

    Moya, Cristian; Alonso-Morales, Noelia; de Riva, Juan; Morales-Collazo, Oscar; Brennecke, Joan F; Palomar, Jose

    2018-03-08

    The performance of an ionic liquid with an aprotic heterocyclic anion (AHA-IL), trihexyl(tetradecyl)phosphonium 2-cyanopyrrolide ([P 66614 ][2-CNPyr]), for CO 2 capture has been evaluated considering both the thermodynamics and the kinetics of the phenomena. Absorption gravimetric measurements of the gas-liquid equilibrium isotherms of CO 2 -AHA-IL systems were carried out from 298 to 333 K and at pressures up to 15 bar, analyzing the role of both chemical and physical absorption phenomena in the overall CO 2 solubility in the AHA-IL, as has been done previously. In addition, the kinetics of the CO 2 chemical absorption process was evaluated by in situ Fourier transform infrared spectroscopy-attenuated total reflection, following the characteristic vibrational signals of the reactants and products over the reaction time. A chemical absorption model was used to describe the time-dependent concentration of species involved in the reactive absorption, obtaining kinetic parameters (such as chemical reaction kinetic constants and diffusion coefficients) as a function of temperatures and pressures. As expected, the results demonstrate that the CO 2 absorption rate is mass-transfer-controlled because of the relatively high viscosity of AHA-IL. The AHA-IL was encapsulated in a porous carbon sphere (Encapsulated Ionic Liquid, ENIL) to improve the kinetic performance of the AHA-IL for CO 2 capture. The newly synthesized AHA-ENIL material was evaluated as a CO 2 sorbent with gravimetric absorption measurements. AHA-ENIL systems preserve the good CO 2 absorption capacity of the AHA-IL but drastically enhance the CO 2 absorption rate because of the increased gas-liquid surface contact area achieved by solvent encapsulation.

  5. Infrared spectra of the CO2- and C2O4- anions isolated in solid argon

    NASA Astrophysics Data System (ADS)

    Zhou, Mingfei; Andrews, Lester

    1999-02-01

    Laser ablation of transition metal targets with concurrent 11 to 12 K condensation of CO2-Ar mixtures produces a sharp metal independent infrared absorption at 1657.0 cm-1 due to CO2-, which is formed from the capture of ablated electrons by CO2 molecules during the condensation process. Two additional metal independent absorptions are produced at 1856.7 and 1184.7 cm-1 on matrix annealing to 25 K to allow diffusion and reaction of CO2 and CO2-. Isotopic substitution (13CO2, C18O2, C16,18O2, and mixtures) shows that these two vibrations involve two equivalent CO2 subunits. The excellent agreement with frequencies, intensities, and isotopic frequency ratios from density-functional calculations supports assignment to the symmetrical C2O4- anion with D2d symmetry. Photodissociation (470-580 nm) and failure to observe these absorptions in identical experiments doped with the electron trapping molecule CCl4 further support the molecular anion assignments. Although absorptions were observed for weak (CO2)(CO2-) complexes, no evidence was found for the asymmetric O2CṡOCO- molecule-anion complex characterized by calculations.

  6. Surface charge fine tuning of reversed-phase/weak anion-exchange type mixed-mode stationary phases for milder elution conditions.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael

    2015-08-28

    A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.

  8. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  9. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

    PubMed Central

    Star, R A; Burg, M B; Knepper, M A

    1985-01-01

    Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570

  10. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction.

    PubMed

    Jiang, Zhenmao; Zhang, Shujuan; Pan, Bingcai; Wang, Wenfeng; Wang, Xiaoshu; Lv, Lu; Zhang, Weiming; Zhang, Quanxing

    2012-09-30

    To reveal how the distribution of nanoscale zero-valent iron (nZVI) affect their reduction efficiency of its polymer-based composites and to further develop a simple strategy to tune the structure of the composites, we prepared four nZVI-polymerstyrene anion exchanger composites with similar nZVI loadings (13.5-14.4 Fe % in mass) but different distributions just through varying the concentration of NaBH(4) (0.9, 1.8, 3.6, and 7.2% in mass) solution during reduction of nZVI precursor (FeCl(4)(-) anions). As observed by SEM-EDX images, increasing the NaBH(4) concentration resulted in a more uniform nZVI distribution within the polymer, and thereto higher NH(4)(+)N production, faster reaction rate and more gaseous products during its reduction of nitrate and nitrite. nZVI distribution of the composites was suggested to greatly depend upon two processes, the hydrolyzation of anionic FeCl(4)(-) into cationic Fe(3+) and the reduction of both Fe(III) species by NaBH(4). Higher NaBH(4) concentration favored its faster diffusion into the inside polymer and in situ reduction of Fe(III) species into nZVI, causing a more uniform nZVI distribution. The results reported herein suggest that adjusting the NaBH(4) concentration was a simple and effective method to control the nZVI distribution in the supporting polymers, and indirectly tune the reactivity of the resultant nZVI hybrids. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  12. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  13. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  14. Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations.

    PubMed

    Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark

    2008-01-10

    Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.

  15. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.

    PubMed

    Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T

    2004-09-30

    In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.

  16. Design, synthesis, and structure-activity relationships of 3,4-dihydropyridopyrimidin-2(1H)-one derivatives as a novel class of sodium/calcium exchanger inhibitor.

    PubMed

    Hasegawa, Hirohiko; Muraoka, Masami; Ohmori, Mikiko; Matsui, Kazuki; Kojima, Atsuyuki

    2005-10-01

    Design, synthesis, and structure-activity relationships for 3,4-dihydropyridopyrimidin-2(1H)-one derivatives, which are aza-3,4-dihydro-2(1H)-quinazolinone derivatives, as the sodium/calcium (Na+/Ca2+) exchanger inhibitors are discussed. These studies based on 3,4-dihydro-2(1H)-quinazolinone derivatives led to the discovery of a structurally novel and potent Na+/Ca2+ exchanger inhibitor, 3,4-dihydropyridopyrimidin-2(1H)-one derivative (26), with an IC30 value of 0.02 microM. Compound 26 directly inhibited the Na+-dependent Ca2+ influx via the Na+/Ca2+ exchanger after Na+-free treatment in cardiomyocytes.

  17. Tetrabutylammonium Salts of Aluminum(III) and Gallium(III) Phthalocyanine Radical Anions Bonded with Fluoren-9-olato- Anions and Indium(III) Phthalocyanine Bromide Radical Anions.

    PubMed

    Konarev, Dmitri V; Khasanov, Salavat S; Ishikawa, Manabu; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2017-04-18

    Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu 4 N + ) 2 [M III (HFl-O - )(Pc .3- )] .- (Br - )⋅1.5 C 6 H 4 Cl 2 [M=Al (1), Ga (2); HFl-O - =fluoren-9-olato - anion; Pc=phthalocyanine] and (Bu 4 N + ) [In III Br(Pc .3- )] .- ⋅0.875 C 6 H 4 Cl 2 ⋅0.125 C 6 H 14 (3). The salts were found to contain Pc .3- radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc .3- in the near-IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl-O - anions in 1 and 2 with short Al-O and Ga-O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C-O bonds [1.402(3) and 1.391(11) Å in 1 and 2, respectively] in the HFl-O - anions are longer than the same bond in the fluorenone ketyl (1.27-1.31 Å). Salts 1-3 show effective magnetic moments of 1.72, 1.66, and 1.79 μ B at 300 K, respectively, owing to the presence of unpaired S=1/2 spins on Pc .3- . These spins are coupled antiferromagnetically with Weiss temperatures of -22, -14, and -30 K for 1-3, respectively. Coupling can occur in the corrugated two-dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J/k B =-0.9 and -1.1 K, respectively, and in the π-stacking {[In III Br(Pc .3- )] .- } 2 dimers of 3 with an exchange interaction of J/k B =-10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc .3- . It was found that increasing the size of the central metal atom strongly broadened these EPR signals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Meningococcal X polysaccharide quantification by high-performance anion-exchange chromatography using synthetic N-acetylglucosamine-4-phosphate as standard.

    PubMed

    Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F

    2013-11-15

    A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry.

    PubMed

    Bruggink, Cees; Maurer, Rolf; Herrmann, Heiko; Cavalli, Silvano; Hoefler, Frank

    2005-08-26

    A versatile liquid chromatographic platform has been developed for analysing underivatized carbohydrates using high performance anion exchange chromatography (HPAEC) followed by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector (IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric detection but not compatible with electrospray ionisation (ESI). Therefore a membrane-desalting device was installed after the splitter and prior to the ESI interface converting sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection glucose, fructose, and sucrose were used as analytes. A calibration with external standards from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL's for glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these conditions IPAD is 3-10 times more sensitive for those carbohydrates. The applicability of the method was demonstrated analysing carbohydrates in real world samples such as chicory inulin where polyfructans up to a molecular mass of 7000 g/mol were detected as quadrupoly charged lithium adducts. Furthermore mono-, di-, tri-, and oligosaccharides were detected in chicory coffee, honey and beer samples.

  20. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  1. Preparation of a Highly Fluorophilic Phosphonium Salt and its Use in a Fluorous Anion-Exchanger Membrane with High Selectivity for Perfluorinated Acids

    PubMed Central

    Boswell, Paul G.; Anfang, Alyce C.; Bühlmann, Philippe

    2008-01-01

    Fluorous solvents are the most nonpolar, nonpolarizable phases known, whereas ions are inherently polar. This makes it difficult to create salts that are soluble in a fluorous solvent. Here we present the synthesis and characterization of a new fluorophilic phosphonium salt, tris{3,5-bis[(perfluorooctyl)propyl]phenyl}methylphosphonium methyl sulfate. The salt has a solubility of at least 14 mM in perfluoro(perhydrophenanthrene), perfluoro(methylcyclohexane), and perfluorohexanes. It also shows immediate potential for use as a phase-transfer catalyst in fluorous biphasic catalysis, but in this work it is used as an anion exchanger site in the first potentiometric fluorous-membrane anion-selective electrode. The membrane sensor exhibited the exceptional selectivity of 3.9 × 1010 to 1 for perfluorooctanesulfonate over chloride, and of 2.5 × 107 to 1 for perfluorooctanoate over chloride. With improvements to the sensor’s detection limit and lifetime, it has the potential to be an attractive alternative to the expensive, time-consuming methods currently employed for measurement of perfluorinated acids. PMID:22072222

  2. Synergistic Anion-(π) n-π Catalysis on π-Stacked Foldamers.

    PubMed

    Bornhof, Anna-Bea; Bauzá, Antonio; Aster, Alexander; Pupier, Marion; Frontera, Antonio; Vauthey, Eric; Sakai, Naomi; Matile, Stefan

    2018-04-11

    In this report, we demonstrate that synergistic effects between π-π stacking and anion-π interactions in π-stacked foldamers provide access to unprecedented catalytic activity. To elaborate on anion-(π) n -π catalysis, we have designed, synthesized and evaluated a series of novel covalent oligomers with up to four face-to-face stacked naphthalenediimides (NDIs). NMR analysis including DOSY confirms folding into π stacks, cyclic voltammetry, steady-state and transient absorption spectroscopy the electronic communication within the π stacks. Catalytic activity, assessed by chemoselective catalysis of the intrinsically disfavored but biologically relevant addition reaction of malonate half thioesters to enolate acceptors, increases linearly with the length of the stacks to reach values that are otherwise beyond reach. This linear increase violates the sublinear power laws of oligomer chemistry. The comparison of catalytic activity with ratiometric changes in absorption and decreasing energy of the LUMO thus results in superlinearity, that is synergistic amplification of anion-π catalysis by remote control over the entire stack. In computational models, increasing length of the π-stacked foldamers correlates sublinearly with changes in surface potentials, chloride binding energies, and the distances between chloride and π surface and within the π stack. Computational evidence is presented that the selective acceleration of disfavored but relevant enolate chemistry by anion-π catalysis indeed originates from the discrimination of planar and bent tautomers with delocalized and localized charges, respectively, on π-acidic surfaces. Computed binding energies of keto and enol intermediates of the addition reaction as well as their difference increase with increasing length of the π stack and thus reflect experimental trends correctly. These results demonstrate that anion-(π) n -π interactions exist and matter, ready for use as a unique new tool in catalysis

  3. Photophysics and photochemistry of 2-aminobenzoic acid anion in aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Plyusnin, Victor F; Grivin, Vjacheslav P

    2009-12-24

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA(-)) in aqueous solutions. Excitation of this species gives rise to the ABA(-) triplet state to the ABA* radical and to the hydrated electron (e(aq)(-)). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA(-) triplet state, the ABA* radical, and e(aq)(-) are T-T annihilation, recombination, and capture by the ABA(-) anion, respectively.

  4. Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.

    PubMed

    Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo

    2014-08-08

    Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Carbohydrate and alditol analysis by high-performance anion-exchange chromatography coupled with electrochemical detection at a cobalt-modified electrode.

    PubMed

    Casella, Innocenzo G; Contursi, Michela

    2003-07-01

    A cobalt oxyhydroxide film dispersed on a carbon electrode surface was characterized and proposed as an amperometric sensor for determination of alditols and carbohydrates in flowing streams. Complex mixtures of carbohydrates were separated by anion-exchange chromatography using a moderately alkaline solution as mobile phase. The cobalt modified electrode (GC-Co) was employed under a constant applied potential of 0.5 V (vs Ag/AgCl). Under these experimental conditions the detection limits (S/N=3) for all analyzed electroactive molecules ranged between 0.3 micromol L(-1) and 1.5 micromol L(-1) and the dynamic linear ranges spanned generally three orders of magnitude above the relevant detection limits. Analytical determinations of carbohydrates and alditols in red and white wines, are reported.

  6. SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE

    EPA Science Inventory

    Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...

  7. Determination of sucralose in Splenda and a sugar-free beverage using high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Hanko, Valoran P; Rohrer, Jeffrey S

    2004-07-14

    Sucralose is a chlorinated carbohydrate nonnutritive sweetener of food and beverage products. The determination of sucralose in food and beverages is important to ensure consistency in product quality. Sucralose was determined in two commercial products without sample preparation using high-performance anion-exchange (HPAE) chromatography coupled with pulsed amperometric detection (PAD). Sucralose was determined with a 10 min isocratic separation. To determine sucralose and other carbohydrates (e.g., dextrose) simultaneously, a gradient separation was developed. The linear range of electrochemical response extended over 3 orders of magnitude, from 0.01 (LOD) to 40 microM (16 microg/mL; 25 microL injection). High precision, high spike recovery, and method ruggedness were observed for both samples.

  8. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    PubMed

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  9. Thermodynamic evidence of flexibility in H2O and CO2 absorption of transition metal ion exchanged zeolite LTA.

    PubMed

    Guo, Xin; Wu, Lili; Navrotsky, Alexandra

    2018-02-07

    Gas absorption calorimetry has been employed to probe the intercation of water and carbon dioxide with transition metal ion (TM = Mn 2+ , Fe 2+ , Co 2+ , Cu 2+ , and Zn 2+ ) exchanged zeolite A samples. There appears to be a two-phase region, indicative of a guest-induced flexibility transition, separating hydrated zeolite A and its dehydrated form, both of which have variable water content in the single phase region. The differential enthalpy of absorption as a function of water loading directly identifies different strengths of multiple interactions along with possible binding mechanisms of Zn-A and Mn-A exhibiting the highest water absorption with most exothermic initial enthalpies of -125.28 ± 4.82 and -115.30 ± 2.56 kJ mol -1 . Zn-A and Mn-A also show moderately good capture ability for CO 2 with zero-coverage negative enthalpies of -55.59 ± 2.48 and -44.07 ± 1.53 kJ mol -1 . The thermodynamic information derived from differential enthalpy, chemical potential and differential entropy elucidated the multistage interactive behavior of small guest molecules (H 2 O/CO 2 ) and ion-exchanged frameworks.

  10. Squarylium-based chromogenic anion sensors.

    PubMed

    Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A; Kim, Sung-Hoon

    2012-09-01

    A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN(-) as compared with F(-), CH(3)CO(2)(-), Br(-), H(2)PO(4)(-), Cl(-), and NO(3)(-) in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN(-) coordination complex, the formation of which was supported by the calculated geometry of the complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Short communication: simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde at a low concentration by high performance anion exchange chromatography with electrochemical detector, compared with HPLC with refractive index detector.

    PubMed

    Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L

    2012-11-01

    A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    PubMed

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  13. 1-Butanol absorption in poly(styrene-divinylbenzene) ion exchange resins for catalysis.

    PubMed

    Pérez-Maciá, M A; Curcó, D; Bringué, R; Iborra, M; Rodríguez-Ropero, F; van der Vegt, N F A; Aleman, Carlos

    2015-12-21

    The swelling behaviour of poly(styrene-co-divinylbenzene), P(S-DVB), ion exchange resins in 1-butanol (BuOH) has been studied by means of atomistic classical molecular dynamics simulations (MD). The topological characteristics reported for the resin in the dry state, which exhibited complex internal loops (macropores), were considered for the starting models used to examine the swelling induced by BuOH contents ranging from 10% to 50% w/w. Experimental measurements using a laser diffraction particle size analyzer indicate that swelling causes a volume variation with respect to the dry resin of 21%. According to MD simulations, such a volume increment corresponds to a BuOH absorption of 31-32% w/w, which is in excellent agreement with the indirect experimental estimation (i.e. 31% w/w). Simulations reveal that, independently of the content of BuOH, the density of the swelled resin is higher than that of the dry resin, evidencing that the alcohol provokes important structural changes in the polymeric matrix. Thus, BuOH molecules cause a collapse of the resin macropores when the content of alcohol is ≤20% w/w. In contrast, when the concentration of BuOH is close to the experimental value (∼30% w/w), P(S-DVB) chains remain separated by pores faciliting the access of the reactants to the reaction centers. On the other hand, evaluation of both bonding and non-bonding interactions indicates that the mixing energy is the most important contribution to the absorption of BuOH into the P(S-DVB) resin. Overall, the results displayed in this work represent a starting point for the theoretical study of the catalytic conversion of BuOH into di-n-butyl ether in P(S-DVB) ion exchange resins using sophisticated electronic methods.

  14. LAB-SCALE DEMONSTRATION OF PLUTONIUM PURIFICATION BY ANION EXCHANGE, PLUTONIUM (IV) OXALATE PRECIPITATION, AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, M.; Pierce, R.

    2012-08-22

    H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed testmore » conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored

  15. Contamination of commercial cane sugars by some organic acids and some inorganic anions.

    PubMed

    Wojtczak, Maciej; Antczak, Aneta; Lisik, Krystyna

    2013-01-01

    The aim of the paper was the identification and the quantitative evaluation of the following inorganic anions: chloride, phosphate, nitrate, nitrite, sulphate and the following organic acids: lactic, acetic, formic, malic and citric in commercial "unrefined" brown cane sugars and in cane raw sugars. The determination was carried out by high performance anion exchange chromatography with conductivity detector HPAEC-CD. The conducted analyses have shown that the content of some inorganic anions and organic acids in cane sugars may be an important criterion of the quality of commercial "unrefined" brown cane sugars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Qualitative and quantitative analysis of branches in dextran using high-performance anion exchange chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-12-04

    Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.

    PubMed

    Varcoe, John R

    2007-03-28

    This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm(-1) are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 +/- 0.005 S cm(-1) at 30 degrees C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33-91%); this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH(-) conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2-3 times higher than for H(+) conduction in acidic Nafion-115 at all humidities.

  18. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen

    2018-06-01

    Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.

  19. Predicting Carbonate Species Ionic Conductivity in Alkaline Anion Exchange Membranes

    DTIC Science & Technology

    2012-06-01

    This method has been used previously with both PEM and AEM fuel cells and demonstrated its ability to accurately predict ionic conductivity [2,9,24...water. In an AMFC, the mobile species is a hydroxide ion (OH - ) and in a PEM fuel cell , the proton is solvated with a water molecule forming...membrane synthesis techniques have produced polymer electrolyte membranes that are capable of transporting anions in alkaline membrane fuel cells

  20. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells

    PubMed Central

    Dalmark, Mads; Wieth, Jens Otto

    1972-01-01

    1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of 36Cl- efflux from radioactively labelled cells. Between 0 and 10° C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole. 2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0·2% of the value found in a chloride medium. 3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above. 4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0·4% of the rate of chloride self-exchange found in the chloride medium. 5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride. 6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged. 7. The self-exchange of salicylate across the human red cell membrane occurred by a

  1. High-throughput investigation of single and binary protein adsorption isotherms in anion exchange chromatography employing multivariate analysis.

    PubMed

    Field, Nicholas; Konstantinidis, Spyridon; Velayudhan, Ajoy

    2017-08-11

    The combination of multi-well plates and automated liquid handling is well suited to the rapid measurement of the adsorption isotherms of proteins. Here, single and binary adsorption isotherms are reported for BSA, ovalbumin and conalbumin on a strong anion exchanger over a range of pH and salt levels. The impact of the main experimental factors at play on the accuracy and precision of the adsorbed protein concentrations is quantified theoretically and experimentally. In addition to the standard measurement of liquid concentrations before and after adsorption, the amounts eluted from the wells are measured directly. This additional measurement corroborates the calculation based on liquid concentration data, and improves precision especially under conditions of weak or moderate interaction strength. The traditional measurement of multicomponent isotherms is limited by the speed of HPLC analysis; this analytical bottleneck is alleviated by careful multivariate analysis of UV spectra. Copyright © 2017. Published by Elsevier B.V.

  2. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Abdul, Momen; Youker, Amanda J.

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery andmore » -concentration columns. Promising results are reported for both methods.« less

  3. Anionic Gallium-Based Metal;#8722;Organic Framework and Its Sorption and Ion-Exchange Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Kim, Sun Jin; Wu, Haohan

    2012-04-30

    A gallium-based metal-organic framework Ga{sub 6}(C{sub 9}H{sub 3}O{sub 6}){sub 8} {center_dot} (C{sub 2}H{sub 8}N){sub 6}(C{sub 3}H{sub 7}NO){sub 3}(H{sub 2}O){sub 26} [1, Ga{sub 6}(1,3,5-BTC){sub 8} {center_dot} 6DMA {center_dot} 3DMF {center_dot} 26H{sub 2}O], GaMOF-1; BTC = benzenetricarboxylate/trimesic acid and DMA = dimethylamine, with space group I{bar 4}3d, a = 19.611(1) {angstrom}, and V = 7953.4(6) {angstrom}{sup 3}, was synthesized using solvothermal techniques and characterized by synchrotron-based X-ray microcrystal diffraction. Compound 1 contains isolated gallium tetrahedra connected by the organic linker (BTC) forming a 3,4-connected anionic porous network. Disordered positively charged ions and solvent molecules are present in the pore, compensating for themore » negative charge of the framework. These positively charged molecules could be exchanged with alkali-metal ions, as is evident by an ICP-MS study. The H{sub 2} storage capacity of the parent framework is moderate with a H{sub 2} storage capacity of {approx}0.5 wt % at 77 K and 1 atm.« less

  4. Imidazolium-based anion exchange membranes for alkaline anion fuel cells: elucidation of the morphology and the interplay between the morphology and properties.

    PubMed

    Zhao, Yue; Yoshimura, Kimio; Shishitani, Hideyuki; Yamaguchi, Susumu; Tanaka, Hirohisa; Koizumi, Satoshi; Szekely, Noemi; Radulescu, Aurel; Richter, Dieter; Maekawa, Yasunari

    2016-02-07

    We investigated the morphology and swelling behavior of a new graft-type of anion exchange membrane (AEM) containing 2-methylimidazolium groups by using a contrast variation small angle neutron scattering (SANS) technique. These AEMs were prepared by radiation-induced grafting of 2-methyl-1-vinylimidazole and styrene into poly(ethylene-co-tetrafluoroethylene) (ETFE) films and subsequent N-alkylation with methyliodide, and possessed both high alkaline durability and high conductivity. Our results showed that the crystalline lamellar and crystallite structures originating from the pristine ETFE films were more or less conserved in these AEMs, but the lamellar d-spacing in both dry and wet membranes was enlarged, indicating an expansion of the amorphous lamellae due to the graft chains introduced in the grafting process and the water incorporated in the swelling process. For the first time, the swelling behavior of the AEMs was studied quantitatively in various water mixtures of water and deuterated water with different volume ratios (contrast variation method), and the morphology of these membranes was elucidated by three phases: phase (1) crystalline ETFE domains, which offer good mechanical properties; phase (2) hydrophobic amorphous domains, which are made up of amorphous ETFE chains and offer a matrix to create conducting regions; phase (3) interconnected hydrated domains, which are composed of the entire graft chains and water and play a key role in promoting the conductivity.

  5. Two novel two-dimensional copper(II) coordination polymers with 1-(4-aminobenzyl)-1,2,4-triazole: Synthesis, crystal structure, magnetic characterization and absorption of anion pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin

    2017-01-01

    In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.

  6. Eu(III) complexes as Anion-responsive Luminescent Sensors and PARACEST Agents

    PubMed Central

    Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R.

    2011-01-01

    The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the 1H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate and carbonate. These anions have weak dissociation constants that range from 19–38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at pH 6

  7. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  8. [New potassium binders effective: treatment of hyperkalaemia secondary to RAAS inhibitors].

    PubMed

    Hoorn, Ewout J

    2015-01-01

    This commentary discusses two recent publications by Weir et al. and Packham et al. in The New England Journal of Medicine on the efficacy of two novel potassium binders, sodium zirconium cyclosilicate and patiromer. In a similar manner to existing potassium binders, these drugs exchange dietary potassium for either sodium or calcium in the gut, thereby preventing absorption of potassium. Both drugs were tested against placebo in patients with chronic kidney disease who developed hyperkalaemia because they were also using renin-angiotensin-aldosterone system (RAAS) inhibitors. Both drugs lowered serum potassium effectively and were tolerated reasonably well. A strong point in the trials is that the new potassium binders allow patients to continue using RAAS inhibitors. By doing so, these patients with high cardiovascular risk may continue to benefit from the protective effects of RAAS inhibitors. Limitations include the relatively short treatment period, the lack of a control group using existing potassium binders, and the exclusion of patients with severe or symptomatic hyperkalaemia.

  9. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  10. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO)

    NASA Astrophysics Data System (ADS)

    Li, Yujiao; Shi, Shaoyuan; Cao, Hongbin; Zhao, Zhijuan; Wen, Hao

    2018-06-01

    The heterogeneous anion exchange membranes (AEMs) were modified by electrodeposition of graphene oxide (GO) under different conditions. The physicochemical properties of GO-modified membranes were characterized systemically to obtain the optimized conditions for the electrodeposition of GO on the surface of AEMs. The results indicated that the contact angle and zeta potential of the modified AEMs decreased when increasing the concentration of GO from 0.05 g/L to 0.1 g/L. The higher concentration of NaCl, as the supporting electrolyte, could hinder the electrodeposition of GO on the AEMs for the competitive migration between the GO and Cl- ions. The increase of current density had a positive effect on properties of GO-modified membranes in the range of 1-5 mA/cm2. Compared with the pristine AEM, all the GO-modified AEMs exhibited smoother surface, higher hydrophilicity and negative zeta potential. It was also found that the GO modifying layer did not increase electrical resistance and had only a negligible effect on the desalination performance of AEMs. In the fouling experiments with sodium dodecyl benzene sulfonate (SDBS) as the model foulant, the GO-modified AEMs exhibited improved fouling resistance to SDBS.

  11. Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.

    PubMed

    Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao

    2007-09-01

    Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.

  12. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    PubMed

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  13. Expression and role of anion exchanger 1 in esophageal squamous cell carcinoma.

    PubMed

    Shiozaki, Atsushi; Kudou, Michihiro; Ichikawa, Daisuke; Shimizu, Hiroki; Arita, Tomohiro; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Fujiwara, Hitoshi; Okamoto, Kazuma; Kishimoto, Mitsuo; Marunaka, Yoshinori; Otsuji, Eigo

    2017-03-14

    Recent studies have described important roles for the anion exchanger (AE) in epithelial carcinogenesis and tumor behavior. The objectives of the present study were to investigate the role of AE1 in the regulation of genes involved in tumor progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC). An immunohistochemical analysis was performed on 61 primary tumor samples obtained from ESCC patients who underwent esophagectomy. AE1 was primarily located in the cell membranes or cytoplasm of carcinoma cells, and its distribution pattern was related to the histological degree of the differentiation of SCC or the pT category. Among patients with pT2-3 ESCC, the 5-year survival rate of patients with diffuse AE1 expression (40.2%) was significantly lower than that of patients with focal expression (74.0%). AE1 was strongly expressed in KYSE150 and TE8 human ESCC cells. The depletion of AE1 using siRNA inhibited cell proliferation, migration, and invasion and induced apoptosis. The results of the microarray analysis revealed that MAPK and Hedgehog signaling pathway-related genes, such as DHH, and GLI1, were down-regulated in AE1-depleted KYSE150 cells. In conclusions, the results of the present study suggest that the diffuse expression of AE1 is related to a worse prognosis in patients with advanced ESCC, and that it regulates tumor progression by affecting MAPK and Hedgehog signaling pathways. These results provide an insight into the role of AE1 as a mediator of and/or a biomarker for ESCC.

  14. Net Intestinal Transport of Oxalate Reflects Passive Absorption and SLC26A6-mediated Secretion

    PubMed Central

    Knauf, Felix; Ko, Narae; Jiang, Zhirong; Robertson, William G.; Van Itallie, Christina M.; Anderson, James M.

    2011-01-01

    Mice lacking the oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium-oxalate stones as a result of a defect in intestinal oxalate secretion, but what accounts for the absorptive oxalate flux remains unknown. We measured transepithelial absorption of [14C]oxalate simultaneously with the flux of [3H]mannitol, a marker of the paracellular pathway, across intestine from wild-type and Slc26a6-null mice. We used the anion transport inhibitor DIDS to investigate other members of the SLC26 family that may mediate transcellular oxalate absorption. Absorptive flux of oxalate in duodenum was similar to mannitol, insensitive to DIDS, and nonsaturable, indicating that it is predominantly passive and paracellular. In contrast, in wild-type mice, secretory flux of oxalate in duodenum exceeded that of mannitol, was sensitive to DIDS, and saturable, indicating transcellular secretion of oxalate. In Slc26a6-null mice, secretory flux of oxalate was similar to mannitol, and no net flux of oxalate occurred. Absorptive fluxes of both oxalate and mannitol varied in parallel in different segments of small and large intestine. In epithelial cell lines, modulation of the charge selectivity of the claudin-based pore pathway did not affect oxalate permeability, but knockdown of the tight-junction protein ZO-1 enhanced permeability to oxalate and mannitol in parallel. Moreover, formation of soluble complexes with cations did not affect oxalate absorption. In conclusion, absorptive oxalate flux occurs through the paracellular “leak” pathway, and net absorption of dietary oxalate depends on the relative balance between absorption and SLC26A6-dependent transcellular secretion. PMID:22021714

  15. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    PubMed

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  16. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E. A.; King, W. D.

    2012-07-31

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Usemore » of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.« less

  17. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.; King, W.

    2012-04-25

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Usemore » of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.« less

  18. Molecular anions.

    PubMed

    Simons, Jack

    2008-07-24

    The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.

  19. Anion-Functionalized Task-Specific Ionic Liquids: Molecular Origin of Change in Viscosity upon CO2 Capture.

    PubMed

    Li, Ailin; Tian, Ziqi; Yan, Tianying; Jiang, De-en; Dai, Sheng

    2014-12-26

    The structure and dynamics of a task-specific ionic liquid (TSIL), trihexyl(tetradecyl)phosphonium imidazolate, before and after absorbing CO(2) were studied with a molecular dynamics (MD) simulation. This particular ionic liquid is one of several newly discovered azole-based TSILs for equimolar CO(2) capture. Unlike other TSILs whose viscosity increases drastically upon reaction with CO(2), its viscosity decreases after CO(2) absorption. This unique behavior was confirmed in our MD simulation. We find that after CO(2) absorption the translational dynamics of the whole system is accelerated, accompanied by an accelerated rotational dynamics of the cations. Radial distribution function and spatial distribution function analyses show that the anions become asymmetric after reaction with CO(2), and this causes the imbalance of the interaction between the positive and negative regions of the ions. The interaction between the phosphorus atom of the cation and oxygen atoms of the carboxyl group on the anion is enhanced, while that between the phosphorus atom and the naked nitrogen atom of the anion is weakened. The ion-pair correlation functions further support that the weakened interaction leads to faster dissociation of cation-anion pairs, thereby causing an accelerated dynamics. Hence, the asymmetry of anions influences the dynamics of the system and affects the viscosity. This insight may help design better TSILs with decreased viscosity for CO(2) capture.

  20. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper).

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan

    2017-04-01

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300°C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300°C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L 3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  4. Collision-induced absorption with exchange effects and anisotropic interactions: theory and application to H2 - H2.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  5. Effects of anion transport inhibitors and ion substitution on Cl sup minus transport in TAL of Henle's loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Yoshiaki; Yoshitomi, Koji; Imai, Masashi

    1987-12-01

    To identify the mechanism of Cl{sup {minus}} transport across the thin ascending limb of Henle's loop (TAL), the authors examined effects of anion transport inhibitors and ionic substitution in the isolated segments of hamsters using the in vitro microperfusion technique. 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS) at 10{sup {minus}3} M changed the NaCl diffusion voltage (V{sub t}) to the orientation that corresponds to the decrease in the Cl{sup {minus}}-Na{sup +} permeability ratio when it was added either to the bath or to the lumen. DIDS, added to the bath or to the lumen decreased the lumen-to-bath flux coefficient for {sup 36}Cl, whereas itmore » had little effect on the flux coefficient for {sup 22}Na. The inhibitory effect of phloretin was rapid and reversible. Phloridzin was ineffective. From these observations, they conclude that Cl{sup {minus}} transport across the TAL is distinct from Na{sup +} and is not coupled with Na{sup +}, K{sup +}, or HCO{sup {minus}}{sub 3}.« less

  6. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    PubMed

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.

    PubMed

    Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J

    2016-06-01

    Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangtum, Natapol; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700; Junking, Mutita

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{supmore » -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.« less

  9. Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.

    PubMed

    Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles

    2017-02-15

    Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.

  10. Electron interaction with phosphate cytidine oligomer dCpdC: base-centered radical anions and their electronic spectra.

    PubMed

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2014-01-30

    Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.

  11. Activity-based mass spectrometric characterization of proteases and inhibitors in human saliva

    PubMed Central

    Sun, Xiuli; Salih, Erdjan; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2009-01-01

    Proteases present in oral fluid effectively modulate the structure and function of some salivary proteins and have been implicated in tissue destruction in oral disease. To identify the proteases operating in the oral environment, proteins in pooled whole saliva supernatant were separated by anion-exchange chromatography and individual fractions were analyzed for proteolytic activity by zymography using salivary histatins as the enzyme substrates. Protein bands displaying proteolytic activity were particularly prominent in the 50–75 kDa region. Individual bands were excised, in-gel trypsinized and subjected to LC/ESI-MS/MS. The data obtained were searched against human, oral microbial and protease databases. A total of 13 proteases were identified all of which were of mammalian origin. Proteases detected in multiple fractions with cleavage specificities toward arginine and lysine residues, were lactotransferrin, kallikrein-1, and human airway trypsin-like protease. Unexpectedly, ten protease inhibitors were co-identified suggesting they were associated with the proteases in the same fractions. The inhibitors found most frequently were alpha-2-macroglobulin-like protein 1, alpha-1-antitrypsin, and leukocyte elastase inhibitor. Regulation of oral fluid proteolysis is highly important given that an inbalance in such activities has been correlated to a variety of pathological conditions including oral cancer. PMID:20011683

  12. Syk inhibitors interfere with erythrocyte membrane modification during P falciparum growth and suppress parasite egress.

    PubMed

    Pantaleo, Antonella; Kesely, Kristina R; Pau, Maria Carmina; Tsamesidis, Ioannis; Schwarzer, Evelin; Skorokhod, Oleksii A; Chien, Huynh D; Ponzi, Marta; Bertuccini, Lucia; Low, Philip S; Turrini, Francesco M

    2017-08-24

    Band 3 (also known as the anion exchanger, SLCA1, AE1) constitutes the major attachment site of the spectrin-based cytoskeleton to the erythrocyte's lipid bilayer and thereby contributes critically to the stability of the red cell membrane. During the intraerythrocytic stage of Plasmodium falciparum 's lifecycle, band 3 becomes tyrosine phosphorylated in response to oxidative stress, leading to a decrease in its affinity for the spectrin/actin cytoskeleton and causing global membrane destabilization. Because this membrane weakening is hypothesized to facilitate parasite egress and the consequent dissemination of released merozoites throughout the bloodstream, we decided to explore which tyrosine kinase inhibitors might block the kinase-induced membrane destabilization. We demonstrate here that multiple Syk kinase inhibitors both prevent parasite-induced band 3 tyrosine phosphorylation and inhibit parasite-promoted membrane destabilization. We also show that the same Syk kinase inhibitors suppress merozoite egress near the end of the parasite's intraerythrocytic lifecycle. Because the entrapped merozoites die when prevented from escaping their host erythrocytes and because some Syk inhibitors have displayed long-term safety in human clinical trials, we suggest Syk kinase inhibitors constitute a promising class of antimalarial drugs that can suppress parasitemia by inhibiting a host target that cannot be mutated by the parasite to evolve drug resistance. © 2017 by The American Society of Hematology.

  13. Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor.

    PubMed

    Cheng, Siyi; Shi, Tielin; Chen, Chen; Zhong, Yan; Huang, Yuanyuan; Tao, Xiangxu; Li, Junjie; Liao, Guanglan; Tang, Zirong

    2017-07-27

    To push the energy density limit of supercapacitors, proper pseudocapacitive materials with favorable nanostructures are urgently pursued. Ternary transition metal sulfides are promising electrode materials due to the better conductivity and higher electrochemical activity in comparison to the single element sulfides and transition metal oxides. In this work, we have successfully synthesized porous CuCo 2 S 4 nanorod array (NRAs) on carbon textile through a stepwise hydrothermal method, including the growth of the Cu-Co precursor nanowire arrays and subsequent conversion into CuCo 2 S 4 NRAs via anion exchange reaction. The CuCo 2 S 4 NRAs electrode exhibits a greatly enhanced specific capacitance and an outstanding cycling stability. Moreover, an asymmetric supercapacitor using the CuCo 2 S 4 NRAs as positive electrode and activated carbon as negative electrode delivers a high energy density of 56.96 W h kg -1 . Such superior performance demonstrate that the CuCo 2 S 4 NRAs are promising materials for future energy storage applications.

  14. Concentration of enteric viruses from tap water using an anion exchange resin-based method.

    PubMed

    Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D

    2014-09-01

    Detecting low concentrations of enteric viruses in water is needed for public health-related monitoring and control purposes. Thus, there is a need for sensitive, rapid and cost effective enteric viral concentration methods compatible with downstream molecular detection. Here, a virus concentration method based on adsorption of the virus to an anion exchange resin and direct isolation of nucleic acids is presented. Ten liter samples of tap water spiked with different concentrations (10-10,000 TCID50/10 L) of human adenovirus 40 (HAdV-40), hepatitis A virus (HAV) or rotavirus (RV) were concentrated and detected by real time PCR or real time RT-PCR. This method improved viral detection compared to direct testing of spiked water samples where the ΔCt was 12.1 for AdV-40 and 4.3 for HAV. Direct detection of RV in water was only possible for one of the three replicates tested (Ct of 37), but RV detection was improved using the resin method (all replicates tested positive with an average Ct of 30, n=3). The limit of detection of the method was 10 TCID50/10 L for HAdV-40 and HAV, and 100 TCID50/10 L of water for RV. These results compare favorably with detection limits reported for more expensive and laborious methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  16. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  19. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  20. Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin.

    PubMed

    Sellin, Daniel; Yan, Li-Mei; Kapurniotu, Aphrodite; Winter, Roland

    2010-08-01

    Aggregation of human islet amyloid polypeptide (hIAPP) into cytotoxic beta-sheet oligomers and amyloid plaques is considered a key event in pancreatic beta-cell degeneration in type 2 diabetes (T2D). hIAPP is synthesized in the pancreatic beta-cells and it is stored, co-processed in the secretory granules, and co-secreted to the extracellular matrix together with insulin. In vivo, hIAPP aggregation may start and proceed at the water-cell membrane interface and anionic lipid membranes strongly enhance the process of hIAPP fibrillization which is causally linked to membrane disintegration and cell degeneration. In this study we explored the amyloidogenic propensity and conformational properties of hIAPP in the presence of negatively charged membrane (DOPC/DOPG phospholipid bilayers) surfaces upon addition of two recently designed potent hIAPP-derived inhibitors of hIAPP amyloidogenesis, the hexapeptide NF(N-Me)GA(N-Me)IL (NFGAIL-GI) and the 37-residue non-amyloidogenic hIAPP analog [(N-Me)G24, (N-Me)I26]-IAPP (IAPP-GI). For comparison, the effects of insulin, which is a natively occurring hIAPP aggregation inhibitor, rat IAPP (rIAPP), which is a natively non-amyloidogenic hIAPP analog, and the hIAPP amyloid core peptide hIAPP(22-27) or NFGAIL were also studied. The aim of our study was to test whether and how the above peptides which have been shown to completely block or suppress hIAPP amyloidogenesis in bulk solution in vitro would also affect these processes in the presence of lipid membranes. To this end, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was applied. We find that IAPP-GI, NFGAIL-GI, insulin, and rIAPP are potent inhibitors of hIAPP fibrillization. Importantly, our data also suggest that the hetero-complexes of IAPP-GI, rIAPP, and insulin with hIAPP although non-amyloidogenic per se are still able to adsorb at the lipid membrane. By contrast, in the presence of NFGAIL-GI, interaction of hIAPP with the lipid membrane is

  1. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    PubMed

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  2. Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration.

    PubMed

    Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid

    2018-02-01

    This study investigated the efficiency of a strongly basic macroporous anion exchange resin for the co-removal of Microcystin-LR (MCLR) and natural organic matter (NOM) in waters affected by toxic algal blooms. Environmental factors influencing the uptake behavior included MCLR and resin concentrations, NOM and anionic species, specifically nitrate, sulphate and bicarbonate. A860 resin exhibited an excellent adsorption capacity of 3800 μg/g; more than 60% of the MCLR removal was achieved within 10 min with a resin dosage of 200 mg/L (∼1 mL/L). Further, kinetic studies revealed that the overall removal of MCLR is influenced by both external diffusion and intra-particle diffusion. Increasing NOM concentration resulted in a significant reduction of MCLR uptake, especially at lower resin dosages, where a competitive uptake between the charged NOM fractions and MCLR was observed due to limited active sites. In addition, MCLR uptake was significantly reduced in the presence of sulphate and nitrate in the water matrix. Moreover, performance of the resin proved to be stable from one regeneration cycle to another. Approximately 80% of MCLR and 50% of dissolved organic carbon (DOC) were recovered in the regenerated brine. Evidences of resin saturation and site reduction were also observed after 2000 bed volumes (BV) of operation. For all the investigated water matrices, a resin dosage of 1000 mg/L (∼4.5 mL/L) was sufficient to lower MCLR concentration from 100 μg/L to below the World Health Organization guideline of 1 μg/L, while simultaneously providing more than 80% NOM removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Grafting cellulose acetate with ionic liquids for biofuel purification membranes : Influence of the anion.

    PubMed

    Hassan Hassan Abdellatif, Faten; Babin, Jérôme; Arnal-Herault, Carole; David, Laurent; Jonquieres, Anne

    2018-09-15

    Membranes made from cellulose acetate grafted with imidazolium or ammonium ionic liquids (ILs) containing different anions were considered for ethyl tert-butyl ether biofuel purification by pervaporation. The new cellulosic materials were obtained after bromide (Br - ) exchange by different anions (Tf 2 N - , BF 4 - , AcO - ). IL structure-membrane property relationships revealed that the membrane properties were strongly improved by varying the anion structure, molecular size and hydrogen bonding acceptor ability β in the Kamlet-Taft polarity scale. The grafted ammonium IL with AcO - anion combined the highest parameter β with big cation/anion sizes and finally led to the best membrane properties with a normalized pervaporation flux of 0.41 kg/h m 2 (almost 20 times that of virgin cellulose acetate) for a reference thickness of 5 μm and a permeate ethanol content of 100%. Such properties thus corresponded to an outstanding separation factor at 50 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Seasonal Solar Thermal Absorption Energy Storage Development.

    PubMed

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  5. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide.

    PubMed

    Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang

    2015-01-05

    Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Basolateral LPS inhibits NHE3 and HCO3− absorption through TLR4/MyD88-dependent ERK activation in medullary thick ascending limb

    PubMed Central

    Watts, Bruns A.; George, Thampi; Sherwood, Edward R.

    2011-01-01

    Sepsis is associated with defects in renal tubule function, but the underlying mechanisms are incompletely understood. Recently, we demonstrated that Gram-negative bacterial lipopolysaccharide (LPS) inhibits HCO3− absorption in the medullary thick ascending limb (MTAL) through activation of Toll-like receptor 4 (TLR4). Here, we examined the mechanisms responsible for inhibition of HCO3− absorption by basolateral LPS. Adding LPS to the bath decreased HCO3− absorption by 30% in rat and mouse MTALs perfused in vitro. The inhibition of HCO3− absorption was eliminated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK)/ERK inhibitors U0126 and PD98059. LPS induced a rapid (<15 min) and sustained (up to 60 min) increase in ERK phosphorylation in microdissected MTALs that was blocked by PD98059. The effects of basolateral LPS to activate ERK and inhibit HCO3− absorption were eliminated in MTALs from TLR4−/− and myeloid differentiation factor 88 (MyD88)−/− mice but were preserved in MTALs from TIR (Toll/interleukin-1 receptor) domain-containing adapter-inducing interferon-β (Trif)−/− mice. Basolateral LPS decreased apical Na+/H+ exchanger 3 NHE3 activity through a decrease in maximal velocity (Vmax). The inhibition of NHE3 by LPS was eliminated by MEK/ERK inhibitors. LPS inhibited HCO3− absorption despite the presence of physiological stimuli that activate ERK in the MTAL. We conclude that basolateral LPS inhibits HCO3− absorption in the MTAL through activation of a TLR4/MyD88/MEK/ERK pathway coupled to inhibition of NHE3. These studies identify NHE3 as a target of TLR4 signaling in the MTAL and show that bacterial molecules can impair the absorptive functions of renal tubules through inhibition of this exchanger. The ERK pathway links TLR4 to downstream modulation of ion transport proteins and represents a potential target for treatment of sepsis-induced renal tubule dysfunction. PMID:21881005

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.F.

    The ratio of Cl absorbed to HCO3 secreted by the in vitro small intestine of Amphiuma was measured using TWCl and titration. The aim was to estimate the stoichiometry and thereby elucidate the underlying transport mechanisms. For every mole of HCO3 secreted 1.8 mol of Cl underwent net absorption. Indirect measures of net Cl absorption and HCO3 secretion were validated. Several known and putative Cl transport inhibitors were examined for their ability to inhibit the anion transport events. Disulfonic stilbenes (DIDS) and the diuretics piretanide and furosemide inhibited the Cl absorptive flux (J/sub m s/sup Cl/) and simultaneously the HCO3more » secretory flux (J/sup HCO3 /). The diuretics acetazolamide and bumetanide also reduced J/sup HCO3 and J/sub m s/sup Cl/, although the latter effect was not statistically significant. The ratio of inhibition, J/sub m s/sup Cl// J/sup HCO3 /, varied from 1.2 to 1.8 for the different inhibitors. The presence of Cl -HCO3 exchange at the serosal membrane was deduced from 1) the reduction of J/sub m s/sup Cl/ and J/sup HCO3 / by serosally added stilbenes, 2) the reduction of Cl absorption when serosal Cl was replaced, 3) inhibition of the secretory-to-mucosal Cl flux by serosal stilbenes, and 4) enhancement of J/sup HCO3 when serosal medium HCO3 was elevated. The observations are not consistent with one-for-one exchange of Cl for HCO3 at the mucosal membrane. The observed coupling ratio is compatible with a one-for-one exchange of Cl for HCO3 at the serosal membrane.« less

  8. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments.

    PubMed

    Desai, Chirayu; Madamwar, Datta

    2007-03-01

    PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.

  9. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    PubMed

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  10. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structuremore » of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).« less

  11. Separation of patatins and protease inhibitors from potato fruit juice with clay minerals as cation exchangers.

    PubMed

    Ralla, Kathrin; Sohling, Ulrich; Suck, Kirstin; Kasper, Cornelia; Ruf, Friedrich; Scheper, Thomas

    2012-07-01

    Potato fruit juice as a by-product of the starch industry contains proteins with interesting functionalities such as protease inhibitors or patatin with its high nutritional value. Due to their functional properties, these proteins are principally of industrial interest. A drawback for the application of these potato proteins is the separation and isolation under maintenance of the biological activity. So far, there are no methods in literature, which are satisfying concerning the costs or the separation performance. In this study, we show a chromatographic approach using natural clay minerals as cation exchangers to separate two protein fractions in potato fruit juice. Additionally, the content of glycoalkaloids naturally occurring in potatoes is significantly reduced in a single step together with the separation of the patatins and the protease inhibitors. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  13. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  14. Putting the pieces together: a crystal clear window into CLC anion channel regulation.

    PubMed

    Strange, Kevin

    2011-01-01

    CLC anion transport proteins function as Cl (-) channels and Cl (-) /H (+) exchangers and are found in all major groups of life including archaebacteria. Early electrophysiological studies suggested that CLC anion channels have two pores that are opened and closed independently by a "fast" gating process operating on a millisecond timescale, and a "common" or "slow" gate that opens and closes both pores simultaneously with a timescale of seconds (Figure 1A). Subsequent biochemical and molecular experiments suggested that CLC channels/transporters are homodomeric proteins ( 1-3) .

  15. An empirical study into the effect of long term storage (-36±2 °C) of electron-beamed ETFE on the properties of radiation-grafted alkaline anion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Kizewski, Jamie Peter; Mudri, Nurul H.; Varcoe, John R.

    2013-08-01

    The application of alkaline anion-exchange membranes (AAEM) in solid alkaline fuel cells is growing in prominence mainly due to enhanced tolerance to carbon dioxide, compared to alkaline fuel cells containing aqueous electrolytes, and the potential for using non precious metal catalysts. Radiation grafting is a common methodology for the production of functional polymers and membranes. This statistical study examines the synthesis of radiation grafted AAEMs that are formed from electron beam irradiated poly(ethylene-co-tetrafluoroethylene), EB-ETFE. It is shown that EB-ETFE can be cold stored for at least 16 months and still be used to produce ionically conductive AAEMs. The limitations of routine measurements of properties, such as dimensional increases, ion-exchange capacity, water uptakes and ionic conductivities, are also highlighted.

  16. Solid phase monofunctionalization of gold nanoparticles using ionic exchange resin as polymer support.

    PubMed

    Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun

    2007-07-01

    A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.

  17. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical andmore » structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.« less

  18. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase

    PubMed Central

    Tong, Fan; Islam, Rafique M.; Carlier, Paul R.; Ma, Ming; Ekström, Fredrik; Bloomquist, Jeffrey R.

    2013-01-01

    Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23–36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE. PMID:24003261

  19. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    PubMed

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  20. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    PubMed

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  1. Simultaneous separation and determination of six arsenic species in rice by anion-exchange chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Ma, Li; Yang, Zhaoguang; Tang, Jie; Wang, Lin

    2016-06-01

    The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion-exchange column run by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4 HCO3 at pH 8.6 as mobile phase A and 4 mM NH4 HCO3 , 40 mM NH4 NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography

    PubMed Central

    Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob

    2009-01-01

    Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915

  3. Ultrasonically-enhanced preparation, characterization of CaFe-layered double hydroxides with various interlayer halide, azide and oxo anions (CO32-, NO3-, ClO4-).

    PubMed

    Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István

    2018-01-01

    An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rapid determination of vitellogenin in fish plasma by anion exchange high performance liquid chromatography using postcolumn fluorescence derivatization with o-phthalaldehyde.

    PubMed

    Wu, Cuiqin; Yuan, Dongxing; Liu, Baomin

    2006-12-01

    An analytical method involving anion exchange high performance liquid chromatographic determination of vitellogenin (Vtg) in fish plasma after postcolumn fluorescence derivatization with o-phthalaldehyde (OPA) was developed. The retention time of Vtg was about 11 min. The reagent variables for derivatization were optimized. The fluorophore was excited at 335 nm and detected at 435 nm. A calibration curve was established ranging from 0.13 to 11.28 microg. The determination limit of Vtg was found to be as low as 0.13 microg. The spiked recovery was 93.6% and interassay variability was less than 4%. The method developed was used to determine Vtg in fish plasma obtained from red sea bream (Pagrosomus major), black porgy (Sparus macrocephalus) and skew band grunt (Hapalogenys nitens), without complicated sample pretreatment. The results confirmed that the method showed advantages of being simple, rapid, reproducible and sensitive.

  5. Process optimisation for anion exchange monolithic chromatography of 4.2kbp plasmid vaccine (pcDNA3F).

    PubMed

    Ongkudon, Clarence M; Danquah, Michael K

    2010-10-15

    Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400nm pore size of monolith in 0.7M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0M at 3%B/min. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Dissociation, absorption and ionization of some important sulfur oxoanions (S2On2- n = 2, 3, 4, 6, 7 and 8)

    NASA Astrophysics Data System (ADS)

    Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi

    2015-08-01

    In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.

  7. Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Xianguo; Or, Siu Wing; Ho, S. L.

    2017-05-01

    Core/shell-structured, hard/soft spinel-ferrite-based CoFe2O4/NiFe2O4 (CFO/NFO) nanocapsules with an average diameter of 17 nm are synthesized by a facile two-step hydrothermal process using CFO cores of ˜15 nm diameter as the hard magnetic phase and NFO shells of ˜1 nm thickness as the soft magnetic phase. The single-phase-like hysteresis loop with a high remnant-to-saturation magnetization ratio of 0.7, together with a small grain size of ˜16 nm, confirms the existence of exchange-coupling interaction between the CFO cores and the NFO shells. The effect of hard/soft exchange coupling on the microwave absorption properties is studied. Comparing to CFO and NFO nanoparticles, the finite-size NFO shells and the core/shell structure enable a significant reduction in electric resistivity and an enhancement in dipole and interfacial polarizations in the CFO/NFO nanocapsules, resulting in an obvious increase in dielectric permittivity and loss in the whole S-Ku bands of microwaves of 2-18 GHz, respectively. The exchange-coupling interaction empowers a more favorable response of magnetic moment to microwaves, leading to enhanced exchange resonances in magnetic permeability and loss above 10 GHz. As a result, strong absorption, as characterized by a large reflection loss (RL) of -20.1 dB at 9.7 GHz for an absorber thickness of 4.5 mm as well as a broad effective absorption bandwidth (for RL<-10 dB) of 8.4 GHz (7.8-16.2 GHz) at an absorber thickness range of 3.0-4.5 mm, is obtained.

  8. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE PAGES

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando; ...

    2015-10-28

    Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  9. Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suarez, Sophia N.; Wishart, James F.; Rua, Armando

    Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less

  10. Paroxetine decreased plasma exposure of glyburide partly via inhibiting intestinal absorption in rats.

    PubMed

    Jiang, Shuwen; Zhao, Weiman; Chen, Yang; Zhong, Zeyu; Zhang, Mian; Li, Feng; Xu, Ping; Zhao, Kaijing; Li, Ying; Liu, Li; Liu, Xiaodong

    2015-06-01

    Accumulating evidences have shown that diabetes is often accompanied with depression, thus it is possible that oral antidiabetic agent glyburide and antidepressive agent paroxetine are co-administered in diabetic patients. The aim of this study was to assess interactions between glyburide and paroxetine in rats. Effect of paroxetine on pharmacokinetics of orally administered glyburide was investigated. Effect of naringin (NAR), an inhibitor of rat intestinal organic anion transporting polypeptides 1a5 (Oatp1a5), on pharmacokinetics of glyburide was also studied. The results showed that co-administration of paroxetine markedly reduced plasma exposure and prolonged Tmax of glyburide, accompanied by significant increase in fecal excretion of glyburide. Co-administration of naringin also significantly decreased plasma exposure of glyburide. Data from intestinal perfusion experiments showed that both paroxetine and naringin significantly inhibited intestinal absorption of glyburide. Caco-2 cells were used to investigate whether paroxetine and naringin affected intestinal transport of glyburide and fexofenadine (a substrate of Oatp1a5). The results showed that both paroxetine and naringin greatly inhibited absorption of glyburide and fexofenadine. All results gave a conclusion that co-administration of paroxetine decreased plasma exposure of glyburide in rats via inhibiting intestinal absorption of glyburide, which may partly be attributed to the inhibition of intestinal Oatp1a5 activity. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  11. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.

    2017-07-05

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less

  12. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  13. C(3i)-symmetric octanuclear cadmium cages: double-anion-templated synthesis, formation mechanism, and properties.

    PubMed

    Sun, Jie; Sun, Di; Yuan, Shuai; Tian, Dongxu; Zhang, Liangliang; Wang, Xingpo; Sun, Daofeng

    2012-12-14

    A series of C(3i)-symmetric bicapped trigonal antiprismatic Cd(8) cages [2X@Cd(8)L(6)(H(2)O)(6)]⋅n Y⋅solvents (X = Cl(-), Y = NO(3)(-), n = 2: MOCC-4; X = Br(-), Y = NO(3)(-), n = 2: MOCC-5; X = NO(3)(-), Y = NO(3)(-), n = 2: MOCC-6; X = NO(3)(-), Y = BF(4)(-), n = 2: MOCC-7; X = NO(3)(-), Y = ClO(4)(-), n = 2: MOCC-8; X = CO(3)(2-), n = 0: MOCC-9), doubly anion templated by different anions, were solvothermally synthesized by means of a flexible ligand. Interestingly, the CO(3)(2-) template for MOCC-9 was generated in situ by two-step decomposition of DMF solvent. For other MOCCs, spherical or trigonal monovalent anions could also play the role of template in their formation. The template abilities of these anions in the formation of the cages were experimentally studied and are discussed for the first time. Anion exchange of MOCC-8 was carried out and showed anion-size selectivity. All of the cage-like compounds emit strong luminescence at room temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metal-air cell with ion exchange material

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  15. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    PubMed

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  16. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    PubMed

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of nominally selective inhibitors of the kinases PI3K, SGK1 and PKB on the insulin-dependent control of epithelial Na+ absorption.

    PubMed

    Mansley, Morag K; Wilson, Stuart M

    2010-10-01

    Insulin-induced Na(+) retention in the distal nephron may contribute to the development of oedema/hypertension in patients with type 2 diabetes. This response to insulin is usually attributed to phosphatidylinositol-3-kinase (PI3K)/serum and glucocorticoid-inducible kinase 1 (SGK1) but a role for protein kinase B (PKB) has been proposed. The present study therefore aimed to clarify the way in which insulin can evoke Na(+) retention. We examined the effects of nominally selective inhibitors of PI3K (wortmannin, PI103, GDC-0941), SGK1 (GSK650394A) and PKB (Akti-1/2) on Na(+) transport in hormone-deprived and insulin-stimulated cortical collecting duct (mpkCCD) cells, while PI3K, SGK1 and PKB activities were assayed by monitoring the phosphorylation of endogenous proteins. Wortmannin substantially inhibited basal Na(+) transport whereas PI103 and GDC-0941 had only very small effects. However, these PI3K inhibitors all abolished insulin-induced Na(+) absorption and inactivated PI3K, SGK1 and PKB fully. GSK650394A and Akti-1/2 also inhibited insulin-evoked Na(+) absorption and while GSK650394A inhibited SGK1 without affecting PKB, Akti-1/2 inactivated both kinases. While studies undertaken using PI103 and GDC-0941 show that hormone-deprived cells can absorb Na(+) independently of PI3K, PI3K seems to be essential for insulin induced Na(+) transport. Akti-1/2 does not act as a selective inhibitor of PKB and data obtained using this compound must therefore be treated with caution. GSK650394A, on the other hand, selectively inhibits SGK1 and the finding that GSK650394A suppressed insulin-induced Na(+) absorption suggests that this response is dependent upon signalling via PI3K/SGK1.

  18. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.

    PubMed

    Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang

    2011-04-01

    Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals.

    PubMed

    Li, Lingyi; Yang, Senpei; Chen, Tao; Han, Lujia; Lian, Guoping

    2018-04-01

    Various neutral, cationic, and anionic chemicals contained in hair care products can be absorbed into hair fiber to modulate physicochemical properties such as color, strength, style, and volume. For environmental safety, there is also an interest in understanding hair absorption to wide chemical pollutants. There have been very limited studies on the absorption properties of chemicals into hair. Here, an experimental and modeling study has been carried out for the hair-water partition of a range of neutral, cationic, and anionic chemicals at different pH. The data showed that hair-water partition not only depends on the hydrophobicity of the chemical but also the pH. The partition of cationic chemicals to hair increased with pH, and this is due to their electrostatic interaction with hair increased from repulsion to attraction. For anionic chemicals, their hair-water partition coefficients decreased with increasing pH due to their electrostatic interaction with hair decreased from attraction to repulsion. Increase in pH did not change the partition of neutral chemicals significantly. Based on the new physicochemical insight of the pH effect on hair-water partition, a new quantitative structure property relationship model has been proposed, taking into account of both the hydrophobic interaction and electrostatic interaction of chemical with hair fiber. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography.

    PubMed

    Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang

    2008-08-01

    Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.

  1. Metabolism of dietary sulphate: absorption and excretion in humans.

    PubMed Central

    Florin, T; Neale, G; Gibson, G R; Christl, S U; Cummings, J H

    1991-01-01

    Dietary sulphate may affect colonic pathophysiology because sulphate availability determines in part the activity of sulphate reducing bacteria in the bowel. The main product of sulphate reducing bacterial oxidative metabolism, hydrogen sulphide, is potentially toxic. Although it is generally believed that the sulphate ion is poorly absorbed, there are no available data on how much sulphate reaches the colon nor on the relative contributions from diet and endogenous sources. To resolve these questions, balance studies were performed on six healthy ileostomists and three normal subjects chosen because they did not have detectable sulphate reducing bacteria in their faeces. The subjects were fed diets which varied in sulphate content from 1.6-16.6 mmol/day. Sulphate was measured in diets, faeces (ileal effluent in ileostomists), and urine by anion exchange chromatography with conductivity detection. Overall there was net absorption of dietary sulphate, with the absorptive capacity of the gastrointestinal tract plateauing at 5 mmol/day in the ileostomists and exceeding 16 mmol/day in the normal subjects. Endogenous secretion of sulphate in the upper gastrointestinal tract was from 0.96-2.6 mmol/day. The dietary contribution to the colonic sulphate pool ranged up to 9 mmol/day, there being linear identity between diet and upper gastrointestinal losses for intakes above 7 mmol/day. Faecal losses of sulphate were trivial (less than 0.5 mmol/day) in the normal subjects at all doses. It is concluded that diet and intestinal absorption are the principal factors affecting the amounts of sulphate reaching the colon. Endogenous secretion of sulphate by colonic mucosa may also be important in determining amounts of sulphate in the colon. PMID:1855683

  2. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    PubMed

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  3. Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asnin, Leonid; Kaczmarski, Krzysztof; Guiochon, Georges A

    The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the bindingmore » energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.« less

  4. Benchmarking the Performance of Exchange-Correlation Functionals for Predicting Two-Photon Absorption Strengths.

    PubMed

    Beerepoot, Maarten T P; Alam, Md Mehboob; Bednarska, Joanna; Bartkowiak, Wojciech; Ruud, Kenneth; Zaleśny, Robert

    2018-06-15

    The present work investigates the performance of exchange-correlation functionals in the prediction of two-photon absorption (2PA) strengths. For this purpose, we considered six common functionals used for studying 2PA processes and tested these on six organoboron chelates. The set consisted of two semilocal (PBE and BLYP), two hybrid (B3LYP and PBE0), and two range-separated (LC-BLYP and CAM-B3LYP) functionals. The RI-CC2 method was chosen as a reference level and was found to give results consistent with the experimental data that are available for three of the molecules considered. Of the six exchange-correlation functionals studied, only the range-separated functionals predict an ordering of the 2PA strengths that is consistent with experimental and RI-CC2 results. Even though the range-separated functionals predict correct relative trends, the absolute values for the 2PA strengths are underestimated by a factor of 2-6 for the molecules considered. An in-depth analysis, on the basis of the derived generalized few-state model expression for the 2PA strength for a coupled-cluster wave function, reveals that the problem with these functionals can be linked to underestimated excited-state dipole moments and, to a lesser extent, overestimated excitation energies. The semilocal and hybrid functionals exhibit less predictable errors and a variation in the 2PA strengths in disagreement with the reference results. The semilocal and hybrid functionals show smaller average errors than the range-separated functionals, but our analysis reveals that this is due to fortuitous error cancellation between excitation energies and the transition dipole moments. Our results constitute a warning against using currently available exchange-correlation functionals in the prediction of 2PA strengths and highlight the need for functionals that correctly describe the electron density of excited electronic states.

  5. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products.

    PubMed

    Phetrak, Athit; Lohwacharin, Jenyuk; Sakai, Hiroshi; Murakami, Michio; Oguma, Kumiko; Takizawa, Satoshi

    2014-06-01

    Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX®) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency. MIEX® showed significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses.

    PubMed

    Concepcion, Axel R; Salas, January T; Sarvide, Sarai; Sáez, Elena; Ferrer, Alex; López, María; Portu, Ainhoa; Banales, Jesús M; Hervás-Stubbs, Sandra; Oude Elferink, Ronald P J; Prieto, Jesús; Medina, Juan F

    2014-05-01

    Mitogenic stimulation of lymphocytes involves alkalinization of intracellular pH (pHi ). Subsequent pHi regulation may involve HCO3 (-) extrusion through Cl(-) /HCO3 (-) exchangers and/or Na(+) -HCO3 (-) co-transporters with acid-loading capability. Abnormalities in these mechanisms could result in immune dysfunctions, as suggested by the CD8(+) T-cell expansion encountered in mice lacking Ae2 (a widely expressed acid loader with electroneutral and Na(+) -independent Cl(-) /HCO3 (-) anion-exchange activity). Here we report that CD8(+) T cells but not CD4(+) T cells or other lymphocyte populations, are crucially dependent on Ae2 for pHi regulation. While total lymphocytes (including isolated CD4(+) T cells) exhibit Ae1 expression and Na(+) -HCO3 (-) co-transport with acidifying potential, CD8(+) T cells lack these acid-loading mechanisms. In Ae2-KO mice, CD4(+) but not CD8(+) T cells upregulate these potential Ae2 surrogates. As a consequence, Ae2-KO CD8(+) T cells exhibit alkalinized pHi , and dramatically increase their pHi upon CD3 stimulation. Moreover, stimulated Ae2-deficient CD8(+) T cells show enhanced intracellular production of IL-2 and membrane expression of its receptor IL-2Rα, together with increased cell proliferation and activation. These findings demonstrate that CD8(+) T cells are critically dependent on Ae2 for pHi homeostasis and tuning of cell proliferation and activation. Ae2 thus constitutes a novel target to modulate CD8(+) T-cell responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    PubMed Central

    Lukovic, Mladena; Ye, Guang

    2015-01-01

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801

  8. Absorption, Distribution, Metabolism, and Excretion of the Novel Helicase-Primase Inhibitor, Amenamevir (ASP2151), in Rodents.

    PubMed

    Ohtsu, Yoshiaki; Susaki, Yoko; Noguchi, Kiyoshi

    2018-05-10

    The helicase-primase inhibitor amenamevir (ASP2151) is a novel therapeutic agent which has been approved for the treatment of herpes zoster. The present study examined the pharmacokinetic profile of amenamevir in rodents and compared it with data from the literature of past and current established therapies (acyclovir and valaciclovir) to provide additional data to facilitate drug discovery and proper drug use. In situ absorption, blood and plasma radioactivity concentrations, tissue distribution, and excretion were determined using liquid scintillation counting. Plasma amenamevir concentrations were measured using a validated chromatographic method. Chemical structures of in vivo metabolites were investigated using liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Amenamevir, after single intravenous administration to mice, had an elimination half-life of 2 h. Bioavailability was 40% after single oral administration. In situ absorption data indicated that amenamevir is mainly absorbed in the small intestine. The main component in mouse plasma was amenamevir, accounting for 87.9% of amenamevir-derived components. Our results suggest that the main elimination pathway in mice is oxidative metabolism at a methyl group and a 1,2,3-trisubstituted benzene ring followed by biliary and fecal excretion. Following oral administration of 14 C-amenamevir to mice, 100.63% of the dose (10.06% in urine and 90.46% in feces) was excreted by 96 h post-dose. The underlying mechanism of the improved pharmacokinetic profile of amenamevir was linked to an improved absorption ratio (not hepatic availability) compared to acyclovir, and qualitative differences in elimination (slow metabolism of amenamevir vs rapid urinary excretion of acyclovir/valaciclovir).

  9. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering

    NASA Astrophysics Data System (ADS)

    Yang, Wanli; Devereaux, Thomas P.

    2018-06-01

    Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.

  10. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    PubMed

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  11. Tripeptide inhibitors of Yersinia protein-tyrosine phosphatase.

    PubMed

    Lee, Kyeong; Gao, Yang; Yao, Zhu-Jun; Phan, Jason; Wu, Li; Liang, Jiao; Waugh, David S; Zhang, Zhong-Yin; Burke, Terrence R

    2003-08-04

    The protein-tyrosine phosphatase (PTP) 'YopH' is a virulence factor of Yersinia pestis, the causative agent of plague. Potential use of Yersinia as a bioterrorism agent renders YopH inhibitors of therapeutic importance. Previously, we had examined the inhibitory potencies of a variety of phosphotyrosyl (pTyr) mimetics against the human PTP1B enzyme by displaying them in the EGFR-derived hexapeptide sequence, 'Ac-Asp-Ala-Asp-Glu-Xxx-Leu-amide', where Xxx=pTyr mimetic. The poor inhibitory potencies of certain of these pTyr mimetics were attributed to restricted orientation within the PTP1B catalytic pocket incurred by extensive peripheral interaction of the hexapeptide platform. Utilizing the smaller tripeptide platform, 'Fmoc-Glu-Xxx-Leu-amide' we demonstrate herein that several of the low affinity hexapeptide-expressed pTyr mimetics exhibit high PTP1B affinity within the context of the tripeptide platform. Of particular note, the mono-anionic 4-(carboxydifluoromethyl)Phe residue exhibits affinity equivalent to the di-anionic F(2)Pmp residue, which had previously been among the most potent PTP-binding motifs. Against YopH, it was found that all tripeptides having Glu residues with an unprotected side chain carboxyl were inactive. Alternatively, in their Glu-OBn ester forms, several of the tripeptides exhibited good YopH affinity with the mono-anionic peptide, Fmoc-Glu(OBn)-Xxx-Leu-amide, where Xxx=4-(carboxymethyloxy)Phe providing an IC(50) value of 2.8 microM. One concern with such inhibitors is that they may potentially function by non-specific mechanisms. Studies with representative inhibitors, while failing to provide evidence of a non-specific promiscuous mode of inhibition, did indicate that non-classical inhibition may be involved.

  12. Ultraslow Phase Transitions in an Anion-Anion Hydrogen-Bonded Ionic Liquid.

    PubMed

    Faria, Luiz F O; Lima, Thamires A; Ferreira, Fabio F; Ribeiro, Mauro C C

    2018-02-15

    A Raman spectroscopy study of 1-ethyl-3-methylimidazolium hydrogen sulfate, [C 2 C 1 im][HSO 4 ], as a function of temperature, has been performed to reveal the role played by anion-anion hydrogen bond on the phase transitions of this ionic liquid. Anion-anion hydrogen bonding implies high viscosity, good glass-forming ability, and also moderate fragility of [C 2 C 1 im][HSO 4 ] in comparison with other ionic liquids. Heating [C 2 C 1 im][HSO 4 ] from the glassy phase results in cold crystallization at ∼245 K. A solid-solid transition (crystal I → crystal II) is barely discernible in calorimetric measurements at typical heating rates, but it is clearly revealed by Raman spectroscopy and X-ray diffraction. Raman spectroscopy indicates that crystal I has extended ([HSO 4 ] - ) n chains of hydrogen-bonded anions but crystal II has not. Raman spectra recorded at isothermal condition show the ultraslow dynamics of cold crystallization, solid-solid transition, and continuous melting of [C 2 C 1 im][HSO 4 ]. A brief comparison is also provided between [C 2 C 1 im][HSO 4 ] and [C 4 C 1 im][HSO 4 ], as Raman spectroscopy shows that the latter does not form the crystalline phase with extended anion-anion chains.

  13. First evidence of epithelial transport in tardigrades: a comparative investigation of organic anion transport.

    PubMed

    Halberg, Kenneth Agerlin; Møbjerg, Nadja

    2012-02-01

    We investigated transport of the organic anion Chlorophenol Red (CPR) in the tardigrade Halobiotus crispae using a new method for quantifying non-fluorescent dyes. We compared the results acquired from the tardigrade with CPR transport data obtained from Malpighian tubules of the desert locust Schistocerca gregaria. CPR accumulated in the midgut lumen of H. crispae, indicating that organic anion transport takes place here. Our results show that CPR transport is inhibited by the mitochondrial un-coupler DNP (1 mmol l(-1); 81% reduction), the Na(+)/K(+)-ATPase inhibitor ouabain (10 mmol l(-1); 21% reduction) and the vacuolar H(+)-ATPase inhibitor bafilomycin (5 μmol l(-1); 21% reduction), and by the organic anions PAH (10 mmol l(-1); 44% reduction) and probenecid (10 mmol l(-1); 61% reduction, concentration-dependent inhibition). Transport by locust Malpighian tubules exhibits a similar pharmacological profile, albeit with markedly higher concentrations of CPR being reached in S. gregaria. Immunolocalization of the Na(+)/K(+)-ATPase α-subunit in S. gregaria revealed that this transporter is abundantly expressed and localized to the basal cell membranes. Immunolocalization data could not be obtained from H. crispae. Our results indicate that organic anion secretion by the tardigrade midgut is transporter mediated with likely candidates for the basolateral entry step being members of the Oat and/or Oatp transporter families. From our results, we cautiously suggest that apical H(+) and possibly basal Na(+)/K(+) pumps provide the driving force for the transport; the exact coupling between electrochemical gradients generated by the pumps and transport of ions, as well as the nature of the apical exit step, are unknown. This study is, to our knowledge, the first to show active epithelial transport in tardigrades.

  14. The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates.

    PubMed

    Knauf, Felix; Mohebbi, Nilufar; Teichert, Carsten; Herold, Diana; Rogina, Blanka; Helfand, Stephen; Gollasch, Maik; Luft, Friedrich C; Aronson, Peter S

    2006-07-01

    A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.

  15. Anion exchange membranes for electrochemical oxidation-reduction energy storage system

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.; Sheibley, D. W.; Gahn, R. F.

    1977-01-01

    Oxidation-reduction couples in concentrated solutions separated by appropriate ion selective membranes were considered as an attractive approach to bulk electrical energy storage. A key problem is the development of the membrane. Several promising types of anionic membranes are discussed which were developed and evaluated for redox energy storage systems. The copolymers of ethyleneglycoldimethacrylate with either 2-vinylpyridine or vinylbenzl chloride gave stable resistance values compared to the copolymer of vinylbenzlchloride and divinylbenzene which served as the baseline membrane. A polyvinylchloride film aminated with tetraethylenepentamine had a low resistance but a high ion transfer rate. A slurry coated vinylpyridine had the lowest ion transfer rate. All these membranes functioned well in laboratory cells at ambient temperatures with the acidic chloride oxidant/reductant system, Fe 3, Fe 2/Ti 3, Ti 4.

  16. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  17. Preparation of a reversed-phase/anion-exchange mixed-mode spherical sorbent by Pickering emulsion polymerization for highly selective solid-phase extraction of acidic pharmaceuticals from wastewater.

    PubMed

    Huang, Chaonan; Li, Yun; Yang, Jiajia; Peng, Junyu; Jin, Jing; Dhanjai; Wang, Jincheng; Chen, Jiping

    2017-10-27

    The present work represents a simple and effective preparation of a novel mixed-mode anion-exchange (MAX) sorbent based on porous poly[2-(diethylamino)ethyl methacrylate-divinylbenzene] (poly(DEAEMA-DVB)) spherical particles synthesized by one-step Pickering emulsion polymerization. The poly(DEAEMA-DVB) particles were quaternized with 1,4-butanediol diglycidyl ether (BDDE) followed by triethylamine (TEA) via epoxy-amine reaction to offer strong anion exchange properties. The synthesized MAX sorbent was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption-desorption measurements and elemental analysis. The MAX sorbent possessed regular spherical shape and narrow diameter distribution (15-35μm), a high IEC of 0.54meq/g, with carbon and nitrogen contents of 80.3% and 1.62%, respectively. Compared to poly(DEAEMA-DVB), the MAX sorbent exhibited decreased S BET (390.5 vs. 515.3m 2 g -1 ), pore volume (0.74 vs. 0.85cm 3 g -1 ) and pore size (16.8 vs. 17.3nm). Moreover, changes of N content for producing the MAX sorbent reveal a successful two-step quaternization, which can be highly related to such a high IEC. Finally, the MAX sorbent was successfully evaluated for selective isolation and purification of some selected acidic pharmaceuticals (ketoprofen, KEP; naproxen, NAP; and ibuprofen, IBP) from neutral (hydrocortisone, HYC), basic (carbamazepine, CAZ; amitriptyline, AMT) pharmaceuticals and other interferences in water samples using solid phase extraction (SPE). An efficient analytical method based on the MAX-based mixed-mode SPE coupled with HPLC-UV was developed for highly selective extraction and cleanup of acidic KEP, NAP and IBP in spiked wastewater samples. The developed method exhibited good sensitivity (0.009-0.085μgL -1 limit of detection), satisfactory recoveries (82.1%-105.5%) and repeatabilities (relative standard deviation < 7.9%, n=3). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters

    USGS Publications Warehouse

    Druschel, G.K.; Schoonen, M.A.A.; Nordstorm, D.K.; Ball, J.W.; Xu, Y.; Cohn, C.A.

    2003-01-01

    A sampling protocol for the retention, extraction, and analysis of sulfoxyanions in hydrothermal waters has been developed in the laboratory and tested at Yellowstone National Park and Green Lake, NY. Initial laboratory testing of the anion-exchange resin Bio-Rad??? AG1-X8 indicated that the resin was well suited for the sampling, preservation, and extraction of sulfate and thiosulfate. Synthetic solutions containing sulfate and thiosulfate were passed through AG1-X8 resin columns and eluted with 1 and 3 M KCl, respectively. Recovery ranged from 89 to 100%. Comparison of results for water samples collected from five pools in Yellowstone National Park between on-site IC analysis (U.S. Geological Survey mobile lab) and IC analysis of resin-stored sample at SUNY-Stony Brook indicates 96 to 100% agreement for three pools (Cinder, Cistern, and an unnamed pool near Cistern) and 76 and 63% agreement for two pools (Sulfur Dust and Frying Pan). Attempts to extract polythionates from the AG1-X8 resin were made using HCl solutions, but were unsuccessful. Bio-Rad??? AG2-X8, an anion-exchange resin with weaker binding sites than the AG1-X8 resin, is better suited for polythionate extraction. Sulfate and thiosulfate extraction with this resin has been accomplished with KCl solutions of 0.1 and 0.5 M, respectively. Trithionate and tetrathionate can be extracted with 4 M KCl. Higher polythionates can be extracted with 9 M hydrochloric acid. Polythionate concentrations can then be determined directly using ion chromatographic methods, and laboratory results indicate recovery of up to 90% for synthetic polythionate solutions using AG2-X8 resin columns. ?? The Royal Society of Chemistry and the Division of Geochemistry of the American Chemical Society 2003.

  19. Implications of sodium hydrogen exchangers in various brain diseases.

    PubMed

    Verma, Vivek; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-09-01

    Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.

  20. Anion effects on anti-microbial activity of poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)].

    PubMed

    Garg, Godawari; Chauhan, Ghanshyam S; Gupta, Reena; Ahn, J-H

    2010-04-01

    Recent investigations in the anti-microbial properties of the functional polymers are predominantly focused on the structure of the cationic moieties. In the present study, we investigated that the nature of the anion present in polysulfobetaines affects activity against certain microorganisms and their anti-microbial properties have been rationalized in terms of the structure-activity relationship. Vinyl imidazolium-based polysulfobetaines were prepared by the quaternization of poly(N-vinyl imidazole) with sodium salt of 2-bromo ethanesulfonic acid. The bromide counter anion of the resulting polymer was exchanged with different anions to generate a series of polymers. These were characterized by FTIR, DSC, XRD, SEM, elemental analysis (C, H, N and S) and viscosity measurements. The anti-microbial activity studies were carried against three fungi (Aspergillus niger, Byssochlamys fulva and Mucor circenelliods) and two bacteria (Bacillus coagulans BTS-3 and Pseudomonas aeruginosa BTS-2). The nature of the anion affects the structure of polysulfobetaine by realignment of polymer chains. The anion-dependent anti-microbial properties of polysulfobetaines result from the interaction of the microbes at the polymer interface. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation. Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [(14)C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability. Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers. The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.

  2. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions - anions induce tautomerism.

    PubMed

    Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton

    2014-04-05

    The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    PubMed

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Bionic multisilicon copolymers used as novel cross-linking agents for preparing anion exchange hybrid membranes.

    PubMed

    Wu, Yonghui; Luo, Jingyi; Wu, Cuiming; Xu, Tongwen; Fu, Yanxun

    2011-05-26

    Bionic multisilicon copolymers have long-main chains and many branched chains, and contain multifunctional groups of -N(+)(CH(3))(3)Cl(-) and -Si(OCH(3))(3), which are similar to the stem, branch, fruit, and acetabula of a vine from bionic aspect, respectively. They have high flexibility, charge density, and cross-linking ability and thus can be used as novel cross-linking agents for preparing anion-exchange hybrid membranes. High content of -Si(OCH(3))(3) groups (68-78%) is suitable to enhance membrane stabilities. The membranes are stable in 65 °C water up to 120 h and can keep integrity in 2 mol/L NaOH for 192 h. High content of -N(+)(CH(3))(3)Cl(-) groups (42-55%) is suitable to enhance membrane electrical properties. The membranes have low membrane resistance (R(m), 0.59-0.94 Ω cm(2)) and high diffusion dialysis performance. The acid (H(+)) dialysis coefficients (U(H)) are in the range of 0.007-0.075 m h(-1) at room temperature and 0.015-0.115 m h(-1) at 40 °C. The separation factor (S(H/Fe)) can reach up to 43 at room temerature and 49 at 40 °C. All of the membranes are highly homogeneous, mechanically stable (21-31 MPa, 25-147%), and thermally stable (227-275 °C for halide form membranes, and 157-172 °C for OH(-) form membranes). Hence, the investigation of multisilicon copolymers will give rise to a new developing field in material and membrane sciences.

  5. Anionic tantalum dihydride complexes: heterobimetallic coupling reactions and reactivity toward small-molecule activation.

    PubMed

    Ostapowicz, Thomas G; Fryzuk, Michael D

    2015-03-02

    The anionic dihydride complex [Cp2TaH2](-) was synthesized as a well-defined molecular species by deprotonation of Cp2TaH3 while different solubilizing agents, such as [2.2.2]cryptand and 18-crown-6, were applied to encapsulate the alkali-metal counterion. The ion pairs were characterized by multiple spectroscopic methods as well as X-ray crystallography, revealing varying degrees of interaction between the hydride ligands of the anion and the respective countercation in solution and in the solid state. The [Cp2TaH2](-) complex anion shows slow exchange of the hydride ligands when kept under a D2 atmosphere, but a very fast reaction is observed when [Cp2TaH2](-) is reacted with CO2, from which Cp2TaH(CO) is obtained as the tantalum-containing reaction product, along with inorganic salts. Furthermore, [Cp2TaH2](-) can act as a synthon in heterobimetallic coupling reactions with transition-metal halide complexes. Thus, the heterobimetallic complexes Cp2Ta(μ-H)2Rh(dippp) and Cp2Ta(μ-H)2Ru(H)(CO)(P(i)Pr3)2 were synthesized and characterized by various spectroscopies and via single-crystal X-ray diffraction. The new hydride bridged tantalum-rhodium heterobimetallic complex is cleaved under a CO atmosphere to yield mononuclear species and slowly exchanges protons and hydride ligands when exposed to D2 gas.

  6. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  7. Counter anion effect on structural, opto-electronic and charge transport properties of fused π-conjugated imidazolium compound

    NASA Astrophysics Data System (ADS)

    Vinodha, M.; Senthilkumar, K.

    2018-05-01

    The structure-activity relationship of fused π-conjugated imidazolium cation with three counter anion molecules, BF4-, CF3SO3- and (CF3SO2)2N-, was studied using electronic structure calculations. The structural, opto-electronic and charge transport properties of these complexes were studied. The charge transfer from π-conjugated imidazolium(I) to counter anion was confirmed in all the studied complexes. Interaction energy varies significantly depending on the counter anion and the stability was found higher for I-BF4 complex than both I-CF3SO3 and I-(CF3SO2)2N complexes. The strong (C-H)+...F- hydrogen bond of length 1.95 Å between fused π-conjugated imidazolium and BF-4 anion is the driving force for the strongest interaction energy in I-BF4 complex. The energy decomposition analysis confirms that the interaction between imidazolium and counter anion is mainly driven by electrostatic and orbital interaction. It has been observed that the absorption spectra of the complex are independent of anion nature but the influence of anion character is observed on frontier molecular orbital pattern. The charge transport property of I-BF4 complex was studied by using tight-binding Hamiltonian approach and found that the hole mobility in I-BF4 is 1.13 × 10-4 cm2 V-1 s-1.

  8. Determination of a flame retardant hydrolysis product in human urine by SPE and LC-MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger.

    PubMed

    Möller, Kristina; Crescenzi, Carlo; Nilsson, Ulrika

    2004-01-01

    Diphenyl phosphate is a hydrolysis product and possible metabolite of the flame retardant and plasticiser additive triphenyl phosphate. A molecularly imprinted polymer solid-phase extraction (MISPE) method for extracting diphenyl phosphate from aqueous solutions has been developed and compared with SPE using a commercially available mixed-mode anion exchanger. The imprinted polymer was prepared using 2-vinylpyridine (2-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and a structural analogue of the analyte as the template molecule. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with both aqueous standards and spiked urine samples, by comparing recovery and breakthrough data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from aqueous solutions resulted in more than 80% recovery. Adsorption by the molecularly imprinted polymer (MIP) was non-selective, but selectivity was achieved by selective desorption in the wash steps. Diphenyl phosphate could also be selectively extracted from urine samples, although the urine matrix reduced the capacity of the MISPE cartridges. Recoveries from urine extraction were higher than 70%. It was important to control pH during sample loading. The MISPE method was found to yield a less complex LC-ESI-MS chromatogram of the urine extracts compared with the mixed-mode anion-exchanger method. An LC-ESI-MS method using a Hypercarb LC column with a graphitised carbon stationary phase was also evaluated for organophosphate diesters. LC-ESI-MS using negative-ion detection in selected ion monitoring (SIM) mode was shown to be linear for diphenyl phosphate in the range 0.08-20 ng microL(-1).

  9. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  10. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  11. Chemical Characteristics of Two Forested Ultisols and Two Forested Inceptisols Relevant to Anion Production and Mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.W.

    2001-01-17

    As a prelude to a basic program on soil leaching, some chemical characteristics of two forested Ultisols in eastern Tennessee and two forested Inceptisols in western Washington are discussed in relation to the production and mobility of anions. These soils were chosen in an attempt to provide a range of free iron (Fe) and aluminum (Al) contents (which are hypothesized to be related to anion adsorption) and carbon:nitrogen (C:N) ratios (which are hypothesized to be related to nitrate and bicarbonate production) for field experiments involving C, N, and anion salt additions. The Washington Inceptisols had high free Fe and Almore » in surface horizons and decreasing free Fe and Al levels with depth, whereas the reverse was true of the Tennessee Ultisols. The alderwood-red alder and Tarklin (sinkhole) soils had higher N concentrations and lower C:N ratios in their surface horizons than the Alderwood-Douglas-fir and Fullerton soils, respectively, but the reverse was true of subsurface horizons. Patterns of and relationships among the above properties and pH, Bray phosphorus (No. 2); adsorbed and soluble SO{sub 4}{sup 2-}, Cl{sup -}, and NO{sub 3}{sup -}; cation exchange capacity; and exchangeable cations are discussed.« less

  12. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  13. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE PAGES

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.; ...

    2014-12-05

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  14. Chestnut astringent skin extract, an alpha-amylase inhibitor, retards carbohydrate absorption in rats and humans.

    PubMed

    Tsujita, Takahiro; Takaku, Takeshi; Suzuki, Tsuneo

    2008-02-01

    Inhibitors of carbohydrate-hydrolyzing enzyme play an important role to control postprandial blood glucose levels. In this paper, we investigated the effect of an ethanol extract from chestnut astringent skin (CAS) on alpha-amylase. Chestnut astringent skin extract strongly inhibited human and porcine pancreatic alpha-amylase. We also investigated the effect of CAS extract on carbohydrate absorption in rats and humans. Oral administration of CAS extract to normal rats fed corn starch (2 g/kg body weight), significantly suppressed the increase of blood glucose levels after starch loading in a dose-dependent manner. The effective dose of CAS extract required to achieve 20 and 40% suppression of the rise in blood glucose level was estimated to be 40 and 155 mg/kg body weight, respectively. Chestnut astringent skin extract also suppressed the rise in plasma insulin level and the fall in plasma non-esterified fatty acid level. In the type 2 diabetic rat model, CAS extract significantly suppressed the rise in blood glucose level after starch loading in a dose-dependent manner. Chestnut astringent skin extract also suppressed the rise in plasma glucose level after boiled rice loading in a dose-dependent manner in humans. The amount of CAS extract required to achieve 11 and 23% suppression in the rise in plasma glucose level was 300 and 600 mg/person, respectively. These results suggest that CAS extract retards absorption of carbohydrate and reduces post-prandial hyperglycemia.

  15. Field method for the determination of hexavalent chromium by ultrasonication and strong anion-exchange solid-phase extraction.

    PubMed

    Wang, J; Ashley, K; Marlow, D; England, E C; Carlton, G

    1999-03-01

    A simple, fast, sensitive, and economical field method was developed and evaluated for the determination of hexavalent chromium (CrVI) in environmental and workplace air samples. By means of ultrasonic extraction in combination with a strong anion-exchange solid-phase extraction (SAE-SPE) technique, the filtration, isolation, and determination of CrVI in the presence of trivalent chromium (CrIII) and potential interferents was achieved. The method entails (1) ultrasonication in basic ammonium buffer solution to extract CrVI from environmental matrixes; (2) SAE-SPE to separate CrVI from CrIII and interferences; (3) elution/acidification of the eluate; (4) complexation of chromium with 1,5-diphenylcarbazide; and (5) spectrophotometric determination of the colored chromium-diphenylcarbazone complex. Several critical parameters were optimized in order to effect the extraction of both soluble (K2CrO4) and insoluble (PbCrO4) forms of CrVI without inducing CrIII oxidation or CrVI reduction. The method allowed for the dissolution and purification of CrVI from environmental and workplace air sample matrixes for up to 24 samples simultaneously in less than 90 min (including ultrasonication). The results demonstrated that the method was simple, fast, quantitative, and sufficiently sensitive for the determination of occupational exposures of CrVI. The method is applicable for on-site monitoring of CrVI in environmental and industrial hygiene samples.

  16. Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments.

    PubMed

    Lee, Seung-Chan; Kang, Jin-Kyu; Sim, Eun-Hye; Choi, Nag-Choul; Kim, Song-Bae

    2017-11-10

    The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g -1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g -1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm -1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm -1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L -1 ) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g -1 under the given conditions (fiber dose = 1-10 g L -1 ). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min -1 were 214.8 and 171.5 mg g -1 , respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.

  17. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  18. Spray generators for absorption refrigeration systems

    DOEpatents

    Sibley, Howard W.

    1979-06-19

    A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

  19. p-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor for anions under proton coupled electron transfer sensing mechanism

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Ying; Jiang, Yun-Bao

    2002-04-01

    The intramolecular charge transfer (ICT) dual fluorescence of p-dimethylaminobenzamide (DMABA) in acetonitrile was found to show highly sensitive response to HSO 4- over several other anions such as H 2PO 4-,AcO - and ClO 4-. In the presence of bisulfate anion the dual fluorescence intensity ratio and the total intensity of DMABA decreased while the dual emission band positions remained unchanged. Absorption titration indicated that a 1:1 hydrogen bonding complex was formed between bisulfate anion and DMABA, which gave a binding constant of 2.02×10 4 mol-1 l that is two orders of magnitude higher than those for other anions. The obvious isotopic effect observed in the fluorescence quenching [ K SV( HSO4-)/K SV( DSO4-)=1.63 ] suggests that the hydrogen atom moving is an important reaction coordinate. It was assumed that the dual fluorescence response was due to proton coupled electron transfer mediated by hydrogen bonds within the 1:1 HSO 4--DMABA hydrogen-bonding complex.

  20. Polymeric Precipitation Inhibitors Promote Fenofibrate Supersaturation and Enhance Drug Absorption from a Type IV Lipid-Based Formulation.

    PubMed

    Suys, Estelle J A; Chalmers, David K; Pouton, Colin W; Porter, Christopher J H

    2018-06-04

    The ability of lipid-based formulations (LBFs) to increase the solubilization, and prolong the supersaturation, of poorly water-soluble drugs (PWSDs) in the gastrointestinal (GI) fluids has generated significant interest in the past decade. One mechanism to enhance the utility of LBFs is to prolong supersaturation via the addition of polymers that inhibit drug precipitation (polymeric precipitation inhibitors or PPIs) to the formulation. In this work, we have evaluated the performance of a range of PPIs and have identified PPIs that are sufficiently soluble in LBF to allow the construction of single phase formulations. An in vitro model was first employed to assess drug (fenofibrate) solubilization and supersaturation on LBF dispersion and digestion. An in vitro-in situ model was subsequently employed to simultaneously evaluate the impact of PPI enhanced drug supersaturation on drug absorption in rats. The stabilizing effect of the polymers was polymer specific and most pronounced at higher drug loads. Polymers that were soluble in LBF allowed simple processing as single phase formulations, while formulations containing more hydrophilic polymers required polymer suspension in the formulation. The lipid-soluble polymers Eudragit (EU) RL100 and poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) and the water-soluble polymer hydroxypropylmethyl cellulose (HPMC) E4M were identified as the most effective PPIs in delaying fenofibrate precipitation in vitro. An in vitro model of lipid digestion was subsequently coupled directly to an in situ single pass intestinal perfusion assay to evaluate the influence of PPIs on fenofibrate absorption from LBFs in vivo. This coupled model allowed for real-time evaluation of the impact of supersaturation stabilization on absorptive drug flux and provided better discrimination between the different PPIs and formulations. In the presence of the in situ absorption sink, increased fenofibrate supersaturation resulted in increased drug

  1. 8-Hydroxyquinoline based push-pull azo dye: Novel colorimetric chemosensor for anion detection

    NASA Astrophysics Data System (ADS)

    Arslan, Ömer; Aydıner, Burcu; Yalçın, Ergin; Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel

    2017-12-01

    A novel colorimetric chemosensor based on push-pull dye (8HQA) was synthesized and characterized by using IR, 1H/13C NMR and HRMS for the purpose of recognition of anions and cations in DMSO. The absorption maxima of the chemosensor were determined in different solvents. The selectivity and sensitivity of 8HQA to anions were determined with spectrophotometric and 1H NMR titration techniques. The selectivity of 8HQA for studied anions (CN-, F-, Cl-, I-, AcO-, HSO4- and H2PO4-) was determined in DMSO. There is no selectivity between competing anions such as CN-, F- AcO- and H2PO4- at the stoichiometric ratio of 1:1 in UV-vis titrations experiments however, it was observed different color changes upon addition of CN-, F-, AcO- and H2PO4- to the DMSO solution. In addition, the chemosensor showed no colorimetric response for the following anions; Cl-, I- and HSO4- in DMSO. The colorimetric sensing ability of 8HQA was studied in the presence of chloride salts of different cations such as Ca2+, Mg2+, Cu2+, Co2+, Sn2+, Ni2+, Cd2+ and Hg2+. Upon the addition of 4 equiv of each of the cations showed bathochromic shifts except for Ca2+and Cu2+. Interestingly, no selectivity was observed in interaction with metal cations. In addition, the molecular and electronic structures of 8HQA, as well as the molecular complexes of 8HQA, formed with the anions, were obtained theoretically and confirmed by DFT and TD-DFT calculations.

  2. Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model.

    PubMed

    Yamada, Hidetaka; Matsuzaki, Yoichi; Higashii, Takayuki; Kazama, Shingo

    2011-04-14

    We used density functional theory (DFT) calculations with the latest continuum solvation model (SMD/IEF-PCM) to determine the mechanism of CO(2) absorption into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP). Possible absorption process reactions were investigated by transition-state optimization and intrinsic reaction coordinate (IRC) calculations in the aqueous solution at the SMD/IEF-PCM/B3LYP/6-31G(d) and SMD/IEF-PCM/B3LYP/6-311++G(d,p) levels of theory to determine the absorption pathways. We show that the carbamate anion forms by a two-step reaction via a zwitterion intermediate, and this occurs faster than the formation of the bicarbonate anion. However, we also predict that the carbamate readily decomposes by a reverse reaction rather than by hydrolysis. As a result, the final product is dominated by the thermodynamically stable bicarbonate anion that forms from AMP, H(2)O, and CO(2) in a single-step termolecular reaction.

  3. Stabilization of diketo tautomer of curcumin by premicellar anionic surfactants: UV-Visible, fluorescence, tensiometric and TD-DFT evidences

    NASA Astrophysics Data System (ADS)

    Dutta, Anisha; Boruah, Bornali; Manna, Arun K.; Gohain, Biren; Saikia, Palash M.; Dutta, Robin K.

    2013-03-01

    A newly observed UV band of aqueous curcumin, a biologically important molecule, in presence of anionic surfactants, viz., sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium dodecylsulfonate (SDSN) in buffered aqueous solutions has been studied experimentally and theoretically. The 425 nm absorption band of curcumin disappears and a new UV-band is observed at 355 nm on addition of the surfactants in the submicellar concentration range which is reversed as the surfactant concentration approaches the critical micelle concentration (CMC). The observed spectral absorption, fluorescence intensity and surface tension behavior, under optimal experimental conditions of submicellar concentration ranges of the surfactants in the pH range of 2.00-7.00, indicate that the new band is due to the β-diketo tautomer of curcumin stabilized by interactions between curcumin and the anionic surfactants. The stabilization of the diketo tautomer by submicellar anionic surfactants described here as well as by submicellar cationic surfactant, reported recently, is unique as this is the only such behavior observed in presence of submicellar surfactants of both charge types. The experimental results are in good agreement with the theoretical calculations using ab initio density functional theory combined with time dependent density functional theory (TD-DFT) calculations.

  4. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    PubMed

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    PubMed Central

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  6. Anionic Lanthanide MOFs as a Platform for Iron-Selective Sensing, Systematic Color Tuning, and Efficient Nanoparticle Catalysis.

    PubMed

    Wu, Ya-Pan; Xu, Guo-Wang; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng; Zhang, Jian; Bu, Xianhui

    2017-02-06

    New porous anionic Ln-MOFs, namely, [Me 2 NH 2 ][Ln(CPA) 2 (H 2 O) 2 ] (Ln = Eu, Gd), have been prepared through the self-assembly of 5-(4-carboxy phenyl)picolinic acid (H 2 CPA) and lanthanide ions. They feature open anionic frameworks with 1-D hydrophilic channels and exchangeable dimethylamine ions. The Eu phase could detect Fe 3+ ions with high selectivity and sensitivity in either aqueous solution or biological condition. The ratios of lanthanide ions on this structure platform could be rationally tuned to not only achieve dichromatic emission colors with linear correlation but also attain three primary colors (RGB) and even white light with favorable correlated color temperature. Furthermore, the Ag(I)-exchanged phases can be readily reduced to afford Ag nanoparticles. The as-prepared Ag@Ln-MOFs composite shows highly efficient catalytic performance for the reduction of 4-nitrophenol.

  7. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants.

    PubMed

    Zaggia, Alessandro; Conte, Lino; Falletti, Luigi; Fant, Massimo; Chiorboli, Andrea

    2016-03-15

    In recent years abnormally high levels of perfluoroalkylated substances (PFAS) have been detected both in surface and underground water sampled in an area covering approximately 150 square kilometers in the Veneto region (Italy) indicating the presence of a pollution point source (fluorochemicals production plant). Adsorption on granular activated carbon is an emergency measure which is poorly effective requiring frequent replacement. This work focuses on the application of three strong anion exchange resins (Purolite® A520E, A600E and A532E) for the removal of traces of PFOA, PFOS, PFBA and PFBS (concentration of hundreds of ng L(-1)) from drinking water. This technology is attractive for the possibility of reusing resins after an in-situ regeneration step. A strong relationship between the hydrophobicity of the exchange functional group of the resin and its capacity in removing PFAS exists. A600E (non hydrophobic) and A520E (fairly hydrophobic) show a reduced sorption capacity compared to A532E (highly hydrophobic). While A600E and A520E can be regenerated with solvent-less dilute solutions of non-toxic NH4Cl and NH4OH, A532E requires concentrated solutions of methanol or ethanol and 1% NH4Cl and for the sake of this work it was regarded as non-regenerable. The volume of regeneration effluents requiring incineration can be efficiently reduced by more than 96.5% by using reverse osmosis coupled with under-vacuum evaporation. Transmission electron analysis on saturated resins showed that large molecular macro-aggregates of PFAS can form in the intraparticle pores of resin indicating that ion exchange is not the only mechanism involved in PFAS removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultatos, L.G.; Kaushik, R.

    2008-08-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B{sub max} and K{sub d} for thioflavin t binding to the peripheral anionic site. However, thesemore » changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B{sub max} did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B{sub max}, would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K{sub d} represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K{sub d}, and dimethylphosphorylation of Ser203 decreasing K{sub d}. These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203.« less

  9. Change of hydrogen bonding structure in ionic liquid mixtures by anion type

    NASA Astrophysics Data System (ADS)

    Cha, Seoncheol; Kim, Doseok

    2018-05-01

    Ionic liquid mixtures have gained attention as a way of tuning material properties continuously with composition changes. For some mixture systems, physicochemical properties such as excess molar volume have been found to be significantly different from the value expected by linear interpolation, but the origin of this deviation is not well understood yet. The microstructure of the mixture, which can range from an ideal mixture of two initial consisting ionic liquids to a different structure from those of pure materials, has been suggested as the origin of the observed deviation. The structures of several different ionic liquid mixtures are studied by IR spectroscopy to confirm this suggestion, as a particular IR absorption band (νC(2)-D) for the moiety participating in the hydrogen bonding changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-D changes proportionally with the composition, and a relatively small excess molar volume is observed for the mixtures containing an electronegative halide anion. By contrast, the absorbance changes nonlinearly, and the excess molar volumes are larger for the mixtures of which one of the anions has multiple interaction sites.

  10. Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption.

    PubMed

    Boeris, Valeria; Balce, Izabella; Vennapusa, Rami Reddy; Arévalo Rodríguez, Miguel; Picó, Guillermo; Lahore, Marcelo Fernández

    2012-07-01

    β-Galactosidase is a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides; its major application in the food industry is to reduce the content of lactose in lactic products. The aim of this work is to recover this enzyme from a cell lysate by adsorption onto Streamline-DEAE in an expanded bed, avoiding, as much as possible, biomass deposition onto the adsorbent matrix. So as to achieve less cell debris-matrix interaction, the adsorbent surface was covered with polyvinyl pyrrolidone. The enzyme showed to bind in the same extent to naked and covered Streamline-DEAE (65 mg β-gal/g matrix) in batch mode in the absence of any biomass. The kinetics of the adsorption process was studied and no effect of the polyvinyl pyrrolidone covering was found. The optimal conditions for the recovery were achieved by using a lysate made of 40% wet weight of cells, a polyvinyl pyrrolidone-covered matrix/lysate ratio of 10% and carrying out the adsorption process in expanded bed with recirculation over 2h in 20 mM phosphate buffer pH 7.4. The fraction recovered after the elution contained 65% of the initial amount of enzyme with a 12.6-fold increased specific activity with respect to the lysate. The polyvinyl pyrrolidone content in the eluate was determined and found negligible. The remarkable point of this work is that it was possible to partially purify the enzyme using a feedstock containing an unusually high biomass concentration in the presence of polyvinyl pyrrolidone onto weak anion exchangers. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Chemical separation of Mo and W from terrestrial and extraterrestrial samples via anion exchange chromatography.

    PubMed

    Nagai, Yuichiro; Yokoyama, Tetsuya

    2014-05-20

    A new two-stage chemical separation method was established using an anion exchange resin, Eichrom 1 × 8, to separate Mo and W from four natural rock samples. First, the distribution coefficients of nine elements (Ti, Fe, Zn, Zr, Nb, Mo, Hf, Ta, and W) under various chemical conditions were determined using HCl, HNO3, and HF. On the basis of the obtained distribution coefficients, a new technique for the two-stage chemical separation of Mo and W, along with the group separation of Ti-Zr-Hf, was developed as follows: 0.4 M HCl-0.5 M HF (major elements), 9 M HCl-0.05 M HF (Ti-Zr-Hf), 9 M HCl-1 M HF (W), and 6 M HNO3-3 M HF (Mo). After the chemical procedure, Nb remaining in the W fraction was separated using 9 M HCl-3 M HF. On the other hand, Nb and Zn remaining in the Mo fraction were removed using 2 M HF and 6 M HCl-0.1 M HF. The performance of this technique was evaluated by separating these elements from two terrestrial and two extraterrestrial samples. The recovery yields for Mo, W, Zr, and Hf were nearly 100% for all of the examined samples. The total contents of the Zr, Hf, W, and Mo in the blanks used for the chemical separation procedure were 582, 9, 29, and 396 pg, respectively. Therefore, our new separation technique can be widely used in various fields of geochemistry, cosmochemistry, and environmental sciences and particularly for multi-isotope analysis of these elements from a single sample with significant internal isotope heterogeneities.

  12. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    PubMed

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  13. Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.

    PubMed

    Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent

    2017-05-16

    Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.

  14. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  16. Simultaneous separation of inorganic anions and metal-citrate complexes on a zwitterionic stationary phase with on-column complexation.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.

  17. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71.

    PubMed

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu

    2016-10-15

    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Steroids alter ion transport and absorptive capacity in proximal and distal colon.

    PubMed

    Sellin, J H; DeSoignie, R C

    1985-07-01

    Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Anion transport and supramolecular medicinal chemistry

    DOE PAGES

    Gale, Philip A.; Davis, Jeffery T.; Quesada, Roberto

    2017-04-05

    New approaches to the transmembrane transport of anions are discussed in this review. Advances in the design of small molecule anion carriers are reviewed in addition to advances in the design of synthetic anion channels. The application of anion transporters to the potential future treatment of disease is discussed in the context of recent findings on the selectivity of anion transporters.

  20. Anion transport and supramolecular medicinal chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gale, Philip A.; Davis, Jeffery T.; Quesada, Roberto

    New approaches to the transmembrane transport of anions are discussed in this review. Advances in the design of small molecule anion carriers are reviewed in addition to advances in the design of synthetic anion channels. The application of anion transporters to the potential future treatment of disease is discussed in the context of recent findings on the selectivity of anion transporters.