Sample records for absorption intestinal

  1. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a

  3. Intestinal fluid absorption in spontaneously hypertensive rats.

    PubMed Central

    Dorey, P G; King, J; Munday, K A; Parsons, B J; Poat, J A

    1983-01-01

    A comparison has been made of intestinal fluid absorption between male Okamoto spontaneously hypertensive rats (s.h.r.) and normotensive male Wistar controls. S.h.r. show enhanced fluid absorption both in hypertensive adults and in young s.h.r. before hypertension has developed. Several potential causes for increased fluid transport in s.h.r. were tested using pharmacological antagonists. It is unlikely that enhanced fluid absorption is due to high sympathetic nervous activity, the renin-angiotensin system or is secondary to hypertension. Intestine from s.h.r. have a high short-circuit current indicating a change in ion pump activity. These results are discussed in relation to the possible causes of increased fluid (ion) transport by the intestine of s.h.r. PMID:6361232

  4. Absorption sites of orally administered drugs in the small intestine.

    PubMed

    Murakami, Teruo

    2017-12-01

    In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.

  5. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Intestinal absorption and biomagnification of organochlorines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.

    1993-03-01

    Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organicmore » chemicals in fish and mammals.« less

  7. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs.

    PubMed

    Miyake, Masateru; Kondo, Satoshi; Koga, Toshihisa; Yoda, Noriaki; Nakazato, Satoru; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2018-01-01

    The purpose of this study was to evaluate the intestinal metabolism and absorption in a mini-Ussing chamber equipped with animal intestinal tissues, based on the transport index (TI). TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. Midazolam was used as a test compound for the evaluation of intestinal metabolism and absorption. The metabolite formulation of midazolam was observed in both rats and dogs. Ketoconazole inhibited the intestinal metabolism of midazolam in rats and improved its intestinal absorption to a statistically significant extent. Therefore, the mini-Ussing chamber, equipped with animal intestinal tissues, showed potential to use the evaluation of the intestinal metabolism and absorption, including the assessment of species differences. Copyright © 2017. Published by Elsevier B.V.

  8. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  9. [Study on intestinal absorption of formononetin in Millettia nitita var. hirsutissima in rats].

    PubMed

    Liu, Ya-Li; Xiong, Xian-Bing; Su, Dan; Song, Yong-Gui; Zhang, Ling; Yang, Shi-Lin

    2013-10-01

    To use the single-pass intestine perfusion (SPIP) model and HPLC to determine the concentration of formononetin, the effect of quality concentrations of formononetin, different intestinal segments and P-glycoprotein inhibitor on intestinal absorption of formononetin, in order to observe the intestinal absorption mechanism of formononetin from Millettia nitita var. hirsutissima in rats. The experimental results showed that the qulaity concentration of formononetin in the perfusate had no significant effect on the absorption rate constant (K(a)) and the apparent absorption coefficient (P(app)); K(a) and P(app) of formononetin in duodenum, jejunum and ileum showed no significant difference. However, K(a) was significantly higher than that in colon (P < 0.05), with significant difference between that in intestinum tenue and colon. P-glycoprotein inhibitor verapamil showed significant difference in K(a) and P(app) in intestinal segments (P < 0.05). This indicated that the absorption mechanism of formononein in rat intestinal tracts passive diffusion, without any saturated absorption. Formononein is absorbed well in all intestines. Their absorption windows were mainly concentrated in the intestinum tenue, without specific absorption sites. Formononein may be the substrate of P-glycoprotein.

  10. Paracetamol absorption from different sites in the human small intestine.

    PubMed Central

    Gramatté, T; Richter, K

    1994-01-01

    Site-specificity in the small intestinal absorption of paracetamol was investigated using a segmental intestinal steady state perfusion technique (triple-lumen tubing system) combined with simultaneous measurements of serum drug concentrations. Dissolved paracetamol was perfused over 160 min into different parts of the small intestine (65-210 cm beyond the teeth). Each of the four healthy subjects was studied twice with a proximal and a more distal site of perfusion. Serum drug concentrations were similar after proximal and distal perfusions. Mean drug absorption rates calculated from intestinal aspirate concentrations were similar in both parts of the intestine--proximal: 869 micrograms 30 cm-1 min-1 (95% CI: 659-1079) vs distal: 941 micrograms 30 cm-1 min-1 (794-1088). The absorption rate was related directly to the amount of paracetamol perfused per unit time as well as to the rate of transmucosal water fluxes. PMID:7917782

  11. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  12. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  13. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K.

    PubMed

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-04-03

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.

  14. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K

    PubMed Central

    Yamanashi, Yoshihide; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-01-01

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies. PMID:28100881

  15. Intestinal absorption of copper: influence of carbohydrates.

    PubMed

    Wapnir, R A; Balkman, C

    1992-02-01

    Macronutrients can modulate the intestinal absorption of trace elements by binding the metal or altering mucosal function. We investigated whether certain simple and complex carbohydrates modify copper (Cu) absorption, using an in vivo perfusion technique in the rat. Corn syrup solids, which contain a mixture of glucose polymers of diverse length, added at either 20 or 50 mosm/kg enhanced Cu absorption from a 31.5 microM (2 mg/liter) Cu solution (128 +/- 11 and 130 +/- 11 pmol/min x cm, respectively, vs 101 +/- 4 pmol/min x cm, P less than 0.05, in the absence of carbohydrate). This was concomitant with a stimulation of net water absorption (1.05 +/- 0.08 and 0.84 +/- 0.08 microliter/min x cm, respectively, vs 0.63 +/- 0.02 microliter/min x cm with no carbohydrate, P less than 0.05). Glucose, fructose, lactose, or sucrose had no influence on Cu absorption, although they altered water exchanges, an effect attributable to a reduction of the outflow component of fluid recirculation. Low concentrations of lactose resulted in a greater accumulation of Cu in the intestinal mucosa (8.75 +/- 0.71 micrograms/g vs 5.77 +/- 0.68 micrograms/g for controls, P less than 0.05). Hence, solutes that moderately stimulate mucosa-to-serosa fluid influx in a progressive manner, such as glucose polymers, may contribute to functionally increase Cu absorption. Conversely, conditions which tend to reduce water inflow or increase water outflow across the small intestinal mucosa, as may occur with high lactose diets or in cases of chronic diarrhea, may have negative effects.

  16. New insights into the molecular mechanism of intestinal fatty acid absorption.

    PubMed

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  17. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  19. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  20. [Study on intestinal absorption features of oligosaccharides in Morinda officinalis How. with sigle-pass perfusion].

    PubMed

    Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran

    2015-01-01

    To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum.

  1. RADIOACTIVE IRON ABSORPTION BY GASTRO-INTESTINAL TRACT

    PubMed Central

    Hahn, P. F.; Bale, W. F.; Ross, J. F.; Balfour, W. M.; Whipple, G. H.

    1943-01-01

    Iron absorption is a function of the gastro-intestinal mucosal epithelium. The normal non-anemic dog absorbs little iron but chronic anemia due to blood loss brings about considerable absorption—perhaps 5 to 15 times normal. In general the same differences are observed in man (1). Sudden change from normal to severe anemia within 24 hours does not significantly increase iron absorption. As the days pass new hemoglobin is formed. The body iron stores are depleted and within 7 days iron absorption is active, even when the red cell hematocrit is rising. Anoxemia of 50 per cent normal oxygen concentration for 48 hours does not significantly enhance iron absorption. In this respect it resembles acute anemia. Ordinary doses of iron given 1 to 6 hours before radio-iron will cause some "mucosa block"—that is an intake of radio-iron less than anticipated. Many variables which modify peristalsis come into this reaction. Iron given by vein some days before the dose of radio-iron does not appear to inhibit iron absorption. Plasma radio-iron absorption curves vary greatly. The curves may show sharp peaks in 1 to 2 hours when the iron is given in an empty stomach but after 6 hours when the radio-iron is given with food. Duration time of curves also varies widely, the plasma iron returning to normal in 6 to 12 hours. Gastric, duodenal, or jejunal pouches all show very active absorption of iron. The plasma concentration peak may reach a maximum before the solution of iron is removed from the gastric pouch—another example of "mucosa block." Absorption and distribution of radio-iron in the body of growing pups give very suggestive experimental data. The spleen, heart, upper gastro-intestinal tract, marrow, and pancreas show more radio-iron than was expected. The term "physiological saturation" with iron may be applied to the gastro-intestinal mucosal epithelium and explain one phase of acceptance or refusal of ingested iron. Desaturation is a matter of days not hours, whereas

  2. Dietary Phospholipids and Intestinal Cholesterol Absorption

    PubMed Central

    Cohn, Jeffrey S.; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W. S.; Tandy, Sally

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit. PMID:22254012

  3. Ursodeoxycholic and deoxycholic acids: A good and a bad bile acid for intestinal calcium absorption.

    PubMed

    Rodríguez, Valeria; Rivoira, María; Marchionatti, Ana; Pérez, Adriana; Tolosa de Talamoni, Nori

    2013-12-01

    The aim of this study was to investigate the effect of ursodeoxycholic acid (UDCA) on intestinal Ca(2+) absorption and to find out whether the inhibition of this process caused by NaDOC could be prevented by UDCA. Chicks were employed and divided into four groups: (a) controls, (b) treated with 10mM NaDOC, (c) treated with 60 μg UDCA/100g of b.w., and (d) treated with 10mM NaDOC and 60 μg UDCA/100g of b.w. UDCA enhanced intestinal Ca(2+) absorption, which was time and dose-dependent. UDCA avoided the inhibition of intestinal Ca(2+) absorption caused by NaDOC. Both bile acids altered protein and gene expression of molecules involved in the transcellular pathway of intestinal Ca(2+) absorption, but in the opposite way. UDCA aborted the oxidative stress produced by NaDOC in the intestine. UDCA and UDCA plus NaDOC increased vitamin D receptor protein expression. In conclusion, UDCA is a beneficial bile acid for intestinal Ca(2+) absorption. Contrarily, NaDOC inhibits the intestinal cation absorption through triggering oxidative stress. The use of UDCA in patients with cholestasis would be benefited because of the protective effect on the intestinal Ca(2+) absorption, avoiding the inhibition caused by hydrophobic bile acids and neutralizing the oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Studies on Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534

  5. Physiology of Intestinal Absorption and Secretion

    PubMed Central

    Kiela, Pawel R.; Ghishan, Fayez K.

    2016-01-01

    Virtually all nutrients from the diet are absorbed into blood across the highly polarized epithelial cell layer forming the small and large intestinal mucosa. Anatomical, histological, and functional specializations along the gastrointestinal tract are responsible for the effective and regulated nutrient transport via both passive and active mechanisms. In this chapter, we summarize the current state of knowledge regarding the mechanism of intestinal absorption of key nutrients such as sodium, anions (chloride, sulfate, oxalate), carbohydrates, amino acids and peptides, lipids, lipidand water-soluble vitamins, as well as the major minerals and micronutrients. This outline, including the molecular identity, specificity, and coordinated activities of key transport proteins and genes involved, serves as the background for the following chapters focused on the pathophysiology of acquired and congenital intestinal malabsorption, as well as clinical tools to test and treat malabsorptive symptoms. PMID:27086882

  6. Altered intestinal absorption of L-thyroxine caused by coffee.

    PubMed

    Benvenga, Salvatore; Bartolone, Luigi; Pappalardo, Maria Angela; Russo, Antonia; Lapa, Daniela; Giorgianni, Grazia; Saraceno, Giovanna; Trimarchi, Francesco

    2008-03-01

    To report eight case histories, and in vivo and in vitro studies showing coffee's potential to impair thyroxine (T4) intestinal absorption. Of eight women with inappropriately high or nonsuppressed thyroid-stimulating hormone (TSH) when T4 was swallowed with coffee/espresso, six consented to the evaluation of their T4 intestinal absorption. This in vivo test was also administered to nine volunteers. In three separate tests, two 100 microg T4 tablets were swallowed with coffee, water, or water followed, 60 minutes later, by coffee. Serum T4 was assayed over the 4-hour period of the test. Two patients and two volunteers also agreed on having tested the intestinal absorption of T4 swallowed with solubilized dietary fibers. In the in vitro studies, classical recovery tests on known concentrations of T4 were performed in the presence of saline, coffee, or known T4 sequestrants (dietary fibers, aluminium hydroxide, and sucralfate). For the in vivo test, average and peak incremental rise of serum T4 (AIRST4 and PIRST4), time of maximal incremental rise of serum T4 (TMIRST4), and area under the curve (AUC) were determined. In patients and volunteers, the four outcome measures were similar in the water and water + coffee tests. In patients and volunteers, compared to water, coffee lowered AIRST4 (by 36% and 29%), PIRST4 (by 30% and 19%), and AUC (by 36% and 27%) and delayed TMIRST4 (by 38 and 43 minutes); bran was a superior interferer. In the in vitro studies, coffee was weaker than known T4 sequestrants. Coffee should be added to the list of interferers of T4 intestinal absorption, and T4 to the list of compounds whose absorption is affected by coffee.

  7. Efficacy, safety and mechanism of HP-β-CD-PEI polymers as absorption enhancers on the intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Zhang, Hailong; Huang, Xiaoyan; Zhang, Yongjing; Gao, Yang

    2017-03-01

    Oral bioavailability of some hydrophilic therapeutic macromolecules was very poor, thus leading to their limited application in clinic. To investigate the efficacy, safety and mechanism of HP-β-CD-PEI polymers on the intestinal absorption of some poorly absorbable drugs in rats. Effects of HP-β-CD-PEI polymers on the intestinal absorptions of drugs were investigated by an in situ closed loop method in rats. The safety of HP-β-CD-PEI polymer was evaluated by measurement of lactate dehydrogenase (LDH) activity and amount of protein released from rat intestinal perfusate. The absorption enhancing mechanisms were explored by the measurement of zeta potential, transepithelial electrical resistance (TEER) and in vitro transport of FD4 (a paracellular marker) across rat intestinal membranes, respectively. HP-β-CD-PEI polymers, especially HP-β-CD-PEI 1800 , demonstrated excellent absorption enhancing effects on drug absorption in a concentration-dependent manner and the enhancing effect was more efficient in the small intestine than that in the large intestine. Five percent (w/v) HP-β-CD-PEI 1800 obviously decreased the TEER, accompanied with increase in the intestinal transport of FD4, indicating that absorption enhancing actions of HP-β-CD-PEI polymers were possibly performed by loosening tight junctions of intestinal epithelium cells, thereby increasing drug permeation via a paracellular pathway. A good liner relationship between absorption enhancing effects of HP-β-CD-PEI polymers and their zeta potentials suggested the contribution of positive charge on the surface of these polymers to their absorption enhancing effects. HP-β-CD-PEI polymers might be potential and safe absorption enhancers for improving oral delivery of poorly absorbable macromolecules including peptides and proteins.

  8. Effect of raw legume diets on intestinal absorption of D-galactose by chick.

    PubMed

    Lasheras, B; Bolufer, J; Cenarruzabeitia, M N; Lluch, M; Larralde, J

    1980-03-01

    The effect of four raw legume diets on the intestinal absorption of D-galactose and oxygen consumption were studied in chick. Field beans (Vicia faba), soybeans (Glycine soja), bitter vetch (Vicia ervilia), and navy beans (Phaseolus vulgaris), were used. The intestinal absorption was determined by both in vivo and in vitro techniques. In vivo, only navy beans and soybeans inhibit intestinal transport of D-galactose, while in vitro all the diets do. Oxygen consumption by intestinal rings increases in chicks fed on bitter vetch diet.

  9. Intestinal absorption of pallidifloside D are limited by P-glycoprotein in mice.

    PubMed

    Wang, Ming-Yu; Yang, Ming; Hou, Pi-Yong; Chen, Xiu-Bo; Li, Hong-Gang; Yan, Jiu-Xing; Zhang, Jun; Zhang, Yan-Wen; Wu, Xiao-Hui

    2018-07-01

    1. Pallidifloside D, a saponin glycoside constituent from the total saponins of Smilax riparia, had been proved to be very effective in hyperuricemic control. But it is poorly bioavailable after oral administration. Here, we determined the role of P-glycoprotein (P-gp) in the intestinal absorption of Pallidifloside D. 2. We found that Pallidifloside D significantly stimulated P-gp ATPase activity in vitro ATPase assay with a small EC 50 value of 0.46 μM. 3. In the single-pass perfused mouse intestine model, the absorption of Pallidifloside D was not favored in the small intestine (duodenum, jejunum and ileum) with a P* w value of 0.35-0.78. By contrast, this compound was well-absorbed in the colon with a P* w value of 1.23. The P-gp inhibitors cyclosporine significantly enhanced Pallidifloside D absorption in all four intestinal segments (duodenum, jejunum, ileum and colon) and the fold change ranged from 5.5 to 15.3. Pharmacokinetic study revealed that cyclosporine increased the systemic exposure of Pallidifloside D by a 2.5-fold after oral administration. 4. These results suggest that P-gp-mediated efflux is a limiting factor for intestinal absorption of Pallidifloside D in mice.

  10. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts.

    PubMed

    Caviedes-Vidal, Enrique; McWhorter, Todd J; Lavin, Shana R; Chediack, Juan G; Tracy, Christopher R; Karasov, William H

    2007-11-27

    Anecdotal evidence suggests that birds have smaller intestines than mammals. In the present analysis, we show that small birds and bats have significantly shorter small intestines and less small intestine nominal (smooth bore tube) surface area than similarly sized nonflying mammals. The corresponding >50% reduction in intestinal volume and hence mass of digesta carried is advantageous because the energetic costs of flight increase with load carried. But, a central dilemma is how birds and bats satisfy relatively high energy needs with less absorptive surface area. Here, we further show that an enhanced paracellular pathway for intestinal absorption of water-soluble nutrients such as glucose and amino acids may compensate for reduced small intestines in volant vertebrates. The evidence is that l-rhamnose and other similarly sized, metabolically inert, nonactively transported monosaccharides are absorbed significantly more in small birds and bats than in nonflying mammals. To broaden our comparison and test the veracity of our finding we surveyed the literature for other similar studies of paracellular absorption. The patterns found in our focal species held up when we included other species surveyed in our analysis. Significantly greater amplification of digestive surface area by villi in small birds, also uncovered by our analysis, may provide one mechanistic explanation for the observation of higher paracellular absorption relative to nonflying mammals. It appears that reduced intestinal size and relatively enhanced intestinal paracellular absorption can be added to the suite of adaptations that have evolved in actively flying vertebrates.

  11. Absorption of thiamine and nicotinic acid in the rat intestine during fasting and immobilization stress

    NASA Technical Reports Server (NTRS)

    Kirilyuk, O. G.; Khmelevskiy, Y. V.

    1980-01-01

    By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.

  12. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs.

    PubMed

    Gurunath, S; Nanjwade, Baswaraj K; Patila, P A

    2014-07-01

    Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.

  13. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs

    PubMed Central

    Gurunath, S.; Nanjwade, Baswaraj K.; Patila, P.A.

    2013-01-01

    Objective Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. Methods In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2–2%). Gibbs free energy (ΔGtro) values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. Results FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Conclusion Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability. PMID:25067902

  14. Intestinal absorption of hawthorn flavonoids--in vitro, in situ and in vivo correlations.

    PubMed

    Zuo, Zhong; Zhang, Li; Zhou, Limin; Chang, Qi; Chow, Moses

    2006-11-25

    Our previous studies identified hyperoside (HP), isoquercitrin (IQ) and epicatechin (EC) to be the major active flavonoid components of the hawthorn phenolic extract from hawthorn fruits demonstrating inhibitory effect on in vitro Cu(+2)-mediated low density lipoproteins oxidation. Among these three hawthorn flavonoids, EC was the only one detectable in plasma after the oral administration of hawthorn phenolic extract to rats. The present study aims to investigate the intestinal absorption mechanisms of these three hawthorn flavonoids by in vitro Caco-2 monolayer model, rat in situ intestinal perfusion model and in vivo pharmacokinetics studies in rats. In addition, in order to investigate the effect of the co-occurring components in hawthorn phenolic extract on the intestinal absorption of these three major hawthorn flavonoids, intestinal absorption transport profiles of HP, IQ and EC in forms of individual pure compound, mixture of pure compounds and hawthorn phenolic extract were studied and compared. The observations from in vitro Caco-2 monolayer model and in situ intestinal perfusion model indicated that all three studied hawthorn flavonoids have quite limited permeabilities. EC and IQ demonstrated more extensive metabolism in the rat in situ intestinal perfusion model and in vivo study than in Caco-2 monolayer model. Moreover, results from the Caco-2 monolayer model, rat in situ intestinal perfusion model as well as the in vivo pharmacokinetics studies in rats consistently showed that the co-occurring components in hawthorn phenolic extract might not have significant effect on the intestinal absorption of the three major hawthorn flavonoids studied.

  15. Nonlinear intestinal absorption kinetics of cefuroxime axetil in rats.

    PubMed Central

    Ruiz-Balaguer, N; Nacher, A; Casabo, V G; Merino, M

    1997-01-01

    Cefuroxime is commercially available for parenteral administration as a sodium salt and for oral administration as cefuroxime axetil, the 1-(acetoxy)ethyl ester of the drug. Cefuroxime axetil is a prodrug of cefuroxime and has little, if any, antibacterial activity until hydrolyzed in vivo to cefuroxime. In this study, the absorption of cefuroxime axetil in the small intestines of anesthetized rats was investigated in situ, by perfusion at four concentrations (11.8, 5, 118 and 200 microM). Oral absorption of cefuroxime axetil can apparently be described as a specialized transport mechanism which obeys Michaelis-Menten kinetics. Parameters characterizing absorption of prodrug in free solution were obtained: maximum rate of absorption (Vmax) = 289.08 +/- 46.26 microM h-1, and Km = 162.77 +/- 31.17 microM. Cefuroxime axetil transport was significantly reduced in the presence of the enzymatic inhibitor sodium azide. On the other hand, the prodrug was metabolized in the gut wall through contact with membrane-bound enzymes in the brush border membrane before absorption occurred. This process reduces the prodrug fraction directly available for absorption. From a bioavailability point of view, therefore, the effects mentioned above can explain the variable and poor bioavailability following oral administration of cefuroxime axetil. Thus, future strategies in oral cefuroxime axetil absorption should focus on increasing the stability of the prodrug in the intestine by modifying the prodrug structure and/or targeting the compound to the absorption site. PMID:9021205

  16. Poor diagnostic accuracy of a single fasting plasma citrulline concentration to assess intestinal energy absorption capacity.

    PubMed

    Peters, Job H C; Wierdsma, Nicolette J; Teerlink, Tom; van Leeuwen, Paul A M; Mulder, Chris J J; van Bodegraven, Ad A

    2007-12-01

    Our aim was to explore the diagnostic value of fasting citrulline concentrations to detect decreased intestinal energy absorption in patients with recently diagnosed celiac disease (CeD), refractory celiac disease (RCeD), and short bowel syndrome (SBS). Decreased intestinal energy absorption is regarded a marker of intestinal failure. Fasting plasma citrulline concentrations were determined by high performance liquid chromatography (HPLC) in a prospective study of 30 consecutive adult patients (15 CeD, 9 RCeD, and 16 SBS) and 21 healthy subjects. Intestinal energy absorption capacity using bomb calorimetry was determined in all patients and healthy subjects and was regarded as the gold standard for intestinal energy absorption function. The mean fasting plasma citrulline concentration was lower in RCeD patients than in healthy subjects (28.5+/-9.9 vs 38.1+/-8.0 micromol/L, P<0.05) and CeD patients (28.5+/-9.9 vs 38.1+/-6.4 micromol/L, P<0.05), however, clearly within reference values. The mean intestinal energy absorption capacity was lower in SBS patients than in healthy subjects (64.3+/-18.2 vs 90.3+/-3.5%, P<0.001), CeD patients (64.3+/-18.2 vs 89.2+/-3.4%, P<0.001), and the RCeD group (64.3+/-18.2 vs 82.3+/-11.7%, P<0.01). No relation was observed between fasting plasma citrulline concentration and intestinal energy absorption capacity (Pearson r=0.09, P=0.56). The area under the ROC curve for fasting plasma citrulline to detect decreased intestinal energy absorption capacity (i.e., <85%) was 0.50. Fasting plasma citrulline concentrations have poor test characteristics for detection of decreased intestinal energy absorption capacity in patients with enterocyte damage.

  17. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Mitochondrial dysfunction is responsible for the intestinal calcium absorption inhibition induced by menadione.

    PubMed

    Marchionatti, Ana M; Perez, Adriana V; Diaz de Barboza, Gabriela E; Pereira, Beatriz M; Tolosa de Talamoni, Nori G

    2008-02-01

    Menadione (MEN) inhibits intestinal calcium absorption by a mechanism not completely understood. The aim of this work was to find out the role of mitochondria in this inhibitory mechanism. Hence, normal chicks treated with one i.p. dose of MEN were studied in comparison with controls. Intestinal calcium absorption was measured by the in situ ligated intestinal segment technique. GSH, oxidoreductase activities from the Krebs cycle and enzymes of the antioxidant system were measured in isolated mitochondria. Mitochondrial membrane potential was measured by a flow cytometer technique. DNA fragmentation and cytochrome c localization were determined by immunocytochemistry. Data indicate that in 30 min, MEN decreases intestinal Ca(2+) absorption, which returns to the control values after 10 h. GSH was only decreased for half an hour, while the activity of malate dehydrogenase and alpha-ketoglutarate dehydrogenase was diminished for 48 h. Mn(2+)-superoxide dismutase activity was increased in 30 min, whereas the activity of catalase and glutathione peroxidase remained unaltered. DNA fragmentation and cytochrome c release were maximal in 30 min, but were recovered after 15 h. In conclusion, MEN inhibits intestinal Ca(2+) absorption by mitochondrial dysfunction as revealed by GSH depletion and alteration of the permeability triggering the release of cytochrome c and DNA fragmentation.

  19. Effect of structural modification of α-aminoxy peptides on their intestinal absorption and transport mechanism.

    PubMed

    Ma, Bin; Zha, Huiyan; Li, Na; Yang, Dan; Lin, Ge

    2011-08-01

    A representative α-aminoxy peptide 1 has been demonstrated to have a potential for the treatment of human diseases associated with Cl(-) channel dysfunctions. However, its poor intestinal absorption was determined. The purpose of this study was to delineate the transport mechanism responsible for its poor absorption and also to prepare peptide analogues by structural modifications of 1 at its isobutyl side chains without changing the α-aminoxy core for retaining biological activity to improve the intestinal absorption. The poor intestinal absorption of 1 was proved to be due to the P-glycoprotein (P-gp) mediated efflux transport in Caco-2 cell monolayer, intestinal segments in Ussing chamber and rat single pass intestinal perfusion models. Four analogues with propionic acid (2), butanamine (3), methyl (4) and hydroxymethyl side chains (5) were synthesized and tested using the same models. Except for the permeability of 2, the absorbable permeability of the modified peptides in Caco-2 cell monolayer and their intestinal absorption in rats were significantly improved to 7-fold (3), 4-fold (4), 11-fold (5) and 36-fold (2), 42-fold (3), 55-fold (4), 102-fold (5), respectively, compared with 1 (P(app), 0.034 ± 0.003 × 10(-6) cm/s; P(blood), 1.61 ± 0.807 × 10(-6) cm/s). More interestingly, the structural modification remarkably altered transport mechanism of the peptides, leading to the conversion of the active transport via P-gp mediation (1, 2), to MRP mediation (3), MRP plus BCRP mediation (4) or a passive diffusion (5). Furthermore, P-gp mediated efflux transport of 1 and 2 was demonstrated to not alter the P-gp expression, while 1 but not 2 exhibited uncompetitive inhibitory effect on P-gp ATPase. The results demonstrated that intestinal absorption and transport mechanism of the α-aminoxy peptides varied significantly with different structures, and their absorption can be dramatically improved by structural modifications, which allow us to further design and

  20. [Improvement and prediction of intestinal drug absorption].

    PubMed

    Miyake, Masateru

    2013-01-01

    The suppository preparation, which can improve the absorption of poorly absorbable drugs safer than commercially available suppositories, was developed by utilizing sodium laurate and taurine. Additionally, the novel oral absorption-improving system was also established by utilizing polyamines and bile acids. Furthermore, to evaluate the efficacy of these new formulations and estimate the absorbability of new drug candidates in humans, the in vitro prediction system utilizing an isolated human intestinal tissues was developed and successfully predicted the fraction of dose absorbed for several model drugs. These findings would contribute to the development of new dosage forms and new drugs for oral administration.

  1. Quantitation of small intestinal permeability during normal human drug absorption

    PubMed Central

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting

  2. Intestinal absorption of dideoxynucleosides: characterization using a multiloop in situ technique.

    PubMed

    Mirchandani, H L; Chien, Y W

    1995-01-01

    The intestinal absorption of dideoxynucleosides was studied in rabbits, using a closed-loop mesenteric-sampling in situ technique developed in this laboratory, and the kinetic profiles were characterized. Each of the dideoxynucleosides exhibited different dependence on the intestinal regions studied: 3'-azido-2',3'-dideoxythymidine was best absorbed from the ileum, while 2',3'-dideoxyinosine and 2',3'-dideoxycytidine were preferentially absorbed from the jejunum. The results were validated by the mass-balance approach; the percent of drug retained in the intestinal lumen and that degraded at the intestinal pH, by colonic flora, in the intestinal tissue, and in plasma were assessed.

  3. [Everted intestinal sac method for quick finding absorption ingredients of Wuzhuyu decoction].

    PubMed

    Gong, Muxin; Wang, Yaxun; Song, Yafang; Wang, Zhimin; Zhang, Qiwei; Wang, Weihao; Zhu, Jingjing

    2010-06-01

    To establish a method for quick finding the absorption ingredients of Wuzhuyu decoction in order to select the index to control its quality. The absorption of three concentration of Wuzhuyu decotion was investigated with the in vitro-everted intestinal sac model. The intestinal bag fluid of jejunum and ileum were collected in different time and the eight ingredients, which were evodiamine (Ev), rutaecarpine (Ru), limonin (Li), ginsenoside-Rb1, -Rg1, -Re (Rb1, Rg1, Re), isorhamnetin-3-O-beta-D-glucosyl(6''-->1'")-alpha-L-rhamnoside (Irs)and 6-gingerol (6-Gi), were detected by HPLC as the represent constituents in samples. Eight ingredients except Ru in samples could be detected, but Ev could not be detected in high concentration samples. The ratios between absorption ingredients were different from in Wuzhuyu decotion. The in vitro-everted intestinal sac canc absorb the ingredients of Wuzhuyu decotion selectivity. Compare with the ileum, the jejunum can provide the more absorption information and faster, the best test time is 60-90 min.

  4. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review

    PubMed Central

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-01-01

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells. PMID:26370977

  5. Intestinal Lymphatic Transport: an Overlooked Pathway for Understanding Absorption of Plant Secondary Compounds in Vertebrate Herbivores.

    PubMed

    Kohl, Kevin D; Dearing, M Denise

    2017-03-01

    Herbivores employ numerous strategies to reduce their exposure to toxic plant secondary chemicals (PSCs). However, the physiological mechanisms of PSC absorption have not been extensively explored. In particular, the absorption of PSCs via intestinal lymphatic absorption has been largely overlooked in herbivores, even though this pathway is well recognized for pharmaceutical uptake. Here, we investigated for the first time whether PSCs might be absorbed by lymphatic transport. We fed woodrats (Neotoma albigula) diets with increasing concentrations of terpene-rich juniper (Juniperus monosperma) either with or without a compound that blocks intestinal lymphatic absorption (Pluronic L-81). Woodrats consuming diets that contained the intestinal lymphatic absorption blocker exhibited increased food intakes and maintained higher body masses on juniper diets. Our study represents the first demonstration that PSCs may be absorbed by intestinal lymphatic absorption. This absorption pathway has numerous implications for the metabolism and distribution of PSCs in the systemic circulation, given that compounds absorbed via lymphatic transport bypass first-pass hepatic metabolism. The area of lymphatic transport of PSCs represents an understudied physiological pathway in plant-herbivore interactions.

  6. Intestinal absorption of D-galactose and L-leucine and intestinal disaccharidase activities in growing chickens fed different raw legume diets.

    PubMed

    Santidrian, S; Lasheras, B; Cenarruzabeitia, M N; Bolufer, J; Larralde, J

    1981-04-01

    A significant (P less than .01) impairment in the rate of growth, along with a significant (P less than .01) inhibition in the rate of in vivo intestinal absorption of D-galactose and L-leucine, and in the in vitro intestinal absorption of D-galactose, was found in growing chickens fed ad libitum over a 60-day period, diets containing the raw legumes Vicia faba, Glycine soja, Vicia ervilia, and Phaseolus vulgaris as the main source of protein. Furthermore, a significant (P less than .01) reduction in the intestinal disaccharidase activity was found in the legume-fed chickens. The possible nature of these effects was discussed.

  7. Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans.

    PubMed

    Miyake, Masateru; Koga, Toshihisa; Kondo, Satoshi; Yoda, Noriaki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2017-01-01

    An adequate evaluation system for drug intestinal absorption is essential in the pharmaceutical industry. Previously, we established a novel prediction system of drug intestinal absorption in humans, using the mini-Ussing chamber equipped with human intestinal tissues. In this system, the TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. In order to apply this system to the screening assay, it is important to understand the differences between animal and human tissues in the intestinal absorption of drugs. In this study, the transport index (TI) values of three drugs, with different levels of membrane permeability, were determined to evaluate the rank order of drug absorbability in intestinal tissues from rats, dogs, and monkeys. The TI values in small intestinal tissues in rats and dogs showed a good correlation with those in humans. On the other hand, the correlation of TI values in monkeys was lower compared to rats and dogs. The rank order of the correlation coefficient between human and investigated animal tissues was as follows: dog (r 2 =0.978), rat (r 2 =0.955), and monkey (r 2 =0.620). TI values in large intestinal tissues from rats (r 2 =0.929) and dogs (r 2 =0.808) also showed a good correlation. The obtained TI values in small intestinal tissues in rats and dogs were well correlated with the fraction of drug absorbed (F a ) in humans. From these results, the mini-Ussing chamber, equipped with intestinal tissues in rats and dogs, would be useful as a screening tool in the drug discovery stage. In addition, the obtained TI values can be used for the prediction of the F a in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  9. Ex Vivo and In Situ Evaluation of 'Dispelling-Wind' Chinese Medicine Herb-Drugs on Intestinal Absorption of Chlorogenic Acid.

    PubMed

    Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji

    2015-12-01

    This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Involvement of intestinal permeability in the oral absorption of clarithromycin and telithromycin.

    PubMed

    Togami, Kohei; Hayashi, Yoshiaki; Chono, Sumio; Morimoto, Kazuhiro

    2014-09-01

    The involvement of intestinal permeability in the oral absorption of clarithromycin (CAM), a macrolide antibiotic, and telithromycin (TEL), a ketolide antibiotic, in the presence of efflux transporters was examined. In order independently to examine the intestinal and hepatic availability, CAM and TEL (10 mg/kg) were administered orally, intraportally and intravenously to rats. The intestinal and hepatic availability was calculated from the area under the plasma concentration-time curve (AUC) after administration of CAM and TEL via different routes. The intestinal availabilities of CAM and TEL were lower than their hepatic availabilities. The intestinal availability after oral administration of CAM and TEL increased by 1.3- and 1.6-fold, respectively, after concomitant oral administration of verapamil as a P-glycoprotein (P-gp) inhibitor. Further, an in vitro transport experiment was performed using Caco-2 cell monolayers as a model of intestinal epithelial cells. The apical-to-basolateral transport of CAM and TEL through the Caco-2 cell monolayers was lower than their basolateral-to-apical transport. Verapamil and bromosulfophthalein as a multidrug resistance-associated proteins (MRPs) inhibitor significantly increased the apical-to-basolateral transport of CAM and TEL. Thus, the results suggest that oral absorption of CAM and TEL is dependent on intestinal permeability that may be limited by P-gp and MRPs on the intestinal epithelial cells. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Investigation of the effective components of the flowers of Trollius chinensis from the perspectives of intestinal bacterial transformation and intestinal absorption.

    PubMed

    Guo, Lina; Qiao, Shanshan; Hu, Junhong; Li, Deli; Zheng, Shiqi; Shi, Duozhi; Liu, Junxiu; Wang, Rufeng

    2017-12-01

    The flowers of Trollius chinensis Bunge (Ranunculaceae), used for respiratory tract infections, mainly contain flavonoids, phenolic acids, and alkaloids; however, the effective components are debatable because of their unclear in vivo activities. This study investigates the effective components from the perspectives of biotransformation and absorption. Both single person derived- and multiple people-derived intestinal florae were used to investigate the biotransformation of aqueous extract of the flowers of T. chinensis (AEOF) at the concentrations of 15.0, 30.0, and 60.0 mg/mL, respectively, for 72 h. Both human colon adenocarcinoma cell line (Caco-2) monolayers and everted gut sacs were employed to evaluate the intestinal absorption of the intestinal bacterial transformed AEOF at the concentrations of 10, 20, and 30 mg/mL, respectively, for 180 min. 2″-O-β-l-Galactopyranosylorientin, orientin, vitexin, quercetin, veratric acid, proglobeflowery acid, and trolline in AEOF were not transformed by intestinal bacteria, while isoquercetin and trollioside were completely transformed. The P app values of 2″-O-β-l-galactopyranosylorientin, orientin, and vitexin calculated based on the experimental data of intestinal absorption were at the levels of 10 -5 , whereas those of veratric acid, proglobeflowery acid, and trolline were at 10 -4 . The mass ratio of flavonoids to phenolic acids to alkaloids changed from 16:10:7 to 9:12:8 before and after absorption. The dominant position of flavonoids was replaced by phenolic acids after absorption. In addition to flavonoids which are usually considered as the dominant effective ones, phenolic acids and alkaloids should be also very important for the efficacy of these flowers.

  12. Intestinal absorption of 5 chromium compounds in young black ducks (Anas rubripes)

    USGS Publications Warehouse

    Eastin, W.C.; Haseltine, S.D.; Murray, H.C.

    1980-01-01

    An in vivo intestinal perfusion technique was used to measure the absorption rates of five Cr compounds in black ducks. Cr was absorbed from saline solutions of KCr(SO4 )2 and CrO3 at a rate about 1.5 to 2.0 times greater than from solutions of Cr, Cr(NO3 )3, and Cr(C5H7O2)3. These results suggest the ionic form of Cr in solution may be an important factor in determining absorption of Cr compounds from the small intestine.

  13. Naringin prevents the inhibition of intestinal Ca2+ absorption induced by a fructose rich diet.

    PubMed

    Rodríguez, V; Rivoira, M; Guizzardi, S; Tolosa de Talamoni, N

    2017-12-15

    This study tries to elucidate the mechanisms by which fructose rich diets (FRD) inhibit the rat intestinal Ca 2+ absorption, and determine if any or all underlying alterations are prevented by naringin (NAR). Male rats were divided into: 1) controls, 2) treated with FRD, 3) treated with FRD and NAR. The intestinal Ca 2+ absorption and proteins of the transcellular and paracellular Ca 2+ pathways were measured. Oxidative/nitrosative stress and inflammation parameters were evaluated. FRD rats showed inhibition of the intestinal Ca 2+ absorption and decrease in the protein expression of molecules of both Ca 2+ pathways, which were blocked by NAR. FRD rats showed an increase in the superoxide anion, a decrease in the glutathione and in the enzymatic activities of the antioxidant system, as well as an increase in the NO content and in the nitrotyrosine content of proteins. They also exhibited an increase in both IL-6 and nuclear NF-κB. All these changes were prevented by NAR. In conclusion, FRD inhibit both pathways of the intestinal Ca 2+ absorption due to the oxidative/nitrosative stress and inflammation. Since NAR prevents the oxidative/nitrosative stress and inflammation, it might be a drug to avoid alteration in the intestinal Ca 2+ absorption caused by FRD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Lecithin inhibits fatty acid and bile salt absorption from rat small intestine in vivo.

    PubMed

    Saunders, D R; Sillery, J

    1976-12-01

    During digestion of a fatty meal, long chain free fatty acids (FFA) and lecithin are among the lipids solubilized in intestinal contents as mixed micelles with bile salts. We hypothesized that if lecithin were not hydrolyzed, the mixed micelles would be abnormal, and absorption of FFA and bile salts would be depressed. To test this hypothesis, isolated segments of rat small intestine were infused in vivo with micellar solutions of 2 mMolar linoleic acid and 10 mMolar taurocholate to which was added 3 mMolar 1-palmitoyl, 2-oleoyl lecithin (a common lecithin in bile and food), or 1-palmitoyl lysolecithin (the hydrolytic product of lecithin). Absorption of FFA and bile salt was measured under steady state conditions using a single-pass technique. Lecithin depressed the rate of FFA absorption by 40% (p less than 0.025) in jejunal and ileal segments whereas lysolecithin was associated with normal rates of FFA absorption. Lecithin also reduced taurocholate absorption from the ileum by 30% (p less than 0.05). These data support the idea that lecithin may depress FFA and bile salt absorption from the small intestine in pancreatic insufficiency.

  15. Effects of dietary glucose and sodium chloride on intestinal glucose absorption of common carp (Cyprinus carpio L.).

    PubMed

    Qin, Chaobin; Yang, Liping; Zheng, Wenjia; Yan, Xiao; Lu, Ronghua; Xie, Dizhi; Nie, Guoxing

    2018-01-08

    The co-transport of sodium and glucose is the first step for intestinal glucose absorption. Dietary glucose and sodium chloride (NaCl) may facilitate this physiological process in common carp (Cyprinus carpio L.). To test this hypothesis, we first investigated the feeding rhythm of intestinal glucose absorption. Carps were fed to satiety once a day (09:00 a.m.) for 1 month. Intestinal samples were collected at 01:00, 05:00, 09:00, 13:00, 17:00 and 21:00. Result showed that food intake greatly enhanced sodium/glucose cotransporter 1 (SGLT1) and glucose transporter type 2 (GLUT2) expressions, and improved glucose absorption, with highest levels at 09:00 a.m.. Then we designed iso-nitrogenous and iso-energetic diets with graded levels of glucose (10%, 20%, 30%, 40% and 50%) and NaCl (0%, 1%, 3% and 5%), and submitted to feeding trial for 10 weeks. The expressions of SGLT1 and GLUT2, brush border membrane vesicles (BBMVs) glucose transport and intestinal villus height were determined after the feeding trial. Increasing levels of dietary glucose and NaCl up-regulated mRNA and protein levels of SGLT1 and GLUT2, enhanced BBMVs glucose transport in the proximal, mid and distal intestine. As for histological adaptive response, however, high-glucose diet prolonged while high-NaCl diet shrank intestinal villus height. Furthermore, we also found that higher mRNA levels of SGLT1 and GLUT2, higher glucose transport capacity of BBMVs, and higher intestinal villus were detected in the proximal and mid intestine, compared to the distal part. Taken together, our study indicated that intestinal glucose absorption in carp was primarily occurred in the proximal and mid intestine, and increasing levels of dietary glucose and NaCl enhanced intestinal glucose absorption in carp. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Studies on different iron source absorption by in situ ligated intestinal loops of broilers.

    PubMed

    Jia, Y F; Jiang, M M; Sun, J; Shi, R B; Liu, D S

    2015-02-01

    The objective of this study was to investigate the iron source absorption in the small intestine of broiler. In situ ligated intestinal loops of 70 birds were poured into one of seven solutions, including inorganic iron (FeSO4, Fe2(SO4)3), organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)), the mixtures (FeSO4 with glycine (Fe+Gly(II)), Fe2(SO4)3 with glycine (Fe+Gly(III)), and no Fe source (control). The total volume of 3-mL solution (containing 1 mg of elemental Fe) was injected into intestinal loops, and then 120-min incubation was performed. Compared with inorganic iron groups, in which higher FeSO4 absorption than Fe2(SO4)3 was observed, supplementation with organic Fe glycine chelate significantly increased the Fe concentration in the duodenum and jejunum (P < 0.05), however, decreased DMT1 and DcytB messenger RNA (mRNA) levels (P < 0.05). Organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)) increased serum iron concentration (SI), compared with inorganic 3 valence iron groups (Fe2(SO4)3 and Fe+Gly(III)) (P < 0.05); moreover, lower TIBC value was observed for the chelate (P < 0.05); however, mixture of inorganic iron and glycine did not have a positive role at DMT1 and DcytB mRNA levels, SI and Fe concentrations in the small intestine. Those results indicated that the absorption of organic Fe glycine chelate was more effective than that of inorganic Fe, and the orders of iron absorption in the small intestine were: Fe-Gly(II), Fe-Gly(III) > FeSO4, Fe+Gly(II) > Fe2(SO4)3, Fe+Gly(III). Additionally, the simple mixture of inorganic iron and glycine could not increase Fe absorption, and the duodenum was the main site of Fe absorption in the intestines of broilers and the ileum absorbed iron rarely.

  17. Paroxetine decreased plasma exposure of glyburide partly via inhibiting intestinal absorption in rats.

    PubMed

    Jiang, Shuwen; Zhao, Weiman; Chen, Yang; Zhong, Zeyu; Zhang, Mian; Li, Feng; Xu, Ping; Zhao, Kaijing; Li, Ying; Liu, Li; Liu, Xiaodong

    2015-06-01

    Accumulating evidences have shown that diabetes is often accompanied with depression, thus it is possible that oral antidiabetic agent glyburide and antidepressive agent paroxetine are co-administered in diabetic patients. The aim of this study was to assess interactions between glyburide and paroxetine in rats. Effect of paroxetine on pharmacokinetics of orally administered glyburide was investigated. Effect of naringin (NAR), an inhibitor of rat intestinal organic anion transporting polypeptides 1a5 (Oatp1a5), on pharmacokinetics of glyburide was also studied. The results showed that co-administration of paroxetine markedly reduced plasma exposure and prolonged Tmax of glyburide, accompanied by significant increase in fecal excretion of glyburide. Co-administration of naringin also significantly decreased plasma exposure of glyburide. Data from intestinal perfusion experiments showed that both paroxetine and naringin significantly inhibited intestinal absorption of glyburide. Caco-2 cells were used to investigate whether paroxetine and naringin affected intestinal transport of glyburide and fexofenadine (a substrate of Oatp1a5). The results showed that both paroxetine and naringin greatly inhibited absorption of glyburide and fexofenadine. All results gave a conclusion that co-administration of paroxetine decreased plasma exposure of glyburide in rats via inhibiting intestinal absorption of glyburide, which may partly be attributed to the inhibition of intestinal Oatp1a5 activity. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  18. Intestinal absorption of strontium chloride in healthy volunteers: pharmacokinetics and reproducibility

    PubMed Central

    SIPS, A. J. A. M.; van der VIJGH, W. J. F.; BARTO, R.; NETELENBOS, J. C.

    1996-01-01

    1The absorption kinetics of orally administered strontium chloride and its reproducibility were investigated in healthy volunteers after administering strontium either under fasting conditions (study I, n=8) or in combination with a standardized meal (study II, n=8). Each subject received strontium orally at day 0, 14, and 28 and intravenously at day 42. The study was performed as part of a project in which a simple clinical test for measuring intestinal calcium absorption is being developed, based on the use of stable strontium as a marker. 2Plasma strontium concentration–time curves were analysed by noncompartment analysis and a four compartment disposition model. Within a volunteer each oral curve was fitted simultaneously with the intravenous curve, by which means a two segment model for absorption was revealed. 3Mean absolute bioavailability of strontium was 25% without a meal and 19% with a meal, whereas the intraindividual variation was 24% and 20%, respectively. 4Various limited sampling absorption parameters were determined in order to select a potential test parameter for measuring intestinal calcium absorption using strontium as a marker. Fractional absorption at 4 h (Fc240), obtained after co-ingestion of strontium with a meal, appeared to be the best test parameter, because it represented bioavailability well (r=0.90). PMID:8799520

  19. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs.

    PubMed

    Iwanaga, Kazunori; Kushibiki, Toshihiro; Miyazaki, Makoto; Kakemi, Masawo

    2006-03-01

    Solvent Green 3 (SG), a model poorly water-soluble compound, was orally administered to rats with soybean oil emulsion or the Self-microemulsifying drug delivery system (SMEDDS) composed of Gelucire44/14. The bioavailability of SG after oral administration with SMEDDS was 1.7-fold higher than that with soybean oil emulsion. The intestinal absorption of lipid-based formulations themselves was evaluated by the in situ closed loop method. The effect of lipase and bile salt on their absorption was also evaluated. SMEDDS itself was rapidly absorbed in the intestine even in the absence of lipase and bile salt, and the absorption was increased by the addition of lipase and bile salt. On the other hand, no soybean oil emulsion was absorbed in the absence of lipase and bile salt. However, mixed micelle prepared from emulsion by incubating soybean oil emulsion with lipase and bile salt was rapidly absorbed through the intestine. Without lipase and bile salt, SG was not absorbed after administration with soybean oil emulsion. Therefore, we concluded that the degradation of soybean oil emulsion was needed for SG to be absorbed through the intestine. Furthermore, we investigated the intestinal absorption of SG after oral administration to rats whose chylomicron synthesis were inhibited by pretreatment with colchicine. Colchicine completely inhibited the intestinal absorption of SG after administration with each lipid-based formulation, suggesting that SG was absorbed from the intestine via a lymphatic route. Absorption of the dosage formulation should be paid attention when poorly water-soluble drugs are orally administered with lipid-based formulation.

  20. Modulating effect of polyethylene glycol on the intestinal transport and absorption of prednisolone, methylprednisolone and quinidine in rats by in-vitro and in-situ absorption studies.

    PubMed

    Shen, Qi; Li, Wenji; Lin, Yulian; Katsumi, Hidemasa; Okada, Naoki; Sakane, Toshiyasu; Fujita, Takuya; Yamamoto, Akira

    2008-12-01

    The effects of polyethylene glycol 20000 (PEG 20000) on the intestinal absorption of prednisolone, methylprednisolone and quinidine, three P-glycoprotein (P-gp) substrates, across the isolated rat intestinal membranes were examined by an in-vitro diffusion chamber system. The serosal-to-mucosal (secretory) transport of these P-gp substrates was greater than their mucosal-to-serosal (absorptive) transport, indicating that their net movement across the intestinal membranes was preferentially in the secretory direction. The polarized secretory transport of these drugs was remarkably diminished and their efflux ratios decreased in the presence of PEG 20000. In addition, PEG 20000 did not affect the transport of Lucifer yellow, a non-P-gp substrate. The intestinal membrane toxicity of PEG 20000 was evaluated by measuring the release of alkaline phosphatase (ALP) and protein from the intestinal membranes. The release of ALP and protein was enhanced in the presence of 20 mM sodium deoxycholate (NaDC), a positive control, while these biological parameters did not change in the presence of 0.1-5% (w/v) PEG 20000. These findings indicated that the intestinal membrane damage caused by PEG 20000 was not a main reason for the enhanced absorptive transport of these P-gp substrates in the presence of PEG 20000. Furthermore, the transepithelial electrical resistance (TEER) of rat jejunal membranes in the presence or absence of PEG 20000 was measured by a diffusion chamber method. PEG 20000 (0.1-5.0 % w/v) did not change the TEER values of the rat jejunal membranes, indicating that the increase in the absorptive transport of these P-gp substrates might not be due to the increased transport of these P-gp substrates via a paracellular pathway caused by PEG 20000. Finally, the effect of PEG 20000 on the intestinal absorption of quinidine was examined by an in-situ closed-loop method. The intestinal absorption of quinidine was significantly enhanced in the presence of 0.1-1.0% (w

  1. Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine

    PubMed Central

    Luo, Hong; Wang, Le Feng; Imoto, Toshiaki; Hiji, Yasutake

    2001-01-01

    AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved by combination of them. METHODS: The absorption and hydrolysis of maltose were studied by cyclic perfusion of intestinal loops in situ and motility of the intestine was recorded with the intestinal ring in vitro using Wistar rats. RESULTS: The total inhibitory rate of maltose absorption was improved by the combination of GA (0.1 g/L-1.0 g/L) and acarbose (0.1 mmol/L-2.0 mmol/L) throughout their effective duration (P < 0.05, U test of Mann-Whitney), although the improvement only could be seen at a low dosage during the first hour. With the combination, inhibitory duration of acarbose on maltose absorption was prolonged to 3 h and the inhibitory effect onset of GA was fastened to 15 min. GA suppressed the intestinal mobility with a good correlation (r = 0.98) to the inhibitory effect of GA on maltose absorption and the inhibitory effect of 2 mmol/L (high dose) acarbose on maltose hydrolysis was dual modulated by 1 g/L GA in vivo indicating that the combined effects involved the functional alteration of intestinal barriers. CONCLUSION: There are augmented effects of acarbose and GA, which involve pre-cellular and paracellular barriers. Diabetic care can be improved by employing the combination. PMID:11819725

  2. Intestinal absorption of forsythoside A in in situ single-pass intestinal perfusion and in vitro Caco-2 cell models

    PubMed Central

    Zhou, Wei; Di, Liu-qing; Wang, Juan; Shan, Jin-jun; Liu, Shi-jia; Ju, Wen-zheng; Cai, Bao-chang

    2012-01-01

    Aim: To investigate the mechanisms underlying the intestinal absorption of the major bioactive component forsythoside A (FTA) extracted from Forsythiae fructus. Methods: An in vitro Caco-2 cell model and a single-pass intestinal perfusion in situ model in SD rats were used. Results: In the in vitro Caco-2 cell model, the mean apparent permeability value (Papp-value) was 4.15×10-7 cm/s in the apical-to-basolateral (AP-BL) direction. At the concentrations of 2.6–10.4 μg/mL, the efflux ratio of FTA in the bi-directional transport experiments was approximately 1.00. After the transport, >96% of the apically loaded FTA was retained on the apical side, while >97% of the basolaterally loaded FTA was retained on the basolateral side. The Papp-values of FTA were inversely correlated with the transepithelial electrical resistance. The paracellular permeability enhancers sodium caprate and EDTA, the P-gp inhibitor verapamil and the multidrug resistance related protein (MRP) inhibitors cyclosporine and MK571 could concentration-dependently increase the Papp-values, while the uptake (OATP) transporter inhibitors diclofenac sodium and indomethacin could concentration-dependently decrease the Papp-values. The intake transporter SGLT1 inhibitor mannitol did not cause significant change in the Papp-values. In the in situ intestinal perfusion model, both the absorption rate constant (Ka) and the effective permeability (Peff-values) following perfusion of FTA 2.6, 5.2 and 10.4 μg/mL via the duodenum, jejunum and ileum had no significant difference, although the values were slightly higher for the duodenum as compared to those in the jejunum and ileum. The low, medium and high concentrations of verapamil caused the largest increase in the Peff-values for duodenum, jejunum and ileum, respectively. Sodium caprate, EDTA and cyclosporine resulted in concentration-dependent increase in the Peff-values. Diclofenac sodium and indomethacin caused concentration-dependent decrease in the

  3. Activation of rat intestinal mucosal mast cells by fat absorption.

    PubMed

    Ji, Yong; Sakata, Yasuhisa; Yang, Qing; Li, Xiaoming; Xu, Min; Yoder, Stephanie; Langhans, Wolfgang; Tso, Patrick

    2012-06-01

    Previous studies have linked certain types of gut mucosal immune cells with fat intake. We determined whether fat absorption activates intestinal mucosal mast cells (MMC), a key component of the gut mucosal immune system. Conscious intestinal lymph fistula rats were used. The mesenteric lymph ducts were cannulated, and the intraduodenal (i.d.) tubes were installed for the infusion of Liposyn II 20% (an intralipid emulsion). Lymphatic concentrations of histamine, rat MMC protease II (RMCPII), a specific marker of rat intestinal MMC degranulation, and prostaglandin D(2) (PGD(2)) were measured by ELISA. Intestinal MMC degranulation was visualized by immunofluorescent microscopy of jejunum sections taken at 1 h after Liposyn II gavage. Intraduodenal bolus infusion of Liposyn II 20% (4.4 kcal/3 ml) induced approximately a onefold increase in lymphatic histamine and PGD(2), ∼20-fold increase in lymphatic RMCPII, but only onefold increase in peripheral serum RMCPII concentrations. Release of RMCPII into lymph increased dose dependently with the amount of lipid fed. In addition, i.d. infusion of long-chain triacylglycerol trilinolein (C18:2 n-6, the major composite in Liposyn II) significantly increased the lymphatic RMCPII concentration, whereas medium-chain triacylglycerol tricaprylin (C8:0) did not alter lymph RMCPII secretion. Immunohistochemistry image revealed the degranulation of MMC into lamina propria after lipid feeding. These novel findings indicate that intestinal MMC are activated and degranulate to release MMC mediators to the circulation during fat absorption. This action of fatty acid is dose and chain length dependent.

  4. Activation of rat intestinal mucosal mast cells by fat absorption

    PubMed Central

    Sakata, Yasuhisa; Yang, Qing; Li, Xiaoming; Xu, Min; Yoder, Stephanie; Langhans, Wolfgang; Tso, Patrick

    2012-01-01

    Previous studies have linked certain types of gut mucosal immune cells with fat intake. We determined whether fat absorption activates intestinal mucosal mast cells (MMC), a key component of the gut mucosal immune system. Conscious intestinal lymph fistula rats were used. The mesenteric lymph ducts were cannulated, and the intraduodenal (i.d.) tubes were installed for the infusion of Liposyn II 20% (an intralipid emulsion). Lymphatic concentrations of histamine, rat MMC protease II (RMCPII), a specific marker of rat intestinal MMC degranulation, and prostaglandin D2 (PGD2) were measured by ELISA. Intestinal MMC degranulation was visualized by immunofluorescent microscopy of jejunum sections taken at 1 h after Liposyn II gavage. Intraduodenal bolus infusion of Liposyn II 20% (4.4 kcal/3 ml) induced approximately a onefold increase in lymphatic histamine and PGD2, ∼20-fold increase in lymphatic RMCPII, but only onefold increase in peripheral serum RMCPII concentrations. Release of RMCPII into lymph increased dose dependently with the amount of lipid fed. In addition, i.d. infusion of long-chain triacylglycerol trilinolein (C18:2 n-6, the major composite in Liposyn II) significantly increased the lymphatic RMCPII concentration, whereas medium-chain triacylglycerol tricaprylin (C8:0) did not alter lymph RMCPII secretion. Immunohistochemistry image revealed the degranulation of MMC into lamina propria after lipid feeding. These novel findings indicate that intestinal MMC are activated and degranulate to release MMC mediators to the circulation during fat absorption. This action of fatty acid is dose and chain length dependent. PMID:22461027

  5. Antioxidant and antiapoptotic properties of melatonin restore intestinal calcium absorption altered by menadione.

    PubMed

    Carpentieri, A; Marchionatti, A; Areco, V; Perez, A; Centeno, V; Tolosa de Talamoni, N

    2014-02-01

    The intestinal Ca²⁺ absorption is inhibited by menadione (MEN) through oxidative stress and apoptosis. The aim of this study was to elucidate whether the antioxidant and antiapoptotic properties of melatonin (MEL) could protect the gut against the oxidant MEN. For this purpose, 4-week-old chicks were divided into four groups: (1) controls, (2) treated i.p. with MEN (2.5 μmol/kg of b.w.), (3) treated i.p. with MEL (10 mg/kg of b.w.), and (4) treated with 10 mg MEL/kg of b.w after 2.5 μmol MEN/kg of b.w. Oxidative stress was assessed by determination of glutathione (GSH) and protein carbonyl contents as well as antioxidant enzyme activities. Apoptosis was assayed by the TUNEL technique, protein expression, and activity of caspase 3. The data show that MEL restores the intestinal Ca²⁺ absorption altered by MEN. In addition, MEL reversed the effects caused by MEN such as decrease in GSH levels, increase in the carbonyl content, alteration in mitochondrial membrane permeability, and enhancement of superoxide dismutase and catalase activities. Apoptosis triggered by MEN in the intestinal cells was arrested by MEL, as indicated by normalization of the mitochondrial membrane permeability, caspase 3 activity, and DNA fragmentation. In conclusion, MEL reverses the inhibition of intestinal Ca²⁺ absorption produced by MEN counteracting oxidative stress and apoptosis. These findings suggest that MEL could be a potential drug of choice for the reversal of impaired intestinal Ca²⁺ absorption in certain gut disorders that occur with oxidative stress and apoptosis.

  6. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  7. Effect of intravenous ranitidine and omeprazole on intestinal absorption of water, sodium, and macronutrients in patients with intestinal resection

    PubMed Central

    Jeppesen, P; Staun, M; Tjellesen, L; Mortensen, P

    1998-01-01

    Background—H2 receptor blockers and proton pump inhibitors reduce intestinal output in patients with short bowel syndrome. 
Aims—To evaluate the effect of intravenous omeprazole and ranitidine on water, electrolyte, macronutrient, and energy absorption in patients with intestinal resection. 
Methods—Thirteen patients with a faecal weight above 1.5 kg/day (range 1.7-5.7 kg/day and a median small bowel length of 100cm were studied. Omeprazole 40 mg twice daily or ranitidine 150mg twice daily were administered for five days in a randomised, double blind, crossover design followed by a three day control period with no treatment. Two patients with a segment of colon in continuation were excluded from analysis which, however, had no influence on the results. 
Results—Omeprazole increased median intestinal wet weight absorption compared with no treatment and ranitidine (p<0.03). The effect of ranitidine was not significant. Four patients with faecal volumes below 2.6 kg/day did not respond to omeprazole; in two absorption increased by 0.5-1 kg/day; and in five absorption increased by 1−2 kg/day. Absorption of sodium, calcium, magnesium, nitrogen, carbohydrate, fat, and total energy was unchanged. Four high responders continued on omeprazole for 12-15 months, but none could be weaned from parenteral nutrition. 
Conclusion—Omeprazole increased water absorption in patients with faecal output above 2.50 kg/day. The effect varied significantly and was greater in patients with a high output, but did not allow parenteral nutrition to be discontinued. Absorption of energy, macronutrients, electrolytes, and divalent cations was not improved. The effect of ranitidine was not significant, possibly because the dose was too low. 

 Keywords: short bowel syndrome; human; diarrhoea; ranitidine; omeprazole PMID:9824602

  8. Mechanistic and regulatory aspects of intestinal iron absorption

    PubMed Central

    Gulec, Sukru; Anderson, Gregory J.

    2014-01-01

    Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2α) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858

  9. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    PubMed Central

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  10. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  11. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography.

    PubMed

    Kamei, Noriyasu; Morishita, Mariko; Kanayama, Yousuke; Hasegawa, Koki; Nishimura, Mie; Hayashinaka, Emi; Wada, Yasuhiro; Watanabe, Yasuyoshi; Takayama, Kozo

    2010-08-17

    Molecular imaging technique by use of positron emission tomography (PET) is a noninvasive tool that allows one to quantitatively analyze the function of endogenous molecules and the pharmacokinetics of therapeutic agents in vivo. This technique is expected to be useful for evaluating the effectiveness of diverse drug delivery systems. We demonstrated previously that intestinal insulin absorption is increased significantly by coadministration of cell-penetrating peptides (CPPs), which are taken up effectively by several cells. However, the distribution behavior of insulin whose absorption is increased by CPPs is not clear. We used PET imaging and quantitatively analyzed the intestinal absorption and subsequent distribution of insulin and the effect of CPPs on its absorption and distribution. An unlabeled insulin solution containing tracer insulin, (68)Ga-DOTA-insulin, was administered with or without CPPs into a rat ileal closed loop. PET imaging showed that the CPPs, particularly D-R8 and L-penetratin, significantly increased the (68)Ga-DOTA-insulin level in the liver, kidney, and circulation. After absorption from the intestine, the (68)Ga-DOTA-insulin passed rapidly through the liver and accumulated in the kidney. The increase in the hepatic and renal distribution of (68)Ga-DOTA-insulin by each CPP coadministration was similar manner as that in intestinal absorption, suggesting that the increased accumulation of insulin in the liver and kidney induced by coadministration of CPPs was associated with the increased intestinal absorption of insulin. This is the first study to show that PET imaging enables one to quantitatively analyze the distribution behavior of intestinally absorbed insulin in several organs. This imaging methodology is likely to be useful for developing effective drug delivery systems targeted to specific organs. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Update: The Digestion and Absorption of Carbohydrate and Protein: Role of the Small Intestine.

    ERIC Educational Resources Information Center

    Leese, H. J.

    1984-01-01

    Discusses the role of the small intestine in the digestion and absorption of carbohydrates and proteins. Indicates as outdated the view that these materials must be broken down to monomeric units before absorption and that the gut secretes a mixture of digestive juices which brings about absorption. (JN)

  13. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    PubMed

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  14. Cathepsin B is a novel gender-dependent determinant of cholesterol absorption from the intestine[S

    PubMed Central

    Wong, Winifred P. S.; Altemus, Jessica B.; Hester, James F.; Chan, Ernest R.; Côté, Jean-François; Serre, David; Sehayek, Ephraim

    2013-01-01

    We used a mouse C57BL/6J×CASA/Rk intercross to map a locus on chromosome 14 that displayed a gender-dependent effect on cholesterol absorption from the intestine. Studies in congenic animals revealed a complex locus with multiple operating genetic determinants resulting in alternating gender-dependent phenotypic effects. Fine-mapping narrowed the locus to a critical 6.3 Mb interval. Female subcongenics, but not males, of the critical interval displayed a decrease of 33% in cholesterol absorption. RNA-Seq analysis of female subcongenic jejunum revealed that cysteine protease cathepsin B (Ctsb) is a candidate to explain the interval effect. Consistent with the phenotype in critical interval subcongenics, female Ctsb knockout mice, but not males, displayed a decrease of 31% in cholesterol absorption. Although studies in Ctsb knockouts revealed a gender-dependent effect on cholesterol absorption, further fine-mapping dismissed a role for Ctsb in determining the effect of the critical 6.3 Mb interval on cholesterol absorption. PMID:23248330

  15. Absorption of calcium and magnesium in patients with intestinal resections treated with medium chain fatty acids

    PubMed Central

    Haderslev, K; Jeppesen, P; Mortensen, P; Staun, M

    2000-01-01

    BACKGROUND—Steatorrhoea is associated with increased faecal loss of calcium and magnesium. Medium chain C8-C10 triglycerides (MCTs) improve fat absorption in patients with small bowel resections but the effects on intestinal absorption of divalent cations are not clear.
AIM—To assess the effect of dietary replacement of long chain triglycerides (LCTs) with MCTs on calcium and magnesium absorption in patients with small bowel resections.
PATIENTS—Nineteen adult patients with a remaining small intestine averaging 171 cm (range 50-300).
METHODS—In a crossover design, patients were randomised to two high fat diets (10 MJ/day, 50% as fat) for four days each separated by one day of washout. Diets were prepared in duplicate and were based on either LCT (LCT period) or equal quantities of LCT and MCT (L/MCT period). Metabolic balances were calculated during the last three days of each period.
RESULTS—Mean stool volume increased significantly with the L/MCT diet and was 336 ml more than that with the LCT diet (95% confidence interval of mean difference, 26-649 ml). There was no significant change in the net absorption of calcium and magnesium between the two diets. On average, percentage calcium absorption was 8.6% with the LCT diet and 12.5% with the L/MCT diet. Mean percentage magnesium absorption was 5.4% with the LCT diet and 2.9% with the L/MCT diet.
CONCLUSIONS—Dietary replacement of 50% long chain triglycerides with medium chain triglycerides in small bowel resected patients increased faecal volume significantly. No changes in the intestinal net absorption of calcium and magnesium were demonstrated.


Keywords: medium chain triglycerides; calcium absorption; magnesium absorption; intestinal resections; fat absorption PMID:10807894

  16. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis.

    PubMed

    Shi, Xiaocai; Passe, Dennis H

    2010-10-01

    The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

  17. [Multiple analysis of the difference in intestinal absorption between the main components and the extract of Glycyrrhiza uralensis].

    PubMed

    Wu, Qing-Qing; Chen, Yan; Xin, Ran; Wang, Jin-Yan; Zhou, Lei; Yuan, Ling; Jia, Xiao-Bin

    2012-05-01

    The aim of this study is to investigate the rat intestinal absorption behavior of two main active components, liquiritin, glycyrrhizin and the extract of Glycyrrhiza uralensis. The rat intestinal perfusion model was employed. Concentrations of the compounds of the interest in the intestinal perfusate, bile and plasma samples were determined by HPLC and UPLC. At the same time, the intestinal enzymes incubation test and the partition coefficient determination, the absorption of liquiritin and glycyrrhizin alone and the extract were multiple analyzed. The results showed that the P(eff) (effective permeability) of liquiritin or glycyrrhizin alone or the extract was less than 0.3, which suggested their poor absorption in the intestine. The P(eff) of the two main active components or the extract was not significantly different in duodenum, jejunum, colon and ileum segment. The P(eff) of the glycyrrhizin in the extract had no significant difference in the four intestinal segments compared with the glycyrrhizin alone. The absorption of the liquiritin displayed significant difference (P < 0.05) at ileum segment compared with the liquiritin alone, while it had no markedly change in the other three segments. This phenomenon indicated that some ingredients in the extract might improve the absorption of liquiritin. Moreover, no parent compounds and their metabolites were found in the intestinal perfusate, bile and the plasma samples. The results demonstrated that the influence of the other ingredients in the extract on the two components might not increase the amount of liquiritin and glycyrrhizin in the bile and plasma within the duration of the test.

  18. The effects of 18β-glycyrrhetinic acid and glycyrrhizin on intestinal absorption of paeoniflorin using the everted rat gut sac model.

    PubMed

    He, Rui; Xu, Yongsong; Peng, Jingjing; Ma, Tingting; Li, Jing; Gong, Muxin

    2017-01-01

    Paeoniflorin (PF), the main active component of Shaoyao-Gancao-tang, possesses significantly antinociceptive effects and many other pharmacological activities. However, its poor intestinal absorption results in low bioavailability. Therefore, enhancing PF absorption plays a vital role in exerting its therapeutic effect. Shaoyao combined with Gancao exhibited a synergistic effect. The enhancement of PF absorption through the interaction of its constituents in intestinal absorption would be greatly implicated. The present study aimed at investigating the effects of glycyrrhizin, the main constituent of Gancao, and its main metabolite, 18β-glycyrrhetinic acid (18β-GA), on the intestinal absorptive behavior of PF, and the role of P-glycoprotein (P-gp) in PF absorption using the in vitro everted rat gut sac model. The results demonstrated that 1 mM of 18β-GA significantly increased PF absorption in both the jejunum and the ileum, while 100 μM of 18β-GA only promoted the ileum absorption and had no obvious effect on the jejunum absorption. The effect of glycyrrhizin on intestinal PF absorption was related to concentrations. One mM of glycyrrhizin significantly increased PF absorption in the jejunum after 45 min and in the ileum after 90 min. But 100 μM of glycyrrhizin had an inhibitory effect in the jejunum and no effect in the ileum before 60 min. Moreover, verapamil, the well-known P-gp inhibitor, could significantly enhance the PF absorption. In conclusion, the influence of 18β-GA and glycyrrhizin on the PF absorption was related to concentrations and intestinal segments. This might be involved in the intervention of efflux transport of PF mediated by intestinal P-gp.

  19. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    PubMed

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  20. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production

    PubMed Central

    Lobo, Glenn P.; Hessel, Susanne; Eichinger, Anne; Noy, Noa; Moise, Alexander R.; Wyss, Adrian; Palczewski, Krzysztof; von Lintig, Johannes

    2010-01-01

    The uptake of dietary lipids from the small intestine is a complex process that depends on the activities of specific membrane receptors with yet unknown regulatory mechanisms. Using both mouse models and human cell lines, we show here that intestinal lipid absorption by the scavenger receptor class B type 1 (SR-BI) is subject to control by retinoid signaling. Retinoic acid via retinoic acid receptors induced expression of the intestinal transcription factor ISX. ISX then repressed the expression of SR-B1 and the carotenoid-15,15′-oxygenase Bcmo1. BCMO1 acts downstream of SR-BI and converts absorbed β,β-carotene to the retinoic acid precursor, retinaldehyde. Using BCMO1-knockout mice, we demonstrated increased intestinal SR-BI expression and systemic β,β-carotene accumulation. SR-BI-dependent accumulation of β,β-carotene was prevented by dietary retinoids that induced ISX expression. Thus, our study revealed a diet-responsive regulatory network that controls β,β-carotene absorption and vitamin A production by negative feedback regulation. The role of SR-BI in the intestinal absorption of other dietary lipids, including cholesterol, fatty acids, and tocopherols, implicates retinoid signaling in the regulation of lipid absorption more generally and has clinical implications for diseases associated with dyslipidemia.—Lobo, G. P., Hessel, S., Eichinger, A., Noy, N., Moise, A. R., Wyss, A., Palczewski, K., von Lintig, J. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production. PMID:20061533

  1. Intestinal absorption of miltefosine: contribution of passive paracellular transport.

    PubMed

    Ménez, Cécile; Buyse, Marion; Dugave, Christophe; Farinotti, Robert; Barratt, Gillian

    2007-03-01

    This study aimed to characterize the transepithelial transport of miltefosine (HePC), the first orally effective drug against visceral leishmaniasis, across the intestinal barrier to further understand its oral absorption mechanism. Caco-2 cell monolayers were used as an in vitro model of the human intestinal barrier. The roles of active and passive mechanisms in HePC intestinal transport were investigated and the relative contributions of the transcellular and paracellular routes were estimated. HePC transport was observed to be pH-independent, partially temperature-dependent, linear as a function of time and non-saturable as a function of concentration. The magnitude of HePC transport was quite similar to that of the paracellular marker mannitol, and EDTA treatment led to an increase in HePC transport. Furthermore, HePC transport was found to be similar in the apical-to-basolateral and basolateral-to-apical directions, strongly suggesting that HePC exhibits non-polarized transport and that no MDR-mediated efflux was involved. These results demonstrate that HePC crosses the intestinal epithelium by a non-specific passive pathway and provide evidence supporting a concentration-dependent paracellular transport mechanism, although some transcellular diffusion cannot be ruled out. Considering that HePC opens epithelial tight junctions, this study shows that HePC may promote its own permeation across the intestinal barrier.

  2. Changes in intestinal absorption of nutrients and brush border glycoproteins after total parenteral nutrition in rats.

    PubMed Central

    Miura, S; Tanaka, S; Yoshioka, M; Serizawa, H; Tashiro, H; Shiozaki, H; Imaeda, H; Tsuchiya, M

    1992-01-01

    The effect of total parenteral nutrition on nutrients absorption and glycoprotein changes of brush border membrane was examined in rat small intestine. In total parenteral nutrition rats, a marked decrease in activity of brush border enzymes was observed mainly in the proximal and middle segments of the intestine. Galactose perfusion of jejunal segment showed that hexose absorption was significantly inhibited, while intestinal absorption of glycine or dipeptide, glycylglycine was not significantly affected by total parenteral nutrition treatment. When brush border membrane glycoprotein profile was examined by [3H]-glucosamine or [3H]-fucose incorporation into jejunal loops, significant changes were observed in the glycoprotein pattern of brush border membrane especially in the high molecular weight range over 120 kDa after total parenteral nutrition treatment, suggesting strong dependency of glycoprotein synthesis on luminal substances. Molecular weight of sucrase isomaltase in brush border membrane detected by specific antibody showed no significant difference, however, in total parenteral nutrition and control rats. Also, molecular weight of specific sodium glucose cotransporter of intestinal brush border membrane detected by selective photoaffinity labelling was not altered in total parenteral nutrition rats. It may be that prolonged absence of oral food intake may produce significant biochemical changes in brush border membrane glycoprotein and absorptive capacity of small intestine, but these changes were not observed in all brush border membrane glycoproteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1582592

  3. Net Intestinal Transport of Oxalate Reflects Passive Absorption and SLC26A6-mediated Secretion

    PubMed Central

    Knauf, Felix; Ko, Narae; Jiang, Zhirong; Robertson, William G.; Van Itallie, Christina M.; Anderson, James M.

    2011-01-01

    Mice lacking the oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium-oxalate stones as a result of a defect in intestinal oxalate secretion, but what accounts for the absorptive oxalate flux remains unknown. We measured transepithelial absorption of [14C]oxalate simultaneously with the flux of [3H]mannitol, a marker of the paracellular pathway, across intestine from wild-type and Slc26a6-null mice. We used the anion transport inhibitor DIDS to investigate other members of the SLC26 family that may mediate transcellular oxalate absorption. Absorptive flux of oxalate in duodenum was similar to mannitol, insensitive to DIDS, and nonsaturable, indicating that it is predominantly passive and paracellular. In contrast, in wild-type mice, secretory flux of oxalate in duodenum exceeded that of mannitol, was sensitive to DIDS, and saturable, indicating transcellular secretion of oxalate. In Slc26a6-null mice, secretory flux of oxalate was similar to mannitol, and no net flux of oxalate occurred. Absorptive fluxes of both oxalate and mannitol varied in parallel in different segments of small and large intestine. In epithelial cell lines, modulation of the charge selectivity of the claudin-based pore pathway did not affect oxalate permeability, but knockdown of the tight-junction protein ZO-1 enhanced permeability to oxalate and mannitol in parallel. Moreover, formation of soluble complexes with cations did not affect oxalate absorption. In conclusion, absorptive oxalate flux occurs through the paracellular “leak” pathway, and net absorption of dietary oxalate depends on the relative balance between absorption and SLC26A6-dependent transcellular secretion. PMID:22021714

  4. Intestinal absorption differences of major bioactive compounds of Gegenqinlian Decoction between normal and bacterial diarrheal mini-pigs in vitro and in situ.

    PubMed

    Ling, Xiao; Xiang, Yuqiang; Chen, Feilong; Tang, Qingfa; Zhang, Wei; Tan, Xiaomei

    2018-04-15

    Intestinal condition plays an important role in drug absorption and metabolism, thus the effects of varied gastrointestinal diseases such as infectious diarrhea on the intestinal function are crucial for drug absorption. However, due to the lack of suitable models, the differences of absorption and metabolism of drugs between the diarrheal and normal intestines are rarely reported. Thus, in this study, Escherichia coli diarrhea model was induced in mini-pigs and single-pass intestinal perfusion and intestinal mucosal enzyme metabolism experiments were conducted. A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of 9 major components in Gegen Qinlian decoction (GQD). Samples were pretreated by protein precipitation with methanol and naringin and prednisolone were used as internal standards. The validated method demonstrated adequate sensitivity, selectivity, and process efficiency for the bioanalysis of 9 compounds. Results of intestinal perfusion showed that puerarin, daidzein, daidzin and baicalin and berberine were absorbed faster in diarrheal jejunum than in normal intestines (p < 0.05). However, puerarin, daidzin and liquiritin were metabolized more slowly in diarrheal intestine after incubation compared with the normal group (p < 0.05). The concentrations of daidzein in both perfusion and metabolism and wogonin in metabolism were significantly increased (p < 0.05). In conclusion, absorption and metabolism of GQD were significantly different between the diarrheal and normal intestines, which suggest that bacterial diarrheal mini-pigs model can be used in the intestinal absorption study and is worthy to be applied in the other intestinal absorption study of anti- diarrheal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats.

    PubMed

    Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei

    2016-09-01

    1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux.

  6. Intestinal Glucose Absorption Was Reduced by Vertical Sleeve Gastrectomy via Decreased Gastric Leptin Secretion.

    PubMed

    Du, Jinpeng; Hu, Chaojie; Bai, Jie; Peng, Miaomiao; Wang, Qingbo; Zhao, Ning; Wang, Yu; Wang, Guobin; Tao, Kaixiong; Wang, Geng; Xia, Zefeng

    2018-06-18

    The unique effects of gastric resection after vertical sleeve gastrectomy (VSG) on type 2 diabetes mellitus remain unclear. This work aimed to investigate the effects of VSG on gastric leptin expression and intestinal glucose absorption in high-fat diet-induced obesity. Male C57BL/6J mice were fed a high-fat diet (HFD) to induce obesity. HFD mice were randomized into VSG and sham-operation groups, and the relevant parameters were measured at 8 weeks postoperation. Higher gastric leptin expression and increased intestinal glucose transport were observed in the HFD mice. Furthermore, VSG reduced gastric leptin expression and the intestinal absorption of alimentary glucose. Both exogenous leptin replenishment during the oral glucose tolerance test (OGTT) and the addition of leptin into the everted isolated jejunum loops in vitro restored the glucose transport capacity in VSG-operated mice, and this effect was abolished when the glucose transporter GLUT2 was blocked with phloretin. Moreover, phloretin almost completely suppressed glucose transport in the HFD mice. Intestinal immunohistochemistry in the obese mice showed increased GLUT2 and diminished sodium glucose co-transporter 1 (SGLT-1) in the apical membrane of enterocytes. Decreased GLUT2 and enhanced SGLT1 were observed following VSG. VSG also reduced the phosphorylation status of protein kinase C isoenzyme β II (PKCβ II) in the jejunum, which was stimulated by the combination of leptin and glucose. Our data demonstrated that the decreased secretion of gastric leptin in VSG results in a decrease in intestinal glucose absorption via modulation of GLUT2 translocation.

  7. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine

    PubMed Central

    Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.

    2017-01-01

    Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308

  8. Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption.

    PubMed

    Lostao, M P; Urdaneta, E; Martínez-Ansó, E; Barber, A; Martínez, J A

    1998-02-27

    Leptin is involved in food intake and thermogenesis regulation. Since leptin receptor expression has been found in several tissues including small intestine, a possible role of leptin in sugar absorption by the intestine was investigated. Leptin inhibited D-galactose uptake by rat small intestinal rings 33% after 5 min of incubation. The inhibition increased to 56% after 30 min. However, neither at 5 min nor at 30 min did leptin prevent intracellular galactose accumulation. This leptin effect was accompanied by a decrease of the active sugar transport apparent Vmax (20 vs. 4.8 micromol/g wet weight 5 min) and apparent Km (15.8 vs. 5.3 mM) without any change in the phlorizin-resistant component. On the other hand, immunohistochemical experiments using anti-leptin monoclonal antibodies recognized leptin receptors in the plasma membrane of immune cells located in the lamina propria. These results indicate for the first time that leptin has a rapid inhibitory effect on sugar absorption and demonstrate the presence of leptin receptors in the intestinal mucosa.

  9. Factors in the intestinal absorption of oral cholecystopaques.

    PubMed

    Amberg, J R; Thompson, W M; Golberger, L; Williamson, S; Alexander, R; Bates, M

    1980-01-01

    Interest in the pharmacokinetics of cholecystopaques initially centered on transport from blood to bile. The data obtained in this effort have been valuable and have shown that the maximal iodine concentration achievable in the bile is quite similar for all of the currently available compounds. This concentration is, of course, dose dependent. the transport of contrast material from the bowel to the blood has been shown to be quite variable. Considerable progress was made in understanding this. The tremendous differences in absorption of iopanoic acid depending upon the pH of the administered solution was an initial revelation. The development of the concept that there is a water layer through which the cholecystopaque must pass before reaching the lipid membrane of the intestinal cell has added clarity to understanding the difference in absorption between water-soluble and water-insoluble cholecystopaques. A complete knowledge of what might enhance or inhibit absorption is not known. There is beginning to be an understanding of how intestinal dose relates to plasma levels. This should lead to an optimal dose-timing scheme for each cholecystopaque. The basic assumption is that the highest iodine concentration in the gallbladder leads to the most accurate cholecystography. If this is true, the gallbladder needs to be offered bile at the maximum concentrations during the period preceding filming. To accomplish this, the appropriate plasma level necessary for maximum excretion is needed. Experimental data suggest that our current clinical methods in regard to dose and dose timing need revision to optimize cholecystography. This revision needs to take place with a careful look at toxicity. Accepting the present premise that oral cholecystography can be improved, perhaps without a significant increase in morbidity, a fundamental question to be asked is: is it worth it?

  10. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5.

    PubMed

    Arakawa, Hiroshi; Shirasaka, Yoshiyuki; Haga, Makoto; Nakanishi, Takeo; Tamai, Ikumi

    2012-09-01

    Fluoroquinolone antimicrobial drugs are absorbed efficiently after oral administration despite of their hydrophilic nature, implying an involvement of carrier-mediated transport in their membrane transport process. It has been that several fluoroquinolones are substrates of organic anion transporter polypeptides OATP1A2 expressed in human intestine derived Caco-2 cells. In the present study, to clarify the involvement of OATP in intestinal absorption of ciprofloxacin, the contribution of Oatp1a5, which is expressed at the apical membranes of rat enterocytes, to intestinal absorption of ciprofloxacin was investigated in rats. The intestinal membrane permeability of ciprofloxacin was measured by in situ and the vascular perfused closed loop methods. The disappeared and absorbed amount of ciprofloxacin from the intestinal lumen were increased markedly in the presence of 7,8-benzoflavone, a breast cancer resistance protein inhibitor, and ivermectin, a P-glycoprotein inhibitor, while it was decreased significantly in the presence of these inhibitors in combination with naringin, an Oatp1a5 inhibitor. Furthermore, the Oatp1a5-mediated uptake of ciprofloxacin was saturable with a K(m) value of 140 µm, and naringin inhibited the uptake with an IC(50) value of 18 µm by Xenopus oocytes expressing Oatp1a5. Naringin reduced the permeation of ciprofloxacin from the mucosal-to-serosal side, with an IC(50) value of 7.5 µm by the Ussing-type chamber method. The estimated IC(50) values were comparable to that of Oatp1a5. These data suggest that Oatp1a5 is partially responsible for the intestinal absorption of ciprofloxacin. In conclusion, the intestinal absorption of ciprofloxacin could be affected by influx transporters such as Oatp1a5 as well as the efflux transporters such as P-gp and Bcrp. Copyright © 2012 John Wiley & Sons, Ltd.

  11. The facilitated component of intestinal glucose absorption

    PubMed Central

    Kellett, George L

    2001-01-01

    Over the last decade, a debate has developed about the mechanism of the passive or ‘diffusive’ component of intestinal glucose absorption and, indeed, whether it even exists. Pappenheimer and colleagues have proposed that paracellular solvent drag contributes a passive component, which, at high concentrations of sugars similar to those in the jejunal lumen immediately after a meal, is severalfold greater than the active component mediated by the Na+-glucose cotransporter SGLT1. On the other hand, Ferraris & Diamond maintain that the kinetics of glucose absorption can be explained solely in terms of SGLT1 and that a passive or paracellular component plays little, if any, part. Recently, we have provided new evidence that the passive component of glucose absorption exists, but is in fact facilitated since it is mediated by the rapid, glucose-dependent activation and recruitment of the facilitative glucose transporter GLUT2 to the brush-border membrane; regulation involves a protein kinase C (PKC)-dependent pathway activated by glucose transport through SGLT1 and also involves mitogen-activated protein kinase (MAP kinase) signalling pathways. This topical review seeks to highlight the significant points of the debate, to show how our proposals on GLUT2 impact on different aspects of the debate and to look at the regulatory events that are likely to be involved in the short-term regulation of sugar absorption during the assimilation of a meal. PMID:11251042

  12. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns.

    PubMed

    Hu, Sen; Liu, Wei-wei; Zhao, Ying; Lin, Zhi-long; Luo, Hong-min; Bai, Xiao-dong; Sheng, Zhi-yong; Zhou, Fang-qiang

    2014-06-01

    To investigate alteration in intestinal absorption during enteral resuscitation with pyruvate-enriched oral rehydration solution (Pyr-ORS) in scalded rats. To compare pyruvate-enriched oral rehydration solution (Pyr-ORS) with World Health Organisation oral rehydration solution (WHO-ORS), 120 rats were randomly divided into 6 groups and 2 subgroups. At 1.5 and 4.5 h after a 35% TBSA scald, the intestinal absorption rate, mucosal blood flow (IMBF), Na(+)-K(+)-ATPase activity and aquaporin-1 (AQP-1) expression were determined (n = 10), respectively. The intestinal Na(+)-K(+)-ATPase activity, AQP-1 expression and IMBF were markedly decreased in scald groups, but they were profoundly preserved by enteral resuscitation with WHO-ORS and further improved significantly with Pyr-ORS at both time points. Na(+)-K+-ATPase activities remained higher in enteral resuscitation with Pyr-ORS (Group SP) than those with WHO-ORS (Group SW) at 4.5 h. AQP-1 and IMBF were significantly greater in Group SP than in Group SW at both time points. Intestinal absorption rates of water and sodium were obviously inhibited in scald groups; however, rates were also significantly preserved in Group SP than in Group SW with an over 20% increment at both time points. The Pyr-ORS may be superior to the standard WHO-ORS in the promotion of intestinal absorption of water and sodium during enteral resuscitation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  13. Influence of intestinal efflux pumps on the absorption and transport of furosemide

    PubMed Central

    Al-Mohizea, Abdullah M.

    2010-01-01

    Purpose Furosemide is a commonly used diuretic which is used in the treatment of edema, congestive heart failure, hypertension and renal failure. Its absorption exhibits inter- and intra-subject variability that can be attributed to many factors including the intestinal efflux pumps such as the P-glycoprotein (P-gp). This study was done due to the great disagreement between what is published in the literature regarding the influence of P-gp on furosemide and at the same time due to the importance of this drug in the treatment of different conditions as described above. In addition, an investigation of the effect of two of the commonly used pharmaceutical excipients (hydroxypropyl β-cyclodextrin [HPβCD] and Tween 80) and also a P-gp inhibitor (verapamil hydrochloride) on the intestinal absorption of this drug were also done. Methods The study utilized the everted intestinal sacs technique to investigate both the effect of the efflux transporter (P-gp) on furosemide absorption and also the effect of the chosen excipients. Results The absorption of furosemide was significantly influenced by the P-gp as confirmed by the everted vis the non-everted sacs together with the verapamil study in which the transport of furosemide was inhibited by verapamil. In addition, Tween 80 was also shown to inhibit the P-gp pump whereas the HPβCD did not significantly influence the efflux of furosemide in this study. Conclusions P-glycoprotein and some of the used excipients in the formulation play a very important role in the transport of furosemide and other drugs. Thus excipients that affect the activity of P-gp should be avoided when formulating drugs that are substrate for the P-gp or other efflux pumps. PMID:23960725

  14. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres

    PubMed Central

    Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith

    2013-01-01

    Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388

  15. Impact of calcium intake and intestinal calcium absorption on kidney stones in older women: the study of osteoporotic fractures.

    PubMed

    Sorensen, Mathew D; Eisner, Brian H; Stone, Katie L; Kahn, Arnold J; Lui, Li-Yung; Sadetsky, Natalia; Stoller, Marshall L

    2012-04-01

    Intestinal calcium absorption is thought to have a critical role in nephrolithiasis. However, to our knowledge no study has directly assessed this association. Therefore, we explored the relationship among intestinal fractional calcium absorption, calcium intake and nephrolithiasis. The Study of Osteoporotic Fractures is a prospective cohort of 9,704 postmenopausal women recruited from population based listings in 1986 and followed for more than 20 years. Secondary analyses were performed of 7,982 women who reported their history of nephrolithiasis, of which 5,452 (68%) underwent an oral radioactive calcium assay (45Ca). The impact of dietary and supplemental calcium on intestinal fractional calcium absorption was evaluated, and factors independently associated with nephrolithiasis were determined. Fractional calcium absorption decreased with increased calcium intake, with no difference between dietary and supplemental calcium. Fractional calcium absorption was higher in women with a nephrolithiasis history among all calcium intake groups. Increased dietary calcium intake reduced the likelihood of nephrolithiasis by 45% to 54% (p=0.03). Women with a history of nephrolithiasis were less likely to supplement calcium (p<0.001). In adjusted analyses women who supplemented calcium were 21% to 38% less likely to have a nephrolithiasis history (p=0.007) and there was a 24% increased risk of kidney stones for each 10% increase in fractional calcium absorption (p=0.008). Fractional calcium absorption is higher in women with a history of nephrolithiasis. Higher intestinal fractional calcium absorption is associated with a greater risk of historical nephrolithiasis. Dietary and supplemental calcium decrease fractional calcium absorption, and may protect against nephrolithiasis. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Effects of a single dose of menadione on the intestinal calcium absorption and associated variables.

    PubMed

    Marchionatti, Ana M; Díaz de Barboza, Gabriela E; Centeno, Viviana A; Alisio, Arturo E; Tolosa de Talamoni, Nori G

    2003-08-01

    The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.

  17. Effects of quercetin and menadione on intestinal calcium absorption and the underlying mechanisms.

    PubMed

    Marchionatti, Ana M; Pacciaroni, Adriana; Tolosa de Talamoni, Nori G

    2013-01-01

    Quercetin (QT) could be considered as a potential therapeutic agent for different diseases due to its antioxidant, anti-inflammatory, antiviral and anticancer properties. This study was designed to investigate the ability of QT to protect the chick intestine against menadione (MEN) induced injury in vivo and in vitro. Four-week old chicks (Gallus gallus) were treated i.p. with 2.5μmol of MEN/kg b.w. or with i.l. 50μM QT or both. QT protected the intestinal Ca(2+) absorption against the inhibition caused by MEN, but QT alone did not modify. Glutathione (GSH) depletion provoked by MEN in chick enterocytes was abolished by QT treatment, whereas QT alone did not modify the intestinal GSH content. The enhancement of GSH peroxidase activity produced by MEN was blocked by QT treatment. In contrast, superoxide dismutase activity remained high after simultaneous treatment of enterocytes with MEN and QT. The flavonol also avoided changes in the mitochondrial membrane permeability (swelling) produced by MEN. The FasL/Fas/caspase-3 pathway was activated by MEN, effect that was abrogated by QT. In conclusion, QT may be useful in preventing inhibition of chick intestinal Ca(2+) absorption caused by MEN or other substances that deplete GSH, by blocking the oxidative stress and the FasL/Fas/caspase-3 pathway activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new technique has been developed for making serial measurements of water and solute absorption from the lumen of isolated small intestine. 2. The isolated intestine is perfused in a single pass with a segmented flow of slugs of liquid separated by bubbles of oxygen-carbon dioxide mixture. Simultaneous collections are made of effluent from the lumen and of the fluid which is transported across the mucosa. This latter fluid appears to be a fair sample of the tissue fluid. 3. Conditions in the lumen can be changed within less than 5 min. The effects of two or more treatments applied to the same segment of intestine can be determined and the time course of a change in luminal conditions. 4. The rate of appearance of solutes on the serosal side depends on the rate of water absorption, and changes exponentially towards a steady state. The rate constant is a function of tissue fluid volume. 5. In the steady state the concentration of glucose in the tissue fluid is 71 mM when the luminal concentration is 28 mM, and is 45 mM when the luminal concentration is 8·3 mM. 6. For solutes such as glucose for which reflux from tissue fluid to lumen is small relative to flux from lumen to tissue fluid, the time of attainment of a steady state in secretion is usually 50-60 min. 7. For solutes such as sodium for which the reflux is relatively high, the steady state may be reached in 15-20 min. 8. The Km for glucose absorption (14-19 mM) is much lower than is found with unsegmented flow perfusion. 9. These findings emphasize problems in interpreting results from other types of intestinal preparation. 10. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium concentration is reduced abruptly. In contrast the rate of glucose absorption falls suddenly when the luminal glucose concentration is reduced abruptly. This suggests that glucose absorption is not directly dependent on luminal sodium ions. ImagesPlate 1 PMID:4422346

  19. Impact of Calcium Intake and Intestinal Calcium Absorption on Kidney Stones in Older Women: The Study of Osteoporotic Fractures (SOF)

    PubMed Central

    Sorensen, Mathew D.; Eisner, Brian H.; Stone, Katie L.; Kahn, Arnold J.; Lui, Li-Yung; Sadetsky, Natalia; Stoller, Marshall L.

    2013-01-01

    Purpose Intestinal calcium absorption is thought to play a critical role in nephrolithiasis; however, no study has directly assessed this association. The purpose of this study was to explore the relationship between intestinal fractional calcium absorption, calcium intake, and nephrolithiasis. Materials and Methods The Study of Osteoporotic Fractures is a prospective cohort of 9704 post-menopausal women recruited from population-based listings in 1986 and followed for more than 20 years. Secondary analyses were performed of 7982 women who reported their history of nephrolithiasis, of which 5452 (68%) underwent oral radioactive calcium assay (45Ca). The impact of dietary and supplemental calcium on intestinal fractional calcium absorption was evaluated and factors independently associated with nephrolithiasis were determined. Results Fractional calcium absorption decreased with increased calcium intake, with no difference between dietary and supplemental calcium. Fractional calcium absorption was higher in women with a nephrolithiasis history among all calcium intake groups. Increased dietary calcium intake reduced the likelihood of nephrolithiasis by 45–54% (p=0.03). Women with a history of nephrolithiasis were less likely to supplement calcium (p<0.001). In adjusted analyses, women who supplemented calcium were 21–38% less likely to have a nephrolithiasis history (p=0.007) and there was a 24% increased risk of kidney stones for each 10% increase in fractional calcium absorption (p=0.008). Conclusions Fractional calcium absorption is higher in women with a history of nephrolithiasis. Higher intestinal fractional calcium absorption is associated with a greater risk of historic nephrolithiasis. Dietary and supplemental calcium decrease fractional calcium absorption and may protect against nephrolithiasis. PMID:22341269

  20. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    PubMed Central

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  1. Study on the release of fenofibrate nanosuspension in vitro and its correlation with in situ intestinal and in vivo absorption kinetics in rats.

    PubMed

    Xu, Yuanlong; Wang, Yonglu; Li, Xue Ming; Huang, Qinqin; Chen, Wei; Liu, Ran; Chen, BaoAn; Wei, Ping

    2014-07-01

    As an oral delivery carrier for poorly water soluble drugs, the nanosuspension was prepared by melt emulsification method combined with high-pressure homogenization. The objective of this study was to clarify the absorption mechanism in rats of fenofibrate nanosuspension using the model of in situ gut perfusion. The release rate of drug from nanosuspension was fast which about 70% of the drug would be released within 5 minutes. The absorption of fenofibrate nanosuspension in the gastrointestinal (GI) tract was studied by the in situ closed loop method in rats. It was found that the absorption process in intestine was first-process with passive diffusion mechanism, and the whole intestine was the major segment for the drug absorption. Additionally, GI absorption in situ studies indicated that the fenofibrate nanosuspension had great success in regard to enhancement of intestinal absorption compared to the fenofibrate suspension of coarse powder. The pharmacokinetic characteristics were studied in rats after oral administration of fenofibrate nanosuspension or suspension at the dosage of 27 mg/kg. The plasma concentration-time curve was fitted to the one-compartment model. The correlation between in vitro dissolution (P), in situ intestinal absorption (F) and in vivo absorption (Fa) in rats was investigated with the results as follows: Fa = 6.2061P-456.38(r = 0.9559), F = 3.6911P-2.2169(r = 0.970), F = 0.5095P + 44.189(r = 0.9609). The highest level A could be obtained from the in vitro--in vivo correlation (IVIVC) between dissolution percentage and intestinal absorption of the fenofibrate nanosuspension in rats. Consequently, the in situ intestinal perfusion model could be used to predict the in vivo pharmacokinetic characteristics in rats.

  2. [Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].

    PubMed

    Huang, Wei; Liu, Rui; Guo, Wei; Wei, Na; Qiang, Ou; Li, Xian; Ou, Yan; Tang, Chengwei

    2012-11-01

    To investigate whether high-fat diet induced obesity was associated with variation of glucose absorption in small intestinal mucosa of rats. 46 male SD rats were randomly divided into high-fat diet group (n = 31) and control group (n = 15), fed with high-fat diet and normal diet for 24 weeks, respectively. After 24 weeks, the rats were divided into obese (n = 16) and obesity-resistant group (n = 10) according to their body weight. Rats' body weight, abdominal fat weight, plasma glucose level, maltase, sucrase activity in small intestinal mucosa were measured. SGLT-1 expression in intestinal mucosa was detected by immunohistochemistry, RT-PCR and Western blot. Mean body weight, abdominal fat weight, fast plasma glucose levels, maltase activities and SGLT-1 protein expression in intestinal mucosa of obese rats were significantly higher than those in the control and obesity-resistant rats (P < 0.05). Sucrase activities in intestinal mucosa showed no statistical difference among the three groups (P > 0.05). The SGLT-1 mRNA expression in obese group was increased by 12.5% and 23% when compare with the control and obesity-resistant group, respectively. But the difference was not statistical significant (P > 0.05). High-fat diet induced obesity was associated with the increased intestinal maltase activity and expression of SGLT-1 in rats, the key molecule in glucose absorption.

  3. Evaluation of intestinal absorption of amtolmetin guacyl in rats: breast cancer resistant protein as a primary barrier of oral bioavailability.

    PubMed

    Rong, Zhihui; Xu, Yanjiao; Zhang, Chengliang; Xiang, Daochun; Li, Xiping; Liu, Dong

    2013-02-27

    The purpose of the present study was to investigate the role of efflux transporters on the intestinal absorption of amtolmetin guacyl (MED-15). The effects of P-glycoprotein (P-gp), multiple resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on intestinal absorption amount of MED-5 (tolmetin-glycine amide derivative), the metabolite formed from MED-15 in the intestinal epithelial cells were studied in the in vitro everted gut sac experiments. Moreover, the in situ single-pass intestine perfusion was adopted to clarify the role of efflux transporters in excreting MED-5 in knockout mice. The plasma concentration of MED-5 and tolmetin, the metabolite formed from MED-5 was determined in Bcrp1 knockout mice and wild-type mice. BCRP inhibitor Ko143 (50 μM and 100 μM) significantly increased the intestinal absorption amount in jejunum, ileum and colon (p<0.05). However, no effect was observed in the presence of P-gp inhibitor verapamil and MRP2 inhibitor MK571 in each intestinal segment. Furthermore, the plasma concentration MED-5 and tolmetin, metabolites of MED-15, increased 2-fold and 4-fold, respectively, in Bcrp1 knockout mice compared with wild-type mice after the single-pass perfusion of small intestine with MED-15. It may be concluded that BCRP plays an important role in the intestinal efflux of MED-5 and limits the bioavailability after oral administration of MED-15. Copyright © 2013. Published by Elsevier Inc.

  4. Immunological demonstration of intestinal absorption and digestion of protein macromolecules in the trout (Salmo gairdneri).

    PubMed

    Georgopoulou, U; Sire, M F; Vernier, J M

    1986-01-01

    An immunofluorescence technique using antibodies against the Fc and Fab fragments of human IgG (IgGH) was used to study the absorption of proteins by the intestinal epithelial cells of rainbow trout after oral or anal administration. Cellular absorption of a high molecular weight protein, hepatitis-B surface antigen (HBsAg), was also studied by using two monoclonal antibodies, one specific for the confirmation of the antigen (implying disulfide bridges), and the other that reacts with the constituent polypeptides. Both absorbed IgGH and HBsAg were seen to be segregated in the apical vacuolar system, a characteristic feature of intestinal epithelial cells. The same antibodies were used with an everted sac technique in conjunction with immunofluorescence, to show the intravacuolar degradation of IgGH and HBsAg following absorption. By using an antibody against cathepsin D, it was possible to demonstrate, by immunofluorescence, the localization of this enzyme in the same vacuolar system. After coupling the antibody to peroxidase or to the protein A/colloidalgold complex, the ultrastructural antigenic sites of cathepsin D could be seen to be localized in the interior of the vacuoles. The vacuolar localization of a cathepsin B activity was determined by incubating sections of intestinal mucosa, or isolated epithelial cells, with a specific synthetic substrate (Z-Ala-Arg-Arg-methoxynaphthylamide). The supranuclear hyaloplasmic vacuoles of intestinal epithelial cells may be considered to be phagolysosomes that assure the degradation of absorbed proteins. This function may be of fundamental importance in the in the nutritional processes of this species.

  5. Simple test of intestinal calcium absorption measured by stable strontium.

    PubMed Central

    Milsom, S; Ibbertson, K; Hannan, S; Shaw, D; Pybus, J

    1987-01-01

    A clinical test of intestinal calcium absorption has been developed using non-radioactive stable strontium as a calcium tracer. In nine elderly subjects there was a close correlation between the fractional absorption of strontium and radioactive calcium (45Ca) during a five hour period after the simultaneous oral administration of the two tracers. Comparable precision was achieved with each tracer in six subjects in whom the test was repeated after two weeks. The effect of food on strontium absorption was examined in a further 33 normal subjects (age 21-60 years), and the administration of the strontium with a standard breakfast was shown to reduce the variance at individual time points. A simplified test in which serum strontium concentration was measured four hours after the oral dose given with a standard breakfast was adopted as the routine procedure. The normal range (mean (2 SD], established over 97 tests in 53 patients, was 7.0-18.0% of the dose in the extracellular fluid. A further 30 patients with possible disorders of calcium absorption (10 with primary hyperparathyroidism and 20 with coeliac disease) were studied by this standard test. In both groups of patients the mean four hour strontium values were significantly different from normal. This standard strontium absorption test allows assessment of calcium absorption with sufficient sensitivity and precision to have a wide application in clinical practice. PMID:3115389

  6. In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans.

    PubMed

    Chedik, Lisa; Mias-Lucquin, Dominique; Bruyere, Arnaud; Fardel, Olivier

    2017-06-30

    Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides ( n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines ( n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds ( n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects.

  7. In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans

    PubMed Central

    Chedik, Lisa; Mias-Lucquin, Dominique; Bruyere, Arnaud; Fardel, Olivier

    2017-01-01

    Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides (n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines (n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds (n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects. PMID:28665355

  8. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving

  9. Viable, lyophilized lactobacilli do not increase iron absorption from a lactic acid-fermented meal in healthy young women, and no iron absorption occurs in the distal intestine.

    PubMed

    Bering, Stine; Sjøltov, Laila; Wrisberg, Seema S; Berggren, Anna; Alenfall, Jan; Jensen, Mikael; Højgaard, Liselotte; Tetens, Inge; Bukhave, Klaus

    2007-11-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, production of organic acids, or by the viable lactic acid bacteria. In this study the effect of a heat-inactivated lactic acid-fermented oat gruel with and without added viable, lyophilized Lactobacillus plantarum 299v on non-haem Fe absorption was investigated. Furthermore, Fe absorption in the distal intestine was determined. In a randomized, double-blinded crossover trial eighteen healthy young women aged 22 (SD 3) years with low Fe status (serum ferritin < 30 microg/l) were served the two test gruels, extrinsically labelled with 59Fe and served with two enterocoated capsules (containing 55Fe(II) and 55Fe(III), respectively) designed to disintegrate in the ileum. The meals were consumed on two consecutive days, e.g. in the order AA followed by BB in a second period. Non-haem Fe absorption was determined from 59Fe whole-body retention and isotope activities in blood samples. The concentrations of Fe, lactate, phytate, and polyphenols, and the pH were similar in the heat-inactivated lactic acid-fermented oat gruels with and without added L. plantarum 299v, and no difference in Fe absorption was observed between the test gruels (1.4 and 1.3%, respectively). Furthermore, no absorption of Fe in the distal intestine was observed. In conclusion, addition of viable, lyophilized lactobacillus to a heat-inactivated lactic acid-fermented oat gruel does not affect Fe absorption, and no absorption seems to occur in the distal part of the intestine from low Fe bioavailability meals in these women.

  10. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function

    PubMed Central

    van Heek, Margaret; Farley, Constance; Compton, Douglas S; Hoos, Lizbeth; Davis, Harry R

    2001-01-01

    Ezetimibe potently inhibits the transport of cholesterol across the intestinal wall, thereby reducing plasma cholesterol in preclinical animal models of hypercholesterolemia. The effect of ezetimibe on known absorptive processes was determined in the present studies.Experiments were conducted in the hamster and/or rat to determine whether ezetimibe would affect the absorption of molecules other than free cholesterol, namely cholesteryl ester, triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid. In addition, to determine whether exocrine pancreatic function is involved in the mechanism of action of ezetimibe, a biliary anastomosis model, which eliminates exocrine pancreatic function from the intestine while maintaining bile flow, was established in the rat.Ezetimibe reduced plasma cholesterol and hepatic cholesterol accumulation in cholesterol-fed hamsters with an ED50 of 0.04 mg kg−1. Utilizing cholesteryl esters labelled on either the cholesterol or the fatty acid moiety, we demonstrated that ezetimibe did not affect cholesteryl ester hydrolysis and the absorption of fatty acid thus generated in both hamsters and rats. The free cholesterol from this hydrolysis, however, was not absorbed (92 – 96% inhibition) in the presence of ezetimibe. Eliminating pancreatic function in rats abolished hydrolysis of cholesteryl esters, but did not affect the ability of ezetimibe to block absorption of free cholesterol (−94%). Ezetimibe did not affect the absorption of triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid in rats.Ezetimibe is a potent inhibitor of intestinal free cholesterol absorption that does not require exocrine pancreatic function for activity. Ezetimibe does not affect the absorption of triglyceride as a pancreatic lipase inhibitor (Orlistat) would, nor does it affect the absorption of vitamin A, D or taurocholate, as a bile acid sequestrant (cholestyramine) would. PMID:11564660

  11. Energy absorption as a measure of intestinal failure in the short bowel syndrome.

    PubMed Central

    Rodrigues, C A; Lennard-Jones, J E; Thompson, D G; Farthing, M J

    1989-01-01

    Energy absorption from a liquid test meal, intestinal transit rate and water and sodium output over a six hour period were measured in five patients with an ileostomy and 12 patients with the short bowel syndrome, five of whom were on longterm parenteral nutrition. The proportion of total energy absorbed was greatest in the ileostomists (median 87%, range 82-92%), less in short bowel patients not on parenteral nutrition (median 67%, range 59-78%, p less than 0.01) and least in the short bowel group who needed it (median 27%, range 2-63%, p less than 0.01). Transit rate was more rapid in the short bowel patients compared with the ileostomists. A close correlation was observed between percentage energy absorption and the dry weight of the stools/stoma effluent collected during the six hour test period (r = -0.99, p less than 0.001). This simple non-invasive test quantitates the degree of intestinal failure and may be of practical help in management. PMID:2495238

  12. Energy absorption as a measure of intestinal failure in the short bowel syndrome.

    PubMed

    Rodrigues, C A; Lennard-Jones, J E; Thompson, D G; Farthing, M J

    1989-02-01

    Energy absorption from a liquid test meal, intestinal transit rate and water and sodium output over a six hour period were measured in five patients with an ileostomy and 12 patients with the short bowel syndrome, five of whom were on longterm parenteral nutrition. The proportion of total energy absorbed was greatest in the ileostomists (median 87%, range 82-92%), less in short bowel patients not on parenteral nutrition (median 67%, range 59-78%, p less than 0.01) and least in the short bowel group who needed it (median 27%, range 2-63%, p less than 0.01). Transit rate was more rapid in the short bowel patients compared with the ileostomists. A close correlation was observed between percentage energy absorption and the dry weight of the stools/stoma effluent collected during the six hour test period (r = -0.99, p less than 0.001). This simple non-invasive test quantitates the degree of intestinal failure and may be of practical help in management.

  13. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  14. Effect of dietary phosphorus on intestinal phosphorus absorption in growing Holstein steers.

    PubMed

    Feng, X; Ronk, E; Hanigan, M D; Knowlton, K F; Schramm, H; McCann, M

    2015-05-01

    The effect of dietary P intake on intestinal P absorption was evaluated in growing Holstein steers. Diets varying in P content (0.15, 0.27, 0.36, and 0.45%, DM basis) were fed to 8 steers (174±10kg of BW) fitted with permanent duodenal and ileal cannulas in a replicated 4×4 Latin square with 14-d periods. Ytterbium-labeled corn silage and cobalt-EDTA were used as particulate and liquid phase markers, respectively, to measure digesta flow. Duodenal and ileal samples and spot urine samples were collected every 9 h from d 11 to 14. Total fecal collection was conducted on d 11 to 14 with fecal bags. Blood samples were collected from the coccygeal vessel on d 14. Feed, digesta, and fecal samples were analyzed for total P and inorganic P. Data were analyzed using PROC GLIMMIX in SAS with a model including treatment, square, period, and interaction of treatment and square. Preplanned contrasts were used to evaluate linear and quadratic treatment effects. Results were reported as least squares means. Dry matter intake (mean=4.90kg/d, 2.8% of BW) and apparent DM digestibility (mean=78.1%) were unaffected by treatment. Duodenal and ileal flow of total P increased linearly with increasing P intake (13.4, 18.5, 23.0, and 27.4g/d; 6.80, 7.87, 8.42, and 10.4g/d). Increasing P intake increased the quantity of P absorbed from the small intestine linearly (6.96, 11.1, 14.6, and 17.2g/d), but absorption efficiency was unchanged (mean=59.6%). Phosphorus was absorbed on a net basis from the large intestine, but this was not affected by treatment and was a small proportion of total P absorption. Blood inorganic P increased linearly with increased dietary P (4.36, 6.31, 7.68, and 8.5mg/dL) and salivary P secretion was unchanged (mean=5.79g/d), suggesting that rumen function was prioritized during short-term P deficiency. These data showing an absence of change in absorption efficiency and salivary P secretion in the face of short-term P deficiency may be used to improve published

  15. Intestinal absorption of chromium as affected by wheat bran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, K.S.; Holloway, C.L.; Hegsted, M.

    1986-03-01

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 gmore » of the respective diet, 2 hr later intubated with 100..mu..Ci of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium.« less

  16. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.

    PubMed

    Lundquist, P; Artursson, P

    2016-11-15

    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Low zinc status and absorption exist in infants with jejunostomies or ileostomies which persists after intestinal repair

    USDA-ARS?s Scientific Manuscript database

    There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer s...

  19. Avian species differences in the intestinal absorption of xenobiotics (PCB, dieldrin, Hg2+)

    USGS Publications Warehouse

    Serafin, J.A.

    1984-01-01

    1. Intestinal absorption of a polychlorinated biphenyl, dieldrin, and mercury (from HgCl2) was measured in adult Northern bobwhites, Eastern screech owls, American kestrels, black-crowned night-herons and mallards in vivo by an in situ luminal perfusion technique.2. Bobwhites, screech owls and kestrels absorbed much more of each xenobiotic than black-crowned night-herons and mallards.3. Mallards absorbed less dieldrin and mercury than black-crowned night-herons.4. Mercury absorption by kestrels was more than twice that in screech owls and eight times that observed in mallards.5. Pronounced differences in xenobiotic absorption rates between bobwhites, screech owls and kestrels on the one hand, and black-crowned night-herons and mallards on the other, raise the possibility that absorptive ability may be associated with the phylogenetic classification of birds.

  20. Relationship of /sup 65/Zn absorption kinetics to intestinal metallothionein in rats: effects of zinc depletion and fasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    1988-04-01

    Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less

  1. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  2. Distinct intestinal adaptation for vitamin B12 and bile acid absorption revealed in a new mouse model of massive ileocecal resection.

    PubMed

    Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya

    2017-09-15

    Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.

  3. Enhancement of intestinal water absorption and sodium transport by glycerol in rats.

    PubMed

    Wapnir, R A; Sia, M C; Fisher, S E

    1996-12-01

    Glycerol (Gly) is a hydrophilic, absorbable, and energy-rich solute that could make water absorption more efficient. We investigated the use of Gly in a high-energy beverage containing corn syrup (CS) by using a small intestine perfusion procedure in the rat, an approach shown earlier to provide good preclinical information. The effectiveness of several formulations with Gly and CS was compared with commercial products and to experimental formulas where Gly substituted for glucose (Glc). The CS-Gly combination was more effective than preparations on the market containing sucrose and Glc-fructose syrups (G-P and G-L, respectively) in maintaining a net water absorption balance in the test jejunal segment [CS-Gly = 0.21 +/- 0.226, G-L = -1.516 +/- 0.467, and G-P = -0.299 +/- 0.106 (SE) microliter.min-1.cm-1 (P = 0.0113)] and in reducing sodium release into the lumen [CS-Gly = -133.2 +/- 16.2, G-L = -226.7 +/- 25.2, and G-P = -245.6 +/- 23.4 nmol.min-1.cm-1 (P = 0.0022)]. In other preparations, at equal CS concentrations (60 and 80 g/l, respectively), Gly clearly improved net water absorption over a comparable Glc-containing product [CS60-Gly = 0.422 +/- 0.136 and CS80-Gly = 0.666 +/- 0.378 vs. CS60-Glc = -0.282 +/- 0.200 and CS80-Glc = -1.046 +/- 0.480 microliters.min-1.cm-1 (P = 0.0019)]. On the basis of the data of this rat intestine perfusion model, Gly could be a useful ingredient in energy-rich beverages and might enhance fluid absorption in humans.

  4. Effect of Vilon and Epithalon on glucose and glycine absorption in various regions of small intestine in aged rats.

    PubMed

    Khavinson, V Kh; Egorova, V V; Timofeeva, N M; Malinin, V V; Gordova, L A; Gromova, L V

    2002-05-01

    Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly) administered orally for 1 month improved transport characteristics of the small intestine in aged rats. Vilon enhanced passive glucose accumulation in the serous fluid in inverted sac made from the distal region of the small intestine, while Epithalon enhanced this process in the medial region. Vilon stimulated active glucose accumulation in the serous sac of the medial small intestine, Epithalon - in the proximal and distal small intestinal segments. Glycine absorption increased only in the proximal intestinal segment under the effect of Epithalon.

  5. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness.

    PubMed

    Miller, Asaf; Deane, Adam M; Plummer, Mark P; Cousins, Caroline E; Chapple, Lee-Anne S; Horowitz, Michael; Chapman, Marianne J

    2017-03-01

    To evaluate the effect of exogenous glucagonlike peptide-1 (GLP-1) on small intestinal glucose absorption and blood glucose concentrations during critical illness. A prospective, blinded, placebo-controlled, cross-over, randomised trial in a mixed medical-surgical adult intensive care unit, with 12 mechanically ventilated critically ill patients, who were suitable for receiving small intestinal nutrient. On consecutive days, in a randomised order, participants received intravenous GLP-1 (1.2 pmol/ kg/min) or placebo (0.9% saline) as a continuous infusion over 270 minutes. After 6 hours of fasting, intravenous infusions of GLP-1 or placebo began at T = -30 min (in which T = time), with the infusion maintained at a constant rate until study completion at T = 240 min. At T = 0 min, a 100 mL bolus of mixed liquid nutrient meal (1 kcal/mL) containing 3 g of 3-O-methyl-D-gluco-pyranose (3-OMG), a marker of glucose absorption, was administered directly into the small intestine, via a post-pyloric catheter, over 6 minutes. Blood samples were taken at regular intervals for the measurement of plasma glucose and 3-OMG concentrations. Intravenous GLP-1 attenuated initial small intestinal glucose absorption (mean area under the curve [AUC] 0-30 for 3-OMG: GLP-1 group, 4.4 mmol/L/min [SEM, 0.9 mmol/L/min] v placebo group, 6.5 mmol/L/min [SEM, 1.0 mmol/L/min]; P = 0.01), overall small intestinal glucose absorption (mean AUC 0-240 for 3-OMG: GLP-1, 68.2 mmol/L/ min [SEM, 4.7 mmol/L/min] v placebo, 77.7 mmol/L/min [SEM, 4.4 mmol/lLmin]; P = 0.02), small intestinal glucose absorption and overall blood glucose concentration (mean AUC 0-240 for blood glucose: GLP-1, 2062 mmol/L/min [SEM, 111 mmol/L/min] v placebo 2328 mmol/L/min [SEM, 145 mmol/L/min]; P = 0.005). Short-term administration of exogenous GLP-1 reduces small intestinal glucose absorption for up to 4 hours during critical illness. This is likely to be an additional mechanism for the glucose-lowering effect of this agent.

  6. Involvement of concentrative nucleoside transporter 1 in intestinal absorption of trifluorothymidine, a novel antitumor nucleoside, in rats.

    PubMed

    Okayama, Takashige; Yoshisue, Kunihiro; Kuwata, Keizo; Komuro, Masahito; Ohta, Shigeru; Nagayama, Sekio

    2012-02-01

    ααα-Trifluorothymidine (TFT), an anticancer nucleoside analog, is a potent thymidylate synthase inhibitor. TFT exerts its antitumor activity primarily by inducing DNA fragmentation after incorporation of the triphosphate form of TFT into the DNA. Although an oral combination of TFT and a thymidine phosphorylase inhibitor has been clinically developed, there is little information regarding TFT absorption. Therefore, we investigated TFT absorption in the rat small intestine. After oral administration of TFT in rats, more than 75% of the TFT was absorbed. To identify the uptake transport system, uptake studies were conducted by using everted sacs prepared from rat small intestines. TFT uptake was saturable, significantly reduced under Na(+)-free conditions, and strongly inhibited by the addition of an endogenous pyrimidine nucleoside. From these results, we suggested the involvement of concentrative nucleoside transporters (CNTs) in TFT absorption into rat small intestine. In rat small intestines, the mRNAs coding for rat CNT1 (rCNT1) and rCNT2, but not for rCNT3, were predominantly expressed. To investigate the roles of rCNT1 and rCNT2 in TFT uptake, we conducted uptake assays by using Xenopus laevis oocytes injected with rCNT1 complementary RNA (cRNA) and rCNT2 cRNA. TFT uptake by X. laevis oocytes injected with rCNT1 cRNA, and not rCNT2 cRNA, was significantly greater than that by water-injected oocytes. In addition, in situ single-pass perfusion experiments performed using rat jejunum regions showed that thymidine, a substrate for CNT1, strongly inhibited TFT uptake. In conclusion, TFT is absorbed via rCNT1 in the intestinal lumen in rats.

  7. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo.

    PubMed Central

    Nøhr, Martha Kampp; Thale, Zia I; Brodin, Birger; Hansen, Steen H; Holm, René; Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin in Caco-2 cells. Oral coadministration of vigabatrin and infant formula significantly reduced Cmax and prolonged tmax of vigabatrin absorption. Ligands for the proton-coupled amino acid transporter PAT1, sarcosine, and proline/l-tryptophan had similar effects on the pharmacokinetic profile of vigabatrin. The infant formula decreased the rate of gastric emptying. Here we provide experimental evidence for an in vivo role of PAT1 in the intestinal absorption of vigabatrin. The effect of infant formula on the oral absorption of vigabatrin was found to be due to delayed gastric emptying, however, it seems reasonable that infant formula may also directly affect the intestinal absorption rate of vigabatrin possibly via PAT1. PMID:25505585

  8. Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats.

    PubMed

    Sato, Hirokazu; Zhang, Linda S; Martinez, Kristina; Chang, Eugene B; Yang, Qing; Wang, Fei; Howles, Philip N; Hokari, Ryota; Miura, Soichiro; Tso, Patrick

    2016-11-01

    The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process. Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters. Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended. The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  10. HCO3− secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo

    PubMed Central

    Cooper, Christopher A.; Wilson, Rod W.

    2010-01-01

    The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO3− secretion. This is suggested to drive additional fluid absorption directly (via Cl−/HCO3− exchange) and indirectly by precipitating ingested Ca2+ as CaCO3, thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca2+]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca2+), where almost all secreted HCO3− was excreted as CaCO3. This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na+-independent fluid absorption and total HCO3− secretion was consistent with the predicted roles for anion exchange and CaCO3 precipitation. Further analysis suggested that Na+-independent fluid absorption could be accounted for by net Cl− and H+ absorption (from Cl−/HCO3− exchange and CO2 hydration, respectively). There was no evidence to suggest that CaCO3 alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca2+ it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO3− buffers the absorbed H+ (from HCO3− production), and consequently reduces the osmolarity of the absorbed fluid entering the body. PMID:20130226

  11. P-gp is involved in the intestinal absorption and biliary excretion of afatinib in vitro and in rats.

    PubMed

    Zhang, Yan; Wang, Changyuan; Liu, Zhihao; Meng, Qiang; Huo, Xiaokui; Liu, Qi; Sun, Pengyuan; Yang, Xiaobo; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2018-04-01

    Afatinib is an irreversible multi-targeted TKI, used in the treatment with EGFR mutated non-small cell lung cancer (NSCLC). The purpose of this study is to explore the molecular pharmacokinetic mechanism underlying the effect of P-gp inhibitors on the intestinal absorption and biliary excretion and to understand how P-gp inhibitors affect afatinib pharmacokinetics. Pharmacokinetics in vivo, in situ intestinal perfusion, perfused rat liver in situ, Caco-2 cells, P-gp ATPase activity, sandwich-cultured rat hepatocytes (SCRH) and transfected-cell transport were used in the evaluation. P-gp inhibitor verapamil (Ver) markedly increased the plasma concentrations and significantly decreased the biliary excretion of afatinib in vivo. Ver increased the intestinal absorption and decreased biliary excretion of afatinib in situ single-pass intestinal perfusion studies and in situ perfused rat liver, respectively. The accumulation of afatinib in Caco-2 cells was enhanced by Ver and Cyclosporin A (CsA). The biliary excretion index (BEI) of afatinib in SCRH was decreased by Ver and CsA, respectively. The net efflux ratio of afatinib was 2.3 across vector-/MDR1-MDCKII cell monolayers and was decreased by P-gp inhibitor. The activity of P-gp ATPase was induced by afatinib and the K m and V max were 1.05μM and 59.88nmol ATP/mg hP-gp/min, respectively. At least partly P-gp is involved in increasing the intestinal absorption and decreasing the biliary excretion of afatinib in rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Intestinal absorption of triglyceride and vitamin D3 in aged and young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, P.R.; Dominguez, A.A.

    1981-12-01

    (3H)Trioleyl glycerol (TO) and (14C)vitamin D3 were perfused intraduodenally for 5 hr in aged (19-21 months) and young adult (4-5 months) Sprague-Dawley rats. The rate of intestinal uptake from the gastrointestinal lumen and transport into the body of these lipids were decreased in the aged animals. Since the distribution of TO lipolytic products in the lumen was unchanged, reduced intestinal uptake rate probably occurred at the mucosal membrane. Furthermore, in the aged rats, the rate of transintestinal transport of both trioleyl glycerol and vitamin D3 was impaired. No evidence for impaired mucosal TO reesterification or for accumulation of vitamin D3more » metabolites was found, suggesting that intestinal lipid accumulation resulted from a defect in lipoprotein assembly or in discharge from the mucosal cell. Impaired absorption of lipids may contribute to malnutrition and osteopenia of advancing age.« less

  13. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport.

    PubMed

    Kato, Kazuhiko; Shirasaka, Yoshiyuki; Kuraoka, Erika; Kikuchi, Akihiro; Iguchi, Maki; Suzuki, Hisashi; Shibasaki, Shigeki; Kurosawa, Tohru; Tamai, Ikumi

    2010-10-04

    Tebipenem pivoxil (TBPM-PI) is an oral carbapenem antibiotic for treating otolaryngologic and respiratory infections in pediatric patients. This agent is a prodrug to improve intestinal absorption of TBPM, an active form, and an absorption rate of TBPM-PI is higher than those of other prodrug-type β-lactam antibiotics. In the present study, we hypothesized that a certain mechanism other than simple diffusion is involved in the process of improved intestinal absorption of TBPM-PI and examined the mechanism. TBPM-PI uptake by Caco-2 cells was decreased by ATP-depletion and lowering the temperature to 4 °C, suggesting the contribution of carrier-mediated transport mechanisms. This uptake was partially decreased by ACE inhibitors, and the reduction of the absorption by captopril was observed by in vivo study and in situ single-pass intestinal perfusion study in rat, supporting the contribution of influx transporters. Since some ACE inhibitors and β-lactam antibiotics are reported to be substrates of PEPT and OATP families, we measured transporting activity of TBPM-PI by intestinally expressed transporters, PEPT1, OATP1A2, and OATP2B1. As a result, significant transport activities were observed by both OATP1A2 and OATP2B1 but not by PEPT1. Interestingly, pH dependence of TBPM-PI transports was different between OATP1A2 and OATP2B1, showing highest activity by OATP1A2 at pH 6.5, while OATP2B1-mediated uptake was higher at neutral and weak alkaline pH. OATP1A2 exhibited higher affinity for TBPM-PI (K(m) = 41.1 μM) than OATP2B1 (K(m) > 1 mM) for this agent. These results suggested that TBPM-PI has high intestinal apical membrane permeability due to plural intestinal transport routes, including the uptake transporters such as OATP1A2 and OATP2B1 as well as simple diffusion.

  14. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed Central

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-01-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8982822

  15. Drug-nutrient interactions: inhibition of amino acid intestinal absorption by fluoxetine.

    PubMed

    Urdaneta, E; Idoate, I; Larralde, J

    1998-05-01

    Fluoxetine is one of the most widely used antidepressants and nowadays it is also being used to manage obesity problems. In our laboratory we demonstrated that the drug inhibited sugar absorption (Monteiro et al. 1993). The aim of the present work was to determine the effect of fluoxetine on intestinal leucine absorption. Using a procedure of successive absorptions in vivo the drug diminished amino acid absorption by 30% (P < 0.001). Experiments in vitro in isolated jejunum also revealed a reduction in leucine uptake of 37% (P < 0.001). In both cases fluoxetine only affected mediated transport without altering diffusion. In a preparation enriched in basolateral membrane, fluoxetine inhibited the Na+,K(+)-ATPase (EC 3.6.1.37) activity (55%; P < 0.001) in a non-competitive manner with an inhibition constant (Ki) value of 0.92 mM. Leucine uptake by brush-border membrane vesicles was diminished by the drug (a reduction of 48% was observed at 30s, P < 0.001); only the apical Na(+)-dependent transport system of the amino acid was modified and the inhibition was non-competitive. Leucine uptake in the presence of lysine indicated that transporter B was involved. These results suggest that fluoxetine reduces leucine absorption by its action on the basolateral and apical membrane of the enterocyte; the nutritional status of the patients under drug treatment may be affected as neutral amino acid absorption is decreased.

  16. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    PubMed

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-04

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.

  17. A comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergstedt, S.E.; Hayashi, H.; Kritchevsky, D.

    1990-09-01

    Generally, fats rich in saturated fatty acids raise serum cholesterol, whereas fats rich in polyunsaturated fatty acids lower it. There appear to be exceptions; e.g., stearic acid (18:0)-rich fats have little or no effect on serum cholesterol concentrations. This apparent lack of cholesterolemic effect of stearic acid-rich fat could be because intestinal absorption of fat is poor or subsequent plasma and/or tissue metabolism of fat is different. To investigate mechanisms involved, we compared intestinal digestion, uptake, and lymphatic transport of glycerol tristearate (TS) and glycerol trioleate (TO, 18:1). Two groups of rats bearing intestinal lymph fistulas were used. TO ratsmore » were fed intraduodenally for 8 h at a constant rate a lipid emulsion of 25 mumols/h of TO (labeled with glycerol tri(9,10 (n)-3H)oleate), 7.8 mumols of egg phosphatidylcholine, and 57 mumols of sodium taurocholate in 3 ml of phosphate-buffered saline. TS rats were fed the same lipid emulsion except that TS replaced TO and the emulsion was labeled with glyceryl (1,3-14C)tristearate. The lymph triglyceride and radioactivity were determined. After infusion, the luminal and mucosal radioactive lipid content was analyzed. The results showed that there was significantly less lipid transported in the lymph of TS rats compared with TO rats. The results also showed a significant decrease in the absorption of TS as compared with TO. This was due in part to poor lipolysis. In addition, the lipid absorbed by the intestine of the TS rats was transported into lymph less efficiently than in TO rats.« less

  18. L-Theanine Administration Modulates the Absorption of Dietary Nutrients and Expression of Transporters and Receptors in the Intestinal Mucosa of Rats.

    PubMed

    Yan, Qiongxian; Tong, Haiou; Tang, Shaoxun; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe

    2017-01-01

    L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight) per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9 , neutral SLC1a5 and SLC16a10 , and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.

  19. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2.

    PubMed

    Mace, Oliver J; Affleck, Julie; Patel, Nick; Kellett, George L

    2007-07-01

    Natural sugars and artificial sweeteners are sensed by receptors in taste buds. T2R bitter and T1R sweet taste receptors are coupled through G-proteins, alpha-gustducin and transducin, to activate phospholipase C beta2 and increase intracellular calcium concentration. Intestinal brush cells or solitary chemosensory cells (SCCs) have a structure similar to lingual taste cells and strongly express alpha-gustducin. It has therefore been suggested over the last decade that brush cells may participate in sugar sensing by a mechanism analogous to that in taste buds. We provide here functional evidence for an intestinal sensing system based on lingual taste receptors. Western blotting and immunocytochemistry revealed that all T1R members are expressed in rat jejunum at strategic locations including Paneth cells, SCCs or the apical membrane of enterocytes; T1Rs are colocalized with each other and with alpha-gustducin, transducin or phospholipase C beta2 to different extents. Intestinal glucose absorption consists of two components: one is classical active Na+-glucose cotransport, the other is the diffusive apical GLUT2 pathway. Artificial sweeteners increase glucose absorption in the order acesulfame potassium approximately sucralose > saccharin, in parallel with their ability to increase intracellular calcium concentration. Stimulation occurs within minutes by an increase in apical GLUT2, which correlates with reciprocal regulation of T1R2, T1R3 and alpha-gustducin versus T1R1, transducin and phospholipase C beta2. Our observation that artificial sweeteners are nutritionally active, because they can signal to a functional taste reception system to increase sugar absorption during a meal, has wide implications for nutrient sensing and nutrition in the treatment of obesity and diabetes.

  20. Intestinal absorption of calcium from calcium ascorbate in rats.

    PubMed

    Tsugawa, N; Yamabe, T; Takeuchi, A; Kamao, M; Nakagawa, K; Nishijima, K; Okano, T

    1999-01-01

    The intestinal absorption of calcium (Ca) from Ca ascorbate (Ca-AsA) was investigated in normal rats. Each animal was perorally administered either 5mg (low dose) or 10mg (high dose) of Ca in 1ml of distilled water as Ca-AsA, Ca carbonate (CaCO3), or Ca chloride (CaCl2), which were intrinsically labeled with 45Ca using 45CaCl2. The amount of radioactivity in plasma was measured periodically up to 34h after dosing, and pharmacokinetic parameters were calculated from the radioactivity in plasma. The time taken to reach the maximum 45Ca level (Tmax) did not differ among the three groups. The area under the plasma 45Ca level/time curve (AUCinfinity) value for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups. The radioactivity at Tmax (Cmax) for the Ca-AsA group was significantly higher than those for the CaCO3 and the CaCl2 groups for the low dose, and comparable with or significantly higher than those for the CaCl2 and CaCO3 groups for the high dose. Similar results were observed for whole-body 45Ca retention. Radioactivity in the femur 34h after dosing was the highest in the Ca-AsA group and the lowest in the CaCO3 group. The rank order of solubility in water, the first fluid (pH 1.2, JP-1) of JPXIII disintegration medium, acetate buffer solution (pH 4.0), triethanolamine-malate buffer solution (pH 7.0) and ammonium chloride buffer solution (pH 10.0) at 37 degrees C was CaCl2 > Ca-AsA > CaCO3. In contrast, the rank order of the solubility in the second fluid (pH 6.8, JP-2) of JPXIII disintegration medium at 37 degrees C was Ca-AsA > CaCl2 > CaCO3. These results indicate that the absorbability of Ca from Ca-AsA is almost comparable with, or higher than, that from CaCl2 and significantly higher than that from CaCO3 because of its high degree of solubility in the intestine. Therefore, Ca-AsA would be useful as a Ca supplement with relatively high absorption from intestine.

  1. Improvement of intestinal transport, absorption and anti-diabetic efficacy of berberine by using Gelucire44/14: In vitro, in situ and in vivo studies.

    PubMed

    Sun, Jianmei; Bao, He; Peng, Yajie; Zhang, Haimin; Sun, Ya; Qi, Jiajun; Zhang, Hailong; Gao, Yang

    2018-06-10

    This study aims to evaluate the effects of Gelucire44/14 on the in vitro transport, in situ intestinal absorption, as well as in vivo antidiabetic efficacy of berberine (BBR). In the in vitro study, Gelucire44/14 (0.1%, v/v) increased the absorptive transport of BBR across the intestinal membrane of a rat and reduced the relative transport in the secretory direction, thus demonstrating its potential inhibitory effect on intestinal P-glycoprotein (P-gp). In the in situ absorption study, Gelucire44/14 (0.1%, v/v) increased BBR absorption, and this enhancing effect was more significant in the ileum than in the colon of a rat. Oral delivery of BBR with Gelucire44/14 (0.1%, v/v) to diabetic mice, compared with the BBR group, induced a significant hypoglycemic effect on day 7 and day 12 after administration. This result was well correlated with the results of the in vitro study, indicating the important contribution of the P-gp inhibitory effect of Gelucire44/14 to the improvement of the antidiabetic efficacy in vivo. In addition, Gelucire44/14 (0.1%, v/v) neither increased the levels of protein and lactate dehydrogenase in intestinal perfusion nor changed the morphology of the rat intestinal epithelium relative to those of the negative control. This finding suggested that 0.1% (v/v) Gelucire44/14 caused no apparent membrane damage to rat intestine. In conclusion, Gelucire44/14 exhibited potential for enhancing the oral absorption of BBR, thereby improving the antidiabetic efficacy of BBR. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

    PubMed Central

    Aslam, Mohamad F.; Frazer, David M.; Faria, Nuno; Bruggraber, Sylvaine F. A.; Wilkins, Sarah J.; Mirciov, Cornel; Powell, Jonathan J.; Anderson, Greg J.; Pereira, Dora I. A.

    2014-01-01

    The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean ± sem hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.—Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. PMID:24776745

  3. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    PubMed

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS.

    PubMed

    Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing

    2017-12-27

    1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.

  5. Transcellular oxalate and Cl− absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate

    PubMed Central

    Freel, Robert W.; Whittamore, Jonathan M.

    2013-01-01

    Active transcellular oxalate transport in the mammalian intestine contributes to the homeostasis of this important lithogenic anion. Several members of the Slc26a gene family of anion exchangers have a measurable oxalate affinity and are expressed along the gut, apically and basolaterally. Mouse Slc26a6 (PAT1) targets to the apical membrane of enterocytes in the small intestine, and its deletion results in net oxalate absorption and hyperoxaluria. Apical exchangers of the Slc26a family that mediate oxalate absorption have not been established, yet the Slc26a3 [downregulated in adenoma (DRA)] protein is a candidate mediator of oxalate uptake. We evaluated the role of DRA in intestinal oxalate and Cl− transport by comparing unidirectional and net ion fluxes across short-circuited segments of small (ileum) and large (cecum and distal colon) intestine from wild-type (WT) and DRA knockout (KO) mice. In WT mice, all segments demonstrated net oxalate and Cl− absorption to varying degrees. In KO mice, however, all segments exhibited net anion secretion, which was consistently, and solely, due to a significant reduction in the absorptive unidirectional fluxes. In KO mice, daily urinary oxalate excretion was reduced 66% compared with that in WT mice, while urinary creatinine excretion was unchanged. We conclude that DRA mediates a predominance of the apical uptake of oxalate and Cl− absorbed in the small and large intestine of mice under short-circuit conditions. The large reductions in urinary oxalate excretion underscore the importance of transcellular intestinal oxalate absorption, in general, and, more specifically, the importance of the DRA exchanger in oxalate homeostasis. PMID:23886857

  6. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  7. Inhibition of small-intestinal sugar absorption mediated by sodium orthovanadate Na3VO4 in rats and its mechanisms

    PubMed Central

    Ai, Jing; Du, Jie; Wang, Ning; Du, Zhi-Min; Yang, Bao-Feng

    2004-01-01

    AIM: To investigate the inhibitory effects of sodium orthovanadate on small-intestinal glucose and maltose absorption in rats and its mechanism. METHODS: Normal Wistar rats were lavaged with sodium orthovanadate (16 mg/kg, 4 mg/kg and 1 mg/kg) for 6 d. Blood glucose values were measured after fasting and 0.5, 1, 1.5 and 2 h after glucose and maltose feeding with oxidation-enzyme method. α-glucosidase was abstracted from the upper small intestine, and its activity was examined. mRNA expression of α-glucosidase and glucose-transporter 2 (GLUT2) in epithelial cells of the small intestine was observed by in situ hybridization. RESULTS: Sodium orthovanadate could delay the increase of plasma glucose concentration after glucose and maltose loading, area under curve (AUC) in these groups was lower than that in control group. Sodium orthovanadate at dosages of 10 μmol/L, 100 μmol/L and 1000 μmol/L could suppress the activity of α-glucosidase in the small intestine of normal rats, with an inhibition rate of 68.18%, 87.22% and 91.91%, respectively. Sodium orthovanadate reduced mRNA expression of α-glucosidase and GLUT2 in epithelial cells of small intestine. CONCLUSION: Sodium orthovanadate can reduce and delay the absorption of glucose and maltose. The mechanism may be that it can inhibit the activity and mRNA expression of α-glucosidase, as well as mRNA expression of GLUT2 in small intestine. PMID:15534916

  8. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy.

    PubMed

    Takada, Tappei; Yamanashi, Yoshihide; Konishi, Kentaro; Yamamoto, Takehito; Toyoda, Yu; Masuo, Yusuke; Yamamoto, Hideaki; Suzuki, Hiroshi

    2015-02-18

    Vitamin K (VK) is a micronutrient that facilitates blood coagulation. VK antagonists, such as warfarin, are used in the clinic to prevent thromboembolism. Because VK is not synthesized in the body, its intestinal absorption is crucial for maintaining whole-body VK levels. However, the molecular mechanism of this absorption is unclear. We demonstrate that Niemann-Pick C1-like 1 (NPC1L1) protein, a cholesterol transporter, plays a central role in intestinal VK uptake and modulates the anticoagulant effect of warfarin. In vitro studies using NPC1L1-overexpressing intestinal cells and in vivo studies with Npc1l1-knockout mice revealed that intestinal VK absorption is NPC1L1-dependent and inhibited by ezetimibe, an NPC1L1-selective inhibitor clinically used for dyslipidemia. In addition, in vivo pharmacological studies demonstrated that the coadministration of ezetimibe and warfarin caused a reduction in hepatic VK levels and enhanced the pharmacological effect of warfarin. Adverse events caused by the coadministration of ezetimibe and warfarin were rescued by oral VK supplementation, suggesting that the drug-drug interaction effects observed were the consequence of ezetimibe-mediated VK malabsorption. This mechanism was supported by a retrospective evaluation of clinical data showing that, in more than 85% of warfarin-treated patients, the anticoagulant activity was enhanced by cotreatment with ezetimibe. Our findings provide insight into the molecular mechanism of VK absorption. This new drug-drug interaction mechanism between ezetimibe (a cholesterol transport inhibitor) and warfarin (a VK antagonist and anticoagulant) could inform clinical care of patients on these medications, such as by altering the kinetics of essential, fat-soluble vitamins. Copyright © 2015, American Association for the Advancement of Science.

  9. Absorption and Effect of Azaspiracid-1 Over the Human Intestinal Barrier.

    PubMed

    Abal, Paula; Louzao, M Carmen; Fraga, María; Vilariño, Natalia; Ferreiro, Sara; Vieytes, Mercedes R; Botana, Luis M

    2017-01-01

    Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. The effect of amino acids on the intestinal absorption of immunoglobulins in the neonatal rat

    PubMed Central

    Bamford, D. R.; Donnelly, H.

    1974-01-01

    An in vitro preparation of 10-day-old rat intestine was used to examine the absorption of a number of amino acids and immunoglobulins. Evidence was obtained for the active absorption of alanine, leucine, methionine, histidine and lysine, but not for aspartic acid. A selective absorption of the homologous molecule was found in experiments where 131I-labelled rat and bovine IgG were presented to the ileum in 10-minute incubations. The greater uptake of rat IgG was unrelated to the relative rates of catabolism of the two molecules. Although the uptake of rat IgG was unaffected by 100 mM concentrations of neutral and acidic amino acids, the basic amino acids arginine and lysine significantly stimulated uptake. PMID:4854740

  11. Altered small intestinal absorptive enzyme activities in leptin-deficient obese mice: influence of bowel resection.

    PubMed

    Kiely, James M; Noh, Jae H; Svatek, Carol L; Pitt, Henry A; Swartz-Basile, Deborah A

    2006-07-01

    Residual bowel increases absorption after massive small bowel resection. Leptin affects intestinal adaptation, carbohydrate, peptide, and lipid handling. Sucrase, peptidase, and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT) are involved in carbohydrate, protein, and lipid absorption. We hypothesized that leptin-deficient obese mice would have altered absorptive enzymes compared with controls before and after small bowel resection. Sucrase, peptidase (aminopeptidase N [ApN], dipeptidyl peptidase IV [DPPIV]), and MGAT activities were determined from lean control (C57BL/6J, n = 16) and leptin-deficient (Lep(ob), n = 16) mice small bowel before and after 50% resection. Ileal sucrase activity was greater in obese mice before and after resection. Jejunal ApN and DPPIV activities were lower for obese mice before resection; ileal ApN activity was unaltered after resection for both strains. Resection increased DPPIV activity in both strains. Jejunal MGAT in obese mice decreased postresection. In both strains, ileal MGAT activity decreased after resection, and obese mice had greater activity in remnant ileum. After small bowel resection, leptin-deficient mice have increased sucrase activity and diminished ileal ApN, DPPIV, and MGAT activity compared with controls. Therefore, we conclude that leptin deficiency alters intestinal enzyme activity in unresected animals and after small bowel resection. Altered handling of carbohydrate, protein, and lipid may contribute to obesity and diabetes in leptin-deficient mice.

  12. Partially hydrolyzed guar gum increases intestinal absorption of iron in growing rats with iron deficiency anemia.

    PubMed

    de Cássia Freitas, Karine; Amancio, Olga Maria Silvério; Ferreira Novo, Neil; Fagundes-Neto, Ulysses; de Morais, Mauro Batista

    2006-10-01

    The objective of this study was to evaluate the effect of partially hydrolyzed guar gum (PHGG) dietary fiber towards intestinal iron absorption, for dietary intake and on the growth of rats with iron deficiency anemia in comparison to those fed on a diet with cellulose and without dietary fiber. Male Wistar rats (n=24) weaned at 21 days were fed with AIN93-G diet without iron for 2 weeks in order to induce iron deficiency anemia. At 36 days old, the anemic rats were divided into three groups: (1) PHGG group-100g of PHGG per kg of diet; (2) Cellulose group-100g of cellulose per kg of diet; (3) Control group-diet without dietary fiber. All the diets had 25mg of elemental iron/kg of diet added to lead to recovery from iron deficiency anemia. The final hemoglobin values in g/dl, for the PHGG group, the cellulose group and the control group were, respectively: 11.3+/-1.2, 8.6+/-0.7 and 8.1+/-0.9 (P<0.001). The levels of hepatic iron, in mug/g of dry tissue, in the same order, were: 322.2+/-66.6, 217.2+/-59.1 and 203.7+/-42.4 (P<0.001). Apparent iron intestinal absorption was, respectively: 67.5+/-8.9%, 35.4+/-15.3% and 31.3+/-24.9% (P<0.001). The three groups consumed similar quantities of diet. The changes in weight and in body length were similar in the three groups studied. PHGG led to greater intestinal absorption of iron, regeneration of hemoglobin and hepatic levels of iron than diet with cellulose and diet control.

  13. Effect of dietary fat on plasma glutathione peroxidase levels and intestinal absorption of /sup 75/Se-labeled sodium selenite in chicks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutanen, M.L.; Mykkaenen, H.M.

    1984-05-01

    The effect of dietary fat on the availability of selenium was investigated in chicks fed either 4 or 20% butter, olive oil, rape oil, corn oil or sunflower oil in the diet for 3 weeks after hatching. Plasma glutathione peroxidase (GSH-Px) activity was used as an indicator of the body selenium status. In addition, the intestinal absorption of sodium selenite (/sup 75/Se-labeled) was determined by using both the in vivo ligated loop procedure and oral administration of the isotope. The plasma GSH-Px levels increased with increasing proportion of the polyunsaturated fatty acids in the diet. Increasing the amount of fatmore » from 4 to 20% significantly enhanced the GSH-Px activity in the groups receiving butter or olive oil, but had no effect in animals fed the unsaturated fats. The absorption of (/sup 75/Se)selenite from the ligated duodenal loops tended to be reduced in chicks fed corn oil or sunflower oil as compared to the animals receiving butter in their diet. On the other hand, the type of dietary fat did not appear to affect the absorption of the orally administered selenite. The present study demonstrates that the type of dietary fat can affect the plasma GSH-Px levels in chicks without altering the intestinal absorption of selenite. However, the results on the absorption of the intraduodenally injected sodium selenite suggest that dietary fat plays some role in the intestinal transport of selenium.« less

  14. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion

    PubMed Central

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P.; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R.

    2013-01-01

    OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, 3H-glucose, 14C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal. RESULTS Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0–2h] reductions of 35% and 43%, respectively; P < 0.001 for both), increased 0- to 6-h urinary glucose excretion (UGE0–6h, 18.2 ± 5.6 vs. <0.2 g; P < 0.001), and delayed RaO. Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P < 0.001) and by 20% over 0 to 2 h (576 vs. 723 mg/kg; P = 0.002). Over 2 to 6 h, canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was <6% lower versus placebo (960 vs. 1,018 mg/kg; P = 0.003). A modest (∼10%) reduction in acetaminophen absorption was observed over the first 2 h, but this difference was not sufficient to explain the reduction in RaO. Total glucose disposal over 0 to 6 h was similar across groups. CONCLUSIONS Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition. PMID:23412078

  15. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish.

    PubMed

    Zhang, Jin-Xiu; Guo, Lin-Ying; Feng, Lin; Jiang, Wei-Dan; Kuang, Sheng-Yao; Liu, Yang; Hu, Kai; Jiang, Jun; Li, Shu-Hong; Tang, Ling; Zhou, Xiao-Qiu

    2013-01-01

    β-Conglycinin has been identified as one of the major feed allergens. However, studies of β-conglycinin on fish are scarce. This study investigated the effects of β-conglycinin on the growth, digestive and absorptive ability, inflammatory response, oxidative status and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and their enterocytes in vitro. The results indicated that the specific growth rate (SGR), feed intake, and feed efficiency were reduced by β-conglycinin. In addition, activities of trypsin, chymotrypsin, lipase, creatine kinase, Na(+),K(+)-ATPase and alkaline phosphatase in the intestine showed similar tendencies. The protein content of the hepatopancreas and intestines, and the weight and length of the intestines were all reduced by β-conglycinin. β-Conglycinin increased lipid and protein oxidation in the detected tissues and cells. However, β-conglycinin decreased superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in the intestine and enterocytes. Similar antioxidant activity in the hepatopancreas was observed, except for GST. The expression of target of rapamycin (TOR) gene was reduced by β-conglycinin. Furthermore, mRNA levels of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) genes were increased by β-conglycinin. However, β-conglycinin increased CuZnSOD, MnSOD, CAT, and GPx1b gene expression. In conclusion, this study indicates that β-conglycinin induces inflammation and oxidation, and causes dysfunction of intestinal digestion and absorption in fish, and finally reduces fish growth. The results of this study provide some information to the mechanism of β-conglycinin-induced negative effects.

  16. [Effects of nandrolone decanoate on bone mineral content and intestinal absorption of calcium].

    PubMed

    Nuti, R; Righi, G A; Turchetti, V; Vattimo, A

    1984-01-28

    To evaluate the effects of a long-term treatment with nandrolone decanoate on metabolism of the skeleton, a double-blind randomized study was carried out in women with joint diseases without metabolic bone derangement. Ten patients were treated with 50 mg of nandrolone decanoate every three weeks for two years; in six subjects a treatment with placebo was performed. As it concerns plasma calcium and phosphate, serum alkaline phosphatase, urinary excretion of calcium, phosphate, hydroxyproline and cAMP, as parathyroid index, it was not observed significant differences in the two examined groups. While in placebo group at the end of the study the intestinal radiocalcium remained unchanged and bone mineral content showed a slight decrease, on the contrary nandrolone decanoate treatment promoted a significant improvement in intestinal calcium absorption and an increase in bone mineral content.

  17. Green Tea as Inhibitor of the Intestinal Absorption of Lipids: Potential Mechanism for its Lipid-Lowering Effect1

    PubMed Central

    Koo, Sung I.; Noh, Sang K.

    2007-01-01

    Animal and epidemiological studies suggest that green tea catechins may reduce the risk of cardiovascular diseases (CHD). The health benefit of green tea has been attributed to its antioxidant and anti-inflammatory properties; however, considerable evidence suggests that green tea and its catechins may reduce the risk of CHD by lowering the plasma levels of cholesterol and triglyceride. Although the mechanism underlying such effect of green tea is yet to be determined, it is evident from in vitro and in vivo studies that green tea or catechins inhibit the intestinal absorption of dietary lipids. Studies in vitro indicate that green tea catechins, particularly EGCG, interfere with the emulsification, digestion, and micellar solubilization of lipids, critical steps involved in the intestinal absorption of dietary fat, cholesterol, and other lipids. Based on the observations, it is likely that green tea or its catechins lower the absorption and tissue accumulation of other lipophilic organic compounds. The available information strongly suggests that green tea or its catechins may be used as safe and effective lipid-lowering therapeutic agents. PMID:17296491

  18. The Use of Low Molecular Weight Protamine Chemical Chimera to Enhance Monomeric Insulin Intestinal Absorption

    PubMed Central

    He, Huining; Sheng, Jianyong; David, Allan E.; Kwon, Young Min; Zhang, Jian; Huang, Yongzhuo; Wang, Jianxin; Yang, Victor C.

    2013-01-01

    Although oral delivery of insulin offers a number of unmatched advantages, it nevertheless is beset by the poor permeability of insulin molecules through the epithelial cell membranes of the intestinal mucosal layer. We previously reported the development of low molecular weight protamine (LMWP) as a nontoxic yet potent cell penetrating peptide, of which via covalent linkage was capable of translocating protein cargos through the membranes of almost all cell types. It is therefore hypothesized that LMWP could be practically employed as a safe and effective tool to deliver insulin across the intestinal mucosal membrane, thereby augmenting its absorption through the GI tract. However, formulating 1:1 monomeric insulin/LMWP conjugate presents a tall order of challenge, as the acidic insulin and basic LMWP would automatically form tight aggregates through electrostatic interactions. In this paper, we developed an innovative conjugation strategy to solve this problem, by using succinimidyl-[(N-maleimidopropionamido)-polyethyleneglycol] ester (NHS-PEG-MAL) as an intermediate cross-linker during the coupling process. Both SDS-PAGE and MALDI-TOF mass spectroscopy confirmed the formation of a homogeneous, monomeric (1:1 ratio) insulin/LMWP conjugate without encountering the conventional problem of substrate aggregation. Cell culture studies demonstrated that transport of the Insulin-PEG-LMWP conjugate across the intestinal mucosal monolayer was augmented by almost five folds compared to native insulin. Furthermore, results from the in situ loop absorption tests in rats showed that systemic pharmacological bioavailability of insulin was significantly enhanced after its conjugation with LMWP. Overall, the presented chemical conjugation with LMWP could offer a reliable and safe means to improve the intestinal permeability of therapeutic peptides/proteins, shedding light of the possibility for their effective oral delivery. PMID:23863452

  19. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  20. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis

    PubMed Central

    Xie, Meimin; Kotecha, Vijay R; Andrade, Jon David P; Fox, James G; Carey, Martin C

    2012-01-01

    Cholesterol gallstones are associated with slow intestinal transit in humans as well as in animal models, but the molecular mechanism is unknown. We investigated in C57L/J mice whether the components of a lithogenic diet (LD; 1.0% cholesterol, 0.5% cholic acid and 17% triglycerides), as well as distal intestinal infection with Helicobacter hepaticus, influence small intestinal transit time. By quantifying the distribution of 3H-sitostanol along the length of the small intestine following intraduodenal instillation, we observed that, in both sexes, the geometric centre (dimensionless) was retarded significantly (P < 0.05) by LD but not slowed further by helicobacter infection (males, 9.4 ± 0.5 (uninfected), 9.6 ± 0.5 (infected) on LD compared with 12.5 ± 0.4 and 11.4 ± 0.5 on chow). The effect of the LD was reproduced only by the binary combination of cholesterol and cholic acid. We inferred that the LD-induced cholesterol enrichment of the sarcolemmae of intestinal smooth muscle cells produced hypomotility from signal-transduction decoupling of cholecystokinin (CCK), a physiological agonist for small intestinal propulsion in mice. Treatment with ezetimibe in an amount sufficient to block intestinal cholesterol absorption caused small intestinal transit time to return to normal. In most cholesterol gallstone-prone humans, lithogenic bile carries large quantities of hepatic cholesterol into the upper small intestine continuously, thereby reproducing this dietary effect in mice. Intestinal hypomotility promotes cholelithogenesis by augmenting formation of deoxycholate, a pro-lithogenic secondary bile salt, and increasing the fraction of intestinal cholesterol absorbed. PMID:22331417

  1. Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound.

    PubMed

    Koga, Kenjiro; Takarada, Nobuo; Takada, Kanji

    2010-02-01

    Our goal was to develop safe and stable multilayer emulsions capable of enhancing intestinal absorption of biopharmaceutics classification system (BCS) class III drugs. First, w/o emulsions were prepared using calcein as a model BCS class III compound and condensed ricinoleic acid tetraglycerin ester as a hydrophobic emulsifier. Then water-in-oil-in-water (w/o/w) emulsions were prepared with shirasu porous glass (SPG) membranes. Particle size analyses and calcein leakage from oil droplets in w/o/w emulsions led us to select stearic acid hexaglycerin esters (HS-11) and Gelucire 44/14 as hydrophilic emulsifiers. Analyses of the absorption-enhancing effects of w/o/w emulsions on intestinal calcein absorption in rats showed that calcein bioavailability after intraduodenal (i.d.) administration of HS-11 or Gelucire 44/14+polyvinyl alcohol (PVA) w/o/w emulsions prepared with 0.1-microm pore-sized SPGs was significantly higher than that of the calcein control. However, serum calcein concentration vs. time profiles after i.d. administration of w/o/w emulsions prepared with 1.1-microm and 30-microm pore-sized SPGs and an emulsion prepared with a calcein-containing outer water phase were comparable to control profiles. These results suggested that HS-11 or Gelucire 44/14+PVA are safe outer water phase additives and that 0.1-microm pore-sized SPGs are important for preparing w/o/w emulsions that enhanced intestinal calcein absorption. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Influence of betaine and salinomycin on intestinal absorption of methionine and glucose and on the ultrastructure of intestinal cells and parasite developmental stages in chicks infected with Eimeria acervulina.

    PubMed

    Augustine, P C; Danforth, H D

    1999-01-01

    The effect of betaine and salinomycin on absorption of methionine and glucose in tissue from the duodenal loops of Eimeria acervulina-infected chicks was determined. Differences in the ultrastructure of the intestinal cells and parasite developmental stages were also examined. With a drug-resistant isolate of E. acervulina, methionine absorption was significantly higher in chicks fed a basal diet supplemented with 0.15% betaine as compared with absorption in chicks fed the unsupplemented basal diet. Addition of 66 ppm salinomycin to the diet containing betaine did not further enhance absorption. Conversely, with a drug-sensitive isolate, methionine absorption was significantly higher in chicks fed a diet supplemented with both betaine and salinomycin than in chicks fed the unsupplemented basal diet. Tissue from chicks fed any of the supplemented diets was usually significantly heavier than that from chicks fed the unsupplemented diet, even when weight gains of the birds were similar. Glucose absorption was similar in all diet groups. Epithelial cells in coccidia-infected and uninfected chicks fed diets supplemented with betaine or betaine plus salinomycin were less electron dense than cells from chicks fed diets that were not supplemented with betaine. Merozoites of E. acervulina in chicks fed diets supplemented with salinomycin had extensive membrane disruption and vacuolization, but the damage was prevented when betaine was added to the diet. Numerous merozoites and intact schizonts were seen in the intestinal lumen of chicks fed the diet containing betaine plus salinomycin.

  3. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models.

    PubMed

    Surampalli, Gurunath; K Nanjwade, Basavaraj; Patil, P A

    2015-01-01

    The aim of this study was to corroborate the effects of naringin, a P-glycoprotein inhibitor, on the intestinal absorption and pharmacokinetics of candesartan (CDS) from candesartan cilexetil (CAN) solid dispersions using in-situ rat models. Intestinal transport and absorption studies were examined by in-situ single pass perfusion and closed-loop models. We evaluated the intestinal membrane damage in the presence of naringin by measuring the release of protein and alkaline phosphatase (ALP). We noticed 1.47-fold increase in Peff of CDS from freeze-dried CAN-loaded solid dispersions with naringin (15 mg/kg, w/w) when compared with freeze-dried solid dispersion without naringin using in-situ single pass intestinal perfusion model. However, no intestinal membrane damage was observed in the presence of naringin. Our findings from in-situ closed-loop pharmacokinetic studies showed 1.34-fold increase in AUC with elevated Cmax and shortened tmax for freeze-dried solid dispersion with naringin as compared to freeze-dried solid dispersion without naringin. This study demonstrated that increased solubilization (favored by freeze-dried solid dispersion) and efflux pump inhibition (using naringin), the relative bioavailability of CDS can be increased, suggesting an alternative potential for improving oral bioavailability of CAN.

  4. New approaches to increase intestinal length: Methods used for intestinal regeneration and bioengineering

    PubMed Central

    Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901

  5. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  6. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption.

    PubMed

    Wang, Tao; Shen, Liao; Zhang, Zhen; Li, Haiyan; Huang, Ri; Zhang, Yadan; Quan, Dongqin

    2017-11-01

    The oral administration of water-soluble chemotherapeutical agents is limited by their serious gastrointestinal side effects, instability at intestinal pH, and poor absorption. Aiming to solve these problems, we chose topotecan (TPT) as a model drug and developed a novel lipid formulation containing core-shell lipid nanoparticle (CLN) that makes the water-soluble drug to 'dissolve' in oil. TPT molecules can be encapsulated into nanoparticles surrounded by oil barrier while avoiding the direct contact with intestinal environment, thus easing the intestinal hydrolytic degradation and gastrointestinal (GI) irritation. Microstructure and mean particle size of TPT-CLN were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS), respectively. The average size of nanoparticles was approximately 60 nm with a homogeneous distribution in shapes of spheres or ellipsoid. According to in vitro stability studies, more initial form of TPT was observed in presence of lipid nanoparticle compared with free topotecan solution in artificial intestinal juice (pH 6.5). After oral administration of TPT-CLN in rats, AUC and C max of TPT were all increased compared with free TPT, indicating significant enhancement of oral absorption. Intestinal lymphatic transport was confirmed as the major way for CLN to enhance oral absorption of TPT by the treatment of blocking chylomicron flow. Lower GI irritation of TPT-CLN was observed in the gastrointestinal damage studies. The in vivo antitumor activity of TPT-CLN showed an improved antitumor efficacy by oral treatment of TPT-CLN compared to free TPT. From the obtained data, the systems appear an attractive progress in oral administration of topotecan.

  7. Effects of nucleotide supplementation in milk replacer on small intestinal absorptive capacity in dairy calves.

    PubMed

    Kehoe, S I; Heinrichs, A J; Baumrucker, C R; Greger, D L

    2008-07-01

    Milk replacer was supplemented with nucleotides and fed to dairy calves from birth through weaning to examine the potential for enhancing recovery of small intestinal function after enteric infection. Three treatments of 23 calves each were fed milk replacer (10% body weight/d) supplemented with no nucleotides (C), purified nucleotides (N), or nucleotides from an extract of Saccharomyces cerevisiae (S). Average daily gain, health scores, fecal dry matter, and fecal bacteria were monitored, and blood was analyzed for packed cell volume, glucose, blood urea nitrogen (BUN), and creatinine. Calves were monitored twice daily for fecal score, and 48 h after increased fecal fluidity was recorded, intestinal function was evaluated by measuring absorption of orally administered xylose (0.5 g/kg of body weight). Packed cell volume of blood was greater for treatment N for wk 2 and 5 compared with other treatment groups. Four calves per treatment were killed, and intestinal tissue was evaluated for morphology, enzyme activities, and nucleoside transporter mRNA expression. Treatment S calves had increased abundance of nucleoside transporter mRNA, numerically longer villi, and lower alkaline phosphatase than other groups. Growth measurements and plasma concentrations of glucose, BUN, creatinine, and IgG were not different between treatments; however, BUN-to-creatinine ratio was higher for treatment N, possibly indicating decreased kidney function. There were also no treatment effects on fecal dry matter and fecal bacteria population. However, N-treated calves had the highest detrimental and lowest beneficial bacteria overall, indicating an unfavorable intestinal environment. Supplementation of purified nucleotides did not improve intestinal morphology or function and resulted in higher fecal water loss and calf dehydration. Supplementation of nucleotides derived from yeast tended to increase calf intestinal function, provide a more beneficial intestinal environment, and improve

  8. Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.

    PubMed

    Clark, D E

    2001-09-01

    This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.

  9. Influence of a low- and a high-oxalate vegetarian diet on intestinal oxalate absorption and urinary excretion.

    PubMed

    Thomas, E; von Unruh, G E; Hesse, A

    2008-09-01

    To compare quantitatively the effect of a low- and a high-oxalate vegetarian diet on intestinal oxalate absorption and urinary excretion. Eight healthy volunteers (three men and five women, mean age 28.6+/-6.3) were studied. Each volunteer performed the [(13)C(2)]oxalate absorption test thrice on a low-oxalate mixed diet, thrice on a low-oxalate vegetarian diet and thrice on a high-oxalate vegetarian diet. For each test, the volunteers had to adhere to an identical diet and collect their 24-h urines. In the morning of the second day, a capsule containing [(13)C(2)]oxalate was ingested. On the low-oxalate vegetarian diet, mean intestinal oxalate absorption and urinary oxalate excretion increased significantly to 15.8+/-2.9% (P=0.012) and 0.414+/-0.126 mmol/day (P=0.012), compared to the mixed diet. On the high-oxalate vegetarian diet, oxalate absorption (12.5+/-4.6%, P=0.161) and urinary excretion (0.340+/-0.077 mmol/day, P=0.093) did not change significantly, compared to the mixed diet. A vegetarian diet can only be recommended for calcium oxalate stone patients, if the diet (1) contains the recommended amounts of divalent cations such as calcium and its timing of ingestion to a meal rich in oxalate is considered and (2) excludes foodstuffs with a high content of nutritional factors, such as phytic acid, which are able to chelate calcium.

  10. Absorption from a mixture of seventeen free amino acids by the isolated small intestine of the rat.

    PubMed Central

    Gardner, M L

    1976-01-01

    Absorption and secretion from a mixture of seventeen free amino acids has been measured in isolated perfused rat small intestine. 2. The absorption rate of an amino acid from this mixture is proportional to its concentration in the perfusate and independent of its chemical constitution. The constant of proportionality is the same as that previously observed when the perfusate contained peptides as well as amino acids. 3. Amino acids are concentrated, on average, sixfold during passage across the mucosa, and the free amino acid composition of the secretion into the tissue fluid is very similar to that of the luminal perfusate. 4. Peptides do not appear to be added to the tissue fluid during absorption of free amino acids. 5. It is concluded that the mechanisms for absorption of free amino acids are in general independent of those for absorption of peptides. PMID:1255532

  11. Intestinal absorption and activation of decitabine amino acid ester prodrugs mediated by peptide transporter PEPT1 and enterocyte enzymes.

    PubMed

    Tao, Wenhui; Zhao, Dongyang; Sun, Mengchi; Wang, Ziyu; Lin, Bin; Bao, Yu; Li, Yingying; He, Zhonggui; Sun, Yinghua; Sun, Jin

    2018-04-25

    Decitabine (DAC), a potent DNA methyltransferase (DNMT) inhibitor, has a limited oral bioavailability. Its 5'-amino acid ester prodrugs could improve its oral delivery but the specific absorption mechanism is not yet fully understood. The aim of this present study was to investigate the in vivo absorption and activation mechanism of these prodrugs using in situ intestinal perfusion and pharmacokinetics studies in rats. Although PEPT1 transporter is pH dependent, there appeared to be no proton cotransport in the perfusion experiment with a preferable transport at pH 7.4 rather than pH 6.5. This suggested that the transport was mostly dependent on the dissociated state of the prodrugs and the proton gradient might play only a limited role. In pH 7.4 HEPES buffer, an increase in P eff was observed for L-val-DAC, D-val-DAC, L-phe-DAC and L-trp-DAC (2.89-fold, 1.2-fold, 2.73-fold, and 1.90-fold, respectively), compared with the parent drug. When co-perfusing the prodrug with Glysar, a known substrate of PEPT1, the permeabilities of the prodrugs were significantly inhibited compared with the control. To further investigate the absorption of the prodrugs, L-val-DAC was selected and found to be concentration-dependent and saturable, suggesting a carrier-mediated process (intrinsic K m : 7.80 ± 2.61 mM) along with passive transport. Determination of drug in intestinal homogenate after perfusion further confirmed that the metabolic activation mainly involved an intestinal first-pass effect. In a pharmacokinetic evaluation, the oral bioavailability of L-val-DAC, L-phe-DAC and L-trp-DAC were nearly 1.74-fold, 1.69-fold and 1.49-fold greater than that of DAC. The differences in membrane permeability and oral bioavailability might be due to the different stability in the intestinal lumen and the distinct PEPT1 affinity which is mainly caused by the stereochemistry, hydrophobicity and steric hindrance of the side chains. In summary, the detailed investigation of the

  12. Investigations into the absorption of insulin and insulin derivatives from the small intestine of the anaesthetised rat.

    PubMed

    McGinn, B J; Morrison, J D

    2016-06-28

    Experiments have been undertaken to determine the extent to which cholic acid conjugates of insulin were absorbed from the small intestine of anaesthetised rats by means of the bile salt transporters of the ileum. The measure used to assess the absorption of the cholyl-insulins was the amount of hypoglycaemia following infusion into the small intestine. Control experiments involving infusion of natural insulin into the ileum showed either nil absorption or absorption of a small amount of insulin as indicated by transient dip in the blood glucose concentration. However, when insulin was co-infused with the bile salt taurocholate, this was followed by a marked hypoglycaemic response which was specific to the ileum and did not occur on infusion into the jejunum. When the two cholyl conjugates of insulin were tested viz. B(29)-Lys-cholyl-insulin and B(1)-Phe-cholyl-insulin, both were biologically active as indicated by hypoglycaemic responses on systemic injection, though their potency was about 40% of that of natural insulin. While there was no evidence for the absorption of B(29)-Lys-cholyl-insulin when infused into the ileum, B(1)-Phe-cholyl-insulin did cause a long lasting hypoglycaemic response, indicating that absorption had occurred. Since the hypoglycaemic response was blocked on co-infusion with taurocholate and was absent for infusion of the conjugate into the jejunum, these results were taken as evidence that B(1)-Phe-cholyl-insulin had been taken up by the ileal bile salt transporters. This would indicate that B(1)-Phe-cholyl-insulin is worthy of further investigation for use in an oral insulin formulation. Copyright © 2016. Published by Elsevier B.V.

  13. An evaluation of in vitro intestinal absorption of iron, calcium and potassium in chickens receiving gold nanoparticles.

    PubMed

    Sembratowicz, I; Ognik, K; Stępniowska, A

    2016-08-01

    This study evaluated the effect of oral administration of colloidal gold nanoparticles on accumulation of gold in the small intestine and intestinal absorption of iron, calcium and potassium under in vitro conditions. The gold nanoparticles are non-ionic, nanocrystalline, chemically pure particles 5 nm in size, produced in a physical process. In total, 126 one day-old Ross 308 chicks were assigned to 7 experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive gold nanoparticles. Groups: Au-5(7), Au-10(7) and Au-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg l(-1) for group Au-5(7), 10 mg l(-1) for group Au-10(7) and 15 mg l(-1) for group Au-15(7) in 8-14, 22-28 and 36-42 d of life. The birds in groups Au-5(3), Au-10(3) and Au-15(3) received gold nanoparticles in the same amounts, but only in 8-10, 22-24 and 36-38 d of life. The study revealed that nanogold supplied via ingestion leads to dose- and time-dependent accumulation of gold in the intestinal walls. Nanogold present in the jejunum has a negative impact on the absorption of calcium, iron and potassium under in vitro conditions.

  14. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin.

    PubMed

    Ji, Hongyu; Tang, Jingling; Li, Mengting; Ren, Jinmei; Zheng, Nannan; Wu, Linhua

    2016-01-01

    The present study was to formulate curcumin solid lipid nanoparticles (Cur-SLNs) with P-gp modulator excipients, TPGS and Brij78, to enhance the solubility and bioavailability of curcumin. The formulation was optimized by Plackett-Burman screening design and Box-Behnken experiment design. Then physiochemical properties, entrapment efficiency and in vitro release of Cur-SLNs were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of Cur-SLNs on the bioavailability and intestinal absorption of curcumin. The optimized formulations showed an average size of 135.3 ± 1.5 nm with a zeta potential value of -24.7 ± 2.1 mV and 91.09% ± 1.23% drug entrapment efficiency, meanwhile displayed a sustained release profile. In vivo pharmacokinetic study showed AUC0→t for Cur-SLNs was 12.27-folds greater than curcumin suspension and the relative bioavailability of Cur-SLNs was 942.53%. Meanwhile, Tmax and t(1/2) of curcumin for Cur-SLNs were both delayed comparing to the suspensions (p < 0.01). The in situ intestinal absorption study revealed that the effective permeability (Peff) value of curcumin for SLNs was significantly improved (p < 0.01) comparing to curcumin solution. Cur-SLNs with TPGS and Brij78 could improve the oral bioavailability and intestinal absorption of curcumin effectively.

  15. Absorption of Iron from Ferritin Is Independent of Heme Iron and Ferrous Salts in Women and Rat Intestinal Segments123

    PubMed Central

    Chen, Huijun; Miranda, Constanza; Janser, Heinz; Elsenhans, Bernd; Núñez, Marco T.; Pizarro, Fernando; Schümann, Klaus

    2012-01-01

    Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC 59Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency. PMID:22259191

  16. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  17. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers.

    PubMed

    Tian, Cihui; Asghar, Sajid; Wu, Yifan; Chen, Zhipeng; Jin, Xin; Yin, Lining; Huang, Lin; Ping, Qineng; Xiao, Yanyu

    2017-01-01

    The expression of multiple receptors on intestinal epithelial cells enables an actively targeted carrier to significantly enhance the oral delivery of payloads. Conjugating the receptors' ligands on the surfaces of a particulate-delivery system allows site-specific targeting. Here, we used taurocholic acid (TCA) as a ligand for uptake of nanostructured lipid carriers (NLCs) mediated by a bile-acid transporter to improve oral bioavailability of curcumin (Cur). First, synthesis of TCA-polyethylene glycol 100-monostearate (S100-TCA) was carried out. Then, the physical and chemical properties of S100-TCA-modified Cur-loaded NLCs (Cur-TCA NLCs) with varying levels of S100-TCA modifications were investigated. Small particle size (<150 nm), high drug encapsulation (>90%), drug loading (about 3%), negative ζ-potential (-7 to -3 mV), and sustained release were obtained. In situ intestinal perfusion studies demonstrated improved absorption rate and permeability coefficient of Cur-TCA NLCs. Depending on the degree of modification, Cur-TCA NLCs displayed about a five- to 15-fold higher area under the curve in rats after oral administration than unmodified Cur NLCs, which established that the addition of S100-TCA to the NLCs boosted absorption of Cur. Further investigations of TCA NLCs might reveal a bright future for effective oral delivery of poorly bioavailable drugs.

  18. [Construction of research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier].

    PubMed

    Sun, E; Xu, Feng-Juan; Zhang, Zhen-Hai; Wei, Ying-Jie; Tan, Xiao-Bin; Cheng, Xu-Dong; Jia, Xiao-Bin

    2014-02-01

    Based on practice of Epimedium processing mechanism for many years and integrated multidisciplinary theory and technology, this paper initially constructs the research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier, which to form an innovative research mode of the " chemical composition changes-biological transformation-metabolism in vitro and in vivo-intestinal absorption-pharmacokinetic combined pharmacodynamic-pharmacodynamic mechanism". Combined with specific examples of Epimedium and other Chinese herbal medicine processing mechanism, this paper also discusses the academic thoughts, research methods and key technologies of this research system, which will be conducive to systematically reveal the modem scientific connotation of traditional Chinese medicine processing, and enrich the theory of Chinese herbal medicine processing.

  19. Lactobacillus acidophilus ATCC 4356 Prevents Atherosclerosis via Inhibition of Intestinal Cholesterol Absorption in Apolipoprotein E-Knockout Mice

    PubMed Central

    Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-01-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE−/−) mice. Eight-week-old ApoE−/− mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE−/− mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526

  20. Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors

    PubMed Central

    Fleet, James C.; Schoch, Ryan D.

    2011-01-01

    Optimal intestinal calcium (Ca) absorption is necessary for the protection of bone and the prevention of osteoporosis. Ca absorption can be represented as the sum of a saturable pathway and a non-saturable pathway that is primarily dependent upon luminal Ca concentration. While models have been proposed to describe these transport components, significant gaps still exist in our understanding of these processes. Habitual low intake of Ca up-regulates the saturable transport pathway, a process mediated by increased renal production of 1,25 dihydroxyvitamin D (1,25(OH)2 D). Consistent with this, low vitamin D status as well as deletion/mutation of the vitamin D receptor (VDR) or 25 hydroxyvitamin D-1α hydroxylase (CYP27B1) genes limit Ca absorption by reducing the saturable pathway. There is some evidence that non-saturable Ca absorption in the ileum is also regulated by vitamin D status, but the mechanism is unclear. Treatment with a number of hormones can regulate Ca absorption in vivo [e.g. parathyroid hormone (PTH), thyroid hormone, growth hormone (GH)/insulin-like growth factor I (IGF-1), estrogen, testosterone]. However, some of these actions are indirect (i.e. mediated through the regulation of vitamin D metabolism or signaling), whereas only a few (e.g. estrogen, IGF-1) have been shown to persist in the absence of vitamin D signaling. PMID:21182397

  1. [Traditional Chinese medicine pairs (III)--effect of extract of Ginseng Radix et Rhizoma and Puerariae Lobatae Radix on intestinal absorption in rats].

    PubMed

    Chen, Yi-hang; Li, Meng-xuan; Meng, Zhao-qing; Yang, Jiao-jiao; Huang, Wen-zhe; Wang, Zhen-zhong; Wang, Yue-sheng; Xiao, Wei

    2015-08-01

    This study focused on the intestinal absorption of traditional Chinese medicines (TCM) to reveal the scientific connotation of the compatibility of TCM pairs. The single pass intestinal perfusion (SPIP) was used in rats to compare the absorption of single extracts from Puerariae Lobatae Radix, single extracts from Ginseng Radix et Rhizoma, combined extracts from Puerariae Lobatae Radix and Ginseng Radix et Rhizoma and Puerariae Lobatae Radix and Ginseng Radix et Rhizoma mixture in rats. The content of puerarin, ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1 in liquid were tested by HPLC. The speed constant (Ka) and apparent permeability coefficients (Papp) were calculated and compared. Specifically, the order of puerarin Ka and Papp values from high to low was Ginseng Radix et Rhizoma and Puerariae Lobatae Radix mixture > single extracts from Puerariae Lobatae Radix > combined extracts from Ginseng Radix et Rhizoma and Puerariae Lobatae Radix; the order of ginsenosides Ka and Papp values from high to low was Ginseng Radix et Rhizoma and Puerariae Lobatae Radix mixture > single extracts from Ginseng Radix et Rhizoma > combined extracts from Ginseng Radix et Rhizoma and Puerariae Lobatae Radix. The combined administration of Ginseng Radix et Rhizoma and Puerariae Lobatae Radix may improve the absorption in the intestinal tract.

  2. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    NASA Astrophysics Data System (ADS)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  3. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    PubMed

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  4. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    PubMed

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P < 0.05) between 0.0001 and 0.1 µM folic acid. Above 0.1 µM, the slope of the regression line was not significantly different from zero (P < 0.137). Folic acid uptake in the jejunum showed a maximum rate of transport at pH 6.0, but was lowest at pH 7.5. The presence of 5-methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  5. Estimation of the Intestinal Absorption and Metabolism Behaviors of 2- and 3-Monochloropropanediol Esters.

    PubMed

    Kaze, Naoki; Watanabe, Yomi; Sato, Hirofumi; Murota, Kaeko; Kotaniguchi, Miyako; Yamamoto, Hiroshi; Inui, Hiroshi; Kitamura, Shinichi

    2016-08-01

    The regioisomers of the di- and mono-oleate of monochloropropanediol (MCPD) have been synthesized and subsequently hydrolyzed with pancreatic lipase and pancreatin to estimate the intestinal digestion and absorption of these compounds after their intake. The hydrolysates were analyzed by HPLC using a corona charged aerosol detection system, which allowed for the separation and detection of the different regioisomers of the MCPD esters. The hydrolysates were also analyzed by GC-MS to monitor the free MCPD. The results indicated that the two acyl groups of 2-MCPD-1,3-dioleate were smoothly hydrolyzed by pancreatic lipase and pancreatin to give free 2-MCPD. In contrast, the hydrolysis of 3-MCPD-1,2-dioleate proceeded predominantly at the primary position to produce 3-MCPD-2-oleate. 2-MCPD-1-oleate and 3-MCPD-1-oleate were further hydrolyzed to free 2- and 3-MCPD by pancreatic lipase and pancreatin, although the hydrolysis of 3-MCPD-2-oleate was 80 % slower than that of 3-MCPD-1-oleate. The intestinal absorption characteristics of these compounds were evaluated in vitro using a Caco-2 cell monolayer. The results revealed that the MCPD monooleates, but not the MCPD dioleates, were hydrolyzed to produce the free MCPD in the presence of the Caco-2 cells. The resulting free MCPD permeated the Caco-2 monolayer most likely via a diffusion mechanism because their permeation profiles were independent of the dose. Similar permeation profiles were obtained for 2- and 3-MCPDs.

  6. Binding of navy bean (Phaseolus vulgaris) lectin to the intestinal cells of the rat and its effect on the absorption of glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donatucci, D.A.; Liener, I.E.; Gross, C.J.

    The main objectives of this investigation were to study the binding of a lectin from navy beans with the epithelial cells of the rat intestine and to assess the effect of such binding on the ability of the intestine to absorb glucose. A Scatchard plot, based on the binding of /sup 125/I-labeled lectin to isolated intestinal epithelial cells, was used to calculate an association constant (Ka) of 15 x 10(6)M-1 and the number of binding sites per cell, 12 x 10(6). Metabolic studies were conducted over a period of 5 d on groups of rats fed raw or autoclaved navymore » bean flour and casein with or without the purified lectin. Growth, protein digestibility, biological value and net protein utilization were significantly lower in animals that had been fed raw navy bean flour or casein plus lectin than in control groups fed diets containing autoclaved navy bean flour or casein alone. Vascular perfusion was used to measure the rate of uptake of glucose by the intestines of rats that had received the various dietary treatments. The rate of absorption of (/sup 14/C)glucose by intestines from rats fed raw navy bean flour or casein plus lectin was approximately one-half that of their counterparts fed the autoclaved flour or casein alone. These results provide evidence that the lectin, by virtue of its interference with intestinal absorption, is responsible, at least in part, for the nutritional inferiority of raw navy beans.« less

  7. Effects of turpentine-induced inflammation on the hypoxic stimulation of intestinal Fe3+ absorption in mice.

    PubMed Central

    Raja, K. B.; Duane, P.; Peters, T. J.

    1990-01-01

    Chronic subcutaneous turpentine administration (weekly for 6 weeks) induced a mild normocytic anaemia in mice. In-vitro and in-vivo intestinal Fe3+ absorption parameters were, however, not significantly altered from values in saline-treated or untreated mice. Normal mice, when exposed to 3 days hypoxia demonstrated a 2-3-fold increase in iron absorption in vivo, mainly due to changes in the amount of iron transferred from the mucosa to the plasma and thence to the carcass. A 2-3-fold increase in Vmax was also observed in in-vitro uptake experiments using isolated duodenal fragments. In contrast, turpentine-treated animals, though demonstrating an enhanced in-vitro maximal uptake capacity, failed to elicit an adaptive response in vivo following hypoxic exposure. These findings suggest that a circulating (humoral) factor may be responsible for the inhibition in absorption in vivo in this turpentine-induced inflammatory model. PMID:2278822

  8. In vitro solubility, dissolution and permeability studies combined with semi-mechanistic modeling to investigate the intestinal absorption of desvenlafaxine from an immediate- and extended release formulation.

    PubMed

    Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B

    2015-09-18

    Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted

  9. A RADIOAUTOGRAPHIC STUDY OF GLYCERIDE SYNTHESIS IN VIVO DURING INTESTINAL ABSORPTION OF FATS AND LABELED GLUCOSE

    PubMed Central

    Jersild, Ralph A.

    1966-01-01

    Radioautography was used to detect the synthesis of labeled glycerides in intestinal absorptive cells following injections of fatty chyme and glucose-6-H3 into ligated segments of upper jejunum of fasting rats. Absorption intervals ranged from 2 to 20 min. Labeling is evident throughout the cells in as short a time as 2 min. Most grains are present over droplets of absorbed fat beginning with those in the endoplasmic reticulum immediately subjacent to the terminal web. With longer absorption periods, frequent grains are present over accumulations of fat droplets in the Golgi cisternae and intercellular spaces. A similar pattern of grains is seen following absorption of either linoleic acid or safflower oil. By comparison, considerably less label is present in the cells when the fat is extracted with alcohol prior to radioautographic procedures, or when labeled glucose alone is absorbed. A significant incorporation of glucose label into newly synthesized glycerides is indicated and confirmed by scintillation counts on saponified lipid extracts. The grain distribution implies an involvement of the extreme apical endoplasmic reticulum in this synthesis. PMID:5971642

  10. The proton-coupled oligopeptide transporter 1 plays a major role in the intestinal permeability and absorption of 5-aminolevulinic acid.

    PubMed

    Xie, Yehua; Hu, Yongjun; Smith, David E

    2016-01-01

    5-Aminolevulinic acid (5-ALA) has been widely used in photodynamic therapy and immunofluorescence of tumours. In the present study, the intestinal permeability and oral pharmacokinetics of 5-ALA were evaluated to probe the contribution of the proton-coupled oligopeptide transporter 1 (PEPT1) to the oral absorption and systemic exposure of this substrate. In situ single-pass intestinal perfusions and in vivo oral pharmacokinetic studies were performed in wildtype and Pept1 knockout mice. Perfusion studies were performed as a function of concentration dependence, specificity and permeability of 5-ALA in different intestinal segments. Pharmacokinetic studies were performed after 0.2 and 2.0 μmoL·g(-1) doses of 5-ALA. The permeability of 5-ALA was substantial in duodenal, jejunal and ileal regions of wildtype mice, but the residual permeability of 5-ALA in the small intestine from Pept1 knockout mice was only about 10% of that in wildtype animals. The permeability of 5-ALA in jejunum was specific for PEPT1 with no apparent contribution of other transporters, including the proton-coupled amino acid transporter 1 (PAT1). After oral dosing, the systemic exposure of 5-ALA was reduced by about twofold during PEPT1 ablation, and the pharmacokinetics were dose-proportional after the 0.2 and 2.0 µmol·g(-1) doses. PEPT1 had a minor effect on the disposition and peripheral tissue distribution of 5-ALA. Our findings suggested a major role of PEPT1 in the intestinal permeability and oral absorption of 5-ALA. In contrast, another proton-coupled transporter, PAT1, appeared to play a limited role, at best. © 2015 The British Pharmacological Society.

  11. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption.

    PubMed

    Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo

    2012-05-01

    Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.

  13. Intestinal absorption of retinol and retinyl palmitate in the rat. Effects of tetrahydrolipstatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, E.; Borgstroem, B.

    1990-09-01

    The aim of the present study was to characterize the intestinal absorption of retinol and retinyl palmitate in thoracic duct and bile duct fistulated rats and to investigate the effect of a simultaneously administered lipase inhibitor, tetrahydrolipstatin (THL). Absorption was determined as lymphatic recovery over a 24-hr period, including an initial 12-hr continuous intraduodenal infusion of either (11,12-3H)retinol or (11,12-3H)retinyl palmitate given in emulsified glyceryl trioleate or in mixed micellar solution of monoolein and oleic acid. From micellar dispersion, labeled retinol and retinyl palmitate were recovered in the lymph to 50-60% and both to the same extent. Administered in emulsifiedmore » form, labeled retinol from fed retinyl palmitate was recovered to 47%, but retinol from fed retinol to only 18%. THL (10(-4) M) in the infusate had no significant effect on the recovery of 14C-labeled oleic acid. The recovery of label from emulsified glyceryl tri(1-14C)oleate was significantly decreased at this concentration of THL (76.5% vs 19.6% recovery). When administered in emulsified form, retinol absorption was not significantly affected by THL at 10(-4) M, while retinyl palmitate absorption was very significantly decreased (5.0% compared to 47.8%). In the presence of THL, retinol absorption from retinyl palmitate in micellar solution was decreased (from 58% to 17%). Most of the retinol in the lymph extracts (72.2 to 91.3) was present as retinyl ester, regardless of the chemical and physical form of administration. Furthermore, THL did not induce any change in this pattern.« less

  14. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    PubMed Central

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  15. The absorption and first-pass metabolism of [14C]-1,3-dinitrobenzene in the isolated vascularly perfused rat small intestine.

    PubMed

    Adams, P C; Rickert, D E

    1996-11-01

    We tested the hypothesis that the small intestine is capable of the first-pass, reductive metabolism of xenobiotics. A simplified version of the isolated vascularly perfused rat small intestine was developed to test this hypothesis with 1,3-dinitrobenzene (1,3-DNB) as a model xenobiotic. Both 3-nitroaniline (3-NA) and 3-nitroacetanilide (3-NAA) were formed and absorbed following intralumenal doses of 1,3-DNB (1.8 or 4.2 mumol) to isolated vascularly perfused rat small intestine. Dose, fasting, or antibiotic pretreatment had no effect on the absorption and metabolism of 1,3-DNB in this model system. The failure of antibiotic pretreatment to alter the metabolism of 1,3-DNA indicated that 1,3-DNB metabolism was mammalian rather than microfloral in origin. All data from experiments initiated with lumenal 1,3-DNB were fit to a pharmacokinetic model (model A). ANOVA analysis revealed that dose, fasting, or antibiotic pretreatment had no statistically significant effect on the model-dependent parameters. 3-NA (1.5 mumol) was administered to the lumen of isolated vascularly perfused rat small intestine to evaluate model A predictions for the absorption and metabolism of this metabolite. All data from experiments initiated with 3-NA were fit to a pharmacokinetic model (model B). Comparison of corresponding model-dependent pharmacokinetic parameters (i.e. those parameters which describe the same processes in models A and B) revealed quantitative differences. Evidence for significant quantitative differences in the pharmacokinetics or metabolism of formed versus preformed 3-NA in rat small intestine may require better definition of the rate constants used to describe tissue and lumenal processes or identification and incorporation of the remaining unidentified metabolites into the models.

  16. Complexation of tocotrienol with gamma-cyclodextrin enhances intestinal absorption of tocotrienol in rats.

    PubMed

    Ikeda, Saiko; Uchida, Tomono; Ichikawa, Tomio; Watanabe, Takashi; Uekaji, Yukiko; Nakata, Daisuke; Terao, Keiji; Yano, Tomohiro

    2010-01-01

    To determine the bioavailability of tocotrienol complex with gamma-cyclodextrin, the effects of tocotrienol/gamma-cyclodextrin complex on tocotrienol concentration in rat plasma and tissues were studied. Rats were administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. At 3 h after administration, the plasma gamma-tocotrienol concentration of the rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the rats administered tocotrienol and gamma-cyclodextrin. In order to determine the effect of complexation on tocotrienol absorption, rats were injected with Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoprotein by lipoprotein lipase, and then administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. The plasma gamma-tocotrienol concentration of the Triton-treated rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the other Triton-treated rats. These results suggest that complexation of tocotrienol with gamma-cyclodextrin elevates plasma and tissue tocotrienol concentrations by enhancing intestinal absorption.

  17. Alpha-lactalbumin effect on myo-inositol intestinal absorption: in vivo and in vitro.

    PubMed

    Monastra, Giovanni; Ferruzza, Simonetta; Sambuy, Yula; Ranaldi, Giulia; Ferrari, Daniela

    2018-05-08

    . Myo-inositol is a natural molecule with important therapeutic applications and an impaired oral absorption may result in a reduced clinical effect. Aim of this study was to determine if the combined oral administration of α-lactalbumin and myo-inositol in healthy subjects, could increase the plasma level of myo-inositol administered alone. In vitro studies on human differentiated intestinal Caco-2 cells were also conducted to identify the mechanisms involved in myo-inositol absorption. The in vivo study was conducted on healthy volunteers in two phases. Subjects received a single oral myo-inositol dose. After 7 days washout, the same subjects were administered a single dose of myo-inositol and α-lactalbumin. Cmax, Tmax and AUC for myo-inositol in plasma were calculated from samples collected at different times. Transepithelial myo-inositol passage, with or without addition of digested α-lactalbumin, was measured in vitro in differentiated Caco-2 cells and compared to transepithelial electrical resistance and phenol red passage. The bioavailability of myo-inositol was modified by the concomitant administration of α-lactalbumin. Although peak concentration of myo-inositol at 180 min (Tmax) was similar for both treatments, administration of α-lactalbumin with myo-inositol in a single dose, significantly increased the plasma concentrations of myo-inositol compared to when administered alone. In vitro, myo-inositol absorption in Caco-2 cells was improved in the presence of digested α-lactalbumin, and this change was associated with an increase in tight junction permeability. Better myo-inositol absorption when orally administered with α-lactalbumin can be beneficial in non-responder patients. Preliminary in vitro findings suggest that peptides deriving from α-lactalbumin digestion may modulate tight junction permeability allowing increased absorption of myo-inositol. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption.

    PubMed

    Moran, A W; Al-Rammahi, M; Zhang, C; Bravo, D; Calsamiglia, S; Shirazi-Beechey, S P

    2014-01-01

    Absorption of glucose from the lumen of the intestine into enterocytes is accomplished by sodium-glucose co-transporter 1 (SGLT1). In the majority of mammalian species, expression (this includes activity) of SGLT1 is upregulated in response to increased dietary monosaccharides. This regulatory pathway is initiated by sensing of luminal sugar by the gut-expressed sweet taste receptor. The objectives of our studies were to determine (1) if the ruminant intestine expresses the sweet taste receptor, which consists of two subunits [taste 1 receptor 2 (T1R2) and 3 (T1R3)], and other key signaling molecules required for SGLT1 upregulation in nonruminant intestines, and (2) whether T1R2-T1R3 sensing of artificial sweeteners induces release of glucagon-like peptide-2 (GLP-2) and enhances SGLT1 expression. We found that the small intestine of sheep and cattle express T1R2, T1R3, G-protein gustducin, and GLP-2 in enteroendocrine L-cells. Maintaining 110-d-old ruminating calves for 60d on a diet containing a starter concentrate and the artificial sweetener Sucram (consisting of saccharin and neohesperidin dihydrochalcone; Pancosma SA, Geneva, Switzerland) enhances (1) Na(+)-dependent d-glucose uptake by over 3-fold, (2) villus height and crypt depth by 1.4- and 1.2-fold, and (3) maltase- and alkaline phosphatase-specific activity by 1.5-fold compared to calves maintained on the same diet without Sucram. No statistically significant differences were observed for rates of intestinal glucose uptake, villus height, crypt depth, or enzyme activities between 50-d-old milk-fed calves and calves maintained on the same diet containing Sucram. When adult cows were kept on a diet containing 80:20 ryegrass hay-to-concentrate supplemented with Sucram, more than a 7-fold increase in SGLT1 protein abundance was noted. Collectively, the data indicate that inclusion of this artificial sweetener enhances SGLT1 expression and mucosal growth in ruminant animals. Exposure of ruminant sheep

  19. Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats.

    PubMed

    Saratale, Rijuta Ganesh; Lee, Hee-Seok; Koo, Yong Eui; Saratale, Ganesh Dattatraya; Kim, Young Jun; Imm, Jee Young; Park, Yooheon

    2018-04-01

    The absorption kinetics of food ingredients such as nanoemulsified vitamin E and green tea microstructures were evaluated by the intestinal in situ single perfusion technique. Absorption rate, sub-acute oral toxicity and organ morphology in a rat model were examined. The intestinal in situ single perfusion technique and HPLC analysis were applied to investigate the absorption rate of selected materials by examining time-dependent changes in the serum levels of catechin and dl-α-tocopherol. The acute toxicity test and histopathological evaluation were applied to analyze the safety of microsized green tea and nanosized vitamin E in a rat model. Total serum dl-α-tocopherol levels significantly increased with nanosized vitamin E administration (P<0.05). Rats treated to nanosized vitamin E until 90min after administration showed significantly increased absorption rate of serum dl-α-tocopherol levels at each time point (10min interval) (P<0.001). Rats administered 2000mg/kg of nanosized vitamin E and microsized green tea did not show signs of acute toxicity or death after 14days of observation. In addition, macroscopic analysis showed that there were no changes in representative organ sections of rats following the oral administration of food-related nanoscale materials. We successfully demonstrated that using nanosized vitamin E increased absorption rate to a greater extent than normal food-related material, and these results occurs via safety analyses on food-related nanoscale materials for human consumption. These results could be useful for the design and development of novel nanoemulsified vitamin E and microsized green tea formulations that can overcome the problem of their bioavailability and improve their efficacy while still maintaining their essential therapeutic efficacies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers--an in vitro model for intestinal absorption.

    PubMed

    Waltenberger, B; Avula, B; Ganzera, M; Khan, I A; Stuppner, H; Khan, S I

    2008-05-01

    Laxative effects of Senna preparations are mainly mediated by rheinanthrone, a metabolite formed in the intestinal flora from dianthrones. Nevertheless, it was not clear whether dianthrones are bioavailable at all and contribute to the overall effects of this important medicinal plant. Using the Caco-2 human colonic cell line as an in vitro model of the human intestinal mucosal barrier, the bioavailability of dianthrones was studied in apical to basolateral (absorptive) and basolateral to apical (secretive) direction. Permeability coefficients (P(c)) and percent transport were calculated based on quantitations by HPLC. From the data obtained it was concluded that sennosides A and B, as well as their aglycones sennidine A and B are transported through the Caco-2 monolayers in a concentration-dependent manner and their transport was linear with time. The absorption in apical to basolateral direction was poor and P(c) values were comparable to mannitol. The transport was higher in the secretory direction, indicating a significant efflux (e.g. by efflux pumps) of the (poorly) absorbed compounds in the intestinal lumen again. Our findings support the general understanding that the laxative effects of Senna are explainable mainly by metabolites and not by the natively present dianthrones.

  1. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine.

    PubMed

    Saitoh, Hiroshi; Saikachi, Yuko; Kobayashi, Mikako; Yamaguchi, Michiko; Oda, Masako; Yuhki, Yoshimitsu; Achiwa, Kazuhito; Tadano, Koji; Takahashi, Yasushi; Aungst, Bruce J

    2006-05-01

    The significance of intestinal P-glycoprotein (P-gp) in determining the oral bioavailability of tacrolimus has been still controversial. In this study, we reevaluated the interaction of tacrolimus with P-gp in the rat small intestine, by evaluating its absorption from the rat small intestine and its modulating effect on the absorption of known P-gp substrates (digoxin, methylprednisolone, and vinblastine). Intestinal absorption of tacrolimus itself was as extensive as other P-gp modulators such as cyclosporine and verapamil. While cyclosporine and verapamil significantly increased the absorption of methylprednisolone and vinblastine through potent inhibition of intestinal P-gp, tacrolimus failed to achieve this. When cyclosporine and tacrolimus were intravenously administered to rats, digoxin absorption was significantly increased by cyclosporine but not by tacrolimus. When tacrolimus was coadministered with clotrimazole, a specific CYP3A inhibitor, into the rat small intestine, the area under the curve of tacrolimus blood concentrations increased more than seven-fold compared with that of tacrolimus alone. Our present results strongly suggest that the interaction between tacrolimus and P-gp is limited in the rat small intestine and that extensive metabolism by CYP3A enzymes is more responsible for the low oral bioavailability of tacrolimus. It was considered that the extensive absorption of cyclosporine and verapamil was closely associated with their potent ability to inhibit intestinal P-gp.

  2. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    NASA Astrophysics Data System (ADS)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  3. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming

    PubMed Central

    Colins, Andrea; Gerdtzen, Ziomara P.; Nuñez, Marco T.; Salgado, J. Cristian

    2017-01-01

    Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex

  4. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation

    PubMed Central

    Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan

    2012-01-01

    Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784

  5. The transit of dosage forms through the small intestine.

    PubMed

    Yuen, Kah-Hay

    2010-08-16

    The human small intestine, with its enormous absorptive surface area, is invariably the principal site of drug absorption. Hence, the residence time of a dosage form in this part of the gut can have a great influence on the absorption of the contained drug. Various methods have been employed to monitor the gastrointestinal transit of pharmaceutical dosage forms, but the use of gamma-scintigraphy has superceded all the other methods. However, careful consideration of the time interval for image acquisition and proper analysis of the scintigraphic data are important for obtaining reliable results. Most studies reported the mean small intestinal transit time of various dosage forms to be about 3-4h, being closely similar to that of food and water. The value does not appear to be influenced by their physical state nor the presence of food, but the timing of food intake following administration of the dosage forms can influence the small intestinal transit time. While the mean small intestinal transit time is quite consistent among dosage forms and studies, individual values can vary widely. There are differing opinions regarding the effect of density and size of dosage forms on their small intestinal transit properties. Some common excipients employed in pharmaceutical formulations can affect the small intestinal transit and drug absorption. There is currently a lack of studies regarding the effects of excipients, as well as the timing of food intake on the small intestinal transit of dosage forms and drug absorption. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    PubMed

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  7. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity.

    PubMed

    Tang, Lieqi; Cheng, Catherine Y; Sun, Xiangrong; Pedicone, Alexandra J; Mohamadzadeh, Mansour; Cheng, Sam X

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  8. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity

    PubMed Central

    Tang, Lieqi; Cheng, Catherine Y.; Sun, Xiangrong; Pedicone, Alexandra J.; Mohamadzadeh, Mansour; Cheng, Sam X.

    2016-01-01

    Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be

  9. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  10. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism

    PubMed Central

    Yen, Chi-Liang Eric; Nelson, David W.; Yen, Mei-I

    2015-01-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  11. Effects of vasoactive intestinal peptide and pancreatic polypeptide in rabbit intestine.

    PubMed Central

    Camilleri, M; Cooper, B T; Adrian, T E; Bloom, S R; Chadwick, V S

    1981-01-01

    The effects of porcine vasoactive intestinal peptide (VIP) and bovine pancreatic polypeptide (PP) on jejunal, ileal, and colonic fluid transport were studied in the rabbit. VIP produced secretion in the small intestine (jejunum greater than ileum) but did not affect absorption in the colon. PP had no secretory effects in jejunum, ileum, or colon. The small intestinal secretion induced by VIP was not associated with raised cAMP concentrations in the mucosa; this suggests that the secretory effects of VIP in vivo are mediated by a mechanism other than stimulation of adenylate cyclase. PMID:6257593

  12. Intestinal Calcium Absorption among Hypercalciuric Patients with or without Calcium Kidney Stones.

    PubMed

    Vezzoli, Giuseppe; Macrina, Lorenza; Rubinacci, Alessandro; Spotti, Donatella; Arcidiacono, Teresa

    2016-08-08

    Idiopathic hypercalciuria is a frequent defect in calcium kidney stone formers that is associated with high intestinal calcium absorption and osteopenia. Characteristics distinguishing hypercalciuric stone formers from hypercalciuric patients without kidney stone history (HNSFs) are unknown and were explored in our study. We compared 172 hypercalciuric stone formers with 36 HNSFs retrospectively selected from patients referred to outpatient clinics of the San Raffaele Hospital in Milan from 1998 to 2003. Calcium metabolism and lumbar bone mineral density were analyzed in these patients. A strontium oral load test was performed: strontium was measured in 240-minute urine and serum 30, 60, and 240 minutes after strontium ingestion; serum strontium concentration-time curve and renal strontium clearance were evaluated to estimate absorption and excretion of divalent cations. Serum strontium concentration-time curve (P<0.001) and strontium clearance (4.9±1.3 versus 3.5±2.7 ml/min; P<0.001) were higher in hypercalciuric stone formers than HNSFs, respectively. The serum strontium-time curve was also higher in hypercalciuric stone formers with low bone mineral density (n=42) than in hypercalciuric stone formers with normal bone mineral density (n=130; P=0.03) and HNSFs with low (n=22; P=0.01) or normal bone mineral density (n=14; P=0.02). Strontium clearance was greater in hypercalciuric stone formers with normal bone mineral density (5.3±3.4 ml/min) than in hypercalciuric stone formers and HNSFs with low bone mineral density (3.6±2.5 and 3.1±2.5 ml/min, respectively; P=0.03). Multivariate regression analyses displayed that strontium absorption at 30 minutes was positively associated calcium excretion (P=0.03) and negatively associated with lumbar bone mineral density z score (P=0.001) in hypercalciuric stone formers; furthermore, hypercalciuric patients in the highest quartile of strontium absorption had increased stone production risk (odds ratio, 5.06; 95

  13. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Isotope concentrations from 24-h urine and 3-h serum samples can be used to measure intestinal magnesium absorption in postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a >/= 6-d stool or 3-d urine collection. We evaluated alternative meth...

  15. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  16. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    PubMed

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  17. Improvement of Intestinal Absorption of Forsythoside A and Chlorogenic Acid by Different Carboxymethyl Chitosan and Chito-oligosaccharide, Application to Flos Lonicerae - Fructus Forsythiae Herb Couple Preparations

    PubMed Central

    Zhou, Wei; Wang, Haidan; Zhu, Xuanxuan; Shan, Jinjun; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2013-01-01

    The current study aims to investigate the effect of chitosan derivatives on the intestinal absorption and bioavailabilities of forsythoside A (FTA) and Chlorogenic acid (CHA), the major active components in Flos Lonicerae - Fructus Forsythiae herb couple. Biopharmaceutics and pharmacokinetics properties of the two compounds have been characterized in vitro, in situ as well as in rats. Based on the identified biopharmaceutics characteristics of the two compounds, the effect of chitosan derivatives as an absorption enhancer on the intestinal absorption and pharmacokinetics of FTA and CHA in pure compound form as well as extract form were investigated in vitro, in situ and in vivo. Both FTA and CHA demonstrated very limited intestinal permeabilities, leading to oral bioavailabilities being only 0.50% and 0.13% in rats, respectively. Results from both in vitro, in situ as well as in vivo studies consistently indicated that Chito-oligosaccharide (COS) at dosage of 25 mg/kg could enhance intestinal permeabilities significantly as well as the in vivo bioavailabilities of both FTA and CHA than CMCs in Flos Lonicerae - Fructus Forsythiae herb couple preparations, and was safe for gastrointestine from morphological observation. Besides, treatment with Flos Lonicerae - Fructus Forsythiae herb couple preparations with COS at the dosage of 25 mg/kg prevented MDCK damage after influenza virus propagation, which was significantly better than control. The current findings not only identified the usefulness of COS for the improved delivery of Flos Lonicerae - Fructus Forsythiae preparations but also demonstrated the importance of biopharmaceutical characterization in the dosage form development of traditional Chinese medicine. PMID:23675483

  18. The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans.

    PubMed

    Connor, W E; Lin, D S

    1974-04-01

    The incomplete absorption of dietary cholesterol may represent an adaptive intestinal barrier that prevents hypercholesterolemia. To explore this mechanism, we compared cholesterol absorption in 15 normocholesterolemic and 6 hypercholesterolemic (type II) subjects fed background cholesterol-free formula diets with 40% of calories as fat. Each test meal consisted of a breakfast into which was incorporated scrambled egg yolk containing 300-500 mg of cholesterol and [4-(14)C]cholesterol (3-22 muCi), either naturally incorporated into the yolk cholesterol by previous isotope injection into the laying hen or added in peanut oil to the yolk of the test breakfast. In some instances [1alpha-(3)H]cholesterol was the radioactive marker. The radioactivity of the fecal neutral sterol fraction was determined in daily stool samples for the next 7 days to provide an estimate of unabsorbed dietary cholesterol. The amount of absorbed and reexcreted labeled cholesterol proved negligible. Most unabsorbed dietary cholesterol appeared in the stool on the second or third day after the meal, and 95% or more was recovered in the stool by 6 days. Plasma specific activity curves were usually maximal at 48 h. Normal subjects absorbed 44.5+/-9.3 (SD) of the administered cholesterol (range 25.9-60.3). Hypercholesterolemics absorbed the same percentage of cholesterol as normals: 47.6+/-12.6% (range 29.3-67.3). Absorption was similar whether the radiolabeled cholesterol was added to egg yolk or naturally incorporated in it (42.1+/-9.3 vs. 48.9+/-9.8%). Six normal subjects were fed a cholesterol-free formula for 4 wk, and then different amounts of cholesterol (110-610 mg/day) were added for another 4 wk. At the end of each period, single test meals containing either 110, 310, or 610 mg of cholesterol and [1alpha-(3)H]cholesterol were administered. Cholesterol absorption was 42.3+/-6.0% and 45.4+/-8.3% for the two dietary periods, respectively. The absolute cholesterol absorption was linearly

  19. Alleviation by garlic of antitumor drug-induced damage to the intestine.

    PubMed

    Horie, T; Awazu, S; Itakura, Y; Fuwa, T

    2001-03-01

    Antitumour drugs such as methotrexate (MTX) and 5-fluorouracil (5-FU) induce intestinal damage. This is a serious side effect of cancer chemotherapy. The present studies examined whether or not aged garlic extract (AGE) protects against damage from these antitumor drugs. Both drugs were administered orally for 4 or 5 d to rats fed a standard laboratory diet with and without 2% AGE. The small intestinal absorption of the poorly absorbable compound, fluorescein isothiocyanate--labeled dextran (FD-4; average molecular weight, 4400) was used to evaluate the damage to the intestine using the in vitro everted intestine technique and the in situ intestinal loop technique. FD-4 absorption increased in the antitumour drug-treated rats fed the diet without garlic. Interestingly, FD-4 absorption was depressed in rats fed the diet containing AGE. These results suggest that AGE may protect the small intestine of rats from antitumour drug-induced damage.

  20. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Kravets, Victoria; Hu, David

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines Contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  1. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Hu, David

    2015-11-01

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  2. Human biokinetics of strontium. Part I: intestinal absorption rate and its impact on the dose coefficient of 90Sr after ingestion.

    PubMed

    Li, Wei Bo; Höllriegl, Vera; Roth, Paul; Oeh, Uwe

    2006-07-01

    Intestinal absorption of strontium (Sr) in thirteen healthy adult German volunteers has been investigated by simultaneous oral and intravenous administration of two stable tracer isotopes, i.e. (84)Sr and (86)Sr. The measured Sr tracer concentration in plasma was analyzed using the convolution integral technique to obtain the intestinal absorption rate. The results showed that the Sr labeled in different foodstuffs was absorbed into the body fluids in a large range of difference. The maximum Sr absorption rates were observed within 60-120 min after administration. The rate of absorption is used to evaluate the intestinal absorption fraction, i.e. the f (1) value for various foodstuffs. The equivalent and effective dose coefficients for ingestion of (90)Sr were calculated using these f (1) values, and they were compared with those recommended by the International Commission on Radiological Protection (ICRP). The geometric and arithmetic means of the f (1) values are 0.38 and 0.45 associated with a geometric standard deviation and a standard deviation of 1.88 and 0.22, respectively. The 90% confidence interval of the f (1) values obtained in the present study ranges from 0.13 to 0.98. Expressed as the ratio of the 95 and 50% percentiles of the estimated probability, the uncertainty for the f (1) value corresponds to a factor of 2.58. The effective dose coefficients of (90)Sr after ingestion are 6.1 x 10(-9) Sv Bq(-1) for an f(1) value of 0.05, 1.0 x 10(-8) Sv Bq(-1) for 0.1, 1.9 x 10(-8) Sv Bq(-1) for 0.2, 2.8 x 10(-8) Sv Bq(-1) for 0.3, 3.6 x 10(-8) Sv Bq(-1) for 0.4, 5.3 x 10(-8) Sv Bq(-1) for 0.6, 7.1 x 10(-8) Sv Bq(-1) for 0.8, and 7.9 x 10(-8) Sv Bq(-1) for 0.9, respectively. Taking the effective dose coefficient of 2.8 x 10(-8) Sv Bq(-1) for an f (1) value of 0.3, which is recommended by the ICRP, as a reference, the effective dose coefficient of (90)Sr after ingestion varies by a factor of 2.8 when the f (1) value changes by a factor of 3, i.e. it decreases

  3. Chamomile (Matricaria recutita L.) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress.

    PubMed

    Jabri, Mohamed-Amine; Sakly, Mohsen; Marzouki, Lamjed; Sebai, Hichem

    2017-03-01

    The present study aimed to investigate the inhibitory effect of chamomile decoction extract (CDE) on intestinal glucose absorption as well as its protective role against high fat diet (HFD)-induced obesity and lipotoxicity in rats. We used the Ussing chamber system to investigate the effect of CDE on intestinal transport of glucose. Male Wistar rats were fed HFD for six weeks to provoke obesity. CDE (100mg/kg, b.w. p.o.) has been per orally administered to HFD fed rats. Ex vivo, we found that CDE significantly and dose-dependently increased intestinal absorption of glucose. In vivo, HFD increased the body, liver and kidney weights, while CDE treatment showed a significant protective effects. High fat diet induced also a lipid profiles disorder and a disturbances in kidney and liver function parameters. Moreover liver and kidney lipotoxicity is accompanied by an oxidative stress status characterized by increased lipoperoxidation, depletion of antioxidant enzymes activity and non-enzymatic antioxidant (-SH groups and GSH) levels as well as increased levels of free iron, hydrogen peroxide (H 2 O 2 ) and calcium. However, treatment with CDE alleviated all the deleterious effects of HFD feed. These findings suggest that chamomile decoction extract can be used as functional beverage against obesity, hyperglycemia and hyperlipidemia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  5. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice.

    PubMed

    Losada-Eaton, D M; Uzal, F A; Fernández Miyakawa, M E

    2008-06-01

    Clostridium perfringens epsilon toxin is a potent toxin responsible for a rapidly fatal enterotoxaemia in several animal species. The pathogenesis of epsilon toxin includes toxicity to endothelial cells and neurons. Although epsilon toxin is absorbed from the gastrointestinal tract, the intestinal regions where the toxin is absorbed and the conditions favoring epsilon toxin absorption are unknown. The aim of this paper was to determine the toxicity of epsilon toxin absorbed from different gastrointestinal segments of mice and to evaluate the influence of the intestinal environment in the absorption of this toxin. Epsilon toxin diluted in one of several different saline solutions was surgically introduced into ligated stomach or intestinal segments of mice. Comparison of the toxicity of epsilon toxin injected in different sections of the gastrointestinal tract showed that this toxin can be absorbed from the small and the large intestine but not from the stomach of mice. The lethality of epsilon toxin was higher when this toxin was injected in the colon than in the small intestine. Low pH, and Na(+) and glucose added to the saline solution increased the toxicity of epsilon toxin injected into the small intestine. This study shows that absorption of epsilon toxin can occur in any intestinal segment of mice and that the physicochemical characteristics of the intestinal content can affect the absorption of this toxin.

  6. Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein.

    PubMed

    Pan, Xiaoyue; Munshi, Mohamed Khalid; Iqbal, Jahangir; Queiroz, Joyce; Sirwi, Alaa Ahmed; Shah, Shrenik; Younus, Abdullah; Hussain, M Mahmood

    2013-07-12

    We have shown previously that Clock, microsomal triglyceride transfer protein (MTP), and nocturnin are involved in the circadian regulation of intestinal lipid absorption. Here, we clarified the role of apolipoprotein AIV (apoAIV) in the diurnal regulation of plasma lipids and intestinal lipid absorption in mice. Plasma triglyceride in apoAIV(-/-) mice showed diurnal variations similar to apoAIV(+/+) mice; however, the increases in plasma triglyceride at night were significantly lower in these mice. ApoAIV(-/-) mice absorbed fewer lipids at night and showed blunted response to daytime feeding. To explain reasons for these lower responses, we measured MTP expression; intestinal MTP was low at night, and its induction after food entrainment was less in apoAIV(-/-) mice. Conversely, apoAIV overexpression increased MTP mRNA in hepatoma cells, indicating transcriptional regulation. Mechanistic studies revealed that sequences between -204/-775 bp in the MTP promoter respond to apoAIV and that apoAIV enhances expression of FoxA2 and FoxO1 transcription factors and their binding to the identified cis elements in the MTP promoter at night. Knockdown of FoxA2 and FoxO1 abolished apoAIV-mediated MTP induction. Similarly, knockdown of apoAIV in differentiated Caco-2 cells reduced MTP, FoxA2, and FoxO1 mRNA levels, cellular MTP activity, and media apoB. Moreover, FoxA2 and FoxO1 expression showed diurnal variations, and their expression was significantly lower in apoAIV(-/-) mice. These data indicate that apoAIV modulates diurnal changes in lipid absorption by regulating forkhead transcription factors and MTP and that inhibition of apoAIV expression might reduce plasma lipids.

  7. The use of metabolic balance studies in the objective discrimination between intestinal insufficiency and intestinal failure.

    PubMed

    Prahm, August P; Brandt, Christopher F; Askov-Hansen, Carsten; Mortensen, Per B; Jeppesen, Palle B

    2017-09-01

    Background : In research settings that use metabolic balance studies (MBSs) of stable adult patients with short bowel syndrome, intestinal failure (IF) and dependence on parenteral support (PS) have been defined objectively as energy absorption <84% of calculated basal metabolic rate (BMR), wet weight (WW) absorption <23 g · kg body weight -1 · d -1 , or both. Objective: This study aimed to explore and validate these borderlines in the clinical setting. Design: Intestinal absorption was measured from April 2003 to March 2015 in 175 consecutive patients with intestinal insufficiency (INS) in 96-h MBSs. They had not received PS 3 mo before referral. Results: To avoid the need for PS, the minimum absorptive requirements were energy absorption of ≥81% of BMR and WW absorption of ≥21 g · kg body weight -1 · d -1 , which were equivalent to findings in research settings (differences of 3.6% and 8.7%; P = 0.65 and 0.60, respectively). Oral failure defined as energy intake <130% of calculated BMR or WW intake <40 g · kg body weight -1 · d -1 was seen in 71% and 82% of the 10% of patients with the lowest energy absorption and WW absorption, respectively. Conclusions: In clinical settings, the borderlines between INS and IF were not significantly different from those in research settings, even in an unselected patient population in which oral failure was also a predominant cause of nutritional dyshomeostasis. MBSs may be recommended to identify the individual patient in the spectrum from INS to IF, to objectivize the cause of nutritional dyshomeostasis (oral failure, malabsorption, or both), and to quantify the effects of treatment. © 2017 American Society for Nutrition.

  8. Diabetes regulates fructose absorption through thioredoxin-interacting protein

    PubMed Central

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-01-01

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake. DOI: http://dx.doi.org/10.7554/eLife.18313.001 PMID:27725089

  9. Diabetes regulates fructose absorption through thioredoxin-interacting protein.

    PubMed

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-10-11

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake.

  10. Pathophysiology of avian intestinal ion transport.

    PubMed

    Nighot, Meghali; Nighot, Prashant

    2018-06-01

    The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.

  11. Intestinal expression of human apolipoprotein A-IV in transgenic mice fails to influence dietary lipid absorption or feeding behavior.

    PubMed Central

    Aalto-Setälä, K; Bisgaier, C L; Ho, A; Kieft, K A; Traber, M G; Kayden, H J; Ramakrishnan, R; Walsh, A; Essenburg, A D; Breslow, J L

    1994-01-01

    Two transgenic mouse lines, expressing low or high amounts of human apo A-IV were created. In low and high expressor HuAIVTg mice on a chow diet, serum human apo A-IV levels were 6 and 25 times the normal human level and on a high fat diet, they were 12 and 77 times higher. Human apo A-IV was equally distributed between lipoprotein (mainly HDL) and lipid-free fractions. Intestinal absorption of radiolabeled cholesterol and triglycerides was unaffected in HuAIVTg mice. Vitamin A, carried exclusively in chylomicrons and their remnants, was catabolized normally. When an intragastric vitamin E bolus is given to the HuAIVTg mice, the initial absorption and appearance in triglyceride-rich lipoproteins was similar to that observed in normal mice. However, elevated amounts of vitamin E were subsequently observed in the VLDL of the HuAIVTg mice. Furthermore, in the fed state, serum VLDL triglycerides were markedly elevated in HuAIVTg mice. This effect was greater in high expressor mice. Serum total cholesterol was not elevated, but the distribution was altered in the HuAIVTg mice; VLDL-C was increased at the expense of VLDL-C. Kinetic studies suggested a delayed clearance of VLDL in HuAIVTg mice. Apo A-IV has been suggested to be a satiety factor, but no effect on feeding behavior or weight gain was observed in these HuAIVTg mice. In summary, our studies with HuAIVTg mice show that additional apo A-IV does not effect intestinal absorption of fat and fat-soluble vitamins, and at least chronic elevation of plasma apo A-IV does not effect feeding behavior in this model system. Images PMID:8163677

  12. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol

    PubMed Central

    Wang, Helen H; Portincasa, Piero; de Bari, Ornella; Liu, Kristina J; Garruti, Gabriella; Neuschwander-Tetri, Brent A; Wang, David Q.-H

    2013-01-01

    Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors, and represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the US, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA) has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. Therefore, the development of novel, effective, and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide. PMID:23419155

  13. Regulation of intestinal health by branched-chain amino acids.

    PubMed

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  14. Increased intestinal absorption in the rat caused by sodium lauryl sulphate, and its possible relation to the cAMP system.

    PubMed

    Briseid, G; Briseid, K; Kirkevold, K

    1976-01-01

    The increases in the absorption of ouabain, phenolsulphonphthalein and pralidoxime caused by 17 mM sodium lauryl sulphate (SLS) from jejunal loops of anaesthetized rats were significantly reduced if sodium and chloride (Briseid et al., 1974) or chloride and bicarbonate were replaced by other ions in the loop fluid. Separate substitutions of sodium, chloride of bicarbonate did not significantly alter the SLS-caused absorption, except that the substitution of choline for sodium reduced the absorption of pralidoxime, both in the presence and in the absence of SLS. The increases in the absorption of phenolsulphonphthalein and pralidoxime caused by SLS were potentiated by theophylline (25 mM) and reduced by imidazole (25 mM). The addition of dibutyryl cyclic AMP (2.5 mM) to the loop fluid increased this absorption of the test substances. This effect was reduced by imidazole, but under the experimental conditions it was not potentiated by theophylline. Determinations of cyclic AMP in the rat intestinal mucosa showed that the level of this substance was significantly higher in the presence than in the absence of SLS. The experimental conditions were as described for the absorption experiments. It is concluded that the data obtained support the idea of an increased level of cyclic AMP as the main basis for the effect of SLS on the absorption.

  15. BIOCHEMICAL STUDY OF THE RADIOSENSITIVITY OF THE SMALL INTESTINE TO X RAYS. I. ABSORPTION OF LIPIDS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maisin, J.R.; Dulcino, J.; Verly, W.

    1963-01-01

    The first results of a study on the absorption of fats during acute gastro-intestinal syndrome, occurring after irradiation, are reported. Three- month old C/sup +/ mice were exposed on the stomach with x-ray doses of 600, 1500, and 2500 r. The third day after irradiation the mice received either by stomach tube or injection in the duodenum a diet containing glyceryl-tri- (palmitate-1-C /sup 14/) or H/sup 3/-palmitic acid giving an activity equal to 0.5 mu c C/sup 14/ or 1 mu c H/sup 3/. The mice were sacrificed at different moments after administration of the diet. The results are givenmore » graphically and discussed. It was shown that the decrease in the absorption of fats, given by stomach tube, to mice receiving an abdominal irradiation of 1500 and 2500 r is essentially caused by gastric retention. In effect, when the fats are introduced directly in the duodenum, the absorption decrease observed in the irradiated mouse is not significant. There is no significant modification in the absorption of fats 13 months after irradiation with 600 r, whether they are given by stomach tube or duodenum injection. (J.S.R.)« less

  16. Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization.

    PubMed

    Awad, Wageha A; Smorodchenko, Alina; Hess, Claudia; Aschenbach, Jörg R; Molnár, Andor; Dublecz, Károly; Khayal, Basel; Pohl, Elena E; Hess, Michael

    2015-08-01

    Although a high number of chickens carry Campylobacter jejuni, the mechanistic action of colonization in the intestine is still poorly understood. The current study was therefore designed to investigate the effects of C. jejuni on glucose uptake, amino acids availability in digesta, and intracellular calcium [Ca(2+)]i signaling in the intestines of broiler chickens. For this, we compared: control birds (n = 60) and C. jejuni-infected birds (n = 60; infected orally with 1 × 10(8) CFU of C. jejuni NCTC 12744 at 14 days of age). Our results showed that glucose uptake was reduced due to C. jejuni infection in isolated jejunal, but not in cecal mucosa at 14 days postinfection (dpi). The decrease in intestinal glucose absorption coincided with a decrease in body weight gain during the 2-week post-infectious period. A reduction in the amount of the amino acids (serine, proline, valine, leucine, phenylalanine, arginine, histidine, and lysine) in ileal digesta of the infected birds at 2 and/or 7 dpi was found, indicating that Campylobacter utilizes amino acids as a carbon source for their multiplication. Applying the cell-permeable Ca(2+) indicator Fluo-4 and two-photon microscopy, we revealed that [Ca(2+)]i was increased in the jejunal and cecal mucosa of infected birds. The muscarinic agonist carbachol induced an increase in [Ca(2+)]i in jejunum and cecum mucosa of control chickens, a response absent in the mucosa of infected chickens, demonstrating that the modulation of [Ca(2+)]i by Campylobacter might be involved in facilitating the necessary cytoskeletal rearrangements that occur during the bacterial invasion of epithelial cells. In conclusion, this study demonstrates the multifaceted interactions of C. jejuni with the gastrointestinal mucosa of broiler chickens. For the first time, it could be shown that a Campylobacter infection could interfere with intracellular Ca(2+) signaling and nutrient absorption in the small intestine with consequences on

  17. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  18. Mesenteric blood flow, glucose absorption and blood pressure responses to small intestinal glucose in critically ill patients older than 65 years.

    PubMed

    Sim, Jennifer A; Horowitz, M; Summers, M J; Trahair, L G; Goud, R S; Zaknic, A V; Hausken, T; Fraser, J D; Chapman, M J; Jones, K L; Deane, A M

    2013-02-01

    To compare nutrient-stimulated changes in superior mesenteric artery (SMA) blood flow, glucose absorption and glycaemia in individuals older than 65 years with, and without, critical illness. Following a 1-h 'observation' period (t (0)-t (60)), 0.9 % saline and glucose (1 kcal/ml) were infused directly into the small intestine at 2 ml/min between t (60)-t (120), and t (120)-t (180), respectively. SMA blood flow was measured using Doppler ultrasonography at t (60) (fasting), t (90) and t (150) and is presented as raw values and nutrient-stimulated increment from baseline (Δ). Glucose absorption was evaluated using serum 3-O-methylglucose (3-OMG) concentrations during, and for 1 h after, the glucose infusion (i.e. t (120)-t (180) and t (120)-t (240)). Mean arterial pressure was recorded between t (60)-t (240). Data are presented as median (25th, 75th percentile). Eleven mechanically ventilated critically ill patients [age 75 (69, 79) years] and nine healthy volunteers [70 (68, 77) years] were studied. The magnitude of the nutrient-stimulated increase in SMA flow was markedly less in the critically ill when compared with healthy subjects [Δt (150): patients 115 (-138, 367) versus health 836 (618, 1,054) ml/min; P = 0.001]. In patients, glucose absorption was reduced during, and for 1 h after, the glucose infusion when compared with health [AUC(120-180): 4.571 (2.591, 6.551) versus 11.307 (8.447, 14.167) mmol/l min; P < 0.001 and AUC(120-240): 26.5 (17.7, 35.3) versus 40.6 (31.7, 49.4) mmol/l min; P = 0.031]. A close relationship between the nutrient-stimulated increment in SMA flow and glucose absorption was evident (3-OMG AUC(120-180) and ∆SMA flow at t (150): r (2) = 0.29; P < 0.05). In critically ill patients aged >65 years, stimulation of SMA flow by small intestinal glucose infusion may be attenuated, which could account for the reduction in glucose absorption.

  19. Can lipid nanoparticles improve intestinal absorption?

    PubMed

    Mendes, M; Soares, H T; Arnaut, L G; Sousa, J J; Pais, A A C C; Vitorino, C

    2016-12-30

    Lipid nanoparticles and their multiple designs have been considered appealing nanocarrier systems. Bringing the benefits of these nanosystems together with conventional coating technology clearly results in product differentiation. This work aimed at developing an innovative solid dosage form for oral administration based on tableting nanostructured lipid carriers (NLC), coated with conventional polymer agents. NLC dispersions co-encapsulating olanzapine and simvastatin (Combo-NLC) were produced by high pressure homogenization, and evaluated in terms of scalability, drying procedure, tableting and performance from in vitro release, cytotoxicity and intestinal permeability stand points. Factorial design indicated that the scaling-up of the NLC production is clearly feasible. Spray-drying was the method selected to obtain dry particles, not only because it consists of a single step procedure, but also because it facilitates the coating process of NLC with different polymers. Modified NLC formulations with the polymers allowed obtaining distinct release mechanisms, comprising immediate, delayed and prolonged release. Sureteric:Combo-NLC provided a low cytotoxicity profile, along with a ca. 12-fold OL/3-fold SV higher intestinal permeability, compared to those obtained with commercial tablets. Such findings can be ascribed to drug protection and control over release promoted by NLC, supporting them as a versatile platform able to be modified according to the intended needs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The effect of canola meal tannins on the intestinal absorption capacity of broilers using a D-xylose test.

    PubMed

    Mansoori, B; Rogiewicz, A; Slominski, B A

    2015-12-01

    In three D-xylose absorption experiments, the effect of 1% HCl/methanol, 70% methanol or 70% acetone extracts of canola meal (CM) or 70% acetone extract of soybean meal (SBM) containing polyphenols, phenolic acids, tannins and phytic acid on intestinal absorption capacity of broilers was determined. In Exp. 1, the experimental groups received orally D-xylose solution alone or with methanol/HCl, methanol or acetone extracts of CM. In Exp. 2, the experimental groups received D-xylose alone or with acetone extracts of CM or SBM. In Exp. 3, the experimental groups received D-xylose plus sucrose solution or D-xylose plus acetone extracts of CM or SBM. In Exps. 2 and 3, the CM extracts contained 2.7 and 2.6, 2.4 and 2.3, 3.2 and 3.2, and 2.4 and 2.2 times higher polyphenols, phenolic acids, tannins and condensed tannins than the corresponding SBM extracts respectively. Blood samples were collected in 40-min intervals, and plasma D-xylose was measured. Compared to the Control, plasma D-xylose in Exp. 1 was lower (p < 0.001) by 81, 69 and 73% at 40-min, by 41, 44 and 37% at 80-min and by 22, 31, and 23% at 120-min post-ingestion of the HCl/methanol, methanol and acetone extracts respectively. In both Exps. 2 and 3, plasma D-xylose level was lower (p < 0.001) in groups dosed with CM extract or SBM extract at each time of blood collection, when compared to the respective Control group. However, in Exp. 3, birds dosed with SBM extract had higher plasma D-xylose than CM extract-dosed birds by 28, 8 and 21% at 40, 80 and 120 min respectively (p < 0.01). In conclusion, although CM extract caused a lower absorption of D-xylose, based on 5 to 10% of CM inclusion levels in practical broiler rations, the soluble bioactive components of CM will likely have minor impact on the absorption capacity of the chicken intestine. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  1. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols

    PubMed Central

    Marin, Daniela Eliza; Pelmus, Rodica Stefania; Habeanu, Mihaela; Rotar, Mircea Catalin; Gras, Mihail Alexandru; Pistol, Gina Cecilia; Taranu, Ionelia

    2018-01-01

    The absorption and antioxidant activity of polyphenols from grape pomace (GP) are important aspects of its valorization as a feed additive in the diet of weaned piglets. This study aimed to evaluate the presence of polyphenols from GP both in vitro in IPEC cells and in vivo in the duodenum and colon of piglets fed with diets containing or not 5% GP and also to compare and correlate the aspects of their in vitro and in vivo absorption. Total polyphenolic content (TPC) and antioxidant status (TAS, CAT, SOD and GPx enzyme activity, and lipid peroxidation-TBARS level) were assessed in duodenum and colon of piglets fed or not a diet with 5% GP. The results of UV-Vis spectroscopy demonstrated that in cellular and extracellular medium the GP polyphenols were oxidized (between λmax = 276 nm and λmax = 627.0 nm) with the formation of o-quinones and dimers. LC-MS analysis indicated a procyanidin trimer possibly C2, and a procyanidin dimer as the major polyphenols identified in GP, 12.8% of the procyanidin trimer and 23% of the procyanidin dimer respectively being also found in the compound feed. Procyanidin trimer C2 is the compound accumulated in duodenum, 73% of it being found in the colon of control piglets, and 62.5% in the colon of GP piglets. Correlations exist between the in vitro and in vivo investigations regarding the qualitative evaluation of GP polyphenols in the cells (λmax at 287.1 nm) and in the gut (λmax at 287.5 nm), as oxidated metabolic products. Beside the presence of polyphenols metabolites this study shows also the presence of the unmetabolized procyanidin trimers in duodenum and colon tissue, an important point in evaluating the benefic actions of these molecules at intestinal level. Moreover the in vivo study shows that a 5% GP in piglet’s diet increased the total antioxidant status (TAS) and decreased lipid peroxidantion (TBARS) in both duodenum and colon, and increased SOD activity in duodenum and CAT and GPx activity in colon. These

  2. Morphogenesis and maturation of the embryonic and postnatal intestine.

    PubMed

    Chin, Alana M; Hill, David R; Aurora, Megan; Spence, Jason R

    2017-06-01

    The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption.

    PubMed

    Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat

    2015-01-27

    Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2010-02-15

    We have recently shown that efflux transport, mediated by multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), is responsible for sulfasalazine low-permeability in the small intestine, thereby enabling its colonic targeting and therapeutic action. The purpose of the present study was to evaluate the potential pharmacokinetic interaction between indomethacin and sulfasalazine, in the mechanism of efflux transporter competition. The concentration-dependent effects of indomethacin on sulfasalazine intestinal epithelial transport were investigated across Caco-2 cell monolayers, in both apical to basolateral (AP-BL) and BL-AP directions. The interaction was then investigated in the in situ single-pass rat jejunal perfusion model. Sulfasalazine displayed 30-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Indomethacin significantly increased AP-BL and decreased BL-AP sulfasalazine Caco-2 transport, in a concentration-dependent manner, with IC(50) values of 75 and 196 microM respectively. In the rat model, higher sulfasalazine concentrations resulted in higher intestinal permeability, consistent with saturation of efflux transporter. Without indomethacin, sulfasalazine demonstrated low rat jejunal permeability (vs. metoprolol). Indomethacin significantly increased sulfasalazine P(eff), effectively shifting it from BCS (biopharmaceutics classification system) Class IV to II. In conclusion, the data indicate that concomitant intake of indomethacin and sulfasalazine may lead to increased absorption of sulfasalazine in the small intestine, thereby reducing its colonic concentration and potentially altering its therapeutic effect. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  6. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid.

    PubMed

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2017-01-01

    This study was aimed to develop a novel microemulsion that contained oleth-5 as a surfactant to enhance the oral absorption of all-trans retinoic acid (ATRA). The prepared microemulsion was evaluated for its particle size, shape, zeta potential, in vitro release, in vitro intestinal absorption, intestinal membrane cytotoxicity and stability. The obtained microemulsion was spherical in shape with a particle size of <200 nm and a negative surface charge. The in vitro release of the ATRA-loaded microemulsion was best fit with the zero-order model. This microemulsion significantly improved the intestinal absorption of ATRA. Confocal laser scanning microscopy analysis using a fluorescent dye-loaded microemulsion also confirmed the intestinal absorption result. The intestinal membrane cytotoxicity of the ATRA-loaded microemulsion did not differ from an edible oil (fish oil). Stability testing showed that the ATRA-loaded microemulsion was more stable at 25°C than 40°C.

  7. Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones.

    PubMed

    Serra, H; Mendes, T; Bronze, M R; Simplício, Ana Luísa

    2008-04-01

    Three glycosilated flavonoids (diosmin, hesperidin and naringin) and respective aglycones were characterized in terms of their apparent ionisation constants and bidirectional permeability using the cellular model Caco-2 as well as the artificial membrane model PAMPA. Ionisation curves were established by capillary electrophoresis. It was confirmed that significant amounts of the aglycones are ionised at physiological pH whereas the glycosides are in the neutral form. Permeation was not detected for the glycosides in either the apical-to-basolateral or basolateral-to-apical directions confirming the need for metabolism before absorption through the intestinal membrane. The aglycones permeated in both directions with apparent permeabilities (P(app)) in the range of 1-8x10(-5) cm/s. The results from both in vitro methods correlated providing some evidence of passive transport; however, the hypothesis of active transport cannot be excluded particularly in the case of diosmetin. Metabolism of the aglycones was detected with the cell model, more extensively when loading in the apical side. Some of the metabolites were identified as glucuronide conjugates by enzymatic hydrolysis.

  8. Absorption and Transport of Sea Cucumber Saponins from Apostichopus japonicus.

    PubMed

    Li, Shuai; Wang, Yuanhong; Jiang, Tingfu; Wang, Han; Yang, Shuang; Lv, Zhihua

    2016-06-17

    The present study is focused on the intestinal absorption of sea cucumber saponins. We determined the pharmacokinetic characteristics and bioavailability of Echinoside A and Holotoxin A₁; the findings indicated that the bioavailability of Holotoxin A₁ was lower than Echinoside A. We inferred that the differences in chemical structure between compounds was a factor that explained their different characteristics of transport across the intestine. In order to confirm the absorption characteristics of Echinoside A and Holotoxin A₁, we examined their transport across Caco-2 cell monolayer and effective permeability by single-pass intestinal perfusion. The results of Caco-2 cell model indicate that Echinoside A is transported by passive diffusion, and not influenced by the exocytosis of P-glycoprotein (P-gp, expressed in the apical side of Caco-2 monolayers as the classic inhibitor). The intestinal perfusion also demonstrated well the absorption of Echinoside A and poor absorption of Holotoxin A₁, which matched up with the result of the Caco-2 cell model. The results demonstrated our conjecture and provides fundamental information on the relationship between the chemical structure of these sea cucumber saponins and their absorption characteristics, and we believe that our findings build a foundation for the further metabolism study of sea cucumber saponins and contribute to the further clinical research of saponins.

  9. Absorption enhancement studies of clopidogrel hydrogen sulphate in rat everted gut sacs.

    PubMed

    Lassoued, Mohamed Ali; Sfar, Souad; Bouraoui, Abderrahman; Khemiss, Fathia

    2012-04-01

    Clopidogrel, a thienopyridine antiplatelet agent, is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These two factors are responsible for its incomplete intestinal absorption. In this study, we have attempted to enhance the absorption of clopidogrel by improving its solubility and by inhibiting intestinal P-gp activity.   Solubility enhancement was achieved by preparing solid dispersions. Quinidine and naringin were selected as P-gp inhibitors, whilst tartaric acid was selected as the intestinal absorption enhancer. Absorption studies were performed using the everted gut sac model prepared from rat jejunum. The determination of clopidogrel was performed by high performance liquid chromatography. We noticed an enhancement of clopidogrel absorption by improving its solubility or by inhibiting the P-gp activity. The greatest results were obtained for solid dispersions in the presence of P-gp inhibitors at their highest concentrations, with an absorption improvement of 3.41- and 3.91-fold for naringin (15mg/kg) and quinidine (200µm), respectively. However, no clopidogrel absorption enhancement occurred in the presence of tartaric acid. Naringin, a natural compound which has no undesirable side effects as compared with quinidine, could be used as a pharmaceutical excipient in the presence of clopidogrel solid dispersions to increase clopidogrel intestinal absorption and therefore its oral bioavailability. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  10. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid

    PubMed Central

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2017-01-01

    This study was aimed to develop a novel microemulsion that contained oleth-5 as a surfactant to enhance the oral absorption of all-trans retinoic acid (ATRA). The prepared microemulsion was evaluated for its particle size, shape, zeta potential, in vitro release, in vitro intestinal absorption, intestinal membrane cytotoxicity and stability. The obtained microemulsion was spherical in shape with a particle size of <200 nm and a negative surface charge. The in vitro release of the ATRA-loaded microemulsion was best fit with the zero-order model. This microemulsion significantly improved the intestinal absorption of ATRA. Confocal laser scanning microscopy analysis using a fluorescent dye-loaded microemulsion also confirmed the intestinal absorption result. The intestinal membrane cytotoxicity of the ATRA-loaded microemulsion did not differ from an edible oil (fish oil). Stability testing showed that the ATRA-loaded microemulsion was more stable at 25°C than 40°C. PMID:28831254

  11. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor.

    PubMed

    Gregório, Sílvia F; Fuentes, Juan

    2018-04-04

    In marine fish, high epithelial intestinal HCO₃ − secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃ − secretion in the intestine of the sea bream ( Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃ − secretion in vitro using the anterior intestine. HCO₃ − secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃ − secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.

  12. Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: transepithelial transport, cellular uptake and efflux.

    PubMed

    Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P

    2008-01-01

    The human intestinal absorption of acetamiprid (AAP) using the Caco-2 cell line reveals that AAP flux was active in a bidirectional mode with an apparent permeability coefficient of 26 x 10(-6) cm x s(-1) at 37 degrees C. Apical uptake was concentration-dependent and unsaturated for AAP concentrations up to 200 micro M. AAP cell preloading demonstrated the involvement of active transport mechanisms. Arrhenius plot analysis revealed an unusual profile with two apparent activation energies suggesting two transport processes. Uptake Vi studies indicated the involvement of a sodium-dependent transporter, the presence of a common transporter of AAP and nicotine and the involvement of Ti-sensitive ATP-dependent efflux transporters. Apical efflux investigations showed the involvement of inward active transporter(s). Whereas vincristine had no effect on intracellular accumulation, taxol and daunorubicin treatments unexpectedly led to 10% and 23% reductions respectively, suggesting that the latter shared a common inward transporter with AAP. All these results suggest full and express AAP absorption in vivo with transport involving both inward and outward, passive and active mechanisms. Thus, AAP or its metabolites could be representative of a risk for human health after its ingestion in food.

  13. Optimization of the Caco-2 permeability assay to screen drug compounds for intestinal absorption and efflux.

    PubMed

    Press, Barry

    2011-01-01

    In vitro permeability assays are a valuable tool for scientists during lead compound optimization. As a majority of discovery projects are focused on the development of orally bioavailable drugs, correlation of in vitro permeability data to in vivo absorption results is critical for understanding the structural-physicochemical relationship (SPR) of drugs exhibiting low levels of absorption. For more than a decade, the Caco-2 screening assay has remained a popular, in vitro system to test compounds for both intestinal permeability and efflux liability. Despite advances in artificial membrane technology and in silico modeling systems, drug compounds still benefit from testing in cell-based epithelial monolayer assays for lead optimization. This chapter provides technical information for performing and optimizing the Caco-2 assay. In addition, techniques are discussed for dealing with some of the most pressing issues surrounding in vitro permeability assays (i.e., low aqueous solubility of test compounds and low postassay recovery). Insights are offered to help researchers avoid common pitfalls in the interpretation of in vitro permeability data, which can often lead to the perception of misleading results for correlation to in vivo data.

  14. Regional intestinal drug permeation: biopharmaceutics and drug development.

    PubMed

    Lennernäs, Hans

    2014-06-16

    Over the last 25 years, profound changes have been seen in both the development and regulation of pharmaceutical dosage forms, due primarily to the extensive use of the biopharmaceutical classification system (BCS) in both academia and industry. The BCS and the FDA scale-up and post-approval change guidelines were both developed during the 1990s and both are currently widely used to claim biowaivers. The development of the BCS and its wide acceptance were important steps in pharmaceutical science that contributed to the more rational development of oral dosage forms. The effective permeation (Peff) of drugs through the intestine often depends on the combined outcomes of passive diffusion and multiple parallel transport processes. Site-specific jejunal Peff cannot reflect the permeability of the whole intestinal tract, since this varies along the length of the intestine, but is a useful approximation of the fraction of the oral dose that is absorbed. It appears that drugs with a jejunal Peff>1.5×10(-4)cm/s will be completely absorbed no matter which transport mechanisms are utilized. In this paper, historical clinical data originating from earlier open, single-pass perfusion studies have been used to calculate the Peff of different substances from sites in the jejunum and ileum. More exploratory in vivo studies are required in order to obtain reliable data on regional intestinal drug absorption. The development of experimental and theoretical methods of assessing drug absorption from both small intestine and various sites in the colon is encouraged. Some of the existing human in vivo data are discussed in relation to commonly used cell culture models. It is crucial to accurately determine the input parameters, such as the regional intestinal Peff, as these will form the basis for the expected increase in modeling and simulation of all the processes involved in GI drug absorption, thus facilitating successful pharmaceutical development in the future. It is suggested

  15. Dietary Plant Sterol Esters Must Be Hydrolyzed to Reduce Intestinal Cholesterol Absorption in Hamsters.

    PubMed

    Carden, Trevor J; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2015-07-01

    Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs). This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require hydrolysis to free sterols (FSs). Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8% coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or 3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid concentration, and fecal neutral sterol and bile acid excretion. The STs and the PEs and SEs were poorly hydrolyzed (1.69-4.12%). In contrast, OEs were 88.3% hydrolyzed. The percent hydrolysis was negatively correlated with cholesterol absorption (r = -0.85; P < 0.0001) and positively correlated with fecal cholesterol excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE. Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum cholesterol-lowering effect and that poorly hydrolyzed PSEs may lower cholesterol through an alternative mechanism than that of competition with cholesterol for micelle incorporation. © 2015 American Society for Nutrition.

  16. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion.

    PubMed

    Knauf, Felix; Thomson, Robert B; Heneghan, John F; Jiang, Zhirong; Adebamiro, Adedotun; Thomson, Claire L; Barone, Christina; Asplin, John R; Egan, Marie E; Alper, Seth L; Aronson, Peter S

    2017-01-01

    Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr -/- mice in Ussing chambers and measured transcellular secretion of [ 14 C]oxalate. Intestinal tissue isolated from Cftr -/- mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr -/- tissue. Compared with wild-type mice, Cftr -/- mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl - -oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr -/- mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis. Copyright © 2016 by the American Society of Nephrology.

  17. Histomorphometry and macroscopic intestinal lesions in broilers infected with Eimeria acervulina.

    PubMed

    Assis, R C L; Luns, F D; Beletti, M E; Assis, R L; Nasser, N M; Faria, E S M; Cury, M C

    2010-03-25

    This study aimed at measuring intestinal villi and assessing the intestinal absorptive area in broilers infected with Eimeria acervulina under different treatments to control coccidiosis. The experiment was divided into two stages, carried out in successive housings, raised in the same environment (or aviary). In the first stage, on 25 May 2008, fifty 12-day-old birds were orally inoculated with 3 x 10(3) oocysts of E. acervulina. In the second stage, on July 2008, other 50 birds were allocated on litter contaminated by the feces of birds on the first housing (natural infection by oocysts present in the reused litter). The experiment was arranged in a complete randomized design with five treatments and three replicates of 10 chicks per treatment. Broiler chicks were housed at 1 day of age and autopsies were performed at 21 days of age. Three 2-cm-long segments of the duodenum were excised from each bird and fixed in 10% buffered formalin. A total of 30 slides were prepared for each treatment, totaling 150 evaluated histological sections using H&E staining. Villus morphology was carried out by the HL Image 97 software. The intestinal absorptive area was calculated and macroscopic lesions were classified according to standard lesion scores. Results showed that intestinal villus measurements and absorptive area are directly affected by E. acervulina and that there is direct and positive correlation between the macro and microscopic findings observed in intestinal coccidiosis. E. acervulina causes shortening of villi and reduction in the intestinal absorptive area, affecting broiler growth. The prevention method of litter fermentation during the interval between housings and oral administration of Diclazuril can reduce the severity of intestinal lesions by E. acervulina in broilers impairing oocyst virulence or viability.

  18. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  19. Intestinal "bioavailability" of solutes and water: we know how but not why.

    PubMed Central

    Charney, A. N.

    1996-01-01

    Only minimal quantities of ingested and normally secreted solutes and water are excreted in the stool. This near 100% bioavailability means that the diet and kidneys are relatively more important determinants of solute, water and acid-base balance than the intestine. Intestinal bioavailability is based on excess transport capacity under normal conditions and the ability to adapt to altered or abnormal conditions. Indeed, the regulatory system of the intestine is as complex, segmented and multi factorial as in the kidney. Alterations in the rate and intestinal site of absorption reflect this regulation, and the diagnosis and treatment of various clinical abnormalities depend on the integrity of intestinal absorptive processes. However, the basis for this regulation an bioavailability are uncertain. Perhaps they had survival value for mammals, a phylogenic class that faced the twin threats of intestinal pathogens and shortages of solutes and water. PMID:9273987

  20. Rapid alternative absorption of dietary long-chain fatty acids with upregulation of intestinal glycosylated CD36 in liver cirrhosis.

    PubMed

    Yamamoto, Yasunori; Hiasa, Yoichi; Murakami, Hidehiro; Ikeda, Yoshio; Yamanishi, Hirofumi; Abe, Masanori; Matsuura, Bunzo; Onji, Morikazu

    2012-07-01

    Dietary long-chain fatty acid (LCFA) intake is an important risk factor for hepatic inflammation and hepatocarcinogenesis. An alternate route of dietary LCFA absorption has been suggested in patients with liver cirrhosis (LC). We aimed to determine this alternate route and to identify its mechanism. Twenty healthy control subjects and 47 patients with LC-n = 23 with portal hypertension [PH(+)LC] and 24 without portal hypertension [PH(-)LC)]-were enrolled. [¹³C]Palmitate (an LCFA) and octanoate (a medium-chain fatty acid [MCFA]) were administered by using gastrointestinal endoscopy. Breath ¹³CO₂ was measured to quantify metabolized fatty acids. We also examined intestinal specimens of patients in these groups. A more rapid increase in metabolized palmitate, which showed a pattern similar to that of octanoate metabolism, was observed in patients with LC than in healthy control subjects. The increase in the PH(-)LC group was higher than that in the PH(+)LC group. However, the concentration of metabolized palmitate increased with treatment of the PH(+)LC group with a portal-systemic shunt. Morphologic changes such as expanded lymph and blood vessels were present, and glycosylated CD36 increased in the jejunum of the PH(+)LC group. This group had high serum concentrations of glucagon-like peptide-2. These data suggest that dietary LCFAs, similar to MCFAs, are absorbed via blood vessels in patients with LC. Rapid absorption of LCFAs by an alternative method occurred in patients with LC. This altered LCFA processing is likely related to upregulation of intestinal glycosylated CD36 and could contribute to pathogenesis in patients with LC.

  1. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    PubMed

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  2. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose.

    PubMed

    Powell, David R; Smith, Melinda; Greer, Jennifer; Harris, Angela; Zhao, Sharon; DaCosta, Christopher; Mseeh, Faika; Shadoan, Melanie K; Sands, Arthur; Zambrowicz, Brian; Ding, Zhi-Ming

    2013-05-01

    LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], a dual sodium/glucose cotransporter 1 (SGLT1) and SGLT2 inhibitor, is thought to decrease both renal glucose reabsorption by inhibiting SGLT2 and intestinal glucose absorption by inhibiting SGLT1. In clinical trials in patients with type 2 diabetes mellitus (T2DM), LX4211 treatment improved glycemic control while increasing circulating levels of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). To better understand how LX4211 increases GLP-1 and PYY levels, we challenged SGLT1 knockout (-/-) mice, SGLT2-/- mice, and LX4211-treated mice with oral glucose. LX4211-treated mice and SGLT1-/- mice had increased levels of plasma GLP-1, plasma PYY, and intestinal glucose during the 6 hours after a glucose-containing meal, as reflected by area under the curve (AUC) values, whereas SGLT2-/- mice showed no response. LX4211-treated mice and SGLT1-/- mice also had increased GLP-1 AUC values, decreased glucose-dependent insulinotropic polypeptide (GIP) AUC values, and decreased blood glucose excursions during the 6 hours after a challenge with oral glucose alone. However, GLP-1 and GIP levels were not increased in LX4211-treated mice and were decreased in SGLT1-/- mice, 5 minutes after oral glucose, consistent with studies linking decreased intestinal SGLT1 activity with reduced GLP-1 and GIP levels 5 minutes after oral glucose. These data suggest that LX4211 reduces intestinal glucose absorption by inhibiting SGLT1, resulting in net increases in GLP-1 and PYY release and decreases in GIP release and blood glucose excursions. The ability to inhibit both intestinal SGLT1 and renal SGLT2 provides LX4211 with a novel dual mechanism of action for improving glycemic control in patients with T2DM.

  3. THE USE OF Y$sup 91$ AS AN INERT INDICATOR IN INTESTINAL ABSORPTION TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maisterrena, J.A.; Murphy, C.A.; Tovar, E.

    The use of Y/sup 91/ as an inert-indicator in the studies of the intestinal absorption of I/sup 131/-labeled substances is reported, emphasis being given to its clinical advantages. The Y/sup 91/ is not absorbed in the gastrointestinal tract, since recovery in the feces in 22 cases was 96 plus or minus 6.7% (S.D.) of the amount given. The Y/sup 91/ and the I/sup 131/-labeled substances are homogeneously distributed throughout any given stool sample but their rate of excretion is not always parallel. A close correlation was found between the amount of I/sup 131/ excreted as obtained from the complete fecalmore » collection method and that of Y/sup 91/-indicator method in a group of 20 subjects under special supervision. The value of the Y/sup 91/ inert-indicator method where the completeness of the stool collection is doubtful is shown in 23 cases. (auth)« less

  4. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA).

    PubMed

    Petit, Charlotte; Bujard, Alban; Skalicka-Woźniak, Krystyna; Cretton, Sylvian; Houriet, Joëlle; Christen, Philippe; Carrupt, Pierre-Alain; Wolfender, Jean-Luc

    2016-03-01

    At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay is one of the most frequently used in vitro models to predict transcellular passive absorption. While thousands of new chemical entities have been screened with the parallel artificial membrane permeability assay, in general, permeation properties of natural products have been scarcely evaluated. In this study, the parallel artificial membrane permeability assay through a hexadecane membrane was used to predict the passive intestinal absorption of a representative set of frequently occurring natural products. Since natural products are usually ingested for medicinal use as components of complex extracts in traditional herbal preparations or as phytopharmaceuticals, the applicability of such an assay to study the constituents directly in medicinal crude plant extracts was further investigated. Three representative crude plant extracts with different natural product compositions were chosen for this study. The first extract was composed of furanocoumarins (Angelica archangelica), the second extract included alkaloids (Waltheria indica), and the third extract contained flavonoid glycosides (Pueraria montana var. lobata). For each medicinal plant, the effective passive permeability values Pe (cm/s) of the main natural products of interest were rapidly calculated thanks to a generic ultrahigh-pressure liquid chromatography-UV detection method and because Pe calculations do not require knowing precisely the concentration of each natural product within the extracts. The original parallel artificial membrane permeability assay through a hexadecane membrane was found to keep its predictive power when applied to constituents directly in crude plant extracts provided that higher quantities of the extract were initially loaded in the assay in order to ensure suitable detection of the individual constituents of the extracts. Such an approach is thus valuable for the high

  5. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    PubMed Central

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises. PMID:27681910

  6. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    PubMed Central

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  7. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul

    2017-08-02

    Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.

  8. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    PubMed

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  9. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    PubMed Central

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  10. Impact of Peptide Transporter 1 on the Intestinal Absorption and Pharmacokinetics of Valacyclovir after Oral Dose Escalation in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei; Hu, Yongjun

    2013-01-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [3H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the Cmax and area under the curve (AUC)0–180 of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the Cmax and AUC0–180 of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10–100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  11. Magnolol and Honokiol Attenuate Apoptosis of Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelium by Maintaining Secretion and Absorption Homeostasis and Protecting Mucosal Integrity.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Li, Chengjian; Xiao, Wenjun; Tan, Zhiliang

    2018-05-21

    BACKGROUND The cortex of Magnolia officinalis has long been used as an element of traditional Chinese medicine for the treatment of anxiety, chronic bronchitis, and gastrointestinal dysfunction. This study aimed to elucidate the underlying mechanism of its functional ingredients (magnolol and honokiol) in modifying the secretion and absorption homeostasis and protecting mucosal integrity in an Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mouse model. MATERIAL AND METHODS This study established a diarrhea mouse model infected by ETEC at a dosage of 0.02 ml/g live body weight (BW) in vivo. Magnolol or honokiol was followed by an intraperitoneal administration at dosages of 100, 300, and 500 mg/kg BW according to a 3×3 factorial arrangement. The useful biomarkers for evaluating the integrity of intestinal tract and histologic injury were analyzed and morphological development (including villus height, crypt depth, and ratio of villus height to crypt depth) and the expressions of inflammatory cytokines were determined by real-time PCR. RESULTS The results showed that magnolol and honokiol (500 mg/kg BW) reduced the concentrations of NO, DAO, and DLA, and iNOS activity, and the mRNA expressions of the interferon gamma (IFN-γ) and interleukin 10 (IL-10), and inhibited intestinal epithelial cell apoptosis. Magnolol and honokiol (300 mg/kg BW) elongated the villus height and crypt depth and decreased the number of goblet cells and the ratio of villus height to crypt depth. CONCLUSIONS The current results indicate that magnolol and honokiol enhance the intestinal anti-inflammatory capacities, elongate the villus height and crypt depth, and reduce goblet cell numbers to inhibit the intestinal epithelium apoptosis and effectively protect the intestinal mucosa. These results show that magnolol and honokiol protect the intestinal mucosal integrity and regulate gastrointestinal dysfunction.

  12. Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats.

    PubMed

    Wei, Xiao; Lu, Zongshi; Yang, Tao; Gao, Peng; Chen, Sijiao; Liu, Daoyan; Zhu, Zhiming

    2018-03-16

    High salt consumption is a major risk factor for hypertension, and sodium homeostasis is regulated by both intestinal sodium absorption and urinary sodium excretion. Chronic caffeine intake has been reported to attenuate salt-sensitive hypertension by promoting urinary sodium excretion; however, its exact role in intestinal sodium absorption remains unknown. Here, we investigated whether and how chronic caffeine consumption antagonizes salt-sensitive hypertension by inhibiting intestinal sodium absorption. Dahl salt-sensitive rats were fed 8% NaCl chow and 0.1% caffeine in their drinking water for 15 days. The blood pressure and fecal sodium content were measured. The effect of caffeine on the movement of Cl- in enterocyte cells was determined with the Ussing chamber assay. Rats that were treated with caffeine displayed significantly lower mean blood pressure and higher fecal sodium content than the controls. Consistent with these findings, caffeine intake decreased fluid absorption by the intestine in the fluid perfusion experiment. Further, the results from the Ussing chamber assay indicated that caffeine promoted Cl- secretion through enterocyte apical cystic fibrosis transmembrane conductance regulator (CFTR), and thus inhibited sodium absorption. Moreover, depletion of cAMP or inhibition of CFTR completely abolished the effect of caffeine on Cl- secretion. The results indicate that chronic caffeine consumption reduces sodium absorption by promoting CFTR-mediated Cl- secretion in the intestine, which contributes to the anti-hypertensive effect of caffeine in salt-sensitive rats. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  14. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.

    PubMed

    Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana

    2016-12-01

    β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.

  16. Dietary Plant Sterol Esters Must Be Hydrolyzed to Reduce Intestinal Cholesterol Absorption in Hamsters123

    PubMed Central

    Carden, Trevor J; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2015-01-01

    Background: Elevated concentrations of LDL cholesterol are associated with the development of atherosclerosis and therefore are considered an important target for intervention to prevent cardiovascular diseases. The inhibition of cholesterol absorption in the small intestine is an attractive approach to lowering plasma cholesterol, one that is addressed by drug therapy as well as dietary supplementation with plant sterols and plant sterol esters (PSEs). Objective: This study was conducted to test the hypothesis that the cholesterol-lowering effects of PSE require hydrolysis to free sterols (FSs). Methods: Male Syrian hamsters were fed atherogenic diets (AIN-93M purified diet containing 0.12% cholesterol and 8% coconut oil) to which one of the following was added: no PSEs or ethers (control), 5% sterol stearate esters, 5% sterol palmitate esters (PEs), 5% sterol oleate esters (OEs), 5% sterol stearate ethers (STs; to mimic nonhydrolyzable PSE), or 3% FSs plus 2% sunflower oil. The treatments effectively created a spectrum of PSE hydrolysis across which cholesterol metabolism could be compared. Metabolic measurements included cholesterol absorption, plasma and liver lipid concentration, and fecal neutral sterol and bile acid excretion. Results: The STs and the PEs and SEs were poorly hydrolyzed (1.69–4.12%). In contrast, OEs were 88.3% hydrolyzed. The percent hydrolysis was negatively correlated with cholesterol absorption (r = −0.85; P < 0.0001) and positively correlated with fecal cholesterol excretion (r = 0.92; P < 0.0001), suggesting that PSE hydrolysis plays a central role in the cholesterol-lowering properties of PSE. Conclusions: Our data on hamsters suggest that PSE hydrolysis and the presence of FSs is necessary to induce an optimum cholesterol-lowering effect and that poorly hydrolyzed PSEs may lower cholesterol through an alternative mechanism than that of competition with cholesterol for micelle incorporation. PMID:25972524

  17. An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds.

    PubMed

    Jandacek, Ronald J; Genuis, Stephen J

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine--thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants.

  18. Improvement of absorption enhancing effects of n-dodecyl-beta-D-maltopyranoside by its colon-specific delivery using chitosan capsules.

    PubMed

    Fetih, Gihan; Lindberg, Sara; Itoh, Katsuhito; Okada, Naoki; Fujita, Takuya; Habib, Fawsia; Artersson, Per; Attia, Mohammed; Yamamoto, Akira

    2005-04-11

    In general, absorption enhancing effects of various absorption enhancers were greater in the large intestine than those in the small intestinal regions. Therefore, the effectiveness of absorption enhancers is expected to be remarkably observed, if these enhancers can be delivered to the large intestine with some poorly absorbable drugs after oral administration. In this study, therefore, we examined whether chitosan capsules were effective for the colon-specific delivery of a certain absorption enhancer and can improve the absorption enhancing action of the absorption enhancer after oral administration. 5(6)-Carboxyfluorescein (CF) was used as a model drug to investigate the site-dependent effectiveness of various absorption enhancers by an in situ closed loop method. Sodium glycocholate (NaGC), n-dodecyl-beta-d-maltopyranoside (LM), sodium salicylate (NaSal) and sodium caprate (NaCap) were used as models of absorption enhancers in this study. Overall, the absorption enhancing effects of these enhancers for intestinal absorption of CF were greater in the colon than those in the jejunum and the ileum. Especially, among these enhancers tested in this study, LM showed much greater absorption enhancing effect in the colon than in the jejunum and the ileum. Therefore, LM was selected as a model absorption enhancer to examine the effect of chitosan capsules on the absorption enhancing effect of LM. When CF and LM were orally administered to rats using chitosan capsules, the plasma concentration of CF was much higher than those in other dosage forms including solution and gelatin capsules. Therefore, chitosan capsules may be useful carriers for colon-specific delivery of LM, thereby increasing its absorption enhancing effect from the intestinal membranes.

  19. Drug gastrointestinal absorption in rat: Strain and gender differences.

    PubMed

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Regulating intestinal function to reduce atherogenic lipoproteins.

    PubMed

    Hussain, M Mahmood; Leung, Tung Ming; Zhou, Liye; Abu-Merhi, Sarah

    2013-08-01

    Significant knowledge regarding different molecules involved in the transport of dietary fat into the circulation has been garnered. Studies point to the possibility that accumulation of intestine-derived lipoproteins in the plasma could contribute to atherosclerosis. This article provides a brief overview of dietary lipid metabolism and studies in mice supporting the hypothesis that intestinal lipoproteins contribute to atherosclerosis. Deficiencies in lipoprotein lipase and Gpihbp1, and overexpression of heparanse in mice, are associated with increases in atherosclerosis, suggesting that defects in catabolism of larger lipoproteins in the plasma contribute to atherosclerosis. Furthermore, inositol-requiring enzyme 1β-deficient mice that produce more intestinal lipoproteins also develop more atherosclerosis. Thus, increases in plasma intestinal lipoproteins due to either overproduction or reduced catabolism result in augmented atherosclerosis. Intestinal lipoproteins tend to adhere strongly to subendothelial proteoglycans, elicit an inflammatory response by endothelial cells and activate macrophages, contributing to the initiation and progression of the disease. Thus, molecules that reduce intestinal lipid absorption can be useful in lowering atherosclerosis.

  1. Intestinal transport of HDND-7, a novel hesperetin derivative, in in vitro MDCK cell and in situ single-pass intestinal perfusion models.

    PubMed

    Chen, Ruonan; Li, Lan; Shen, Chenlin; Huang, Cheng; Ma, Taotao; Meng, Xiaoming; Qian, Zhengyue; Li, Yangyang; Li, Jun

    2017-08-01

    1. Hesperetin (HDND) possesses extensive bioactivities, however, its poor solubility and low bioavailability limit its application. HDND-7, a derivative of HDND, has better solubility and high bioavailability. In this study, we investigated the intestinal absorption mechanisms of HDND-7. 2. MDCK cells were used to examine the transport mechanisms of HDND-7 in vitro, and a rat in situ intestinal perfusion model was used to characterize the absorption of HDND-7. The concentration of HDND-7 was determined by HPLC. 3. In MDCK cells, HDND-7 was effectively absorbed in a concentration-dependent manner in both directions. Moreover, HDND-7 showed pH-dependent and TEER-independent transport in both directions. The transport of HDND-7 was significantly reduced at 4 °C or in the presence of NaN3. Furthermore, the efflux of HDND-7 was apparently reduced in the presence of MRP2 inhibitors MK-571 or probenecid. However, P-gp inhibitor verapamil had no effect on the transport of HDND-7. The in situ intestinal perfusion study indicated HDND-7 was well-absorbed in four intestinal segments. Furthermore, MRP2 inhibitors may slightly increase the absorption of HDND-7 in jejunum. 4. In summary, all results indicated that HDND-7 might be absorbed mainly by passive diffusion via transcellular pathway, MRP2 but P-gp may participate in the efflux of HDND-7.

  2. Choline deficiency impairs intestinal lipid metabolism in the lactating rat.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L

    2015-10-01

    Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Intestinal absorption of medium chain fatty acids: in vivo studies in pigs devoid of exocrine pancreatic secretion.

    PubMed

    Guillot, E; Lemarchal, P; Dhorne, T; Rerat, A

    1994-10-01

    In order to study the influence of pancreatic enzyme secretion on the intestinal absorption of medium-chain fatty acids (MCFA), three growing pigs (mean body-weight 61 kg) with ligated and severed pancreatic ducts were fitted with a permanent fistula in the duodenum and with two catheters in the portal vein and carotid artery respectively. An electromagnetic flow probe was also set up around the portal vein. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the two vessels at regular intervals of time for 8 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentrations of non-esterified octanoic and decanoic acid in the portal blood increased slowly after the beginning of each infusion, reaching about 10 times higher values than the basal level. Only 26% of octanoic acid infused in the duodenum and 27% of decanoic acid were recovered in the portal flow throughout each experiment. The possible mechanisms underlying the appearance of MCFA in the portal blood in the absence of pancreatic enzyme secretions and the importance of duodenal absorption of MCT in such physiological conditions have been discussed.

  4. Vitamin D and intestinal calcium transport after bariatric surgery.

    PubMed

    Schafer, Anne L

    2017-10-01

    Bariatric surgery is a highly effective treatment for obesity, but it may have detrimental effects on the skeleton. Skeletal effects are multifactorial but mediated in part by nutrient malabsorption. While there is increasing interest in non-nutritional mechanisms such as changes in fat-derived and gut-derived hormones, nutritional factors are modifiable and thus represent potential opportunities to prevent and treat skeletal complications. This review begins with a discussion of normal intestinal calcium transport, including recent advances in our understanding of its regulation by vitamin D, and areas of continued uncertainty. Human and animal studies of vitamin D and intestinal calcium transport after bariatric surgery are then summarized. In humans, even with optimized 25-hydroxyvitamin D levels and recommended calcium intake, fractional calcium absorption decreased dramatically after Roux-en-Y gastric bypass (RYGB). In rats, intestinal calcium absorption was lower after RYGB than after sham surgery, despite elevated 1,25-dihyroxyvitamin D levels and intestinal gene expression evidence of vitamin D responsiveness. Such studies have the potential to shed new light on the physiology of vitamin D and intestinal calcium transport. Moreover, understanding the effects of bariatric surgery on these processes may improve the clinical care of bariatric surgery patients. Published by Elsevier Ltd.

  5. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken.

    PubMed

    Chen, Z; Xie, J; Wang, B; Tang, J

    2014-10-01

    To explore the effect of dietary γ-aminobutyric acid (GABA) on digestive enzyme activity, absorption function and immune function of intestinal mucosa in heat-stressed Wenchang chicken were studied. One-day-old male Wenchang chickens were randomly divided into a control group (CK), heat stress group (HS), and GABA+HS group. The chickens from the GABA+HS group were administered with 0.2 mL of GABA solution daily. Chickens from HS and GABA+HS groups were subjected to heat stress treatment at 40 ± 0.5°C for 2 h during 1300 to 1500 h every day. Blood was drawn and 0.5 cm-long duodenum, jejunum, and ileum were collected from the chickens on d 3, 5, 7, 9, 12, and 15. Results showed that the activity of Ca²⁺-Mg²⁺-adenosine triphosphatase (ATPase), Na⁺-K⁺-ATPase, maltase, sucrase, and alkaline phosphatase, the contents of secretory IgA, glutathione, and d-xylose, and the number of lymphocytes in HS group were significantly lower than those in the CK group. Among them, some were rescued after the treatment of GABA as the time extension. For maltase, d-xylose, alkaline phosphatase, and Na⁺-K⁺-ATPase, it required 5 to 7 d for achieving the significant effect. For sucrase, 12 d for the alleviation effect was required. In the case of other parameters, no alleviation was observed during the whole period of the study. We have concluded that HS can inhibit the activity of digestive enzymes and reduce absorption and immune functions of intestinal mucosa. γ-Aminobutyric acid can effectively alleviate these inhibitory effects. ©2014 Poultry Science Association Inc.

  6. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet.

    PubMed

    Lallès, Jean-Paul

    2010-06-01

    The diverse nature of intestinal alkaline phosphatase (IAP) functions has remained elusive, and it is only recently that four additional major functions of IAP have been revealed. The present review analyzes the earlier literature on the dietary factors modulating IAP activity in light of these new findings. IAP regulates lipid absorption across the apical membrane of enterocytes, participates in the regulation of bicarbonate secretion and of duodenal surface pH, limits bacterial transepithelial passage, and finally controls bacterial endotoxin-induced inflammation by dephosphorylation, thus detoxifying intestinal lipopolysaccharide. Many dietary components, including fat, protein, and carbohydrate, modulate IAP expression or activity and may be combined to sustain a high level of IAP activity. In conclusion, IAP has a pivotal role in intestinal homeostasis and its activity could be increased through the diet. This is especially true in pathological situations (e.g., inflammatory bowel diseases) in which the involvement of commensal bacteria is suspected and when intestinal AP is too low to detoxify a sufficient amount of bacterial lipopolysaccharide.

  7. An Assessment of the Intestinal Lumen as a Site for Intervention in Reducing Body Burdens of Organochlorine Compounds

    PubMed Central

    Jandacek, Ronald J.; Genuis, Stephen J.

    2013-01-01

    Many individuals maintain a persistent body burden of organochlorine compounds (OCs) as well as other lipophilic compounds, largely as a result of airborne and dietary exposures. Ingested OCs are typically absorbed from the small intestine along with dietary lipids. Once in the body, stored OCs can mobilize from adipose tissue storage sites and, along with circulating OCs, are delivered into the small intestine via hepatic processing and biliary transport. Retained OCs are also transported into both the large and small intestinal lumen via non-biliary mechanisms involving both secretion and desquamation from enterocytes. OCs and some other toxicants can be reabsorbed from the intestine, however, they take part in enterohepatic circulation(EHC). While dietary fat facilitates the absorption of OCs from the small intestine, it has little effect on OCs within the large intestine. Non-absorbable dietary fats and fat absorption inhibitors, however, can reduce the re-absorption of OCs and other lipophiles involved in EHC and may enhance the secretion of these compounds into the large intestine—thereby hastening their elimination. Clinical studies are currently underway to determine the efficacy of using non-absorbable fats and inhibitors of fat absorption in facilitating the elimination of persistent body burdens of OCs and other lipophilic human contaminants. PMID:23476122

  8. Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs.

    PubMed

    Guillot, E; Vaugelade, P; Lemarchal, P; Rérat, A

    1993-03-01

    In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels at regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65% of octanoic acid infused into the duodenum and 54% of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.

  9. When pathogenic bacteria meet the intestinal microbiota

    PubMed Central

    Rolhion, Nathalie

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestinal tract, containing about 100 trillion bacteria from 500–1000 distinct species that, collectively, provide multiple benefits to the host. The gut microbiota contributes to nutrient absorption and maturation of the immune system, and also plays a central role in protection of the host from enteric bacterial infection. On the other hand, many enteric pathogens have developed strategies in order to be able to outcompete the intestinal community, leading to infection and/or chronic diseases. This review will summarize findings describing the complex relationship occurring between the intestinal microbiota and enteric pathogens, as well as how future therapies can ultimately benefit from such discoveries. This article is part of the themed issue ‘The new bacteriology’. PMID:27672153

  10. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    PubMed

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  11. New medications which decrease levothyroxine absorption.

    PubMed

    John-Kalarickal, Jennifer; Pearlman, Gwen; Carlson, Harold E

    2007-08-01

    Medications may sometimes interfere with the intestinal absorption of levothyroxine, primarily by forming an insoluble complex with the thyroid hormone in the intestinal lumen. The goal of this study was to examine the acute effects of three previously unstudied medications on levothyroxine absorption. We studied the effects of three medications on thyroxine absorption in seven normal volunteers. On each study day, the subjects ingested 1 mg levothyroxine sodium, either taken separately or co-administered with sevelamer hydrochloride (Renagel, a phosphate-binding medication used in the treatment of hyperphosphatemia), chromium picolinate (an over-the-counter nutritional supplement), or ezetimibe (Zetia, a drug used in the treatment of hypercholesterolemia). Serum thyroxine was measured at intervals over a 6-hour period following drug ingestion. Sevelamer hydrochloride and chromium picolinate each significantly (p < 0.05) decreased the area under the serum thyroxine concentration curve, while ezetimibe had no effect. Hypothyroid patients taking sevelamer hydrochloride or chromium picolinate should be advised to separate the time of ingestion of these drugs from their thyroid hormone preparation by several hours.

  12. Does apical membrane GLUT2 have a role in intestinal glucose uptake?

    PubMed

    Naftalin, Richard J

    2014-01-01

    It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.

  13. Does apical membrane GLUT2 have a role in intestinal glucose uptake?

    PubMed Central

    Naftalin, Richard J

    2014-01-01

    It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations. PMID:25671087

  14. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism.

    PubMed

    Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2013-03-01

    Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Characterizing intestinal strictures with acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lei, Hao; Xu, Guan; Liu, Shengchun; Johnson, Laura A.; Moons, David S.; Higgins, Peter D. R.; Rice, Michael D.; Ni, Jun; Wang, Xueding

    2016-03-01

    Crohn's disease (CD) is an autoimmune disease, which may cause obstructing intestinal strictures due to inflammation, fibrosis (deposition of collagen), or a combination of both. Identifying the different stages of the disease progression is still challenging. In this work, we indicated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI), utilizing the uniquely optical absorption of hemoglobin and collagen. Surgically removed human intestinal stricture specimens were investigated with a prototype PAI system. 2D PA images with acoustic resolution at wavelength 532, 1210 and 1310 nm were formulated, and furthermore, the PA histochemical components images which show the microscopic distributions of histochemical components were solved. Imaging experiments on surgically removed human intestinal specimens has demonstrated the solved PA images were significantly different associated with the presence of fibrosis, which could be applied to characterize the intestinal strictures for given specimens.

  16. Intestinal transport: studies with isolated epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmich, G.A.

    1979-12-01

    Isolated intestinal epithelial cells have been extremely useful for characterizing the nature of intestinal absorption processes and for providing insight into the energetics of Na/sup +/-dependent transport systems. This report describes a number of experimental approaches which have been used for investigating the specific epithelial transport systems involved in sugar absorption, but provides information which ultimately should prove useful for characterizing a number of different intestinal transport events. Similar experiments should also prove useful for exploring the effect of environmental agents on the function of intestinal tissue. In the case of sugars, net absorption is accomplished via a mucosal, Na/supmore » +/-dependent concentrative transport system acting in sequence with a passive serosal system which does not require Na/sup +/. The serosal system limits the full gradient-forming capability of the muscosal system. Agents such as phloretin or cytochalasin B which inhibit serosal transport allow the cells to establish sugar gradients as high as 70 fold in contrast to 10 to 15 fold gradients observed for control cells. Sevety-fold sugar gradients cannot be explained in terms of the energy available in the electrochemical potential for Na/sup +/ if the Na/sub 2/: sugar coupling stoichiometry is 1:1 as commonly assumed. New information indicates that the true Na/sup +/:sugar stoichiometry is in fact 2:1. Flow of two Na/sup +/ ions per sugar molecule down the transmembrane electrochemical potential for Na/sup +/ provides more than sufficient energy to account for observed 70 fold sugar gradients. If flow of sugar by other routes could be completely inhibited, theoretical sugar gradients as high as 400 could be achieved assuming that the cells maintain a membrane potential of -36 mV as measured for intact tissue.« less

  17. Probiotic Bacillus coagulans GBI-30, 6086 Improves Protein Absorption and Utilization.

    PubMed

    Jäger, Ralf; Purpura, Martin; Farmer, Sean; Cash, Howard A; Keller, David

    2017-12-01

    Probiotics offer numerous health benefits, including digestive and immune health. Improved digestive health is linked to a more efficient absorption of important nutrients from our diet. This review focused on the rationale of using the probiotic Bacillus coagulans GBI-30, 6086 to aid protein absorption and utilization. B. coagulans GBI-30, 6086 can withstand the acidic environment of the stomach to reach the intestine where it germinates. Once active in the small intestine after germination, it has been shown to aid the digestion of carbohydrates and proteins. Co-administration of B. coagulans GBI-30, 6086 with protein has been shown to increase protein absorption and to maximize the health benefits associated with protein supplementation.

  18. Models of antimicrobial pressure on intestinal bacteria of the treated host populations.

    PubMed

    Volkova, V V; Cazer, C L; Gröhn, Y T

    2017-07-01

    Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.

  19. Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis.

    PubMed

    Bauer, Paige V; Duca, Frank A; Waise, T M Zaved; Dranse, Helen J; Rasmussen, Brittany A; Puri, Akshita; Rasti, Mozhgan; O'Brien, Catherine A; Lam, Tony K T

    2018-03-06

    Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  1. MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function.

    PubMed

    Ikemura, Kenji; Iwamoto, Takuya; Okuda, Masahiro

    2014-08-01

    Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variations in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.

    PubMed

    Harrison, E H; Hussain, M M

    2001-05-01

    Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase (PTL), and intestinal brush border enzyme, phospholipase B. Recent work on the carboxylester lipase (CEL) knockout mouse suggests that CEL may not be involved in dietary retinyl ester digestion. The possible roles of the pancreatic lipase-related proteins (PLRP) 1 and 2 and other enzymes require further investigation. Unesterified retinol is taken up by the enterocytes, perhaps involving both diffusion and protein-mediated facilitated transport. Once in the cell, retinol is complexed with cellular retinol-binding protein type 2 (CRBP2) and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). Retinol not bound to CRBP2 is esterified by acyl-CoA acyltransferase (ARAT). The retinyl esters are incorporated into chylomicrons, intestinal lipoproteins that transport other dietary lipids such as triglycerides, phospholipids, and cholesterol. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph.

  3. Intestinal Failure: New Definition and Clinical Implications.

    PubMed

    Kappus, Matthew; Diamond, Sarah; Hurt, Ryan T; Martindale, Robert

    2016-09-01

    Intestinal failure (IF) is a state in which the nutritional demands of the body are not met by the gastrointestinal absorptive surface. It is a long-recognized complication associated with short bowel syndrome, which results in malabsorption after significant resection of the intestine for many reasons or functional dysmotility. Etiologies have included Crohn's disease, vascular complications, and the effects of radiation enteritis, as well as the effects of intestinal obstruction, dysmotility, or congenital defects. While IF has been long-recognized, it has historically not been uniformly defined, which has made both recognition and management challenging. This review examines the previous definitions of IF as well as the newer definition and classification of IF and how it is essential to IF clinical guidelines.

  4. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    PubMed

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo. © 2012 Blackwell Publishing Ltd.

  5. Pharmacological strategies to enhance adaptation in intestinal failure.

    PubMed

    Pape, Ulrich-Frank; Maasberg, Sebastian; Pascher, Andreas

    2016-04-01

    Intestinal failure because of more or less extensive resection of parts of the small and large intestine (short bowel syndrome) results from the reduction of absorptive surface of the remaining intestine and frequently results in dependence on parenteral nutrition. Parenteral nutrition, although lifesaving, is associated with short and long-term complications as well as with reduced quality of life and overall survival. Pharmacological enhancement of the physiological intestinal adaptive response by subcutaneous application of the glucagon-like peptide 2 analogue teduglutide results in an improved, hyperadaptive response. This is reflected by decreased parenteral calorie and fluid requirements, decreased parenteral nutrition infusion days per week including complete weaning off parenteral nutrition with complete oral autonomy, improved quality of life, and metabolic and nutritional stability. The advent of teduglutide as an authority-approved specific medication for intestinal failure in parenteral nutrition-dependent short bowel syndrome offers an effective and beneficial treatment for these patients. As a result, patients are more stable whether for medical or further surgical management including intestinal transplantation. Long-term efficacy and safety still have to be proven.

  6. Intestinal and Hepatic Expression of Cytochrome P450s and mdr1a in Rats with Indomethacin-Induced Small Intestinal Ulcers

    PubMed Central

    Kawauchi, Shoji; Nakamura, Tsutomu; Yasui, Hiroyuki; Nishikawa, Chikako; Miki, Ikuya; Inoue, Jun; Horibe, Sayo; Hamaguchi, Tsuneo; Tanahashi, Toshihito; Mizuno, Shigeto

    2014-01-01

    Background: Non-steroidal anti-inflammatory drugs induce the serious side effect of small intestinal ulcerations (SIUs), but little information is available regarding the consequences to drug metabolism and absorption. Aim: We examined the existence of secondary hepatic inflammation in rats with indomethacin (INM)-induced SIUs and assessed its relationship to the cytochrome P450 (CYP) and P-glycoprotein (mdr1a), the major drug-metabolizing factors in the small intestine and the liver. Methods: Gene expression of the CYP family of enzymes and mdr1a was measured with quantitative real-time polymerase chain reaction (qPCR). Vancomycin (VCM), a poorly absorbed drug, was administered intraduodenally to rats with SIUs. Results: INM induced SIUs predominantly in the lower region of the small intestine with high expression of inflammatory markers. Liver dysfunction was also observed, which suggested a secondary inflammatory response in rats with SIUs. In the liver of rats with SIUs, the expression of CYP2C11, CYP2E1, and CYP3A1 was significantly decreased, and loss of CYP3A protein was observed. Although previous studies have shown a direct effect of INM on CYP3A activity, we could not confirm any change in hepatic CY3A4 expression (major isoform of human CYP3A) in vitro. The plasma VCM concentration was increased in rats with SIUs due to partial absorption from the mucosal injury, but not in normal mucosa. Conclusions: INM-induced SIUs had a subtle effect on intestinal CYP expression, but had an apparent action on hepatic CYP, which was influenced, at least in part, by the secondary inflammation. Furthermore, drug absorption was increased in rats with SIUs. PMID:25317066

  7. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis.

    PubMed

    Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze

    2017-07-25

    Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.

  8. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  9. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  10. Crystal-liquid Fugacity Ratio as a Surrogate Parameter for Intestinal Permeability.

    PubMed

    Zakeri-Milani, Parvin; Fasihi, Zohreh; Akbari, Jafar; Jannatabadi, Ensieh; Barzegar-Jalali, Mohammad; Loebenberg, Raimar; Valizadeh, Hadi

    We assessed the feasibility of using crystal-liquid fugacity ratio (CLFR) as an alternative parameter for intestinal permeability in the biopharmaceutical classification (BCS) of passively absorbed drugs. Dose number, fraction of dose absorbed, intestinal permeability, and intrinsic dissolution rate were used as the input parameters. CLFR was determined using thermodynamic parameters i.e., melting point, molar fusion enthalpy, and entropy of drug molecules obtained using differential scanning calorimetry. The CLFR values were in the range of 0.06-41.76 mole percent. There was a close relationship between CLFR and in vivo intestinal permeability (r > 0.8). CLFR values of greater than 2 mole percent corresponded to complete intestinal absorption. Applying CLFR versus dose number or intrinsic dissolution rate, more than 92% of tested drugs were correctly classified with respect to the reported classification system on the basis of human intestinal permeability and solubility. This investigation revealed that the CLFR might be an appropriate parameter for quantitative biopharmaceutical classification. This could be attributed to the fact that CLFR could be a measure of solubility of compounds in lipid bilayer which was found in this study to be directly proportional to the intestinal permeability of compounds. This classification enables researchers to define characteristics for intestinal absorption of all four BCS drug classes using suitable cutoff points for both intrinsic dissolution rate and crystal-liquid fugacity ratio. Therefore, it may be used as a surrogate for permeability studies. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  11. Redox biology of the intestine

    PubMed Central

    Circu, Magdalena L.; Aw, Tak Yee

    2011-01-01

    The intestinal tract, known for its capability for self-renew, represents the first barrier of defense between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signaling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer. PMID:21831010

  12. Characterization of sea cucumber (stichopus japonicus) ovum hydrolysates: calcium chelation, solubility and absorption into intestinal epithelial cells.

    PubMed

    Sun, Na; Cui, Pengbo; Lin, Songyi; Yu, Cuiping; Tang, Yue; Wei, Ye; Xiong, Youling; Wu, Haitao

    2017-10-01

    Sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs) chelated with calcium were produced to investigate the characteristics of calcium binding and solubility, as well as to study any effects on calcium absorption by human intestinal epithelial cells. The results of the present study show that the calcium-binding capacity of SCOHs depended greatly on the type of proteases. The maximum level of Ca binding (0.38 mmol L -1 ) occurred when trypsin was used, with a peptide yield of 85.7%. Investigation of the possible chelating modes between SCOHs and calcium ions indicated that calcium ions bound to SCOHs primarily via interactions with carboxyl oxygen and amino nitrogen atoms of Glu and Asp and also that the phosphoserine residues might be also responsible for SCOH-calcium chelation. Moreover, SCOH-calcium complexes maintained the solubility of calcium under simulated gastrointestinal digestion, regardless of the presence of dietary components such as oxalate. Furthermore, SCOH-Ca led to higher peak intracellular [Ca 2+ ] i in both Caco-2 cells (338.3 nmol L -1 versus 269.6 nmol L -1 ) and HT-29 cells (373.9 nmol L -1 versus 271.7 nmol L -1 ) than casein phosphopeptide-Ca. Carboxyl oxygen and amino nitrogen atoms in the SCOHs could bind calcium ions, forming SCOH-calcium complexes. These complexes improved calcium solubility under simulated gastrointestinal digestion and also promoted calcium absorption in Caco-2 and HT-29 cells. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Nutrient-induced intestinal adaption and its effect in obesity.

    PubMed

    Dailey, Megan J

    2014-09-01

    Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Pancreatic cholera syndrome: effect of a synthetic somatostatin analog on intestinal water and ion transport.

    PubMed

    Santangelo, W C; O'Dorisio, T M; Kim, J G; Severino, G; Krejs, G J

    1985-09-01

    The effect of a synthetic somatostatin analog was studied in a patient with severe secretory diarrhea due to pancreatic cholera syndrome. Basal intestinal perfusion studies indicated an absence of water and sodium absorption, and active chloride secretion in the small bowel. Intravenous administration of the somatostatin analog (1 microgram/kg.h) changed zero net water movement to absorption (122 mL/30 cm of the jejunum per hour). Chloride secretion changed to absorption (5.0 to 7.9 meq/30 cm.h), and plasma vasoactive intestinal polypeptide concentration was reduced from 330 to 45 pmol/L (normal, less than 51). When the analog was given subcutaneously, 100 micrograms twice daily, stool weight decreased, and plasma vasoactive intestinal polypeptide concentration fell toward the normal range (67 pmol/L). Plasma concentration of pancreatic polypeptide was initially elevated and dropped during intravenous infusion of somatostatin analog but returned to baseline on maintenance therapy with the analog delivered subcutaneously. The patient has not had further diarrhea during 9 months of therapy.

  15. Intestine-specific Disruption of Hypoxia-inducible Factor (HIF)-2α Improves Anemia in Sickle Cell Disease.

    PubMed

    Das, Nupur; Xie, Liwei; Ramakrishnan, Sadeesh K; Campbell, Andrew; Rivella, Stefano; Shah, Yatrik M

    2015-09-25

    Sickle cell disease (SCD) is caused by genetic defects in the β-globin chain. SCD is a frequently inherited blood disorder, and sickle cell anemia is a common type of hemoglobinopathy. During anemia, the hypoxic response via the transcription factor hypoxia-inducible factor (HIF)-2α is highly activated in the intestine and is essential in iron absorption. Intestinal disruption of HIF-2α protects against tissue iron accumulation in iron overload anemias. However, the role of intestinal HIF-2α in regulating anemia in SCD is currently not known. Here we show that in mouse models of SCD, disruption of intestinal HIF-2α significantly decreased tissue iron accumulation. This was attributed to a decrease in intestinal iron absorptive genes, which were highly induced in a mouse model of SCD. Interestingly, disruption of intestinal HIF-2α led to a robust improvement in anemia with an increase in RBC, hemoglobin, and hematocrit. This was attributed to improvement in RBC survival, hemolysis, and insufficient erythropoiesis, which is evident from a significant decrease in serum bilirubin, reticulocyte counts, and serum erythropoietin following intestinal HIF-2α disruption. These data suggest that targeting intestinal HIF-2α has a significant therapeutic potential in SCD pathophysiology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Self-micelle formation and the incorporation of lipid in the formulation affect the intestinal absorption of Panax notoginseng.

    PubMed

    Xiong, Jing; Guo, Jianxin; Huang, Luosheng; Meng, Boyu; Ping, Qineng

    2008-08-06

    The purpose of this research is to evaluate the effect of self-micelle formation and incorporation of lipid in the formulation on absorption of ginsenosides Rg1 and Rb1 from intestinal tract in rats. Ginsenosides Rg1 and Rb1 were extracted from Panax notoginseng saponins (PNS). The critical micellar concentration (CMC) of PNS in deionzied water was determined to be 0.339 mg/ml. At normal physiological ionic strengths, PNS was salted out from the solution above the CMC. The particle size of the micelle grows as PNS concentration increases. By in situ injection to a closed loop of the rat jejunum, AUC0-6h obtained after administration of low concentration solution (12 mg/ml) was 3.61 times for ginsenoside Rg1 and 3.84-folds for ginsenoside Rb1 compared with high concentration solution (120 mg/ml). The release rate of ginsenosides in aqueous medium was too slow to complete in 24h, especially for Rb1. The data suggested that the self-micelle formation tendency in ginsenosides might prevent them from permeation or absorption through the cell membrane of gastrointestinal (GI) tract. To inhibit the formation of micelles, lipid was incorporated in the PNS formulation. The intraduodenal bioavailability in rats showed that the bioavailability was enhanced remarkably relative to the aqueous solution. AUC 0-infinity of ginsenoside Rg1 and Rb1 in the lipid-based formulation were 207.52+/-53.95 and 1961.72+/-686.60 microg ml(-1) h, compared with 7.87+/-2.85 and 148.58+/-36.73 microg ml(-1) h, respectively from its aqueous solution. These findings suggested a new strategy to increase the absorption of amphiphilic saponins.

  17. Role of Self-Association and Supersaturation in Oral Absorption of a Poorly Soluble Weakly Basic Drug.

    PubMed

    Narang, Ajit S; Badawy, Sherif; Ye, Qingmei; Patel, Dhaval; Vincent, Maria; Raghavan, Krishnaswamy; Huang, Yande; Yamniuk, Aaron; Vig, Balvinder; Crison, John; Derbin, George; Xu, Yan; Ramirez, Antonio; Galella, Michael; Rinaldi, Frank A

    2015-08-01

    Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.

  18. Food Ingredients That Inhibit Cholesterol Absorption

    PubMed Central

    Jesch, Elliot D.; Carr, Timothy P.

    2017-01-01

    Cholesterol is a vital component of the human body. It stabilizes cell membranes and is the precursor of bile acids, vitamin D and steroid hormones. However, cholesterol accumulation in the bloodstream (hypercholesterolemia) can cause atherosclerotic plaques within artery walls, leading to heart attacks and strokes. The efficiency of cholesterol absorption in the small intestine is of great interest because human and animal studies have linked cholesterol absorption with plasma concentration of total and low density lipoprotein cholesterol. Cholesterol absorption is highly regulated and influenced by particular compounds in the food supply. Therefore, it is desirable to learn more about natural food components that inhibit cholesterol absorption so that food ingredients and dietary supplements can be developed for consumers who wish to manage their plasma cholesterol levels by non-pharmacological means. Food components thus far identified as inhibitors of cholesterol absorption include phytosterols, soluble fibers, phospholipids, and stearic acid. PMID:28702423

  19. Study on the main components interaction from Flos Lonicerae and Fructus Forsythiae and their dissolution in vitro and intestinal absorption in rats.

    PubMed

    Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2014-01-01

    The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical

  20. Study on the Main Components Interaction from Flos Lonicerae and Fructus Forsythiae and Their Dissolution In Vitro and Intestinal Absorption in Rats

    PubMed Central

    Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2014-01-01

    The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical

  1. Acetaminophen (paracetamol) oral absorption and clinical influences.

    PubMed

    Raffa, Robert B; Pergolizzi, Joseph V; Taylor, Robert; Decker, John F; Patrick, Jeffrey T

    2014-09-01

    Acetaminophen (paracetamol) is a widely used nonopioid, non-NSAID analgesic that is effective against a variety of pain types, but the consequences of overdose can be severe. Because acetaminophen is so widely available as a single agent and is increasingly being formulated in fixed-ratio combination analgesic products for the potential additive or synergistic analgesic effect and/or reduced adverse effects, accidental cumulative overdose is an emergent concern. This has rekindled interest in the sites, processes, and pharmacokinetics of acetaminophen oral absorption and the clinical factors that can influence these. The absorption of oral acetaminophen occurs primarily along the small intestine by passive diffusion. Therefore, the rate-limiting step is the rate of gastric emptying into the intestines. Several clinical factors can affect absorption per se or the rate of gastric emptying, such as diet, concomitant medication, surgery, pregnancy, and others. Although acetaminophen does not have the abuse potential of opioids or the gastrointestinal bleeding or organ adverse effects of NSAIDs, excess amounts can produce serious hepatic injury. Thus, an understanding of the sites and features of acetaminophen absorption--and how they might be influenced by factors encountered in clinical practice--is important for pain management using this agent. It can also provide insight for design of formulations that would be less susceptible to clinical variables. © 2013 World Institute of Pain.

  2. Potential of single cationic amino acid molecule "Arginine" for stimulating oral absorption of insulin.

    PubMed

    Kamei, Noriyasu; Khafagy, El-Sayed; Hirose, Jun; Takeda-Morishita, Mariko

    2017-04-15

    We have reported that cell-penetrating peptides, such as oligoarginine, act as powerful absorption enhancers for the development of oral insulin delivery systems. However, the minimal essential sequence of oligoarginine that stimulates intestinal insulin absorption remains unclear. Therefore, the present study was conducted to clarify this minimum sequence of oligoarginine and to examine the effect of single cationic amino acid arginine on the intestinal and oral absorption of insulin. The results demonstrated that a remarkable enhancement of intestinal insulin absorption was observed after coadministration of insulin with l-arginine. The efficacy of d-forms of oligoarginine/arginine tended to decrease with a decreasing number of amino acid residues, whereas the effect of l-arginine was the strongest of any of the l-forms of oligoarginine/arginine. Interestingly, the effect of l-arginine was stronger than that of d-arginine at various concentrations, and the effect of other cationic amino acids such as lysine and histidine was relatively lower than that of arginine. In addition, no leakage of lactate dehydrogenase from the intestinal epithelium and no change in the transepithelial electrical resistance of a Caco-2 cell monolayer were detected after administration of l-arginine as the single amino acid, which suggests that there were no undesirable effects of arginine on the integrity of cell membranes and paracellular tight junctions. Oral administration study in mice demonstrated that the stronger hypoglycemic effects were observed after coadministration of insulin with l-arginine. In this study, we found that arginine is a key cationic amino acid for delivering insulin across intestinal epithelial barriers and hopefully accelerating the clinical development of oral insulin delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Early Intestinal Rehabilitation Therapy Ameliorates Intestinal Adaptation in Children with Short Bowel Syndrome: The Long-Term Outcome.

    PubMed

    Guo, Mingxiao; Lu, Chunlei; Li, Yousheng

    2016-12-01

    In the management of short bowel syndrome (SBS), the benefits of treatment with growth hormone (GH), glutamine, and enteral nutrition (EN) on intestinal adaptation among children patients is still controversial. The aim of present study is to determine whether GH, glutamine, and EN have positive effect on intestinal adaptation in children with SBS. Sixteen children with SBS (small bowel remnant length, 56.75 ± 8.09 cm; mean ± SE) were treated with GH (0.05 mg/kg/d), glutamine (0.45 mg/kg/d), plus EN-enriched fiber diet for four weeks. After four weeks of treatment, patients were discharged home; GH was discontinued, but the EN with glutamine was continued. Repeated treatment was performed if there were lose weight, dysplasia, or severe diarrhea. All patients completed the treatment. Body weight, intestinal absorptive capacity, and plasma levels of proteins were significantly improved after complete treatment, without any major adverse effects. On follow-up, no death was reported. Treatment with GH, glutamine, and EN in early stage significantly improved intestinal adaptation in pediatric patients with SBS. Furthermore, the positive effect of the treatment does not seem to be sustained once GH discontinued until the residual intestinal adaptation reaches its maximum.

  4. Oxalate and Sucralose Absorption in Idiopathic Calcium Oxalate Stone Formers

    PubMed Central

    Knight, John; Jiang, Juquan; Wood, Kyle D.; Holmes, Ross P.; Assimos, Dean G.

    2011-01-01

    Objectives Oxalate has been hypothesized to undergo absorption in the large and small intestine by both paracellular and transepithelial transport. Sucralose is a chlorinated sugar that is absorbed by paracellular mechanisms. This study's objective was to better understand intestinal oxalate transport by correlating oxalate and sucralose absorption in idiopathic calcium oxalate stone formers. Methods Idiopathic calcium oxalate stone formers were recruited to provide urine specimens on both a self-selected diet and following a meal containing 90 mg of 13C2-oxalate and 5 grams of sucralose, and a stool sample for determination of Oxalobacter formigenes colonization. The 24 hour urine collections were fractionated into the first 6 hours and the subsequent 18 hours. Sucralose and oxalate excretion were measured during these periods and used to estimate absorption. Results A total of 38 subjects were evaluated. The majority of both the 13C2-oxalate and sucralose absorption occurred within the 0-6 hour collection. The 13C2-oxalate and sucralose absorptions were significantly correlated at the 0-6 hour, the 6-24 hour, and the total 24 hour time periods (p<0.04). All five oxalate hyperabsorbers(> 15% absorption) also absorbed significantly more sucralose during the 0-6 hour and whole 24 hour time points (p<0.04). Oxalobacter formigenes colonization did not significantly alter oxalate absorption. Conclusion The results suggest that the majority of oxalate is absorbed in the proximal portion of the gastrointestinal tract and that paracelluar transport is involved. Augmented paracellular transport, as evidenced by increased sucralose absorption, may also influence oxalate absorption. PMID:21676449

  5. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    PubMed Central

    Vegge, Andreas; Thymann, Thomas; Lund, Pernille; Stoll, Barbara; Bering, Stine B.; Hartmann, Bolette; Jelsing, Jacob; Qvist, Niels; Burrin, Douglas G.; Jeppesen, Palle B.; Holst, Jens J.

    2013-01-01

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection. PMID:23764891

  6. Alternative functional in vitro models of human intestinal epithelia

    PubMed Central

    Kauffman, Amanda L.; Gyurdieva, Alexandra V.; Mabus, John R.; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J.

    2013-01-01

    Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport. PMID:23847534

  7. Alternative functional in vitro models of human intestinal epithelia.

    PubMed

    Kauffman, Amanda L; Gyurdieva, Alexandra V; Mabus, John R; Ferguson, Chrissa; Yan, Zhengyin; Hornby, Pamela J

    2013-01-01

    Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  8. Goblet Cells and Mucus Types in the Digestive Intestine and Respiratory Intestine in Bronze Corydoras (Callichthyidae: Teleostei).

    PubMed

    Leknes, I L

    2015-10-01

    The structure and histochemical properties of the intestine in bronze corydoras (Corydoras aeneus), a stomach-containing teleost, are described, with emphasis on goblet cells and mucin types. The proximal intestine displayed a normal structure for teleosts, whereas the distal intestine was wide, translucent, thin-walled, richly vascularized and constantly filled with air, suggesting an important respiratory role. Goblet cells were common throughout the entire intestine and displayed a variable, but mainly faint metachromatic colour after toluidine blue. They were moderately coloured by alcian blue at both pH 2.5 and 0.2 and displayed no colour after periodic acid followed by Schiff's solution (PAS), but a distinct purple-brown colour after high iron diamine followed by alcian blue (pH 2.5). Together, these results suggest that the mucin in the intestine goblet cells consists mainly of sulphated proteoglycans. Further, the results from the present lectin and neuraminidase tests suggest that these mucins contain much N-acetylglucoseamines and some N-acetylgalactosamines and sialic acid, but seem to lack glucose and mannose. They also contain some galactose-N-acetylgalactosamines sequences, normally hidden by sialic acid. The distinct brush border and mucus layer on the epithelial cells in the respiratory intestine may indicate some digestive roles, such as absorption of water, ions and simple carbohydrates. As sulphated proteoglycans are tough and attract much water, this mucus may play important roles in the protection against mechanical and chemical damages and in the defence against micro-organisms throughout the entire intestine, but in the respiratory intestine it may impede significantly the oxygen uptake. However, as this part of the intestine usually contains no digesta, but is completely filled with air, frequently renewed by dry air from the atmosphere, and the main function of the mucus may be to protect the respiratory epithelium against a destroying and

  9. Non-invasive, Multimodal Functional Imaging of the Intestine with Frozen Micellar Naphthalocyanines

    PubMed Central

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-01-01

    Overview There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and give rise to good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ~20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1000). Unlike conventional chromophores, nanonaps exhibited non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution with 0.5 cm depth, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole body imaging. PMID:24997526

  10. Morphological and functional alterations of small intestine in chronic pancreatitis.

    PubMed

    Gubergrits, Natalya B; Linevskiy, Yuri V; Lukashevich, Galina M; Fomenko, Pavel G; Moroz, Tatyana V; Mishra, Tapan

    2012-09-10

    The small intestine in chronic pancreatitis has not been investigated yet thoroughly. It would be important to understand fat metabolism in the course of this disease and could be explained if the small intestine has some pathological conditions and, due to this reason, pancreatic enzyme substitution does not work in all patients. To investigate the pathophysiology of small intestine in chronic pancreatitis and to show the reason why in some cases pancreatic enzyme substitution does not work properly. In the process of the study 33 chronic pancreatitis patients have been examined. The control group includes 30 subjects without chronic pancreatitis similar for age, sex and alcohol consumption to the patients with chronic pancreatitis patients. Aspiration biopsy of jejunum mucosa followed by histological examination and investigation of intestinal enzymes by aspiration has been performed. Metabolism at membranic level has been studied by enzymatic activity of amylase and lipase in the small intestine. Production of enzymes (monoglyceride lipase, lactase, saccharase, maltase, glycyl-l-leucine dipeptidase) promoting metabolism in enterocytes has been estimated as to their activity in homogenates of jejunum mucosa samples. Participation of mucosa in intestinal digestion has been assessed by alkaline phosphatase activity in a secretory chyme from proximal portion of jejunum. Absorptive capacity of jejunum was evaluated by D-xylose test results. DNA, lysozyme, immunoglobulin contents of chyme have also been calculated and bacteriological study of chyme has been also performed. Secondary enteritis, accompanied by moderate dystrophic changes of mucous membrane, thinning of limbus, and decrease of Paneth cell mitotic index, was found to occur in chronic pancreatitis patients. Enteritis is followed by changes in enzymatic processes in the sphere of membrane and intestinal digestion, decrease of absorption, accelerated desquamation of epithelium, fall in local immunity and

  11. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs.

    PubMed

    Han, Hyo-Kyung

    2011-06-01

    There is currently a need for a better understanding of the mechanisms of food-drug interaction as well as the clinical implication to maximize the effectiveness and applicability of black pepper or its active component, piperine, as a bioavailability enhancer in the clinical arena. This review deals with the effects of black pepper and piperine on drug metabolizing enzymes as well as on intestinal drug absorption. The review provides the reader with a comprehensive update on the potential mechanisms and pharmacokinetic interactions of black pepper and piperine with co-administered medicines. The article also provides a comprehensive update on the current known issues with black pepper and piperine. The information provided is used to assess the clinical significance of black pepper and piperine and optimize their effectiveness as a bioavailability enhancer. For black pepper or piperine to be widely applicable in current medical practice, as a combination therapy, the clinical significance of food-drug interactions caused by concurrent use of black pepper or piperine should be carefully assessed with consideration for many compounding factors affecting the clinical outcome of pharmacokinetic interactions (e.g., dose, dosing regimen, genetic variation and species). Furthermore, the effective formulation strategy for the optimization of the pharmacokinetic characteristics of dietary components is crucial to improve their in vivo performance and ultimately maximize their effectiveness as a bioavailability enhancer.

  12. Significance of Ca-soap formation for calcium absorption in the rat.

    PubMed Central

    Gacs, G; Barltrop, D

    1977-01-01

    The significance of calcium soap formation in the inhibition of calcium absorption has been studied in rats. 47Ca labelled soaps of fatty acids were introduced into the duodenum and the absorption of calcium measured after four hours in a whole body counter. The absorption of calcium was inversely correlated with the chain length of the fatty acid varying from 1% for Ca-stearate to 60% for Ca-hexanoate. Increasing the degree of unsaturation of the fatty acid was accompanied by increased calcium absorption. The availability of calcium for absorption from the soaps was correlated with their solubility in 1% aqueous Na-tauroglycocholate. The percentages of calcium as soap in the small intestine and the faeces after intragastric administration of calcium and fats were similar, which suggests that the faecal content of calcium soaps is an index of intestinal soap formation. Soap formation was negligible when CaCl2 was given with tristearate, triolaeate, or tridecanoate and no depression of calcium absorption was observed. Calcium absorption was markedly impaired by the addition of phosphates at a Ca/P ratio of 1:1 irrespective of the presence of neutral fats. Stearic acid resulted in significant soap formation and reduced calcium absorption. The degree of Ca-soap formation and the inhibition of calcium absorption were well correlated. The results suggest that, although calcium soap formation may markedly depress calcium absorption in the rat, no significant soap formation takes place when fats are given in the form of triglycerides. PMID:838405

  13. Validation of polyethylene glycol 3350 as a poorly absorbable marker for intestinal perfusion studies.

    PubMed

    Schiller, L R; Santa Ana, C A; Porter, J; Fordtran, J S

    1997-01-01

    Polyethylene glycol (PEG) has been used as a poorly absorbable marker in intestinal perfusion studies, but there is controversy about the absorbability of PEG, particularly when glucose-sodium cotransport is occurring. Total intestinal perfusion studies were done in five normal humans using three solutions containing 1 g/liter PEG 3350 and designed to produce low rates of water absorption, high rates of water absorption, or high rates of glucose-sodium cotransport. Water absorption rates were calculated by traditional nonabsorbable marker equations and by a novel balance technique in which absorption was taken as the difference between the volumes of solution infused and recovered during steady-state conditions. Effluent PEG recovery was 99 +/- 4%, 109 +/- 2%, and 104 +/- 6% of the amount infused with each solution. Water absorption rates measured by use of PEG concentrations were similar to those calculated by the balance technique (r = 0.99). The complete recovery of PEG confirms the poor absorbability of PEG 3350, and the excellent agreement between techniques validates PEG as a poorly absorbed marker, even when glucose-sodium cotransport is occurring.

  14. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  15. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System.

    PubMed

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-01-01

    Despite reasonable predictive power of current cell-based and cell-free absorption models for the assessment of intestinal drug permeability, high costs and lengthy preparation steps hamper their use. The use of a simple artificial membrane (without any lipids present) as intestinal barrier substitute would overcome these hurdles. In the present study, a set of 14 poorly water-soluble drugs, dissolved in 2 different media (fasted state simulated/human intestinal fluids [FaSSIF/FaHIF]), were applied to the donor compartment of an artificial membrane insert system (AMI-system) containing a regenerated cellulose membrane. Furthermore, to investigate the predictive capacity of the AMI-system as substitute for the well-established Caco-2 system to assess intestinal permeability, the same set of 14 drugs dissolved in FaHIF were applied to the donor compartment of a Caco-2 system. For 14 drugs, covering a broad range of physicochemical parameters, a reasonable correlation between both absorption systems was observed, characterized by a Pearson correlation coefficient r of 0.95 (FaHIF). Using the AMI-system, an excellent predictive capacity of FaSSIF as surrogate medium for FaHIF was demonstrated (r = 0.96). Based on the acquired data, the AMI-system appears to be a time- and cost-effective tool for the early-stage estimation of passive intestinal permeability for poorly water-soluble drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  17. Intestinal absorption of an arginine-containing peptide in cystinuria

    PubMed Central

    Asatoor, A. M.; Harrison, B. D. W.; Milne, M. D.; Prosser, D. I.

    1972-01-01

    Separate tolerance tests involving oral intake of the dipeptide, L-arginyl-L-aspartate, and of a corresponding free amino acid mixture, were carried out in a single type 2 cystinuric patient. Absorption of aspartate was within normal limits, whilst that of arginine was normal after the peptide but considerably reduced after the amino acid mixture. The results are compared with the increments of serum arginine found in eight normal subjects after the oral intake of the free amino acid mixture. Analyses of urinary pyrrolidine and of tetramethylenediamine in urine samples obtained after the two tolerance tests in the patient support the view that arginine absorption was subnormal after the amino acid mixture but within normal limits after the dipeptide. PMID:5045711

  18. Intestinal transport of gentamicin with a novel, glycosteroid drug transport agent

    NASA Technical Reports Server (NTRS)

    Axelrod, H. R.; Kim, J. S.; Longley, C. B.; Lipka, E.; Amidon, G. L.; Kakarla, R.; Hui, Y. W.; Weber, S. J.; Choe, S.; Sofia, M. J.

    1998-01-01

    PURPOSE: The objective was to investigate the ability of a glycosteroid (TC002) to increase the oral bioavailability of gentamicin. METHODS: Admixtures of gentamicin and TC002 were administered to the rat ileum by injection and to dogs by ileal or jejunal externalized ports, or PO. Bioavailability of gentamicin was determined by HPLC. 3H-TC002 was injected via externalized cannulas into rat ileum or jejunum, or PO and its distribution and elimination was determined. The metabolism of TC002 in rats was evaluated by solid phase extraction and HPLC analysis of plasma, urine and feces following oral or intestinal administration. RESULTS: The bioavailability of gentamicin was substantially increased in the presence of TC002 in both rats and dogs. The level of absorption was dependent on the concentration of TC002 and site of administration. Greatest absorption occurred following ileal orjejunal administration. TC002 was significantly more efficacious than sodium taurocholate, but similar in cytotoxicity. TC002 remained primarily in the GI tract following oral or intestinal administration and cleared rapidly from the body. It was only partly metabolized in the GI tract, but was rapidly and completely converted to its metabolite in plasma and urine. CONCLUSIONS: TC002 shows promise as a new drug transport agent for promoting intestinal absorption of polar molecules such as gentamicin.

  19. Short chain fatty acids (butyric acid) and intestinal diseases

    PubMed

    Manrique Vergara, David; González Sánchez, María Eugenia

    2017-10-15

    Short chain fatty acids contain up to 6 carbon atoms. Among them, butyric acid stands out for its key role in pathologies with intestinal affectation. Butyric acid is the main energetic substrate of the colonocyte, it stimulates the absorption of sodium and water in the colon, and presents trophic action on the intestinal cells. To review the clinical use of formulations for the oral use of butyric acid. Review of published articles on oral supplementation with butyric acid in intestinal pathologies. The publications mainly deal with the use of oral butyric acid in pathologies involving inflammation and / or alterations of intestinal motility. Highlighting the clinical potential in inflammatory bowel diseases and irritable bowel syndrome. The use of oral supplementation with butyric acid is a promising strategy in pathologies such as inflammatory bowel diseases and irritable bowel syndrome. Bio-available butyric acid formulations with acceptable organoleptic characteristics are being advanced.

  20. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro.

    PubMed

    Dragoni, Stefania; Gee, Jennifer; Bennett, Richard; Valoti, Massimo; Sgaragli, Giampietro

    2006-04-01

    Moderate consumption of red wine has been associated with beneficial effects on human health, and this has been attributed to the flavonoid content. Factors that influence the bioavailability of this group of polyphenolic compounds are therefore important. Using the rat cannulated everted jejunal sac technique, we have investigated the effect of alcohol on the intestinal absorption of quercetin and its 3-O-glucoside from red wine. Tissue preparations were incubated in whole or dealcoholised red wine, diluted 1 : 1 with Krebs buffer for 20 min at 37 degrees C, after which the mucosa was removed and processed for HPLC analysis. Tissues exposed to red wine had significantly higher amounts of both quercetin (x 3; P < 0.001) and quercetin-3-O-glucoside (x 1.5; P < 0.01) associated with them, compared with sacs incubated in the dealcoholised equivalent. In addition, both tamarixetin (T) and isorhamnetin (I), in the mucosal tissue from sacs exposed to the whole wine, were significantly elevated approximately two fold (P < 0.05; P < 0.01, respectively). Similar results were obtained when sacs were incubated in Krebs buffer containing a mixture of pure quercetin and quercetin-3-O-glucoside with or without alcohol, and, although effects on the apparent absorption of Q and Q-3-G were not so marked, concentrations of the metabolites quercetin-3-O-glucuronide and I were significantly increased by the presence of alcohol (P < 0.01 and P < 0.001, respectively). It is therefore plausible that the moderate alcohol content of red wine contributes to its beneficial health effects in humans by both increasing the absorption of quercetin and quercetin-3-O-glucoside and by channelling their metabolism towards O-methylation to yield compounds (T and I), which have potential protective effects against cancer and cardiovascular diseases.

  1. Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro

    PubMed Central

    Dragoni, Stefania; Gee, Jennifer; Bennett, Richard; Valoti, Massimo; Sgaragli, Giampietro

    2006-01-01

    Moderate consumption of red wine has been associated with beneficial effects on human health, and this has been attributed to the flavonoid content. Factors that influence the bioavailability of this group of polyphenolic compounds are therefore important. Using the rat cannulated everted jejunal sac technique, we have investigated the effect of alcohol on the intestinal absorption of quercetin and its 3-O-glucoside from red wine. Tissue preparations were incubated in whole or dealcoholised red wine, diluted 1 : 1 with Krebs buffer for 20 min at 37°C, after which the mucosa was removed and processed for HPLC analysis. Tissues exposed to red wine had significantly higher amounts of both quercetin (× 3; P<0.001) and quercetin-3-O-glucoside (× 1.5; P<0.01) associated with them, compared with sacs incubated in the dealcoholised equivalent. In addition, both tamarixetin (T) and isorhamnetin (I), in the mucosal tissue from sacs exposed to the whole wine, were significantly elevated approximately two fold (P<0.05; P<0.01, respectively). Similar results were obtained when sacs were incubated in Krebs buffer containing a mixture of pure quercetin and quercetin-3-O-glucoside with or without alcohol, and, although effects on the apparent absorption of Q and Q-3-G were not so marked, concentrations of the metabolites quercetin-3-O-glucuronide and I were significantly increased by the presence of alcohol (P<0.01 and P<0.001, respectively). It is therefore plausible that the moderate alcohol content of red wine contributes to its beneficial health effects in humans by both increasing the absorption of quercetin and quercetin-3-O-glucoside and by channelling their metabolism towards O-methylation to yield compounds (T and I), which have potential protective effects against cancer and cardiovascular diseases. PMID:16444288

  2. A Comparison of mucosal surface area and villous histology in small intestines of the Brazilian free-tailed bat (Tadarida brasiliensis) and the mouse (Mus musculus).

    PubMed

    Zhang, Zhi-Qiang; Brun, Antonio; Price, Edwin R; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Studies on birds have led to the hypothesis that increased intestinal absorption between enterocytes (paracellular) evolved as a compensation for smaller intestinal size in fliers, which was perhaps selected to minimize the mass of digesta carried. This hypothesis predicts that bats will also exhibit relatively reduced intestinal size and high paracellular absorption, compared with nonflying mammals. Published studies on three bat species indicate relatively high paracellular absorption. One mechanism for increasing paracellular absorption per cm2 small intestine (SI) is increased number of tight junctions (TJs) across which paracellular absorption occurs. To our knowledge, we provide the first comparative analysis of enterocyte size and number in flying and nonflying mammals. Intestines of insectivorous bats Tadarida brasiliensis were compared with Mus musculus using hematoxylin and eosin staining method. Bats had shorter and narrower SIs than mice, and after correction for body size difference by normalizing to mass3/4, the bats had 40% less nominal surface area than the mouse, as predicted. Villous enhancement of surface area was 90% greater in the bat than in the mouse, mainly because of longer villi and a greater density of villi in bat intestines. Bat and mouse were similar in enterocyte diameter. Bats exceeded mice by 54.4% in villous area per cm length SI and by 95% in number of enterocytes per cm2 of the nominal surface area of the SI. Therefore, an increased density of TJs per cm2 SI may be a mechanistic explanation that helps to understand the high paracellular absorption observed in bats compared to nonflying mammals. © 2014 Wiley Periodicals, Inc.

  3. Inhibition of cholesterol absorption associated with a PPAR alpha-dependent increase in ABC binding cassette transporter A1 in mice.

    PubMed

    Knight, Brian L; Patel, Dilip D; Humphreys, Sandy M; Wiggins, David; Gibbons, Geoffrey F

    2003-11-01

    Dietary supplementation with the peroxisome proliferator-activated receptor alpha (PPAR alpha) ligand WY 14,643 gave rise to a 4- to 5-fold increase in the expression of mRNA for the ATP binding cassette transporter A1 (ABCA1) in the intestine of normal mice. There was no effect in the intestine of PPAR alpha-null mice. Consumption of a high-cholesterol diet also increased intestinal ABCA1 expression. The effects of WY 14,643 and the high-cholesterol diet were not additive. WY 14,643 feeding reduced intestinal absorption of cholesterol in the normal mice, irrespective of the dietary cholesterol concentration, and this resulted in lower diet-derived cholesterol and cholesteryl ester concentrations in plasma and liver. At each concentration of dietary cholesterol, there was a similar significant inverse correlation between intestinal ABCA1 mRNA content and the amount of cholesterol absorbed. The fibrate-induced changes in the intestines of the normal mice were accompanied by an increased concentration of the mRNA encoding the sterol-regulatory element binding protein-1c gene (SREBP-1c), a known target gene for the oxysterol receptor liver X receptor alpha (LXR alpha). There was a correlation between intestinal ABCA1 mRNA and SREBP-1c mRNA contents, but not between SREBP-1c mRNA content and cholesterol absorption. These results suggest that PPAR alpha influences cholesterol absorption through modulating ABCA1 activity in the intestine by a mechanism involving LXR alpha.

  4. Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo: assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall.

    PubMed

    Dorkoosh, Farid A; Borchard, Gerrit; Rafiee-Tehrani, Morteza; Verhoef, J Coos; Junginger, Hans E

    2002-03-01

    The objective of this study was to investigate the potential of superporous hydrogel (SPH) and SPH composite (SPHC) polymers to enhance the transport of N-alpha-benzoyl-L-arginine ethylester (BAEE) and fluorescein isothiocyanate-dextran 4400 (FD4) across porcine intestinal epithelium ex-vivo, and to study any possible morphological damage to the epithelium by applying these polymers. In addition, the ability of these polymers to attach to the gut wall by mechanical pressure was examined by using a specifically designed centrifuge model. The transport of BAEE and FD4 across the intestinal mucosa was enhanced 2- to 3-fold by applying SPHC polymer in comparison to negative control. No significant morphological damage was observed by applying these polymers inside the intestinal lumen. Moreover, the SPH and SPHC polymers were able to attach mechanically to the intestinal wall by swelling and did not move in the intestinal lumen even when a horizontal force of 13 gms(-2) was applied. In conclusion, these polymers are appropriate vehicles for enhancing the intestinal absorption of peptide and protein drugs.

  5. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells.

    PubMed

    Tourniaire, Franck; Hassan, Meryl; André, Marc; Ghiringhelli, Odette; Alquier, Christian; Amiot, Marie-Josèphe

    2005-10-01

    Naringin, the main flavanone of grapefruit, was reported to display numerous biological effects: antioxidant, hypocholesteremic, anti-atherogenic and favoring drug absorption. Naringin absorption mechanisms were studied in Caco-2 cells (TC7 clone). We investigated the possible involvement of several membrane transporters implicated in polyphenolic compounds intestinal transport (sodium-dependent glucose transporter 1, monocarboxylate transporter, multidrug-associated resistance proteins 1 and 2, and P-glycoprotein). Naringin was poorly absorbed by Caco-2 cells, according to its low value of apparent permeability coefficient (P(app) = 8.1 +/- 0.9 x 10(-8) cm/s). In the presence of verapamil, a specific inhibitor of P-glycoprotein, cellular uptake was increased by almost threefold after 5 min, and P(app) was doubled after 30 min. Our results indicated the involvement of P-glycoprotein, an ATP-driven efflux pump, capable of transporting naringin from the Caco-2 cell to the apical side. This phenomenon could explain, at least in part, the low absorption of this flavanone at the upper intestinal level.

  6. High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus).

    PubMed

    Ruiz-Jarabo, I; Gregório, S F; Gaetano, P; Trischitta, F; Fuentes, J

    2017-05-01

    Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO 3 - movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO 3 - cm -2 h -1 . However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Oxyntomodulin stimulates intestinal glucose uptake in rats.

    PubMed

    Collie, N L; Zhu, Z; Jordan, S; Reeve, J R

    1997-06-01

    Enteroglucagon peptides have long been proposed as mediators of intestinal adaptation, including mucosal growth and nutrient absorptive capacity. The hypothesis that infusions of oxyntomodulin, a bioactive form of enteroglucagon, would stimulate glucose and amino acid uptake was tested and its effects were compared with those of glucagon. Rats were infused intravenously via minipumps with either saline, rat oxyntomodulin (0.47 nmol x kg(-1) x h[-1]), or glucagon (0.88 nmol x kg(-1) x h[-1]) for 7 days, and plasma hormone levels were measured. At death, intestinal dimensions and brush border uptake of D-glucose and L-proline were measured using an in vitro everted sleeve technique. Plasma enteroglucagon and glucagon levels were increased 4- and 12-fold, respectively, but there were no effects on food intake, body weight, or intestinal dimensions. In contrast, oxyntomodulin and glucagon significantly stimulated total intestinal glucose uptake capacity by 44% and 53%, respectively, over controls. Oxyntomodulin most potently enhanced glucose uptake in the ileum (215%), whereas glucagon's greatest effect was in the jejunum (63%-85%). However, neither peptide affected proline uptake. These results support a new, specific action for oxyntomodulin in intestinal adaptation as a glucose uptake stimulator and confirm glucagon's role as a regulator of glucose uptake.

  8. Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Chen, Gangfu; Feng, Lin; Kuang, Shengyao; Liu, Yang; Jiang, Jun; Hu, Kai; Jiang, Weidan; Li, Shuhong; Tang, Ling; Zhou, Xiaoqiu

    2012-07-01

    The present study was conducted to test the hypothesis that dietary arginine promotes digestion and absorption capacity, and, thus, enhances fish growth. This improvement might be related to the target of rapamycin (TOR) and eIF4E-binding protein (4E-BP). A total of 1200 juvenile Jian carp, Cyprinus carpio var. Jian, with an average initial weight of 6.33 (SE 0.03) g, were fed with diets containing graded concentrations of arginine, namely, 9.8 (control), 12.7, 16.1, 18.5, 21.9 and 24.5 g arginine/kg diet for 9 weeks. An real-time quantitative PCR analysis was performed to determine the relative expression of TOR and 4E-BP in fish muscle, hepatopancreas and intestine. Dietary arginine increased (P < 0.05): (1) glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities in muscle and hepatopancreas; (2) intestine and hepatopancreas protein content, folds height, and trypsin, chymotrypsin, lipase, Na⁺/K⁺-ATPase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase activities in intestine; (3) Lactobacillus counts; (4) relative expression of TOR in the muscle, hepatopancreas and distal intestine (DI); (5) relative expression of 4E-BP in proximal intestine (PI) and mid-intestine (MI), as compared with the control group. In contrast, dietary arginine reduced (P < 0.05): (1) plasma ammonia content; (2) Aeromonas hydrophila and Escherichia coli counts; (3) relative expression of TOR in PI and MI; (4) relative expression of 4E-BP in the muscle, hepatopancreas and DI. The arginine requirement estimated by specific growth rate using quadratic regression analysis was found to be 18.0 g/kg diet. These results indicate that arginine improved fish growth, digestive and absorptive ability and regulated the expression of TOR and 4E-BP genes.

  9. Interaction of Food Additives with Intestinal Efflux Transporters.

    PubMed

    Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi

    2017-11-06

    Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.

  10. [Effect of multicomponent environment on intestinal permeability of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Liu, Yang; Wang, Gang; Dong, Ling; Tang, Ming-Min; Zhu, Mei-Ling; Dong, Hong-Huant; Hou, Cheng-Bo

    2014-12-01

    The evaluation of permeability in biopharmaceutics classification system of Chinese materia medica (CMMBCS) requires multicomponent as a whole in order to conduct research, even in the study of a specific component, should also be put in the multicomponent environment. Based on this principle, the high content components in Gegen Qinlian decoction were used as multicomponent environmental impact factors in the experiment, and the relevant parameters of intestinal permeability about puerarin were measured with using in situ single-pass intestinal perfusion model, to investigate and evaluate the intestinal permeability of puerarin with other high content components. The experimental results showed that different proportions of baicalin, glycyrrhizic acid and berberine had certain influence on intestinal permeability of puerarin, and glycyrrhizic acid could significantly inhibit the intestinal absorption of puerarin, moreover, high concentration of berberine could promote the absorption of puerarin. The research results indicated that the important research ideas of permeability evaluation in biopharmaceutics classification system of Chinese materia medica with fully considering the effects of other ingredients in multicomponent environment.

  11. Mechanisms of digestion and absorption of dietary vitamin A.

    PubMed

    Harrison, Earl H

    2005-01-01

    Mechanisms involved in the digestion and absorption of dietary vitamin A require the participation of several proteins. Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase, and intestinal brush border enzyme, phospholipase B. Unesterified retinol taken up by the enterocyte is complexed with cellular retinol-binding protein type 2 and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). The retinyl esters are then incorporated into chylomicrons, intestinal lipoproteins containing other dietary lipids, such as triglycerides, phospholipids, and free and esterified cholesterol, and apolipoprotein B. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph. Although under normal dietary conditions much of the dietary vitamin A is absorbed via the chylomicron/lymphatic route, it is also clear that under some circumstances there is substantial absorption of unesterified retinol via the portal route. Evidence supports the idea that the cellular uptake and efflux of unesterified retinol by enterocytes is mediated by lipid transporters, but the exact number, identity, and role of these proteins is not known and is an active area of research.

  12. Anatomical and histological characteristics of the intestine of the topmouth culter (Culter alburnus).

    PubMed

    Cao, X J; Wang, W M; Song, F

    2011-08-01

    With 3 figures and 1 table Topmouth culter (Culter alburnus), a freshwater carnivorous fish of the Cyprinidae, is one of the most popular fish species in aquatic market in China. The anatomy and histology features of fish intestine are very useful for understanding digestive physiology, diagnosing some intestinal diseases and formulating suitable feeds. Thus, here we first characterize topmouth culter intestine via light microscope, transmission electron microscope and scan electron microscope. The 'Z' shaped intestine can be divided into three parts (e.g. the anterior intestine, middle intestine and posterior intestine), with an intestinal coefficient of 0.68. The anterior intestine possessed the longest mucosa folds and thickest muscularis among the three intestinal parts, and microvilli were very well-developed whilst many mitochondria, endoplasmic reticulums and lysosomes were found in which. This indicated the anterior intestine was a main region for digestion and absorption of food in the topmouth culter. While the vacuoles observed in the posterior intestine may be closely related to the intracellular digestion. Neutral and acid mucus were strongly present throughout the intestine. This detailed descriptive paper will be very helpful for studies of topmouth culter related to its digestive physiology, intestinal disease control and feed nutrient. © 2011 Blackwell Verlag GmbH.

  13. Vitamin D-mediated calcium absorption in patients with clinically stable Crohn's disease: a pilot study

    USDA-ARS?s Scientific Manuscript database

    Vitamin D is the critical hormone for intestinal absorption of calcium. Optimal calcium absorption is important for proper mineralization of bone in the prevention of osteoporosis and osteoporotic fractures, among other important functions. Diseases associated with gut inflammation, such as Crohn's ...

  14. 51Cr-EDTA absorption blood test: an easy method for assessing small intestinal permeability in dogs.

    PubMed

    Frias, Rafael; Sankari, Satu; Westermarck, Elias

    2004-01-01

    The 51Cr-EDTA test is a valuable clinical tool for screening intestinal diseases in dogs. The test is performed by calculating the percentage of recovery from urine of a PO-ingested dose of 51Cr-EDTA after 6 or 24 hours. Careful urine collection is a practical limitation of this test in dogs, and our goal was to develop a simpler test that measures 51Cr-EDTA in blood. A 51Cr-EDTA absorption test was simultaneously performed on urine and serum 43 times in healthy Beagle Dogs. Timed blood samples were withdrawn, and urine was collected during a 6-hour period. Percentages of the ingested dose were then calculated in urine and serum. The mean +/- standard deviation (range) percentage in urine after 6 hours was 14.07 +/- 8.72% (3.81-34.18%), whereas results in serum from samples taken at 2, 3, 4, 5, and 6 hours were 0.49 +/- 0.45% (0.02-2.13%), 0.75 +/- 0.52% (0.03-1.89%), 0.82 +/- 0.57% (0.13-2.21%), 0.70 +/- 0.53% (0.12-1.99%), and 0.47 +/- 0.44% (0.11-1.79%), respectively. The results for blood specimens showed good concordance with those for urine, especially for the samples taken at 4 hours (r = 0.89). Moreover, the correlation between urine and blood was better when the sum of the percentages of the recovered analyte from various blood samples was compared with urine. The correlation coefficient when summing 4 blood samples was excellent (r = 0.97) and remained excellent when summing only 2 blood samples taken at 3 and 5 hours (r = 0.95) or at 3 and 4 hours (r = 0.94). We conclude that a serum 51Cr-EDTA test determined by summing successive blood samples provides an easier means of estimating small intestinal permeability in dogs and gives results comparable to those of the 6-hour urine test.

  15. Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40.

    PubMed

    Hidalgo, Jorge; Teuber, Stefanie; Morera, Francisco J; Ojeda, Camila; Flores, Carlos A; Hidalgo, María A; Núñez, Lucía; Villalobos, Carlos; Burgos, Rafael A

    2017-04-05

    Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca 2+ oscillations originated from intracellular Ca 2+ stores and were followed by store-operated Ca 2+ entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.

  16. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    PubMed Central

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-01-01

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719

  17. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    PubMed

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  18. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice

    PubMed Central

    Patankar, Jay V.; Chandak, Prakash G.; Obrowsky, Sascha; Pfeifer, Thomas; Diwoky, Clemens; Uellen, Andreas; Sattler, Wolfgang; Stollberger, Rudolf; Hoefler, Gerald; Heinemann, Akos; Battle, Michele; Duncan, Stephen; Kratky, Dagmar

    2011-01-01

    Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance. PMID:21177287

  19. The influence of guar gum on intestinal cholesterol transport in the rat.

    PubMed

    Gee, J M; Blackburn, N A; Johnson, I T

    1983-09-01

    Everted sacs of rat proximal small intestine were used to determine the effect of guar gum (5 g/l) on the uptake of cholesterol (0.1 mM) from a solution of micelles. The uptake of cholesterol was found to be linear both in the presence and absence of guar gum. When guar was present throughout the whole of the incubation medium, the uptake of cholesterol was reduced to approximately 40% of control values. Sacs which had been pre-incubated in guar gum before exposure to cholesterol in a guar-free medium also showed a reduction in cholesterol uptake but this was less pronounced. A two-stage perfusion technique, previously described (Blackburn & Johnson, 1981), was used to determine the effect of a guar layer adsorbed to the mucosal surface on cholesterol absorption in vivo. Such a layer leads to a reduction of approximately 36%; it was concluded that guar slows the absorption of cholesterol from micelles by a mechanism, or mechanisms, involving an increased resistance to diffusion in the aqueous medium. Groups of rats were meal-fed for at least 30 d on semi-synthetic diets with or without the inclusion of guar gum (20 g/kg). Rates of intestinal absorption of cholesterol, glucose and fluid were then determined by the perfusion technique in vivo. There was no reduction in absorption in the test animals compared with the controls. It is proposed that guar gum is able to slow the intestinal transport of cholesterol from a suspension of pre-formed micelles, but only when both are present in the lumen together. No evidence was obtained to suggest that the consumption by rats of a diet containing guar gum, at a level similar to that used in human studies, leads to any adaptive reduction in their rates of cholesterol or glucose absorption.

  20. Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling.

    PubMed

    Ikuta, Kayo; Segawa, Hiroko; Sasaki, Shohei; Hanazaki, Ai; Fujii, Toru; Kushi, Aoi; Kawabata, Yuka; Kirino, Ruri; Sasaki, Sumire; Noguchi, Miwa; Kaneko, Ichiro; Tatsumi, Sawako; Ueda, Otoya; Wada, Naoko A; Tateishi, Hiromi; Kakefuda, Mami; Kawase, Yosuke; Ohtomo, Shuichi; Ichida, Yasuhiro; Maeda, Akira; Jishage, Kou-Ichi; Horiba, Naoshi; Miyamoto, Ken-Ichi

    2018-06-01

    Hyperphosphatemia is common in chronic kidney disease and is associated with morbidity and mortality. The intestinal Na + -dependent phosphate transporter Npt2b is thought to be an important molecular target for the prevention of hyperphosphatemia. The role of Npt2b in the net absorption of inorganic phosphate (Pi), however, is controversial. In the present study, we made tamoxifen-inducible Npt2b conditional knockout (CKO) mice to analyze systemic Pi metabolism, including intestinal Pi absorption. Although the Na + -dependent Pi transport in brush-border membrane vesicle uptake levels was significantly decreased in the distal intestine of Npt2b CKO mice compared with control mice, plasma Pi and fecal Pi excretion levels were not significantly different. Data obtained using the intestinal loop technique showed that Pi uptake in Npt2b CKO mice was not affected at a Pi concentration of 4 mM, which is considered the typical luminal Pi concentration after meals in mice. Claudin, which may be involved in paracellular pathways, as well as claudin-2, 12, and 15 protein levels were significantly decreased in the Npt2b CKO mice. Thus, Npt2b deficiency did not affect Pi absorption within the range of Pi concentrations that normally occurs after meals. These findings indicate that abnormal Pi metabolism may also be involved in tight junction molecules such as Cldns that are affected by Npt2b deficiency.

  1. Jejunal and ileal absorption of oxprenolol in man: influence of nutrients and digestive secretions on jejunal absorption and systemic availability.

    PubMed Central

    Godbillon, J; Vidon, N; Palma, R; Pfeiffer, A; Franchisseur, C; Bovet, M; Gosset, G; Bernier, J J; Hirtz, J

    1987-01-01

    1 Study I evaluated the absorption of oxprenolol in the ileum, compared to jejunum, in healthy volunteers by an intestinal perfusion technique. Around 80 mg of drug were delivered as a saline solution directly in the small bowel. 2 Samples taken 30 cm distally to the site of perfusion showed that 63% of perfused oxprenolol was absorbed in the jejunum and 48% in the ileum; the differences were significant. 3 The plasma concentration-time profiles were similar for the two perfusions. The AUC and Cmax values of free and conjugated oxprenolol for the jejunal perfusion were significantly lower than those of ileum. They showed large but consistent intersubject variations in the two treatments. 4 Study II investigated, using the same technique, the influence of nutrients and digestive secretions on jejunal absorption and systemic availability of this drug. A saline (in treatments A and B) or a nutrient (in treatment C) solution containing oxprenolol was perfused into the jejunum below a balloon either inflated (A) or deflated (B and C). 5 The disappearance rate of oxprenolol from the jejunum was unaffected by endogenous secretions. The mean amount of drug absorbed along a 30-cm jejunal segment accounted for 52 (A) and 57% (B) of the total amount perfused. The intestinal absorption rate was markedly increased in the presence of nutrients (mean amount absorbed 96% for C). 6 The change in the rate of disappearance from the intestine had no effect on the systemic availability of oxprenolol (mean AUC values 8740, 8250 and 8020 nmol l-1 h for A, B and C, respectively) or its elimination from plasma.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3663450

  2. Nonprotein nitrogen is absorbed from the large intestine and increases nitrogen balance in growing pigs fed a valine-limiting diet.

    PubMed

    Columbus, Daniel A; Lapierre, Hélène; Htoo, John K; de Lange, Cornelis F M

    2014-05-01

    Nitrogen absorption from the large intestine, largely as ammonia and possibly as amino acids (AAs), is generally thought to be of little nutritional value to nonruminant animals and humans. Ammonia-nitrogen absorbed from the large intestine, however, may be recycled into the small intestine as urea and incorporated into microbial AAs, which may then be used by the host. A cecal infusion study was performed to determine the form in which nitrogen is absorbed from the large intestine and the impact of large intestine nitrogen supply on nitrogen balance in growing pigs. Eighteen cecally cannulated barrows (initial body weight: 22.4 ± 1.2 kg) were used to determine the effect of supplying nitrogen into the large intestine from either casein or urea on whole-body nitrogen retention and urea kinetics. Treatments were cecal infusions of saline (control), casein, or urea with nitrogen infused at a rate of 40% of nitrogen intake. In a subsample of 9 pigs, (15)N(15)N-urea was infused via i.v. during the nitrogen-balance period to determine urea kinetics. All pigs were fed a valine-limiting cornstarch-soybean meal-based diet. More than 80% of infused nitrogen was apparently absorbed. Urea flux and urinary nitrogen excretion increased (P ≤ 0.05) by the same amount for both nitrogen sources, but this increase did not fully account for the increase in nitrogen absorption from the large intestine. Whole-body nitrogen retention improved with nitrogen infusions (129 vs. 114 g/d; P < 0.01) and did not differ (P > 0.05) between nitrogen sources. Absorption of nitrogen from the large intestine appears to be in the form of nonprotein nitrogen, which appears to be returned to the small intestine via urea and used there for microbial AA production and should therefore be considered when determining nitrogen and AA supply and requirements.

  3. Artificial Lipid Membrane Permeability Method for Predicting Intestinal Drug Transport: Probing the Determining Step in the Oral Absorption of Sulfadiazine; Influence of the Formation of Binary and Ternary Complexes with Cyclodextrins.

    PubMed

    Delrivo, Alicia; Aloisio, Carolina; Longhi, Marcela R; Granero, Gladys

    2018-04-01

    We propose an in vitro permeability assay by using a modified lipid membrane to predict the in vivo intestinal passive permeability of drugs. Two conditions were tested, one with a gradient pH (pH 5.5 donor/pH 7.4 receptor) and the other with an iso-pH 7.4. The predictability of the method was established by correlating the obtained apparent intestinal permeability coefficients (P app ) and the oral dose fraction absorbed in humans (f a ) of 16 drugs with different absorption properties. The P app values correlated well with the absorption rates under the two conditions, and the method showed high predictability and good reproducibility. On the other hand, with this method, we successfully predicted the transport characteristics of oral sulfadiazine (SDZ). Also, the tradeoff between the increase in the solubility of SDZ by its complex formation with cyclodextrins and/or aminoacids and its oral permeability was assessed. Results suggest that SDZ is transported through the gastrointestinal epithelium by passive diffusion in a pH-dependent manner. These results support the classification of SDZ as a high/low borderline permeability compound and are in agreement with the Biopharmaceutics Classification Systems (BCS). This conclusion is consistent with the in vivo pharmacokinetic properties of SDZ.

  4. Quantitative analysis of the effect of supersaturation on in vivo drug absorption.

    PubMed

    Takano, Ryusuke; Takata, Noriyuki; Saito, Ryoichi; Furumoto, Kentaro; Higo, Shoichi; Hayashi, Yoshiki; Machida, Minoru; Aso, Yoshinori; Yamashita, Shinji

    2010-10-04

    The purpose of this study is to clarify the effects of intestinal drug supersaturation on solubility-limited nonlinear absorption. Oral absorption of a novel farnesyltransferase inhibitor (FTI-2600) from its crystalline free base and its HCl salt was determined in dogs. To clarify the contribution of supersaturation on improving drug absorption, in vivo intraluminal concentration of FTI-2600 after oral administration was estimated from the pharmacokinetics data using a physiologically based model. Dissolution and precipitation characteristics of FTI-2600 in a biorelevant media were investigated in vitro using a miniscale dissolution test and powder X-ray diffraction analysis. In the in vitro study, the HCl salt immediately dissolved but precipitated rapidly. The metastable amorphous free base precipitant, which did not convert into the stable crystalline free base in the simulated intestinal fluids for several hours, generated a 5-fold increase in dissolved concentration compared to the equilibrium solubility of the crystalline free base. By computer simulation, the intraluminal drug concentration after administration of the free base was estimated to reach the saturated solubility, indicating solubility-limited absorption. On the other hand, administration of the HCl salt resulted in an increased intraluminal concentration and the plasma concentration was 400% greater than that after administration of the free base. This in vivo/in vitro correlation of the increased drug concentrations in the small intestine provide clear evidence that not only the increase in the dissolution rate, but also the supersaturation phenomenon, improved the solubility-limited absorption of FTI-2600. These results indicate that formulation technologies that can induce supersaturation may be of great assistance to the successful development of poorly water-soluble drugs.

  5. [Important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of active ingredients of Chinese materia medica].

    PubMed

    Bi, Xiaolin; Du, Qiu; Di, Liuqing

    2010-02-01

    Oral drug bioavailability depends on gastrointestinal absorption, intestinal transporters and metabolism enzymes are the important factors in drug gastrointestinal absorption and they can also be induced or inhibited by the active ingredients of Chinese materia medica. This article presents important application of intestinal transporters and metabolism enzymes on gastrointestinal disposal of the active ingredients of Chinese materia medica, and points out the importance of research on transport and metabolism of the active ingredients of Chinese materia medica in Chinese extract and Chinese medicinal formulae.

  6. Studies in man of phenytoin absorption and its implications.

    PubMed Central

    Gibberd, F B; Webley, M

    1975-01-01

    The absorption of phenytoin was studied in man. It is concluded that phenytoin absorbed from the intestine is recirculated via the bile, so that blood levels do not accurately reflect absorption. Phenytoin is loosely bound to serum proteins and is found in red cells in concentrations similar to those in plasma. It is rapidly lost from the blood stream after intravenous administration, which is an important factor to be considered in the treatment of status epilepticus. PMID:1151402

  7. In vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex.

    PubMed

    Sergent, Thérèse; Croizet, Karine; Schneider, Yves-Jacques

    2017-02-01

    Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established. Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA-VC). The transport of this species was found proportional to the initial concentration and to the duration of incubation, with absorption and excretion mean rates similar to those of Lucifer yellow, a marker of paracellular diffusion, and increasing in the presence of EGTA, a chelator of divalents cations including calcium. A cellular accumulation of Si, polarized from the apical side of cells, was furthermore detected. These results provide evidence that Si, ingested as a food supplement containing OSA-VC, crosses the intestinal mucosa by passive diffusion via the paracellular pathway through the intercellular tight junctions and accumulates intracellularly, probably by an uptake mechanism of facilitated diffusion. This study can help to further understand the kinetic of absorption of Si. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.).

    PubMed

    Gregório, Sílvia F; Carvalho, Edison S M; Encarnação, Sandra; Wilson, Jonathan M; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2013-02-01

    The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55 p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO(3)(-) secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl(-) and HCO(3)(-) movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H(+)-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO(3)(-) secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO(3)(-) secretion in response to a salinity of 55 p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (I(sc)), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior-posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.

  9. Administration of Inulin-Supplemented Gluten-Free Diet Modified Calcium Absorption and Caecal Microbiota in Rats in a Calcium-Dependent Manner.

    PubMed

    Krupa-Kozak, Urszula; Markiewicz, Lidia H; Lamparski, Grzegorz; Juśkiewicz, Jerzy

    2017-07-06

    In coeliac disease (CD), the risk of adverse calcium balance and reduced bone density is induced mainly by the disease, but also by a gluten-free diet (GFD), the only accepted CD therapy. Prebiotics through the beneficial impact on intestinal microbiota may stimulate calcium (Ca) absorption. In the present study, we hypothesised that the dietary inulin in GFD would influence positively the intestinal microbiota, and by that will stimulate the absorption of calcium (Ca), especially in the conditions of Ca malnutrition. In a six-weeks nutritional experiment on growing a significant ( p < 0.05) luminal acidification, decrease in ammonia concentration and stimulation of short chain fatty acids formation indicated inulin-mediated beneficial effects on the caecal microbiota. However, the effect of inulin on characteristics of intestinal microbiota and mineral utilization depended on the dietary Ca intake from GFDs. Inulin stimulated bifidobacteria, in particular B. animalis species, only if a recommended amount of Ca was provided. Most benefits to mineral utilization from inulin consumption were seen in rats fed Ca-restricted GFD where it increased the relative Ca absorption. Administration of inulin to a GFDs could be a promising dietary strategy for beneficial modulation of intestinal ecosystem and by that for the improvement the Ca absorption.

  10. The imaging and modelling of the physical processes involved in digestion and absorption.

    PubMed

    Schulze, K S

    2015-02-01

    The mechanical activity of the gastro-intestinal tract serves to store, propel and digest food. Contractions disperse particles and transform solids and secretions into the two-phase slurry called chyme; movements of the intestine deliver nutrients to mucosal sites of absorption, and from the submucosa into the lymphatic and portal venous circulation. Colonic motor activity helps to extract fluid and electrolytes from chyme and to compound and compact luminal debris into faeces for elimination. We outline how dynamic imaging by ultrasound and magnetic resonance can demonstrate intestinal flow processes critical to digestion like mixing, dilution, swelling, dispersion and elution. Computational fluid mechanics enables a numerical rendition of the forces promoting digestion: pressure and flow fields, the shear stresses dispersing particles or the effectiveness of bolus mixing can be calculated. These technologies provide new insights into the mechanical processes that promote digestion and absorption. © 2014 This article is a U.S. Government work and is in the public domain in the USA.

  11. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    PubMed Central

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-01-01

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury. PMID:27918411

  12. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  13. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility

    PubMed Central

    Choe, Kibaek; Jang, Jeon Yeob; Park, Intae; Kim, Yeseul; Ahn, Soyeon; Park, Dae-Young; Hong, Young-Kwon; Alitalo, Kari; Koh, Gou Young; Kim, Pilhan

    2015-01-01

    Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility. PMID:26436648

  14. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2010-08-02

    Antiviral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability antiviral agents zanamivir heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-naphthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K(11(aq))) of 388 M(-1) for ZHE-HNAP and 2.91 M(-1) for GO-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (P(app)) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial P(app) (0.8-3.0 x 10(-6) cm/s) was observed in the presence of 6-24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 P(app) versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (P(eff)) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 x 10(-5) cm/s with 10 mM HNAP, matching the P(eff) of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K(11(aq)) versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this

  15. Acupuncture Improves Intestinal Absorption of Iron in Iron-deficient Obese Patients: A Randomized Controlled Preliminary Trial

    PubMed Central

    Xie, Xin-Cai; Cao, Yan-Qiang; Gao, Qian; Wang, Chen; Li, Man; Wei, Shou-Gang

    2017-01-01

    Background: Obesity has an adverse effect on iron status. Hepcidin-mediated inhibition of iron absorption in the duodenum is a potential mechanism. Iron-deficient obese patients have diminished response to oral iron therapy. This study was designed to assess whether acupuncture could promote the efficacy of oral iron supplementation for the treatment of obesity-related iron deficiency (ID). Methods: Sixty ID or ID anemia (IDA) patients with obesity were screened at Beijing Hospital of Traditional Chinese Medicine and were randomly allocated to receive either oral iron replacement allied with acupuncture weight loss treatment (acupuncture group, n = 30) or oral iron combined with sham-acupuncture treatment (control group, n = 30). Anthropometric parameters were measured and blood samples were tested pre- and post-treatment. Differences in the treatment outcomes of ID/IDA were compared between the two groups. Results: After 8 weeks of acupuncture treatment, there was a significant decrease in body weight, body mass index, waist circumference, and waist/hip circumference ratio of patients in the acupuncture group, while no significant changes were observed in the control group. Oral iron supplementation brought more obvious improvements of iron status indicators including absolute increases in serum iron (11.08 ± 2.19 μmol/L vs. 4.43 ± 0.47 μmol/L), transferrin saturation (11.26 ± 1.65% vs. 1.01 ± 0.23%), and hemoglobin (31.47 ± 1.19 g/L vs. 21.00 ± 2.69 g/L) in the acupuncture group than control group (all P < 0.05). Meanwhile, serum leptin (2.26 ± 0.45 ng/ml vs. 8.13 ± 0.55 ng/ml, P < 0.05) and hepcidin (3.52 ± 1.23 ng/ml vs. 6.77 ± 0.84 ng/ml, P < 0.05) concentrations declined significantly in the acupuncture group than those in the control group. Conclusion: Acupuncture-based weight loss can enhance the therapeutic effects of iron replacement therapy for obesity-related ID/IDA through improving intestinal iron absorption, probably by downregulating the

  16. Safety concerns over the use of intestinal permeation enhancers: A mini-review.

    PubMed

    McCartney, Fiona; Gleeson, John P; Brayden, David J

    2016-01-01

    Intestinal permeation enhancers (PEs) are key components in ∼12 oral peptide formulations in clinical trials for a range of molecules, primarily insulin and glucagon-like-peptide 1 (GLP-1) analogs. The main PEs comprise medium chain fatty acid-based systems (sodium caprate, sodium caprylate, and N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)), bile salts, acyl carnitines, and EDTA. Their mechanism of action is complex with subtle differences between the different molecules. With the exception of SNAC and EDTA, most PEs fluidize the plasma membrane causing plasma membrane perturbation, as well as enzymatic and intracellular mediator changes that lead to alteration of intestinal epithelial tight junction protein expression. The question arises as to whether PEs can cause irreversible epithelial damage and tight junction openings sufficient to permit co-absorption of payloads with bystander pathogens, lipopolysaccharides and its fragment, or exo- and endotoxins that may be associated with sepsis, inflammation and autoimmune conditions. Most PEs seem to cause membrane perturbation to varying extents that is rapidly reversible, and overall evidence of pathogen co-absorption is generally lacking. It is unknown however, whether the intestinal epithelial damage-repair cycle is sustained during repeat-dosing regimens for chronic therapy.

  17. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  18. Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats.

    PubMed

    Veda, Supriya; Srinivasan, Krishnapura

    2011-05-01

    Animal studies were conducted to evaluate the influence of dietary spice compounds, piperine, capsaicin and ginger, on the absorption of orally administered β-carotene and its conversion to vitamin A. In rats maintained on these spice-containing diets for 8 weeks, concentrations of β-carotene and retinol were determined in the serum, liver and intestine 4 h after a single oral administration of β-carotene. β-Carotene concentration was significantly increased in the serum, liver and intestine of piperine- and ginger-fed rats, suggesting improved absorption of β-carotene. However, retinol concentration was not significantly changed in these animals, suggesting that the bioconversion of β-carotene to vitamin A was not similarly influenced. Between the two enzymes involved in the bioconversion of β-carotene to vitamin A, the activity of intestinal and hepatic β-carotene 15,15'-dioxygenase was either unaffected or lowered by these spice treatments. The activity of intestinal and hepatic retinal reductase was unaffected by the dietary spices. Activities of these two enzymes involved in the bioconversion of β-carotene to retinal were inhibited by the test spices in vitro, thus corroborating with the in vivo observation. Although the bioconversion of β-carotene was not promoted, increased absorption and tissue levels of β-carotene by the dietary spices may contribute to a higher antioxidant protection.

  19. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster.

    PubMed

    Richter, Jonathan W; Shull, Gabriella M; Fountain, John H; Guo, Zhongyuan; Musselman, Laura P; Fiumera, Anthony C; Mahler, Gretchen J

    2018-06-01

    Nanosized titanium dioxide (TiO 2 ) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO 2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO 2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO 2 , a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO 2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO 2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO 2 nanoparticle ingestion may have physiological consequences.

  20. Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Brasseur, James G.

    2017-06-01

    We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.

  1. Bisphenol A promotes cholesterol absorption in Caco-2 cells by up-regulation of NPC1L1 expression.

    PubMed

    Feng, Dan; Zou, Jun; Zhang, Shanshan; Li, Xuechun; Li, Peiyang; Lu, Minqi

    2017-01-06

    Bisphenol A (BPA), an commonly exposed environmental chemicals in humans, has been shown to have a hypercholesterolemic effect with molecular mechanism not clear. Since intestinal cholesterol absorption plays a major role in maintaining total body cholesterol homeostasis, the present study is to investigate whether BPA affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with BPA at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and sterol regulatory element binding protein-2 (SREBP-2) was analyzed by Western blot and qPCR. We found that confluent Caco-2 cells expressed NPC1L1, and the absorption of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. We then pretreated the cells with 0.1-10 nM BPA for 24 h and found that BPA at 1 and 10 nM doses promoted cholesterol absorption. In addition, we found that the BPA-induced promotion of cholesterol absorption was associated with significant increase in the levels of NPC1L1 protein and NPC1L1 mRNA. Moreover, the stimulatory effects of BPA on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the SREBP-2 pathway. This study provides the first evidence that BPA promotes cholesterol absorption in the intestinal cells and the stimulatory effect of BPA is mediated, at least in part, by SREBP-2-NPC1L1 signaling pathway.

  2. Alligators and Crocodiles Have High Paracellular Absorption of Nutrients, But Differ in Digestive Morphology and Physiology.

    PubMed

    Tracy, Christopher R; McWhorter, Todd J; Gienger, C M; Starck, J Matthias; Medley, Peter; Manolis, S Charlie; Webb, Grahame J W; Christian, Keith A

    2015-12-01

    Much of what is known about crocodilian nutrition and growth has come from animals propagated in captivity, but captive animals from the families Crocodilidae and Alligatoridae respond differently to similar diets. Since there are few comparative studies of crocodilian digestive physiology to help explain these differences, we investigated young Alligator mississippiensis and Crocodylus porosus in terms of (1) gross and microscopic morphology of the intestine, (2) activity of the membrane-bound digestive enzymes aminopeptidase-N, maltase, and sucrase, and (3) nutrient absorption by carrier-mediated and paracellular pathways. We also measured gut morphology of animals over a larger range of body sizes. The two species showed different allometry of length and mass of the gut, with A. mississippiensis having a steeper increase in intestinal mass with body size, and C. porosus having a steeper increase in intestinal length with body size. Both species showed similar patterns of magnification of the intestinal surface area, with decreasing magnification from the proximal to distal ends of the intestine. Although A. mississippiensis had significantly greater surface-area magnification overall, a compensating significant difference in gut length between species meant that total surface area of the intestine was not significantly different from that of C. porosus. The species differed in enzyme activities, with A. mississippiensis having significantly greater ability to digest carbohydrates relative to protein than did C. porosus. These differences in enzyme activity may help explain the differences in performance between the crocodilian families when on artificial diets. Both A. mississippiensis and C. porosus showed high absorption of 3-O methyl d-glucose (absorbed via both carrier-mediated and paracellular transport), as expected. Both species also showed surprisingly high levels of l-glucose-uptake (absorbed paracellularly), with fractional absorptions as high as those

  3. Evaluation of Intestinal Absorption and Bioavailability of a Bergenin-Phospholipid Complex Solid Dispersion in Rats.

    PubMed

    Gao, Haoshi; Wei, Yue; Xi, Long; Sun, Yuanyuan; Zhang, Tianhong

    2018-05-01

    Bergenin (BN) is a Biopharmaceutics Classification System class IV (BCS IV) drug with poor hydrophilicity and lipophilicity and is potentially eliminated by the efflux function of P-glycoprotein (P-gp). These factors may explain its low oral bioavailability. In the present study, a BN-phospholipid complex solid dispersion (BNPC-SD) was prepared by solvent evaporation and characterized based on differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, infrared diffraction, solubility, octanol-water partition coefficient, and in vitro dissolution. To investigate how P-gp can inhibit BN absorption in vivo, the P-gp inhibitor verapamil was co-administered with BNPC-SD to Sprague Dawley rats. By in situ single-pass intestinal perfusion, the membrane permeability of BN from BNPC-SD was higher than that of BN given alone and was improved further by co-administered verapamil. A pharmacokinetics study was done in Sprague Dawley rats, with plasma BN levels estimated by high-performance liquid chromatography. C max and AUC 0 → t values for BN were significantly higher for BNPC-SD than for BN given alone and were increased further by verapamil. Thus, the relative oral bioavailability of BNPC-SD as well as BNPC-SD co-administered with verapamil was 156.33 and 202.46%, respectively, compared with the value for BN given alone. These results showed that BNPC-SD can increase the oral bioavailability of BCS IV drugs.

  4. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    PubMed

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Gastric emptying, intestinal absorption of electrolytes and exercise performance in electrolyte-supplemented horses.

    PubMed

    Lindinger, Michael I; Ecker, Gayle L

    2013-01-01

    Horses lose considerably more electrolytes through sweating during prolonged exercise than can be readily replaced through feeds. The present study tested an oral electrolyte supplement (ES) designed to replace sweat electrolyte losses. We measured gastric emptying of 3 litres of ES (using gamma imaging of (99)Tc-sulfide colloid), the absorption of Na(+) and K(+) from the gastrointestinal tract using (24)Na(+) and (42)K(+), and the distribution of these ions in the body by measuring radioactivity within plasma and sweat during exercise. Three litres of ES emptied from the stomach as fast as water, with a half-time of 47 min, and appeared in plasma by 10 min after administration (n = 4 horses). Peak values of plasma (24)Na(+) and (42)K(+) radioactivity occurred at 20-40 min, and a more rapid disappearance of K(+) radioactivity from plasma was indicative of movement of K(+) into cells (n = 3 horses). In a randomized crossover experiment (n = 4 horses), 1 h after administration of placebo (water), 1 or 3 litres of ES containing (24)Na(+), horses exercised on a treadmill at 30% of peak oxygen uptake until voluntary fatigue. The (24)Na(+) appeared in sweat at 10 min of exercise, and when horses received 3 litres of ES the duration to voluntary fatigue was increased in all horses by 33 ± 10%. It is concluded that an oral ES designed to replace sweat ion losses was rapidly emptied from the gastrointestinal tract, rapidly absorbed in the upper intestinal tract and rapidly distributed within the body. The ES clearly served as a reservoir to replace sweat ion losses during exercise, and administration of ES prior to exercise resulted in increased duration of submaximal exercise.

  6. Intestinal nerves and ion transport: stimuli, reflexes, and responses.

    PubMed

    Hubel, K A

    1985-03-01

    The effects of extrinsic and intrinsic nerves on ion and water transport by the intestine are considered and discussed in terms of their possible physiological function. Adrenergic nerves enter the small intestine via mesenteric nerves. Adrenergic tone is usually absent in tissues in vitro but is present in vivo. The nerves increase absorption in response to homeostatic changes associated with acute depletion of extracellular fluid. Cholinergic tone that reduces fluid absorption or causes secretion has been detected in the small intestine of humans, dogs, and cats and in the colon of humans. Extrinsic cholinergic fibers generally do not affect ion transport in small intestine but probably do so in colon. Whether peptides liberated in the mucosa affect enterocytes directly is not clear. Studies on humans and rabbits suggest that the role of substance P is minor. The physiological roles of vasoactive intestinal polypeptide (VIP) and somatostatin remain to be defined. Intraluminal factors also affect ion and water transport. Mucosal rubbing, distension, and cholera toxin cause fluid secretion; acid solutions in the duodenum cause alkaline secretion; these stimuli and hypertonic glucose liberate serotonin into the lumen, the mesenteric venous blood, or both. It has been proposed that the enterochromaffin cell is an epithelial sensory cell that responds to noxious stimuli within the lumen by liberating serotonin. The serotonin initiates a neural reflex through a nicotinic ganglion to liberate a secretagogue that acts on the enterocyte. The function of VIP in this proposed reflex is unclear. The variety of intraluminal stimuli that influence epithelial function implies that there is more than one type of epithelial sensory cell (or sensory mechanism). Prostaglandins may mediate the alkaline secretion caused by acid in the duodenum. There may be other effective substances. Although it has been known for years that intraluminal stimuli affect the coordination of smooth

  7. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    PubMed

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  8. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala.

    PubMed

    Xu, Chao; Li, Xiang-Fei; Tian, Hong-Yan; Jiang, Guang-Zhen; Liu, Wen-Bin

    2016-04-01

    This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0% body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0% BW/day. In addition, moderate ration sizes (2.0-4.0% BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% and 6.0% BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57% BW/day.

  9. Ex-vivo absorption study of lysine R-lipoate salt, a new pharmaceutical form of R-ALA.

    PubMed

    Amenta, Francesco; Buccioni, Michela; Ben, Diego Dal; Lambertucci, Catia; Navia, Aleix Martí; Ngouadjeu Ngnintedem, Michael A; Ricciutelli, Massimo; Spinaci, Andrea; Volpini, Rosaria; Marucci, Gabriella

    2018-06-15

    Alpha-lipoic acid (ALA) oral supplements were used in many pathologies associated with increased oxidative stress. Although only R-ALA is considered the biologically active form, R,S-ALA is used in therapeutic applications even showing poor water solubility. The aim of this work was to study the absorption and transport mechanism across the intestinal barrier of new R-ALA stable and water soluble form, consisting in the lysine R-ALA salt, in presence and absence of specific inhibitors of Na + /multivitamin (SMVT) and monocarboxylic acids (MCT). The absorption of a new ALA form was investigated at rat everted sacs in comparison with R-ALA, S-ALA, and R,S-ALA. Results showed that duodenum is the best portion of intestine for ALA forms absorption. The absorption percentage of R-ALA, S-ALA, R,S-ALA, and lysine R-ALA salt was 66%, 43%, 55%, and 70%, respectively. The modest effect of the SMVT inhibitor biotin demonstrated that this transporter system is not principally involved in the absorption of lysine R-lipoate salt across the rat intestinal barrier. On the contrary, the MCT inhibitor octanoic acid significantly reduced the transport of this salt, whit an absorption decrease of R-ALA and lysine R-lipoate salt of 28% and 24%, respectively. Since the highest concentration of these inhibitors did not completely inhibit the absorption of lysine R-lipoate salt, other transport mechanisms probably operate for its intracellular delivery. The new form of ALA, lysine R-lipoate salt, was the most absorbed respect to the other ALA forms demonstrating that this compound is more suitable for oral administration. This new salt could represent a promising candidate for ALA oral supplementation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Intestinal P-glycoprotein inhibitors, benzoxanthone analogues.

    PubMed

    Chae, Song Wha; Lee, Jaeok; Park, Jung Hyun; Kwon, Youngjoo; Na, Younghwa; Lee, Hwa Jeong

    2018-02-01

    The inhibitors of P-glycoprotein (P-gp) which limits an access of exogenous compounds in the luminal membrane of the intestine have been studied to enhance the intestinal P-gp-mediated absorption of anticancer drugs. Inhibition of the efflux pump by synthesized benzoxanthone derivatives was investigated in vitro and in vivo. MCF-7/ADR cell line was used for cytotoxicity assay and [ 3 H]-daunomycin (DNM) accumulation/efflux study. Eight benzoxanthone analogues were tested for their effects on DNM cytotoxicity. Among them, three analogues were selected for the accumulation/efflux and P-gp ATPase studies. Paclitaxel (PTX), a P-gp substrate anticancer drug, was orally administered to rats with/without compound 1 (8,10-bis(thiiran-2-ylmethoxy)-7H-benzo[c]xanthen-7-one). The pharmacokinetic parameters of PTX in the presence/absence of compound 1 were evaluated from the plasma concentration-time profiles. Compound 1 increased the DNA accumulation to 6.5-fold and decreased the DNM efflux to approximately 1/2 in the overexpressing P-gp cell line. Relative bioavailability (RB) of PTX in rats was significantly increased up to 3.2-fold by compound 1 (0.5 or 2 mg/kg). Benzoxanthone analogue, compound 1 is strongly suggested to be a promising inhibitor of P-gp to improve an oral absorption of compounds for cancer therapy. © 2017 Royal Pharmaceutical Society.

  11. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    PubMed Central

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  12. Biorelevant media resistant co-culture model mimicking permeability of human intestine.

    PubMed

    Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud

    2015-03-15

    Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. Copyright © 2015. Published by Elsevier B.V.

  13. Body composition measured by dual-energy X-ray absorptiometry in patients who have undergone small-intestinal resection.

    PubMed

    Haderslev, Kent Valentin; Jeppesen, Paller Bekker; Sorensen, Henrik Ancher; Mortensen, Per Brobech; Staun, Michael

    2003-07-01

    Patients who have undergone resection of the small intestine have lower body weight than do healthy persons. It remains unclear whether it is the body fat mass or the lean tissue mass that is reduced. We compared body-composition values in patients who had undergone small-intestinal resection with reference values obtained in healthy volunteers, and we studied the relation between body-composition estimates and the net intestinal absorption of energy. In a cross-sectional study, we included 20 men and 24 women who had undergone small-intestinal resection and had malabsorption of energy > 2000 kJ/d. Diagnoses were Crohn disease (n = 37) and other conditions (n = 7). Body composition was estimated by dual-energy X-ray absorptiometry, and data were compared with those from a reference group of 173 healthy volunteers. Energy absorption was measured during 48-h balance studies by using bomb calorimetry, and individual values were expressed relative to the basal metabolic rate. Body weight and body mass index in patients were significantly (P < 0.05) lower than the reference values. Fat mass was 6.4 kg (30%) lower (95% CI: -8.8, -3.9 kg), but lean tissue mass was only slightly and insignificantly lower (1.5 kg, or 3.3%; 95% CI: -3.7, 0.60 kg). Weight, body mass index, and body-composition estimates by dual-energy X-ray absorptiometry did not correlate significantly with the net energy absorption relative to the basal metabolic rate, expressed as a percentage. Patients who had undergone small-intestinal resection had significantly lower body weights and body mass indexes than did healthy persons, and they had significant changes in body composition, mainly decreased body fat mass.

  14. Intestinal coccidiosis

    USGS Publications Warehouse

    Friend, M.; Franson, J.C.

    1999-01-01

    Coccidia are a complex and diverse group of protozoan (single-celled organisms) parasites; the coccidia group contains many species, most of which do not cause clinical disease. In birds, most disease-causing or pathogenic forms of coccidia parasites belong to the genus Eimeria. Coccidia usually invade the intestinal tract, but some invade other organs, such as the liver and kidney (see Chapter 27).Clinical illness caused by infection with these parasites is referred to as coccidiosis, but their presence without disease is called coccidiasis. In most cases, a bird that is infected by coccidia will develop immunity from disease and it will recover unless it is reinfected. The occurrence of disease depends, in part, upon the number of host cells that are destroyed by the juvenile form of the parasite, and this is moderated by many factors. Severely infected birds may die very quickly. Often, tissue damage to the bird’s intestine results in interrupted feeding; disruption of digestive processes or nutrient absorption; dehydration; anemia; and increased susceptibility to other disease agents. In cranes, coccidia that normally inhabit the intestine sometimes become widely distributed throughout the body. The resulting disease, disseminated visceral coccidiosis (DVC) of cranes, is characterized by nodules, or granulomas, on the surface of organs and tissues that contain developmental stages of the parasite.Collectively, coccidia are important parasites of domestic animals, but, because each coccidia species has a preference for parasitizing a particular bird species and because of the self-limiting nature of most infections, coccidiosis in freeranging birds has not been of great concern. However, habitat losses that concentrate bird populations and the increasing numbers of captive-reared birds that are released into the wild enhance the potential for problems with coccidiosis.

  15. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity

    PubMed Central

    Drozdowski, Laurie A; Clandinin, M Tom; Thomson, Alan BR

    2009-01-01

    The process of intestinal adaptation (“enteroplasticity”) is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized. In this review, we consider the morphological, kinetic and membrane biochemical aspects of enteroplasticity, focus on the importance of nutritional factors, provide an overview of the many hormones that may alter the adaptive process, and consider some of the possible molecular profiles. While most of the data is derived from rodent studies, wherever possible, the results of human studies of intestinal enteroplasticity are provided. PMID:19230039

  16. Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.

    PubMed

    Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A

    1994-12-01

    In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (< 35%) and higher fecal excretion of 5-ASA and its metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.

  17. An update on the potential role of intestinal first-pass metabolism for the prediction of drug-drug interactions: the role of PBPK modeling.

    PubMed

    Alqahtani, Saeed; Bukhari, Ishfaq; Albassam, Ahmed; Alenazi, Maha

    2018-05-28

    The intestinal absorption process is a combination of several events that are governed by various factors. Several transport mechanisms are involved in drug absorption through enterocytes via active and/or passive processes. The transported molecules then undergo intestinal metabolism, which together with intestinal transport may affect the systemic availability of drugs. Many studies have provided clear evidence on the significant role of intestinal first-pass metabolism on drug bioavailability and degree of drug-drug interactions (DDIs). Areas covered: This review provides an update on the role of intestinal first-pass metabolism in the oral bioavailability of drugs and prediction of drug-drug interactions. It also provides a comprehensive overview and summary of the latest update in the role of PBPK modeling in prediction of intestinal metabolism and DDIs in humans. Expert opinion: The contribution of intestinal first-pass metabolism in the oral bioavailability of drugs and prediction of DDIs has become more evident over the last few years. Several in vitro, in situ, and in vivo models have been developed to evaluate the role of first-pass metabolism and to predict DDIs. Currently, physiologically based pharmacokinetic modeling is considered the most valuable tool for the prediction of intestinal first-pass metabolism and DDIs.

  18. Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects.

    PubMed

    Rumessen, J J; Bodé, S; Hamberg, O; Gudmand-Høyer, E

    1990-10-01

    Fructans are naturally occurring plant oligosaccharides with sweetening properties. Fructans (FAs) isolated from Jerusalem artichokes (Helianthus tuberosus) were studied with respect to intestinal handling and influence on blood glucose (BG), insulin, and C-peptide responses in eight healthy subjects. The responses were compared with those for fructose ingestion. The effect of FAs added to a wheat-starch meal was also studied. Standardized breath-hydrogen excretion indicated that FAs were completely malabsorbed and, after a 20-g dose, traces of FA were detected in 24-h urine collections in one subject only. Orocecal transit times were longer for FAs than for lactulose and fructose. The BG and insulin increments were very low after FA ingestion, lower than after fructose ingestion, whereas hydrogen production was much higher. Areas under BG curves tended to be smaller when 10 g FA was added to a 50-g wheat-starch meal, but there was no apparent interference with starch absorption.

  19. [Metabolism of paeoniflorin by rat intestinal flora in vitro].

    PubMed

    Ke, Zhong-Cheng; Yang, Nan; Hou, Xue-Feng; Wang, Ai-Dong; Feng, Liang; Jia, Xiao-Bin

    2016-10-01

    In order to clarify the effect of intestinal flora on the absorption and metabolism of paeoniflorin in vivo, the metabolism of paeoniflorin by rat intestinal flora was studied under the in vitro anaerobic condition. Paeoniflorin was incubated with rat anaerobic intestinal flora for 48 h, and UPLC was used to detect the changes of paeoniflorin at different incubation time points under the following chromatographic conditions:WelchromTM C₁₈ chromatographic column (4.6 mm×100 mm, 5 μm), with 0.1% formic acid(A)-acetonitrile(B) as the mobile phase for gradient elution. The flow rate was 0.4 mL•min⁻¹, and column temperature was 30 ℃. UPLC-Q-TOF-MS with positive ion mode(ESI ion source) was applied to investigate the structural characterization of metabolic products. The structures of the metabolites were identified by accurate molecular weight, TOF-MS/MS fragmentation information, combined with retention time and literature data review, and the intestinal metabolic rules were then analyzed. After incubation for 24 h, the paeoniflorin was metabolized completely, and the resulting metabolites(albiflorin, albiflorinaglycone, deacylate albiflorin, deacylate albiflorin aglycone and paeonilactone-B) were detected in rat intestinal flora. The metabolic pathway analysis showed that the isolated rat intestinal flora first transformed peoniflorin into albiflorin, and then further metabolized by glucose removal, phenyl group removal, or four-membered ring pyrolysis and rearrangement. Paeoniflorin was gradually transformed into more hydrophobic metabolites with smaller molecular mass, which were better absorbed by the intestinal tract. Copyright© by the Chinese Pharmaceutical Association.

  20. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    PubMed

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases. © 2014 médecine/sciences – Inserm.

  1. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs.

    PubMed

    Erickson, R H; Gum, J R; Lindstrom, M M; McKean, D; Kim, Y S

    1995-11-02

    RT-PCR was used to obtain rat small intestinal cDNAs for two peptide transporters, showing conclusively for the first time that both are present in normal intestinal mucosa. Sequencing of these cDNAs showed them to be highly homologous and similar to two different types of peptide transport proteins from either colorectal carcinoma cells (Caco-2) or human and rabbit intestine. An even distribution profile of steady state levels of mRNA for both peptide transporters was observed along the longitudinal axis of small intestine. Both were upregulated in the distal regions of intestine by a high protein diet. Also, high levels of the rat high affinity glutamate transporter EAAC1 were observed in the distal intestine. These results suggest that the distal regions of small intestine play an important role in the absorption of some amino acids and peptides. Furthermore this area appears to be a primary site where dietary-induced changes in peptide and amino acid transport occurs.

  2. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.

    PubMed

    Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer

    2013-07-16

    Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC

  3. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    PubMed

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Digestion modeling in the small intestine: impact of dietary fiber.

    PubMed

    Taghipoor, M; Barles, G; Georgelin, C; Licois, J R; Lescoat, P

    2014-12-01

    In this work, the modeling of the digestion in the small intestine is developed by investigating specifically the effects of dietary fiber. As our previous model, this new version takes into account the three main phenomena of digestion: transit of the bolus, degradation of feedstuffs and absorption through the intestinal wall. However the two main physiochemical characteristics of dietary fiber, namely viscosity and water holding capacity, lead us to substantially modify our initial model by emphasizing the role of water and its intricated dynamics with dry matter in the bolus. Various numerical simulations given by this new model are qualitatively in agreement with the positive effect of insoluble dietary fiber on the velocity of bolus and on its degradation all along the small intestine. These simulations reproduce the negative effect of soluble dietary fiber on digestion as it has been experimentally observed. Although, this model is generic and contains a large number of parameters but, to the best of our knowledge, it is among the first qualitative dynamical models of fiber influence on intestinal digestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Evaluation of jojoba oil as a low-energy fat. 2. Intestinal transit time, stomach emptying and digestibility in short-term feeding studies in rats.

    PubMed

    Verschuren, P M; Nugteren, D H

    1989-01-01

    The influence of jojoba oil (JO) incorporation in the diet on stomach emptying and intestinal transit time, and the digestion and absorption of JO were investigated in short-term feeding studies in rats. The animals were fed purified diets containing 18% (w/w) fat, of which half consisted of a mixture of lard and sunflower seed oil (SF) supplemented with an equivalent amount of JO. The control animals were fed a mixture of lard and SF (18%). No treatment-related differences were observed in the rate of stomach emptying or the intestinal transit time. Comparative lipid analysis of lymph, intestinal content, intestinal mucosa and faeces indicated that most of the ingested JO was degraded and absorbed. Part of the JO was present as wax ester in the lymph. Hydrolysis of JO was much slower than that of triacylglycerols and continued in the alimentary tract beyond the small intestine due to bacterial processes. JO did not influence the absorption of the conventional fat.

  6. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine

  7. Lipids in the Stomach - Implications for the Evaluation of Food Effects on Oral Drug Absorption.

    PubMed

    Koziolek, Mirko; Carrière, Frédéric; Porter, Christopher J H

    2018-02-08

    Food effects on oral drug bioavailability can have significant impact on the provision of safe and reliable oral pharmacotherapy. A mechanistic understanding of the events that contribute to the occurrence of food effects is therefore critical. An increased oral bioavailability is often seen for poorly water-soluble drugs after co-administration with lipids, including lipids in food, and is commonly explained by the ability of lipids to enhance drug solubility in intestinal luminal fluids. In contrast, the impact of lipids on drug solubilisation in the stomach has received less attention. This is in spite of the fact that lipid digestion is initiated in the stomach by human gastric lipase and that gastric events also initiate emulsification of lipids in the gastrointestinal tract. The stomach therefore acts to 'pre-process' lipids for subsequent events in the intestine and may significantly affect downstream events at intestinal drug absorption sites. In this article, the mechanisms by which lipids are processed in the stomach are reviewed and the potential impact of these processes on drug absorption discussed. Attention is also focused on in vitro methods that are used to assess gastric processing of lipids and their application to better understand food effects on drug release and absorption.

  8. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-02

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  9. Ion transport in goby intestine: cellular mechanism of urotensin II stimulation.

    PubMed

    Loretz, C A; Howard, M E; Siegel, A J

    1985-08-01

    The Na- and Cl-absorbing goby posterior intestinal epithelium is composed predominantly of mitochondria-rich, tall columnar cells. Glass intracellular microelectrode recording technique was applied to absorptive cells of this relatively leaky epithelium to measure apical cell membrane potential difference (psi mc) and apical membrane fractional resistance. As determined by ion-substitution studies, absorptive cells are characterized by a large, Ba2+-inhibitable apical K conductance, which is a major factor determining psi mc and smaller Cl and Na conductances. Inhibition of the apical Na-Cl-coupled influx directly by furosemide or indirectly by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine produced hyperpolarization of psi mc, consistent with the greater apical membrane conductance to Cl than Na. The urophysial neurosecretory peptide urotensin II, which stimulates Na-Cl-coupled absorption, markedly depolarized psi mc in posterior intestinal tissues from 5% seawater-adapted gobies. This response is consistent with a stimulatory effect of urotensin II at the apical membrane carrier rather than at the basolateral Na-K-ATPase. Urotensin II is without effect on psi mc in tissues from seawater-adapted fish and somatostatin, a natural analogue of urotensin II, is without effect on tissues from fish adapted to either salinity. This specificity parallels that determined using radiotracer fluxes.

  10. Glucose Transport into Everted Sacs of the Small Intestine of Mice

    ERIC Educational Resources Information Center

    Hamilton, Kirk L.; Butt, A. Grant

    2013-01-01

    The Na[superscript +]-glucose cotransporter is a key transport protein that is responsible for absorbing Na[superscript +] and glucose from the luminal contents of the small intestine and reabsorption by the proximal straight tubule of the nephron. Robert K. Crane originally described the cellular model of absorption of Na[superscript +] and…

  11. [Clinical and pharmacological aspects of rifaximin, local antibiotic therapy in intestinal disorders].

    PubMed

    Gasztonyi, Beáta; Hunyady, Béla

    2004-10-24

    The authors report pharmacokinetics and indications of rifaximin and the results of clinical studies. Rifaximin has a large antibacterial spectrum with a good therapeutic effect on both gram positive and gram negative aerob and anaerob bacteria. Practically there is no absorption (< 1%) following oral administration with a high concentration in gastrointestinal mucosa (8000 microg/g). No increase in absorption can be detected in intestinal damage caused by inflammatory bowel disease. The remarkable safety profile of rifaximin is due to its negligible quality of absorption. According to the clinical studies rifaximin could be an adequate therapeutic approach in all gastrointestinal diseases and interventions when antibacterial therapy is needed.

  12. [Space-time organization of systems of membrane hydrolysis and transport in rat small intestine].

    PubMed

    Loginov, G I

    1977-05-01

    Glucose transport by the concentration gradient with the incubation for 90 min in 0.2% glucose and soluble starch solutions was studied in Wistar rats in 5 segments of the small intestine by the "sac turned inside out" method. Serous fluid was completely replaced by a new portion of Ringer's solution every 15 or 30 min. Substrate load synchronized the enterocyte population and stabilized the transport systems. The changes of glucose absorption during the period of about an hour proved to differ in the 5 segments against the background of continuous and interrupted substrate load. These differences were due to the properties of the transported systems autocontrol and the reactivity level of the given enterocyte population. Areas with different reactivity were found to alternate along the intestine. Between the 8th and 16th hour (rats were sacrificed every 2 hours) starch glucose transport fell sharply in the proximal, and, to a lesser extent, in the middle segments. On the contrary, absorption between the 8th and the 12th hour was considerably intensified in the distal segments. The changes of the strach glucose transport during the period of about an hour along the intestine differed. The data obtained are discussed with consideration to the possible role of the undulating processes in the individual enterocyte population and in the small intestine as an integral system.

  13. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Min; Zhao, Lixia; Guo, Chenyu; Cao, Fengliang; Chen, Huanlei; Zhao, Liyan; Tan, Qi; Zhu, Xiuqing; Zhu, Fanping; Ding, Tingting; Zhai, Yingjie; Zhai, Guangxi

    2012-02-01

    A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40-400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

  14. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model.

    PubMed

    Sutton, S C; Rinaldi, M T; Vukovinsky, K E

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods.

  15. Ca2+-driven intestinal HCO3− secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

    PubMed Central

    Cooper, Christopher A.; Whittamore, Jonathan M.

    2010-01-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish. PMID:20130227

  16. Evidence that low plasma 1,25-dihydroxyvitamin D causes intestinal malabsorption of calcium and phosphate in juvenile X-linked hypophosphatemic mice.

    PubMed

    Meyer, R A; Meyer, M H; Gray, R W; Bruns, M E

    1987-02-01

    X-linked hypophosphatemic (Hyp) mice are a model for human sex-linked vitamin D-resistant rickets. We have reported intestinal malabsorption of calcium in young Hyp mice, and in this report we have explored the mechanism for it. To test for resistance of the intestine to 1,25(OH)2 vitamin D3, this hormone was continually infused via osmotic minipumps into 4-week-old normal and Hyp mice at 0, 17, 50 or 150 ng/kg/day. After 3 days, 45Ca and inorganic 32P were administered by gavage, and the mice were sacrificed on the fifth day. The Hyp mice showed responses to the hormone equivalent to the normal mice in terms of increased intestinal absorption of both 45Ca and 32P, increased plasma isotope levels, increased femoral isotope content, and increased duodenal and renal 9 kD vitamin D-dependent calcium-binding protein (calbindin-D9K; CaBP). Plasma 1,25(OH)2D was measured in these mice. There were significant correlations of plasma 1,25(OH)2D to the intestinal absorption of 45Ca and 32P and to duodenal and renal CaBP. Plasma 1,25(OH)2D was also measured in stock normal and Hyp mice and was found to be lower in 4-week-old Hyp mice than in 4-week-old normal mice (113 +/- 10 pM (n = 18) vs. 67 +/- 10 (n = 20), normal vs. Hyp, p less than .01), but unchanged at 13 weeks of age (77 +/- 13 (n = 13) vs. 70 +/- 15 (n = 15), NS). This observed difference in plasma 1,25(OH)2D between normal and Hyp mice at 4 weeks of age was sufficient to explain the observed normal-to-Hyp differences in intestinal absorption of 45Ca and duodenal and renal CaBP. It also explained 72 +/- 18% of the observed difference in 32P absorption. We conclude that Hyp mouse intestine is not resistant to 1,25(OH)2D and that the lower plasma 1,25(OH)2D of 4-week-old Hyp mice causes intestinal malabsorption of calcium and phosphate.

  17. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man

    PubMed Central

    Whittamore, Jonathan M.; Hatch, Marguerite

    2016-01-01

    The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans. PMID:27913853

  18. Lymphatic deletion of calcitonin receptor–like receptor exacerbates intestinal inflammation

    PubMed Central

    Davis, Reema B.; Kechele, Daniel O.; Blakeney, Elizabeth S.; Pawlak, John B.

    2017-01-01

    Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor–like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation. PMID:28352669

  19. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption

    PubMed Central

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO2 NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO2 NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO2 (f-TiO2) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO2 (g-TiO2) NPs. The effect of the interactions between the TiO2 NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO2 NPs compared to g-TiO2 NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO2 NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry. PMID:28335354

  20. Intestinal alkaline phosphatase prevents metabolic syndrome in mice.

    PubMed

    Kaliannan, Kanakaraju; Hamarneh, Sulaiman R; Economopoulos, Konstantinos P; Nasrin Alam, Sayeda; Moaven, Omeed; Patel, Palak; Malo, Nondita S; Ray, Madhury; Abtahi, Seyed M; Muhammad, Nur; Raychowdhury, Atri; Teshager, Abeba; Mohamed, Mussa M Rafat; Moss, Angela K; Ahmed, Rizwan; Hakimian, Shahrad; Narisawa, Sonoko; Millán, José Luis; Hohmann, Elizabeth; Warren, H Shaw; Bhan, Atul K; Malo, Madhu S; Hodin, Richard A

    2013-04-23

    Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.

  1. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development.

    PubMed

    Tsai, Yu-Hwai; Nattiv, Roy; Dedhia, Priya H; Nagy, Melinda S; Chin, Alana M; Thomson, Matthew; Klein, Ophir D; Spence, Jason R

    2017-03-15

    The intestine plays a central role in digestion, nutrient absorption and metabolism, with individual regions of the intestine having distinct functional roles. Many examples of region-specific gene expression in the adult intestine are known, but how intestinal regional identity is established during development is a largely unresolved issue. Here, we have identified several genes that are expressed in a region-specific manner in the developing human intestine. Using human embryonic stem cell-derived intestinal organoids, we demonstrate that the duration of exposure to active FGF and WNT signaling controls regional identity. Short-term exposure to FGF4 and CHIR99021 (a GSK3β inhibitor that stabilizes β-catenin) resulted in organoids with gene expression patterns similar to developing human duodenum, whereas longer exposure resulted in organoids similar to ileum. When region-specific organoids were transplanted into immunocompromised mice, duodenum-like organoids and ileum-like organoids retained their regional identity, demonstrating that regional identity of organoids is stable after initial patterning occurs. This work provides insights into the mechanisms that control regional specification of the developing human intestine and provides new tools for basic and translational research. © 2017. Published by The Company of Biologists Ltd.

  2. [Research progress of relationship between diabetes and intestinal epithelial tight junction barrier and intervetion of berberine].

    PubMed

    Qin, Xin; Dong, Hui; Lu, Fu-Er

    2016-06-01

    Intestinal tight junction is an important part of the small intestinal mucosa barrier. It plays a very significant role in maintaining the intestinal mucosal permeability and integrity, preventing the bacterial endotoxin and toxic macromolecular substances into the body so as to keep a stable internal environment. Numerous studies have shown that intestinal mucosal barrier dysfunction is closely related to the development of diabetes. Therefore, protecting intestinal tight junction and maintaining the mucosal barrier have great significance in the prevention and treatment of diabetes. The effect of berberine in diabetes treatment is obvious. However, the pharmacological study found that the bioavailability of berberine is extremely low. Some scholars put forward that the major site of pharmaceutical action of berberine might be in the gut. Studies have shown that berberine could regulate the intestinal flora and intestinal hormone secretion, protect the intestinal barrier, inhibit the absorption of glucose, eliminate the intestinal inflammation and so on. Recently studies have found that the hypoglycemic effect of berberine is likely to relate with the influence on intestinal tight junction and the protection of mucosal barrier. Here is the review about the association between intestinal tight junction barrier dysfunction and diabetes, and the related hypoglycemic mechanism of berberine. Copyright© by the Chinese Pharmaceutical Association.

  3. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel.

    PubMed

    Jiang, Xing; Wang, Kaikai; Zhou, Zaigang; Zhang, Yifan; Sha, Huizi; Xu, Qiuping; Wu, Jie; Wang, Juan; Wu, Jinhui; Hu, Yiqiao; Liu, Baorui

    2017-06-24

    Paclitaxel (PTX) is a cytotoxic chemotherapy drug with encouraging activity in human malignancies. However, free PTX has a very low oral bioavailability due to its low aqueous solubility and the gastrointestinal drug barrier. In order to overcome this obstacle, we have designed erythrocyte membrane nanoparticles (EMNP) using sonication method. The permeability of PTX by EMNP was 3.5-fold (P app  = 0.425 nm/s) and 16.2-fold (P app  = 394.1 nm/s) higher than free PTX in MDCK-MDR1 cell monolayers and intestinal mucosal tissue, respectively. The in vivo pharmacokinetics indicated that the AUC 0-t (μg/mL·h) and C max (μg/mL) of EMNP were 14.2-fold and 6.0-fold higher than that of free PTX, respectively. In summary, the EMNP appears to be a promising nanoformulation to enhance the oral bioavailability of insoluble and poorly permeable drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.

    PubMed

    Li, Qiuxia; Xia, Dengning; Tao, Jinsong; Shen, Aijun; He, Yuan; Gan, Yong; Wang, Chi

    2017-10-01

    Lipid-polymer hybrid nanoparticles (NPs) are advantageous for drug delivery. However, their intracellular trafficking mechanism and relevance for oral drug absorption are poorly understood. In this study, self-assembled core-shell lipid-polymer hybrid NPs made of poly(lactic-co-glycolic acid) (PLGA) and various lipids were developed to study their differing intracellular trafficking in intestinal epithelial cells and their relevance for oral absorption of a model drug saquinavir (SQV). Our results demonstrated that the endocytosis and exocytosis of hybrid NPs could be changed by varying the kind of lipid. A glyceride mixture (hybrid NPs-1) decreased endocytosis but increased exocytosis in Caco-2 cells, whereas the phospholipid (E200) (hybrid NPs-2) decreased endocytosis but exocytosis was unaffected as compared with PLGA nanoparticles. The transport of hybrid NPs-1 in cells involved various pathways, including caveolae/lipid raft-dependent endocytosis, and clathrin-mediated endocytosis and macropinocytosis, which was different from the other groups of NPs that involved only caveolae/lipid raft-dependent endocytosis. Compared with that of the reference formulation (nanoemulsion), the oral absorption of SQV-loaded hybrid NPs in rats was poor, probably due to the limited drug release and transcytosis of NPs across the intestinal epithelium. In conclusion, the intracellular processing of hybrid NPs in intestinal epithelia can be altered by adding lipids to the NP. However, it appears unfavorable to use PLGA-based NPs to improve oral absorption of SQV compared with nanoemulsion. Our findings will be essential in the development of polymer-based NPs for the oral delivery of drugs with the purpose of improving their oral absorption. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Community composition, diversity, and metabolism of intestinal microbiota in cultivated European eel (Anguilla anguilla).

    PubMed

    Huang, Wei; Cheng, Zhiqiang; Lei, Shaonan; Liu, Lanying; Lv, Xin; Chen, Lihua; Wu, Miaohong; Wang, Chao; Tian, Baoyu; Song, Yongkang

    2018-05-01

    The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.

  6. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel

  7. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids.

    PubMed

    Kong, Shanshan; Zhang, Yanhui H; Zhang, Weiqiang

    2018-01-01

    Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.

  8. Intestinal paracellular absorption is necessary to support the sugar oxidation cascade in nectarivorous bats.

    PubMed

    Rodriguez-Peña, Nelly; Price, Edwin R; Caviedes-Vidal, Enrique; Flores-Ortiz, Cesar M; Karasov, William H

    2016-03-01

    We made the first measurements of the capacity for paracellular nutrient absorption in intact nectarivorous bats. Leptonycteris yerbabuenae (20 g mass) were injected with or fed inert carbohydrate probes L-rhamnose and D(+)-cellobiose, which are absorbed exclusively by the paracellular route, and 3-O-methyl-D-glucose (3OMD-glucose), which is absorbed both paracellularly and transcellularly. Using a standard pharmacokinetic technique, we collected blood samples for 2 h after probe administration. As predicted, fractional absorption (f) of paracellular probes declined with increasing Mr in the order of rhamnose (f=0.71)>cellobiose (f=0.23). Absorption of 3OMD-glucose was complete (f=0.85; not different from unity). Integrating our data with those for glucose absorption and oxidation in another nectarivorous bat, we conclude that passive paracellular absorption of glucose is extensive in nectarivorous bat species, as in other bats and small birds, and necessary to support high glucose fluxes hypothesized for the sugar oxidation cascade. © 2016. Published by The Company of Biologists Ltd.

  9. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    PubMed

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  10. [Adult intestinal malrotation associated with intestinal volvulus].

    PubMed

    Hernando-Almudí, Ernesto; Cerdán-Pascual, Rafael; Vallejo-Bernad, Cristina; Martín-Cuartero, Joaquín; Sánchez-Rubio, María; Casamayor-Franco, Carmen

    Intestinal malrotation is a congenital anomaly of the intestinal rotation and fixation, and usually occurs in the neonatal age. Description of a clinical case associated with acute occlusive symptoms. A case of intestinal malrotation is presented in a previously asymptomatic woman of 46 years old with an intestinal obstruction, with radiology and surgical findings showing an absence of intestinal rotation. Intestinal malrotation in adults is often asymptomatic, and is diagnosed as a casual finding during a radiological examination performed for other reasons. Infrequently, it can be diagnosed in adults, associated with an acute abdomen. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  11. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    PubMed Central

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  12. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Cuiping, E-mail: yangsophia76@hotmail.com; Zhang, Tianhong, E-mail: wdzth@sina.com; Li, Zheng, E-mail: lizh2524@126.com

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusionmore » study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup −5} to 2.85 × 10{sup −5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C

  13. The Role of SGLT1 and GLUT2 in Intestinal Glucose Transport and Sensing

    PubMed Central

    Röder, Pia V.; Geillinger, Kerstin E.; Zietek, Tamara S.; Thorens, Bernard; Koepsell, Hermann; Daniel, Hannelore

    2014-01-01

    Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion. PMID:24587162

  14. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    PubMed

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  15. Mechanisms of calcium transport in small intestine. Overall review of the contract, September 1, 1972--March 1, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuca, H.F.

    1976-01-01

    Progress is reported in the following areas of research: role of high molecular weight protein in calcium transport in vitamin D deficient chicks; subcellular localization of 1,25-(OH)/sub 2/D/sub 3/; receptor proteins for 1,25-(OH)/sub 2/D/sub 3/; effects of high calcium diet, strontium diet, EHDP, and parathyroidectomy on intestinal calcium transport in chicks; effects of analogs of 1,25-(OH)/sub 2/D/sub 3/ on intestinal calcium transport; discrimination by chicks against vitamin D/sub 2/ compounds by metabolism; effects of extract of Solanum malacoxylan on intestinal calcium absorption in nephrectomized rats; and role of vitamin D in phosphate transport reactions in the intestine. (HLW)

  16. Effects of fasting on intestinal transfer of sugars and amino acids in vitro

    PubMed Central

    Newey, H.; Sanford, P. A.; Smyth, D. H.

    1970-01-01

    1. Transfer of sugars, amino acids and fluid and metabolism of glucose were studied with everted sacs of small intestine prepared from fed and 3-day fasted rats. 2. In the absence of glucose there was some evidence for increased intestinal transfer of sugars and amino acids in fasted animals. In the presence of glucose there was in general decrease in transfer of amino acids and fluid. 3. In fasted animals glucose transfer was reduced except in the lower ileum, and there was a general reduction in glucose metabolism. 4. Because of the large reduction in gut weight in fasted animals, expressing transfer on a weight basis is considered not to be a valid procedure in studying the effects of fasting on intestinal transfer. 5. The results have been discussed in relation to effects of fasting on energy availability, efficiency of transfer mechanisms, permeability of the intestine and the value of in vitro methods in the study of physiological absorption. PMID:5499792

  17. Effect of prostaglandin on indomethacin-induced increased intestinal permeability in man.

    PubMed

    Bjarnason, I; Smethurst, P; Clark, P; Menzies, I; Levi, J; Peters, T

    1989-01-01

    This study examines whether NSAID induced disruption of small intestinal integrity is preventable by concomitant prostaglandin administration, and whether prostaglandins themselves interfere with intestinal permeability and absorption. Twelve subjects underwent testing following treatment as indicated: baseline, no treatment rioprostil, 300 micrograms, at -9 and -1 h indomethacin, 75 mg and 50 mg, at -9 and -1 h respectively rioprostil plus indomethacin, regimen as above. At 0800 h (0 h) subjects drink a solution containing 51CrEDTA 100 microCi, L-rhamnose 0.5 g, D-xylose 0.5 g and 3-O-methyl-glucose 0.2 g; this is followed by a 5-h urine collection. The amount of test substance in the urine reflects non-mediated intercellular and transcellular permeability, and passive and active carrier mediated transport systems, respectively. Permeation of L-rhamnose, D-xylose and 3-O-methyl-glucose is unaffected by rioprostil and/or indomethacin. Indomethacin significantly increases intestinal permeability to 51CrEDTA; coadministration of rioprostil, however, significantly decreases this detrimental effect of indomethacin. These findings suggest that prostaglandins are essential for maintaining small intestinal integrity in man and lend further support to the suggestion that NSAIDs damage the small intestine by reducing mucosal prostaglandin synthesis.

  18. Cyclophosphamide priming reduces intestinal damage in man following high dose melphalan chemotherapy.

    PubMed Central

    Selby, P. J.; Lopes, N.; Mundy, J.; Crofts, M.; Millar, J. L.; McElwain, T. J.

    1987-01-01

    A small pre-treatment 'priming' dose of cyclophosphamide will reduce gut damage due to high dose i.v. melphalan in mice and sheep but efforts to demonstrate this effect in man have been hampered by difficulty in the measurement of gut damage. We have evaluated the 51CR EDTA absorption test, a new method for measuring intestinal permeability, as a means of assessing damage due to high dose melphalan. The test was reliable, with a narrow normal range, easy to use and well tolerated. It detected an increase in intestinal permeability after high dose melphalan with a maximum occurring between 9 and 15 days after treatment and subsequently returning to normal. It was shown in 19 patients that a pre-treatment dose of cyclophosphamide was capable of significantly reducing the abnormalities in intestinal permeability which resulted from high dose melphalan. PMID:3111515

  19. Phytosterol glycosides reduce cholesterol absorption in humans

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  20. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine.

    PubMed

    Rong, Shunxing; McDonald, Jeffrey G; Engelking, Luke J

    2017-10-01

    SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model ( Vil-BP2 -/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2 -/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2 -/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers.

    PubMed

    Takaishi, Naoki; Yoshida, Kazutaka; Satsu, Hideo; Shimizu, Makoto

    2007-06-27

    Alpha-lipoic acid (LA) is used in dietary supplements or food with antioxidative functions. The mechanism for the intestinal absorption of alpha-lipoic acid was investigated in this study by using human intestinal Caco-2 cell monolayers. LA was rapidly transported across the Caco-2 cell monolayers, this transport being energy-dependent, suggesting transporter-mediated transport to be the mechanism involved. The LA transport was strongly dependent on the pH value, being accelerated in the acidic pH range. Furthermore, such monocarboxylic acids as benzoic acid and medium-chain fatty acids significantly inhibited LA transport, suggesting that a proton-linked monocarboxylic acid transporter (MCT) was involved in the intestinal transport of LA. The conversion of LA to the more antioxidative dihydrolipoic acid was also apparent during the transport process.

  2. Studies on the Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Waldron-Edward, Deirdre; Paul, T. M.; Skoryna, Stanley C.

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to be available to the body. Studies were carried out by measuring bone uptake of Sr89 and Ca45 when various amounts of sodium alginate were fed with the diet. Long-term studies were made in which two different levels of radioactivity were used, to determine the pattern of Sr89 deposition with continuous intake of binding agent. It was found that administration of sodium alginate as a jelly overcomes the problem of constipation and effectively reduces Sr89 uptake, up to 83%. This fact represents a significant finding with respect to the use of the compound in human subjects. Addition of sodium alginate to drinking water is effective with low levels of Sr89 intake. This naturally occurring water-soluble macromolecular substance possesses several advantages in use for the suppression of absorption of radioactive strontium when compared with synthetic ion exchange resins: there is no disturbance of electrolyte balance; efficiency is not reduced by treatment over a prolonged period of time; and finally, the product is palatable. PMID:14222668

  3. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    PubMed

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  4. Changes of lipid and fatty acid absorption induced by high dose of citric acid ester and lecithin emulsifiers.

    PubMed

    Sadouki, Mohamed; Bouchoucha, Michel

    2014-09-01

    To describe the effect of two food emulsifiers, lecithin (E322) and citric acid esters of mono-and diglycerides of fatty acids (E472c), on the intestinal absorption of lipids. The experiment was conducted on 24 male Wistar rats randomly assigned in three groups. For two groups of six rats, 30% of the lipid intake was replaced with lecithin (L) or citric acid ester of mono and diglycerides, (E); the remaining 12 rats were the control group (C). Diet and fecal fat analysis was used to determine the apparent lipid absorption (ALA) and fatty acids. ALA was significantly lower in the group E than in the groups C and L (p < 0.001). ALA of long saturated chain fatty acids decreased while the length of the carbon chains increased, and this decrease was higher in the group E. E472c emulsifier decreased the intestinal absorption of lipids.

  5. Improving permeability and oral absorption of mangiferin by phospholipid complexation.

    PubMed

    Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong

    2014-03-01

    Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    PubMed

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  7. Effect of aluminum on bidirectional calcium flux in rat everted intestinal sacs.

    PubMed

    Adler, A J; Zara, C; Berlyne, G M

    1989-09-01

    The effect of aluminum on intestinal calcium absorption was determined in male Sprague-Dawley rats using an everted intestinal sac technique. Bidirectional calcium flux in the duodena and ilea of normal rats was assessed by means of dual calcium isotopes. Two micromolar aluminum significantly inhibited net calcium absorption (J net) in the duodenum through suppression of mucosato-serosa flux (J m----s). Jm----s was reduced from 2.21 +/- 0.50 mumol Ca.h-1.g wet wt-1 in controls to 0.93 +/- 0.35 mumol Ca.h-1.g-1 in aluminum exposed sacs, and Jnet was reduced from 1.88 +/- 0.14 mumol Ca.h-1.g-1 to 0.55 +/- 0.41 mumol Ca.h-1.g-1 (P less than 0.001). Serosa-to-mucosa calcium flux (Js----m) was not similarly influenced by aluminum. Inhibition of Jm----s occurred whether aluminum was initially present on the mucosal or serosal side of the duodenal sac and inhibition of Jnet calcium by 2 muM A1 occurred at all ambient concentrations of calcium studied. In the ileum, aluminum had no effect on any component of calcium flux. Aluminum did not induce any suppression of glucose transport in either the duodenum or ileum, suggesting that the effect on calcium transport is relatively specific. These results suggest that aluminum inhibits calcium absorption in the duodenum through an effect on active mucosa-to-serosa transport, but has no effect on ileal calcium absorption, which in the rat is not mediated by an active process.

  8. Vitamins A, C, and E may reduce intestinal Po-210 levels after ingestion

    PubMed Central

    Kemp, Francis W; Portugal, Frank; Akudugu, John M.; Neti, Prasad VSV; Ferraris, Ronaldo P.; Howell, Roger W.

    2016-01-01

    Damage to the gut mucosa is a probable contributory cause of death from ingested 210Po. Therefore, medical products are needed that can prevent, mitigate, and/or repair gastrointestinal (GI) damage caused by high-LET radiation emitted by 210Po. The present studies investigated the capacity of a diet highly enriched with vitamins A, C, and E (vitamin ACE) to protect against intestinal mucosal damage indicated by functional reductions in nutrient transport caused by orally ingested 210Po. Mice were gavaged with 0 or 18.5 kBq 210Po-citrate and fed a control or vitamin ACE-enriched diet (the latter beginning either 96 h before or immediately after gavage). Mouse intestines significantly retained 210Po on day 8 post-gavage. The concentration of 210Po in intestinal tissues was significantly (p<0.05) lower in all vitamin ACE groups compared to control. There were borderline significant 210Po-induced reductions in intestinal absorption of D-fructose. The combination of vitamins A, C, and E may reduce 210Po incorporation in the intestines when given before, or enhance decorporation when provided after, 210Po gavage. PMID:27218295

  9. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis

    PubMed Central

    Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Chris; Wu, Yan; Costa, Mike; de Sauvage, Frederic J.; Klein, Ophir D.

    2015-01-01

    Summary Proper organ homeostasis requires tight control of adult stem cells and differentiation through integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a de-repression of the Wnt signaling pathway, leading to mis-expression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302

  10. A vegetable oil feeding history affects digestibility and intestinal fatty acid uptake in juvenile rainbow trout Oncorhynchus mykiss.

    PubMed

    Geurden, Inge; Jutfelt, Fredrik; Olsen, Rolf-Erik; Sundell, Kristina S

    2009-04-01

    Future expansion of aquaculture relies on the use of alternatives to fish oil in fish feed. This study examined to what extent the nature of the feed oil affects intestinal lipid uptake properties in rainbow trout. The fish were fed a diet containing fish (FO), rapeseed (RO) or linseed (LO) oil for 8 weeks after which absorptive properties were assessed. Differences in digestibility due to feed oil history were measured using diet FO with an indigestible marker. Intestinal integrity, paracellular permeability, in vitro transepithelial fatty acid transport (3H-18:3n-3 and 14C-16:0) and their incorporation into intestinal epithelia were compared using Ussing chambers. Feed oil history did not affect the triacylglycerol/phosphatidylcholine ratio (TAG/PC) of the newly synthesized lipids in the segments. The lower TAG/PC ratio with 16:0 (2:1) than with 18:3 (10:1) showed the preferential incorporation of 16:0 into polar lipids. The FO-feeding history decreased permeability and increased transepithelial resistance of the intestinal segments. Transepithelial passage rates of 18:3n-3 were higher when pre-fed LO compared to RO or FO. Similarly, pre-feeding LO increased apparent lipid and fatty acid digestibilities compared to RO or FO. These results demonstrate that the absorptive intestinal functions in fish can be altered by the feed oil history and that the effect remains after a return to a standard fish oil diet.

  11. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria.

    PubMed

    Amin, Ruhul; Asplin, John; Jung, Daniel; Bashir, Mohamed; Alshaikh, Altayeb; Ratakonda, Sireesha; Sharma, Sapna; Jeon, Sohee; Granja, Ignacio; Matern, Dietrich; Hassan, Hatim

    2018-05-01

    Most kidney stones are composed of calcium oxalate, and minor changes in urine oxalate affect the stone risk. Obesity is a risk factor for kidney stones and a positive correlation of unknown etiology between increased body size, and elevated urinary oxalate excretion has been reported. Here, we used obese ob/ob (ob) mice to elucidate the pathogenesis of obesity-associated hyperoxaluria. These ob mice have significant hyperoxaluria (3.3-fold) compared with control mice, which is not due to overeating as shown by pair-feeding studies. Dietary oxalate removal greatly ameliorated this hyperoxaluria, confirming that it is largely enteric in origin. Transporter SLC26A6 (A6) plays an essential role in active transcellular intestinal oxalate secretion, and ob mice have significantly reduced jejunal A6 mRNA (- 80%) and total protein (- 62%) expression. While net oxalate secretion was observed in control jejunal tissues mounted in Ussing chambers, net absorption was seen in ob tissues, due to significantly reduced secretion. We hypothesized that the obesity-associated increase in intestinal and systemic inflammation, as reflected by elevated proinflammatory cytokines, suppresses A6-mediated intestinal oxalate secretion and contributes to obesity-associated hyperoxaluria. Indeed, proinflammatory cytokines (elevated in ob mice) significantly decreased intestinal oxalate transport in vitro by reducing A6 mRNA and total protein expression. Proinflammatory cytokines also significantly reduced active mouse jejunal oxalate secretion, converting oxalate transport from net secretion in vehicle-treated tissues to net absorption in proinflammatory cytokines-treated tissues. Thus, reduced active intestinal oxalate secretion, likely secondary to local and systemic inflammation, contributes to the pathogenesis of obesity-associated hyperoxaluria. Hence, proinflammatory cytokines represent potential therapeutic targets. Copyright © 2017 International Society of Nephrology. Published by

  12. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries.

    PubMed

    Mueller, Dolores; Jung, Kathrin; Winter, Manuel; Rogoll, Dorothee; Melcher, Ralph; Richling, Elke

    2017-09-15

    We investigated the importance of the large intestine on the bioavailability of anthocyanins from bilberries in humans with/without a colon. Low bioavailability of anthocyanins in plasma and urine was observed in the frame of this study. Anthocyanins reached the circulation mainly as glucuronides. Analysis of ileal effluents (at end of small intestine) demonstrated that 30% of ingested anthocyanins were stable during 8h passage through the upper intestine. Only 20% degradants were formed and mostly intact anthocyanins were absorbed from the small intestine. Higher amounts of degradants than anthocyanins reached the circulation after bilberry extract consumption in both groups of subjects. Comparison of the bioavailability of anthocyanins in healthy subjects versus ileostomists revealed substantially higher amounts of anthocyanins and degradants in the plasma/urine of subjects with an intact gut. The results suggested that the colon is a significant site for absorption of bioactive components such as anthocyanins and their degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Variability of the Intestinal Uptake of Lipids Is Genetically Determined in Mice

    PubMed Central

    Keelan, M.; Hui, D.Y.; Wild, G.; Clandinin, M.T.

    2008-01-01

    The response of the plasma cholesterol concentration to changes in dietary lipids varies widely in humans and animals. There are variations in the in vivo absorption of cholesterol between different strains of mice. This study was undertaken in three strains of inbred mice to test the hypotheses that: (i) there are strain differences in the in vitro uptake of fatty acids and cholesterol and (ii) the adaptability of the intestine to respond to variations in dietary lipids is genetically determined. An in vitro intestinal ring technique was used to assess the uptake of medium- and long-chain fatty acids and cholesterol into jejunum and ileum of adult DBA/2, C57BL6, and C57L/J mice. The jejunal uptake of cholesterol was similar in C57L/J, DBA/2, or C57BL6 fed ad libitum a low-fat (5.7% fat, no cholesterol) chow diet. This is in contrast to a previous demonstration that in vivo cholesterol absorption was lower in C57L/J than in the other murine strains. The jejunal uptake of several long-chain fatty acids was greater in DBA/2 fed for 4 wk the high-fat (15.8% fat and 1.25% cholesterol) as compared with the low-fat diet. Furthermore, on the high-fat diet, the uptake of many long-chain fatty acids was higher in DBA/2 than in C57BL6 or C57L/J. The differences in cholesterol and fatty acid uptake were not explained by variations in food uptake, body weight gain, or the weight of the intestine. In summary: (i) there are strain differences in the in vitro intestinal uptake of fatty acids but not of cholesterol; (ii) a high-fat diet enhances the uptake of long-chain fatty acids in only one of the three strains examined in this study; and (iii) the pattern of strain- and diet-associated alterations in the in vivo absorption of cholesterol differs from the pattern of changes observed in vitro. We speculate that genetic differences in cholesterol and fatty acid uptake are explained by variations in the expression of protein-mediated components of lipid uptake. PMID:10984106

  14. Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery

    PubMed Central

    2015-01-01

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug–drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption. PMID:24628254

  15. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery.

    PubMed

    Larregieu, Caroline A; Benet, Leslie Z

    2014-04-07

    The biopharmaceutics classification system (BCS) and biopharmaceutics drug distribution classification system (BDDCS) are complementary classification systems that can improve, simplify, and accelerate drug discovery, development, and regulatory processes. Drug permeability has been widely accepted as a screening tool for determining intestinal absorption via the BCS during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for industry and regulatory agencies. The BDDCS, a modification of BCS that utilizes drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug-drug interactions in the intestine, the liver, and most recently the brain. Although correlations between BCS and BDDCS have been observed with drug permeability rates, discrepancies have been noted in drug classifications between the two systems utilizing different permeability models, which are accepted as surrogate models for demonstrating human intestinal permeability by the FDA. Here, we recommend the most applicable permeability models for improving the prediction of BCS and BDDCS classifications. We demonstrate that the passive transcellular permeability rate, characterized by means of permeability models that are deficient in transporter expression and paracellular junctions (e.g., PAMPA and Caco-2), will most accurately predict BDDCS metabolism. These systems will inaccurately predict BCS classifications for drugs that particularly are substrates of highly expressed intestinal transporters. Moreover, in this latter case, a system more representative of complete human intestinal permeability is needed to accurately predict BCS absorption.

  16. Poor permeability and absorption affect the activity of four alkaloids from Coptis.

    PubMed

    Cui, Han-Ming; Zhang, Qiu-Yan; Wang, Jia-Long; Chen, Jian-Long; Zhang, Yu-Ling; Tong, Xiao-Lin

    2015-11-01

    Coptidis rhizoma (Coptis) and its alkaloids exert various pharmacological functions in cells and tissues; however, the oral absorption of these alkaloids requires further elucidation. The present study aimed to examine the mechanism underlying the poor absorption of alkaloids, including berberine (BER), coptisine (COP), palmatine (PAL) and jatrorrhizine (JAT). An ultra‑performance liquid chromatography (UPLC) method was validated for the determination of BER, COP, PAL and JAT in the above experimental medium. In addition, the apparent oil‑water partition coefficient (Po/w); apparent permeability coefficient (Papp), determined using a parallel artificial membrane permeability assay (PAMPA) plate; membrane retention coefficient (R %); and effect of P‑glycoprotein (P‑gp) inhibitor on the Papp of the four alkaloids were investigated. The intestinal absorption rate constant (Ka) and absorption percentage (A %) of the four alkaloids were also determined. The results of the present study demonstrated that the Po/w of the four alkaloids in 0.1 mol·l‑1 HCl medium was significantly higher (P<0.01), compared with those of the alkaloids in phosphate buffer (pH 7.4). The Papp of BER was 1.0‑1.2x10‑6 cm·s‑1, determined using a PAMPA plate, and the Papp of BER, COP, PAL and JAT decreased sequentially. The concentrations of the four alkaloids on the apical‑to‑basolateral (AP‑BL) surface and the basolateral‑to‑apical (BL‑AP) surface increased in a linear manner, with increasing concentrations between 10 and 100 µmol. In addition, the transportation of BER on the BL‑AP surface was significantly faster (P<0.01), compared with that on the AP‑BL surface and, following the addition of verpamil (a P‑gp inhibitor), the Papp (AP‑BL) of the four alkaloids increased, whereas the Papp (BL‑AP) was significantly decreased (P<0.01). The rat intestinal perfusion experiment demonstrated that the four alkaloids were poorly absorbed; however, the Ka of BER

  17. Defining new criteria for selection of cell-based intestinal models using publicly available databases

    PubMed Central

    2012-01-01

    Background The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. Results We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. Conclusions This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected

  18. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass.

    PubMed

    Odstrcil, Elizabeth A; Martinez, Juan G; Santa Ana, Carol A; Xue, Beiqi; Schneider, Reva E; Steffer, Karen J; Porter, Jack L; Asplin, John; Kuhn, Joseph A; Fordtran, John S

    2010-10-01

    Roux-en-Y gastric bypass (RYGB) restricts food intake, and when the Roux limb is elongated to 150 cm, the procedure is believed to induce malabsorption. Our objective was to measure total reduction in intestinal absorption of combustible energy after RYGB and the extent to which this was due to restriction of food intake or malabsorption of ingested macronutrients. Long-limb RYGB was performed in 9 severely obese patients. Dietary intake and intestinal absorption of fat, protein, carbohydrate, and combustible energy were measured before and at 2 intervals after bypass. By using coefficients of absorption to measure absorptive function, equations were developed to calculate the daily gram and kilocalorie quantities of ingested macronutrients that were not absorbed because of malabsorption or restricted food intake. Coefficients of fat absorption were 92 ± 1.3% before bypass, 72 ± 5.5% 5 mo after bypass, and 68 ± 8.7% 14 mo after bypass. There were no statistically significant effects of RYGB on protein or carbohydrate absorption coefficients, although protein coefficients decreased substantially in some patients. Five months after bypass, malabsorption reduced absorption of combustible energy by 124 ± 57 kcal/d, whereas restriction of food intake reduced energy absorption by 2062 ± 271 kcal/d. Fourteen months after bypass, malabsorption reduced energy absorption by 172 ± 60 kcal/d compared with 1418 ± 171 kcal/d caused by restricted food intake. On average, malabsorption accounted for ≈6% and 11% of the total reduction in combustible energy absorption at 5 and 14 mo, respectively, after this gastric bypass procedure.

  19. Regulation of intestinal permeability: The role of proteases

    PubMed Central

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-01-01

    The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139

  20. The absorption and transport of magnolol in Caco-2 cell model.

    PubMed

    Wu, An-Guo; Zeng, Bao; Huang, Meng-Qiu; Li, Sheng-Mei; Chen, Jian-Nan; Lai, Xiao-Ping

    2013-03-01

    To investigate the absorption and transport mechanism of magnolol in Caco-2 cell model. A human intestinal epithelial cell model Caco-2 cell in vitro cultured was applied to study the absorption and transport of magnolol, the effects of time, donor concentration, P-gp inhibitor verapamil, pH and temperature on the absorption and transport of magnolol were investigated. The determination of magnolol was performed by high performance liquid chromatography, then the values of apparent permeability coefficient (P app ) and P ratio Basolateral-to-Apical (BL-to-AP)/Apical-to-Basolateral (AP-to-BL) were calculated. In Caco-2 cell model, comparing the amounts of transport of AP-to-BL and BL-to-AP, the latter was larger. At the same donor concentration, either the amounts of transport of AP-to-BL or BL-to-AP increased with increase in donor concentration and incubation time. Verapamil could significantly improve the amounts of transport of AP-to-BL. The transport of AP-to-BL and BL-to-AP depended on temperature, and there was no significant effect of pH on the transport of AP-to-BL. Magnolol could be transported through the intestinal mucosa via a passive diffusion mechanism primarily, coexisting with a carrier-mediated transport, at the same time, the efflux mechanism could be involved.

  1. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  2. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells.

    PubMed

    Zou, Jun; Feng, Dan

    2015-11-01

    Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Tomato lycopene has been found to have a hypocholesterolemic effect, and the effect was considered to be related to inhibition of cholesterol synthesis. However, since plasma cholesterol levels are also influenced by the absorption of cholesterol in the gut, the present study is to investigate whether lycopene affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with lycopene at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and liver X receptor α (LXRα) was analyzed by Western blot and qPCR. We found that lycopene dose dependently inhibited cholesterol absorption and the expression of NPC1L1 protein and NPC1L1 mRNA. The inhibitory effects of lycopene on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the LXRα pathway. This study provides the first evidence that lycopene inhibits cholesterol absorption in the intestinal cells and this inhibitory effect of lycopene is mediated, at least in part, by LXRα-NPC1L1 signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Changes in the peritoneum of the small intestine and diaphragm in experimental portal hypertension].

    PubMed

    Khoroshaev, V A; Vorozheĭkin, V M; Baĭbekov, I M

    1991-04-01

    Diaphragm and small intestine peritoneum morphology was studied in experimental portal hypertension in rats with the help of luminescent, transmission and scanning electron microscopy techniques. Structural organizations of these peritoneum portions and performance function were different: fluid transudation realized through the small intestine peritoneum and resorption occurred via diaphragm peritoneum. Morphological signs allowed to judge about the increasing of fluid transudation in abdominal cavity and diaphragmatic resorption in early period of portal hypertension. Morphological alterations appeared in peritoneum resorption sites (pumping diaphragmatic hatchs) according to progress of portal hypertension that indicated decompensation process of peritoneal fluid absorption and led to ascites.

  4. Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption.

    PubMed

    Price, Edwin R; Rott, Katherine H; Caviedes-Vidal, Enrique; Karasov, William H

    2016-01-01

    Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris). Furthermore, histological measurements demonstrated that hedgehogs have many more enterocytes in their intestines, suggesting that bats cannot have higher absorption of arabinose simply by having more tight junctions. We therefore investigated the mRNA levels of several claudins and occludin, because these proteins may affect permeability of tight junctions to macronutrients. To assess the expression levels of claudins per tight junction, we normalized the mRNA levels of the claudins to the constitutively expressed tight junction protein ZO-1, and combined these with measurements previously made in a bat and a rodent to determine if there were among-species differences. Although expression ratios of several genes varied among species, there was not a consistent difference between bats and non-flyers in the expression ratio of any particular gene. Protein expression patterns may differ from mRNA expression patterns, and might better explain differences among species in arabinose absorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach.

    PubMed

    Zhu, He; Shen, Hong; Xu, Jun; Xu, Jin-Di; Zhu, Ling-Ying; Wu, Jie; Chen, Hu-Biao; Li, Song-Lin

    2015-04-01

    Our previous study indicated that sulphur-fumigation of ginseng in post-harvest handling processes could induce chemical transformation of ginsenosides to generate multiple ginsenoside sulphur derivatives. In this study, the influence of sulphur-fumigation on intestinal metabolism and absorption in vivo of ginsenosides in ginseng was sequentially studied. The intestinal metabolic and absorbed profiles of ginsenosides in rats after intra-gastric (i.g.) administration of sulphur-fumigated ginseng (SFG) and non-fumigated ginseng (NFG) were comparatively characterized by a newly established ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) with electrospray ionization negative (ESI-) mode. A novel strategy based on the characteristic product ions and fragmentation pathways of different types of aglycones (saponin skeletons) and glycosyl moieties was proposed and successfully applied to rapid structural identification of ginsenoside sulphur derivatives and relevant metabolites. In total, 18 ginsenoside sulphur derivatives and 26 ginsenoside sulphur derivative metabolites in the faeces together with six ginsenoside sulphur derivatives in the plasma were identified in the SFG-administrated group but not in the NFG-administrated group. The results clearly demonstrated that the intestinal metabolic and absorbed profiles of ginsenosides in sulphur-fumigated and non-fumigated ginseng were quite different, which inspired that sulphur-fumigation of ginseng should not be recommended before the bioactivity and toxicity of the ginsenoside sulphur derivatives were systematically evaluated. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Intestinal absorption, organ distribution, and urinary excretion of the rare sugar D-psicose

    PubMed Central

    Tsukamoto, Ikuko; Hossain, Akram; Yamaguchi, Fuminori; Hirata, Yuko; Dong, Youyi; Kamitori, Kazuyo; Sui, Li; Nonaka, Machiko; Ueno, Masaki; Nishimoto, Kazuyuki; Suda, Hirofumi; Morimoto, Kenji; Shimonishi, Tsuyoshi; Saito, Madoka; Song, Tao; Konishi, Ryoji; Tokuda, Masaaki

    2014-01-01

    Background The purpose of this study was to evaluate intestinal absorption, organ distribution, and urinary elimination of the rare sugar D-psicose, a 3-carbon stereoisomer of D-fructose that is currently being investigated and which has been found to be strongly effective against hyperglycemia and hyperlipidemia. Methods This study was performed using radioactive D-psicose, which was synthesized enzymatically from radioactive D-allose. Concentrations in whole blood, urine, and organs were measured at different time points until 2 hours after both oral and intravenous administrations and 7 days after a single oral administration (100 mg/kg body weight) to Wistar rats. Autoradiography was also performed by injecting 100 mg/kg body weight of 14C-labeled D-psicose or glucose intravenously to C3H mice. Results Following oral administration, D-psicose easily moved to blood. The maximum blood concentration (48.5±15.6 μg/g) was observed at 1 hour. Excretion to urine was 20% within 1 hour and 33% within 2 hours. Accumulation to organs was detected only in the liver. Following intravenous administration, blood concentration was decreased with the half-life=57 minutes, and the excretion to urine was up to almost 50% within 1 hour. Similarly to the results obtained with oral administration, accumulation to organs was detected only in the liver. Seven days after the single-dose oral administration, the remaining amounts in the whole body were less than 1%. Autoradiography of mice showed results similar to those in rats. High signals of 14C-labeled D-psicose were observed in liver, kidney, and bladder. Interestingly, no accumulation of D-psicose was observed in the brain. Conclusion D-psicose was absorbed well after oral administration and eliminated rapidly after both oral and intravenous administrations, with short duration of action. The study provides valuable pharmacokinetic data for further drug development of D-psicose. Because the findings were mainly based on animal

  7. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch.

    PubMed

    Lohrenz, A-K; Duske, K; Schönhusen, U; Losand, B; Seyfert, H M; Metges, C C; Hammon, H M

    2011-09-01

    Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences

  8. A guide to Ussing chamber studies of mouse intestine

    PubMed Central

    Clarke, Lane L.

    2009-01-01

    The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method. PMID:19342508

  9. Colonic Absorption of Low-Molecular-Weight Metabolites Influenced by the Intestinal Microbiome: A Pilot Study.

    PubMed

    Matsumoto, Mitsuharu; Ooga, Takushi; Kibe, Ryoko; Aiba, Yuji; Koga, Yasuhiro; Benno, Yoshimi

    2017-01-01

    Low-molecular-weight metabolites produced by the intestinal microbiome play a direct role in health and disease. However, little is known about the ability of the colon to absorb these metabolites. It is also unclear whether these metabolites are bioavailable. Here, metabolomics techniques (capillary electrophoresis with time-of-flight mass spectrometry, CE-TOFMS), germ-free (GF) mice, and colonized (Ex-GF) mice were used to identify the colonic luminal metabolites transported to colonic tissue and/or blood. We focused on the differences in each metabolite between GF and Ex-GF mice to determine the identities of metabolites that are transported to the colon and/or blood. CE-TOFMS identified 170, 246, 166, and 193 metabolites in the colonic feces, colonic tissue, portal plasma, and cardiac plasma, respectively. We classified the metabolites according to the following influencing factors: (i) the membrane transport system of the colonocytes, (ii) metabolism during transcellular transport, and (iii) hepatic metabolism based on the similarity in the ratio of each metabolite between GF and Ex-GF mice and found 62 and 22 metabolites that appeared to be absorbed from the colonic lumen to colonocytes and blood, respectively. For example, 11 basic amino acids were transported to the systemic circulation from the colonic lumen. Furthermore, many low-molecular-weight metabolites influenced by the intestinal microbiome are bioavailable. The present study is the first to report the transportation of metabolites from the colonic lumen to colonocytes and somatic blood in vivo, and the present findings are critical for clarifying host-intestinal bacterial interactions.

  10. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages.

    PubMed

    Li, H; Gilbert, E R; Zhang, Y; Crasta, O; Emmerson, D; Webb, K E; Wong, E A

    2008-08-01

    Intestinal development during late embryogenesis and early post-hatch has a long-term influence on digestive and absorptive capacity in chickens. The objective of this research was to obtain a global view of intestinal solute carrier (SLC) gene family member expression from late embryogenesis until 2 weeks post-hatch with a focus on SLC genes involved in uptake of sugars and amino acids. Small intestine samples from male chicks were collected on embryonic days 18 (E18) and 20 (E20), day of hatch and days 1, 3, 7 and 14 post-hatch. The expression profiles of 162 SLC genes belonging to 41 SLC families were determined using Affymetrix chicken genome microarrays. The majority of SLC genes showed little or no difference in level of expression during E18-D14. A number of well-known intestinal transporters were upregulated between E18 and D14 including the amino acid transporters rBAT, y(+)LAT-2 and EAAT3, the peptide transporter PepT1 and the sugar transporters SGLT1, GLUT2 and GLUT5. The amino acid transporters CAT-1 and CAT-2 were downregulated. In addition, several glucose and amino acid transporters that are novel to our understanding of nutrient absorption in the chicken intestine were discovered through the arrays (SGLT6, SNAT1, SNAT2 and AST). These results represent a comprehensive characterization of the expression profiles of the SLC family of genes at different stages of development in the chicken intestine and lay the ground work for future nutritional studies.

  11. H(+)/solute-induced intracellular acidification leads to selective activation of apical Na(+)/H(+) exchange in human intestinal epithelial cells.

    PubMed

    Thwaites, D T; Ford, D; Glanville, M; Simmons, N L

    1999-09-01

    The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport.

  12. INTESTINAL OBSTRUCTION

    PubMed Central

    Whipple, G. H.; Stone, H. B.; Bernheim, B. M.

    1913-01-01

    formed in no other way than by the activity of the intestinal mucosa and the growth of the intestinal bacteria. This material after dilution, autolysis, sterilization, and filtration produces a characteristic effect when introduced intravenously. When in toxic doses it causes a profound drop in blood pressure, general collapse, drop in temperature, salivation, vomiting, and profuse diarrhea, which is often blood-stained. Splanchnic congestion is the conspicuous feature at autopsy and shows especially in the villi of the duodenal and jejunal mucosæ. Adrenalin, during this period of low blood pressure and splanchnic congestion, will cause the usual reaction when given intravenously, but applied locally or given intravenously it causes no bleaching of the engorged intestinal mucosa. Secretin is not found in the duodenal loop fluid, and the loop material does not influence the pancreatic secretion. Intraportal injection of the toxic material gives a reaction similar to intravenous injection. Intraperitoneal and subcutaneous injections produce a relatively slow reaction which closely resembles the picture seen in the closed duodenal loop dog. In both cases there is a relatively slow absorption, but the splanchnic congestion and other findings, though less intense, are present in both groups. There seems, therefore, to be no escape from the conclusion that a poisonous substance is formed in this closed duodenal loop which is absorbed from it and causes intoxication and death. Injection of this toxic substance into a normal dog gives intoxication and a reaction more intense but similar to that developing in a closed-loop dog. PMID:19867644

  13. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging.

    PubMed

    Schiller, C; Fröhlich, C-P; Giessmann, T; Siegmund, W; Mönnikes, H; Hosten, N; Weitschies, W

    2005-11-15

    The gastrointestinal transit of sequentially administered capsules was investigated in relation to the availability of fluid along the intestinal lumen by magnetic resonance imaging. Water-sensitive magnetic resonance imaging was performed on 12 healthy subjects during fasting and 1 h after a meal. Specifiable non-disintegrating capsules were administered at 7, 4 and 1 h prior to imaging. While food intake reduced the mean fluid volumes in the small intestine (105 +/- 72 mL vs. 54 +/- 41 mL, P < 0.01) it had no significant effect on the mean fluid volumes in the colon (13 +/- 12 mL vs. 18 +/- 26 mL). The mean number of separated fluid pockets increased in both organs after meal (small intestine: 4 vs. 6, P < 0.05; large intestine: 4 vs. 6, P < 0.05). The distribution of capsules between the small and large intestine was strongly influenced by food (colon: 3 vs. 17 capsules, P < 0.01). The results show that fluid is not homogeneously distributed along the gut, which likely contributes to the individual variability of drug absorption. Furthermore, transport of fluid and solids through the ileocaecal valve is obviously initiated by a meal-induced gastro-ileocaecal reflex.

  14. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.

    PubMed

    Sadekar, S; Thiagarajan, G; Bartlett, K; Hubbard, D; Ray, A; McGill, L D; Ghandehari, H

    2013-11-01

    Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2-3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport.

    PubMed

    Smart, Eric J; De Rose, Robert A; Farber, Steven A

    2004-03-09

    Modulation of cholesterol absorption in the intestine, the primary site of dietary cholesterol uptake in humans, can have profound clinical implications. We have undertaken a reverse genetic approach by disrupting putative cholesterol processing genes in zebrafish larvae by using morpholino (MO) antisense oligonucleotides. By using targeted MO injections and immunoprecipitation (IP) experiments coupled with mass spectrometry, we determined that annexin (ANX)2 complexes with caveolin (CAV)1 in the zebrafish and mouse intestine. The complex is heat stable and unaffected by SDS or reducing conditions. MO targeting of anx2b or cav1, which are both strongly expressed in the larval and adult zebrafish intestinal epithelium, prevents formation of the protein heterocomplex. Furthermore, anx2b MO injection prevents processing of a fluorescent cholesterol reporter and results in reduced sterol mass. Pharmacological treatment of mice with ezetimibe disrupts the heterocomplex in only hypercholesterolemic animals. These data suggest that ANX2 and CAV1 are components of an intestinal sterol transport complex.

  16. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    NASA Astrophysics Data System (ADS)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  17. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates.

    PubMed

    Xiao, Yuliang; Li, Pingli; Cheng, Yanna; Zhang, Xinke; Sheng, Juzheng; Wang, Decai; Li, Juan; Zhang, Qian; Zhong, Chuanqing; Cao, Rui; Wang, Fengshan

    2014-04-25

    The purpose of this report was to demonstrate the effect of amphiphilic polysaccharides-based self-assembling micelles on enhancing the oral absorption of low molecular weight chondroitin sulfate (LMCS) in vitro and in vivo, and identify the transepithelial transport mechanism of LMCS micelles across the intestinal barrier. α-Linolenic acid-low molecular weight chondroitin sulfate polymers(α-LNA-LMCS) were successfully synthesized, and characterized by FTIR, (1)HNMR, TGA/DSC, TEM, laser light scattering and zeta potential. The significant oral absorption enhancement and elimination half-life (t₁/₂) extension of LNA-LMCS2 in rats were evidenced by intragastric administration in comparison with CS and LMCS. Caco-2 transport studies demonstrated that the apparent permeability coefficient (Papp) of LNA-LMCS2 was significantly higher than that of CS and LMCS (p<0.001), and no significant effects on the overall integrity of the monolayer were observed during the transport process. In addition, α-LNA-LMCS micelles accumulated around the cell membrane and intercellular space observed by confocal laser scanning microscope (CLSM). Furthermore, evident alterations in the F-actin cytoskeleton were detected by CLSM observation following the treatment of the cell monolayers with α-LNA-LMCS micelles, which further certified the capacity of α-LNA-LMCS micelles to open the intercellular tight junctions rather than disrupt the overall integrity of the monolayer. Therefore, LNA-LMCS2 with low cytotoxicity and high bioavailability might be a promising substitute for CS in clinical use, such as treating osteoarthritis, atherosclerosis, etc. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Immunohistochemical and ultrastructural evidence of functional organization along the Corydoras paleatus intestine.

    PubMed

    Plaul, Silvia E; Pastor, Raquel; Díaz, Alcira O; Barbeito, Claudio G

    2016-03-01

    The Neotropical catfish, Corydoras paleatus (Callichthyidae) is a facultative air-breathing teleost that makes use of the caudal portion of the intestine as an accessory air-breathing organ. This portion is highly modified, being well vascularized with capillaries between epithelial cells, which makes it well suited for gas exchange. Instead, the cranial portion is a digestion and absorption site, as it has a typical intestinal epithelium with columnar cells arranged in a single row, villi and less vascularized tunica mucosa. Therefore, the intestine was studied by light and electron microscopy to assess differences between the cranial, middle and caudal portions. To characterize the potential for cell proliferation of this organ, we used anti-proliferating cell nuclear antigen antibody and anti-Na(+) K(+) -ATPase monoclonal antibody to detect the presence of Na(+) /K(+) pump. In C. paleatus it was observed that cell dynamics showed a decreasing gradient of proliferation in cranio-caudal direction. Also, the intestine of this catfish is an important organ in ionoregulation: the basolateral Na(+) /K(+) pump may have an active role, transporting Na(+) out of the cell while helping to maintain the repose potential and to regulate cellular volume. © 2016 Wiley Periodicals, Inc.

  19. Precision resection of intestine using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Gora, Wojciech S.; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2016-03-01

    Endoscopic resection of early colorectal neoplasms typically employs electrocautery tools, which lack precision and run the risk of full thickness thermal injury to the bowel wall with subsequent perforation. We present a means of endoluminal colonic ablation using picosecond laser pulses as a potential alternative to mitigate these limitations. High intensity ultrashort laser pulses enable nonlinear absorption processes, plasma generation, and as a consequence a predominantly non-thermal ablation regimen. Robust process parameters for the laser resection are demonstrated using fresh ex vivo pig intestine samples. Square cavities with comparable thickness to early colorectal neoplasms are removed for a wavelength of 1030 nm and 515 nm using a picosecond laser system. The corresponding histology sections exhibit in both cases only minimal collateral damage to the surrounding tissue. The ablation depth can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers for the resection of intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional electrocautery.

  20. Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia

    PubMed Central

    Anderson, Erik R.; Taylor, Matthew; Xue, Xiang; Ramakrishnan, Sadeesh K.; Martin, Angelical; Xie, Liwei; Bredell, Bryce X.; Gardenghi, Sara; Rivella, Stefano; Shah, Yatrik M.

    2013-01-01

    Several distinct congenital disorders can lead to tissue-iron overload with anemia. Repeated blood transfusions are one of the major causes of iron overload in several of these disorders, including β-thalassemia major, which is characterized by a defective β-globin gene. In this state, hyperabsorption of iron is also observed and can significantly contribute to iron overload. In β-thalassemia intermedia, which does not require blood transfusion for survival, hyperabsorption of iron is the leading cause of iron overload. The mechanism of increased iron absorption in β-thalassemia is unclear. We definitively demonstrate, using genetic mouse models, that intestinal hypoxia-inducible factor-2α (HIF2α) and divalent metal transporter-1 (DMT1) are activated early in the pathogenesis of β-thalassemia and are essential for excess iron accumulation in mouse models of β-thalassemia. Moreover, thalassemic mice with established iron overload had significant improvement in tissue-iron levels and anemia following disruption of intestinal HIF2α. In addition to repeated blood transfusions and increased iron absorption, chronic hemolysis is the major cause of tissue-iron accumulation in anemic iron-overload disorders caused by hemolytic anemia. Mechanistic studies in a hemolytic anemia mouse model demonstrated that loss of intestinal HIF2α/DMT1 signaling led to decreased tissue-iron accumulation in the liver without worsening the anemia. These data demonstrate that dysregulation of intestinal hypoxia and HIF2α signaling is critical for progressive iron overload in β-thalassemia and may be a novel therapeutic target in several anemic iron-overload disorders. PMID:24282296

  1. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  2. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds.

    PubMed

    Domínguez-Avila, J Abraham; Wall-Medrano, Abraham; Velderrain-Rodríguez, Gustavo R; Chen, C-Y Oliver; Salazar-López, Norma Julieta; Robles-Sánchez, Maribel; González-Aguilar, Gustavo A

    2017-01-25

    The positive health effects of phenolic compounds (PCs) have been extensively reported in the literature. An understanding of their bioaccessibility and bioavailability is essential for the elucidation of their health benefits. Before reaching circulation and exerting bioactions in target tissues, numerous interactions take place before and during digestion with either the plant or host's macromolecules that directly impact the organism and modulate their own bioaccessibility and bioavailability. The present work is focused on the gastrointestinal (GI) interactions that are relevant to the absorption and metabolism of PCs and how these interactions impact their pharmacokinetic profiles. Non-digestible cell wall components (fiber) interact intimately with PCs and delay their absorption in the small intestine, instead carrying them to the large intestine. PCs not bound to fiber interact with digestible nutrients in the bolus where they interfere with the digestion and absorption of proteins, carbohydrates, lipids, cholesterol, bile salts and micronutrients through the inhibition of digestive enzymes and enterocyte transporters and the disruption of micelle formation. PCs internalized by enterocytes may reach circulation (through transcellular or paracellular transport), be effluxed back into the lumen (P-glycoprotein, P-gp) or be metabolized by phase I and phase II enzymes. Some PCs can inhibit P-gp or phase I/II enzymes, which can potentially lead to drug-nutrient interactions. The absorption and pharmacokinetic parameters are modified by all of the interactions within the digestive tract and by the presence of other PCs. Undesirable interactions have promoted the development of nanotechnological approaches to promote the bioaccessibility, bioavailability, and bioefficacy of PCs.

  3. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes.

    PubMed

    Qin, Bolin; Dawson, Harry D; Schoene, Norberta W; Polansky, Marilyn M; Anderson, Richard A

    2012-01-01

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways, which regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport, and metabolism and is closely linked to systemic lipid metabolism. Cinnamon polyphenols have been shown to improve glucose, insulin, and lipid metabolism and improve inflammation in cell culture, animal, and human studies. However, little is known of the effects of an aqueous cinnamon extract (CE) on the regulation of genes and signaling pathways related to intestinal metabolism. The aim of the study was to investigate the effects of a CE on the primary enterocytes of chow-fed rats. Freshly isolated intestinal enterocytes were used to investigate apolipoprotein-B48 secretion by immunoprecipitation; gene expressions by quantitative reverse transcriptase-polymerase chain reaction and the protein and phosphorylation levels were evaluated by western blot and flow cytometric analyses. Ex vivo, the CE significantly decreased the amount of apolipoprotein-B48 secretion into the media, inhibited the mRNA expression of genes of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, and induced the expression of the anti-inflammatory gene, Zfp36. CE also increased the mRNA expression of genes leading to increased insulin sensitivity, including Ir, Irs1, Irs2, Pi3k, and Akt1, and decreased Pten expression. CE also inhibited genes associated with increased cholesterol, triacylglycerols, and apolipoprotein-B48 levels, including Abcg5, Npc1l1, Cd36, Mttp, and Srebp1c, and facilitated Abca1 expression. CE also stimulated the phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular-signal-regulated kinase expressions determined by flow cytometry, with no changes in protein levels. These results demonstrate that the CE regulates genes

  4. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated. 2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974). 3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled. 4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion. 5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline. 6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l. 7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone. 8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration. PMID:4422318

  5. ON ABSORPTION OF DYSENTERY ENDOTOXINS IN RADIATION SICKNESS OF RABBITS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumanyan, M.A.; Sosnovskaya, F.M.

    1958-03-01

    It was demonstrated in previous work with labeled atoms that dysentery endotoxins are absorbed from intestines into the blood stream when lntroduced to rabbits per os. They are revealed in the blood within half an hour after administration. When rabbits were irradiated by LD 50, the intensity of absorption of dysentery endotoxin was changed. It increased during the first 24 hours after irradiation, then this process normalized for a short time. Next it was replaced by a stable increase of absorption which began at the end of the first week and continued for 3 to 4 weeks after irradiation. (tr-auth)

  6. Expression of a novel isoform of Na+/H+ exchanger 3 in the kidney and intestine of banded houndshark, Triakis scyllium

    PubMed Central

    Li, Shanshan; Takabe, Souichirou; Chen, An-Ping; Romero, Michael F.; Umezawa, Takahiro; Nakada, Tsutomu; Hyodo, Susumu; Hirose, Shigehisa

    2013-01-01

    Na+/H+ exchanger 3 (NHE3) provides one of the major Na+ absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na+ reabsorption, urine acidification, and intestinal Na+ absorption in elasmobranchs. PMID:23485868

  7. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth.

    PubMed

    Dreon, Marcos S; Fernández, Patricia E; Gimeno, Eduardo J; Heras, Horacio

    2014-06-01

    The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense

  8. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  9. Physicochemical characteristics and gastrointestinal absorption behaviors of S-propargyl-cysteine, a potential new drug candidate for cardiovascular protection and antitumor treatment.

    PubMed

    Ma, Guo; Zhang, Lin; Zhang, Peng; Bao, Xingfei; Zhou, Ning; Shi, Qingling; Zheng, Yuanting; Liu, Hongrui; Bu, Fengjiao; Zhang, Ying; Huang, Wenjie; Wang, Fen; Zhu, Yizhun; Cai, Weimin

    2015-04-01

    1. As a potential new drug candidate for cardiovascular protection and antitumor treatment, the physicochemical properties, gastrointestinal (GI) absorption behaviors and mechanisms of S-propargyl-cysteine (SPRC) were investigated in this study. 2. SPRC exhibited favorable solubility in aqueous media. The log P and log D values were low (≤1.93 ± 0.08). The pKa in the acidic and basic regions was 2.08 ± 0.02 and 8.72 ± 0.03, respectively. The isoelectric point was 5.40 ± 0.02. SPRC was stable in the rat GI fluids, and showed no obvious adsorption and metabolism in the rat GI tract. 3. SPRC displayed poor gastric absorption and favorable intestinal absorption in the rat in situ GI perfusion model. Absorption rate constants (ka), hourly absorption percentage (P) and apparent permeability coefficient (Papp) of SPRC in the small intestine were ≥0.77 ± 0.06 h(-1), 59.25 ± 4.02% and (7.99 ± 0.88) × 10(-5 )cm/s, respectively. Absorption of SPRC exhibited a certain dependence on physiological pH and absorption region. Absorption of SPRC was not inhibited by l-methionine and 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid. 4. SPRC showed favorable oral absorption. It can be categorized as a BCS class I drug. The membrane pore transport appeared to be one of the predominant absorption modes for SPRC.

  10. Canine gastrointestinal physiology: Breeds variations that can influence drug absorption.

    PubMed

    Oswald, Hayley; Sharkey, Michele; Pade, Devendra; Martinez, Marilyn N

    2015-11-01

    Although all dogs belong to Canis lupus familiaris, the physiological diversity resulting from selective breeding can lead to wide interbreed variability in drug pharmacokinetics (PK) or in oral drug product performance. It is important to understand this diversity in order to predict the impact of drug product formulation attributes on in vivo dissolution and absorption characteristics across the canine population when the dog represents the targeted patient population. Based upon published information, this review addresses breed differences in gastrointestinal (GI) physiology and discusses the in vivo implications of these differences. In addition to the importance of such information for understanding the variability that may exist in the performance of oral dosage forms in dogs for the purpose of developing canine therapeutics, an appreciation of breed differences in GI physiology can improve our prediction of oral drug formulation performance when we extrapolate bioavailability results from the dog to the humans, and vice versa. In this literature review, we examine reports of breed associated diversity in GI anatomy and morphology, gastric emptying time (GET), oro-cecal transit time (OCTT), small intestinal transit time (SITT), large intestinal transit time (LITT), intestinal permeability, sodium/potassium fecal concentrations, intestinal flora, and fecal moisture content. Published by Elsevier B.V.

  11. Digestibility of soybean and pigeon pea seed meals and morphological intestinal alterations in pigs.

    PubMed

    Mekbungwan, Apichai; Thongwittaya, Narin; Yamauchi, Koh-En

    2004-06-01

    To compare the nutrient digestibility of soybean meal (SM) and pigeon pea seed meal (PM) as well as morphological intestinal alterations in piglets fed them, three pigs per group were randomly selected at the end of the feeding experiment for ten days. Growth performance was higher in the SM group than in the PM group (p<0.05). The digestibility of crude protein, crude fat and crude fiber was 80.6%, 23.6% and 52.4% in the SM group, while in the PM group, values of 49.8%, 23.6% and 43.2% were observed, respectively. Digestible energy was 3.26 kcal g(-1) in SM and 3.17 kcal g(-1) in PM. It was concluded that the digestibility of PM was lower than that of SM; almost half of the protein in PM was digested. Dietary treatments had no effect on length of each small intestinal segment and weight of visceral organs (small intestine, liver, heart, spleen, kidney, stomach and lung) except the decreased kidney weight in the PM group (p<0.05). The epithelial cells on the jejunal villi showed a dome-like shape in the SM group, but they were a flat shape in the PM group. The present digestion trial and histological intestinal data suggest that the intestinal digestive and absorptive functions are much more atrophied in the PM group than in the SM group, and demonstrate that histological intestinal alterations might be well related with the intestinal functions.

  12. Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences

    PubMed Central

    Purohit, Vishnudutt; Bode, J. Christian; Bode, Christiane; Brenner, David A.; Choudhry, Mashkoor A.; Hamilton, Frank; Kang, Y. James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R. Balfour; Swanson, Christine; Turner, Jerrold R.

    2008-01-01

    This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram negative bacteria in the intestine which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, L-glutamine, oats supplementation, or zinc thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram negative bacteria and

  13. Lymphatic absorption of hypolipidemic compound, 1-O-[p-(myristyloxy)-alpha-methylcinnamoyl] glycerol (LK-903).

    PubMed

    Sugihara, J; Furuuchi, S

    1988-02-01

    The intestinal absorption process of 1-O-[p-(myristyloxy)-alpha-methylcinnamoyl] glycerol (LK-903), a new hypolipidemic compound, was studied in rats. When 3H-LK-903 or 3H-LKA [3H-p- (myristyloxy)-alpha-methyl cinnamic acid], labeled at the cinnamic acid moiety, or 14C-LK-903, labeled at the glycerol moiety, were administered orally to thoracic duct-cannulated rats at a dose of 0.233 mmol/kg, 31.1, 6.7 and 18.1% of the dose, respectively, appeared in the lymph within 24 h. In this case, radioactive compounds in the lymph lipids consisted of LKA (radioactivity was not detected in the fraction of LKA with 14C-LK-903), LK-903, diglyceride analogues and triglyceride analogues. The percentages of the triglyceride analogues were the highest, followed by the diglyceride analogues. On the other hand, when doubly labeled LK-903 (3H/14C = 1, corrected ratio) was administered orally, the values of 3H/14C for the monoglyceride, diglyceride and triglyceride analogues in the lymph were 1.2-1.5, 1.7-1.9 and 1.9-2.7, respectively. The lymphatic absorption of LK-903 was stimulated by the presence of lecithin but inhibited by a high dose of triolein. The results indicated that (1) LK-903 formed micelles in the intestine, (2) a large part of LK-903 was absorbed as such, (3) a part of LK-903 was hydrolyzed in the intestinal mucosa, and (4) a part of LKA formed by hydrolysis was again utilized to synthesize the higher glycerides and absorbed via the lymphatic absorption route for lipids.

  14. Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals

    PubMed Central

    Grenier, Bertrand; Applegate, Todd J.

    2013-01-01

    Mycotoxins are secondary metabolites of fungi that can cause serious health problems in animals, and may result in severe economic losses. Deleterious effects of these feed contaminants in animals are well documented, ranging from growth impairment, decreased resistance to pathogens, hepato- and nephrotoxicity to death. By contrast, data with regard to their impact on intestinal functions are more limited. However, intestinal cells are the first cells to be exposed to mycotoxins, and often at higher concentrations than other tissues. In addition, mycotoxins specifically target high protein turnover- and activated-cells, which are predominant in gut epithelium. Therefore, intestinal investigations have gained significant interest over the last decade, and some publications have demonstrated that mycotoxins are able to compromise several key functions of the gastrointestinal tract, including decreased surface area available for nutrient absorption, modulation of nutrient transporters, or loss of barrier function. In addition some mycotoxins facilitate persistence of intestinal pathogens and potentiate intestinal inflammation. By contrast, the effect of these fungal metabolites on the intestinal microbiota is largely unknown. This review focuses on mycotoxins which are of concern in terms of occurrence and toxicity, namely: aflatoxins, ochratoxin A and Fusarium toxins. Results from nearly 100 published experiments (in vitro, ex vivo and in vivo) were analyzed with a special attention to the doses used. PMID:23430606

  15. Effect of composition of simulated intestinal media on the solubility of poorly soluble compounds investigated by design of experiments.

    PubMed

    Madsen, Cecilie Maria; Feng, Kung-I; Leithead, Andrew; Canfield, Nicole; Jørgensen, Søren Astrup; Müllertz, Anette; Rades, Thomas

    2018-01-01

    The composition of the human intestinal fluids varies both intra- and inter-individually. This will influence the solubility of orally administered drug compounds, and hence, the absorption and efficacy of compounds displaying solubility limited absorption. The purpose of this study was to assess the influence of simulated intestinal fluid (SIF) composition on the solubility of poorly soluble compounds. Using a Design of Experiments (DoE) approach, a set of 24 SIF was defined within the known compositions of human fasted state intestinal fluid. The SIF were composed of phospholipid, bile salt, and different pH, buffer capacities and osmolarities. On a small scale semi-robotic system, the solubility of 6 compounds (aprepitant, carvedilol, felodipine, fenofibrate, probucol, and zafirlukast) was determined in the 24 SIF. Compound specific models, describing key factors influencing the solubility of each compound, were identified. Although all models were different, the level of phospholipid and bile salt, the pH, and the interactions between these, had the biggest influences on solubility overall. Thus, a reduction of the DoE from five to three factors was possible (11-13 media), making DoE solubility studies feasible compared to single SIF solubility studies. Applying this DoE approach will lead to a better understanding of the impact of intestinal fluid composition on the solubility of a given drug compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phosphate transport in pig proximal small intestines during postnatal development: lack of modulation by calcitriol.

    PubMed

    Schröder, B; Hattenhauer, O; Breves, G

    1998-04-01

    The role of calcitriol in the intestinal absorption of inorganic phosphate (Pi) during postnatal development was studied in newborn [<1 week postpartum (pp)], suckling (3-4 weeks pp), and weaned (>6 weeks pp) control piglets (con) and piglets suffering from inherited calcitriol deficiency (def). In addition, a number of def piglets were treated with vitamin D3 (def-D3). Regardless of age, plasma calcitriol concentrations in def piglets were unphysiologically low (16-21 pg/ml) and differed significantly from those in respective con animals (60-69 pg/ml) and vitamin D3-treated def piglets (50-56 pg/ml). However, newborn and suckling def piglets had normal Ca (approximately 3.0 mmol/liter) and Pi (approximately 2.8 mmol/liter) plasma levels. Def piglets became hypocalcemic (1.9 mmol/liter) and hypophosphatemic (1.9 mmol/liter) between 4-6 weeks pp. Treatment with vitamin D3 significantly increased plasma Ca (3.2 mmol/liter) and Pi (2.7 mmol/liter) levels in weaned def animals. Regardless of calcitriol status, net Pi flux rates (active Pi absorption, as determined with the in vitro Ussing-chamber technique) from the upper small intestines was maximal at birth [170-224 nmol/(cm2 x h)] and decreased by approximately 80% during the first week of life before remaining constant [30-50 nmol/(cm2 x h)] during the following development. In weaned def piglets, net Pi flux rates were significantly lower by about 80% compared with those in con animals. Treatment of def piglets with vitamin D3 had no effect in newborn and suckling animals but reconstituted net Pi flux rates to normal values at weaning age. Age-dependent and calcitriol-mediated changes in net Pi flux rates were paralleled by respective maximum velocity values of Na+-dependent Pi uptake across the brush border membrane of the enterocytes (newborn piglets, 1.9-2.2 nmol/(mg protein 10 sec); suckling piglets, 0.4-0.6 nmol/(mg protein x 10 sec); weaned piglets, 0.7, 0.3, and 0.7 nmol/(mg protein x 10 sec) in con, def

  17. Extensive intestinal first-pass metabolism of arctigenin: evidenced by simultaneous monitoring of both parent drug and its major metabolites.

    PubMed

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-03-01

    The current study aims to investigate intestinal absorption and metabolism of arctigenin (AR) through simultaneous monitoring of AR and its major metabolites in rat plasma. An UPLC/MS/MS assay was developed with chromatographic separation of all analytes achieved by a C18 Column (3.9mm×150mm, 3.5μm) and a gradient elution with acetonitrile and 0.1% formic acid within 9min. Sample extraction with acetonitrile was optimized to achieve satisfactory recovery for both AR and its major metabolites. The lower limit of quantification (LLOQ) for all analytes was 25ng/ml. The intra-day and inter-day precision and accuracy of each analyte at LLOQ and three quality control (QC) concentrations (low, middle and high) in rat plasma was within 15.0% RSD and 15.0% bias. The extraction recoveries were within the range of 83.8-94.0% for all analytes. The developed and validated assay was then applied to the absorption study of AR in both Caco-2 cell monolayer model and in situ single-pass rat intestinal perfusion model. High absorption permeability of AR was demonstrated in both models with Papp of (1.76±0.48)×10(-5) (A→B) (Caco-2) and Pblood of (8.6±3.0)×10(-6)cm/s (intestinal perfusion). Extensive first-pass metabolism of AR to arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was identified in rat intestinal perfusion study with Cummins's extraction ratios of 0.458±0.012 and 0.085±0.013, respectively. The current assay method demonstrated to be a practical tool for pharmacokinetics investigation of AR with complicated metabolism pathways and multiple metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    USDA-ARS?s Scientific Manuscript database

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  19. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models.

    PubMed

    Luo, Li-Yu; Fan, Miao-Xuan; Zhao, Hai-Yu; Li, Ming-Xing; Wu, Xu; Gao, Wen-Yuan

    2018-03-21

    Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.

  20. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia.

    PubMed

    Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi

    2017-01-01

    The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish. Copyright © 2016. Published by Elsevier Inc.