Sample records for absorption liver uptake

  1. Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs.

    PubMed

    Guillot, E; Vaugelade, P; Lemarchal, P; Rérat, A

    1993-03-01

    In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels at regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65% of octanoic acid infused into the duodenum and 54% of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.

  2. Uptake of Free Choline by Isolated Perfused Rat Liver

    NASA Astrophysics Data System (ADS)

    Zeisel, Steven H.; Story, David L.; Wurtman, Richard J.; Brunengraber, Henri

    1980-08-01

    The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka=0.17± 0.07 mM (SD); Vmax=0.84± 0.16\\ μ mol/min × g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver.

  3. Liver uptake of biguanides in rats.

    PubMed

    Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko

    2011-09-01

    Metformin is an oral antihyperglycaemic agent widely used in the management of non-insulin-dependent diabetes mellitus. The liver is the primary target, metformin being taken up into human and rat hepatocytes via an active transport mechanism. The present study was designed to compare hepatic uptake of two biguanides, metformin and phenformin, in vitro and in vivo. In in vitro experiments, performed using rat cryopreserved hepatocytes, phenformin exhibited a much higher affinity and transport than metformin, with marked differences in kinetics. The K(m) values for metformin and phenformin were 404 and 5.17μM, respectively, with CLint (V(max)/K(m)) values 1.58μl/min per 10(6) cells and 34.7μl/min per 10(6) cells. In in vivo experiments, when (14)C-metformin and (14)C-phenformin were given orally to male rats at a dose of 50mg/kg, the liver concentrations of radioactivity at 0.5 hour after dosing were 21.5μg eq./g with metformin but 147.1μg eq./g for phenformin, ratios of liver to plasma concentrations being 4.2 and 61.3, respectively. In conclusion, the results suggest that uptake of biguanides by rat hepatocytes is in line with the liver distribution found in vivo, phenformin being more efficiently taken up by liver than metformin after oral administration. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. [11C]choline uptake in regenerating liver after partial hepatectomy or CCl4-administration.

    PubMed

    Sasaki, Toru

    2004-02-01

    To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.

  5. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul

    2017-08-02

    Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.

  6. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver.

    PubMed

    Bijsterbosch, M K; Van Berkel, T J

    1990-08-15

    The liver contains two types of galactose receptors, specific for Kupffer and parenchymal cells respectively. These receptors are only expressed in the liver, and therefore are attractive targets for the specific delivery of drugs. We provided low-density lipoprotein (LDL), a particle with a diameter of 23 nm in which a variety of drugs can be incorporated, with terminal galactose residues by lactosylation. Radioiodinated LDL, lactosylated to various extents (60-400 mol of lactose/ mol of LDL), was injected into rats. The plasma clearance and hepatic uptake of radioactivity were correlated with the extent of lactosylation. Highly lactosylated LDL (greater than 300 lactose/LDL) is completely cleared from the blood by liver within 10 min. Pre-injection with N-acetylgalactosamine blocks liver uptake, which indicates that the hepatic recognition sites are galactose-specific. The hepatic uptake occurs mainly by parenchymal and Kupffer cells. At a low degree of lactosylation, approx. 60 lactose/LDL, the specific uptake (ng/mg of cell protein) is 28 times higher in Kupffer cells than in parenchymal cells. However, because of their much larger mass, parenchymal cells are the main site of uptake. At high degrees of lactosylation (greater than 300 lactose/LDL), the specific uptake in Kupffer cells is 70-95 times that in parenchymal cells. Under these conditions, Kupffer cells are, despite their much smaller mass, the main site of uptake. Thus not only the size but also the surface density of galactose on lactosylated LDL is important for the balance of uptake between Kupffer and parenchymal cells. This knowledge should allow us to design particulate galactose-bearing carriers for the rapid transport of various drugs to either parenchymal cells or Kupffer cells.

  7. Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease.

    PubMed

    Lake, April D; Novak, Petr; Fisher, Craig D; Jackson, Jonathan P; Hardwick, Rhiannon N; Billheimer, D Dean; Klimecki, Walter T; Cherrington, Nathan J

    2011-10-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that range from simple fatty liver to nonalcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of human NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism, and elimination (ADME) of drugs. Differential gene expression between three clinically defined pathological groups-normal, steatosis, and NASH-was analyzed. Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChip Human 1.0ST arrays. A total of 11,633 genes exhibited altered expression out of 33,252 genes at a 5% false discovery rate. Most gene expression changes occurred in the progression from steatosis to NASH. Principal component analysis revealed that hepatic disease status was the major determinant of differential ADME gene expression rather than age or sex of sample donors. Among the 515 drug transporters and 258 drug-metabolizing enzymes (DMEs) examined, uptake transporters but not efflux transporters or DMEs were significantly over-represented in the number of genes down-regulated. These results suggest that uptake transporter genes are coordinately targeted for down-regulation at the global level during the pathological development of NASH and that these patients may have decreased drug uptake capacity. This coordinated regulation of uptake transporter genes is indicative of a hepatoprotective mechanism acting to prevent accumulation of toxic intermediates in disease-compromised hepatocytes.

  8. Reduced Uptake of FDOPA PET in End-Stage Liver Disease with Elevated Manganese Levels

    PubMed Central

    Criswell, Susan R; Perlmutter, Joel S; Crippin, Jeffrey S; Videen, Tom O; Moerlein, Stephen M; Flores, Hubert P; Birke, Angela M; Racette, Brad A

    2013-01-01

    Objective To investigate whether manganese toxicity secondary to end state liver disease is associated with nigrastriatal dysfunction as measured by 6-[18F]fluoro-L-DOPA (FDOPA) PET imaging. Design Observational case report. Setting The Movement Disorder Center at Washington University in St. Louis. Patients An individual with manganese toxicity secondary to end stage liver disease. His FDOPA PET was compared with those of 10 idiopathic Parkinson disease patients and 10 age- and sex-matched healthy controls. Main Outcome Measure The average estimated net FDOPA uptake by Patlak graphical analysis for caudate, anterior putamen and posterior putamen. Results The FDOPA uptake for the patient with secondary manganese toxicity was reduced across all regions by more than 2 SDs compared with healthy controls: caudate (reduced 24.7%), anterior putamen (28.0%), and posterior putamen (29.3%). The ratio of uptake between the caudate/posterior putamen was 0.99 and was different from that of idiopathic Parkinson disease patients, in whom the greatest reduction of FDOPA was in the posterior putamen (mean [SD] ratio, 1.65 [0.41]). Conclusions Reduce striatal uptake of FDOPA uptake indicates dysfunction of the nigrostriatal pathways in manganese toxicity secondary to end stage liver disease. The pattern of striatal involvement with equal reduction of FDOPA uptake in the caudate compared with posterior putamen appears different from those previously reported in individuals with occupational manganese toxicity and idiopathic Parkinson disease and may be specific to manganese toxicity secondary to end stage liver disease. PMID:22410448

  9. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  10. Impacts of biological and procedural factors on semiquantification uptake value of liver in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging.

    PubMed

    Mahmud, Mohd Hafizi; Nordin, Abdul Jalil; Ahmad Saad, Fathinul Fikri; Azman, Ahmad Zaid Fattah

    2015-10-01

    Increased metabolic activity of fluorodeoxyglucose (FDG) in tissue is not only resulting of pathological uptake, but due to physiological uptake as well. This study aimed to determine the impacts of biological and procedural factors on FDG uptake of liver in whole body positron emission tomography/computed tomography (PET/CT) imaging. Whole body fluorine-18 ((18)F) FDG PET/CT scans of 51 oncology patients have been reviewed. Maximum standardized uptake value (SUVmax) of lesion-free liver was quantified in each patient. Pearson correlation was performed to determine the association between the factors of age, body mass index (BMI), blood glucose level, FDG dose and incubation period and liver SUVmax. Multivariate regression analysis was established to determine the significant factors that best predicted the liver SUVmax. Then the subjects were dichotomised into four BMI groups. Analysis of variance (ANOVA) was established for mean difference of SUVmax of liver between those BMI groups. BMI and incubation period were significantly associated with liver SUVmax. These factors were accounted for 29.6% of the liver SUVmax variance. Statistically significant differences were observed in the mean SUVmax of liver among those BMI groups (P<0.05). BMI and incubation period are significant factors affecting physiological FDG uptake of liver. It would be recommended to employ different cut-off value for physiological liver SUVmax as a reference standard for different BMI of patients in PET/CT interpretation and use a standard protocol for incubation period of patient to reduce variation in physiological FDG uptake of liver in PET/CT study.

  11. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  12. The significance of alteration 2-[fluorine-18]fluoro-2-deoxy-(D)-glucose uptake in the liver and skeletal muscles of patients with hyperthyroidism.

    PubMed

    Chen, Yen-Kung; Chen, Yen-Ling; Tsui, Chih-Cheng; Wang, Su-Chen; Cheng, Ru-Hwa

    2013-10-01

    Hyperthyroidism leads to an enhanced demand for glucose. The hypothesis of the study is that 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) can demonstrate the alteration of systemic glucose metabolism in hyperthyroidism patients by measuring the FDG standard uptake value (SUV) in liver and skeletal muscle. Forty-eight active hyperthyroidism patients and 30 control participants were recruited for the study. The intensity of FDG uptake in the liver and thigh muscles was graded subjectively, comprising three groups: group I, higher FDG uptake in the liver; group II, equal FDG uptake in the liver and muscles; and group III, higher FDG uptake in the muscles. Ten subjects with FDG PET scans at hyperthyroid and euthyroid status were analyzed. Serum levels of thyroxine (T4) and triiodothyronine (T3) correlated to the SUVs of the liver and muscles. Forty-one patients (41/48, 85.4%) showed symmetrically increased FDG uptake in the muscles (22 in group I, 9 in group II, and 17 in group III). Group I patients were significantly older than group II (P = .02) and group III (P = .001) patients. The correlation coefficient between the serum T3, T4, and SUV levels in the muscles was significant (r = 0.47-0.77, P < .01), particularly in liver and muscle FDG uptake between hyperthyroid and euthyroid states. In the 30 control subjects, there was normal physiological FDG uptake in the liver and muscles. In PET scans showing a pattern of decreased liver and increased skeletal muscle FDG uptake in hyperthyroidism patients, this change of FDG distribution is correspondence to the severity of hyperthyroidism status. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. The Association Between Liver and Tumor [18F]FDG Uptake in Patients with Diffuse Large B Cell Lymphoma During Chemotherapy.

    PubMed

    Wu, Xingchen; Bhattarai, Abhisek; Korkola, Pasi; Pertovaara, Hannu; Eskola, Hannu; Kellokumpu-Lehtinen, Pirkko-Liisa

    2017-10-01

    The aim of this study was to explore the association between liver, mediastinum and tumor 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) uptake during chemotherapy in diffuse large B cell lymphoma (DLBCL). Nineteen patients with proven DLBCL underwent positron emission tomography (PET)/X-ray computed tomography scan at baseline, 1 week and 2 cycles after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) therapy, and again after chemotherapy completion. The mean and maximal standardized uptake value (SUVmean and SUVmax) of the liver and mediastinum were measured and correlated with the tumor SUVmax, SUVsum, whole-body metabolic tumor volume (MTVwb), and total lesion glycolysis (TLG). At baseline, both the liver and mediastinum SUVmean and SUVmax correlated inversely with the tumor MTVwb or TLG (p < 0.01 or 0.001). The liver SUVmean and SUVmax increased significantly after 1 week of R-CHOP therapy and remained at the high level until chemotherapy completion. The mediastinum SUVmean and SUVmax remained stable during chemotherapy. The tumor SUVmax, SUVsum, MTVwb, and TLG decreased significantly after 1 week of R-CHOP therapy. The change of the liver SUVmean correlated inversely with the change of tumor MTVwb and TLG after 1 week of chemotherapy (p < 0.05, respectively). The intersubject variability of liver and mediastinum [ 18 F]FDG uptake ranged from 11 to 26 %. The liver [ 18 F]FDG uptake increased significantly after R-CHOP therapy. One of the possible reasons is the distribution of a greater fraction of the tracer to healthy tissues rather than tumor after effective chemotherapy. The variability of the liver [ 18 F]FDG uptake during chemotherapy might affect the visual analysis of the interim PET scan and this needs to be confirmed in future studies with a large patient cohort. In addition, the intersubject variability of the liver and mediastinum [ 18 F]FDG uptake should be considered.

  14. Translobular uptake patterns of environmental toxicants in the rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, S.; Rosenberg, A.; Nakatsugawa, T.

    1988-03-01

    Recent autologous blood perfusion and autoradiographic studies in this laboratory have shown that uptake of the organophosphate insecticide, parathion and its metabolite, paraoxon, by the rat liver is extremely rapid. The efficient metabolism of these organophosphorus esters during the first hepatic passage results from a favorable combination of two independent factors, i.e., the titer of biodegradation enzymes within the lobule and the mode of translobular uptake. If this scenario also applies to other chemicals, it may be possible to define their threshold doses for systemic exposure. Such a possibility has far-reaching toxicological implications, and prompted this study to explore themore » less defined of the two underlying factors, i.e., translobular uptake pattern of xenobiotics using the recently developed autologous blood recirculating liver perfusion technique. The authors have limited themselves to non-ionic chemicals to avoid complications due to active transport. Because water solubility/lipophilicity is likely to be a critical factor in the binding of xenobiotics to the blood and hepatocytes and thus in their translobular behavior, xenobiotics of varied lipophilicity were pulse-infused and their elution pattern examined in the recirculating autologous blood perfusion system. Three chemicals, i.e., 1,2- and 1,3-dichlorobenzene and 4-nitroanisole were chosen as examples of relatively water-soluble xenobiotics compared with parathion. Benzo(a)pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin were studied as highly lipophilic toxicants.« less

  15. Liver Plays a Major Role in FGF-21 Mediated Glucose Homeostasis.

    PubMed

    Liu, Mingyao; Cao, Hongwei; Hou, Yuting; Sun, Guopeng; Li, Deshan; Wang, Wenfei

    2018-01-01

    The liver is a vital organ in vertebrates and has a wide range of functions, including glucose absorption, glycogen storage and glucose production. Fibroblast growth factor (FGF)-21 is a metabolic regulator that is primarily produced by the liver. In this paper, we studied the effect of FGF-21 on glucose metabolism in the liver. The glucose uptake of cells was detected by 2-Deoxy-d-[3H] glucose; the synergy between insulin and FGF-21 was evaluated. The mRNA expression of GLUT1-4, G6Pase and PEPCK was detected by real-time PCR. Glycogen synthesis was examined by the anthrone method. Blood samples to monitor glucose in db/db diabetic mice were obtained by tail snip. Glucose metabolism in the liver and adipose tissues was observed by fluorescence microscopy. In this study, FGF-21 stimulated glucose uptake by liver cells in both a dose and time-dependent manner, and at the same time, FGF-21 specifically stimulated GLUT1 expression in the liver cells. Furthermore, FGF-21 demonstrated a synergistic effect with insulin on glucose absorption, which is in accordance with enhanced GLUT-1 and -4 expression. Treatment with FGF-21 increased glycogen storage in liver cells. Consistent with in vitro results, FGF-21 lowered the plasma glucose level and stimulated GLUT1 expression and glycogen synthesis in db/db diabetic mice. Simultaneously, FGF-21 inhibited the gene expression of G6Pase and PEPCK. Our results suggest that FGF-21 clears up plasma glucose by stimulating glucose absorption in the liver of diabetic animals and decreases glucose release from the liver by inhibiting gluconeogenesis. Overall, these data indicate that the liver is an important target organ of FGF-21 to regulate glucose metabolism. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  17. Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.

    PubMed

    Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R

    2012-06-01

    The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that

  18. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake.

    PubMed

    Carreras, M C; Peralta, J G; Converso, D P; Finocchietto, P V; Rebagliati, I; Zaninovich, A A; Poderoso, J J

    2001-12-01

    Changes in O(2) uptake at different thyroid status have been explained on the basis of the modulation of mitochondrial enzymes and membrane biophysical properties. Regarding the nitric oxide (NO) effects, we tested whether liver mitochondrial nitric oxide synthase (mtNOS) participates in the modulation of O(2) uptake in thyroid disorders. Wistar rats were inoculated with 400 microCi (131)I (hypothyroid group), 20 microg thyroxine (T(4))/100 g body wt administered daily for 2 wk (hyperthyroid group) or vehicle (control). Basal metabolic rate, mitochondrial function, and mtNOS activity were analyzed. Systemic and liver mitochondrial O(2) uptake and cytochrome oxidase activity were lower in hypothyroid rats with respect to controls; mitochondrial parameters were further decreased by L-arginine (-42 and -34%, P < 0.05), consistent with 5- to 10-fold increases in matrix NO concentration. Accordingly, mtNOS expression (75%) and activity (260%) were selectively increased in hypothyroidism and reverted by hormone replacement without changes in other nitric oxide isoforms. Moreover, mtNOS activity correlated with serum 3,5,3'-triiodothyronine (T(3)) and O(2) uptake. Increased mtNOS activity was also observed in skeletal muscle mitochondria from hypothyroid rats. Therefore, we suggest that modulation of mtNOS is a substantial part of thyroid effects on mitochondrial O(2) uptake.

  19. Diabetes regulates fructose absorption through thioredoxin-interacting protein

    PubMed Central

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-01-01

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake. DOI: http://dx.doi.org/10.7554/eLife.18313.001 PMID:27725089

  20. Diabetes regulates fructose absorption through thioredoxin-interacting protein.

    PubMed

    Dotimas, James R; Lee, Austin W; Schmider, Angela B; Carroll, Shannon H; Shah, Anu; Bilen, Julide; Elliott, Kayla R; Myers, Ronald B; Soberman, Roy J; Yoshioka, Jun; Lee, Richard T

    2016-10-11

    Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake.

  1. Maternal liver docosahexaenoic acid (DHA) stores are increased via higher serum unesterified DHA uptake in pregnant long Evans rats.

    PubMed

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-08-01

    Maternal docosahexaenoic acid (DHA, 22:6n-3) supplies the developing fetus during pregnancy; however, the mechanisms are unclear. We utilized pregnant rats to determine rates of DHA accretion, tissue unesterified DHA uptake and whole-body DHA synthesis-secretion. Female rats maintained on a DHA-free, 2% α-linolenic acid diet were either:1) sacrificed at 56 days for baseline measures, 2) mated and sacrificed at 14-18 days of pregnancy or 3) or sacrificed at 14-18 days as age-matched virgin controls. Maternal brain, adipose, liver and whole body fatty acid concentrations was determined for balance analysis, and kinetic modeling was used to determine brain and liver plasma unesterified DHA uptake and whole-body DHA synthesis-secretion rates. Total liver DHA was significantly higher in pregnant (95±5 μmol) versus non-pregnant (49±5) rats with no differences in whole-body DHA synthesis-secretion rates. However, liver uptake of plasma unesterified DHA was 3.8-fold higher in pregnant animals compared to non-pregnant controls, and periuterine adipose DHA was lower in pregnant (0.89±0.09 μmol/g) versus non-pregnant (1.26±0.06) rats. In conclusion, higher liver DHA accretion during pregnancy appears to be driven by higher unesterified DHA uptake, potentially via DHA mobilization from periuterine adipose for delivery to the fetus during the brain growth spurt. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization.

    PubMed

    Lenoir, Laurence; Edeline, Julien; Rolland, Yann; Pracht, Marc; Raoul, Jean-Luc; Ardisson, Valérie; Bourguet, Patrick; Clément, Bruno; Boucher, Eveline; Garin, Etienne

    2012-05-01

    Identifying gastroduodenal uptake of (99m)Tc-macroaggregated albumin (MAA), which is associated with an increased risk of ulcer disease, is a crucial part of the therapeutic management of patients undergoing radioembolization for liver tumours. Given this context, the use of MAA single photon emission computed tomography (SPECT)/CT may be essential, but the procedure has still not been thoroughly evaluated. The aim of this retrospective study was to determine the effectiveness of MAA SPECT/CT in identifying digestive extrahepatic uptake, while determining potential diagnostic pitfalls. Overall, 139 MAA SPECT/CT scans were performed on 103 patients with different hepatic tumour types. Patients were followed up for at least 6 months according to standard requirements. Digestive, or digestive-like, uptake other than free pertechnetate was identified in 5.7% of cases using planar imaging and in 36.6% of cases using SPECT/CT. Uptake sites identified by SPECT/CT included the gastroduodenal region (3.6%), gall bladder (12.2%), portal vein thrombosis (6.5%), hepatic artery (6.5%), coil embolization site (2.1%) as well as falciform artery (5.0%). For 2.1% of explorations, a coregistration error between SPECT and CT imaging could have led to a false diagnosis by erroneously attributing an uptake site to the stomach or gall bladder, when the uptake actually occurred in the liver. SPECT/CT is more efficacious than planar imaging in identifying digestive extrahepatic uptake sites, with extrahepatic uptake observed in one third of scans using the former procedure. However, more than half of the uptake sites in our study were vascular in nature, without therapeutic implications. The risk of coregistration errors must also be kept in mind.

  3. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  4. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

    PubMed Central

    Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.

    2017-01-01

    Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408

  5. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver.

    PubMed

    Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  7. Increased liver uptake of liposomes and improved targeting efficacy by labeling with asialofetuin in rodents.

    PubMed

    Wu, J; Liu, P; Zhu, J L; Maddukuri, S; Zern, M A

    1998-03-01

    To improve liposome-directed therapy of liver disease and gene delivery, it would be beneficial to selectively target hepatocytes. For this purpose, conventional liposomes (CL) were labeled with asialofetuin (AF), an asialoglycoprotein. The biodistribution of AF-labeled liposomes (AF-L) in mice and their incorporation into rat hepatocytes, and their potential use in acute liver injury, were investigated. AF-L displayed a quicker plasma clearance than CL, and 25.4%, 2.7%, and 1.2% of the injected dose remained in the plasma versus 47.0%, 26.1%, and 9.5% of CL, respectively at 2, 4, and 20 hours after the injection. Total liver uptake of AF-L (73%+/-3.9%) was markedly higher (P < .005) than CL (16.5%+/-1.8%) 4 hours after the injection. Liposomal radioactivity (cpm/mg) was greatly enhanced in the liver (11-fold) during the first 4 hours after the administration of 14C-AF-L, and was much higher than in 14C-CL-injected mice (1.5-fold). In vitro incubation of isolated rat hepatocytes with 14C-AF-L or intravenous injection of 14C-AF-L in rats resulted in higher hepatocyte-bound radioactivity compared with 14C-CL (P < .01-.005). AF-L-associated 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) fluorescent signals were not only located in Kupffer cells, but also in hepatocytes, in which bile canaliculus networks were imaged. Intravenous administration of vitamin E (VE)-associated CL (VE-CL, 1 mg/mouse) significantly lowered alanine transaminase (ALT) levels in CCl4-treated mice (196+/-79 vs. 2,107+/-235 U/mL; P < .01). The ALT level in CCl4 + VE-AF-L group was decreased to 38+/-16 units/mL, which was significantly lower than the CC14 + VE-CL group (P < .05). In conclusion, labeling liposomes with AF led to a shortened liposome plasma half-life and greatly enhanced uptake of AF-L liposome by the liver. The enhanced uptake resulted from an increased incorporation of hepatocytes with AF-L liposomes. VE-associated AF liposomes further improved the

  8. In-vivo and ex-vivo spectrofluorometric and imaging study of liposome uptake by the liver using a pH-sensitive probe

    NASA Astrophysics Data System (ADS)

    Soulie-Begu, Sylvie; Devoisselle, Jean-Marie; Mordon, Serge R.

    1995-04-01

    Liposomes are known to be uptaken by the liver cells after intraveinous injection. Only few techniques are available to follow this process in vivo like nuclear magnetic resonance spectroscopy or scintigraphy. Intracellular pathway and liposomes localization in the different liver cells require sacrifice of the animals, cells separation and electronic microscopy, then little is known about liposomes kinetic uptake by the acidic intracellular compartments in vivo. We propose in this study a new method to follow liposomes uptake in the liver in vivo using a fluorescent pH sensitive probe 5,6-carboxyfluorescein and two different composition of liposomes: phospholipids DSPC/Chol and DMPC in order to evaluate the influence of the formulation on the release characteristics of liposomes in the lysosomes. We have already demonstrated the ability of the fluorescence spectroscopy and imaging using a pH dependent probe to monitor pH in living tissues. As pH of lysosomes is very low, the kinetic liposomes uptake in this intracellular acidic compartment is followed by monitoring the pH of the whole liver in vivo and ex vivo. Carboxyfluorescein is used at high concentration (100 mM) in order to quench its fluorescence. Liposomes are injected to Wistar rats into the penil vein. After laparotomy, fluorescence spectra and images are recorded during two hours. Results show a clear relationship between formulation of liposomes and stability in the acidic compartments of hepatic cells. After sacrifice and flush with cold saline solution, pH of the liver ex vivo is found to be 5.0-5.5. Data show a rapid clearance of release dye and an uptake of liposomes by the liver cells and, as liposomes penetrate in the acidic compartment, dye is released from liposomes and is delivered in lysosomes leading to the decrease of the pH.

  9. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    PubMed

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    PubMed Central

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P.J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a high-fat diet (SFL model) or a methionine-choline-deficient diet (NASH model) for eight weeks. Hepatic uptake transporter function was determined by bromosulfophthalein (BSP) disposition. Transporter expression was determined by branched DNA signal amplification assay and western blotting; inflammation was identified by immunostaining of liver slices for interleukin 1 beta (IL-1β). MC- rats showed significant retention of BSP in the plasma when compared to control rats. Hepatic NTCP, OATP1a1, 1a4, 1b2 and 2b1; and OAT 2 and 3 mRNA levels were significantly decreased in high-fat and MC- diet rats when compared to control. Protein expression of OATP1a1 was significantly decreased in high-fat animals, while OATP1a1 and OATP1b2 expression was significantly lower in MC- rats when compared to control. Liver tissue from high-fat and MC- rats stained positive for IL-1β, a pro-inflammatory cytokine known to decrease expression of NTCP, OATP and OAT transporters, suggesting a plausible mechanism for the observed transporter alterations. These data suggest that different stages of NAFLD result in altered hepatic uptake transporter expression that can lead to a functional impairment of xenobiotic uptake from the blood. Furthermore, NAFLD may alter the plasma retention time of clinically relevant drugs that are reliant on these transporters and may increase the potential drug toxicity. PMID:19358839

  11. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  12. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  13. Modulation of methylmercury uptake by methionine: Prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, Daniel Henrique; Puntel, Robson Luiz; Farina, Marcelo

    2011-04-01

    Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg-Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg-Cys complex. The liver slices were pre-treated with Met (250 {mu}M) 15 min before being exposed tomore » MeHg (25 {mu}M) or MeHg-Cys (25 {mu}M each) for 30 min at 37 {sup o}C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg-Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg-Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg-Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg-Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg-Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg- and/or MeHg-Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the

  14. Stimulation by unsaturated fatty acid of squalene uptake in rat liver microsomes.

    PubMed

    Chin, J; Bloch, K

    1985-07-01

    Supernatant protein factor (SPF) and anionic phospholipids such as phosphatidylglycerol (PG) stimulate squalene epoxidase activity in rat liver microsomes by promoting [3H]squalene uptake as well as substrate translocation (Chin, J., and K. Bloch. 1984. J. Biol. Chem. 259: 11735-11738). This process is postulated to be membrane-mediated and not carrier-mediated. Here we show that treatment of PG with phospholipase A2 in the presence of bovine serum albumin abolishes the stimulatory effect of SPF on epoxidase activity. Disaturated fatty acyl-PGs are not as effective as egg yolk lecithin PG in the SPF effect. These findings suggest an important role for the unsaturated fatty acid moiety of PG. We also show that at submicellar concentrations, cis-unsaturated fatty acids stimulate microsomal epoxidase activity whereas saturated fatty acids do not. This effect is due to an increase in substrate uptake which in turn may facilitate substrate availability to the enzyme.

  15. Intestinal absorption of chromium as affected by wheat bran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keim, K.S.; Holloway, C.L.; Hegsted, M.

    1986-03-01

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 gmore » of the respective diet, 2 hr later intubated with 100..mu..Ci of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium.« less

  16. Co-Administration of an Excipient Oligonucleotide Helps Delineate Pathways of Productive and Nonproductive Uptake of Phosphorothioate Antisense Oligonucleotides in the Liver.

    PubMed

    Donner, Aaron J; Wancewicz, Edward V; Murray, Heather M; Greenlee, Sarah; Post, Noah; Bell, Melanie; Lima, Walt F; Swayze, Eric E; Seth, Punit P

    2017-08-01

    Phosphorothioate (PS) modified antisense oligonucleotides (ASOs) have progressed rapidly in the clinic for treating a variety of disease indications. We previously demonstrated that the activity of PS ASOs in the liver can be enhanced by co-infusion of an excipient oligonucleotide (EON). It was posited that the EON saturates a nonproductive uptake pathway(s) thereby permitting accumulation of the PS ASO in a productive tissue compartment. In this report, we measured PS ASO activity following administration by bolus, infusion or co-fusion with EON within hepatocytes and nonparenchymal cells (NPCs), of the liver. This revealed that while ASOs accumulate preferentially in NPCs, they are intrinsically more active in hepatocytes. Furthermore, we show that the EON enhances ASO potency when infused up to 72 h before or after administration of the active ASO suggesting that the EON can saturate and displace the ASO from nonproductive to productive compartments. Physical presence of the EON in tissues was required for optimal potentiation suggesting that there is a dynamic distribution of the ASO and EON between the compartments. Lastly, using a candidate approach, we confirmed Stabilin-2 as a molecular pathway for ASO uptake in sinusoidal endothelial cells and the ASGR as a pathway for ASO uptake into hepatocytes in the liver.

  17. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.

    PubMed

    Duffy, M C; Blitzer, B L; Boyer, J L

    1983-10-01

    To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral

  18. Critical Role of PPAR-α in Perfluorooctanoic Acid– and Perfluorodecanoic Acid–Induced Downregulation of Oatp Uptake Transporters in Mouse Livers

    PubMed Central

    Cheng, Xingguo; Klaassen, Curtis D.

    2008-01-01

    Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na+-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-α), constitutive androstane receptor, pregnane-X receptor, NF-E2–related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-α was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-α. PMID:18703564

  19. Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: transepithelial transport, cellular uptake and efflux.

    PubMed

    Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P

    2008-01-01

    The human intestinal absorption of acetamiprid (AAP) using the Caco-2 cell line reveals that AAP flux was active in a bidirectional mode with an apparent permeability coefficient of 26 x 10(-6) cm x s(-1) at 37 degrees C. Apical uptake was concentration-dependent and unsaturated for AAP concentrations up to 200 micro M. AAP cell preloading demonstrated the involvement of active transport mechanisms. Arrhenius plot analysis revealed an unusual profile with two apparent activation energies suggesting two transport processes. Uptake Vi studies indicated the involvement of a sodium-dependent transporter, the presence of a common transporter of AAP and nicotine and the involvement of Ti-sensitive ATP-dependent efflux transporters. Apical efflux investigations showed the involvement of inward active transporter(s). Whereas vincristine had no effect on intracellular accumulation, taxol and daunorubicin treatments unexpectedly led to 10% and 23% reductions respectively, suggesting that the latter shared a common inward transporter with AAP. All these results suggest full and express AAP absorption in vivo with transport involving both inward and outward, passive and active mechanisms. Thus, AAP or its metabolites could be representative of a risk for human health after its ingestion in food.

  20. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria.

    PubMed

    Buntinas, L; Gunter, K K; Sparagna, G C; Gunter, T E

    2001-04-02

    A mechanism of Ca(2+) uptake, capable of sequestering significant amounts of Ca(2+) from cytosolic Ca(2+) pulses, has previously been identified in liver mitochondria. This mechanism, the Rapid Mode of Ca(2+) uptake (RaM), was shown to sequester Ca(2+) very rapidly at the beginning of each pulse in a sequence [Sparagna et al. (1995) J. Biol. Chem. 270, 27510-27515]. The existence and properties of RaM in heart mitochondria, however, are unknown and are the basis for this study. We show that RaM functions in heart mitochondria with some of the characteristics of RaM in liver, but its activation and inhibition are quite different. It is feasible that these differences represent different physiological adaptations in these two tissues. In both tissues, RaM is highly conductive at the beginning of a Ca(2+) pulse, but is inhibited by the rising [Ca(2+)] of the pulse itself. In heart mitochondria, the time required at low [Ca(2+)] to reestablish high Ca(2+) conductivity via RaM i.e. the 'resetting time' of RaM is much longer than in liver. RaM in liver mitochondria is strongly activated by spermine, activated by ATP or GTP and unaffected by ADP and AMP. In heart, RaM is activated much less strongly by spermine and unaffected by ATP or GTP. RaM in heart is strongly inhibited by AMP and has a biphasic response to ADP; it is activated at low concentrations and inhibited at high concentrations. Finally, an hypothesis consistent with the data and characteristics of liver and heart is presented to explain how RaM may function to control the rate of oxidative phosphorylation in each tissue. Under this hypothesis, RaM functions to create a brief, high free Ca(2+) concentration inside mitochondria which may activate intramitochondrial metabolic reactions with relatively small amounts of Ca(2+) uptake. This hypothesis is consistent with the view that intramitochondrial [Ca(2+)] may be used to control the rate of ADP phosphorylation in such a way as to minimize the probability of

  1. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells

    PubMed Central

    Kumar, Anoop; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2015-01-01

    Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91–119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30–G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption. PMID:26272259

  2. Difference in Uptake of Tetrodotoxin and Saxitoxins into Liver Tissue Slices among Pufferfish, Boxfish and Porcupinefish

    PubMed Central

    Nagashima, Yuji; Ohta, Akira; Yin, Xianzhe; Ishizaki, Shoichiro; Doi, Hiroyuki; Ishibashi, Toshiaki

    2018-01-01

    Although pufferfish of the family Tetraodontidae contain high levels of tetrodotoxin (TTX) mainly in the liver, some species of pufferfish, boxfish of the family Ostraciidae, and porcupinefish of the family Diodontidae do not. To clarify the mechanisms, uptake of TTX and saxitoxins (STXs) into liver tissue slices of pufferfish, boxfish and porcupinefish was examined. Liver tissue slices of the pufferfish (toxic species Takifugu rubripes and non-toxic species Lagocephalus spadiceus, L. cheesemanii and Sphoeroides pachygaster) incubated with 50 µM TTX accumulated TTX (0.99–1.55 µg TTX/mg protein) after 8 h, regardless of the toxicity of the species. In contrast, in liver tissue slices of boxfish (Ostracion immaculatus) and porcupinefish (Diodon holocanthus, D. liturosus, D. hystrix and Chilomycterus reticulatus), TTX content did not increase with incubation time, and was about 0.1 µg TTX/mg protein. When liver tissue slices were incubated with 50 µM STXs for 8 h, the STXs content was <0.1 µg STXs/mg protein, irrespective of the fish species. These findings indicate that, like the toxic species of pufferfish T. rubripes, non-toxic species such as L. spadiceus, L. cheesemanii and S. pachygaster, potentially take up TTX into the liver, while non-toxic boxfish and porcupinefish do not take up either TTX or STXs. PMID:29316695

  3. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  4. Incorporation of absorption and metabolism into liver toxicity prediction for phytochemicals: A tiered in silico QSAR approach.

    PubMed

    Liu, Yitong

    2018-05-18

    An increased use of herbal dietary supplements has been associated with adverse liver effects such as elevated serum enzymes and liver failure. The safety assessment for herbal dietary supplements is challenging since they often contain complex mixtures of phytochemicals, most of which have unknown pharmacokinetic and toxicological properties. Rapid tools are needed to evaluate large numbers of phytochemicals for potential liver toxicity. The current study demonstrates a tiered approach combining identification of phytochemicals in liver toxic botanicals, followed by in silico quantitative structure-activity relationship (QSAR) evaluation of these phytochemicals for absorption (e.g. permeability), metabolism (cytochromes P450) and liver toxicity (e.g. elevated transaminases). First, 255 phytochemicals from 20 botanicals associated with clinical liver injury were identified, and the phytochemical structures were subsequently used for QSAR evaluation. Among these identified phytochemicals, 193 were predicted to be absorbed and then used to generate metabolites, which were both used to predict liver toxicity. Forty-eight phytochemicals were predicted as liver toxic, either due to parent phytochemicals or metabolites. Among them, nineteen phytochemicals have previous evidence of liver toxicity (e.g. pyrrolizidine alkaloids), while the majority were newly discovered (e.g. sesquiterpenoids). These findings help reveal new toxic phytochemicals in herbal dietary supplements and prioritize future toxicological testing. Published by Elsevier Ltd.

  5. Blockade of cholesterol absorption by ezetimibe reveals a complex homeostatic network in enterocytes[S

    PubMed Central

    Engelking, Luke J.; McFarlane, Matthew R.; Li, Christina K.; Liang, Guosheng

    2012-01-01

    Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption. PMID:22523394

  6. Hepatic FDG uptake is associated with future cardiovascular events in asymptomatic individuals with non-alcoholic fatty liver disease.

    PubMed

    Moon, Seung Hwan; Hong, Sun-Pyo; Cho, Young Seok; Noh, Tae Soo; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han

    2017-06-01

    Hepatic F-18 fluoro-2-deoxyglucose (FDG) uptake is associated with non-alcoholic fatty liver disease (NAFLD) which is an independent risk factor for cardiovascular disease. However, the value of hepatic FDG uptake for predicting future cardiovascular events has not been explored. Study participants were 815 consecutive asymptomatic participants who underwent a health screening program that included FDG positron emission tomography/computed tomography (PET/CT), abdominal ultrasonography, and carotid intima-media thickness (CIMT) measurements (age 51.8 ± 6.0 year; males 93.9%). We measured hepatic FDG uptake and assessed the prognostic significance of this parameter with other cardiovascular risk factors including Framingham risk score and CIMT. Multivariate Cox proportional hazards analyses including all study participants revealed that NAFLD with high-hepatic FDG uptake was the only independent predictor for future cardiovascular events [hazard ratio (HR) 4.23; 95% CI 1.05-17.04; P = .043). Subgroup analysis conducted in the NAFLD group showed that high-hepatic FDG uptake was a significant independent predictor of cardiovascular events (HR 9.29; 95% CI 1.05-81.04; P = .045). This exploratory study suggests that high-hepatic FDG uptake may be a useful prognostic factor for cardiovascular events in individuals with NAFLD.

  7. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, G.J.; de Goeij, J.J.; Bock, I.

    1991-08-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less

  8. [Quantitative evaluation of Gd-EOB-DTPA uptake in phantom study for liver MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Koda, Wataru; Suzuki, Masayuki; Sanada, Shigeru; Ohno, Naoki; Hamaguchi, Takashi; Matsuura, Yukihiro; Kawahara, Kazuhiro; Yamamoto, Tomoyuki; Matsui, Osamu

    2010-05-20

    Gd-EOB-DTPA is a new liver specific MRI contrast media. In the hepatobiliary phase, contrast media is trapped in normal liver tissue, a normal liver shows high intensity, tumor/liver contrast becomes high, and diagnostic ability improves. In order to indicate the degree of uptake of the contrast media, the enhancement ratio (ER) is calculated. The ER is obtained by calculating (signal intensity (SI) after injection-SI before injection) / SI before injection. However, because there is no linearity between contrast media concentration and SI, ER is not correctly estimated by this method. We discuss a method of measuring ER based on SI and T(1) values using the phantom. We used a column phantom, with an internal diameter of 3 cm, that was filled with Gd-EOB-DTPA diluted solution. Moreover, measurement of the T(1) value by the IR method was also performed. The ER measuring method of this technique consists of the following three components: 1) Measurement of ER based on differences in 1/T(1) values using the variable flip angle (FA) method, 2) Measurement of differences in SI, and 3) Measurement of differences in 1/T(1) values using the IR method. ER values calculated by these three methods were compared. In measurement made using the variable FA method and the IR method, linearity was found between contrast media concentration and ER. On the other hand, linearity was not found between contrast media concentration and SI. For calculation of ER using Gd-EOB-DTPA, a more correct ER is obtained by measuring the T(1) value using the variable FA method.

  9. Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver.

    PubMed

    Miller, Colton M; Tanowitz, Michael; Donner, Aaron J; Prakash, Thazha P; Swayze, Eric E; Harris, Edward N; Seth, Punit P

    2018-06-01

    Oligonucleotide therapeutics have emerged as a third distinct platform for drug discovery within the pharmaceutical industry. Five oligonucleotide-based drugs have been approved by the US FDA and over 100 oligonucleotides drugs are currently at different stages of human trials. Several of these oligonucleotide drugs are modified using the phosphorothioate (PS) backbone modification where one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced with sulfur. In this review, we summarize our knowledge on receptor-mediated uptake of PS antisense oligonucleotides (ASOs) within different cell types of the liver-a privileged organ for the discovery of oligonucleotide-based therapeutics.

  10. Synthesis and evaluation of novel amide amino-β-lactam derivatives as cholesterol absorption inhibitors.

    PubMed

    Dražić, Tonko; Sachdev, Vinay; Leopold, Christina; Patankar, Jay V; Malnar, Martina; Hećimović, Silva; Levak-Frank, Sanja; Habuš, Ivan; Kratky, Dagmar

    2015-05-15

    The β-lactam cholesterol absorption inhibitor ezetimibe is so far the only representative of this class of compounds on the market today. The goal of this work was to synthesize new amide ezetimibe analogs from trans-3-amino-(3R,4R)-β-lactam and to test their cytotoxicity and activity as cholesterol absorption inhibitors. We synthesized six new amide ezetimibe analogs. All new compounds exhibited low toxicity in MDCKIIwt, hNPC1L1/MDCKII and HepG2 cell lines and showed significant inhibition of cholesterol uptake in hNPC1L1/MDCKII cells. In addition, we determined the activity of the three compounds to inhibit cholesterol absorption in vivo. Our results demonstrate that these compounds considerably reduce cholesterol concentrations in liver and small intestine of mice. Thus, our newly synthesized amide ezetimibe analogs are cholesterol absorption inhibitors in vitro and in vivo. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  12. Characterization of Transporters in the Hepatic Uptake of TAK-475 M-I, a Squalene Synthase Inhibitor, in Rats and Humans.

    PubMed

    Ebihara, T; Takeuchi, T; Moriya, Y; Tagawa, Y; Kondo, T; Moriwaki, T; Asahi, S

    2016-06-01

    TAK-475 (lapaquistat acetate) is a squalene synthase inhibitor and M-I is a pharmacologically active metabolite of TAK-475. Preclinical pharmacokinetic studies have demonstrated that most of the dosed TAK-475 was hydrolyzed to M-I during the absorption process and the concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration to rats. In the present study, the mechanism of the hepatic uptake of M-I was investigated.The uptake studies of (14)C-labeled M-I into rat and human hepatocytes indicated that the uptakes of M-I were concentrative, temperature-dependent and saturable in both species with Km values of 4.7 and 2.8 μmol/L, respectively. M-I uptake was also inhibited by cyclosporin A, an inhibitor for hepatic uptake transporters including organic anion transporting polypeptide (OATP). In the human hepatocytes, M-I uptake was hardly inhibited by estrone 3-sulfate as an inhibitor for OATP1B1, and most of the M-I uptake was Na(+)-independent. Uptake studies using human transporter-expressing cells revealed the saturable uptake of M-I for OATP1B3 with a Km of 2.13 μmol/L. No obvious uptake of M-I was observed in the OATP1B1-expressing cells.These results indicated that M-I was taken up into hepatocytes via transporters in both rats and humans. OATP1B3 would be mainly involved in the hepatic uptake of M-I in humans. These findings suggested that hepatic uptake transporters might contribute to the liver-selective inhibition of cholesterol synthesis by TAK-475. This is the first to clarify a carrier-mediated hepatic uptake mechanism for squalene synthase inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks.

    PubMed

    Kettunen, H; Peuranen, S; Tiihonen, K; Saarinen, M

    2001-02-01

    The efficiency of betaine absorption into small intestinal slices of broiler chicks was studied in vitro with 14C-labeled betaine. The relative proportion of Na+-coupled betaine uptake, as well as the total uptake capacity was larger in the duodenum than in the jejunum. Dietary betaine increased the Na+-coupled uptake in the duodenum. In in vivo-experiments, methyl-14C-labeled betaine, methionine, or choline was fed to broiler chicks. Betaine appeared in the blood more rapidly, and reached a higher total concentration than choline or methionine. The data suggest that choline and methionine were associated with plasma lipoproteins whereas betaine remained free in the plasma. The label distribution in liver, kidney, and intestinal tissues was studied 24 h after label ingestion. Most of the label from betaine was found in the aquaeous phase in the muscle, while in the liver and jejunum the label from betaine was distributed more evenly between the aquaeous, lipid, and protein phases. Label from choline accumulated in the lipid fraction, particularly so in the liver, whereas label from methionine showed a more variable distribution pattern. The distribution results are interpreted in terms of specific roles of betaine, choline, and methionine in methyl group metabolism.

  14. Gastrointestinal uptake and distribution of copper in rainbow trout.

    PubMed

    Clearwater, S J; Baskin, S J; Wood, C M; McDonald, D G

    2000-08-01

    A single dose of radioactive copper ((64)Cu or new Cu) was infused into the stomach of rainbow trout (Oncorhynchus mykiss) to model dietary copper (Cu) uptake under conditions of a normal nutritional dose and optimum environmental temperature (16 degrees C, 0.117 microg Cu g(-)(1 )body mass). The distribution of new Cu to the gut and internal organs occurred in two phases: rapid uptake by the gut tissues (almost complete by 24 h post-infusion) followed by slower uptake by the internal organs. By 72 h, 60 % of the dose had been excreted, 19 % was still retained in the gut tissue, 10 % remained in the lumen and 12 % had been absorbed across the gut and partitioned amongst the internal organs. A reduction in water temperature of 10 degrees C (to 6 degrees C) significantly retarded components of new Cu distribution (movement of the bolus along the gut and excretion); nonetheless, by 72 h, the fraction absorbed by all the internal organs was similar to that at 16 degrees C. An increase in water temperature of 3 degrees C (to 19 degrees C) caused a pronounced increase in internal organ uptake by 24 h to approximately double the uptake occurring at 16 degrees C. The uptake of new Cu by the gut tissue had a low temperature coefficient (Q(10)<1) consistent with simple diffusion, while the temperature coefficient for transfer of new Cu from gut tissue to the internal organs was high (Q(10)>2), consistent with facilitated transport. Internally, the liver and gall bladder (including bile) were the target organs for dietary Cu partitioning since they were the only organs that concentrated new Cu from the plasma. Individual tissues differed in terms of the exchange of their background Cu pools with new Cu. The background Cu in the walls of the gastrointestinal tract (excluding stomach) exchanged 45-94 % with new Cu from the gut lumen, while tissues such as the stomach, gills, kidney, carcass and fat had 5-7 % exchangeable background Cu. The liver, heart, spleen, ovary, bile and

  15. The liver sieve and atherosclerosis.

    PubMed

    Fraser, Robin; Cogger, Victoria C; Dobbs, Bruce; Jamieson, Hamish; Warren, Alessandra; Hilmer, Sarah N; Le Couteur, David G

    2012-04-01

    The 'liver sieve' is a term developed to describe the appearance and the role of fenestrations in the liver sinusoidal endothelial cell (LSEC). LSECs are gossamer-thin cells that line the hepatic sinusoid and they are perforated with pores called fenestrations clustered in sieve plates. There is growing evidence that fenestrations act like a permselective ultrafiltration system which is important for the hepatic uptake of many substrates, particularly chylomicron remnant lipoproteins. The liver sieve is a very efficient exchange system, however in conditions such as hepatic cirrhosis and fibrosis, diabetes mellitus and old age, there is defenestration of the liver sieve. Such defenestration has been shown to influence the hepatic uptake of various substrates including lipoproteins. In the future, pharmacological manipulation of the liver sieve may play a number of therapeutic roles including the management of dyslipidaemia; increasing the efficiency of liver-targeted gene therapy; and improving regeneration of old livers. (C) 2012 Royal College of Pathologists of Australasia.

  16. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Uptake and intracellular fate of [14C]sucrose-insulin in perfused rat livers.

    PubMed

    Surmacz, C A; Wert, J J; Ward, W F; Mortimore, G E

    1988-07-01

    Insulin was covalently linked to [14C]sucrose by means of cyanuric chloride to provide a label that would remain entrapped within the vacuolar system. The uptake of the conjugate by the perfused rat liver was rapid (half-life = 2.9 min), competitively inhibited by native insulin, and abolished by alkali denaturation. As assessed by its distribution on self-generating gradients of colloidal silica-povidone, label in lysosome-enriched samples of liver taken at different times after the addition of the conjugate moved progressively during 15 min from the plasma membrane into an intermediate peak and then to dense lysosomal fractions. After 30-60 min, the label had equilibrated throughout the lysosomal-vacuolar system. The initial movement from the plasma membrane to the intermediate peak occurred between 2 and 5 min. Because label in the peak could be physically separated from the lysosomal marker, beta-acetylglucosaminidase, by dispersing the sample through the gradient mixture before centrifugation rather than layering it, we concluded that the intermediate particles in question were not lysosomal in nature. On gel-filtration chromatography, label extracted from the intermediate peak did not move with insulin but rather as a broad band of lower molecular weight products, suggesting that insulin is subject to early proteolytic attack within a nonlysosomal compartment.

  18. Percutaneous absorption of topically applied DTIC-14C (NSC-45388) in Yorkshire white pigs. Final report, 14 September-14 November 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skierkowski, P.; Murphy, J.C.; Watson, E.S.

    1978-03-01

    The absorption of topically applied DTIC (5-(3,3-dimethyl-1-triazeno) imidazole-4-carboxamide-2-14C) (NSC-45388) was studied in female, weanling, Yorkshire white pigs. After 48 hours, an average of 9.61% of the topically applied dose was excreted in the urine of the test animals. Liver and kidney showed the most consistent uptake of radioactivity with heart and adrenal samples also showing significant uptake. Radioactivity was detected in random muscle samples at 6 hours after application, and in bone after 48 hours. A significant percentage of the applied dose was generally detected at and near the site of application.

  19. Potential strategies to improve uptake of exercise interventions in non-alcoholic fatty liver disease.

    PubMed

    Frith, James; Day, Christopher P; Robinson, Lisa; Elliott, Chris; Jones, David E J; Newton, Julia L

    2010-01-01

    The management of non-alcoholic liver disease (NAFLD) concerns lifestyle modification and exercise; however, adherence is poor. Factors such as lack of confidence to exercise, poor understanding of the benefits of exercise, and a fear of falling all influence engagement in physical activity. To increase exercise in NAFLD it is important to understand the barriers to performing it. Three chronic liver disease cohorts were identified from the Newcastle Liver Database: NAFLD (n=230), alcoholic liver disease (ALD, n=110) and primary biliary cirrhosis (PBC, n=97). Assessment tools were completed by all subjects: Outcome Expectation for Exercise Scale (OEES, understanding the benefits of exercise, lower scores indicate greater understanding), Self-Efficacy for Exercise Scale (SEES, confidence to exercise), Falls Efficacy Scale-International (FES-I, higher scores indicate greater fear of falling). Activity was analysed from a functional perspective using the PROMIS-HAQ. Understanding the benefits of exercise was similar across each group [median OEES scores: NAFLD 2.38 (range 0.0-5.0), ALD 2.25 (0.0-5.0), PBC 2.28 (1.0-5.0), p=0.6]. In NAFLD confidence to exercise was significantly lower [median SEES score 0.0 (0.0-10.0), PBC 4.5 (0.0-10.0), p<0.001]. Fear of falling was similar in NAFLD and PBC, and greatest in ALD [22 (0-64), 22 (3-64), 30 (0-64), p=0.044]. In NAFLD, fear of falling was independently associated with increasing difficulty performing activity. NAFLD patients understand the benefits of exercise but lack confidence to perform it. Fear of falling was independently associated with more difficulty performing activity. Fear of falling and confidence are modifiable and potential targets to improve uptake and adherence for exercise intervention.

  20. Histologic analysis of rabbit liver cancer treated by bulk ultrasound ablation

    NASA Astrophysics Data System (ADS)

    Karunakaran, Chandra Priya; Rudich, Steven M.; Alqadah, Amel; Burgess, Mark T.; Narmoneva, Daria A.; Mast, T. Douglas

    2012-10-01

    VX2 rabbit liver cancer, treated in vivo using bulk ultrasound ablation by miniaturized image-ablate arrays, was histologically analyzed using TTC vital stain and DAPI nucleic acid stain. VX2 cells were implanted into rabbit liver lobes and allowed to grow for 11-21 days. Liver lobes containing solid VX2 tumors were then treated with 4.8 MHz, 22.5-38.5 W/cm2 in situ intensity, unfocused ultrasound for exposure times of 20-120 s. After animal sacrifice, thermal lesions were bisected along the imaging/treatment plane, one face stained with TTC, and the other with DAPI. Levels of TTC uptake (no uptake, partial uptake, and complete uptake) in liver parenchyma corresponded to three discrete regions of tan, pink and red color. By processing images of DAPI-stained parenchymal tissue from these three regions, cellular damage was quantified. A viability index parameter incorporating the size and shape of DAPI-stained nuclei correlated significantly with levels of TTC uptake, and thus with local tissue viability. For ablation of normal liver, viability indices for parenchymal regions of no TTC uptake and partial TTC uptake were significantly different from those for viable tissue. For ablation of VX2 tumor, differences in viability index between regions of no TTC uptake and complete TTC uptake were smaller, but significant overall.

  1. Quantitative PET of liver functions

    PubMed Central

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841

  2. Quantitative PET of liver functions.

    PubMed

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.

  3. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter*

    PubMed Central

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-01-01

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180

  4. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    PubMed

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  5. Assessment of functional liver reserve: old and new in 99mTc-sulfur colloid scintigraphy.

    PubMed

    Matesan, Manuela M; Bowen, Stephen R; Chapman, Tobias R; Miyaoka, Robert S; Velez, James W; Wanner, Michele F; Nyflot, Matthew J; Apisarnthanarax, Smith; Vesselle, Hubert J

    2017-07-01

    A semiquantitative assessment of hepatic reticuloendothelial system function using colloidal particles scintigraphy has been proposed previously as a surrogate for liver function evaluation. In this article, we present an updated method for the overall assessment of technetium-99m (Tc)-sulfur colloid (SC) biodistribution that combines information from planar and attenuation-corrected Tc-SC single-photon emission computed tomography (SPECT) images. The imaging protocol described here was developed as an easy-to-implement method to assess overall and regional liver function changes associated with chronic liver disease. Thirty patients with chronic liver disease and primary liver cancers underwent Tc-SC whole-body planar imaging and upper-abdomen SPECT/computed tomography (CT) imaging before external beam radiation therapy. Liver plus spleen and bone marrow counts as a fraction of whole-body total counts were calculated from SC planar imaging. Attenuation correction Tc-SC images were rigidly coregistered with treatment planning CT images that contained liver and spleen regions-of-interest. Ratios of total liver counts to total spleen counts were obtained from the aligned Tc-SC SPECT and CT images, and were subsequently used to separate liver plus spleen counts obtained on the planar images. This hybrid SPECT/CT and planar scintigraphy approach yielded an updated estimation of whole-body SC distribution. These biodistribution estimates were compared with historical data for reference. Statistical associations of Tc-SC biodistribution to liver function parameters and liver disease scoring systems (Child-Pugh) were evaluated by Spearman rank correlation. Percentages of Tc-SC uptake ranged from 19.3 to 77.3% for the liver; 3.4 to 40.7% for the spleen; and 19.0 to 56.7% for the bone marrow. Spearman's correlation coefficient showed a significant statistical association between Child-Pugh score and bone marrow uptake at 0.55 (P≤0.05), liver uptake at 0.71 (P≤0

  6. Radiocolloid liver imaging in tuberculous hepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essop, A.R.; Posen, J.A.; Savitch, I.

    1984-02-01

    Twenty of 22 patients with tuberculous hepatitis had abnormal Tc-99m tin colloid liver scans. However, in the majority of the patients the changes were mild and nonspecific. The most frequent scintigraphic picture was a decreased uptake of the radiocolloid by the liver, with shunting to the spleen and bone marrow. The decreased hepatic uptake was usually mildly heterogeneous, but it was sometimes homogeneous, and in five patients obvious defects were present. The liver was enlarged in six patients and the spleen in six patients. Increased extrahepatic uptake of the radiocolloid was the only abnormality in five patients. The severity ofmore » the scintigraphic changes did not correlate with the following histologic findings: number of granulomas, degree of associated fibrosis, degree of hepatocyte swelling, or extent of fatty change.« less

  7. Coating liposomes with collagen (Mr 50,000) increases uptake into liver.

    PubMed

    Fonseca, M J; Alsina, M A; Reig, F

    1996-03-13

    Collagen-coated small unilamellar liposomes were prepared by incubation of two hydrophobic derivatives of collagen (average Mr 50 000) with preformed vesicles. The introduction of hexyl and lauryl residues to the collagen molecule improved by 10-fold the ability of collagen to coat liposomes. In vitro stability of the different coated vesicles prepared, was studied by their ability to retain entrapped carboxyfluorescein as a function of the time. Coated vesicles were clearly more stable in vitro than control liposomes, except for those containing the lauryl derivative in a protein/phospholipid weight ratio higher than 10(-3). Vesicle clearance from circulation as well as tissue distribution were also determined. Pharmacokinetics (determined by both fluorescence and radioactive techniques) were highly dependent on the injected dose, phospholipids used and the content of collagen. Half-lives were maximum for liposomes composed of saturated phospholipids injected at a dose of 2 micromol phospholipid. Besides, blood elimination of collagen-containing vesicles was about 2-fold faster and liver uptake 1.5 to 2-fold higher than control liposomes.

  8. Intestinal absorption and biomagnification of organochlorines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.

    1993-03-01

    Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organicmore » chemicals in fish and mammals.« less

  9. Impaired hepatic Gd-EOB-DTPA enhancement after radioembolisation of liver malignancies.

    PubMed

    Powerski, Maciej Janusz; Scheurig-Münkler, Christian; Hamm, Bernd; Gebauer, Bernhard

    2014-08-01

    To evaluate the uptake of the liver-specific magnetic resonance imaging (MRI) contrast agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by functional liver parenchyma after radioembolisation (RE) of hepatic malignancies. Uptake of Gd-EOB-DTPA prior to RE versus 60+/-24d and 126+/-32d after RE was compared in a group of 33 patients with primary or secondary hepatic malignancies. In patients who underwent single-lobe treatment, left and right lobes were compared 59+/-24 days after RE. Gd-EOB-DTPA uptake was determined as follows: ratio of mean signal intensity in liver parenchyma to muscle in Gd-EOB-DTPA-enhanced T1-weighted MRI was subtracted from ratio of mean intensity in liver parenchyma to muscle in unenhanced T1-weighted MRI. Gd-EOB-DTPA uptake in liver parenchyma was 0.845+/-0.29 before RE, 0.615+/-0.38 (P = 0.0022) at day 60+/-24, and 0.739+/-0.30 at day 126+/-32 after RE. In cases of single-lobe treatment, Gd-EOB-DTPA uptake was 0.581+/-0.256 for treated and 0.828+/-0.32 (P = 0.0164) for untreated hepatic lobes. Uptake of Gd-EOB-DTPA by liver parenchyma is impaired after RE, indicating dysfunction of the local hepatic system. These findings suggest that Gd-EOB-DTPA-enhanced MRI has the potential to be used for monitoring liver damage after RE. © 2014 The Royal Australian and New Zealand College of Radiologists.

  10. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter.

    PubMed

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-03-17

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Tc-99m-galactosyl-neoglycoalbumin (Tc-NGA) liver imaging: Potential application in liver transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodle, E.S.; Vera, D.R.; Ward, R.E.

    1984-01-01

    Tc-NGA is a hepatocyte receptor-specific imaging agent whose uptake by the liver has been shown to be dependent upon blood flow and receptor concentration. The combination of anatomic and physiologic information obtained with Tc-NGA may provide a new tool for studying hepatic function in liver transplant recipients. To evaluate the potential role of Tc-NGA in liver transplant recipients, studies were performed in four groups of pigs: controls (n=18); common bile duct (CBD) ligation (n=8); orthotopic liver transplant (n=9); and acute hepatic artery ligation (n=1). Serial studies performed in two animals with CBD ligation demonstrated normal imaging anatomy with minor changesmore » in the hepatic time-activity curves when compared to control studies. Studies in liver-transplanted animals showed significant changes in the hepatic time-activity curves during acute rejection and in preservation-related ischemic injury. Tc-NGA also demonstrated focal areas of hepatic infarction in a hepatic allograft within 24 hours of transplantation. The hepatic artery ligation study showed massive changes in the hepatic time-activity curve within two hours after ligation, with a diffuse decrease in hepatic activity. These results indicate that: (1) extrahepatic biliary tract obstruction causes only minor changes in Tc-NGA uptake; (2) Tc-NGA uptake by the liver is very sensitive to acute hepatic ischemia; (3) Tc-NGA may indicate the presence of preservation damage in the early postoperative period; and (4) Tc-NGA hepatic time-activity curves demonstrate significant changes during acute rejection.« less

  12. Inducing Hepatitis C Virus Resistance After Pig Liver Transplantation-A Proof of Concept of Liver Graft Modification Using Warm Ex Vivo Perfusion.

    PubMed

    Goldaracena, N; Spetzler, V N; Echeverri, J; Kaths, J M; Cherepanov, V; Persson, R; Hodges, M R; Janssen, H L A; Selzner, N; Grant, D R; Feld, J J; Selzner, M

    2017-04-01

    Normothermic ex vivo liver perfusion (NEVLP) offers the potential to optimize graft function prior to liver transplantation (LT). Hepatitis C virus (HCV) is dependent on the presence of miRNA(microRNA)-122. Miravirsen, a locked-nucleic acid oligonucleotide, sequesters miR-122 and inhibits HCV replication. The aim of this study was to assess the efficacy of delivering miravirsen during NEVLP to inhibit miR-122 function in a pig LT model. Pig livers were treated with miravirsen during NEVLP or cold storage (CS). Miravirsen absorption, miR-122 sequestration, and miR-122 target gene derepression were determined before and after LT. The effect of miravirsen treatment on HCV infection of hepatoma cells was also assessed. NEVLP improved miravirsen uptake versus CS. Significant miR-122 sequestration and miR-122 target gene derepression were seen with NEVLP but not with CS. In vitro data confirmed miravirsen suppression of HCV replication after established infection and prevented HCV infection with pretreatment of cells, analogous to the pretreatment of grafts in the transplant setting. In conclusion, miravirsen delivery during NEVLP is a potential strategy to prevent HCV reinfection after LT. This is the first large-animal study to provide "proof of concept" for using NEVLP to modify and optimize liver grafts for transplantation. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Liver perfusion imaging in patients with primary and metastatic liver malignancy: prospective comparison between 99mTc-MAA spect and dynamic CT perfusion.

    PubMed

    Reiner, Caecilia S; Goetti, Robert; Burger, Irene A; Fischer, Michael A; Frauenfelder, Thomas; Knuth, Alexander; Pfammatter, Thomas; Schaefer, Niklaus; Alkadhi, Hatem

    2012-05-01

    To prospectively analyze the correlation between parameters of liver perfusion from technetium99m-macroaggregates of albumin (99mTc-MAA) single photon emission computed tomography (SPECT) with those obtained from dynamic CT perfusion in patients with primary or metastatic liver malignancy. Twenty-five consecutive patients (11 women, 14 men; mean age 60.9 ± 10.8; range: 32-78 years) with primary (n = 5) or metastatic (n = 20) liver malignancy planned to undergo selective internal radiotherapy underwent dynamic contrast-enhanced CT liver perfusion imaging (four-dimensional spiral mode, scan range 14.8 cm, 15 scans, cycle time 3 seconds) and 99m)Tc-MAA SPECT after intraarterial injection of 180 MBq 99mTc-MAA on the same day. Data were evaluated by two blinded and independent readers for the parameters arterial liver perfusion (ALP), portal venous perfusion (PVP), and total liver perfusion (TLP) from CT, and the 99mTc-MAA uptake-ratio of tumors in relation to normal liver parenchyma from SPECT. Interreader agreements for quantitative perfusion parameters were high for dynamic CT (r = 0.90-0.98, each P < .01) and 99mTc -MAA SPECT (r = 0.91, P < .01). Significant correlation was found between 99mTc-MAA uptake ratio and ALP (r = 0.7, P < .01) in liver tumors. No significant correlation was found between 99mTc-MAA uptake ratio, PVP (r = -0.381, P = .081), and TLP (r = 0.039, P = .862). This study indicates that in patients with primary and metastatic liver malignancy, ALP obtained by dynamic CT liver perfusion significantly correlates with the 99mTc-MAA uptake ratio obtained by SPECT. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  14. Development of a method to extend by boron neutron capture process the therapeutic possibilities of a liver autograft

    NASA Astrophysics Data System (ADS)

    Pinelli, Tazio; Altieri, Saverio; Fossati, F.; Zonta, Aris; Prati, U.; Roveda, L.; Nano, Rosanna

    1997-02-01

    We present results on surgical technique, neutron filed and irradiation facility concerning the original treatment of the liver diffused metastases. Our method plans to irradiate the isolated organ at a thermal neutron field soon after having been explanted and boron enriched and before being grafted into the same donor. In particular the crucial point of boron uptake was investigated by a rat model with a relevant number of procedure. We give for the first time statistically significant results on the selective boron absorption by tumor tissues.

  15. The Role of Akt in Chronic Liver Disease and Liver Regeneration.

    PubMed

    Morales-Ruiz, Manuel; Santel, Ansgar; Ribera, Jordi; Jiménez, Wladimiro

    2017-02-01

    The liver is continuously exposed to diverse insults, which may culminate in pathological processes causing liver disease. An effective therapeutic strategy for chronic liver disease should control the causal factors of the disease and stimulate functional liver regeneration. Preclinical studies have shown that interventions aimed at maintaining Akt activity in a dysfunctional liver meet most of the criteria. Although the central function of Akt is cell survival, other cellular aspects such as glucose uptake, glycogen synthesis, cell-cycle progression, and lipid metabolism have been shown to be prominent functions of Akt in the context of hepatic physiology. In this review, the authors describe the benefits of the Akt signaling pathway, emphasizing its importance in coordinating proper cellular growth and differentiation during liver regeneration, hepatic function, and liver disease. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    PubMed Central

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  17. Predicting Insulin Absorption and Glucose Uptake during Exercise in Type 1 Diabetes

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Szeri, Andrew; Basu, Ananda

    2017-11-01

    A dose of insulin infused into subcutaneous tissue has been shown to absorb more quickly during exercise, potentially causing hypoglycemia in persons with type 1 diabetes. We develop a model that relates exercise-induced physiological changes to enhanced insulin-absorption (k) and glucose uptake (GU). Drawing on concepts of the microcirculation we derive a relationship that reveals that k and GU are mainly determined by two physiological parameters that characterize the tissue: the tissue perfusion rate (Q) and the capillary permeability surface area (PS). Independently measured values of Q and PS from the literature are used in the model to make predictions of k and GU. We compare these predictions to experimental observations of healthy and diabetic patients that are given a meal followed by rest or exercise. The experiments show that during exercise insulin concentrations significantly increase and that glucose levels fall rapidly. The model predictions are consistent with the experiments and show that increases in Q and PS directly increase k and GU. This mechanistic understanding provides a basis for handling exercise in control algorithms for an artificial pancreas. Now at University of British Columbia.

  18. PET/CT with 18F Fluorocholine as an Imaging Biomarker for Chronic Liver Disease: A Preliminary Radiopathologic Correspondence Study in Patients with Liver Cancer.

    PubMed

    Kwee, Sandi A; Wong, Linda; Chan, Owen T M; Kalathil, Sumodh; Tsai, Naoky

    2018-04-01

    Purpose To determine the relationship between hepatic uptake at preoperative fluorine 18 ( 18 F) fluorocholine combined positron emission tomography (PET) and computed tomography (CT) and the histopathologic features of chronic liver disease in patients with Child-Pugh class A or B disease who are undergoing hepatic resection for liver cancer. Materials and Methods Forty-eight patients with resectable liver tumors underwent preoperative 18 F fluorocholine PET/CT. Mean liver standardized uptake value (SUV mean ) measurements were obtained from PET images, while histologic indexes of inflammation and fibrosis were applied to nontumor liver tissue from resection specimens. Effects of histopathologic features on liver SUV mean were examined with analysis of variance. Results Liver SUV mean ranged from 4.3 to 11.6, correlating significantly with Knodell histologic activity index (ρ = -0.81, P < .001) and several clinical indexes of liver disease severity. Liver SUV mean also differed significantly across groups stratified by necroinflammatory severity and Metavir fibrosis stage (P < . 001). The area under the receiver operating characteristic curve for 18 F fluorocholine PET/CT detecting Metavir fibrosis stage F1 or higher was 0.89 ± 0.05, with an odds-ratio of 3.03 (95% confidence interval: 1.59, 5.88) and sensitivity and specificity of 82% and 93%, respectively. Conclusion Correlations found in patients undergoing hepatic resection for liver cancer between liver 18 F fluorocholine uptake and histopathologic indexes of liver fibrosis and inflammation support the use of 18 F fluorocholine PET/CT as a potential imaging biomarker for chronic liver disease. © RSNA, 2018.

  19. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  20. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, Max, E-mail: max.seidensticker@med.ovgu.de; Burak, Miroslaw; Kalinski, Thomas

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluablemore » liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.« less

  1. [Postoperative uptake of Ga-67 in planar scintigraphy and SPECT after median sternotomy].

    PubMed

    Montero, A; Carril, J; Quirce, R; Gutiérrez Mendiguchía, C; Uriarte, I; Rabasa, J; Vallina, N K

    1998-01-01

    Surgical alterations after median sternotomy can difficult the interpretation of scintigraphic images with Ga67. To analize the use of Ga67 scintigraphy in this patology, we wanted to know the Ga67 distribution in patients who had suffered median sternotomy. We studied 8 patients in the first month after median sternotomy without infection complication and performed planar images and SPECT. Ga67 showed uptake in liver, spleen and bone. Sternal uptake was greater or lesser than liver uptake but always showed an homogeneous distribution. No mediastinum uptake was observed. Surgical wound showed Ga67 uptake during the first week after sternotomy. To know the distribution of Ga67 in patients after median sternotomy allows the scan interpretation when we suspect infectous complications.

  2. Non-Invasive Assessment of Liver Function

    PubMed Central

    Helmke, Steve; Colmenero, Jordi; Everson, Gregory T.

    2015-01-01

    Purpose of review It is our opinion that there is an unmet need in Hepatology for a minimally- or noninvasive test of liver function and physiology. Quantitative liver function tests (QLFTs) define the severity and prognosis of liver disease by measuring the clearance of substrates whose uptake or metabolism is dependent upon liver perfusion or hepatocyte function. Substrates with high affinity hepatic transporters exhibit high “first-pass” hepatic extraction and their clearance measures hepatic perfusion. In contrast, substrates metabolized by the liver have low first-pass extraction and their clearance measures specific drug metabolizing pathways. Recent Findings We highlight one QLFT, the dual cholate test, and introduce the concept of a disease severity index (DSI) linked to clinical outcome that quantifies the simultaneous processes of hepatocyte uptake, clearance from the systemic circulation, clearance from the portal circulation, and portal-systemic shunting. Summary It is our opinion that dual cholate is a relevant test for defining disease severity, monitoring the natural course of disease progression, and quantifying the response to therapy. PMID:25714706

  3. Organic acids influence iron uptake in the human epithelial cell line Caco-2.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2002-10-09

    It has previously been suggested that organic acids enhance iron absorption. We have studied the effect of nine organic acids on the absorption of Fe(II) and Fe(III) in the human epithelial cell line Caco-2. The effect obtained was dose-dependent, and the greatest increase (43-fold) was observed for tartaric acid (4 mmol/L) on Fe(III) (10 micromol/L). Tartaric, malic, succinic, and fumaric acids enhanced Fe(II) and Fe(III) uptake. Citric and oxalic acid, on the other hand, inhibited Fe(II) uptake but enhanced Fe(III) uptake. Propionic and acetic acid increased the Fe(II) uptake, but had no effect on Fe(III) uptake. Our results show a correlation between absorption pattern and chemical structure; e.g. hydroxyl groups, in addition to carboxyls, were connected with a positive influence. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.

  4. Impact of beta-blockers on cardiopulmonary exercise testing in patients with advanced liver disease.

    PubMed

    Wallen, M P; Hall, A; Dias, K A; Ramos, J S; Keating, S E; Woodward, A J; Skinner, T L; Macdonald, G A; Arena, R; Coombes, J S

    2017-10-01

    Patients with advanced liver disease may develop portal hypertension that can result in variceal haemorrhage. Beta-blockers reduce portal pressure and minimise haemorrhage risk. These medications may attenuate measures of cardiopulmonary performance, such as the ventilatory threshold and peak oxygen uptake measured via cardiopulmonary exercise testing. To determine the effect of beta-blockers on cardiopulmonary exercise testing variables in patients with advanced liver disease. This was a cross-sectional analysis of 72 participants who completed a cardiopulmonary exercise test before liver transplantation. All participants remained on their usual beta-blocker dose and timing prior to the test. Variables measured during cardiopulmonary exercise testing included the ventilatory threshold, peak oxygen uptake, heart rate, oxygen pulse, the oxygen uptake efficiency slope and the ventilatory equivalents for carbon dioxide slope. Participants taking beta-blockers (n = 28) had a lower ventilatory threshold (P <.01) and peak oxygen uptake (P = .02), compared to participants not taking beta-blockers. After adjusting for age, the model of end-stage liver-disease score, liver-disease aetiology, presence of refractory ascites and ventilatory threshold remained significantly lower in the beta-blocker group (P = .04). The oxygen uptake efficiency slope was not impacted by beta-blocker use. Ventilatory threshold is reduced in patients with advanced liver disease taking beta-blockers compared to those not taking the medication. This may incorrectly risk stratify patients on beta-blockers and has implications for patient management before and after liver transplantation. The oxygen uptake efficiency slope was not influenced by beta-blockers and may therefore be a better measure of cardiopulmonary performance in this patient population. © 2017 John Wiley & Sons Ltd.

  5. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

    PubMed

    Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan

    2015-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.

  6. Transport and biotransformation of the new cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) by the rat liver.

    PubMed

    Macias, R I; Monte, M J; El-Mir, M Y; Villanueva, G R; Marin, J J

    1998-09-01

    Rat liver uptake and bile output of the cytostatic complex cis-diammineplatinum(II)-chlorocholylglycinate (Bamet-R2) were studied. Up to 100 microM, Bamet-R2 uptake by rat hepatocytes in primary culture followed saturation kinetics (Vmax = 0.65 +/- 0.12 nmol/5 min per mg protein; K(M) = 45.2 +/- 10.7 microM). Bamet-R2 uptake was lower than that of cholylglycinate (CG) but higher than that of cisplatin. Replacement of 116 mM NaCl by 116 mM choline chloride did not significantly reduce Bamet-R2 uptake. Addition of 500 microM CG, cholic acid, estrone sulfate, or ouabain to 50 microM Bamet-R2-containing incubation media inhibited Bamet-R2 uptake. No liver biotransformation of Bamet-R2 occurred, as indicated by HPLC analysis of bile collected from anesthetized rats after intravenous administration of the drug. Bamet-R2 uptake and secretion into bile by isolated rat livers exceeded those of cisplatin but were lower than those of CG. Differences between Bamet-R2 and CG were more marked for bile output than for liver uptake. Thus, higher Bamet-R2 than CG or cisplatin liver content was found. Co-administration of Bamet-R2 and CG revealed that CG induced a slight reduction in Bamet-R2 uptake and a marked inhibition in Bamet-R2 bile output. By contrast, Bamet-R2 had no effect on CG on either liver uptake or bile output. In sum, the present data indicate that Bamet-R2 is efficiently taken up and secreted into bile by the rat liver by mechanisms shared in part by natural bile acids.

  7. Radiation-induced liver injury mimicking liver metastases on FDG-PET-CT after chemoradiotherapy for esophageal cancer : A retrospective study and literature review.

    PubMed

    Voncken, Francine E M; Aleman, Berthe M P; van Dieren, Jolanda M; Grootscholten, Cecile; Lalezari, Ferry; van Sandick, Johanna W; Steinberg, Jeffrey D; Vegt, Erik

    2018-02-01

    For esophageal cancer patients treated with neoadjuvant chemoradiotherapy (nCRT), restaging using F‑18-fluorodeoxyglucose (FDG) positron emission tomography computed tomography (PET-CT) following nCRT can detect interval metastases, including liver metastases, in almost 10% of patients. However, in clinical practice, focal FDG liver uptake, unrelated to liver metastases, is observed after chemoradiotherapy. This radiation-induced liver injury (RILI) can potentially lead to overstaging. A systematic search for potential cases of RILI after (chemo)radiotherapy for esophageal cancer was performed in the electronic reports from all PET-CT scans made between 2006 and 2015 in our hospital. Additional data about potential cases were obtained from the electronic medical records. A literature review of RILI was also performed. Of 205 patients undergoing nCRT, 6 cases with localized increased FDG uptake in the caudate or left liver lobe following nCRT for esophageal cancer were identified. None of these patients had signs of liver metastases with additional imaging, during surgery, on biopsy, or during follow-up (range 11-46 months). At our institute, the incidence of RILI after neoadjuvant chemoradiotherapy for esophageal cancer was 3%. In the literature, RILI is described in about 8% of patients at the time of restaging. FDG-avid lesions occur in the high radiation dose area, usually corresponding to the caudate or left liver lobe. FDG accumulation in the caudate or left liver lobe after CRT in the area that received a high radiation dose may be caused by metastases or RILI. Awareness of the pitfall of high FDG uptake in RILI is crucial to avoid misinterpretation and overstaging.

  8. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study.

    PubMed

    Cazenave, Jimena; Wunderlin, Daniel Alberto; de Los Angeles Bistoni, María; Amé, María Valeria; Krause, Eberhard; Pflugmacher, Stephan; Wiegand, Claudia

    2005-10-15

    The uptake and accumulation of microcystin-RR (MC-RR) in fish was investigated under laboratory conditions and in wild fish. Jenynsia multidentata and Corydoras paleatus were exposed for 24h to 50mug/L MC-RR dissolved in water. After exposure, liver, gill, brain, intestine, gall bladder, blood and muscle were analyzed for MC-RR by HPLC and analysis confirmed by LC-ESI-TOF-MS spectrometry. Furthermore, wild individuals of Odontesthes bonariensis were sampled from the eutrophic, cyanobacteria-containing San Roque reservoir, and analyzed for the presence of MC-RR in liver, gill, intestine, and muscle. MC-RR was found in liver, gills, and muscle of all exposed and wild fish, while in C. paleatus MC-RR was also present in the intestine. Moreover, we found presence of MC-RR in brain of J. multidentata. Results indicate that MC-RR uptake might occur at two different organs: intestine and gills, through either feeding (including drinking) or respiratory activities. This suggests that MC-RR is taken into the blood stream after absorption, and distributed to different tissues. The liver showed the major bioaccumulation of MC-RR in both experimentally exposed and wild individuals, with muscle of wild fish showing relative high amounts of this toxin in comparison with those exposed in the laboratory; though MC-RR was present in muscle of fish exposed for 24h. The amount of MC-RR in muscle of O. bonariensis exceeded the value suggested by WHO to be safe, thus causing a health risk to persons consuming fish as a result of chronic exposure to microcystin. Gills also showed bioaccumulation of MC-RR, raising questions on the mechanism involved in the possible uptake of MC-RR through gills as well as on its accumulation in this organ. Although MC-LR has been reported in brain of fish, this is the first report confirming the presence of MC-RR in this organ, which means that both toxins are able to cross the blood-brain barrier. These findings also raise questions on the probable

  9. Pulmonary vascular clearance of harmful endogenous macromolecules in a porcine model of acute liver failure.

    PubMed

    Nedredal, Geir I; Elvevold, Kjetil; Chedid, Marcio F; Ytrebø, Lars M; Rose, Christopher F; Sen, Sambit; Smedsrød, Bård; Jalan, Rajiv; Revhaug, Arthur

    2016-01-01

    Pulmonary complications are common in acute liver failure (ALF). The role of the lungs in the uptake of harmful soluble endogenous macromolecules was evaluated in a porcine model of ALF induced by hepatic devascularization (n = 8) vs. controls (n = 8). In additional experiments, pulmonary uptake was investigated in healthy pigs. Fluorochrome-labeled modified albumin (MA) was applied to investigate the cellular uptake. As compared to controls, the ALF group displayed a 4-fold net increased lung uptake of hyaluronan, and 5-fold net increased uptake of both tissue plasminogen activator and lysosomal enzymes. Anatomical distribution experiments in healthy animals revealed that radiolabeled MA uptake (taken up by the same receptor as hyaluronan) was 53% by the liver, and 24% by the lungs. The lung uptake of LPS was 14% whereas 60% remained in the blood. Both fluorescence and electron microscopy revealed initial uptake of MA by pulmonary endothelial cells (PECs) with later translocation to pulmonary intravascular macrophages (PIMs). Moreover, the presence of PIMs was evident 10 min after injection. Systemic inflammatory markers such as leukopenia and increased serum TNF-α levels were evident after 20 min in the MA and LPS groups. Significant lung uptake of harmful soluble macromolecules compensated for the defect liver scavenger function in the ALF-group. Infusion of MA induced increased TNF-α serum levels and leukopenia, similar to the effect of the known inflammatory mediator LPS. These observations suggest a potential mechanism that may contribute to lung damage secondary to liver disease.

  10. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of (/sup 3/H)-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound (/sup 3/H)oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation ofmore » the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 ..mu..g/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10/sup 4/ adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut.« less

  11. Hymenolepis diminuta (Cestoda): uptake of cycloleucine by metacestodes.

    PubMed

    Jeffs, S A; Arme, C

    1985-01-01

    Cycloleucine uptake by metacestodes of H. diminuta of various ages was investigated. Absorption occurs by active mediated transport, mean Kt = 0.28 mM. Vmax values are age-related, and can be correlated to developmental changes. Cycloleucine uptake in the metacestode is very similar to that in the adult worm and the implications of this are discussed.

  12. Enhanced in vivo targeting of murine nonparenchymal liver cells with monophosphoryl lipid A functionalized microcapsules.

    PubMed

    Pietrzak-Nguyen, Anette; Fichter, Michael; Dedters, Marvin; Pretsch, Leah; Gregory, Stephen H; Meyer, Claudius; Doganci, Aysefa; Diken, Mustafa; Landfester, Katharina; Baier, Grit; Gehring, Stephan

    2014-07-14

    A broad spectrum of infectious liver diseases emphasizes the need of microparticles for targeted delivery of immunomodulatory substances to the liver. Microcapsules (MCs) are particularly attractive for innovative drug and vaccine formulations, enabling the combination of antigen, drugs, and adjuvants. The present study aimed to develop microcapsules characterized by an enhanced liver deposition and accelerated uptake by nonparenchymal liver cells (NPCs). Initially, two formulations of biodegradable microcapsules were synthesized from either hydroxyethyl starch (HES) or mannose. Notably, HES-MCs accumulated primarily in the liver, while mannose particles displayed a lung preference. Functionalization of HES-MCs with anti-CD40, anti-DEC205, and/or monophosphoryl lipid A (MPLA) enhanced uptake of MCs by nonparenchymal liver cells in vitro. In contrast, only MPLA-coated HES-MCs promoted significantly the in vivo uptake by NPCs. Finally, HES-MCs equipped with MPLA, anti-CD40, and anti-DEC205 induced the secretion of TNF-α, IL-6 by Kupffer cells (KCs), and IFN-γ and IL-12p70 by liver dendritic cells (DCs). The enhanced uptake and activation of KCs by MPLA-HES-MCs is a promising approach to prevent or treat infection, since KCs are exploited as an entry gate in various infectious diseases, such as malaria. In parallel, loading and activating liver DCs, usually prone to tolerance, bears the potential to induce antigen specific, intrahepatic immune responses necessary to prevent and treat infections affecting the liver.

  13. Xenotransplantation of neonatal porcine liver cells.

    PubMed

    Garkavenko, O; Emerich, D F; Muzina, M; Muzina, Z; Vasconcellos, A V; Ferguson, A B; Cooper, I J; Elliott, R B

    2005-01-01

    Xenotransplantation of porcine liver cell types may provide a means of overcoming the shortage of suitable donor tissues to treat hepatic diseases characterized by inherited inborn errors of metabolism or protein production. Here we report the successful isolation, culture, and xenotransplantation of liver cells harvested from 7- to 10-day-old piglets. Liver cells were isolated and cultured immediately after harvesting. Cell viability was excellent (>90%) over the duration of the in vitro studies (3 weeks) and the cultured cells continued to significantly proliferate. These cells also retained their normal secretory and metabolic capabilities as determined by continued release of albumin, factor 8, and indocyanin green (ICG) uptake. After 3 weeks in culture, porcine liver cells were loaded into immunoisolatory macro devices (Theracyte devices) and placed into the intraperitoneal cavity of immunocompetant CD1 mice. Eight weeks later, the devices were retrieved and the cells analyzed for posttransplant determinations of survival and function. Post mortem analysis confirmed that the cell-loaded devices were biocompatible, and were well-tolerated without inducing any notable inflammatory reaction in the tissues immediately surrounding the encapsulated cells. Finally, the encapsulated liver cells remained viable and functional as determined by histologic analyses and ICG uptake/release. The successful harvesting, culturing, and xenotransplantation of functional neonatal pig liver cells support the continued development of this approach for treating a range of currently undertreated or intractable hepatic diseases.

  14. Vanadium Uptake by Plants

    PubMed Central

    Welch, Ross M.

    1973-01-01

    The kinetics of vanadium absorption by excised barley (Hordeum vulgare L., cv. Eire) roots were investigated with respect to ionic species of V in solution, time and concentration dependence, Ca sensitivity, and interaction with various anions, cations, and pH levels. The role of metabolism in V absorption was also studied using anaerobic treatment (N2 gas) and chemical inhibitors (NaN3, KCN, or 2,4-dinitrophenol). Approximately one-third of the labeled V initially taken up by excised roots was desorbed to a constant level after 45 min in unlabeled V solutions. The rate of absorption of labeled V from 5 μm NH4VO3 solutions containing 0.5 mm CaSO4 was constant for at least 3 hours. Omission of Ca resulted in a 72% reduction in V uptake when compared to controls with 0.5 mm CaSO4. The rate of uptake of V was highest at pH 4 but dropped to a very low level at pH 10. It was relatively constant between the pH levels of 5 and 8 at which the VO3− ion is the predominant ionic species in solution. The rate of absorption of V was followed as a function of concentrations from 0.5 to 100 μm NH4VO3. It was found to be a linear function of concentration and did not follow saturation kinetics. Absorption experiments carried out with labeled V from either NaVO3 or NH4VO3 sources gave similar results. No anion studied (i.e. HPO42−, HAsO42−, MoO42−, SeO42−, SeO32−, CrO42−, BO33−, No3−, and Cl−) interfered appreciably (i.e. less than 30% inhibition) with the absorption of labeled V. Anaerobic treatment of absorption solution with N2 gas did not inhibit V absorption by excised roots. The results obtained using chemical inhibitors were not consistent. It was concluded that V is not actively absorbed by excised barley roots. PMID:16658421

  15. Liver metabolomics analysis associated with feed efficiency on steers

    USDA-ARS?s Scientific Manuscript database

    The liver represents a metabolic crossroad regulating and modulating nutrients available from digestive tract absorption to the peripheral tissues. To identify potential differences in liver function that lead to differences in feed efficiency, liver metabolomic analysis was conducted using ultra-pe...

  16. Folate, Alcohol, and Liver Disease

    PubMed Central

    Medici, Valentina; Halsted, Charles H.

    2013-01-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133

  17. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria.

    PubMed

    Shitara, Yoshihisa; Nakamichi, Noritaka; Norioka, Misaki; Shima, Hiroyo; Kato, Yukio; Horie, Toshiharu

    2013-03-01

    Phenformin causes lactic acidosis in clinical situations due to inhibition of mitochondrial respiratory chain complex I. It is reportedly taken up by hepatocytes and exhibits mitochondrial toxicity in the liver. In this study, uptake of phenformin and [(14)C]tetraethylammonium (TEA) and complex I inhibition by phenformin were examined in isolated liver and heart mitochondria. Uptake of phenformin into isolated rat liver mitochondria was higher than that into heart mitochondria. It was inhibited by several cat ionic compounds, which suggests the involvement of multispecific transport system(s). Similar characteristics were also observed for uptake of TEA; however, uptake of phenformin into mitochondria of organic cation/carnitine transporter 1 (OCTN1) knockout mice was lower than that in wild-type mice, whereas uptake of TEA was comparable between the two strains, suggesting the involvement of distinct transport mechanisms for these two cations in mitochondria. Inhibition by phenformin of oxygen consumption via complex I respiration in isolated rat liver mitochondria was greater than that in heart mitochondria, whereas inhibitory effect of phenformin on complex I respiration was similar in inside-out structured submitochondrial particles prepared from rat livers and hearts. Lactic acidosis provoked by iv infusion of phenformin was weaker in octn1(-/-) mice than that in wild-type mice. These observations suggest that uptake of phenformin into liver mitochondria is at least partly mediated by OCTN1 and functionally relevant to its inhibition potential of complex I respiration. This study was, thus, the first to demonstrate OCTN1-mediated mitochondrial transport and toxicity of biguanide in vivo in rodents.

  18. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhoumi, Rola, E-mail: rmouneimne@cvm.tamu.edu; Mouneimne, Youssef; Ramos, Ernesto

    2011-05-15

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted inmore » the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.« less

  19. Uptake of DNA by cancer cells without a transfection reagent.

    PubMed

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  20. Differences in the intracellular processing of the radiolabel following the uptake of iodine-125- and technetium-99m-neogalactosyl albumin by the isolated perfused rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gore, S.; Morris, A.I.; Gilmore, I.T.

    1991-03-01

    Neogalactosyl albumin (NGA) is a synthetic ligand to the asialoglycoprotein receptor (hepatic binding protein), which has been proposed as a useful receptor binding radiopharmaceutical for the noninvasive assessment of liver function. We have compared the uptake and intracellular processing of iodine-125- (125I) and technetium-99m- ({sup 99m}Tc) NGA following its administration as a 1-min pulse (147 pmol) to the isolated perfused rat liver. Approximately 40% of a pulse of either {sup 125}I- or {sup 99m}Tc-NGA were taken up first pass by the liver. Of the {sup 125}I taken up by the liver, 82% was released after 15-20 min at the sinusoidalmore » pole of the hepatocyte, predominantly as small molecular weight metabolites. A further 8% of the {sup 125}I-associated radioactivity was secreted as intact NGA into bile by the non-lysosomal (direct) pathway while 6% remained in the liver 1 hr after the pulse. In contrast, of the {sup 99m}Tc taken up by the liver, only 4% reappeared in the perfusate while 40% was secreted into bile by the lysosomal (indirect) pathway and 55% remained in the liver 1 hr after the pulse. Since labeled metabolites of {sup 99m}Tc-NGA do not appear in plasma, this permits kinetic modeling with {sup 99m}Tc-NGA without correction for labeled metabolites. Thus, {sup 99m}Tc-NGA is an excellent candidate as a receptor-binding radiopharmaceutical.« less

  1. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders

    PubMed Central

    Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.

    2013-01-01

    The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic

  2. Role of scavenger receptors in the pathophysiology of chronic liver diseases.

    PubMed

    Armengol, Carolina; Bartolí, Ramon; Sanjurjo, Lucía; Serra, Isabel; Amézaga, Núria; Sala, Margarita; Sarrias, Maria-Rosa

    2013-01-01

    Scavenger receptors comprise a large family of structurally diverse proteins that are involved in many homeostatic functions. They recognize a wide range of ligands, from pathogen-associated molecular patterns (PAMPs) to endogenous, as well as modified host-derived molecules (DAMPs). The liver deals with blood micro-organisms and DAMPs released from injured organs, thus performing vital metabolic and clearance functions that require the uptake of nutrients and toxins. Many liver cell types, including hepatocytes and Kupffer cells, express scavenger receptors that play key roles in hepatitis C virus entry, lipid uptake, and macrophage activation, among others. Chronic liver disease causes high morbidity and mortality worldwide. Hepatitis virus infection, alcohol abuse, and non-alcoholic fatty liver are the main etiologies associated with this disease. In this context, continuous inflammation as a result of liver damage leads to hepatic fibrosis, which frequently brings about cirrhosis and ultimately hepatocellular carcinoma. In this review, we will summarize the role of scavenger receptors in the pathophysiology of chronic liver diseases. We will also emphasize their potential as biomarkers of advanced liver disease, including cirrhosis and cancer.

  3. Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI.

    PubMed

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard

    2010-10-01

    Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (C(max) , T(max) and T(1/2) ), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child-Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child-Pugh scores. Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. © 2010 International Hepato-Pancreato-Biliary Association.

  4. Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes

    EPA Science Inventory

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...

  5. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by

  6. Uptake and metabolism of 14C-palmitate by fetal rabbit tissues.

    PubMed

    Hudson, D G; Hull, D

    1977-01-01

    The uptake and esterification of 14C-palmitate into lipid classes in placenta, fetal brown adipose tissue (BAT) and liver of rabbits were investigated in vitro. Fetal BAT showed a high rate of fatty acid uptake, 8.5 mumol-a-1 tissue-h-1. From 5 min onwards, the majority of incorporated label was in the triglyceride fraction. The placenta and fetal liver also incorporated I-[14C]-palmitate into both FFA and esterified lipid fractions, although at much lower rates than observed for BAT. In the liver, triglycerides, but in the placenta phospholipids, contained the majority of the label after 1 h incubation. BAT from both fetal and newborn rabbits released 14CO2 and the production of 14 CO2 was greater in the presence of noradrenaline. The specific activity of the CO2 was the same in stimulated and unstimulated tissue. It is concluded that BAT as well as the liver are important sites of free fatty acid removal from the fetal circulation. The potential for fatty acid oxidation is present in BAT of the 28-day rabbit fetus.

  7. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT.

    PubMed

    Kroiss, A; Putzer, D; Decristoforo, C; Uprimny, C; Warwitz, B; Nilica, B; Gabriel, M; Kendler, D; Waitz, D; Widmann, G; Virgolini, I J

    2013-04-01

    We wanted to establish the range of (68)Ga-DOTA-TOC uptake in liver and bone metastases of patients with neuroendocrine tumours (NET) and to establish the range of its uptake in pancreatic NET. This would allow differentiation between physiological uptake and tumour-related somatostatin receptor expression in the pancreas (including the uncinate process), liver and bone. Finally, we wanted to test for differences in patients with NET, either treated or not treated with peptide receptor radionuclide therapy (PRRT). In 249 patients, 390 (68)Ga-DOTA-TOC PET/CT studies were performed. The clinical indications for PET/CT were gastroenteropancreatic NET (194 studies), nongastroenteropancreatic NET (origin in the lung and rectum; 46 studies), NET of unknown primary (111 studies), phaeochromocytoma/glomus tumours (18 studies), and radioiodine-negative metastatic thyroid carcinoma (21 studies). SUVmax (mean ± standard deviation) values of (68)Ga-DOTA-TOC were 29.8 ± 16.5 in 162 liver metastases, 19.8 ± 18.8 in 89 bone metastases and 34.6 ± 17.1 in 43 pancreatic NET (33.6 ± 14.3 in 30 tumours of the uncinate process and 36.3 ± 21.5 in 13 tumours of the pancreatic tail). A significant difference in SUVmax (p < 0.02) was found in liver metastases of NET patients treated with PRRT. There were significant differences in SUVmax between nonmalignant and malignant tissue for both bone and liver metastases and for pancreatic NET including the uncinate process (p < 0.0001). At a cut-off value of 17.1 the specificity and sensitivity of SUVmax for differentiating tumours in the uncinate process were 93.6 % and 90.0 %, respectively (p < 0.0001). (68)Ga-DOTA-TOC is an excellent tracer for the imaging of tumours expressing somatostatin receptors on the tumour cell surface, facilitating the detection of even small tumour lesions. The noninvasive PET/CT approach by measurement of regional SUVmax can offer important clinical information to distinguish

  8. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (Larimichthys crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level.

    PubMed

    Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2015-01-01

    Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular

  9. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (Larimichthys crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level

    PubMed Central

    Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2015-01-01

    Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular

  10. Drug-nutrient interactions: inhibition of amino acid intestinal absorption by fluoxetine.

    PubMed

    Urdaneta, E; Idoate, I; Larralde, J

    1998-05-01

    Fluoxetine is one of the most widely used antidepressants and nowadays it is also being used to manage obesity problems. In our laboratory we demonstrated that the drug inhibited sugar absorption (Monteiro et al. 1993). The aim of the present work was to determine the effect of fluoxetine on intestinal leucine absorption. Using a procedure of successive absorptions in vivo the drug diminished amino acid absorption by 30% (P < 0.001). Experiments in vitro in isolated jejunum also revealed a reduction in leucine uptake of 37% (P < 0.001). In both cases fluoxetine only affected mediated transport without altering diffusion. In a preparation enriched in basolateral membrane, fluoxetine inhibited the Na+,K(+)-ATPase (EC 3.6.1.37) activity (55%; P < 0.001) in a non-competitive manner with an inhibition constant (Ki) value of 0.92 mM. Leucine uptake by brush-border membrane vesicles was diminished by the drug (a reduction of 48% was observed at 30s, P < 0.001); only the apical Na(+)-dependent transport system of the amino acid was modified and the inhibition was non-competitive. Leucine uptake in the presence of lysine indicated that transporter B was involved. These results suggest that fluoxetine reduces leucine absorption by its action on the basolateral and apical membrane of the enterocyte; the nutritional status of the patients under drug treatment may be affected as neutral amino acid absorption is decreased.

  11. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.

    PubMed

    Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W

    1998-12-01

    Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.

  12. Evaluation of gadolinium-EOB-DTPA uptake after portal vein embolization: value of an increased flip angle.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Wagner, Clemens; Stelter, Lars; Grieser, Christian; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2014-03-01

    The optimal sequence for Gd-EOB-DTPA uptake measurement in the liver with the purpose of liver function measurement is still not defined. To prospectively evaluate the effect of an increased flip angle (FA) of a T1-weighted fat-saturated 3D sequence for the measurement of hepatocyte uptake of Gd-EOB-DTPA magnetic resonance imaging (MRI) after right portal vein embolization (PVE). Ten patients who received a PVE prior to an extended hemihepatectomy were examined 14 days after PVE using Gd-EOB-DTPA enhanced MRI of the liver using the standard FA of 10° and the increased FA of 30°. Relative enhancement of the right liver lobe (RLL) was 0.52 ± 0.12 for 10° and 1.41 ± 0.39 for 30°. Relative enhancement of the left liver lobe (LLL) was 0.58 ± 0.11 for 10° and 2.05 ± 0.61 for 30°. Relative enhancement of the RLL was significantly higher for 30° than for 10° (P = 0.009) and significantly higher in the 30° than in the 10° sequences (P = 0.005) for the LLL. A flip angle of 30° increases the contrast between liver partitions with and without portal venous embolization. Thereby, the sensitivity for differences in uptake intensity is increased. This could be of value for a more exact determination of differences in regional liver function and, consequently, the estimation of the future remnant liver function.

  13. The effect of amino acids on the intestinal absorption of immunoglobulins in the neonatal rat

    PubMed Central

    Bamford, D. R.; Donnelly, H.

    1974-01-01

    An in vitro preparation of 10-day-old rat intestine was used to examine the absorption of a number of amino acids and immunoglobulins. Evidence was obtained for the active absorption of alanine, leucine, methionine, histidine and lysine, but not for aspartic acid. A selective absorption of the homologous molecule was found in experiments where 131I-labelled rat and bovine IgG were presented to the ileum in 10-minute incubations. The greater uptake of rat IgG was unrelated to the relative rates of catabolism of the two molecules. Although the uptake of rat IgG was unaffected by 100 mM concentrations of neutral and acidic amino acids, the basic amino acids arginine and lysine significantly stimulated uptake. PMID:4854740

  14. Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Keuchel, Thomas; Malinowski, Maciej; Seehofer, Daniel; Stockmann, Martin; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2013-09-01

    To prospectively evaluate the early development of regional liver function after right portal vein embolisation (PVE) with Gd-EOB-DTPA-enhanced MRI in patients scheduled for extended right hemihepatectomy. Ten patients who received a PVE before an extended hemihepatectomy were examined before and 14 days after PVE using Gd-EOB-DTPA-enhanced MRI of the liver. In these sequences representative region of interest measurements were performed in the embolised right (RLL) and the non-embolised left liver lobe (LLL). The volume as well as hepatic uptake index (HUI) was calculated independently for each lobe. Relative enhancement 14 days after PVE decreased in the RLL and increased significantly in the LLL (P < 0.05). Average hepatic uptake index (HUI) for RLL was significantly lower 14 days after PVE than before PVE (P < 0.05) and significantly higher for LLL (P < 0.05). A significant shift of contrast uptake from the right to the left liver lobe can be depicted as early as 14 days after right PVE by using Gd-EOB-DTPA-enhanced MRI, which could reflect the redirected portal venous blood flow and the rapid utilisation of a hepatic functional reserve. • Preoperative portal vein embolisation (PVE) is widely performed before right-sided hepatic resection. • PVE increases intravenous contrast medium uptake in the left lobe of liver. • The hepatic uptake index for the left liver lobe increases rapidly after PVE. • Left liver lobe function increase may be visualised by Gd-EOB-DTPA-enhanced MRI.

  15. Enhanced absorption and inhibited metabolism of emodin by 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside: Possible mechanisms for Polygoni Multiflori Radix-induced liver injury.

    PubMed

    Yu, Qiong; Jiang, Li-Long; Luo, Na; Fan, Ya-Xi; Ma, Jiang; Li, Ping; Li, Hui-Jun

    2017-06-01

    Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. However, PMR-associated hepatotoxicity is becoming a safety issue. In our previous in vivo study, an interaction between stilbenes and anthraquinones has been discovered and a hypothesis is proposed that the interaction between stilbene glucoside-enriching fraction and emodin may contribute to the side effects of PMR. To further support our previous in vivo results in rats, the present in vitro study was designed to evaluate the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) on the cellular absorption and human liver microsome metabolism of emodin. The obtained results indicated that the absorption of emodin in Caco-2 cells was enhanced and the metabolism of emodin in human liver microsomes was inhibited after TSG treatment. The effects of the transport inhibitors on the cellular emodin accumulation were also examined. Western blot assay suggested that the depressed metabolism of emodin could be attributed to the down-regulation of UDP-glucuronosyltransferases (UGTs) 1A8, 1A10, and 2B7. These findings definitively demonstrated the existence of interaction between TSG and emodin, which provide a basis for a better understanding of the underlying mechanism for PMR-induced liver injury. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. The mechanism of zinc uptake by cultured rat liver cells.

    PubMed Central

    Taylor, J A; Simons, T J

    1994-01-01

    1. The initial rate of 65Zn uptake into cultured rat hepatocytes has been measured over a range of Zn2+ concentrations from 3 x 10(-10) M to 5 x 10(-6) M. Histidine and albumin were used to buffer Zn2+ ions at concentrations below 1 x 10(-6) M. 2. The results suggest there are two mechanisms for Zn2+ uptake; a high-affinity, saturable pathway, with a maximum velocity (Vmax) of 20-30 pmol (mg protein)-1 min-1 and a Michaelis-Menten constant (Km) of about 2 x 10(-9) M Zn2+ (with histidine), and a low-affinity, linear pathway, that only makes a significant contribution to Zn2+ uptake at Zn2+ concentrations above 1 x 10(-6) M. 3. Transport via the high-affinity pathway is dependent on the concentration of Zn2+ ions and not on the concentrations of Zn(2+)-ligand complexes, suggesting that Zn2+ is the transported species. 4. The affinity of the saturable pathway for Zn2+ is slightly lower in the presence of albumin, with a Km of about 1.3 x 10(-8) M. The reason for this is uncertain. PMID:8014898

  17. Effect of cholecalciferol on cadmium uptake in the chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, R.J.; Feldman, S.L.

    1973-12-01

    The influence of vitamin D/sub 3/ (cholecalciferol) on the uptake of orally administered /sup 109/Cd into the principle cadmium sequestering organs, i.e. liver and kidney, was investigated in the vitamin D-deficient chick. Neither 2000 IU of vitamin D/sub 3/ administered orally nor dietary vitamin D/sub 3/ (600IU/kg) fed for four days significantly influenced the uptake of /sup 109/Cd. The vitamin did elevate the serum Ca concentration in the treated chicks.

  18. Variability of the Intestinal Uptake of Lipids Is Genetically Determined in Mice

    PubMed Central

    Keelan, M.; Hui, D.Y.; Wild, G.; Clandinin, M.T.

    2008-01-01

    The response of the plasma cholesterol concentration to changes in dietary lipids varies widely in humans and animals. There are variations in the in vivo absorption of cholesterol between different strains of mice. This study was undertaken in three strains of inbred mice to test the hypotheses that: (i) there are strain differences in the in vitro uptake of fatty acids and cholesterol and (ii) the adaptability of the intestine to respond to variations in dietary lipids is genetically determined. An in vitro intestinal ring technique was used to assess the uptake of medium- and long-chain fatty acids and cholesterol into jejunum and ileum of adult DBA/2, C57BL6, and C57L/J mice. The jejunal uptake of cholesterol was similar in C57L/J, DBA/2, or C57BL6 fed ad libitum a low-fat (5.7% fat, no cholesterol) chow diet. This is in contrast to a previous demonstration that in vivo cholesterol absorption was lower in C57L/J than in the other murine strains. The jejunal uptake of several long-chain fatty acids was greater in DBA/2 fed for 4 wk the high-fat (15.8% fat and 1.25% cholesterol) as compared with the low-fat diet. Furthermore, on the high-fat diet, the uptake of many long-chain fatty acids was higher in DBA/2 than in C57BL6 or C57L/J. The differences in cholesterol and fatty acid uptake were not explained by variations in food uptake, body weight gain, or the weight of the intestine. In summary: (i) there are strain differences in the in vitro intestinal uptake of fatty acids but not of cholesterol; (ii) a high-fat diet enhances the uptake of long-chain fatty acids in only one of the three strains examined in this study; and (iii) the pattern of strain- and diet-associated alterations in the in vivo absorption of cholesterol differs from the pattern of changes observed in vitro. We speculate that genetic differences in cholesterol and fatty acid uptake are explained by variations in the expression of protein-mediated components of lipid uptake. PMID:10984106

  19. Influence of Particle Geometry on Gastrointestinal Transit and Absorption following Oral Administration.

    PubMed

    Li, Dong; Zhuang, Jie; He, Haisheng; Jiang, Sifan; Banerjee, Amrita; Lu, Yi; Wu, Wei; Mitragotri, Samir; Gan, Li; Qi, Jianping

    2017-12-13

    Geometry has been considered as one of the important parameters in nanoparticle design because it affects cellular uptake, transport across the physiological barriers, and in vivo distribution. However, only a few studies have been conducted to elucidate the influence of nanoparticle geometry in their in vivo fate after oral administration. This article discloses the effect of nanoparticle shape on transport and absorption in gastrointestinal (GI) tract. Nanorods and nanospheres were prepared and labeled using fluorescence resonance energy transfer molecules to track the in vivo fate of intact nanoparticles accurately. Results demonstrated that nanorods had significantly longer retention time in GI tract compared with nanospheres. Furthermore, nanorods exhibited stronger ability of penetration into space of villi than nanospheres, which is the main reason of longer retention time. In addition, mesenteric lymph transported 1.75% nanorods within 10 h, which was more than that with nanospheres (0.98%). Fluorescent signals arising from nanoparticles were found in the kidney but not in the liver, lung, spleen, or blood, which could be ascribed to low absorption of intact nanoparticles. In conclusion, nanoparticle geometry influences in vivo fate after oral delivery and nanorods should be further investigated for designing oral delivery systems for therapeutic drugs, vaccines, or diagnostic materials.

  20. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  1. Water absorption behaviour of hybrid interwoven cellulosic fibre composites

    NASA Astrophysics Data System (ADS)

    Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.

    2017-10-01

    The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.

  2. Dietary Phospholipids and Intestinal Cholesterol Absorption

    PubMed Central

    Cohn, Jeffrey S.; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W. S.; Tandy, Sally

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit. PMID:22254012

  3. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    NASA Technical Reports Server (NTRS)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  4. Towards an improved understanding of processes controlling absorption efficiency and biomagnification of organic chemicals by fish.

    PubMed

    Xiao, Ruiyang; Arnot, Jon A; MacLeod, Matthew

    2015-11-01

    Dietary exposure is considered the dominant pathway for fish exposed to persistent, hydrophobic chemicals in the environment. Here we present a dynamic, fugacity-based three-compartment bioaccumulation model that describes the fish body as one compartment and the gastrointestinal tract (GIT) as two compartments. The model simulates uptake from the GIT by passive diffusion and micelle-mediated diffusion, and chemical degradation in the fish and the GIT compartments. We applied the model to a consistent measured dietary uptake and depuration dataset for rainbow trout (n=215) that is comprised of chlorinated benzenes, biphenyls, dioxins, diphenyl ethers, and polycyclic aromatic hydrocarbons (PAHs). Model performance relative to the measured data is statistically similar regardless of whether micelle-mediated diffusion is included; however, there are considerable uncertainties in modeling this process. When degradation in the GIT is assumed to be negligible, modeled chemical elimination rates are similar to measured rates; however, predicted concentrations of the PAHs are consistently higher than measurements by up to a factor of 20. Introducing a kinetic limit on chemical transport from the fish compartment to the GIT and increasing the rate constant for degradation of PAHs in tissues of the liver and/or GIT are required to achieve good agreement between the modelled and measured concentrations for PAHs. Our results indicate that the apparent low absorption efficiency of PAHs relative to the chemicals with similar hydrophobicity is attributable to biotransformation in the liver and/or the GIT. Our results provide process-level insights about controls on the extent of bioaccumulation of chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Uptake, elimination, and relative distribution of perchlorate in various tissues of channel catfish

    USGS Publications Warehouse

    Park, J.-W.; Bradford, C.M.; Rinchard, J.; Liu, F.; Wages, M.; Waters, A.; Kendall, R.J.; Anderson, T.A.; Theodorakis, C.W.

    2007-01-01

    This study was undertaken to determine the kinetics of uptake and elimination of perchlorate in channel catfish, Ictalurus punctatus. Perchlorate - an oxidizer used in solid fuel rockets, fireworks, and illuminating munitions - has been shown to effect thyroid function, causing hormone disruption and potential perturbations of metabolic activities. For the uptake study, catfish were exposed to 100 mg/L sodium perchlorate for 12 h to 5 d in the laboratory. Perchlorate in tissues was analyzed using ion chromatography. The highest perchlorate concentrations were found in the head and fillet, indicating that these tissues are the most important tissues to analyze when determining perchlorate uptake into large fish. To calculate uptake and elimination rate constants for fillet, gills, G-I tract, liver, and head, fish were exposed to 100 ppm sodium perchlorate for 5 days, and allowed to depurate in clean water for up to 20 days. The animals rapidly eliminated the perchlorate accumulated showing the highest elimination in fillet (Ke = 1.67 day -1) and lowest elimination in liver (Ke = 0.79 day -1). ?? 2007 American Chemical Society.

  6. Oral Fructose Absorption in Obese Children with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Sullivan, Jillian S; Le, MyPhuong T; Pan, Zhaoxing; Rivard, Christopher; Love-Osborne, Kathryn; Robbins, Kristen; Johnson, Richard J; Sokol, Ronald J; Sundaram, Shikha S

    2014-01-01

    Background Fructose intake is associated with NAFLD (Non-Alcoholic Fatty Liver Disease) development. Objective To measure fructose absorption/metabolism in pediatric NAFLD compared to obese and lean controls. Methods Children with histologically proven NAFLD, and obese and lean controls received oral fructose (1 gm/kg ideal body weight). Serum glucose, insulin, uric acid, and fructose, urine uric acid, urine fructose, and breath hydrogen levels were measured at baseline and multiple points until 360 minutes after fructose ingestion. Results Nine NAFLD (89% Hispanic, mean age 14.3 years, mean BMI 35.3 kg/m2), 6 Obese Controls (67% Hispanic, mean age 12.7 years, mean BMI 31.0 kg/m2), and 9 Lean Controls (44% Hispanic, mean age 14.3 years, mean BMI 19.4 kg/m2) were enrolled. Following fructose ingestion, NAFLD vs. Lean Controls had elevated serum glucose, insulin, and uric acid (p<0.05), higher urine uric acid (p=0.001) but lower fructose excretion (p=0.002) and lower breath hydrogen 180-min AUC (p=0.04). NAFLD vs. Obese Controls had similar post-fructose serum glucose, insulin, urine uric acid, and breath hydrogen, but elevated serum uric acid (p<0.05) and lower urine fructose excretion (p=0.02). Conclusions Children with NAFLD absorb and metabolize fructose more effectively than lean subjects, associated with an exacerbated metabolic profile following fructose ingestion. PMID:24961681

  7. Targeting SVCT for enhanced drug absorption: Synthesis and in vitro evaluation of a novel vitamin C conjugated prodrug of saquinavir

    PubMed Central

    Luo, Shuanghui; Wang, Zhiying; Patel, Mitesh; Khurana, Varun; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim. K.

    2015-01-01

    In order to improve oral absorption, a novel prodrug of saquinavir (Saq), ascorbyl-succinic-saquinavir (AA-Su-Saq) targeting sodium dependent vitamin C transporter (SVCT) was synthesized and evaluated. Aqueous solubility, stability and cytotoxicity were determined. Affinity of AA-Su-Saq towards effluxpump P-glycoprotein (P-gp) and recognition of AA-Su-Saq by SVCT were studied. Transepithelial permeability across polarized MDCK-MDR1 and Caco-2 cells were determined. Metabolic stability of AA-Su-Saq in rat liver microsomes was investigated. AA-Su-Saq appears to be fairly stable in both DPBS and Caco-2 cells with half lives of 9.65 and 5.73 h, respectively. Uptake of [3H]Saquinavir accelerated by 2.7 and 1.9 fold in the presence of 50 μM Saq and AA-Su-Saq in MDCK-MDR1 cells. Cellular accumulation of [14C]AA diminished by about 50–70% relative to control in the presence of 200 μM AA-Su-Saq in MDCK-MDR1 and Caco-2 cells. Uptake of AA-Su-Saq was lowered by 27% and 34% in the presence of 5 mM AA in MDCK-MDR1 and Caco-2 cells, respectively. Absorptive permeability of AA-Su-Saq was elevated about 4-5 fold and efflux index reduced by about 13-15 fold across the polarized MDCK-MDR1 and Caco-2 cells. Absorptive permeability of AA-Su-Saq decreased 44% in the presence of 5 mM AA across MDCK-MDR1 cells. AA-Su-Saq was devoid of cytotoxicity over the concentration range studied. AA-Su-Saq significantly enhanced the metabolic stability but lowered the affinity towards CYP3A4. In conclusion, prodrug modification of Saq through conjugation to AA via a linker significantly raised the absorptive permeability and metabolic stability. Such modification also caused significant evading of P-gp mediated efflux and CYP3A4 mediated metabolism. SVCT targeted prodrug approach can be an attractive strategy to enhance the oral absorption and systemic bioavailability of anti-HIV protease inhibitors. PMID:21571053

  8. Variations of the liver standardized uptake value in relation to background blood metabolism: An 2-[18F]Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography study in a large population from China.

    PubMed

    Liu, Guobing; Hu, Yan; Zhao, Yanzhao; Yu, Haojun; Hu, Pengcheng; Shi, Hongcheng

    2018-05-01

    To investigate the influence of background blood metabolism on liver uptake of 2-[F]fluoro-2-deoxy-D-glucose (F-FDG) and search for an appropriate corrective method.Positron emission tomography/computed tomography (PET/CT) and common serological biochemical tests of 633 healthy people were collected retrospectively. The mean standardized uptake value (SUV) of the liver, liver artery, and portal vein (i.e., SUVL, SUVA, and SUVP) were measured. SUVL/A was calculated as SUVL/SUVA, while SUVL/P was calculated as SUVL/SUVP. SUV of liver parenchyma (SUVLP) was calculated as SUVL - .3 × (.75 × SUVP + .25 × SUVA). The coefficients of variation (CV) of SUVL, SUVL/A, SUVL/P, and SUVLP were compared to assess their interindividual variations. Univariate and multivariate analyses were performed to identify vulnerabilities of these SUV indexes to common factors assessed using serological liver functional tests.SUVLP was significantly larger than SUVL (2.19 ± .497 vs 1.88 ± .495, P < .001), while SUVL/P was significantly smaller than SUVL (1.72 ± .454 vs 1.88 ± .495, P < .001). The difference between SUVL/A and SUVL was not significant (1.83 ± .500 vs 1.88 ± .495, P = .130). The CV of SUVLP (22.7%) was significantly smaller than that of SUVL (22.7%:26.3%, P < .001), while the CVs of SUVL/A (27.2%) and SUVL/P (26.4%) were not different from that of SUVL (P = .429 and .929, respectively). Fewer variables independently influenced SUVLP than influenced SUVL, SUVL/A, and SUVL/P; Only aspartate aminotransferase, body mass index, and total cholesterol, all P-values <.05.The activity of background blood influences the variation of liver SUV. SUVLP might be an alternative corrective method to reduce this influence, as its interindividual variation and vulnerability to effects from common factors of serological liver functional tests are relatively lower than the commonly used SUVL.

  9. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  10. Trace element uptake and distribution in plants.

    PubMed

    Graham, Robin D; Stangoulis, James C R

    2003-05-01

    There are similarities between mammals and plants in the absorption and transport of trace elements. The chemistry of trace element uptake from food sources in both cases is based on the thermodynamics of adsorption on charged solid surfaces embedded in a solution phase of charged ions and metal-binding ligands together with redox systems in the case of iron and some other elements. Constitutive absorption systems function in nutrient uptake during normal conditions, and inducible "turbo" systems increase the supply of a particular nutrient during deficiency. Iron uptake is the most studied of the micronutrients, and divides the plant kingdom into two groups: dicotyledonous plants have a turbo system that is an upregulated version of the constitutive system, which consists of a membrane-bound reductase and an ATP-driven hydrogen ion extrusion pump; and monocotyledonous plants have a constitutive system similar to that of the dicots, but with an inducible system remarkably different that uses the mugeneic acid class of phytosiderophores (PS). The PS system may in fact be an important port of entry for iron from an iron-rich but exceedingly iron-insoluble lithosphere into the iron-starved biosphere. Absorption of trace metals in these graminaceous plants is normally via divalent ion channels after reduction in the plasma membrane. Once absorbed, iron can be stored in plants as phytoferritin or transported to active sites by transport-specific ligands. The transport of iron and zinc into seeds is dominated by the phloem sap system, which has a high pH that requires chelation of heavy metals. Loading into grains involves three or four genes each that control chelation, membrane transport and deposition as phytate.

  11. Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab.

    PubMed

    Pool, Martin; Kol, Arjan; Lub-de Hooge, Marjolijn N; Gerdes, Christian A; de Jong, Steven; de Vries, Elisabeth G E; Terwisscha van Scheltinga, Anton G T

    2016-10-18

    Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.

  12. Alginate Inhibits Iron Absorption from Ferrous Gluconate in a Randomized Controlled Trial and Reduces Iron Uptake into Caco-2 Cells

    PubMed Central

    Wawer, Anna A.; Harvey, Linda J.; Dainty, Jack R.; Perez-Moral, Natalia; Sharp, Paul; Fairweather-Tait, Susan J.

    2014-01-01

    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n = 15) were given a test meal of 200 g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p = 0.003). Sub-group B (n = 9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p = 0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p = 0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p = 0.009) and 35% (p = 0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification. Trial Registration ClinicalTrials.gov NCT01528644 PMID:25391138

  13. Oxyntomodulin stimulates intestinal glucose uptake in rats.

    PubMed

    Collie, N L; Zhu, Z; Jordan, S; Reeve, J R

    1997-06-01

    Enteroglucagon peptides have long been proposed as mediators of intestinal adaptation, including mucosal growth and nutrient absorptive capacity. The hypothesis that infusions of oxyntomodulin, a bioactive form of enteroglucagon, would stimulate glucose and amino acid uptake was tested and its effects were compared with those of glucagon. Rats were infused intravenously via minipumps with either saline, rat oxyntomodulin (0.47 nmol x kg(-1) x h[-1]), or glucagon (0.88 nmol x kg(-1) x h[-1]) for 7 days, and plasma hormone levels were measured. At death, intestinal dimensions and brush border uptake of D-glucose and L-proline were measured using an in vitro everted sleeve technique. Plasma enteroglucagon and glucagon levels were increased 4- and 12-fold, respectively, but there were no effects on food intake, body weight, or intestinal dimensions. In contrast, oxyntomodulin and glucagon significantly stimulated total intestinal glucose uptake capacity by 44% and 53%, respectively, over controls. Oxyntomodulin most potently enhanced glucose uptake in the ileum (215%), whereas glucagon's greatest effect was in the jejunum (63%-85%). However, neither peptide affected proline uptake. These results support a new, specific action for oxyntomodulin in intestinal adaptation as a glucose uptake stimulator and confirm glucagon's role as a regulator of glucose uptake.

  14. 99mTc-HYNIC-TOC increased uptake can mimic malignancy in the pancreas uncinate process at somatostatin receptor SPECT/CT.

    PubMed

    Yamaga, Lilian Yuri Itaya; Neto, Guilherme Campos Carvalho; da Cunha, Marcelo Livorsi; Osawa, Akemi; Oliveira, Julio Cesar Silveira; Fonseca, Ricardo Quartim; Nogueira, Solange Amorim; Wagner, Jairo; Funari, Marcelo Gusmão

    2016-03-01

    The aim of this study was to assess the occurrence and frequency of increased physiologic uptake of 99mTc-HYNIC-TOC by the uncinate process of the pancreas in SPECT/CT images. Forty-six scans of 41 patients were evaluated retrospectively. The uptake of 99mTc-HYNIC-TOC was considered to be physiologic in patients with normal findings at dedicated abdominal CT or MR and lack of neoplastic lesions in clinical follow-ups. The intensity of uncinate process uptake was compared to the uptake of the normal liver. Focal uptake was attributed to the presence of pancreatic NET in 5 patients. Among the 36 patients without any evidence of malignancy in CT, MR and follow-up, 7 (19.4 %) showed increased uptake in the uncinate process. The intensity of uptake was lesser in 3 (8.3 %), similar in 3 and greater than the normal liver in 1 (2.8 %) case. Increased 99mTc-HYNIC-TOC uptake occurred in 19.4 % of those subjects without any evidence of neuroendocrine tumor in the uncinate process.

  15. Foliar uptake of cesium from the water column by aquatic macrophytes.

    PubMed

    Pinder, J E; Hinton, T G; Whicker, F W

    2006-01-01

    The probable occurrence and rate of foliar absorption of stable cesium (133Cs) from the water column by aquatic macrophyte species was analyzed following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10(3)Lkg(-1)d(-1)) and a loss rate parameter k (d(-1)) were estimated for each species using time series of 133Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the 133Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u> or =0.75 x 10(3)Lkg(-1)d(-1). Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for 137Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.

  16. Magnetic and quadrupolar studies of the iron storage overload in livers

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Dumas, F.; Richardot, G.; Kellershohn, C.

    1986-02-01

    Absorption57Fe Mössbauer spectra, performed directly on tissues of liver with iron overload due to an excessive intestinal iron absorption or induced by hypertransfusional therapeutics, have pointed out a new high spin ferric storage iron besides the ferritin and hemosiderin. Mössbauer studies, carried out on ferritin and hemosiderin fractions isolated from normal and overloaded livers, show that this compound, only present in the secondary iron overload (transfusional pathway), seems characteristic of the physiological process which induces the iron overload.

  17. Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig.

    PubMed

    Nunes, C S; Malmlöf, K

    1992-11-01

    Six Large White pigs (mean body-weight 59 (SE 1.7) kg) were surgically fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein, as well as with electromagnetic flow probes around the portal vein and the hepatic artery, and allowed to recover. The non-anaesthetized animals were given a basal non-fibre diet (diet A) alone or together with 60 g guar gum/kg (diet B) or 150 g purified cellulose/kg (diet C) by substitution for mica. The diets were given for weekly periods and according to a replicated 3 x 3 Latin square design. On the last day of each such adaptation period, test meals of 800 g were given before blood sampling. Sampling was continued for 8 h. Guar gum strongly reduced glucose apparent absorption without changing the absorption and the hepatic uptake profiles. Production rates of insulin, gastric inhibitory polypeptide and insulin-like growth factor-1 (IGF-1) were lowest after guar gum ingestion. However, the reductions in peripheral blood insulin levels caused by guar gum were not associated with a change in hepatic insulin extraction. IGF-1 appeared to be strongly secreted by the gut, whereas the liver had a net uptake of the peptide. Ingestion of guar gum increased the hepatic extraction coefficient of gut-produced IGF-1. Guar gum ingestion appeared also to decrease glucagon secretion. Cellulose at the level consumed had very few effects on the variables considered. It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the metabolic effects described.

  18. Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig

    NASA Technical Reports Server (NTRS)

    Nunes, C. S.; Malmlof, K.

    1992-01-01

    Six Large White pigs (mean body-weight 59 (SE 1.7) kg) were surgically fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein, as well as with electromagnetic flow probes around the portal vein and the hepatic artery, and allowed to recover. The non-anaesthetized animals were given a basal non-fibre diet (diet A) alone or together with 60 g guar gum/kg (diet B) or 150 g purified cellulose/kg (diet C) by substitution for mica. The diets were given for weekly periods and according to a replicated 3 x 3 Latin square design. On the last day of each such adaptation period, test meals of 800 g were given before blood sampling. Sampling was continued for 8 h. Guar gum strongly reduced glucose apparent absorption without changing the absorption and the hepatic uptake profiles. Production rates of insulin, gastric inhibitory polypeptide and insulin-like growth factor-1 (IGF-1) were lowest after guar gum ingestion. However, the reductions in peripheral blood insulin levels caused by guar gum were not associated with a change in hepatic insulin extraction. IGF-1 appeared to be strongly secreted by the gut, whereas the liver had a net uptake of the peptide. Ingestion of guar gum increased the hepatic extraction coefficient of gut-produced IGF-1. Guar gum ingestion appeared also to decrease glucagon secretion. Cellulose at the level consumed had very few effects on the variables considered. It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the metabolic effects described.

  19. Inhibition of cholesterol absorption and synthesis in rats by sesamin.

    PubMed

    Hirose, N; Inoue, T; Nishihara, K; Sugano, M; Akimoto, K; Shimizu, S; Yamada, H

    1991-04-01

    The effects of sesamin, a lignan from sesame oil, on various aspects of cholesterol metabolism were examined in rats maintained on various dietary regimens. When given at a dietary level of 0.5% for 4 weeks, sesamin reduced the concentration of serum and liver cholesterol significantly irrespective of the presence or absence of cholesterol in the diet, except for one experiment in which the purified diet free of cholesterol was given. On feeding sesamin, there was a decrease in lymphatic absorption of cholesterol accompanying an increase in fecal excretion of neutral, but not acidic, steroids, particularly when the cholesterol-enriched diet was given. Sesamin inhibited micellar solubility of cholesterol, but not bile acids, whereas it neither bound taurocholate nor affected the absorption of fatty acids. Only a marginal proportion (ca. 0.15%) of sesamin administered intragastrically was recovered in the lymph. There was a significant reduction in the activity of liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase after feeding sesamin, although the activity of hepatic cholesterol 7 alpha-hydroxylase, drug metabolizing enzymes, and alcohol dehydrogenase remained uninfluenced. Although the weight and phospholipid concentration of the liver increased unequivocally on feeding sesamin, the histological examination by microscopy showed no abnormality, and the activity of serum GOT and GPT remained unchanged. Since sesamin lowered both serum and liver cholesterol levels by inhibiting absorption and synthesis of cholesterol simultaneously, it deserves further study as a possible hypocholesterolemic agent of natural origin.

  20. Development, optimization and characterization of glycyrrhetinic acid-chitosan nanoparticles of atorvastatin for liver targeting.

    PubMed

    Rohilla, Raman; Garg, Tarun; Bariwal, Jitender; Goyal, Amit K; Rath, Goutam

    2016-09-01

    Glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) is used as liver-targeted carrier for drug delivery. In this study, nanoparticles were prepared by ionic gelation process, and glycyrrhetinic acid act as the targeting ligand. The structure of the product was confirmed by IR and NMR techniques. The main aim of this study was to deliver atorvastatin directly to the liver by using same conjugate and reduce the associated side-effects, i.e. hepatotoxicity at high dose. Characterization of the developed formulation was performed by differential scanning calorimetry, particle size measurements and cellular uptake studies. Release profile, pharmacokinetics studies and organ distribution studies showed that developed formulation shows a relative higher liver uptake. The optimized formulation showed increased plasma concentration than the CTS nanoparticles as well as plain drug and the accumulation in the liver was nearly 2.59 times more than that of obtained with the CTS nanoparticles. Pharmaceutical and pharmacological indicators suggested that the proposed strategy can be successfully utilized for liver targeting of therapeutics.

  1. Effect of the amino acid histidine on the uptake of cadmium from the digestive system of the blue crab, Callinectes sapidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecon, J.; Powell, E.N.

    1981-07-01

    The digestive tract functions in the storage, metabolism, and excretion of heavy metals in invertebrates. The importance of the digestive tract and the processes governing digestion and absorption of nutrients in heavy metal uptake is becoming increasingly clear. The results of this study suggest that in order to understand the processes controlling heavy metal uptake in invertebrates, it will be necessary to investigate the role that digestion and absorption play in determining the transport rate of metals across the gut wall into the blood. For example, some amino acids increase metal absorption rates, whereas other compounds, such as phytate, decreasemore » metal absorption rates. The results also suggest that experimental designs to investigate metal absorption must include an appreciation of the significant role that the feeding state of the animal (e.g. fed or starved) and the role chelators, particularly those produced by the organisms themselves during digestion, may play in the observed uptake rates of metal ions.« less

  2. Hepatic sinusoid is not well-stirred: estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.

    1986-03-01

    Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugsmore » will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of (/sup 125/I)thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing (/sup 125/I)thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen.« less

  3. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    PubMed

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  4. Polyamine Uptake in Carrot Cell Cultures 1

    PubMed Central

    Pistocchi, Rossella; Bagni, Nello; Creus, José A.

    1987-01-01

    Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule. PMID:16665446

  5. Tumor and organ uptake of (64)Cu-labeled MORAb-009 (amatuximab), an anti-mesothelin antibody, by PET imaging and biodistribution studies.

    PubMed

    Lee, Jae-Ho; Kim, Heejung; Yao, Zhengsheng; Lee, Sung-Jin; Szajek, Lawrence P; Grasso, Luigi; Pastan, Ira; Paik, Chang H

    2015-11-01

    To investigate the effect of the injection dose of MORAb-009 (amatuximab, an anti-mesothelin monoclonal antibody), the tumor size and the level of shed mesothelin on the uptake of the antibody in mesothelin-positive tumor and organs by biodistribution (BD) and positron emission tomography (PET) imaging studies. 2-S-(4-Isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) was conjugated to amatuximab and labeled with (64)CuCl2 in 0.25 M acetate buffer, pH4.2. The resulting (64)Cu-NOTA-amatuximab was purified with a PD 10 column. To investigate the dose effect or the effect of tumor size, the BD was performed in groups of nude mice (n=5) with mesothelin-expressing A431/H9 tumors (range, 80-300 mm(3)) one day after iv injection of (64)Cu-NOTA-amatuximab (10 μCi) containing a total amatuximab dose of 2, 30, or 60 μg. The BD and PET imaging were also investigated 3, 24 and 48 h after injecting a total dose of 30 μg (10 μCi for BD), and 2 or 60 μg (300 μCi for PET), respectively. Comparing the results of the BDs from three different injection doses, the major difference was shown in the uptake (%ID/g) of the radiolabel in tumor, liver and blood. The tumor uptake and blood retention from 30 and 60 μg doses were greater than those from 2 μg dose, whereas the liver uptake was smaller. The BD studies also demonstrated a positive correlation between tumor size (or the level of shed mesothelin in blood) and liver uptake. However, there was a negative correlation between tumor size (or the shed mesothelin level) and tumor uptake and between tumor size and blood retention. These findings were confirmed by the PET imaging study, which clearly visualized the tumor uptake with the radiolabel concentrated in the tumor core and produced a tumor to liver ratio of 1.2 at 24h post-injection with 60 μg amatuximab, whereas the injection of 2 μg amatuximab produced a tumor to liver ratio of 0.4 at 24h post-injection. Our studies using a nude mouse

  6. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Jinsheng; Purcell, Wendy M.

    2006-10-15

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect themore » status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity.« less

  7. Root Uptake of Lipophilic Zinc−Rhamnolipid Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Samuel P.; McLaughlin, Michael J.; Cakmak, Ismail

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Brassica napus var. Pinnacle roots in {sup 65}Zn-spiked ice-cold solutions, compared with ZnSO{sub 4} alone. Therefore, rhamnolipid appeared to facilitate Zn absorption via a nonmetabolically mediated pathway. Synchrotron XRF and XAS showed that Zn was present in roots as Zn-phytate-like compounds when roots were treated with Zn-free solutions, ZnSO{sub 4}, or Zn-EDTA. With rhamnolipid application, Zn was predominantly found in roots as the Zn-rhamnolipid complex. When appliedmore » to a calcareous soil, rhamnolipids increased dry matter production and Zn concentrations in durum (Triticum durum L. cv. Balcali-2000) and bread wheat (Triticum aestivum L. cv. BDME-10) shoots. Rhamnolipids either increased total plant uptake of Zn from the soil or increased Zn translocation by reducing the prevalence of insoluble Zn-phytate-like compounds in roots.« less

  8. The effect of poorly absorbed solute on intestinal absorption.

    PubMed

    Menzies, I S; Jenkins, A P; Heduan, E; Catt, S D; Segal, M B; Creamer, B

    1990-12-01

    To determine the effects of poorly absorbed solute on intestinal absorption, the urinary recovery of ingested lactulose, L-rhamnose, D-xylose, and 3-O-methyl-D-glucose was measured after simultaneous ingestion of various 'loads' of mannitol given in iso-osmolar solution. Mannitol reduced intestinal uptake of the poorly absorbed test sugars, lactulose and L-rhamnose; uptake of D-xylose and 3-O-methyl-D-glucose, which are absorbed by carrier-mediated transport largely from the jejunum, was less affected. The dose-response effect of mannitol on the absorption of L-rhamnose was approximately exponential; doses of 5, 10, and 20 g mannitol reduced the average urinary excretion of L-rhamnose by 34.7%, 51.7%, and 61.2%, respectively. In this respect, an osmotically equivalent load of lactulose, ingested as 'solute', was approximately twice as effective as mannitol in reducing L-rhamnose absorption, probably because lactulose is more poorly absorbed than mannitol (less than 1.0% versus 32-41%). Ingestion of other poorly absorbed solutes such as raffinose, sorbitol, xylitol, magnesium sulphate, and sodium sulphate also significantly depressed the absorption of L-rhamnose; in contrast, more efficiently absorbed solutes, such as sodium chloride, glucose, glycerol, and urea had little effect.

  9. Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells.

    PubMed

    Bai, Yu-Chi; Hsia, Yu-Chun; Lin, Yu-Ting; Chen, Kuan-Hao; Chou, Fong-In; Yang, Chia-Min; Chuang, Yung-Jen

    2017-11-01

    Feasibility and efficacy of boric acid (BA)-mediated boron neutron capture therapy (BNCT) was first demonstrated by eliminating hepatocellular carcinoma (HCC) in a rat model. Furthermore, selective uptake of BA by liver tumor cells was shown in a rabbit model. To gain further insight, this study aimed to investigate the mechanisms of transportation and selective uptake of BA in HepG2 liver tumor cells. Transportation of BA in HepG2 cells was analyzed by time-course assays and by analyzing the rate of diffusion versus the concentration of BA. The effect of different tumor conditions on BA uptake was studied by treating HepG2 cells with 25 μg 10 B/ml BA under different concentrations of glucose, at different pH and in the presence of water-soluble cholesterol. HepG2 cells mainly uptake BA by simple diffusion. Cell membrane permeability may also contribute to tumor-specific uptake of BA. The selective uptake of BA was achieved primarily by diffusion, while other factors, such as low pH and increased membrane fluidity, which are hallmarks of HCC, might further enhance BA uptake. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Modification of the plasma clearance and liver uptake of steroid ester-conjugated oligodeoxynucleotides by association with (lactosylated) low-density lipoprotein.

    PubMed

    Rump, E T; de Vrueh, R L; Manoharan, M; Waarlo, I H; van Veghel, R; Biessen, E A; van Berkel, T J; Bijsterbosch, M K

    2000-06-01

    Low-density lipoprotein (LDL) has been proposed as carrier for the selective delivery of anticancer drugs to tumor cells. We reported earlier the association of several lipidic steroid-conjugated anticancer oligodeoxynucleotides (ODNs) with LDL. In the present study, we determined the stability of these complexes. When the complexes were incubated with a mixture of high-density lipoprotein and albumin, or with rat plasma, the oleoyl steroid-conjugated ODNs appeared to be more stably associated with LDL than the cholesteryl-conjugated ODN. Intravenously injected free lipid-ODNs were very rapidly cleared from the circulation of rats. The area under the curve (AUC) of the lipid-ODNs in plasma was <0.4 microg x min/mL. After complexation with LDL, plasma clearance of the lipid-ODNs was delayed. This was most evident for ODN-5, the ODN conjugated with the oleoyl ester of lithocholic acid (AUC = 6.82 +/- 1.34 microg x min/mL). The AUC of ODN-4, a cholesteryl-conjugated ODN, was 1.49 +/- 0.37 microg x min/mL. In addition, the liver uptake of the LDL-complexed lipid-ODNs was reduced. The lipid-ODNs were also administered as a complex with lactosylated LDL, a modified LDL particle that is selectively taken up by the liver. A high proportion of ODN-5 was transported to the liver along with lactosylated LDL (69.1 +/- 8.1% of the dose at 15 min after injection), whereas much less ODN-4 was transported (36.6 +/- 0.1% of the dose at 15 min after injection). We conclude that the oleoyl ester of lithocholic acid is a more potent lipid anchor than the other steroid lipid anchors. Because of the stable association, the oleoyl ester of lithocholic acid is an interesting candidate for tumor targeting of anticancer ODNs with lipoproteins.

  11. Influence of physicochemical properties of rice flour on oil uptake of tempura frying batter.

    PubMed

    Nakamura, Sumiko; Ohtsubo, Ken'ichi

    2010-01-01

    The physicochemical properties of rice flour and wheat flour influenced the oil uptake of tempura frying batter. Rice flour was better than wheat flour in the overall quality and crispness of the fried tempura batter. Rice flour resisted oil absorption more than wheat flour, and a higher level of apparent starch amylose and higher consistency/breakdown ratio of the pasting properties led to a lower oil uptake of the batter. Super hard EM10 rice showed the highest apparent amylose content and higher consistency/breakdown ratio than the other flour samples, the batter from EM10 revealing the lowest oil content after frying among all the batters examined. The apparent amylose content, consistency/breakdown ratio and oil absorption index are proposed as useful guides for oil absorption when frying from among the physicochemical properties that influence the oil content of fried batter. Our proposal for the "oil absorption index" could be a simple, although not perfect method for estimating the oil content of batter flour.

  12. Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol.

    PubMed

    Steinhardt, Rachel; Hiew, Stanley C; Mohapatra, Hemakesh; Nguyen, Du; Oh, Zachary; Truong, Richard; Esser-Kahn, Aaron

    2017-12-27

    Designing new liquids for CO 2 absorption is a challenge in CO 2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal-organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO 2 absorption isotherms. Upon introduction, CO 2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO 2 . The precipitation of this second viscous phase drives CO 2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO 2 uptake across the same pressure range. In our system, CO 2 absorption is strongly solvent dependent. In DMSO, both systems exhibit hyperbolic isotherms and no precipitation occurs. Subsequent 1 H NMR experiments confirmed the formation of distinct alkylcarbonate species having either one or two molecules of CO 2 bound. The solvent and structure relationships derived from these results can be used to tailor new liquid absorption systems to the conditions of a given CO 2 separation process.

  13. Uptake mechanism for iodine species to black carbon.

    PubMed

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  14. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    PubMed Central

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  15. Lung uptake of /sup 99m/Tc--sulfur colloid in falciparum malaria: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziessman, H.A.

    Increased lung uptake of /sup 99m/Tc-sulfur colloid was seen during liver scanning in a patient with falciparum malaria. This finding was due to the enhanced activity of the phagocytic cells of the reticuloendothelial system in the liver, spleen, and lung found in human and experimental malaria. Similar findings in other clinical situations and the relevant literature are reviewed.

  16. Non-invasive assessment of the liver using imaging

    NASA Astrophysics Data System (ADS)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.

    2016-12-01

    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  17. N-acetylcysteine induces shedding of selectins from liver and intestine during orthotopic liver transplantation

    PubMed Central

    Taut, F J H; Schmidt, H; Zapletal, C M; Thies, J C; Grube, C; Motsch, J; Klar, E; Martin, E

    2001-01-01

    In orthotopic liver transplantation (OLT), N-acetylcysteine (NAC) reduces ischaemia/reperfusion (I/R) injury, improves liver synthesis function and prevents primary nonfunction of the graft. To further elucidate the mechanisms of these beneficial effects of NAC, we investigated influence of high-dose NAC therapy on the pattern of adhesion molecule release from liver and intestine during OLT. Nine patients receiving allograft OLT were treated with 150 mg NAC/kg during the first hour after reperfusion; 10 patients received the carrier only. One hour after reperfusion, samples of arterial, portal venous and hepatic venous plasma were taken and blood flow in the hepatic artery and the portal vein was measured. Absolute concentrations of sICAM-1, sVCAM-1, sP-selectin and sE-selectin were not markedly different. However, balance calculations showed release of selectins from NAC-treated livers as opposed to net uptake in controls (P ≤ 0·02 for sP-selectin). This shedding of selectins might be a contributing factor to the decrease in leucocyte adherence and improved haemodynamics found experimentally with NAC-treatment. PMID:11422213

  18. The effect of calcium on non-heme iron uptake, efflux, and transport in intestinal-like epithelial cells (Caco-2 cells).

    PubMed

    Gaitán, Diego Alejandro; Flores, Sebastian; Pizarro, Fernando; Olivares, Manuel; Suazo, Miriam; Arredondo, Miguel

    2012-03-01

    It has been suggested that calcium inhibits the absorption of dietary iron by directly affecting enterocytes. However, it is not clear if this effect is due to a decreased uptake of iron or its efflux from enterocytes. We studied the effect of calcium on the uptake, efflux, and net absorption of non-heme iron using the intestinal-like epithelial cell line Caco-2 as an in vitro model. Caco-2 cells were incubated for 60 min in a buffer supplemented with non-heme iron (as sulfate) and calcium to achieve calcium to iron molar ratios ranging from 50:1 to 1,000:1. The uptake, efflux, and net absorption of non-heme iron were calculated by following a radioisotope tracer of (55)Fe that had been added to the buffer. Administration of calcium and iron at molar ratios between 500 and 1,000:1 increased the uptake of non-heme iron and decreased efflux. Calcium did not have an effect on the net absorption of non-heme iron. At typical supplementary doses for calcium and non-heme iron, calcium may not have an effect on the absorption of non-heme iron. The effect of higher calcium to iron molar ratios on the efflux of non-heme iron may be large enough to explain results from human studies.

  19. Increased uptake of [123I]-meta-iodobenzylguanidine and [18F]-dopamine in mouse pheochromocytoma cells and tumors after treatment with the histone deacetylase inhibitors romidepsin and trichostatin A

    PubMed Central

    Martiniova, Lucia; Perera, Shiromi M.; Brouwers, Frederieke M.; Alesci, Salvatore; Abu-Asab, Mones; Marvelle, Amanda F.; Kiesewetter, Dale O.; Thomasson, David; Morris, John C.; Kvetnansky, Richard; Tischler, Arthur S.; Reynolds, James C; Fojo, A. Tito; Pacak, Karel

    2014-01-01

    Purpose [131I]-meta-iodobenzylguanidine ([131I]-MIBG) is the most commonly employed treatment for metastatic pheochromocytoma and paraganglioma; however, its success is limited. Its efficacy depends on the [131I]-MIBG concentration reached within the tumor through its uptake via the norepinephrine transporter and retention in neurosecretory granules. Purpose is to enhance [123I]-MIBG uptake in cells and liver pheochromocytoma tumors. Experimental Design We report the in vitro effects of two histone deacetylase (HDAC) inhibitors, romidepsin and trichostatin A, on increased uptake of [3H]-norepinephrine and [123I]-MIBG in mouse pheochromocytoma (MPC) cells, and the effect of romidepsin on [18F]-fluorodopamine and [123I]-MIBG uptake in a mouse model of metastatic pheochromocytoma. The effects of both inhibitors on norepinephrine transporter activity were assessed in MPC cells by [123I]-MIBG uptake studies with and without the transporter blocking agent desipramine and the vesicular blocking agent reserpine. Results Both HDAC inhibitors increased [3H]-norepinephrine, [123I]-MIBG, and [18F]-fluorodopamine uptake through the norepinephrine transporter in MPC cells. In vivo, inhibitor treatment resulted in increased uptake of [18F]-fluorodopamine and in pheochromocytoma liver metastases as measured by maximal standardized uptake values on PET imaging (p < 0.001). Analysis of biodistribution after inhibitor treatment confirmed the PET results in that uptake of [123I]-MIBG was significantly increased in liver metastases (p < 0.05). Therefore, HDAC inhibitor treatment increased radioisotope uptake in MPC cells in vitro and in liver metastases in vivo, through increased norepinephrine transporter activity. Conclusion These results suggest that HDAC inhibitors could enhance the therapeutic efficacy of [131I]-MIBG treatment in patients with malignant pheochromocytoma. PMID:21098082

  20. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    PubMed

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  1. Fat digestion and absorption in spice-pretreated rats.

    PubMed

    Prakash, Usha N S; Srinivasan, Krishnapura

    2012-02-01

    A few common spices are known to stimulate secretion of bile with higher amount of bile acids which play a major role in digestion and absorption of dietary lipids. It would be appropriate to verify if these spices enable efficient digestion and absorption during high-fat intake. In this context, dietary ginger (0.05%), piperine (0.02%), capsaicin (0.015%), and curcumin (0.5%) were examined for their influence on bile secretion, digestive enzymes of pancreas and absorption of dietary fat in high-fat (30%) fed Wistar rats for 8 weeks. These spices enhanced the activity of pancreatic lipase, amylase, trypsin and chymotrypsin by 22-57%, 32-51%, 63-81% and 12-38%, respectively. Dietary intake of spices along with high-fat enhanced fat absorption. These dietary spices increased bile secretion with higher bile acid content. Stimulation of lipid mobilisation from adipose tissue was suggested by the decrease in perirenal adipose tissue weight by dietary capsaicin and piperine. This was also accompanied by prevention of the accumulation of triglyceride in liver and serum in high-fat fed rats. Activities of key lipogenic enzymes in liver were reduced which was accompanied by an increased activity of hormone-sensitive lipase. Thus, dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase. At the same time, the energy expenditure is facilitated by these spices to prevent the accumulation of absorbed fat. Copyright © 2011 Society of Chemical Industry.

  2. Site of water vapor absorption in the desert cockroach, Arenivaga investigata.

    PubMed Central

    O'Donnell, M J

    1977-01-01

    The desert cockroach, Arenivaga investigata, can gain weight by absorption of water-vapor from unsaturated atmospheres above 82.5% relative humidity. Blocking the anus or the dorsal surface with wax does not prevent water vapor uptake, but interference with movements of the mouthparts or blocking the mouth with wax-prevents such uptake. Weight gains are associated with the protrusion from the mouth of two bladder-like extensions of the hypopharynx. During absorption these structures are warmer than the surrounding mouthparts, their surface temperature increasing with relative humidity. This suggests that the surfaces of the bladder-like structures function at least as sites for condensation of water vapor, but the precise location of its transfer into the hemolymph has not yet been identified. Images PMID:266217

  3. Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea.

    PubMed

    Madejczyk, Michael S; Boyer, James L; Ballatori, Nazzareno

    2009-05-01

    The liver is a major organ involved in regulating whole body manganese (Mn) homeostasis; however, the mechanisms of Mn transport across the hepatocyte basolateral and canalicular membranes remain poorly defined. To gain insight into these transport steps, the present study measured hepatic uptake and biliary excretion of Mn in an evolutionarily primitive marine vertebrate, the elasmobranch Leucoraja erinacea, the little skate. Mn was rapidly removed from the recirculating perfusate of isolated perfused skate livers in a dose-dependent fashion; however, only a small fraction was released into bile (<2% in 6 h). Mn was also rapidly taken up by freshly isolated skate hepatocytes in culture. Mn uptake was inhibited by a variety of divalent metals, but not by cesium. Analysis of the concentration-dependence of Mn uptake revealed of two components, with apparent K(m) values 1.1+/-0.1 microM and 112+/-29 microM. The K(m) value for the high-affinity component was similar to the measured skate blood Mn concentration, 1.9+/-0.5 microM. Mn uptake was reduced by nearly half when bicarbonate was removed from the culture medium, but was unaffected by a change in pH from 6.5 to 8.5, or by substitution of Na with Li or K. Mn efflux from the hepatocytes was also rapid, and was inhibited when cells were treated with 0.5 mM 2,4-dinitrophenol to deplete ATP levels. These data indicate that skate liver has efficient mechanisms for removing Mn from the sinusoidal circulation, whereas overall biliary excretion is low and appears to be mediated in part by an ATP-sensitive mechanism.

  4. Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea

    PubMed Central

    Madejczyk, Michael S.; Boyer, James L.; Ballatori, Nazzareno

    2008-01-01

    The liver is a major organ involved in regulating whole body manganese (Mn) homeostasis; however, the mechanisms of Mn transport across the hepatocyte basolateral and canalicular membranes remain poorly defined. To gain insight into these transport steps, the present study measured hepatic uptake and biliary excretion of Mn in an evolutionarily primitive marine vertebrate, the elasmobranch Leucoraja erinacea, the little skate. Mn was rapidly removed from the recirculating perfusate of isolated perfused skate livers in a dose-dependent fashion; however, only a small fraction was released into bile (<2% in 7h). Mn was also rapidly taken up by freshly isolated skate hepatocytes in culture. Mn uptake was inhibited by a variety of divalent metals, but not by cesium. Analysis of the concentration-dependence of Mn uptake revealed of two components, with apparent Km values 1.1 ± 0.1 μM and 112 ± 29 μM. The Km value for the high-affinity component was similar to the measured skate blood Mn concentration, 1.9 ± 0.5 μM. Mn uptake was reduced by nearly half when bicarbonate was removed from the culture medium, but was unaffected by a change in pH from 6.5 to 8.5, or by substitution of Na with Li or K. Mn efflux from the hepatocytes was also rapid, and was inhibited when cells were treated with 0.5 mM 2,4-dinitrophenol to deplete ATP levels. These data indicate that skate liver has efficient mechanisms for removing Mn from the sinusoidal circulation, whereas overall biliary excretion is low and appears to be mediated in part by an ATP-sensitive mechanism. PMID:19141331

  5. Targeting SVCT for enhanced drug absorption: synthesis and in vitro evaluation of a novel vitamin C conjugated prodrug of saquinavir.

    PubMed

    Luo, Shuanghui; Wang, Zhiying; Patel, Mitesh; Khurana, Varun; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim K

    2011-07-29

    In order to improve oral absorption, a novel prodrug of saquinavir (Saq), ascorbyl-succinic-saquinavir (AA-Su-Saq) targeting sodium dependent vitamin C transporter (SVCT) was synthesized and evaluated. Aqueous solubility, stability and cytotoxicity were determined. Affinity of AA-Su-Saq towards efflux pump P-glycoprotein (P-gp) and recognition of AA-Su-Saq by SVCT were studied. Transepithelial permeability across polarized MDCK-MDR1 and Caco-2 cells were determined. Metabolic stability of AA-Su-Saq in rat liver microsomes was investigated. AA-Su-Saq appears to be fairly stable in both DPBS and Caco-2 cells with half lives of 9.65 and 5.73 h, respectively. Uptake of [(3)H]Saquinavir accelerated by 2.7 and 1.9 fold in the presence of 50 μM Saq and AA-Su-Saq in MDCK-MDR1 cells. Cellular accumulation of [(14)C]AA diminished by about 50-70% relative to control in the presence of 200 μM AA-Su-Saq in MDCK-MDR1 and Caco-2 cells. Uptake of AA-Su-Saq was lowered by 27% and 34% in the presence of 5mM AA in MDCK-MDR1 and Caco-2 cells, respectively. Absorptive permeability of AA-Su-Saq was elevated about 4-5 fold and efflux index reduced by about 13-15 fold across the polarized MDCK-MDR1 and Caco-2 cells. Absorptive permeability of AA-Su-Saq decreased 44% in the presence of 5mM AA across MDCK-MDR1 cells. AA-Su-Saq was devoid of cytotoxicity over the concentration range studied. AA-Su-Saq significantly enhanced the metabolic stability but lowered the affinity towards CYP3A4. In conclusion, prodrug modification of Saq through conjugation to AA via a linker significantly raised the absorptive permeability and metabolic stability. Such modification also caused significant evading of P-gp mediated efflux and CYP3A4 mediated metabolism. SVCT targeted prodrug approach can be an attractive strategy to enhance the oral absorption and systemic bioavailability of anti-HIV protease inhibitors. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Tear copper and its association with liver copper concentrations in six adult ewes.

    PubMed Central

    Schoster, J V; Stuhr, C; Kiorpes, A

    1995-01-01

    Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222). PMID:7648525

  7. Uptake and output of various forms of choline by organs of the conscious chronically catheterized sheep.

    PubMed Central

    Robinson, B S; Snoswell, A M; Runciman, W B; Upton, R N

    1984-01-01

    The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species. PMID:6696739

  8. Evaluation of light scattering and absorption properties ofin vivorat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2015-07-01

    Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient , the absorption coefficient μa, the tissue oxygen saturation StO2, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μa at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO2. Significant increase in μa(605)/μa(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of at 500, 530, 570, and 584 nm were well correlated with those of μa, which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in and an irreversible decrease in were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.

  9. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres

    PubMed Central

    Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith

    2013-01-01

    Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388

  10. A general model for the absorption of ultrasound by biological tissues and experimental verification.

    PubMed

    Jongen, H A; Thijssen, J M; van den Aarssen, M; Verhoef, W A

    1986-02-01

    In this paper, a closed-form expression is derived for the absorption of ultrasound by biological tissues. In this expression, the viscothermal and viscoelastic theories of relaxation processes are combined. Three relaxation time distribution functions are introduced, and it is assumed that each of these distributions can be described by an identical and simple hyperbolic function. Several simplifying assumptions had to be made to enable the experimental verification of the derived closed-form expression of the absorption coefficient. The simplified expression leaves two degrees of freedom and it was fitted to the experimental data obtained from homogenized beef liver. The model produced a considerably better fit to the data than other, more pragmatic models for the absorption coefficient as a function of frequency that could be found in the literature. Scattering in beef liver was estimated indirectly from the difference between attenuation in in vitro liver tissue as compared to absorption in a homogenate. The frequency dependence of the scattering coefficient could be described by a power law with a power of the order of 2. A comparable figure was found in direct backscattering measurements, performed at our laboratory with the same liver samples [Van den Aarssen et al., J. Acoust. Soc. Am. (to be published)]. A model for scattering recently proposed by Sehgal and Greenleaf [Ultrason. Imag. 6, 60-80 (1984)] was fitted to the scattering data as well. This latter model enabled the estimation of a maximum scatterer distance, which appeared to be of the order of 25 micron.

  11. Organic Anion-Transporting Polypeptide and Efflux Transporter-Mediated Hepatic Uptake and Biliary Excretion of Cilostazol and Its Metabolites in Rats and Humans.

    PubMed

    Wang, Chong; Huo, Xiaokui; Wang, Changyuan; Meng, Qiang; Liu, Zhihao; Sun, Pengyuan; Cang, Jian; Sun, Huijun; Liu, Kexin

    2017-09-01

    Cilostazol undergoes extensive liver metabolism. However, the transporter-mediated hepatic disposition of cilostazol remains unknown. The present study was performed to investigate the hepatic uptake and biliary excretion of cilostazol and its metabolites (OPC-13015 and OPC-13213) using rat liver and human transporter-transfected cells in vitro. Cilostazol uptake by rat liver slices and isolated rat hepatocytes exhibited time-, concentration-, and temperature dependency and was decreased by Oatp inhibitors, which suggested that Oatp was involved in the hepatic uptake of cilostazol. Cilostazol uptake in rat hepatocytes, OATP1B1-, and OATP1B3-HEK293 cells indicated a saturable process with K m values of 2.7 μM, 17.7 μM, and 2.7 μM, respectively. Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited cilostazol uptake in OATP1B1/1B3-HEK293 cells with K i values close to their clinical plasma concentration, which suggested possible drug-drug interactions in humans via OATP1B1/1B3. Moreover, the cumulative biliary excretion of cilostazol and OPC-13015 was significantly decreased by quinidine, bilirubin, and novobiocin in perfused rat liver, but OPC-13213 biliary excretion was only inhibited by novobiocin, which suggested that the efflux transporters Mrp2, Bcrp, and P-gp were involved in the biliary excretion of cilostazol and its metabolites. Our findings indicated that multiple transporters were involved in the hepatic disposition of cilostazol and its metabolites. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. [18F]Fluorocholine PET/CT Imaging of Liver Cancer: Radiopathologic Correlation with Tissue Phospholipid Profiling.

    PubMed

    Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L

    2017-06-01

    [ 18 F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [ 18 F]fluorocholine positron emission tomography (PET)/x-ray computed tomography (CT) to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [ 18 F]fluorocholine PET/CT before tumor resection. Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80 % of total profile variation. Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [ 18 F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [ 18 F]fluorocholine uptake ratio was 93 % while sensitivity for HCC based on increased tumor [ 18 F]fluorocholine uptake was 84 %, with lower levels of highly saturated phosphatidylcholines in tumors showing low [ 18 F]fluorocholine uptake. Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de novo fatty acid metabolism for phospholipid membrane synthesis. While [ 18 F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC

  13. [18F]fluorocholine PET/CT imaging of liver cancer: radiopathologic correlation with tissue phospholipid profiling

    PubMed Central

    Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L

    2017-01-01

    BACKGROUND [18F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [18F]fluorocholine PET/CT to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [18F]fluorocholine PET/CT before tumor resection. METHODS Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80% of total profile variation. RESULTS Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly-saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly-saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [18F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [18F]fluorocholine uptake ratio was 93%, while sensitivity for HCC based on increased tumor [18F]fluorocholine uptake was 84%, with lower levels of highly-saturated phosphatidylcholines in tumors showing low [18F]fluorocholine uptake. CONCLUSION Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de-novo fatty acid metabolism for phospholipid membrane synthesis. While [18F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC and a weaker lipogenic phenotype in some

  14. Genetics Home Reference: non-alcoholic fatty liver disease

    MedlinePlus

    ... different populations of microorganisms in the intestines (gut microbiota) on the breakdown and absorption of nutrients are ... Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol Res Pract. 2016;2016: ...

  15. Lactose digestion by human jejunal biopsies: the relationship between hydrolysis and absorption.

    PubMed Central

    Dawson, D J; Lobley, R W; Burrows, P C; Miller, V; Holmes, R

    1986-01-01

    The relationship between lactose hydrolysis and absorption of released glucose was investigated by determining the kinetics of lactose digestion by jejunal biopsies incubated in vitro. Lactase activity in intact biopsies correlated with conventional assay of tissue homogenates (r = 0.85, p less than 0.001), and glucose uptake from 28 mM lactose was directly proportional to lactase activity (r = 0.95, p less than 0.001) in 21 subjects with normal lactase levels, six with hypolactasia (primary or secondary to coeliac disease) and two with lactose intolerance but normal lactase activity. Kinetic analysis at 0.56-56 mM lactose in five normal subjects showed saturable kinetics for hydrolysis (app Km = 33.9 +/- 2.2 mM; app Vmax = 26.5 +/- 1.1 nmol/min/mg dry weight) but glucose uptake could be fitted to a model either of saturable uptake (app Kt = 47.2 +/- 0.3 mM; app Jmax = 14.1 +/- 0.2 nmol/min/mg) or saturable uptake plus a linear component (app Kt = 21.3 +/- 1.15; app Jmax = 4.59 +/- 0.12; app Kd = 0.093 +/- 0.010 nmol/min/mg/mM). The proportion of glucose taken into the tissue did not significantly exceed 50% of the total released at any lactose concentration suggesting the lack of an efficient capture mechanism for the released glucose. The results suggest that lactose hydrolysis is the rate limiting step in the overall absorption of glucose from lactose in vitro, and that the relationship between hydrolysis and absorption is the same in normal subjects and in hypolactasic subjects. PMID:3084346

  16. Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles.

    PubMed Central

    Csala, M; Mile, V; Benedetti, A; Mandl, J; Bánhegyi, G

    2000-01-01

    Oxidation and uptake of ascorbate show similar time courses in rat liver microsomal vesicles: a rapid burst phase is followed by a slower process. Inhibitors of ascorbate oxidation (proadifen, econazole or quercetin) also effectively decreased the uptake of ascorbate. The results show that dehydroascorbate is the transport form of ascorbate at the membrane of the endoplasmic reticulum. PMID:10880339

  17. Repeatability of Quantitative Whole-Body 18F-FDG PET/CT Uptake Measures as Function of Uptake Interval and Lesion Selection in Non-Small Cell Lung Cancer Patients.

    PubMed

    Kramer, Gerbrand Maria; Frings, Virginie; Hoetjes, Nikie; Hoekstra, Otto S; Smit, Egbert F; de Langen, Adrianus Johannes; Boellaard, Ronald

    2016-09-01

    Change in (18)F-FDG uptake may predict response to anticancer treatment. The PERCIST suggest a threshold of 30% change in SUV to define partial response and progressive disease. Evidence underlying these thresholds consists of mixed stand-alone PET and PET/CT data with variable uptake intervals and no consensus on the number of lesions to be assessed. Additionally, there is increasing interest in alternative (18)F-FDG uptake measures such as metabolically active tumor volume and total lesion glycolysis (TLG). The aim of this study was to comprehensively investigate the repeatability of various quantitative whole-body (18)F-FDG metrics in non-small cell lung cancer (NSCLC) patients as a function of tracer uptake interval and lesion selection strategies. Eleven NSCLC patients, with at least 1 intrathoracic lesion 3 cm or greater, underwent double baseline whole-body (18)F-FDG PET/CT scans at 60 and 90 min after injection within 3 d. All (18)F-FDG-avid tumors were delineated with an 50% threshold of SUVpeak adapted for local background. SUVmax, SUVmean, SUVpeak, TLG, metabolically active tumor volume, and tumor-to-blood and -liver ratios were evaluated, as well as the influence of lesion selection and 2 methods for correction of uptake time differences. The best repeatability was found using the SUV metrics of the averaged PERCIST target lesions (repeatability coefficients < 10%). The correlation between test and retest scans was strong for all uptake measures at either uptake interval (intraclass correlation coefficient > 0.97 and R(2) > 0.98). There were no significant differences in repeatability between data obtained 60 and 90 min after injection. When only PERCIST-defined target lesions were included (n = 34), repeatability improved for all uptake values. Normalization to liver or blood uptake or glucose correction did not improve repeatability. However, after correction for uptake time the correlation of SUV measures and TLG between the 60- and 90-min data

  18. Gastrointestinal absorption of americium-241 by orally exposed swine: comparison of experimental results with predictions of metabolic models.

    PubMed

    Eisele, G R; Bernard, S R; Nestor, C W

    1987-10-01

    Two groups of 11-week-old swine (40 miniature and 40 domestic swine) received a single oral administration of 1.9 X 10(8) Bq (5.2 mCi) of 241Am citrate, and groups of eight animals, four of each type, were killed and sampled at 1, 2, 4, 8, 16, 24, 48, 72, and 96 h and 30 days later. Uptake and excretion patterns of the radioactivity appeared to occur in three phases: rapid uptake, rapid excretion, and then a slower excretion. All animals were systematically dissected, and the eviscerated carcasses were autoclaved for separation of bone and muscle. The predominant site of deposition was bone, and autoclaving had little effect on releasing 241Am from either bone or muscle. The maximum fractional gastrointestinal absorption of 1.1 X 10(-3) occurred 8 h after radionuclide administration. The tissue distribution data suggest partitions of 50, 20, and 30%, for bone, liver, and other soft tissues, respectively. Two metabolic models were evaluated: a modified Mewhinney-Griffith model and the ICRP 30 model to compare the biological data with model predictions. All models underestimated the actual early time data, but the fits to the experimental results were better at later times.

  19. Glucose Absorption by the Bacillary Band of Trichuris muris

    PubMed Central

    Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M.

    2016-01-01

    Background A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. Methodology We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Principal Findings Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Conclusions/Significance Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development. PMID:27588682

  20. Glucose Absorption by the Bacillary Band of Trichuris muris.

    PubMed

    Hansen, Tina V A; Hansen, Michael; Nejsum, Peter; Mejer, Helena; Denwood, Matthew; Thamsborg, Stig M

    2016-09-01

    A common characteristic of Trichuris spp. infections in humans and animals is the variable but low efficacy of single-dose benzimidazoles currently used in mass drug administration programmes against human trichuriasis. The bacillary band, a specialised morphological structure of Trichuris spp., as well as the unique partly intracellular habitat of adult Trichuris spp. may affect drug absorption and perhaps contribute to the low drug accumulation in the worm. However, the exact function of the bacillary band is still unknown. We studied the dependency of adult Trichuris muris on glucose and/or amino acids for survival in vitro and the absorptive function of the bacillary band. The viability of the worms was evaluated using a motility scale from 0 to 3, and the colorimetric assay Alamar Blue was utilised to measure the metabolic activity. The absorptive function of the bacillary band in living worms was explored using a fluorescent glucose analogue (6-NBDG) and confocal microscopy. To study the absorptive function of the bacillary band in relation to 6-NBDG, the oral uptake was minimised or excluded by sealing the oral cavity with glue and agarose. Glucose had a positive effect on both the motility (p < 0.001) and metabolic activity (p < 0.001) of T. muris in vitro, whereas this was not the case for amino acids. The 6-NBDG was observed in the pores of the bacillary band and within the stichocytes of the living worms, independent of oral sealing. Trichuris muris is dependent on glucose for viability in vitro, and the bacillary band has an absorptive function in relation to 6-NBDG, which accumulates within the stichocytes. The absorptive function of the bacillary band calls for an exploration of its possible role in the uptake of anthelmintics, and as a potential anthelmintic target relevant for future drug development.

  1. Involvement of concentrative nucleoside transporter 1 in intestinal absorption of trifluorothymidine, a novel antitumor nucleoside, in rats.

    PubMed

    Okayama, Takashige; Yoshisue, Kunihiro; Kuwata, Keizo; Komuro, Masahito; Ohta, Shigeru; Nagayama, Sekio

    2012-02-01

    ααα-Trifluorothymidine (TFT), an anticancer nucleoside analog, is a potent thymidylate synthase inhibitor. TFT exerts its antitumor activity primarily by inducing DNA fragmentation after incorporation of the triphosphate form of TFT into the DNA. Although an oral combination of TFT and a thymidine phosphorylase inhibitor has been clinically developed, there is little information regarding TFT absorption. Therefore, we investigated TFT absorption in the rat small intestine. After oral administration of TFT in rats, more than 75% of the TFT was absorbed. To identify the uptake transport system, uptake studies were conducted by using everted sacs prepared from rat small intestines. TFT uptake was saturable, significantly reduced under Na(+)-free conditions, and strongly inhibited by the addition of an endogenous pyrimidine nucleoside. From these results, we suggested the involvement of concentrative nucleoside transporters (CNTs) in TFT absorption into rat small intestine. In rat small intestines, the mRNAs coding for rat CNT1 (rCNT1) and rCNT2, but not for rCNT3, were predominantly expressed. To investigate the roles of rCNT1 and rCNT2 in TFT uptake, we conducted uptake assays by using Xenopus laevis oocytes injected with rCNT1 complementary RNA (cRNA) and rCNT2 cRNA. TFT uptake by X. laevis oocytes injected with rCNT1 cRNA, and not rCNT2 cRNA, was significantly greater than that by water-injected oocytes. In addition, in situ single-pass perfusion experiments performed using rat jejunum regions showed that thymidine, a substrate for CNT1, strongly inhibited TFT uptake. In conclusion, TFT is absorbed via rCNT1 in the intestinal lumen in rats.

  2. Modification in digestive processing strategies to reduce toxic trace metal uptake in a marine bivalve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decho, A.W.; Luoma, S.N.

    1994-12-31

    Bivalves possess two major digestion pathways for processing food particles: a rapid ``intestinal`` pathway where digestion is largely extracellular; and a slower ``glandular`` pathway where digestion is largely intracellular. The slower glandular pathway often results in more efficient absorption of carbon but also more efficient uptake of certain metals (e.g. Cr associated with bacteria). In the bivalve Potamocorbula amurensis, large portions (> 90%) of bacteria are selectively routed to the glandular pathway. This results in efficient C uptake but also efficient uptake of associated Cr. The authors further determined if prolonged exposure to Cr-contaminated bacteria would result in high Crmore » uptake by animals or whether mechanisms exist to reduce Cr exposure and uptake. Bivalves were exposed to natural food + added bacteria (with or without added Cr) for a 6-day period, then pulse-chase experiments were conducted to quantify digestive processing and % absorption efficiencies (%AE) of bacterial Cr. Bivalves compensate at low (2--5 ug/g sed) Cr by reducing overall food ingestion, while digestive processing of food remains statistically similar to controls. At high Cr (200--500 ug/g sed) there are marked decreases in % bacteria processed by glandular digestion. This results in lower overall %AE of Cr. The results suggest that bivalves under natural conditions might balance efficient carbon sequestration against avoiding uptake of potentially toxic metals associated the food.« less

  3. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.

    PubMed

    Koo, Seung-Hoi

    2013-09-01

    Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.

  4. Modeling liver physiology: combining fractals, imaging and animation.

    PubMed

    Lin, Debbie W; Johnson, Scott; Hunt, C Anthony

    2004-01-01

    Physiological modeling of vascular and microvascular networks in several key human organ systems is critical for a deeper understanding of pharmacology and the effect of pharmacotherapies on disease. Like the lung and the kidney, the morphology of its vascular and microvascular system plays a major role in its functional capability. To understand liver function in absorption and metabolism of food and drugs, one must examine the morphology and physiology at both higher and lower level liver function. We have developed validated virtualized dynamic three dimensional (3D) models of liver secondary units and primary units by combining a number of different methods: three-dimensional rendering, fractals, and animation. We have simulated particle dynamics in the liver secondary unit. The resulting models are suitable for use in helping researchers easily visualize and gain intuition on results of in silico liver experiments.

  5. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  6. Antidepressants in a changing ocean: Venlafaxine uptake and elimination in juvenile fish (Argyrosomus regius) exposed to warming and acidification conditions.

    PubMed

    Maulvault, Ana Luísa; Santos, Lúcia H M L M; Camacho, Carolina; Anacleto, Patrícia; Barbosa, Vera; Alves, Ricardo; Pousão Ferreira, Pedro; Serra-Compte, Albert; Barceló, Damià; Rodriguez-Mozaz, Sara; Rosa, Rui; Diniz, Mário; Marques, António

    2018-06-02

    The presence of antidepressants, such as venlafaxine (VFX), in marine ecosystems is increasing, thus, potentially posing ecological and human health risks. The inherent mechanisms of VFX uptake and elimination still require further understanding, particularly accounting for the impact of climate change-related stressors, such as warming and acidification. Hence, the present work aimed to investigate, for the first time, the effects of increased seawater temperature (ΔT°C = +5 °C) and pCO 2 levels (ΔpCO 2 ∼1000 μatm, equivalent to ΔpH = -0.4 units) on the uptake and elimination of VFX in biological tissues (muscle, liver, brain) and plasma of juvenile meagre (Argyrosomus regius) exposed to VFX through two different exposure pathways (via water, i.e. [VFX ] ∼20 μg L -1 , and via feed, i.e. [VFX] ∼160 μg kg -1 dry weight, dw). Overall, results showed that VFX can be uptaken by fish through both water and diet. Fish liver exhibited the highest VFX concentration (126.7 ± 86.5 μg kg -1 and 6786.4 ± 1176.7 μg kg -1 via feed and water exposures, respectively), as well as the highest tissue:plasma concentration ratio, followed in this order by brain and muscle, regardless of exposure route. Both warming and acidification decreased VFX uptake in liver, although VFX uptake in brain was favoured under warming conditions. Conversely, VFX elimination in liver was impaired by both stressors, particularly when acting simultaneously. The distinct patterns of VFX uptake and elimination observed in the different scenarios calls for a better understanding of the effects of exposure route and abiotic conditions on emerging contaminants' toxicokinetics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dermal absorption and urinary elimination of N-methyl-2-pyrrolidone.

    PubMed

    Bader, Michael; Keener, Stephen A; Wrbitzky, Renate

    2005-09-01

    The dermal absorption of the solvent N-methyl-2-pyrrolidone (NMP) and its elimination in urine was investigated in an experimental study. Seven volunteers were exposed to 1045 mg of liquid NMP under occlusive conditions for 2 h. Urine was collected before, during and up to 72 h after the exposure and analysed for NMP by GC/MS after liquid-liquid extraction. Additionally, the remaining NMP in the pads was determined to estimate the total dermal uptake. The concentration of NMP in urine increased rapidly after beginning of the exposure up to 1 h after the exposure was completed. A peak concentration of 1,836+/-863 microg/l was observed, the half-life in urine was 3.2 h. About 0.5% of the absorbed dose was excreted metabolically unchanged. An average dermal absorption of 5.5 mg cm(-2) h(-1) was calculated. The results of this study show that the percutaneous absorption of NMP may contribute significantly to the overall uptake of the solvent, e.g. in the workplace. Therefore, a biological monitoring of NMP exposed workers is essential for occupational-medical surveillance.

  8. On the applicability of [18F]FBPA to predict L-BPA concentration after amino acid preloading in HuH-7 liver tumor model and the implication for liver boron neutron capture therapy.

    PubMed

    Grunewald, Catrin; Sauberer, Michael; Filip, Thomas; Wanek, Thomas; Stanek, Johann; Mairinger, Severin; Rollet, Sofia; Kudejova, Petra; Langer, Oliver; Schütz, Christian; Blaickner, Matthias; Kuntner, Claudia

    2017-01-01

    In recent years extra-corporal application of boron neutron capture therapy (BNCT) was evaluated for liver primary tumors or liver metastases. A prerequisite for such a high-risk procedure is proof of preferential delivery and high uptake of a 10 B-pharmaceutical in liver malignancies. In this work we evaluated in a preclinical tumor model if [ 18 F]FBPA tissue distribution measured with PET is able to predict the tissue distribution of [ 10 B]L-BPA. Tumor bearing mice (hepatocellular carcinoma cell line, HuH-7) were either subject of a [ 18 F]FBPA-PET scan with subsequent measurement of radioactivity content in extracted organs using a gamma counter or injected with [ 10 B]L-BPA with tissue samples analyzed by prompt gamma activation analysis (PGAA) or quantitative neutron capture radiography (QNCR). The impact of L-tyrosine, L-DOPA and L-BPA preloading on the tissue distribution of [ 18 F]FBPA and [ 10 B]L-BPA was evaluated and the pharmacokinetics of [ 18 F]FBPA investigated by compartment modeling. We found a significant correlation between [ 18 F]FBPA and [ 10 B]L-BPA uptake in tumors and various organs as well as high accumulation levels in pancreas and kidneys as reported in previous studies. Tumor-to-liver ratios of [ 18 F]FBPA ranged from 1.2 to 1.5. Preloading did not increase the uptake of [ 18 F]FBPA or [ 10 B]L-BPA in any organ and compartment modeling showed no statistically significant differences in [ 18 F]FBPA tumor kinetics. [ 18 F]FBPA-PET predicts [ 10 B]L-BPA concentration after amino acid preloading in HuH-7 hepatocellular carcinoma models. Preloading had no effect on tumor uptake of [ 18 F]FBPA. Despite differences in chemical structure and administered dose [ 18 F]FBPA and [ 10 B]L-BPA demonstrate an equivalent biodistribution in a preclinical tumor model. IMPLICATIONS FOR PATIENT CARE: [ 18 F]FBPA-PET is suitable for treatment planning and dose calculations in BNCT applications for liver malignancies. However, alternative tracers with more

  9. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes.

    PubMed

    Reboul, Emmanuelle; Borel, Patrick

    2011-10-01

    Our understanding of the molecular mechanisms responsible for fat-soluble vitamin uptake and transport at the intestinal level has advanced considerably over the past decade. On one hand, it has long been considered that vitamin D and E as well as β-carotene (the main provitamin A carotenoid in human diet) were absorbed by a passive diffusion process, although this could not explain the broad inter-individual variability in the absorption efficiency of these molecules. On the other hand, it was assumed that preformed vitamin A (retinol) and vitamin K1 (phylloquinone) absorption occurred via energy-dependent processes, but the transporters involved have not yet been identified. The recent discovery of intestinal proteins able to facilitate vitamin E and carotenoid uptake and secretion by the enterocyte has spurred renewed interest in studying the fundamental mechanisms involved in the absorption of these micronutrients. The proteins identified so far are cholesterol transporters such as SR-BI (scavenger receptor class B type I), CD36 (cluster determinant 36), NPC1L1 (Niemann-Pick C1-like 1) or ABCA1 (ATP-Binding Cassette A1) displaying a broad substrate specificity, but it is likely that other membrane proteins are also involved. After overviewing the metabolism of fat-soluble vitamins and carotenoids in the human upper gastrointestinal lumen, we will focus on the putative or identified proteins participating in the intestinal uptake, intracellular transport and basolateral secretion of these fat-soluble vitamins and carotenoids, and outline the uncertainties that need to be explored in the future. Identifying the proteins involved in intestinal uptake and transport of fat-soluble vitamins and carotenoids across the enterocyte is of great importance, especially as some of them are already targets for the development of drugs able to slow cholesterol absorption. Indeed, these drugs may also interfere with lipid vitamin uptake. A better understanding of the molecular

  10. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tomohito; Momoi, Kanae; Hosoyamada, Makoto

    2008-03-15

    Divalent metal transporter 1 (DMT1) is a mammalian iron (Fe) transporter and also transports Cadmium (Cd) in vitro. This study compared Cd absorption in DMT1-dysfunctional MK/Rej-{sup mk}/{sub mk} mice (mk/mk mice) and in DMT1-functional, Fe-deficient wild-type (WT) mice, to clarify the role of DMT1 in intestinal Cd absorption in vivo. Mice were given 1 ppm CdCl{sub 2} aq in drinking water for 2 weeks, and the concentrations of Cd and Fe in liver, kidney, and intestinal epithelium were subsequently determined. The Fe concentration in intestinal epithelia of WT mice was decreased in proportion to the level of dietary Fe limitation,more » while Cd accumulation under the same conditions was increased. DMT1 mRNA expression in the small intestine of Fe-deficient WT mice was clearly increased compared to that in Fe-sufficient WT mice. Iron deficiency resulted in up-regulation of Cd uptake in the intestine of Fe-deficient WT mice. The mk/mk mice have a mutation in DMT1 and loss of its function led to decreased intestinal Fe concentration. However, intestinal Cd accumulation was the same as in WT mice and it was also increased in Fe-deficient situation. There is the possibility that an unknown Cd pathway has taken a role on Cd intestinal absorption in vivo and that this pathway is regulated by food Fe concentrations. Therefore, DMT1 is not the sole transporter of intestinal cadmium absorption in vivo.« less

  11. Histologic differences between orthotopic xenograft pancreas models affect Verteporfin uptake measured by fluorescence microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.

    2012-02-01

    Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.

  12. Gene Expression Profiling in Entamoeba histolytica Identifies Key Components in Iron Uptake and Metabolism

    PubMed Central

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite. PMID:25210888

  13. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    PubMed

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  14. Impaired absorption of marked oligopeptide Glycine-I Tyrosine-Glycine after successful autologous-allotopic ileal mucosa transplantation in beagles.

    PubMed

    Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z

    2004-10-01

    After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.

  15. Calcium Uptake by Excised Maize Roots and Interactions With Alkali Cations 1

    PubMed Central

    Maas, E. V.

    1969-01-01

    Ca2+ uptake was studied in short-term experiments using 5-day-old excised maize roots. This tissue readily absorbs Ca2+, and inhibition by dinitrophenol and low temperature shows that the process is metabolically mediated. The uptake of Ca2+, like that of other cations, is influenced by the counter ion, the pH and concentration of the ambient solution, and the presence of other cations. The rate of uptake from various salts decreases in the following order: NO3− > Cl− = Br− > SO42−. K+ and H+ greatly interfere with Ca2+ absorption, while Li+ and Na+ have only slight effects. PMID:16657169

  16. Targeting of asialofetuin sugar chain-bearing liposomes to liver lysosomes.

    PubMed

    Banno, Y; Ohki, K; Nozawa, Y

    1983-10-01

    Specific direction of liposomes bearing an asialofetuin sugar chain (AFSC) to liver parenchymal cells was examined both in vivo and in vitro. The AFSC-bearing liposomes were preferentially recovered in the liver within several minutes after an intravenous injection into mice and were found to be predominantly localized in mitochondrial-lysosomal fraction. The massive distribution of the AFSC-liposomes in this fraction was also confirmed by using a lysosomal protease inhibitor, E-64-d. In isolated rat hepatocytes, the uptake of AFSC-liposomes was increased 2-3-fold as compared with the control liposomes without AFSC. Thus liposomes bearing AFSC would be useful to target enzymes to liver lysosomes.

  17. Studies of Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Waldron-Edward, Deirdre

    1965-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, allowing calcium to be available to the body. Studies were carried out on the inhibitory effect of various amounts of sodium alginate and the dose-response relationship of Sr89 and bone uptake. The results obtained indicated that under laboratory conditions sodium alginate effectively reduces Sr89 uptake in a constant proportion. This effect was observed at the three levels of administration of 1.4%, 12% and 24% of sodium alginate. The linear relationship between the dosage of the radioisotope and the bone uptake in the presence of sodium alginate suggests that the same proportion is maintained at the lower levels of intake of radioactive strontium. Previous studies with small constant doses of sodium alginate were extended in rats to a period corresponding approximately to three years of human life span. Low doses were sufficient to reduce appreciably bone uptake of radiostrontium. PMID:14341649

  18. Studies on Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534

  19. In vitro uptake and immune functionality of digested Rosemary extract delivered through food grade vehicles.

    PubMed

    Arranz, E; Guri, A; Fornari, T; Mendiola, J A; Reglero, G; Corredig, M

    2017-07-01

    The digestion, absorption, uptake and bioavailability of a rosemary supercritical fluid extract encapsulated in oil in water emulsion were studied. Two emulsions with opposite surface charge were prepared, containing 7% canola oil, and either 2% lactoferrin or whey protein isolate. When absorption and uptake of carnosic acid and carnosol were followed on Caco-2 cell monolayers, there were no differences with protein type. However, when co-cultures of HT-29 MTX were employed, the presence of mucus caused a higher retention of carnosic acid in the apical layer for lactoferrin emulsions. The immune activity of the bioavailable fractions collected from cell absorption experiments was tested ex vivo on murine splenocytes. Although transport through the intestinal barrier models was low, the bioavailable fractions showed a significant effect on splenocytes proliferation. These results demonstrated the potential of using rosemary supercritical extract through protein stabilized oil in water emulsions, as a food with immunomodulatory functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Carrier-mediated uptake of nobiletin, a citrus polymethoxyflavonoid, in human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Haraguchi, Koichi; Kato, Yoshihisa; Endo, Tetsuya

    2014-07-01

    The mechanism of intestinal absorption of nobiletin (NBL) was investigated using Caco-2 cells. The uptake of NBL from the apical membranes of Caco-2 cells was rapid and temperature-dependent and the presence of metabolic inhibitors, NaN3 and carbonylcyanide p-trifluoromethoxyphenylhydrazone, did not cause a decrease in NBL uptake. The relationship between the initial uptake of NBL and its concentration was saturable, suggesting the involvement of a carrier-mediated process. The Km and uptake clearance (Vmax/Km) values for NBL were 50.6 and 168.1μl/mg protein/min, respectively. This clearance value was about 9-fold greater than that of the non-saturable uptake clearance (Kd: 18.5μl/mg protein/min). The presence of structurally similar compounds, such as quercetin and luteolin, competitively inhibited NBL uptake. These results suggest that uptake of NBL from the apical membranes of Caco-2 cells is mainly mediated by an energy-independent facilitated diffusion process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Extent of cutaneous metabolism during percutaneous absorption of xenobiotics.

    PubMed

    Bronaugh, R L; Stewart, R F; Storm, J E

    1989-07-01

    In vitro percutaneous absorption studies generally do not determine whether biotransformation occurs during passage of a substance through the skin. Since it has recently been demonstrated that several chemicals are metabolized during skin permeation, we investigated the metabolism of five additional compounds (14C-labeled) after application to fuzzy rat skin: caffeine, p,p'-DDT, butylated hydroxytoluene (BHT), salicylic acid, and acetyl ethyl tetramethyltetralin (AETT). The viability of skin was maintained with a tissue culture medium. Radioactivity of each substrate and any metabolites in skin and receptor fluid was measured so that the absorption and metabolism of water-insoluble compounds would be accurately determined. Percutaneous absorption ranged from a low of 13% of the applied dose for BHT to a high of 49% for DDT. BHT was metabolized in skin to 4-hydroxy-BHT and an unknown metabolite. Of the absorbed radioisotope, 6.6% was isolated in biotransformed products found mainly in the receptor fluid. AETT was also metabolized during absorption, with 1.9% of the absorbed radioisotope found in two unknown peaks. Caffeine, DDT, and salicylic acid were not metabolized during skin permeation. Skin and liver microsomal metabolism was measured for all compounds except DDT. Metabolism in skin was observed only for the compounds also biotransformed in the diffusion cell; BHT and AETT were metabolized at 113 and 2.5 pmol/min/mg protein, respectively. In this study, as in others, skin metabolism was substantially less than the corresponding metabolism in liver. Therefore, a low rate of liver metabolism such as that found for caffeine, salicylic acid, and DDT might often be predictive of the absence of measurable metabolism during skin permeation. It seems likely that for many compounds, the biotransformations in skin will be small in terms of the percentage of absorbed material that is metabolized. Nevertheless, with potent compounds, even small quantities of a metabolite

  2. Accumulation of (18)F-FDG in the liver in hepatic steatosis.

    PubMed

    Keramida, Georgia; Potts, Jonathan; Bush, Jan; Verma, Sumita; Dizdarevic, Sabina; Peters, Adrien M

    2014-09-01

    Nonalcoholic fatty liver disease is associated with hepatic inflammation. An emerging technique to image inflammation is PET using the glucose tracer, (18)F-FDG. The purpose of this study was to determine whether in hepatic steatosis the liver accumulates FDG in excess of FDG physiologically exchanging between blood and hepatocyte. Hepatic FDG uptake, as SUV = [voxel counts / administered activity] × body weight), and CT density were measured in a liver region in images obtained 60 minutes after injection of FDG in 304 patients referred for routine PET/CT. Maximum SUV (region voxel with the highest count rate, SUVmax) and average SUV ( SUVave) were measured. Blood FDG concentration was measured as the maximum SUV over the left ventricular cavity (SUVLV). SUVave was adjusted for hepatic fat using a formula equating percentage fat to CT density. Patients were divided in subgroups on the basis of blood glucose (< 4, 4 to < 5, 5 to < 6, 6 to < 8, 8 to < 10, and > 10 mmol/L). Hepatic steatosis was defined as CT density less than 40 HU (n = 71). The percentage of hepatic fat increased exponentially with blood glucose. SUVmax / SUVLV and fat-adjusted SUVave / SUVLV but not SUVave / SUVLV correlated with blood glucose. Fat-adjusted SUVave was higher in patients with hepatic steatosis (p < 0.001) by ~0.4 in all blood glucose groups. There was a similar difference (~0.3) in SUVmax (p < 0.005) but no difference in SUVave. SUVmax / SUVLV and fat-adjusted SUVave / SUVLV correlated with blood glucose in patients with hepatic steatosis but not in those without. SUVave / SUVLV correlated with blood glucose in neither group. FDG uptake is increased in hepatic steatosis, probably resulting from irreversible uptake in inflammatory cells superimposed on reversible hepatocyte uptake.

  3. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  4. CALCIUM ABSORPTION IN MAN: BASED ON LARGE VOLUME LIQUID SCINTILLATION COUNTER STUDIES.

    PubMed

    LUTWAK, L; SHAPIRO, J R

    1964-05-29

    A technique has been developed for the in vivo measurement of absorption of calcium in man after oral administration of 1 to 5 microcuries of calcium-47 and continuous counting of the radiation in the subject's arm with a large volume liquid scintillation counter. The maximum value for the arm counting technique is proportional to the absorption of tracer as measured by direct stool analysis. The rate of uptake by the arm is lower in subjects with either the malabsorption syndrome or hypoparathyroidism. The administration of vitamin D increases both the absorption rate and the maximum amount of calcium absorbed.

  5. The target sign in colorectal liver metastases: an atypical Gd-EOB-DTPA "uptake" on the hepatobiliary phase of MR imaging.

    PubMed

    Granata, Vincenza; Catalano, Orlando; Fusco, Roberta; Tatangelo, Fabiana; Rega, Daniela; Nasti, Guglielmo; Avallone, Antonio; Piccirillo, Mauro; Izzo, Francesco; Petrillo, Antonella

    2015-10-01

    To describe the MRI findings in colorectal cancer liver metastases using gadoxetic acid (Gd-EOB-DTPA), with special emphasis on the target feature seen on the hepatobiliary phase. The medical records of 45 colorectal cancer patients with an overall number of 150 liver metastases were reviewed. All patients underwent Gd-EOB-DTPA-enhanced MRI before any kind of treatment. We retrospectively evaluated, for each lesion, the signal intensity on the T1-weighted, T2-weighted, and diffusion-weighted images. Additionally, the enhancement pattern during the arterial-, portal-, equilibrium-, and hepatobiliary-phase was assessed. Fourteen lesions had a pathological correlation. Lesions size was 5-40 mm (mean 15 mm). All metastases were hypointense on T1-w imaging. Ninety-nine lesions (66%) had a central area of very high signal intensity on T2-w imaging. Fifty-one metastases (34%) were hyperintense on the T2-w images. In DWI, all lesions had a restricted diffusion. The mean ADC value was 1.31 × 10(-3) mm(2)/s (range 1.10-1.45 × 10(-3) mm(2)/s). During the arterial-phase imaging, 61 lesions (41%) showed a rim enhancement, while 89 lesions (59%) appeared as hypointense. All lesions had low signal intensity in the portal and equilibrium phase. Thirty-nine percent of the lesions also showed an enhancing rim on the portal-phase images. During the hepatobiliary phase, 80 lesions (53.3%) were hypointense, while 70 lesions (46.7%) had a target appearance. A number of metastases show an atypical contrast medium uptake during the hepatobiliary phase of gadoxetic acid-enhanced MRI, consisting in a target appearance.

  6. Betaine chemistry, roles, and potential use in liver disease.

    PubMed

    Day, Christopher R; Kempson, Stephen A

    2016-06-01

    Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An exposure system for measuring nasal and lung uptake of vapors in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, A.R.; Brookins, L.K.; Gerde, P.

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposuremore » system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.« less

  8. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis.

    PubMed

    Johnson, Tory A; Pfeffer, Suzanne R

    2016-06-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. © 2016 Johnson and Pfeffer. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. The utility of Xenon-133 liver scan in the diagnosis and management of nonalcoholic fatty liver disease.

    PubMed

    Al-Busafi, Said A; Ghali, Peter; Wong, Philip; Novales-Diaz, Javier A; Deschênes, Marc

    2012-03-01

    Nonalcoholic fatty liver disease (NAFLD) is an important and common condition affecting approximately 20% of the general population. Given the limitation of radiological investigations, diagnosis often requires a liver biopsy. To compare Xenon-133 (Xe-133) liver scanning with ultrasonography in the diagnosis of NAFLD. From January 2003 to February 2007, 258 consecutive patients with suspected NAFLD underwent Xe-133 liver scanning at Royal Victoria Hospital (Montreal, Quebec). Of these, 43 patients underwent ultrasonography and liver biopsy for the evaluation of NAFLD. Patients with other liver diseases and significant alcohol consumption were excluded. Two nuclear medicine physicians assessed liver Xe-133 uptake and measured the grade of steatosis using a standardized protocol. The degree of steatosis was determined from biopsy specimens assessed by two hepatopathologists. NAFLD was identified by liver biopsy in 35 of 43 patients (81.4%). Xe-133 scan demonstrated 94.3% sensitivity (95% CI 81.4% to 98.4%) and 87.5% specificity (95% CI 52.9% to 99.4%) for the presence of NAFLD. The positive and negative predictive values for detection of steatosis by Xe-133 scan were 97.1% (95% CI 85.1% to 99.8%) and 77.8% (95% CI 45.3% to 93.7%), respectively. The positive and negative likelihood ratios were 7.54 (95% CI 1.20 to 47.26) and 0.07 (95% CI 0.02 to 0.26), respectively. Two patients with NAFLD (5.7%) who had a negative Xe-133 scan result had histologically mild steatosis (<10%). The grade of steatosis on liver biopsy was highly correlated with the results of the Xe-133 scan (r=0.87; P<0.001). The sensitivity and specificity of ultrasound in diagnosing steatosis were 62.9% and 75%, respectively. Xe-133 liver scan proved to be a safe, reliable, noninvasive method for diagnosing and quantifying hepatic steatosis, and was superior to ultrasound.

  10. [Analysis of effects of salt stress on absorption and accumulation of mineral elements in Elymus spp. using atomic absorption spectrophotometer].

    PubMed

    Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin

    2008-12-01

    Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.

  11. Rapid alternative absorption of dietary long-chain fatty acids with upregulation of intestinal glycosylated CD36 in liver cirrhosis.

    PubMed

    Yamamoto, Yasunori; Hiasa, Yoichi; Murakami, Hidehiro; Ikeda, Yoshio; Yamanishi, Hirofumi; Abe, Masanori; Matsuura, Bunzo; Onji, Morikazu

    2012-07-01

    Dietary long-chain fatty acid (LCFA) intake is an important risk factor for hepatic inflammation and hepatocarcinogenesis. An alternate route of dietary LCFA absorption has been suggested in patients with liver cirrhosis (LC). We aimed to determine this alternate route and to identify its mechanism. Twenty healthy control subjects and 47 patients with LC-n = 23 with portal hypertension [PH(+)LC] and 24 without portal hypertension [PH(-)LC)]-were enrolled. [¹³C]Palmitate (an LCFA) and octanoate (a medium-chain fatty acid [MCFA]) were administered by using gastrointestinal endoscopy. Breath ¹³CO₂ was measured to quantify metabolized fatty acids. We also examined intestinal specimens of patients in these groups. A more rapid increase in metabolized palmitate, which showed a pattern similar to that of octanoate metabolism, was observed in patients with LC than in healthy control subjects. The increase in the PH(-)LC group was higher than that in the PH(+)LC group. However, the concentration of metabolized palmitate increased with treatment of the PH(+)LC group with a portal-systemic shunt. Morphologic changes such as expanded lymph and blood vessels were present, and glycosylated CD36 increased in the jejunum of the PH(+)LC group. This group had high serum concentrations of glucagon-like peptide-2. These data suggest that dietary LCFAs, similar to MCFAs, are absorbed via blood vessels in patients with LC. Rapid absorption of LCFAs by an alternative method occurred in patients with LC. This altered LCFA processing is likely related to upregulation of intestinal glycosylated CD36 and could contribute to pathogenesis in patients with LC.

  12. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  13. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Payne, H. Ross; Kier, Ann B.

    2012-01-01

    The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting. PMID:22859366

  14. Applying standardized uptake values in gallium-67-citrate single-photon emission computed tomography/computed tomography studies and their correlation with blood test results in representative organs.

    PubMed

    Toriihara, Akira; Daisaki, Hiromitsu; Yamaguchi, Akihiro; Yoshida, Katsuya; Isogai, Jun; Tateishi, Ukihide

    2018-05-21

    Recently, semiquantitative analysis using standardized uptake value (SUV) has been introduced in bone single-photon emission computed tomography/computed tomography (SPECT/CT). Our purposes were to apply SUV-based semiquantitative analytic method for gallium-67 (Ga)-citrate SPECT/CT and to evaluate correlation between SUV of physiological uptake and blood test results in representative organs. The accuracy of semiquantitative method was validated using an National Electrical Manufacturers Association body phantom study (radioactivity ratio of sphere : background=4 : 1). Thereafter, 59 patients (34 male and 25 female; mean age, 66.9 years) who had undergone Ga-citrate SPECT/CT were retrospectively enrolled in the study. A mean SUV of physiological uptake was calculated for the following organs: the lungs, right atrium, liver, kidneys, spleen, gluteal muscles, and bone marrow. The correlation between physiological uptakes and blood test results was evaluated using Pearson's correlation coefficient. The phantom study revealed only 1% error between theoretical and actual SUVs in the background, suggesting the sufficient accuracy of scatter and attenuation corrections. However, a partial volume effect could not be overlooked, particularly in small spheres with a diameter of less than 28 mm. The highest mean SUV was observed in the liver (range: 0.44-4.64), followed by bone marrow (range: 0.33-3.60), spleen (range: 0.52-2.12), and kidneys (range: 0.42-1.45). There was no significant correlation between hepatic uptake and liver function, renal uptake and renal function, or bone marrow uptake and blood cell count (P>0.05). The physiological uptake in Ga-citrate SPECT/CT can be represented as SUVs, which are not significantly correlated with corresponding blood test results.

  15. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  16. [Absorption and metabolism of Chuanxiong Rhizoma decoction with multi-component sequential metabolism method].

    PubMed

    Liu, Yang; Luo, Zhi-Qiang; Lv, Bei-Ran; Zhao, Hai-Yu; Dong, Ling

    2016-04-01

    The multiple components in Chinese herbal medicines (CHMS) will experience complex absorption and metabolism before entering the blood system. Previous studies often lay emphasis on the components in blood. However, the dynamic and sequential absorption and metabolism process following multi-component oral administration has not been studied. In this study, the in situ closed-loop method combined with LC-MS techniques were employed to study the sequential process of Chuanxiong Rhizoma decoction (RCD). A total of 14 major components were identified in RCD. Among them, ferulic acid, senkyunolide J, senkyunolide I, senkyunolide F, senkyunolide G, and butylidenephthalide were detected in all of the samples, indicating that the six components could be absorbed into blood in prototype. Butylphthalide, E-ligustilide, Z-ligustilide, cnidilide, senkyunolide A and senkyunolide Q were not detected in all the samples, suggesting that the six components may not be absorbed or metabolized before entering the hepatic portal vein. Senkyunolide H could be metabolized by the liver, while senkyunolide M could be metabolized by both liver and intestinal flora. This study clearly demonstrated the changes in the absorption and metabolism process following multi-component oral administration of RCD, so as to convert the static multi-component absorption process into a comprehensive dynamic and continuous absorption and metabolism process. Copyright© by the Chinese Pharmaceutical Association.

  17. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  18. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells

    PubMed Central

    Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.

    2008-01-01

    Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020

  19. Imaging of cellular proliferation in liver metastasis by [18F]fluorothymidine positron emission tomography: effect of therapy.

    PubMed

    Contractor, Kaiyumars; Challapalli, Amarnath; Tomasi, Giampaolo; Rosso, Lula; Wasan, Harpreet; Stebbing, Justin; Kenny, Laura; Mangar, Stephen; Riddle, Pippa; Palmieri, Carlo; Al-Nahhas, Adil; Sharma, Rohini; Turkheimer, Federico; Coombes, R Charles; Aboagye, Eric

    2012-06-07

    Although [(18)F]fluorothymidine positron emission tomography (FLT-PET) permits estimation of tumor thymidine kinase-1 expression, and thus, cell proliferation, high physiological uptake of tracer in liver tissue can limit its utility. We evaluated FLT-PET combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (FLT-PET(KSF)) for detecting drug response in liver metastases. FLT-PET and computed tomography data were collected from patients with confirmed breast or colorectal liver metastases before, and two weeks after the first cycle of chemotherapy. Changes in tumor FLT-PET and FLT-PET(KSF) variables were determined. Visual distinction between tumor and normal liver was seen in FLT-PET(KSF) images. Of the 33 metastases from 20 patients studied, 26 were visible after kinetic filtering. The net irreversible retention of the tracer (Ki; from unfiltered data) in the tumor, correlated strongly with tracer uptake when the imaging variable was an unfiltered average or maximal standardized uptake value, 60 min post-injection (SUV(60,av): r = 0.9, SUV(60,max): r = 0.7; p < 0.0001 for both) and occurrence of high intensity voxels derived from FLT-PET(KSF) (r = 0.7, p < 0.0001). Overall, a significant reduction in the imaging variables was seen in responders compared to non-responders; however, the two week time point selected for imaging was too early to allow prediction of long term clinical benefit from chemotherapy. FLT-PET and FLT-PET(KSF) detected changes in proliferation in liver metastases.

  20. Effects of turpentine-induced inflammation on the hypoxic stimulation of intestinal Fe3+ absorption in mice.

    PubMed Central

    Raja, K. B.; Duane, P.; Peters, T. J.

    1990-01-01

    Chronic subcutaneous turpentine administration (weekly for 6 weeks) induced a mild normocytic anaemia in mice. In-vitro and in-vivo intestinal Fe3+ absorption parameters were, however, not significantly altered from values in saline-treated or untreated mice. Normal mice, when exposed to 3 days hypoxia demonstrated a 2-3-fold increase in iron absorption in vivo, mainly due to changes in the amount of iron transferred from the mucosa to the plasma and thence to the carcass. A 2-3-fold increase in Vmax was also observed in in-vitro uptake experiments using isolated duodenal fragments. In contrast, turpentine-treated animals, though demonstrating an enhanced in-vitro maximal uptake capacity, failed to elicit an adaptive response in vivo following hypoxic exposure. These findings suggest that a circulating (humoral) factor may be responsible for the inhibition in absorption in vivo in this turpentine-induced inflammatory model. PMID:2278822

  1. Effect of specific activity on cardiac uptake of iodine-123-MIBG.

    PubMed

    Farahati, J; Bier, D; Scheubeck, M; Lassmann, M; Schelper, L F; Grelle, I; Hanscheid, H; Biko, J; Graefe, K H; Reiners, C

    1997-03-01

    Radioiodinated meta-iodobenzylguanidine (MIBG), an analog of norepinephrine, has been used to assess myocardial sympathetic innervation. Recent in vivo studies predict enhanced cardiac uptake of this radiopharmaceutical with high specific activity. To clarify the effect of specific activity on cardiac uptake of radioiodinated MIBG, the distribution and kinetics of no-carrier-added [123I]MIBG (> or = 7.4 TBq/mumol) were compared with those of commercial [123I]MIBG (approximately 74 MBq/mumol) in three healthy volunteers by serial imaging and blood sampling. Higher specific activity result in higher uptake of radioiodinated MIBG in all volunteers in the heart (p < 0.05) and liver (p < 0.05) but not in the lung (p = 0.26). Due to rapid deiodination, a more pronounced accumulation of radioactivity was present in plasma after no-carrier-added MIBG than commercial [123I]MIBG, resulting in higher background and thyroid activity after administration of the former. Calculated heart-to-liver (p = 0.96) and heart-to-lung (p = 0.42) count ratios in all volunteers revealed no significant improvement in cardiac imaging with no-carrier-added [123I]MIBG compared to commercial [123I]MIBG. This study highlights the appreciably higher in vivo deiodination of no-carrier-added [123I]MIBG compared to commercial preparation of [123I]MIBG in humans. Cardiac images acquired with no-carrier-added [123I]MIBG do not seem to be superior to those obtained with commercial MIBG.

  2. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography.

    PubMed

    Kamei, Noriyasu; Morishita, Mariko; Kanayama, Yousuke; Hasegawa, Koki; Nishimura, Mie; Hayashinaka, Emi; Wada, Yasuhiro; Watanabe, Yasuyoshi; Takayama, Kozo

    2010-08-17

    Molecular imaging technique by use of positron emission tomography (PET) is a noninvasive tool that allows one to quantitatively analyze the function of endogenous molecules and the pharmacokinetics of therapeutic agents in vivo. This technique is expected to be useful for evaluating the effectiveness of diverse drug delivery systems. We demonstrated previously that intestinal insulin absorption is increased significantly by coadministration of cell-penetrating peptides (CPPs), which are taken up effectively by several cells. However, the distribution behavior of insulin whose absorption is increased by CPPs is not clear. We used PET imaging and quantitatively analyzed the intestinal absorption and subsequent distribution of insulin and the effect of CPPs on its absorption and distribution. An unlabeled insulin solution containing tracer insulin, (68)Ga-DOTA-insulin, was administered with or without CPPs into a rat ileal closed loop. PET imaging showed that the CPPs, particularly D-R8 and L-penetratin, significantly increased the (68)Ga-DOTA-insulin level in the liver, kidney, and circulation. After absorption from the intestine, the (68)Ga-DOTA-insulin passed rapidly through the liver and accumulated in the kidney. The increase in the hepatic and renal distribution of (68)Ga-DOTA-insulin by each CPP coadministration was similar manner as that in intestinal absorption, suggesting that the increased accumulation of insulin in the liver and kidney induced by coadministration of CPPs was associated with the increased intestinal absorption of insulin. This is the first study to show that PET imaging enables one to quantitatively analyze the distribution behavior of intestinally absorbed insulin in several organs. This imaging methodology is likely to be useful for developing effective drug delivery systems targeted to specific organs. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Fatty liver and drugs: the two sides of the same coin.

    PubMed

    Miele, L; Liguori, A; Marrone, G; Biolato, M; Araneo, C; Vaccaro, F G; Gasbarrini, A; Grieco, A

    2017-03-01

    Drug-induced liver injury (DILI) is a common and underestimated cause of liver disease. Several drugs and other xenobiotics can be the cause of different clinicopathologic patterns of liver disease. Steatosis and steatohepatitis are rare but well-documented types of DILI. Over the past decades commonly used drugs like amiodarone, tamoxifen, irinotecan, methotrexate, valproic acid and glucocorticoids have been recognized to be associated with steatosis. Even though the pathophysiological pathways are still only partially understood, inhibition of mitochondrial beta-oxidation, reduced very low-density lipoprotein secretion, insulin resistance induction and increased de novo synthesis or increased liver uptake of fatty acids are considered the main pathogenic mechanisms through which drugs can lead to hepatic steatosis. On the other hand, fatty liver itself is a very common clinical condition, and there is a growing awareness of the potential risk factors for DILI due to the underlying metabolic condition itself.

  4. Arsenic uptake in bacterial calcite

    NASA Astrophysics Data System (ADS)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  5. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Georgiou, Leonidas; Penny, Jeffrey; Nicholls, Glynis; Woodhouse, Neil; Blé, François-Xavier; Hubbard Cristinacce, Penny L.; Naish, Josephine H.

    2017-01-01

    Objective The objective of this study was to use noninvasive dynamic contrast-enhanced magnetic resonance imaging (MRI) techniques to study, in vivo, the distribution and elimination of the hepatobiliary contrast agent gadoxetate in the human body and characterize the transport mechanisms involved in its uptake into hepatocytes and subsequent efflux into the bile using a novel tracer kinetic model in a group of healthy volunteers. Materials and Methods Ten healthy volunteers (age range, 18–29 years), with no history of renal or hepatic impairment, were recruited via advertisement. Participants attended 2 MRI visits (at least a week apart) with gadoxetate as the contrast agent. Dynamic contrast-enhanced MRI data were acquired for approximately 50 minutes with a 3-dimensional gradient-echo sequence in the axial plane, at a temporal resolution of 6.2 seconds. Data from regions of interest drawn in the liver were analyzed using the proposed 2-compartment uptake and efflux model to provide estimates for the uptake rate of gadoxetate in hepatocytes and its efflux rate into the bile. Reproducibility statistics for the 2 visits were obtained to examine the robustness of the technique and its dependence in acquisition time. Results Eight participants attended the study twice and were included into the analysis. The resulting images provided the ability to simultaneously monitor the distribution of gadoxetate in multiple organs including the liver, spleen, and kidneys as well as its elimination through the common bile duct, accumulation in the gallbladder, and excretion in the duodenum. The mean uptake (ki) and efflux (kef) rates in hepatocytes, for the 2 visits using the 50-minute acquisition, were 0.22 ± 0.05 and 0.017 ± 0.006/min, respectively. The hepatic extraction fraction was estimated to be 0.19 ± 0.04/min. The variability between the 2 visits within the group level (95% confidence interval; ki: ±0.02/min, kef: ±0.004/min) was lower compared with the

  6. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids.

    PubMed

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-02-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8(-/-)) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin- and αvβ5 integrin-dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.

  7. Testosterone differentially regulates targets of lipid and glucose metabolism in liver, muscle and adipose tissues of the testicular feminised mouse.

    PubMed

    Kelly, Daniel M; Akhtar, Samia; Sellers, Donna J; Muraleedharan, Vakkat; Channer, Kevin S; Jones, T Hugh

    2016-11-01

    Testosterone deficiency is commonly associated with obesity, metabolic syndrome, type 2 diabetes and their clinical consequences-hepatic steatosis and atherosclerosis. The testicular feminised mouse (non-functional androgen receptor and low testosterone) develops fatty liver and aortic lipid streaks on a high-fat diet, whereas androgen-replete XY littermate controls do not. Testosterone treatment ameliorates these effects, although the underlying mechanisms remain unknown. We compared the influence of testosterone on the expression of regulatory targets of glucose, cholesterol and lipid metabolism in muscle, liver, abdominal subcutaneous and visceral adipose tissue. Testicular feminised mice displayed significantly reduced GLUT4 in muscle and glycolytic enzymes in muscle, liver and abdominal subcutaneous but not visceral adipose tissue. Lipoprotein lipase required for fatty acid uptake was only reduced in subcutaneous adipose tissue; enzymes of fatty acid synthesis were increased in liver and subcutaneous tissue. Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis and is associated with insulin resistance was increased in visceral adipose tissue and cholesterol efflux components (ABCA1, apoE) were decreased in subcutaneous and liver tissue. Master regulator nuclear receptors involved in metabolism-Liver X receptor expression was suppressed in all tissues except visceral adipose tissue, whereas PPARγ was lower in abdominal subcutaneous and visceral adipose tissue and PPARα only in abdominal subcutaneous. Testosterone treatment improved the expression (androgen receptor independent) of some targets but not all. These exploratory data suggest that androgen deficiency may reduce the buffering capability for glucose uptake and utilisation in abdominal subcutaneous and muscle and fatty acids in abdominal subcutaneous. This would lead to an overspill and uptake of excess glucose and triglycerides into visceral adipose tissue, liver and arterial walls.

  8. Liver metastases from prostate cancer at 11C-Choline PET/CT: a multicenter, retrospective analysis.

    PubMed

    Ghedini, Pietro; Bossert, I; Zanoni, L; Ceci, F; Graziani, T; Castellucci, P; Ambrosini, V; Massari, F; Nobili, E; Melotti, B; Musto, A; Zoboli, S; Antunovic, L; Kirienko, M; Chiti, A; Mosconi, C; Ardizzoni, A; Golfieri, R; Fanti, S; Nanni, C

    2018-05-01

    During our daily clinical practice using 11C-Choline PET/CT for restaging patients affected by relapsing prostate cancer (rPCa) we noticed an unusual but significant occurrence of hypodense hepatic lesions with a different tracer uptake. Thus, we decided to evaluate the possible correlation between rPCa and these lesions as possible hepatic metastases. We retrospectively enrolled 542 patients diagnosed with rPCa in biochemical relapse after a radical treatment (surgery and/or radiotherapy). Among these, patients with a second tumor or other benign hepatic diseases were excluded. All patients underwent 11C-Choline PET/CT during the standard restaging workup of their disease. We analyzed CT images to evaluate the presence of hypodense lesions and PET images to identify the relative tracer uptake. In accordance to the subsequent oncological history, five clinical scenarios were recognized [Table 1]: normal low dose CT (ldCT) and normal tracer distribution (Group A); evidence of previously unknown hepatic round hypodense areas at ldCT with normal rim uptake (Group B); evidence of previously known hepatic round hypodense areas at ldCT stable over time and with normal rim uptake (Group C); evidence of previously known hepatic round hypodense areas at ldCT, in a previous PET/CT scan, with or without rim uptake and significantly changing over time in terms of size and/or uptake (Group D); evidence of hepatic round hypodense areas at ldCT with or without rim uptake confirmed as prostate liver metastases by histopathology, triple phase ceCT, ce-ultra sound (CEUS) and clinical/biochemical evaluation (Group E). We evaluated the correlation with PSA level at time of scan, rim SUVmax and association with local relapse or non-hepatic metastases (lymph nodes, bone, other parenchyma). Five hundred and forty-two consecutive patients were retrospectively enrolled. In 140 of the 542 patients more than one 11C-choline PET/CT had been performed. A total of 742 11C-Choline PET/CT scans

  9. Inferring foliar water uptake using stable isotopes of water.

    PubMed

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  10. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    PubMed

    Sluka, James P; Fu, Xiao; Swat, Maciej; Belmonte, Julio M; Cosmanescu, Alin; Clendenon, Sherry G; Wambaugh, John F; Glazier, James A

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  11. A Liver-Centric Multiscale Modeling Framework for Xenobiotics

    PubMed Central

    Swat, Maciej; Cosmanescu, Alin; Clendenon, Sherry G.; Wambaugh, John F.; Glazier, James A.

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics. PMID:27636091

  12. LCC demons with divergence term for liver MRI motion correction

    NASA Astrophysics Data System (ADS)

    Oh, Jihun; Martin, Diego; Skrinjar, Oskar

    2010-03-01

    Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.

  13. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes.

    PubMed

    Nallani, Gopinath C; Paulos, Peter M; Venables, Barney J; Edziyie, Regina E; Constantine, Lisa A; Huggett, Duane B

    2012-02-01

    The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.

  14. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy

    PubMed Central

    Chen, Guoqin; Li, Jinliang; Cai, Yanbin; Zhan, Jie; Gao, Jie; Song, Mingcai; Shi, Yang; Yang, Zhimou

    2017-01-01

    Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy. PMID:28281678

  15. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy

    NASA Astrophysics Data System (ADS)

    Chen, Guoqin; Li, Jinliang; Cai, Yanbin; Zhan, Jie; Gao, Jie; Song, Mingcai; Shi, Yang; Yang, Zhimou

    2017-03-01

    Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy.

  16. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer's patch uptake.

    PubMed

    Bachhav, Sagar S; Dighe, Vikas D; Kotak, Darsheen; Devarajan, Padma V

    2017-10-30

    The oral uptake of intact nanocarriers through Peyer's patches is an important uptake pathway. We report Rifampicin Lipid-Polymer hybrid nanoparticles (RIF-LIPOMER) using glyceryl monostearate as lipid and the mucoadhesive polymer, Gantrez, with the objective of balancing hydrophobicity and mucoadhesion for enhanced Peyer's patch uptake. RIF-LIPOMER was optimized for size, hydrophobicity, and mucoadhesion using Box-Behnken. Designed RIF-LIPOMER (RIF-LIPO-120) exhibited average particle size in the range 300-400nm with drug loading >12%. DSC and XRD confirmed complete amorphization. Contact angle and mucoadhesion force revealed that RIF-LIPO-120 exhibited greater hydrophobicity and lower mucoadhesion compared to Gantrez nanoparticles (RIF-GzNP). Comparative uptake of fluorescent labelled RIF-LIPO-120 and RIF-GzNP, through Peyer's patch following intraduodenal administration in rats, revealed the high accumulation of RIF-GzNP at the villi border, and high Peyer's patch uptake of RIF-LIPO-120. Furthermore, lower accumulation of RIF-LIPO-120 in the liver, compared to RIF-GzNP, suggested bypass of the portal circulation and lymphatic uptake through Peyer's patches. Significantly higher lung: plasma concentration ratio exhibited by RIF-LIPO-120 compared to RIF-GzNP confirmed the same (p<0.05). Our study demonstrated that optimization of hydrophobicity and mucoadhesion of nanoparticles could favor Peyer's patch uptake, which in turn could enable enhanced drug accumulation in the lungs with advantage in the therapy of pulmonary afflictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation

    PubMed Central

    Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina

    2017-01-01

    Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512

  18. Imaging of irradiated liver with Tc-99m-sulfur colloid and Tc-99m-IDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelfand, M.J.; Saha, S.; Aron, B.S.

    1981-09-01

    In three cases, irradiated regions of liver failed to concentrate Tc-99m-sulfur colloid. In two of these three, imaging with Tc-99m-acetanilide iminodiacetic acid (IDA) agents within five days showed near normal hepatic uptake of this hepatobiliary imaging agent. The hepatic parenchymal cells may be imaged with Tc-99m-IDA in some irradiated regions of liver, despite loss of reticuloendothelial cell function.

  19. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells.

    PubMed

    Ho, Giang Thanh Thi; Kase, Eili Tranheim; Wangensteen, Helle; Barsett, Hilde

    2017-01-06

    Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  20. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming

    PubMed Central

    Colins, Andrea; Gerdtzen, Ziomara P.; Nuñez, Marco T.; Salgado, J. Cristian

    2017-01-01

    Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex

  1. The absorption of protons with specific amino acids and carbohydrates by yeast

    PubMed Central

    Seaston, A.; Inkson, C.; Eddy, A. A.

    1973-01-01

    1. Proton uptake in the presence of various amino acids was studied in washed yeast suspensions containing deoxyglucose and antimycin to inhibit energy metabolism. A series of mutant strains of Saccharomyces cerevisiae with defective amino acid permeases was used. The fast absorption of glycine, l-citrulline and l-methionine through the general amino acid permease was associated with the uptake of about 2 extra equivalents of protons per mol of amino acid absorbed, whereas the slower absorption of l-methionine, l-proline and, possibly, l-arginine through their specific permeases was associated with about 1 proton equivalent. l-Canavanine and l-lysine were also absorbed with 1–2 equivalents of protons. 2. A strain of Saccharomyces carlsbergensis behaved similarly with these amino acids. 3. Preparations of the latter yeast grown with maltose subsequently absorbed it with 2–3 equivalents of protons. The accelerated rate of proton uptake increased up to a maximum value with the maltose concentration (Km=1.6mm). The uptake of protons was also faster in the presence of α-methylglucoside and sucrose, but not in the presence of glucose, galactose or 2-deoxyglucose. All of these compounds except the last could cause acid formation. The uptake of protons induced by maltose, α-methylglucoside and sucrose was not observed when the yeast was grown with glucose, although acid was then formed both from sucrose and glucose. 4. A strain of Saccharomyces fragilis that both fermented and formed acid from lactose absorbed extra protons in the presence of lactose. 5. The observations show that protons were co-substrates in the systems transporting the amino acids and certain of the carbohydrates. PMID:4587071

  2. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  3. Hematoporphyrin-Augmented Phototherapy: Dosimetric Studies In Experimental Liver Cancer In The Rat

    NASA Astrophysics Data System (ADS)

    Pimstone, N. R.; Horner, I. J.; Shaylor-Billings, J.; Gandhi, S. N.

    1982-12-01

    Liver cancer is an aggressively malignant tumor refractory to known therapy. This study investigated the potential of hematoporphyrin (HP) and light energy to selectively photo-necrose experimental hepatoma in rats. Hepatoma cells (106) when inoculated directly into the liver of recipient Wistar rats developed into a rapidly growing neoplasm which simulated human liver cancer. Seventy-two hours following intravenous HP (5-25 mg/kg), the tumor exhibited patchy porphyrin fluorescence on gross examination and on U.V. microscopy. Fluorescence was maximal in areas furthest from blood vessels, and was within cells which morphologically appeared least viable. Liver tissue did not fluoresce but contained HP concentrations 60% of that in fluorescent tumor and 3 times greater than that in non-fluorescent viable tumor. Tumor necrosis produced by light (Tungsten, 600-640 nm, 200 mW/ sq cm, 240 joules) and HP appeared macroscopically complete to a depth of 1.5 cm. Histologically, in necrotic areas, there were islands of surviving tumor enveloping blood vessels. Three weeks after irradiation, tumor volume averaged 2 mm3 compared to 250 mm3 in control operated animals where HP containing neoplasm was exposed to diffuse room light only. Neighboring liver tissue also was necrosed reflecting HP uptake. As the liver behaved in vivo as a tumor, this provided an ideal solid tissue model to study the biology of the photodynamic action of porphyrins. The clearly visible line of demarcation between photonecrosed and living tissue allowed measurement of the depth of necrosis with an accuracy of a fraction of a millimeter. We observed the following: 1) blue light (Xenon, bandwidth 60 nm, 30 mW/sq cm, 360 joules) produced 1/10 depth of necrosis when compared to red light of the same bandwidth and energy. This may relate in part to demonstrated preferential absorption of shorter wavelength (<590 nm) light energy by liver tissue pigments and hemoglobin. 2) The depth of necrosis related to the

  4. Doppler ultrasonographic and scintigraphic assessment of an auxiliary heterotopic liver transplantation with portal vein arterialization in pigs.

    PubMed

    Fernández-Rodríguez, O M; Ríos, A; Navarro, J L; Pons, J A; Palenciano, C G; Mota, R; Berenguer, J J; Mulero, F; Contreras, J; Conesa, C; Ramírez, P; Fuente, T; Parrilla, P

    2006-04-01

    Our aim was to evaluate liver graft integrity and function using scintigraphy and ultrasonography in a porcine model of auxiliary heterotopic liver transplantation with portal vein arterialization (AHLT-PVA). Using Doppler ultrasonography we evaluated eight AHLT-PVA by parenchymal echogenicity, portal and arterial anatomy, and portal and biliary system flow. Two types of scintigraphy were performed: microaggregated human albumin colloid scintigraphy and diisopropyl iminodiacetic acid (DISIDA) scintigraphy, both labeled with 99mTc. The animals were distributed into two groups. The first group consisted of three animals with clinical suspicion of graft dysfunction, in which the ultrasonographic study revealed areas of parenchymal destructuring. In the scintigraphic study, heterogenous uptake was observed; there was no uptake in one animal. Necropsy of these three animals revealed areas of graft necrosis. The second group consisted of five animals with good clinical evolutions, in which the ultrasonographic study showed portal dilation, portal flow with arterial spiculations, and homogenous echogenicity of the hepatic parenchyma. The scintigraphic study revealed homogenous uptake by the graft and an elimination speed of the hepatobiliary agent similar to that of the native liver. An heterogenous echostructure of the graft provided a sign of poor prognosis indicating necrosis in the same way as heterogenous uptake or nonuptake of radioisotope upon scintigraphy. Scintigraphy is a good method to evaluate biliary function and bile elimination. In an AHLT-PVA, the main ultrasound findings derived from arterialization were dilation of the portal system and portal flow with arterial spiculations.

  5. Dynamics of water absorption through superabsorbent polymer

    NASA Astrophysics Data System (ADS)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  6. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor.

    PubMed

    Nagayama, Susumu; Ogawara, Ken-ichi; Minato, Keiko; Fukuoka, Yoshiko; Takakura, Yoshinobu; Hashida, Mitsuru; Higaki, Kazutaka; Kimura, Toshikiro

    2007-02-01

    We tried to evaluate the possible involvement of fetuin in the scavenger receptors (SRs)-mediated hepatic uptake of polystyrene nanospheres with the size of 50 nm (NS-50), which has surface negative charge (zeta potential=-21.8+/-2.3 mV). The liver perfusion studies in rats revealed that the hepatic uptake of NS-50 pre-coated with fetuin (NS-50-fetuin) was significantly inhibited by poly inosinic acid (poly I), a typical inhibitor of SRs, whereas that of plain NS-50 or NS-50 pre-coated with BSA (NS-50-BSA) was not. The uptake of NS-50-fetuin by cultured Kupffer cells was also significantly inhibited by poly I, and anti-class A scavenger receptors (SR-A) antibody, suggesting that fetuin on NS-50 mediated the recognition and internalization of NS-50 by Kupffer cells and at least SR-A would be responsible for the uptake. Taken that Western blot analysis confirmed that fetuin certainly adsorbed on the surface of NS-50 after the incubation of NS-50 with serum, the results obtained in the present study indicate that fetuin would be one of the serum proteins that were substantially involved in the hepatic uptake of NS-50 via SRs.

  7. Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice.

    PubMed

    Luiken, J J F P; Koonen, D P Y; Coumans, W A; Pelsers, M M A L; Binas, B; Bonen, A; Glatz, J F C

    2003-04-01

    Previous studies with cardiac myocytes from homozygous heart-type fatty acid (FA)-binding protein (H-FABP) -/- mice have indicated that this intracellular receptor protein for long-chain FA is involved in the cellular uptake of these substrates. Based on the knowledge that muscle FA uptake is a process highly sensitive to regulation by hormonal and mechanical stimuli, we studied whether H-FABP would play a role in this regulation. A suitable model system to answer this question is provided by H-FABP +/- mice, because in hindlimb muscles the content of H-FABP was measured to be 34% compared to wild-type mice. In these H-FABP +/- skeletal muscles, just as in H-FABP -/- muscles, contents of FA transporters, i.e., 43-kDa FABPpm and 88-kDa FAT/CD36, were similar compared to wild-type muscles, excluding possible compensatory mechanisms at the sarcolemmal level. Palmitate uptake rates were measured in giant vesicles prepared from hindlimb muscles of H-FABP -/-, H-FABP +/-, and H-FABP +/+ mice. For comparison, giant vesicles were isolated from liver, the tissue of which expresses a distinct type of FABP (i.e., L-FABP). Whereas in H-FABP -/- skeletal muscle FA uptake was reduced by 42-45%, FA uptake by H-FABP +/- skeletal muscle was not different from that in wild-type mice. In contrast, in liver from H-FABP -/- and from H-FABP +/- mice, FA uptake was not altered compared to wild-type animals, indicating that changes in FA uptake are restricted to H-FABP expressing tissues. It is concluded that H-FABP plays an important, yet merely permissive, role in FA uptake into muscle tissues.

  8. Bioengineered humanized livers as better three-dimensional drug testing model system.

    PubMed

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed

    2018-01-27

    To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.

  9. Discussion on the alteration of FDG uptake by the breast according to the menstrual cycle in 18F-FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Park, H. H.; Park, M. S.; Lee, C. H.; Cho, J. H.; Dong, K. R.; Chung, W. K.

    2012-09-01

    18F-FDG (fluorodeoxyglucose) PET (positron emission tomography)/CT (computed tomography) is a useful modality for identifying high-glucose-consuming cells, such as cancer cells, by the glucose metabolism of FDG. FDG is taken up by cancer and inflammatory cells, but occasionally there is also some FDG uptake by normal tissues as a result of their individual physiological characteristics. In particular, in fertile females, unusual FDG uptake in the breast changes according to the stages in the menstrual cycle, which can adversely affect a diagnosis. Therefore, this study examined the change in breast FDG uptake in the menstrual cycle on 18F-FDG PET/CT. One hundred and sixty females (34±3.5 years old), who had not undergone a gynecologic anamnesis and had a regular menstrual cycle over the previous 6 months, were examined from March 2010 to February 2011. The subjects were divided into the following four groups (each with 40 patients): flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator Ver. 0.14 and history taking. Discovery Ste was used as the PET/CT. The standardized uptake values (SUVs) on the accumulated region on the breast were analyzed, and three nuclear medicine specialists performed a blind test. The SUVs on the breast were the flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). A high uptake value was observed in the secretory, flow and ovulatory phases. The FDG accumulation of the breast was divided into the following three grades compared with the lung and liver by gross analysis: the breast uptake was equal to the lung (Grade I), between the lung and liver (Grade II) and equal to or greater than the liver (Grade III). These results showed a high uptake value in the secretory, flow and ovulatory phases. In fertile females, the FDG uptake of the breast showed changes according to the menstrual cycle, which can be used to improve the diagnosis

  10. Biotransformations of anticancer ruthenium(III) complexes: an X-ray absorption spectroscopic study.

    PubMed

    Levina, Aviva; Aitken, Jade B; Gwee, Yee Yen; Lim, Zhi Jun; Liu, Mimi; Singharay, Anannya Mitra; Wong, Pok Fai; Lay, Peter A

    2013-03-11

    An anti-metastatic drug, NAMI-A ((ImH)[Ru(III) Cl4 (Im)(dmso)]; Im=imidazole, dmso=S-bound dimethylsulfoxide), and a cytotoxic drug, KP1019 ((IndH)[Ru(III) Cl4 (Ind)2 ]; Ind=indazole), are two Ru-based anticancer drugs in human clinical trials. Their reactivities under biologically relevant conditions, including aqueous buffers, protein solutions or gels (e.g, albumin, transferrin and collagen), undiluted blood serum, cell-culture medium and human liver (HepG2) cancer cells, were studied by Ru K-edge X-ray absorption spectroscopy (XAS). These XAS data were fitted from linear combinations of spectra of well-characterised Ru compounds. The absence of XAS data from the parent drugs in these fits points to profound changes in the coordination environments of Ru(III) . The fits point to the presence of Ru(IV/III) clusters and binding of Ru(III) to S-donor groups, amine/imine and carboxylato groups of proteins. Cellular uptake of KP1019 is approximately 20-fold higher than that of NAMI-A under the same conditions, but it diminishes drastically after the decomposition of KP1019 in cell-culture media, which indicate that the parent complex is taken in by cells through passive diffusion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Selection for growth does not affect apparent energetic efficiency of jejunal glucose uptake in mice.

    PubMed

    Fan, Y K; Croom, W J; Eisen, E J; Daniel, L R; Black, B L; McBride, B W

    1996-11-01

    Five-wk-old male mice from high growth (M16) and randomly bred control (ICR) lines, plus their reciprocal crosses, ICR x M16 and M16 x ICR, were used to investigate whether whole-body O2 consumption, jejunal respiration, jejunal glucose absorption and the apparent energetic efficiency of jejunal active glucose uptake in mice are altered by genetic selection for growth as well as by heterosis and maternal effects. Whole-body O2 consumption was measured in 12 mice from each line or cross. The mice were later killed for measurement of jejunal O2, using tissue respiration chambers and jejunal glucose transport determined by 3H-3-O-methylglucose accumulation. No heterosis or maternal effects were detected in jejunal glucose active transport and active glucose uptake. Selection for growth (M16 vs. ICR) increased daily gain (1.54 vs. 1.09 g, P < 0.001), small intestinal length and weight, but did not enhance jejunal glucose transport. The apparent energetic efficiency of jejunal active glucose uptake among lines was not different (54.0, 50.4, 51.6 and 47.1 nmol ATP expended/nmol glucose uptake for M16, ICR, M16 x ICR and ICR x M16, respectively, P > 0.63). Selection for growth in mice did not result in more energetically efficient jejunal glucose absorption.

  12. Comparing the enhancement efficiency between liposomes and microbubbles for insulin pulmonary absorption.

    PubMed

    Xu, Yan-Yan; Lu, Cui-Tao; Fu, Hong-Xing; Zhao, Ying-Zheng; Yang, Wei; Li, Xing; Zhang, Lu; Li, Xiao-Kun; Zhang, Ming

    2011-07-01

    The present study investigated the enhancement efficiency between liposomes and microbubbles for insulin pulmonary absorption. Two types of phospholipid-based vesicle-liposomes and microbubbles-were prepared, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cytotoxicity test was used to evaluate their in vitro toxicity in A549 cells. Cellular uptake of insulin combined with liposomes or microbubbles was determined using A549 cells. With intratracheal insufflation of Sprague-Dawley rats, an insulin mixture with liposomes or microbubbles was administered to assess its potential for promoting drug pulmonary absorption. Both liposomes and microbubbles had a narrow and monodispersed size distribution with average diameter of 3.1 μm and 1.0 μm, respectively. From the MTT cytotoxicity test, a phospholipid-based vesicle concentration of <25% (vol/vol) in the final volume was the safe dosage range that could avoid severe cytotoxic effects. The intracellular uptake amount of insulin in the insulin-microbubble mixture was significantly higher than that in the insulin-liposome mixture. The minimum reductions of the blood glucose concentration produced by insulin-microbubble and insulin-liposome mixtures were 60.8% and 35.0% of the initial glucose levels, respectively, and their bioavailabilities relative to subcutaneous injection were 48.6% and 30.8%, respectively. Microbubbles have much better efficiency than liposomes in the rate and extent of insulin pulmonary absorption. Microbubbles might be recommended as a potential agent for enhancing protein intrapulmonary absorption.

  13. Arsenic uptake in bacterial calcite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the cmore » axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.« less

  14. Use of Inert Gases to Study the Interaction of Blood Flow and Diffusion during Passive Absorption from the Gastrointestinal Tract of the Rat

    PubMed Central

    Levitt, Michael D.; Levitt, David G.

    1973-01-01

    Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667

  15. Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells

    PubMed Central

    Song, Qinxin; Li, Danhui; Zhou, Yongzhi; Yang, Jie; Yang, Wanqi; Zhou, Guohua; Wen, Jingyuan

    2014-01-01

    The aim of this study was to evaluate (+)-catechin and (−)-epigallocatechin gallate (EGCG) cellular uptake and transport across human intestinal Caco-2 cell monolayer in both the absence and presence of niosomal carrier in variable conditions. The effect of free drugs and drug-loaded niosomes on the growth of Caco-2 cells was studied. The effects of time, temperature, and concentration on drug cellular uptake in the absence or presence of its niosomal delivery systems were investigated. The intestinal epithelial membrane transport of the drug-loaded niosomes was examined using the monolayer of the human Caco-2 cells. The kinetics of transport, and the effect of temperature, adenosine triphosphate inhibitor, permeability glycoprotein inhibitor, multidrug resistance-associated protein 2 inhibitor, and the absorption enhancer on transport mechanism were investigated. It was found that the uptake of catechin, EGCG, and their niosomes by Caco-2 cells was 1.22±0.16, 0.90±0.14, 3.25±0.37, and 1.92±0.22 μg/mg protein, respectively (n=3). The apparent permeability coefficient values of catechin, EGCG, and their niosomes were 1.68±0.16, 0.88±0.09, 2.39±0.31, and 1.42±0.24 cm/second (n=3) at 37°C, respectively. The transport was temperature- and energy-dependent. The inhibitors of permeability glycoprotein and multidrug resistance-associated protein 2 and the absorption enhancer significantly enhanced the uptake amount. Compared with the free drugs, niosomal formulation significantly enhanced drug absorption. Additionally, drug-loaded niosomes exhibited stronger stability and lower toxicity. These findings showed that the oral absorption of tea flavonoids could be improved by using the novel drug delivery systems. PMID:24855353

  16. Endocytotic uptake of nutrients in carnivorous plants.

    PubMed

    Adlassnig, Wolfram; Koller-Peroutka, Marianne; Bauer, Sonja; Koshkin, Edith; Lendl, Thomas; Lichtscheidl, Irene K

    2012-07-01

    Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. Dissolution and uptake of cadmium from dental gold solder alloy implants.

    PubMed

    Bergman, B; Bergman, M; Söremark, R

    1977-11-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium (115Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of 115Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver.

  18. Deconstructing three-dimensional (3D) structure of absorptive glass mat (AGM) separator to tailor pore dimensions and amplify electrolyte uptake

    NASA Astrophysics Data System (ADS)

    Rawal, Amit; Rao, P. V. Kameswara; Kumar, Vijay

    2018-04-01

    Absorptive glass mat (AGM) separator is a vital technical component in valve regulated lead acid (VRLA) batteries that can be tailored for a desired application. To selectively design and tailor the AGM separator, the intricate three-dimensional (3D) structure needs to be unraveled. Herein, a toolkit of 3D analytical models of pore size distribution and electrolyte uptake expressed via wicking characteristics of AGM separators under unconfined and confined states is presented. 3D data of fiber orientation distributions obtained previously through X-ray micro-computed tomography (microCT) analysis are used as key set of input parameters. The predictive ability of pore size distribution model is assessed through the commonly used experimental set-up that usually apply high level of compressive stresses. Further, the existing analytical model of wicking characteristics of AGM separators has been extended to account for 3D characteristics, and subsequently, compared with the experimental results. A good agreement between the theory and experiments pave the way to simulate the realistic charge-discharge modes of the battery by applying cyclic loading condition. A threshold criterion describing the invariant behavior of pore size and wicking characteristics in terms of maximum permissible limit of key structural parameters during charge-discharge mode of the battery has also been proposed.

  19. Is liver SUV stable over time in ¹⁸F-FDG PET imaging?

    PubMed

    Laffon, Eric; Adhoute, Xavier; de Clermont, Henri; Marthan, Roger

    2011-12-01

    This work investigated whether (18)F-FDG PET standardized uptake value (SUV) is stable over time in the normal human liver. The SUV-versus-time curve, SUV(t), of (18)F-FDG in the normal human liver was derived from a kinetic model analysis. This derivation involved mean values of (18)F-FDG liver metabolism that were obtained from a patient series (n = 11), and a noninvasive population-based input function was used in each individual. Mean values (±95% reliability limits) of the (18)F-FDG uptake and release rate constant and of the fraction of free tracer in blood and interstitial volume were as follows: K = 0.0119 mL·min(-1)·mL(-1) (±0.0012), k(R) = 0.0065·min(-1) (±0.0009), and F = 0.21 mL·mL(-1) (±0.11), respectively. SUV(t) (corrected for (18)F physical decay) was derived from these mean values, showing that it smoothly peaks at 75-80 min on average after injection and that it is within 5% of the peak value between 50 and 110 min after injection. In the normal human liver, decay-corrected SUV(t) remains nearly constant (with a reasonable ±2.5% relative measurement uncertainty) if the time delay between tracer injection and PET acquisition is in the range of 50-110 min. In current clinical practice, the findings suggest that SUV of the normal liver can be used for comparison with SUV of suspected malignant lesions, if comparison is made within this time range.

  20. Factors affecting the oral uptake and translocation of polystyrene nanoparticles: histological and analytical evidence.

    PubMed

    Florence, A T; Hillery, A M; Hussain, N; Jani, P U

    1995-01-01

    Quantitative and qualitative evidence from our laboratories on the absorption and translocation of polystyrene latex nanoparticles both by histological (qualitative) and analytical measurement of levels of polystyrene (quantitative) is briefly reviewed in this paper. We have previously compared the uptake of nonionized polystyrene latex ranging in size from 50nm to 3 microns, and made some comparisons of uptake between carboxylated microspheres and nonionic systems, showing the lower uptake of the former through the lymphoid tissue of the gastrointestinal tract. Size is a key parameter, uptake increasing with decreasing particle diameter. Early evidence suggested that uptake is by way of the Peyer's patches and other elements of the gut associated lymphoid tissue (GALT). Adsorption of hydrophilic block-copolymers onto polystyrene markedly reduces the uptake by intestinal GALT. Modification of the surface with specific ligands such as by covalent attachment of tomato lectin molecules has indicated widespread uptake by non-GALT tissues, following their binding to and internalisation by enterocytes. The ability to decrease and increase uptake is clear evidence of a phenomenon which has the potential for further control to allow it to be exploited fully for drug or vaccine delivery. The evidence to date with nanoparticles as carriers systems for labile drugs such as proteins by the oral route remains to be substantiated.

  1. Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies.

    PubMed

    Ogura, Takaaki; Kobayashi, Natsuko I; Suzuki, Hisashi; Iwata, Ren; Nakanishi, Tomoko M; Tanoi, Keitaro

    2018-06-07

    The Mg 2+ uptake system in Arabidopsis roots is Gd 3+ - and Fe 2+ -sensitive, and responds to a changing Mg 2+ concentration within 1 h with the participation of AtMRS2 transporters. Magnesium (Mg 2+ ) absorption and the mechanism regulating its activity have not been clarified yet. To address these issues, it is necessary to reveal the characteristics of Mg 2+ uptake in roots. Therefore, we first investigated the Mg 2+ uptake characteristics in roots of 1-week-old Arabidopsis plants using 28 Mg. The Mg 2+ uptake system in roots was up-regulated within 1 h in response to the low Mg 2+ condition. This induction was inhibited in Arabidopsis "mitochondrial RNA splicing 2/magnesium transport" mutants atmrs2-4/atmgt6 and atmrs2-7/atmgt7, while the expression of AtMRS2-4/AtMGT6 and AtMRS2-7/AtMGT7 genes in the Arabidopsis wild-type was not responsive to Mg 2+ conditions. In addition, the Mg deficiency-induced Mg 2+ uptake system was shut-down within 5 min when Mg 2+ was resupplied to the environment. An inhibition study showed that the constitutive mechanism functioning in Mg 2+ uptake under Mg 2+ sufficient conditions was sensitive to a number of divalent and trivalent cations, particularly Gd 3+ and Fe 2+ , but not to K + .

  2. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  3. Validation of a kinetic model for receptor-mediated uptake of Tc-99m-galactosyl-neoglycoalbumin (Tc-NGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, D.R.; Krohn, K.A.; Woodle, E.S.

    1984-01-01

    Tc-NGA is a receptor-binding radiopharmaceutical which localizes specifically to the liver. The rate of uptake depends upon: 1) Tc-NGA-receptor affinity, k/sub b/, 2) molar dose, L/sub e/(O), and 3) hepatic blood flow, Q. The authors have proposed a kinetic model which describes hepatic uptake in terms of measurable physiochemical quantities: Q, k/sub b/, R, V/sub e/, V/sub h/ (systemic and liver blood volumes), and V/sub r/ (liver plasma volume). Computer simulations were compared to kinetic data (ROIs: precordium and liver, 420 data pts) resulting from injection into pigs (n=12) of Tc-NGAs of differing k/sub b/(0.6,1.2,1.8 x 10/sup 5/ M/sup -1/sec/supmore » -1/). Each pig was studied twice using different molar doses (0.5 - 10. x 10/sup -8/mole). Measurements of V/sub e/ (Tc-RBCs) and Q (indocyanine green extraction) were obtained during each study. Weights of excised livers were used to calculate V/sub h/ and r. With exception of the low-dose, low-affinity studies, all data was fit to within a reduced chi-square of 3 by adjustment of 1/sub e/, 1/sub h/, c, ..cap alpha../sub m/ and the sigmas. The authors conclude that this model is a valid description of a receptor-binding process, however competition by endogenous ligand may prevent its use at low molar doses of low-k/sub b/ NGA.« less

  4. Mechanism of hard-nanomaterial clearance by the liver.

    PubMed

    Tsoi, Kim M; MacParland, Sonya A; Ma, Xue-Zhong; Spetzler, Vinzent N; Echeverri, Juan; Ouyang, Ben; Fadel, Saleh M; Sykes, Edward A; Goldaracena, Nicolas; Kaths, Johann M; Conneely, John B; Alman, Benjamin A; Selzner, Markus; Ostrowski, Mario A; Adeyi, Oyedele A; Zilman, Anton; McGilvray, Ian D; Chan, Warren C W

    2016-11-01

    The liver and spleen are major biological barriers to translating nanomedicines because they sequester the majority of administered nanomaterials and prevent delivery to diseased tissue. Here we examined the blood clearance mechanism of administered hard nanomaterials in relation to blood flow dynamics, organ microarchitecture and cellular phenotype. We found that nanomaterial velocity reduces 1,000-fold as they enter and traverse the liver, leading to 7.5 times more nanomaterial interaction with hepatic cells relative to peripheral cells. In the liver, Kupffer cells (84.8 ± 6.4%), hepatic B cells (81.5 ± 9.3%) and liver sinusoidal endothelial cells (64.6 ± 13.7%) interacted with administered PEGylated quantum dots, but splenic macrophages took up less material (25.4 ± 10.1%) due to differences in phenotype. The uptake patterns were similar for two other nanomaterial types and five different surface chemistries. Potential new strategies to overcome off-target nanomaterial accumulation may involve manipulating intra-organ flow dynamics and modulating the cellular phenotype to alter hepatic cell interactions.

  5. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.

    PubMed Central

    Warskulat, U; Wettstein, M; Häussinger, D

    1997-01-01

    The effects of aniso-osmotic exposure on taurine transport were studied in H4IIE rat hepatoma cells. Hyperosmotic (405 mosmol/l) exposure of H4IIE cells stimulated Na+-dependent taurine uptake and led to an increase in taurine transporter (TAUT) mRNA levels, whereas hypo-osmotic (205 mosmol/l) exposure diminished both taurine uptake and TAUT mRNA levels when compared with normo-osmotic (305 mosmol/l) control incubations. Taurine uptake increased 30-40-fold upon raising the ambient osmolarity from 205 to 405 mosmol/l. When H4IIE cells and perfused livers were preloaded with taurine, hypo-osmotic cell swelling led to a rapid release of taurine from the cells. The taurine efflux, but not taurine uptake, was sensitive to 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS), suggestive of an involvement of DIDS-sensitive channels in mediating volume-regulatory taurine efflux. Whereas in both H4IIE rat hepatoma cells and primary hepatocytes TAUT mRNA levels were strongly dependent upon ambient osmolarity, mRNAs for other osmolyte transporters, i.e. the betaine transporter BGT-1 and the Na+/myo-inositol transporter SMIT, were not detectable. In line with this, myo-inositol uptake by H4IIE hepatoma cells was low and was not stimulated by hyperosmolarity. However, despite the absence of BGT-1 mRNA, a slight osmosensitive uptake of betaine was observed, but the rate was less than 10% of that of taurine transport. This study identifies a constitutively expressed and osmosensitive TAUT in H4IIE cells and the use of taurine as a main osmolyte, whereas betaine and myo-inositol play little or no role in the osmolyte strategy in these cells. This is in contrast with rat liver macrophages, in which betaine has been shown to be a major osmolyte. PMID:9032454

  6. Liver safety assessment in special populations (hepatitis B, C, and oncology trials).

    PubMed

    Kullak-Ublick, Gerd A; Merz, Michael; Griffel, Louis; Kaplowitz, Neil; Watkins, Paul B

    2014-11-01

    The FDA guidance for industry in the premarketing clinical evaluation of drug-induced liver injury (DILI) is the most specific regulatory guidance currently available and has been useful in setting standards for the great majority of clinical indications involving subjects with a low risk of liver disorders. However, liver safety assessment faces challenges in populations with underlying liver disease, such as viral hepatitis or metastatic cancer. This is an important issue because there are currently many promising anti-viral and oncologic therapies in clinical development, with a trend toward oral therapies with reduced side effects. Without clearer guidelines, questions regarding liver safety may become a major factor in regulatory approval and ultimately physician uptake of the new treatments. The lack of consensus in defining stopping rules based on serum alanine aminotransferase (ALT) levels underscores the need for precompetitive data sharing to improve our understanding of DILI in these populations and to allow evidence-based rather than empirical definition of stopping rules. A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials.

  7. Effect of hydration status on pesticide uptake in anurans following exposure to contaminated soils.

    PubMed

    Glinski, Donna A; Henderson, W Matthew; Van Meter, Robin J; Purucker, S Thomas

    2018-06-01

    In this study, the impact of hydration status on dermal uptake of pesticides in two species of amphibians is examined. Absorption of pesticides in anurans occurs primarily through a highly vascularized dermal seat patch; however, pesticides can also enter through the superficial dermis following exposure. Despite the growing body of literature on dermal exposure in amphibians, little is known on how hydration status influences uptake. Thus, the objective of this study was to investigate the influence of hydration status on absorption of pesticides (atrazine, triadimefon, metolachlor, chlorothalonil, and imidacloprid) in southern leopard frogs (Lithobates sphenocephala) and Fowler's toads (Anaxyrus fowleri). Amphibian treatments included dehydration periods of 0, 2, 4, 6, 8, or 10 h prior to exposure to pesticide-contaminated soils for 8 h. Following exposure, soil and whole-body homogenates were extracted and analyzed by LC-MS/MS. Dehydration time was then regressed against post-exposure concentrations to infer the impact of dehydration on dermal pesticide uptake. Increased dehydration time resulted in significantly lowered pesticide concentrations in both species (F 6, 293  = 67.66, p = 0.007) for the five pesticides studied. This phenomenon could be due to an energy and/or dilution effect.

  8. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rhodophyte Gracilaria asiatica

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Liu, Liming; Wang, Aimin; Wang, Yongqiang

    2013-03-01

    Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4×2 factorial design experiment in water temperatures ( T) at 15°C and 25°C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 μmol/L and 60 μmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 μmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP ( P< 0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature ( P < 0.001); uptake rate was higher for the 25°C group than for the 15°C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups ( P< 0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.

  9. MTBE inhaled alone and in combination with gasoline vapor: uptake, distribution, metabolism, and excretion in rats.

    PubMed

    Benson, J M; Barr, E B; Krone, J R

    2001-05-01

    ) in breath was significantly shorter and the percentage of the initial body burden of MTBE equivalents eliminated as VOCs in breath increased significantly. These changes probably reflect a saturation of blood with MTBE at 400 ppm and strongly suggest that the uptake and fate of MTBE are notably different at exposure concentrations above and below 400 ppm. Single and repeated coexposure to 20 and 200 ppm LFG with MTBE had opposite effects on the total body burden of MTBE equivalents present at the end of exposures compared with those achieved after 4 and 40 ppm MTBE exposures: 20 ppm LFG increased and 200 ppm LFG significantly decreased the burdens of MTBE equivalents present. The effects of coexposure to LFG on blood levels of MTBE equivalents paralleled the effects on body burden. These differences in overall uptake of MTBE equivalents cannot be attributed to alterations of minute volume. The reason for the increase in overall uptake after 20-ppm LFG exposure is not clear. Decreased MTBE absorption (uptake) after single and repeated coexposure to 200 ppm LFG may be due to a decrease in solubility of MTBE in blood caused by inhalation of other hydrocarbons. Investigations on the blood/air partition coefficient of MTBE in the absence and presence of LFG would be needed to confirm this hypothesis. Single and repeated coexposure to either 20 or 200 ppm LFG significantly decreased the percentage of the initial body burden from MTBE equivalents in tissues, including liver, kidney, and testes, immediately and 72 hours after

  10. A descriptive model of patient readiness, motivators, and hepatitis C treatment uptake among Australian prisoners.

    PubMed

    Yap, Lorraine; Carruthers, Susan; Thompson, Sandra; Cheng, Wendy; Jones, Jocelyn; Simpson, Paul; Richards, Alun; Thein, Hla-Hla; Haber, Paul; Lloyd, Andrew; Butler, Tony

    2014-01-01

    Hepatitis C virus infection (HCV) has a significant global health burden with an estimated 2%-3% of the world's population infected, and more than 350,000 dying annually from HCV-related conditions including liver failure and liver cancer. Prisons potentially offer a relatively stable environment in which to commence treatment as they usually provide good access to health care providers, and are organised around routine and structure. Uptake of treatment of HCV, however, remains low in the community and in prisons. In this study, we explored factors affecting treatment uptake inside prisons and hypothesised that prisoners have unique issues influencing HCV treatment uptake as a consequence of their incarceration which are not experienced in other populations. We undertook a qualitative study exploring prisoners' accounts of why they refused, deferred, delayed or discontinued HCV treatment in prison. Between 2010 and 2013, 116 Australian inmates were interviewed from prisons in New South Wales, Queensland, and Western Australia. Prisoners experienced many factors similar to those which influence treatment uptake of those living with HCV infection in the community. Incarceration, however, provides different circumstances of how these factors are experienced which need to be better understood if the number of prisoners receiving treatment is to be increased. We developed a descriptive model of patient readiness and motivators for HCV treatment inside prisons and discussed how we can improve treatment uptake among prisoners. This study identified a broad and unique range of challenges to treatment of HCV in prison. Some of these are likely to be diminished by improving treatment options and improved models of health care delivery. Other barriers relate to inmate understanding of their illness and stigmatisation by other inmates and custodial staff and generally appear less amenable to change although there is potential for peer-based education to address lack of

  11. A Descriptive Model of Patient Readiness, Motivators, and Hepatitis C Treatment Uptake among Australian Prisoners

    PubMed Central

    Yap, Lorraine; Carruthers, Susan; Thompson, Sandra; Cheng, Wendy; Jones, Jocelyn; Simpson, Paul; Richards, Alun; Thein, Hla-Hla; Haber, Paul; Lloyd, Andrew; Butler, Tony

    2014-01-01

    Background Hepatitis C virus infection (HCV) has a significant global health burden with an estimated 2%–3% of the world's population infected, and more than 350,000 dying annually from HCV-related conditions including liver failure and liver cancer. Prisons potentially offer a relatively stable environment in which to commence treatment as they usually provide good access to health care providers, and are organised around routine and structure. Uptake of treatment of HCV, however, remains low in the community and in prisons. In this study, we explored factors affecting treatment uptake inside prisons and hypothesised that prisoners have unique issues influencing HCV treatment uptake as a consequence of their incarceration which are not experienced in other populations. Method and Findings We undertook a qualitative study exploring prisoners' accounts of why they refused, deferred, delayed or discontinued HCV treatment in prison. Between 2010 and 2013, 116 Australian inmates were interviewed from prisons in New South Wales, Queensland, and Western Australia. Prisoners experienced many factors similar to those which influence treatment uptake of those living with HCV infection in the community. Incarceration, however, provides different circumstances of how these factors are experienced which need to be better understood if the number of prisoners receiving treatment is to be increased. We developed a descriptive model of patient readiness and motivators for HCV treatment inside prisons and discussed how we can improve treatment uptake among prisoners. Conclusion This study identified a broad and unique range of challenges to treatment of HCV in prison. Some of these are likely to be diminished by improving treatment options and improved models of health care delivery. Other barriers relate to inmate understanding of their illness and stigmatisation by other inmates and custodial staff and generally appear less amenable to change although there is potential for

  12. Influence of short-chain fatty acids on iron absorption by proximal colon.

    PubMed

    Bouglé, D; Vaghefi-Vaezzadeh, N; Roland, N; Bouvard, G; Arhan, P; Bureau, F; Neuville, D; Maubois, J L

    2002-09-01

    Short-chain fatty acids produced by bacterial fermentation in the colon enhance the local absorption of cations, such as calcium, that could be used to improve the bioavailability of iron if a significant colonic absorption of iron were to occur. Iron (iron gluconate, 100 microM) absorption by the caecum of the rat was compared with that in proximal sites of the small bowel using the Ussing chamber model; the influence of probiotic bacteria (Propionibacterium freudenreichii) on iron absorption was assessed and compared with that of two of their fermentation products (acetic and propionic acids) using the Ussing chamber and the ligated colon with gamma emitting iron as experimental models. The caecum absorbed less iron than the duodenum, but significantly more than the jejunum and ileum. This occurred mainly through an enhanced mucosal transfer of iron uptake. Propionibacteria enhanced iron absorption from the proximal colon; the same effect was observed in the presence of viable bacteria, or the culture medium free of viable bacteria, or acetate and propionate or propionate alone. The proximal colon could be a significant site available for iron absorption; this absorption can be enhanced by local production of short-chain fatty acids such as propionate.

  13. Studies on the Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Waldron-Edward, Deirdre; Paul, T. M.; Skoryna, Stanley C.

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to be available to the body. Studies were carried out by measuring bone uptake of Sr89 and Ca45 when various amounts of sodium alginate were fed with the diet. Long-term studies were made in which two different levels of radioactivity were used, to determine the pattern of Sr89 deposition with continuous intake of binding agent. It was found that administration of sodium alginate as a jelly overcomes the problem of constipation and effectively reduces Sr89 uptake, up to 83%. This fact represents a significant finding with respect to the use of the compound in human subjects. Addition of sodium alginate to drinking water is effective with low levels of Sr89 intake. This naturally occurring water-soluble macromolecular substance possesses several advantages in use for the suppression of absorption of radioactive strontium when compared with synthetic ion exchange resins: there is no disturbance of electrolyte balance; efficiency is not reduced by treatment over a prolonged period of time; and finally, the product is palatable. PMID:14222668

  14. A novel formulation of veggies with potent liver detoxifying activity.

    PubMed

    Jain, Mohit M; Kumari, Nirmala; Rai, Geeta

    2015-01-01

    LXR (encoded by NR1H2 and 3) and FXR (known as bile acid receptor) encoded by NR1H4 (nuclear receptor subfamily 1, group H and member 4) are nuclear receptors in humans and are important regulators of bile acid production, cholesterol, fatty acid and glucose homeostasis hence responsible for liver detoxification. Several strategies for drug design with numerous ligands for this target have failed owing to the inability of the ligand to access the target/receptor or their early metabolisation. In this work, we have evaluated FXR and LXR structure bound with agonist and compared the binding energy affinity of active ligands present in live green-real veggies with reference drugs (ligands) present in the market. A high throughput screening combined with molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions, log P values and percentage of human oral absorption value led to the identification of two compounds present in live green-real veggies with strong potential for liver detoxification.

  15. The role of FDG-PET in detecting rejection after liver transplantation.

    PubMed

    Watson, Ashley M; Bhutiani, Neal; Philips, Prejesh; Davis, Eric G; Eng, Mary; Cannon, Robert M; Jones, Christopher M

    2018-05-15

    The activation and increased metabolic activity of T cells in acute cellular rejection could allow fluoro-2-deoxyglucose positron emission tomography to be utilized for detection of acute cellular rejection. The objective of this study was to evaluate the effectiveness of fluoro-2-deoxyglucose positron emission tomography in detecting acute cellular rejection in the clinical setting. Fluoro-2-deoxyglucose positron emission tomography studies were performed on 88 orthotopic liver transplant patients at 7 and 17 days postoperatively (first positron emission tomography and second positron emission tomography, respectively). Additional studies were performed if patients had suspicion of rejection and at resolution of rejection (third positron emission tomography and fourth positron emission tomography, respectively). A circular region of interest was placed over the liver for semiquantitative evaluation of fluoro-2-deoxyglucose positron emission tomography images by means of standard uptake values. Eighteen of 88 patients in our study (20.5%) had histologically proven acute cellular rejection during a 16 ± 11 day follow-up. There was no significant difference between the standard uptake values of first positron emission tomography among non-rejecters versus rejecters (2.05 ±0.46 non-rejecters versus 1.82 ± 0.40 rejecters, P = .127). Within the rejection cohort, the standard uptake values from the third positron emission tomography (rejection) were higher compared to the first positron emission tomography (baseline) (2.41 ± 0.48 third positron emission tomography versus 1.82 ± 0.41 first positron emission tomography, P < .001). Increased signal on fluoro-2-deoxyglucose positron emission tomography over baseline is associated with acute cellular rejection in liver transplant recipients. Additional prospective validation studies are essential to define the role of fluoro-2-deoxyglucose positron emission tomography scan as an early marker for acute cellular

  16. Exacerbation of liver steatosis following exposure to famine and overnutrition.

    PubMed

    Ning, Zhiyuan; Zhang, Kun; Zhao, Li; Lu, You; Sun, Honglin; Chen, Chi; Nie, Xiaomin; Lu, Meng; Wang, Ningjian; Lu, Yingli

    2017-10-01

    People suffering from famine in early life and overnutrition in adulthood may have an increased risk for liver steatosis. We aimed to investigate the effects and mechanisms of early nutrition restriction and overnutrition on de novo lipogenesis in the liver. Three-wk-old male rats were food restricted for 4 wk and refed a high-fat or normal fat diet individually in metabolic cages for 9 wk. Weight-matched groups were also set up. Fatty acid synthetase expression was measured to estimate de novo lipogenesis in the liver. Parameters of glucose and lipid metabolism were measured with isotope assays. All four groups had comparable body weights. However, the famine high-fat diet group had the highest degree of liver steatosis, the greatest body fat ratio, and insulin resistance. Lipid accumulation, fatty acid synthetase expression, and gluconeogenesis in the liver were significantly higher in the famine and high-fat diet groups (p < 0.05). Moreover, these groups also had markedly lower muscle glucose uptake. Under famine and high-fat refeeding stress, rats were extremely susceptible to developing hepatic steatosis. This is presumably a consequence of upregulation of de novo lipogenesis and enhanced glucose flux from muscle to de novo lipogenesis in the liver. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  18. Carotenoids, but not vitamin A, improve iron uptake and ferritin synthesis by Caco-2 cells from ferrous fumarate and NaFe-EDTA.

    PubMed

    García-Casal, María N; Leets, Irene

    2014-04-01

    Due to the high prevalence of iron and vitamin A deficiencies and to the controversy about the role of vitamin A and carotenoids in iron absorption, the objectives of this study were to evaluate the following: (1) the effect of a molar excess of vitamin A as well as the role of tannic acid on iron uptake by Caco-2 cells; (2) iron uptake and ferritin synthesis in presence of carotenoids without pro-vitamin A activity: lycopene, lutein, and zeaxantin; and (3) iron uptake and ferritin synthesis from ferrous fumarate and NaFe-EDTA. Cells were incubated 1 h at 37 °C in PBS pH 5.5, containing (59) Fe and different iron compounds. Vitamin A, ferrous fumarate, β-carotene, lycopene, lutein, zeaxantin, and tannic acid were added to evaluate uptake. Ferritin synthesis was measured 24 h after uptake experiments. Vitamin A had no effect on iron uptake by Caco-2 cells, and was significantly lower from NaFe-EDTA than from ferrous fumarate (15.2 ± 2.5 compared with 52.5 ± 8.3 pmol Fe/mg cell protein, respectively). Carotenoids increase uptake up to 50% from fumarate and up to 300% from NaFe-EDTA, since absorption from this compound is low when administered alone. We conclude the following: (1) There was no effect of vitamin A on iron uptake and ferritin synthesis by Caco-2cells. (2) Carotenoids significantly increased iron uptake from ferrous fumarate and NaFe-EDTA, and were capable of partially overcoming the inhibition produced by tannic acid. (3) Iron uptake by Caco-2 cell from NaFe-EDTA was significantly lower compared to other iron compounds, although carotenoids increased and tannic acid inhibited iron uptake comparably to ferrous fumarate. © 2014 Institute of Food Technologists®

  19. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  20. FDG-PET for Evaluating the Antitumor Effect of Intraarterial 3-Bromopyruvate Administration in a Rabbit VX2 Liver Tumor Model

    PubMed Central

    Park, Hee Sun; Jae, Hwan Jun; Kim, Young Il; Son, Kyu Ri; Lee, Min Jong; Park, Jae Hyung; Kang, Won Jun; Yoon, Jung Hwan; Chung, Hesson; Lee, Kichang

    2007-01-01

    Objective We wanted to investigate the feasibility of using FDG-PET for evaluating the antitumor effect of intraarterial administration of a hexokinase II inhibitor, 3-bromopyruvate (3-BrPA), in a rabbit VX2 liver tumor model. Materials and Methods VX2 carcinoma was grown in the livers of ten rabbits. Two weeks later, liver CT was performed to confirm appropriate tumor growth for the experiment. After tumor volume-matched grouping of the rabbits, transcatheter intraarterial administration of 3-BrPA was performed (1 mM and 5 mM in five animals each, respectively). FDG-PET scan was performed the day before, immediately after and a week after 3-BrPA administration. FDG uptake was semiquantified by measuring the standardized uptake value (SUV). A week after treatment, the experimental animals were sacrificed and the necrosis rates of the tumors were calculated based on the histopathology. Results The SUV of the VX2 tumors before treatment (3.87 ±1.51 [mean ±SD]) was significantly higher than that of nontumorous liver parenchyma (1.72 ±0.34) (p < 0.0001, Mann-Whitney U test). The SUV was significantly decreased immediately after 3-BrPA administration (2.05 ±1.21) (p = 0.002, Wilcoxon signed rank test). On the one-week follow up PET scan, the FDG uptake remained significantly lower (SUV 1.41 ±0.73) than that before treatment (p = 0.002), although three out of ten animals showed a slightly increasing tendency for the FDG uptake. The tumor necrosis rate ranged from 50.00% to 99.90% (85.48% ±15.87). There was no significant correlation between the SUV or the SUV decrease rate and the tumor necrosis rate in that range. Conclusion Even though FDG-PET cannot exactly reflect the tumor necrosis rate, FDG-PET is a useful modality for the early assessment of the antitumor effect of intraarterial administration of 3-BrPA in VX2 liver tumor. PMID:17554189

  1. Echinococcus granulosus: absorption of cycloleucine and alpha-aminoisobutyric acid by protoscoleces.

    PubMed

    Jeffs, S A; Arme, C

    1986-02-01

    Protoscoleces of Echinococcus granulosus absorb the amino acids cycloleucine and alpha-aminoisobutyric acid (AIB) by a combination of mediated uptake and diffusion. After correcting for the latter, values for Kt and Vmax of 0.124 mM and 0.947 nmoles/mg protein/2 min for cycloleucine were calculated; corresponding values for AIB were 0.039 mM and 0.139 nmoles/mg protein/2 min. Both amino acids were accumulated against a concentration gradient and a comparison of Kt and Ki values determined in mutual inhibition experiments suggested that both cycloleucine and AIB share a common uptake locus (loci). Cycloleucine uptake was pH-dependent and could be inhibited by a variety of other amino acids. Neither D- nor L-proline inhibited cycloleucine absorption but D-methionine, D-alanine, D-leucine, D-valine and D-serine were much more effective inhibitors than their L-counterparts.

  2. Changes in receptor-mediated endocytosis in liver sinusoidal cells after partial hepatectomy in the rat.

    PubMed

    Kamimoto, Y; Tanabe, D; Tashiro, S; Hiraoka, T; Miyauchi, Y

    1994-06-01

    Liver sinusoidal cells play an important role in host defense by clearing particulate matter and macromolecules from the circulation. In this study, receptor-mediated endocytosis in sinusoidal cells was examined in two-thirds hepatectomized rats using 125I-labeled formaldehyde-treated bovine serum albumin (fBSA) as an endocytable macromolecule. The liver-weight to body-weight ratio in hepatectomized rats returned to the control value 10 days after hepatectomy. The endocytotic index for fBSA in sinusoidal cells decreased significantly to 0.0210 +/- 0.0017 (controls, 0.0598 +/- 0.0019) on the first day, then returned to the control level at 5 days (0.0554 +/- 0.0030). The changes in hepatic uptake for fBSA showed a similar time course of the endocytotic index. A transient increase in the uptake of fBSA per unit weight of liver of 22-39% above control occurred 2 to 3 days after hepatectomy. In contrast to fBSA, the endocytotic index in hepatocytes evaluated with 125I-labeled asialofetuin reached the minimum level on the second day, and then recovered to the control level 10 days after hepatectomy. These results suggest that endocytosis of fBSA by sinusoidal cells decreases after hepatectomy and rapidly recovers to normal before the completion of liver regeneration, whereas endocytosis of asialofetuin by hepatocytes decreases following hepatic resection and returns to normal when regeneration is substantially complete.

  3. Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery.

    PubMed

    Chen, Jing; Chen, Yuchao; Cheng, Yi; Gao, Youheng

    2017-09-24

    Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand, was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by the film-dispersion method. We evaluated the characterizations of liposomes, drug-release in vitro, the hemolytic test, cellular uptake, pharmacokinetics, and the tissue distributions. The cellular uptake in vitro suggested that the uptake of Man-DLD-Chol-modified liposomes was significantly higher than that of unmodified liposomes in HepG2 cells. Pharmacokinetic parameters indicated that Man-DLD-Chol-GA-Lp was eliminated more rapidly than GA-Lp. In tissue distributions, the targeting efficiency (Te) of Man-DLD-Chol-GA-Lp on liver was 54.67%, relative targeting efficiency (R Te ) was 3.39, relative uptake rate (Re) was 4.78, and peak concentration ratio (Ce) was 3.46. All these results supported the hypothesis that Man-DLD-Chol would be an efficient liposomal carrier, and demonstrated that Man-DLD-Chol-GA-Lp has potential as a drug delivery for liver-targeting therapy.

  4. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  5. Detecting liver fibrosis with Gd-EOB-DTPA-enhanced MRI: A confirmatory study.

    PubMed

    Verloh, Niklas; Utpatel, Kirsten; Haimerl, Michael; Zeman, Florian; Beyer, Lukas; Fellner, Claudia; Brennfleck, Frank; Dahlke, Marc H; Stroszczynski, Christian; Evert, Matthias; Wiggermann, Philipp

    2018-04-18

    Strong correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and the uptake characteristics of Gd-EOB-DTPA with the relative enhancement (RE) of the liver parenchyma have been reported. To confirm the results of a retrospective analysis, patients undergoing liver surgery were prospectively examined with Gd-EOB-DTPA-enhanced liver 3 Tesla MRI to determine the degree of liver fibrosis. Correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and RE were investigated and compared with those derived from an initial retrospective study. After validating the cut-off values in the retrospective study (Ishak ≥ 1, RE-cut-off 0.90; Ishak ≥ 2, RE-cut-off 0.79; Ishak ≥ 4, RE-cut-off 0.60; and Ishak = 6, RE-cut-off 0.47), we showed that Gd-EOB-DTPA has a high sensitivity (≥86%) and a high positive predictive value (≥86%). These results support the use of Gd-EOB-DTPA-enhanced liver MRI as a non-invasive method for determining the degree of liver fibrosis and cirrhosis.

  6. False-positive liver scan in a patient with hepatic amyloidosis: case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, K.; Okuda, K.; Yoshida, T.

    1976-01-01

    A case of secondary hepatic amyloidosis exhibiting a large liver and multiple defects on the $sup 198$Au-radiocolloid scintigraph is presented. Biopsy and angiographic studies indicated that the areas of reduced colloid uptake represented heavy amyloid deposition, and the area of the left lobe with contrasting high activity most probably represented compensatory hypertrophy. (auth)

  7. SU-E-T-402: Y-90 Microspheres (SIR Spheres) for Treatment of Liver Metastasis : Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, M

    2014-06-01

    Purpose: The purpose of this presentation is to discuss the radiation safety and dosimetric technique used for the therapeutic procedure using Y-90 microspheres through intra -arterial administration on patients with liver metastasis Methods: The radiation dosimetry, technique and safety aspects of 14 patients with primary and metastatic liver cancer, treated with Y-90 microsphere (SIR spheres) are discussed. The liver and tumor volumes were determined using the CT and MR scans . The images were imported into the treatment planning system and the liver and tumor volumes and the volume of the liver affected were outlined and the volume calculation wasmore » performed using the software. The lung shunt fraction (LSF) and tumor to liver uptake ratio (TLR) were determined using the nuclear medicine SPECT imaging with Tc-99m MAA. The absorbed dose to the target volume in liver was calculated using the following equation:Dose ? (Gy) = C x E? x 5.92 x 10-6 (Gy/s) x T(1/2)(days) x 1.44 x 8.64 x 104 (s) The distribution of activity in the tumor bed was confirmed by post Y-90 administration imaging using the Bremsstrahlung peak at 30% window. The patient and the procedure room were surveyed and radiation safety instructions were given to the patient Results: The tumor volume ranged from 77 cc to 700 cc, tumor to liver uptake ranged from 3 to 12. The lung shunt fraction varied from 1.08% to 9.0%. The activity administered ranged from 1.0GBq to 2.5 GBq, . The radiation survey in contact with the patient ranged from 1.8 mR/hr to 2.5 mR/hr and reading at 1 meter was less than 0.2 mR/hr Conclusion: The technique for radiation dosimetry and radiation safety for Y-90 microsphere therapy is established. The post treatment imaging helped to confirm the distribution of Y-90 microspheres inside the tumor bed.« less

  8. Evaluation of the response to selective internal radiation therapy in patients with hepatocellular cancer according to pretreatment (99m)Tc-MAA uptake.

    PubMed

    Kucuk, Ozlem N; Soydal, Cigdem; Araz, Mine; Ozkan, Elgin; Aras, Gulseren

    2013-04-01

    The aim of the study was to evaluate if there is a prognostic importance of pretreatment Tc-MAA uptake of liver lesion of patients who received Y selective internal radiation therapy (SIRT) treatment for hepatocellular cancer (HCC) or not. Nineteen patients (5 female and 14 male patients; mean age, 64.5 ± 14.7 years; range, 57-73 years) who received SIRT treatment in our department for HCC between June 2008 and May 2011 were included in the study. All the patients have undergone Tc-MAA scintigraphy within 2 weeks' period before treatment for evaluation of presence of extrahepatic uptake. Patients were evaluated according to their lesions' Tc-MAA uptake patterns. Response to the treatment, presence of progression after treatment, and progression-free survival of all the patients were calculated. Treatment has been administered on the right and left lobes of the liver in 18 and 1 patient, respectively. The mean treatment dose was estimated as 1.4 + 1.0 GBq. In the pretreatment Tc-MAA scintigraphy, liver lesions of 5 patients were hypoactive, and 14 patients were hyperactive. In the hypoactive group, whereas 2 patients (40%) were responders to treatment, 3 were nonresponders (60%). In the hyperactive group, 8 (58%) and 6 (42%) patients were responders and nonresponders, respectively (P = 0.51). Disease progression was seen in 4 (80%) and 8 patients (58%) in the hypoactive group and hyperactive groups, respectively (P = 0.36). Progression-free survival of the hypoactive group was calculated as 8 ± 4.3 months and of the hyperactive group 11 ± 4.7 months (P = 0.22). Despite the small number of patients, this study revealed that there is no significance between tumor response and progression rates of patients who received SIRT for HCC with or without pretreatment Tc-MAA uptake in liver lesions. Selective internal radiation therapy could be safely performed in patients who have hypoactive lesions in Tc-MAA scintigraphy.

  9. Antibody to liver cytosol (anti-LC1) in patients with autoimmune chronic active hepatitis type 2.

    PubMed

    Martini, E; Abuaf, N; Cavalli, F; Durand, V; Johanet, C; Homberg, J C

    1988-01-01

    A new autoantibody was detected by immunoprecipitation in the serum of 21 patients with chronic active hepatitis. The antibody reacted against a soluble cytosolic antigen in liver. The antibody was organ specific but not species specific and was therefore called anti-liver cytosol antibody Type 1 (anti-LC1). In seven of 21 cases, no other autoantibody was found; the remaining 14 cases had anti-liver/kidney microsome antibody Type 1 (anti-LKM1). With indirect immunofluorescence, a distinctive staining pattern was observed with the seven sera with anti-LC1 and without anti-LKM1. The antibody stained the cytoplasm of hepatocytes from four different animal species and spared the cellular layer around the central veins of mouse and rat liver that we have called juxtavenous hepatocytes. The immunofluorescence pattern disappeared after absorption of sera by a liver cytosol fraction. The 14 sera with both antibodies displayed anti-LC1 immunofluorescent pattern after absorption of anti-LKM1 by the liver microsomal fraction. The anti-LC1 was found in the serum only in patients with chronic active hepatitis of unknown cause. Anti-LC1 antibody was not found in sera from 100 patients with chronic active hepatitis associated with anti-actin antibody classic chronic active hepatitis Type 1, 100 patients with primary biliary cirrhosis, 157 patients with drug-induced hepatitis and a large number of patients with liver and nonliver diseases. This new antibody was considered a second marker of chronic active hepatitis associated with anti-LKM1 (anti-LKM1 chronic active hepatitis) or autoimmune chronic active hepatitis Type 2.

  10. Altered plasma lipidome profile of dairy cows with fatty liver disease.

    PubMed

    Gerspach, C; Imhasly, S; Gubler, M; Naegeli, H; Ruetten, M; Laczko, E

    2017-02-01

    Fatty liver disease is a common health problem of dairy cows occurring during the transition from pregnancy to lactation. It is a direct response to fat mobilization due to negative energy balance. Accumulation of lipids in the liver occurs if the uptake of non-esterified fatty acids by the liver exceeds the capacity of lipid oxidation or secretion by the liver. Currently, the diagnosis of fatty liver disease requires confirmation through biopsies to determine the hepatic lipid content. In view of this lack of a practical diagnostic tool, we compared the plasma lipidome of diseased dairy cows using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Multivariate data analysis yielded 20 m/z values that were able to distinguish between dairy cows with no hepatic lipidosis and those exhibiting different stages of the disease. Based on the chromatography retention time and m/z ratios, we identified phosphatidylcholines with reduced plasma abundances in cows with fatty liver disease. The abundances of different bile acids tended to be increased. In addition, we detected two metabolites related to inflammation, resolvin E1 and palmitoyl-ethanolamine (PEA), which need to be further investigated in cattle. These results indicate that the measurement of specific representatives of phosphatidylcholines in plasma may provide a novel diagnostic biomarker of fatty liver disease in dairy cows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Liver schwannoma incidentally discovered in a patient with breast cancer.

    PubMed

    Akin, Murat; Bozkirli, Bahadir; Leventoglu, Sezai; Unal, Kemal; Kapucu, L Ozlem; Akyurek, Nalan; Sare, Mustafa

    2009-01-01

    Benign schwannomas, also referred to as neurilemomas, neurinomas, and perineural fibroblastomas, are encapsulated nerve sheath tumors. Primary schwannomas of the liver are extremely rare. We present a case of liver schwannoma, incidentally found in a patient with breast cancer. A 66-year-old female consulted her physician for a mass she palpated on her left breast. The abdominal ultrasonography (USG) revealed a 44 x 28 mm mass in the medial segment of the left lobe of her liver suspicious of a metastasis. An USG-guided biopsy was performed and the histo-pathological examination revealed a "peripheral nerve sheath tumor". Positron emission tomography (PET-CT) revealed a pathologic FDG uptake in the lesion that was previously defined in the liver. The tumor resected from the liver was 5 x 4 x 3 cm, yellowish, soft, and capsulated tumor. Microscopic examination revealed that the mass consisted of bundles of spindle cells with hypercellular and hypocellular areas. In immunohistochemistry, there was a strong positive staining for S-100. The tumor was diagnosed as benign liver schwannoma. Schwannomas are benign, encapsulated neoplasms. Symptoms and signs vary depending on the anatomical site and the size of the neoplasm; however, most schwannomas present as an asymptomatic or painless mass. Recurrence is unusual, despite of an incomplete removal, and malignant transformation is exceedingly rare (Fig. 4, Ref. 8). Full Text (Free, PDF) www.bmj.sk.

  12. Radio-manganese, -iron, -phosphorus uptake by water hyacinth and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, T.N.; Gonzalez, M.H.; Martin, D.F.

    To determine the effects of the deprivation of specific micronutrients on the water hyacinth (Eichhornia crassipes), the rate of uptake by the water hyacinth of iron and manganese in comparison with phosphorus was studied. Materials and methodology are described. Experimentation indicates that all three elements are actively absorbed by the root systems, but the rates of absorption differ markedly. The rate of absorption of manganese by roots is 13 and 21 times that for radio-iron and -phosphorous, and iron was taken up by the roots at nearly twice the rate of phosphorous. Manganese translocation appeared to be faster than phosphorusmore » translocation by an order of magnitude and 65 times faster than iron translocation. 9 references, 2 tables.« less

  13. Cellular uptake mechanism and clearance kinetics of fluorescence-labeled glycyrrhetinic acid and glycyrrhetinic acid-modified liposome in hepatocellular carcinoma cells.

    PubMed

    Sun, Yuqi; Lu, Jinghua; Yan, Dongxue; Shen, Liping; Hu, Haiyang; Chen, Dawei

    2017-07-01

    Glycyrrhetinic acid (GA) is a natural pentacyclic triterpene derivative that exerts significant effects in the suppression of liver cancer. The receptors of GA on liver cells and hepatocellular carcinoma (HCC) cells have drawn broad attention. The effects of GA might depend on its transport into and out of cells. However, the question has not been previously addressed despite its obvious and fundamental importance. In this paper, GA and GA-modified liposome (GA-Lip) were labeled with fluorescein isothiocyanate (FITC) or coumarin 6 (Cou6) using chemical or pharmaceutical techniques. The transport courses of FITC-GA and GA-Cou6-Lip were studied in HepG2 cells in vitro. We found that the fluorescence labeled GA and GA-Lip uptake and clearance were time-dependent. FITC-GA uptake involved passive diffusion and active transport, and the receptors were in the cytomembrane proteins. GA-Cou6-Lip uptake was mediated by caveolae-dependent endocytosis. In addition, FITC-GA and GA-Cou6-Lip clearance of the HCC cells fitted exponential decay and second-order processes, respectively. These findings provide new insights into the anti-HCC actions of GA. Copyright © 2017. Published by Elsevier B.V.

  14. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    NASA Astrophysics Data System (ADS)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  15. Toxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species.

    PubMed

    Chen, Wei-Yu; Liao, Chung-Min

    2012-11-01

    The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis-Menten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination-recovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175 mL g(-1) h(-1) and As uptake rate constant estimates were 22.875, 63.125, and 788.318 ng g(-1) h(-1) for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination-recovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.

  16. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  17. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.

    PubMed

    Rubio, Francisco; Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente

    2008-12-01

    The relative contribution of the high-affinity K(+) transporter AtHAK5 and the inward rectifier K(+) channel AtAKT1 to K(+) uptake in the high-affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col-0). The results obtained with wild-type lines, with T-DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the NH4+-sensitive and the Ba(2+)-sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high-affinity range of Rb(+) concentrations. Using Rb(+) as a K(+) analogue, it was shown that AtHAK5 mediates absorption at lower Rb(+) concentrations than AtAKT1 and depletes external Rb(+) to values around 1 muM. Factors such as the presence of K(+) or NH4+ during plant growth determine the relative contribution of each system. The presence of NH4+ in the growth solution inhibits the induction of AtHAK5 by K(+) starvation. In K(+)-starved plants grown without NH4+, both systems are operative, but when NH4+ is present in the growth solution, AtAKT1 is probably the only system mediating Rb(+) absorption, and the capacity of the roots to deplete Rb(+) is reduced.

  18. Synchrotron X-ray microscopy and spectroscopy analysis of iron in hemochromatosis liver and intestines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata

    2009-12-01

    Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution.more » Moreover, chemical identity of element of interest can be obtained.« less

  19. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  20. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    PubMed

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  1. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo.

    PubMed Central

    Nøhr, Martha Kampp; Thale, Zia I; Brodin, Birger; Hansen, Steen H; Holm, René; Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin in Caco-2 cells. Oral coadministration of vigabatrin and infant formula significantly reduced Cmax and prolonged tmax of vigabatrin absorption. Ligands for the proton-coupled amino acid transporter PAT1, sarcosine, and proline/l-tryptophan had similar effects on the pharmacokinetic profile of vigabatrin. The infant formula decreased the rate of gastric emptying. Here we provide experimental evidence for an in vivo role of PAT1 in the intestinal absorption of vigabatrin. The effect of infant formula on the oral absorption of vigabatrin was found to be due to delayed gastric emptying, however, it seems reasonable that infant formula may also directly affect the intestinal absorption rate of vigabatrin possibly via PAT1. PMID:25505585

  2. PAMPA--critical factors for better predictions of absorption.

    PubMed

    Avdeef, Alex; Bendels, Stefanie; Di, Li; Faller, Bernard; Kansy, Manfred; Sugano, Kiyohiko; Yamauchi, Yukinori

    2007-11-01

    PAMPA, log P(OCT), and Caco-2 are useful tools in drug discovery for the prediction of oral absorption, brain penetration and for the development of structure-permeability relationships. Each approach has its advantages and limitations. Selection criteria for methods are based on many different factors: predictability, throughput, cost and personal preferences (people factor). The PAMPA concerns raised by Galinis-Luciani et al. (Galinis-Luciani et al., 2007, J Pharm Sci, this issue) are answered by experienced PAMPA practitioners, inventors and developers from diverse research organizations. Guidelines on how to use PAMPA are discussed. PAMPA and PAMPA-BBB have much better predictivity for oral absorption and brain penetration than log P(OCT) for real-world drug discovery compounds. PAMPA and Caco-2 have similar predictivity for passive oral absorption. However, it is not advisable to use PAMPA to predict absorption involving transporter-mediated processes, such as active uptake or efflux. Measurement of PAMPA is much more rapid and cost effective than Caco-2 and log P(OCT). PAMPA assay conditions are critical in order to generate high quality and relevant data, including permeation time, assay pH, stirring, use of cosolvents and selection of detection techniques. The success of using PAMPA in drug discovery depends on careful data interpretation, use of optimal assay conditions, implementation and integration strategies, and education of users. Copyright 2007 Wiley-Liss, Inc.

  3. Oral exposure to polystyrene nanoparticles affects iron absorption

    NASA Astrophysics Data System (ADS)

    Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.

    2012-04-01

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.

  4. Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Cheng, Xingguo; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na+-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance–associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449

  5. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport.

    PubMed

    Kato, Kazuhiko; Shirasaka, Yoshiyuki; Kuraoka, Erika; Kikuchi, Akihiro; Iguchi, Maki; Suzuki, Hisashi; Shibasaki, Shigeki; Kurosawa, Tohru; Tamai, Ikumi

    2010-10-04

    Tebipenem pivoxil (TBPM-PI) is an oral carbapenem antibiotic for treating otolaryngologic and respiratory infections in pediatric patients. This agent is a prodrug to improve intestinal absorption of TBPM, an active form, and an absorption rate of TBPM-PI is higher than those of other prodrug-type β-lactam antibiotics. In the present study, we hypothesized that a certain mechanism other than simple diffusion is involved in the process of improved intestinal absorption of TBPM-PI and examined the mechanism. TBPM-PI uptake by Caco-2 cells was decreased by ATP-depletion and lowering the temperature to 4 °C, suggesting the contribution of carrier-mediated transport mechanisms. This uptake was partially decreased by ACE inhibitors, and the reduction of the absorption by captopril was observed by in vivo study and in situ single-pass intestinal perfusion study in rat, supporting the contribution of influx transporters. Since some ACE inhibitors and β-lactam antibiotics are reported to be substrates of PEPT and OATP families, we measured transporting activity of TBPM-PI by intestinally expressed transporters, PEPT1, OATP1A2, and OATP2B1. As a result, significant transport activities were observed by both OATP1A2 and OATP2B1 but not by PEPT1. Interestingly, pH dependence of TBPM-PI transports was different between OATP1A2 and OATP2B1, showing highest activity by OATP1A2 at pH 6.5, while OATP2B1-mediated uptake was higher at neutral and weak alkaline pH. OATP1A2 exhibited higher affinity for TBPM-PI (K(m) = 41.1 μM) than OATP2B1 (K(m) > 1 mM) for this agent. These results suggested that TBPM-PI has high intestinal apical membrane permeability due to plural intestinal transport routes, including the uptake transporters such as OATP1A2 and OATP2B1 as well as simple diffusion.

  6. New mechanistic explanation for the localization of ulcers in the rat duodenum: role of iron and selective uptake of cysteamine.

    PubMed

    Khomenko, Tetyana; Kolodney, Joanna; Pinto, John T; McLaren, Gordon D; Deng, Xiaoming; Chen, Longchuan; Tolstanova, Ganna; Paunovic, Brankica; Krasnikov, Boris F; Hoa, Neil; Cooper, Arthur J L; Szabo, Sandor

    2012-09-01

    Cysteamine, a coenzyme A metabolite, induces duodenal ulcers in rodents. Our recent studies showed that ulcer formation was aggravated by iron overload and diminished in iron deficiency. We hypothesized that cysteamine is selectively taken up in the duodenal mucosa, where iron absorption primarily occurs, and is transported by a carrier-mediated process. Here we report that cysteamine administration in rats leads to cysteamine accumulation in the proximal duodenum, where the highest concentration of iron in the gastrointestinal tract is found. In vitro, iron loading of intestinal epithelial cells (IEC-6) accelerated reactive oxygen species (ROS) production and increased [(14)C]cysteamine uptake. [(14)C]Cysteamine uptake by isolated gastrointestinal mucosal cells and by IEC-6 was pH-dependent and inhibited by unlabeled cysteamine. The uptake of [(14)C]cysteamine by IEC-6 was Na(+)-independent, saturable, inhibited by structural analogs, H(2)-histamine receptor antagonists, and organic cation transporter (OCT) inhibitors. OCT1 mRNA was markedly expressed in the rat duodenum and in IEC-6, and transfection of IEC-6 with OCT1 siRNA decreased OCT1 mRNA expression and inhibited [(14)C]cysteamine uptake. Cysteamine-induced duodenal ulcers were decreased in OCT1/2 knockout mice. These studies provide new insights into the mechanism of cysteamine absorption and demonstrate that intracellular iron plays a critical role in cysteamine uptake and in experimental duodenal ulcerogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Tea and coffee time with bacteria - Investigation of uptake of key coffee and tea phenolics by wild type E. coli.

    PubMed

    Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai

    2018-06-01

    Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.

  8. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes.

    PubMed

    Fu, Changhui; Liu, Tianlong; Li, Linlin; Liu, Huiyu; Chen, Dong; Tang, Fangqiong

    2013-03-01

    Mesoporous silica nanoparticles (MSNs) are emerging as one of the promising nanomaterials for biomedical applications, but the nanomaterials-body interaction exposed by different administration routes remained poorly understood. In the present study, a systematic investigation of the absorption, distribution, excretion and toxicity of silica nanoparticles (SNs) with the average size of 110 nm after four different exposure routes including intravenous, hypodermic, intramuscular injection and oral administration to mice were achieved. The results showed that a fraction of the SNs administrated by the intramuscular and hypodermic injection could cross different biological barriers into the liver but with a low absorption rate. Exposing by oral administration, SNs were absorbed into the intestinal tract and persisted in the liver. And SNs administrated by intravenous injection were mainly present in the liver and spleen. In addition, SNs could cause inflammatory response around the injection sites after intramuscular and hypodermic injection. It was also found that SNs were mainly excreted through urine and feces after different exposure routes. This study will be helpful for selecting the appropriate exposed routes for the development of nanomaterials-based drug delivery system for biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Glucose absorption, hormonal release and hepatic metabolism after guar gum ingestion

    NASA Technical Reports Server (NTRS)

    Simoes Nunes, C.; Malmlof, K.

    1992-01-01

    Six non-anaesthetized Large White pigs (mean body weight 59 +/- 1.7 kg) were fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein and with electromagnetic flow probes around the portal vein and the hepatic artery. The animals were provided a basal none-fibre diet (diet A) alone or together with 6% guar gum (diet B) or 15% purified cellulose (diet C). The diets were given for 1 week and according to a replicated 3 x 3 latin-square design. On the last day of each adaptation period test meals of 800 g were given prior to blood sampling. The sampling was continued for 8 h. Guar gum strongly reduced the glucose absorption as well as the insulin, gastric inhibitory polypeptide (GIP) and insulin-like growth factor-1 (IGF-1) production. However, the reduction in peripheral blood insulin levels caused by guar gum was not associated with a change in hepatic insulin extraction. IGF-1 appeared to be strongly produced by the gut. The liver had a net uptake of the peptide. Ingestion of guar gum increased the hepatic extraction coefficient of gut produced IGF-1. Guar gum ingestion also appeared to decrease pancreatic glucagon secretion. Cellulose at the level consumed had very little effect on the parameters considered. It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the latter internal metabolic effects.

  10. Liver Function in Areas of Hepatic Venous Congestion After Hepatectomy for Liver Cancer: 99mTc-GSA SPECT/CT Fused Imaging Study.

    PubMed

    Yoshida, Morikatsu; Beppu, Toru; Shiraishi, Shinya; Tsuda, Noriko; Sakamoto, Fumi; Kuramoto, Kunitaka; Okabe, Hirohisa; Nitta, Hidetoshi; Imai, Katsunori; Tomiguchi, Seiji; Baba, Hideo; Yamashita, Yasuyuki

    2018-05-01

    Background/Aim: The sacrifice of a major hepatic vein can cause hepatic venous congestion (HVC). We evaluated the effects of HVC on regional liver function using the liver uptake value (LUV), that was calculated from 99m Tc-labeled-galactosyl-human-serum-albumin ( 99m Tc-GSA) single-photon emission computed tomography (SPECT) /contrast-enhanced computed tomography (CE-CT) fused images. Patients and Methods: Sixty-two patients underwent 99m Tc-GSA SPECT/CE-CT prior to hepatectomy for liver cancer and at 7 days after surgery were divided into groups with (n=8) and without HVC (n=54). In the HVC group, CT volume (CTv) and LUV were separately calculated in both congested and non-congested areas. Results: The remnant LUV/CTv of the HVC group was significantly smaller than that of the non-HVC group (p<0.01). The mean functional ratio was 0.47±0.05, and all ratios were ≥0.39. Conclusion: After hepatectomy with sacrifice of major hepatic vein, liver function per unit volume in the congested areas was approximately 40% of that in the non-congested areas. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams.

    PubMed

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S; Maitland, Duncan J

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (T(g)) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T(g) of the foam, with a maximum water uptake shifting the T(g) from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

  12. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    PubMed Central

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h. PMID:21949469

  13. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (Tg) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

  14. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats.

    PubMed

    Janssens, Sharon; Ciapaite, Jolita; Wolters, Justina C; van Riel, Natal A; Nicolay, Klaas; Prompers, Jeanine J

    2017-05-10

    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or solutions containing 13% ( w / v ) glucose, 13% fructose, or 0.4% aspartame. After 7 weeks, in vivo hepatic dietary lipid uptake and de novo lipogenesis were assessed with proton-observed, carbon-13-edited MRS combined with 13 C-labeled lipids and 13 C-labeled glucose, respectively. The molecular basis of alterations in hepatic liver metabolism was analyzed in detail ex vivo using immunoblotting and targeted quantitative proteomics. Both glucose and fructose feeding increased adiposity, but only fructose induced hepatic lipid accumulation. In vivo MRS showed that this was not caused by increased hepatic uptake of dietary lipids, but could be attributed to an increase in de novo lipogenesis. Stimulation of lipogenesis by fructose was confirmed by a strong upregulation of lipogenic enzymes, which was more potent than with glucose. The non-caloric sweetener aspartame did not significantly affect liver lipid content or metabolism. In conclusion, liquid fructose more severely affected liver lipid metabolism in rats than glucose, while aspartame had no effect.

  15. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats

    PubMed Central

    Janssens, Sharon; Ciapaite, Jolita; Wolters, Justina C.; van Riel, Natal A.; Nicolay, Klaas; Prompers, Jeanine J.

    2017-01-01

    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or solutions containing 13% (w/v) glucose, 13% fructose, or 0.4% aspartame. After 7 weeks, in vivo hepatic dietary lipid uptake and de novo lipogenesis were assessed with proton-observed, carbon-13-edited MRS combined with 13C-labeled lipids and 13C-labeled glucose, respectively. The molecular basis of alterations in hepatic liver metabolism was analyzed in detail ex vivo using immunoblotting and targeted quantitative proteomics. Both glucose and fructose feeding increased adiposity, but only fructose induced hepatic lipid accumulation. In vivo MRS showed that this was not caused by increased hepatic uptake of dietary lipids, but could be attributed to an increase in de novo lipogenesis. Stimulation of lipogenesis by fructose was confirmed by a strong upregulation of lipogenic enzymes, which was more potent than with glucose. The non-caloric sweetener aspartame did not significantly affect liver lipid content or metabolism. In conclusion, liquid fructose more severely affected liver lipid metabolism in rats than glucose, while aspartame had no effect. PMID:28489050

  16. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a

  18. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization

    PubMed Central

    Chen, Dan-qi; Wang, Xin; Chen, Lin; He, Jin-xue; Miao, Ze-hong; Shen, Jing-kang

    2011-01-01

    Aim: Cytarabine is an efficient anticancer agent for acute myelogenous leukemia, but with short plasma half-life and rapid deamination to its inactive metabolite. The aim of this study was to design and synthesize novel cholic acid-cytarabine conjugates to improve its pharmacokinetic parameters. Methods: The in vitro stability of novel cholic acid-cytarabine conjugates was investigated in simulated gastric and intestinal fluid, mouse blood and liver homogenate using HPLC. The portacaval samples of the conjugates were examined in male Sprague-Dawley rats using LC/MS, and in vivo distribution was examined in male Kunming mice using LC/MS. Antitumor activities were tested in HL60 cells using MTT assay. Results: Cholic acid-cytarabine compounds with four different linkers were designed and synthesized. All the four cholic acid-cytarabine conjugates could release cytarabine when incubated with the simulated gastric and intestinal fluid, mouse blood and liver homogenate. The conjugates 6, 12, and 16 were present in the portacaval samples, whereas the conjugate 7 was not detected. The conjugates 6 and 16 showed high specificity in targeting the liver (liver target index 34.9 and 16.3, respectively) and good absorption in vivo, as compared with cytarabine. In cytarabine-sensitive HL60 cells, the conjugates 6, 12, and 16 retained potent antitumor activities. Conclusion: Three novel cholic acid-cytarabine conjugates with good liver-targeting properties and absorption were obtained. Further optimization of the conjugates is needed in the future. PMID:21516131

  19. ON THE UPTAKE OF RADIOACTIVE PHOSPHORUS BY THE ORGANS OF THE SCORPION BUTHUS QUINQUESTRIATUS H.E.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Din Said, E.; Abd-El-Khalek Mahrous, M.

    1960-01-01

    The uptake of P/sup 32/ by various organs of the scorpion was estimated. The organs of digestion, absorption, and reproduction were found to be the most active in taking up P/sup 32/. However, P/sup 32/ is not suitable for labeling scorpion venom. Data are tabulated. (P.C.H.)

  20. Intestinal Lymphatic Transport: an Overlooked Pathway for Understanding Absorption of Plant Secondary Compounds in Vertebrate Herbivores.

    PubMed

    Kohl, Kevin D; Dearing, M Denise

    2017-03-01

    Herbivores employ numerous strategies to reduce their exposure to toxic plant secondary chemicals (PSCs). However, the physiological mechanisms of PSC absorption have not been extensively explored. In particular, the absorption of PSCs via intestinal lymphatic absorption has been largely overlooked in herbivores, even though this pathway is well recognized for pharmaceutical uptake. Here, we investigated for the first time whether PSCs might be absorbed by lymphatic transport. We fed woodrats (Neotoma albigula) diets with increasing concentrations of terpene-rich juniper (Juniperus monosperma) either with or without a compound that blocks intestinal lymphatic absorption (Pluronic L-81). Woodrats consuming diets that contained the intestinal lymphatic absorption blocker exhibited increased food intakes and maintained higher body masses on juniper diets. Our study represents the first demonstration that PSCs may be absorbed by intestinal lymphatic absorption. This absorption pathway has numerous implications for the metabolism and distribution of PSCs in the systemic circulation, given that compounds absorbed via lymphatic transport bypass first-pass hepatic metabolism. The area of lymphatic transport of PSCs represents an understudied physiological pathway in plant-herbivore interactions.

  1. GI transit and absorption of solid food: multiple effects of guar.

    PubMed

    Meyer, J H; Doty, J E

    1988-08-01

    These experiments were undertaken in dogs with midintestinal fistulas to determine whether guar added to a meal of solid food would disrupt gastric sieving and give rise to maldigestion of solid food. Dogs were fed a standard meal of steak, chicken liver, bread, margarine, and water in which there was 0, 3.3, 7.5, or 15 g guar powder. The margarine or the liver contained [14C]triolein. Using an isotope ratio method, we determined how much [14C]triolein was absorbed at midintestine. We found that guar in a dose-related fashion increased the weight of chyme collected at midintestine, markedly reduced the percent of triolein absorbed by midintestine from 88 to 38%, and profoundly increased the passage to midintestine of large, poorly digestible pieces of steak and liver. The viscosity of the guar promoted the GI transit of large, poorly digestible pieces of food but also reduced absorption by other mechanisms.

  2. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells.

    PubMed

    Tourniaire, Franck; Hassan, Meryl; André, Marc; Ghiringhelli, Odette; Alquier, Christian; Amiot, Marie-Josèphe

    2005-10-01

    Naringin, the main flavanone of grapefruit, was reported to display numerous biological effects: antioxidant, hypocholesteremic, anti-atherogenic and favoring drug absorption. Naringin absorption mechanisms were studied in Caco-2 cells (TC7 clone). We investigated the possible involvement of several membrane transporters implicated in polyphenolic compounds intestinal transport (sodium-dependent glucose transporter 1, monocarboxylate transporter, multidrug-associated resistance proteins 1 and 2, and P-glycoprotein). Naringin was poorly absorbed by Caco-2 cells, according to its low value of apparent permeability coefficient (P(app) = 8.1 +/- 0.9 x 10(-8) cm/s). In the presence of verapamil, a specific inhibitor of P-glycoprotein, cellular uptake was increased by almost threefold after 5 min, and P(app) was doubled after 30 min. Our results indicated the involvement of P-glycoprotein, an ATP-driven efflux pump, capable of transporting naringin from the Caco-2 cell to the apical side. This phenomenon could explain, at least in part, the low absorption of this flavanone at the upper intestinal level.

  3. In vitro study of percutaneous absorption of aluminum from antiperspirants through human skin in the Franz™ diffusion cell.

    PubMed

    Pineau, Alain; Guillard, Olivier; Favreau, Frédéric; Marty, Marie-Hélène; Gaudin, Angeline; Vincent, Claire Marie; Marrauld, Annie; Fauconneau, Bernard; Marty, Jean-Paul

    2012-05-01

    Aluminum salts such as aluminum chlorohydrate (ACH) are known for use as an active antiperspirant agent that blocks the secretion of sweat. A local case report of hyperaluminemia in a woman using an aluminum-containing antiperspirant for 4 years raises the problem of transdermal absorption of aluminum (Al). Only a very limited number of studies have shown that the skin is an effective barrier to transdermal uptake of Al. In accordance with our analytical procedure, the aim of this study with an in vitro Franz™ diffusion cell was to measure aluminum uptake from three cosmetic formulations of antiperspirant: the base for an "aerosol" (38.5% of ACH), a "roll-on" emulsion (14.5% ACH), and a "stick" (21.2%), by samples of intact and stripped human skin (5 donors). The Al assays were performed by Zeeman Electrothermal Atomic Absorption Spectrophotometry (ZEAAS). Following contacts lasting 6, 12 and 24h, the Al assays showed only insignificant transdermal absorption of Al (≤0.07% of the quantity of Al deposited) and particularly low cutaneous quantities that varied according to the formulations (1.8 μg/cm² for "aerosol base" and "stick" - 0.5 μg/cm² for the "roll-on"). On stripped skin, for which only the "stick" formulation was tested, the measured uptake was significantly higher (11.50 μg/cm² versus 1.81 μg/cm² for normal skin). These results offer reassurance as regards to the use of antiperspirants for topical application of ACH-containing cosmetic formulations on healthy skin over a limited time span (24h). On the other hand, high transdermal Al uptake on stripped skin should compel antiperspirant manufacturers to proceed with the utmost caution. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    PubMed

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  5. Uptake and Function Studies of Maternal Milk-derived MicroRNAs*

    PubMed Central

    Title, Alexandra C.; Denzler, Rémy; Stoffel, Markus

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of cell-autonomous gene expression that influence many biological processes. They are also released from cells and are present in virtually all body fluids, including blood, urine, saliva, sweat, and milk. The functional role of nutritionally obtained extracellular miRNAs is controversial, and irrefutable demonstration of exogenous miRNA uptake by cells and canonical miRNA function is still lacking. Here we show that miRNAs are present at high levels in the milk of lactating mice. To investigate intestinal uptake of miRNAs in newborn mice, we employed genetic models in which newborn miR-375 and miR-200c/141 knockout mice received milk from wild-type foster mothers. Analysis of the intestinal epithelium, blood, liver, and spleen revealed no evidence for miRNA uptake. miR-375 levels in hepatocytes were at the limit of detection and remained orders of magnitude below the threshold for target gene regulation (between 1000 and 10,000 copies/cell). Furthermore, our study revealed rapid degradation of milk miRNAs in intestinal fluid. Together, our results indicate a nutritional rather than gene-regulatory role of miRNAs in the milk of newborn mice. PMID:26240150

  6. Inhibition of Phosphate Uptake in Corn Roots by Aluminum-Fluoride Complexes1

    PubMed Central

    Façanha, Arnoldo Rocha; Okorokova-Façanha, Anna L.

    2002-01-01

    F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlFx) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlFx reflects their activity as Pi analogs. For this purpose, 32P-labeled phosphate uptake by excised roots and plasma membrane H+-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlFx. In vitro, AlFx competitively inhibited the rate of root phosphate uptake as well as the H+-ATPase activity. Conversely, pretreatment of seedlings with AlFx in vivo promoted no effect on the H+-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlFx pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent 32Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root 32Pi uptake induced by AlFx pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF3 and AlF4− among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed. PMID:12177489

  7. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    PubMed

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.

  8. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration.

    PubMed

    Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok

    2013-03-26

    The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.

  9. Uptake and distribution of the abused inhalant 1,1-difluoroethane in the rat.

    PubMed

    Avella, Joseph; Kunaparaju, Naveen; Kumar, Sunil; Lehrer, Michael; Zito, S William; Barletta, Michael

    2010-09-01

    1,1-Difluoroethane (DFE) is a halogenated hydrocarbon used as a propellant in products designed for dusting electronic equipment and air brush painting. When abused, inhaled DFE produces intoxication and loss of muscular coordination. To investigate DFE toxicokinetics, groups (n = 3) of Sprague-Dawley rats were exposed to 30 s of 20 L/min DFE. The experimental model was designed to mimic exposure during abuse, a protocol which has not been conducted. Tissue collection (blood, brain, heart, liver, and kidney) occurred at 0, 10, 20, 30, 45, 60, 120, 240, 480, and 900 s. Average peak DFE levels were blood 352, brain 519, heart 338, liver 187, and kidney 364 mg/L or mg/kg. The total percent uptake of the administered dose was 4.0%. Uptake into individual compartments was 2.72, 0.38, 0.15, 0.41, and 0.32% for blood, brain, heart, liver, and kidney, respectively. All animals showed signs of intoxication within 20 s manifested as lethargy, prostration and loss of righting reflex. Marked intoxication continued for about 4 min when DFE averaged 21 mg/L in blood and 17 mg/kg in brain. Between 4 and 8 min, animals continued to show signs of sedation as evidenced by reduced aggression and excitement during handling. No discernable intoxication was evident after 8 min and blood and brain levels had fallen to 10 and 6 mg/L or kg, respectively. Plots of concentration (log) versus time were consistent with a two compartment model. Initial distribution was rapid with average half life (t((1/2))) during the alpha phase of 9 s for blood, 18 s for brain and 27 s in cardiac tissue. During beta slope elimination average t((1/2)) was 86 s in blood, 110 s in brain and 168 s in heart. Late elimination half lives were longer with blood gamma = 240 s, brain gamma = 340 s, and heart gamma = 231 s. Following acute exposure the Vd = 0.06 L, beta = 0.48 min(-1), AUC = 409.8 mg.min L(-1), and CL from blood was 0.03 L min(-1). The calculated toxicokinetic data may underestimate these parameters if

  10. Permeation and Systemic Absorption of R- and S-Baclofen across the Nasal Mucosa

    PubMed Central

    Zhang, Hefei; Schmidt, Mark; Murry, Daryl J.; Donovan, Maureen D.

    2012-01-01

    Baclofen, an antispasmodic agent that acts as a GABAB agonist, resembles phenylalanine in structure and has been reported to be a substrate of the large amino acid transporter, LAT-1. The objective of this study was to investigate the absorption of baclofen across the nasal mucosa both in vitro and in vivo. Baclofen transport was measured across excised bovine olfactory and respiratory mucosae to investigate site-specific uptake of baclofen, and the intranasal bioavailability of R- and S- baclofen was determined in rats. Increasing flux with increasing baclofen donor concentration and the absence of polarized transport was observed in vitro and similar distribution profiles were observed for both enantiomers following intranasal administration in rats. The absence of stereospecificity in nasal absorption indicates limited involvement of the amino acid or other transporters in the nasal absorption of baclofen. PMID:21283988

  11. Assessing liver injury associated with antimycotics: Concise literature review and clues from data mining of the FAERS database

    PubMed Central

    Raschi, Emanuel; Poluzzi, Elisabetta; Koci, Ariola; Caraceni, Paolo; Ponti, Fabrizio De

    2014-01-01

    AIM: To inform clinicians on the level of hepatotoxic risk among antimycotics in the post-marketing setting, following the marketing suspension of oral ketoconazole for drug-induced liver injury (DILI). METHODS: The publicly available international FAERS database (2004-2011) was used to extract DILI cases (including acute liver failure events), where antimycotics with systemic use or potential systemic absorption were reported as suspect or interacting agents. The reporting pattern was analyzed by calculating the reporting odds ratio and corresponding 95%CI, a measure of disproportionality, with time-trend analysis where appropriate. RESULTS: From 1687284 reports submitted over the 8-year period, 68115 regarded liver injury. Of these, 2.9% are related to antimycotics (1964 cases, of which 112 of acute liver failure). Eleven systemic antimycotics (including ketoconazole and the newer triazole derivatives voriconazole and posaconazole) and terbinafine (used systemically to treat onychomicosis) generated a significant disproportionality, indicating a post-marketing signal of risk. CONCLUSION: Virtually all antimycotics with systemic action or absorption are commonly reported in clinically significant cases of DILI. Clinicians must be aware of this aspect and monitor patients in case switch is considered, especially in critical poly-treated patients under chronic treatment. PMID:25232453

  12. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law.

    PubMed

    Terenji, Albert; Willmann, Stefan; Osterholz, Jens; Hering, Peter; Schwarzmaier, Hans-Joachim

    2005-06-01

    During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo. Copyright 2005 Wiley-Liss, Inc.

  13. Carrier-mediated translocation of uridine diphosphate glucose into the lumen of endoplasmic reticulum-derived vesicles from rat liver.

    PubMed Central

    Vanstapel, F; Blanckaert, N

    1988-01-01

    Radiolabeled UDPGlc incubated with rough endoplasmic reticulum (RER)-derived microsomes from rat liver became associated with the vesicles. This microsomal uptake of nucleotide sugar was time and temperature dependent. Analysis of the molecular species containing radiolabel revealed that initial uptake represented entry of predominantly intact UDPGlc in the microsomes. Conclusive evidence for proper translocation of UDPGlc across the microsomal membrane into the intravesicular space was obtained by demonstrating that UDPGlc was transported into an osmotically sensitive compartment. Microsomal uptake of UDPGlc exhibited features characteristic of carrier-mediated transport including saturation, specificity, and countertransport. Inhibition and trans-stimulation studies showed that other uridine-containing nucleotide sugars and 5'-UMP were substrates of the postulated microsomal carrier system for UDPGlc, while cytosine- or guanosine-containing nucleotides and non-5'-uridine monophosphates were, at best, very poor substrates. UDPGlc translocation activities were lower in smooth microsomal fractions than in the RER-derived vesicles, indicating that contamination with Golgi membranes could not be responsible for microsomal transport of UDPGlc. Our findings suggest that rat liver endoplasmic reticulum possesses a carrier system mediating proper translocation of UDPGlc and 5'-uridine-substituted structural analogues across the membrane. PMID:3417868

  14. Passive energy absorption by human muscle-tendon unit is unaffected by increase in intramuscular temperature.

    PubMed

    Magnusson, S P; Aagaard, P; Larsson, B; Kjaer, M

    2000-04-01

    The present study measured hamstring intramuscular temperature and muscle-tendon unit viscoelastic properties in healthy young men before and after 10 and 30 min of running with (day S) or without stretch (day NS). On day NS, passive energy absorption and intramuscular temperature were measured before running (Preex), after 10 min of running at 70% of maximum O(2) uptake (Postex10), and after 30 min of running at 75% of maximum O(2) uptake (Postex30). On day S, the protocol was repeated with three stretches (stretches 1-3) added after Postex10. Intramuscular temperature was elevated Postex10 (P < 0.01) and further Postex30 (P < 0.05). On day NS, the total energy absorbed Preex (14.3 +/- 2.3 J), Postex10 (14.5 +/- 3.2 J), and Postex30 (13.5 +/- 2.4 J) was not different. On day S, the total energy absorbed in stretch 3 (10.8 +/- 1.8 J) was lower than that Preex (14.5 +/- 1.7 J, P < 0.01) and Postex10 (13.5 +/- 1.9 J, P < 0.05) but not Postex30 (13.3 +/- 1.8 J). The total energy absorbed Postex30 did not differ from Preex. In conclusion, warm-up and continuous running elevated intramuscular temperature but did not affect the passive energy absorption. Repeated passive stretching reduced the energy absorption immediately; however, the effect did not remain after 30 min of running. These data suggest that passive energy absorption of the human skeletal muscle is insensitive to physiological increases in intramuscular temperature.

  15. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation.

    PubMed

    Chen, Huichao; Zhao, Changsui; Ren, Qiangqiang

    2012-01-01

    The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO₂) capture from combustion gases. Recent attempts to improve the CO₂/SO₂ uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO₂ capture characteristics and the SO₂ uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO₂ absorption was not proportional to CO₂ concentration in the carbonation atmosphere, but was directly related to reaction time. The CO₂ uptake decreased in the presence of SO₂. SO₂ uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO₂ absorption and could be used to capture CO₂ and SO₂ simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. ENDOCYTOSIS IN CHANG LIVER CELLS

    PubMed Central

    Wagner, Roger; Rosenberg, Murray; Estensen, Richard

    1971-01-01

    The addition of 0.08 M sucrose to a culture medium containing Chang-strain human liver cells causes intense cytoplasmic vacuolation. Electron microscopy of these cells grown inferritin, time-lapse cinematography, and radioautography reveal that the vacuoles arise by endocytosis and that the sucrose is taken into the cell and localized in the vacuoles. Tracer studies demonstrate that sucrose-3H provides a marker for quantitation of endocytosis and that it neither induces nor stimulates endocytosis. Electron micrographs of vacuolated liver cells show microfilaments in close proximity to the inside of the plasma membrane, in the pseudopodia, and to the cytoplasmic side of the membrane surrounding endocytosis vacuoles. Cytochalasin B (CB), a mold metabolite that inhibits various types of cell motility, has a dose-dependent inhibitory effect on the uptake of sucrose-3H by these cells. This inhibition is accompanied by a cessation of the movement of ruffles and pseudopodia on the surface of the cells and the formation of blebs which arise from the cell's surface. These morphological changes are quickly reversible upon removal of CB. Alterations in the appearance and location of microfilaments are also observed in CB-treated cells. PMID:4329157

  17. Trace metals in liver from bluefish, tautog, and tilefish in relation to body length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, H.C.; Eisler, R.

    1977-09-01

    Livers from bluefish, tilefish and tautog collected during the summer of 1971 off the New Jersey coast were analyzed for Cd, Cr, Cu, Fe, Mn, Ni, and Zn by atomic absorption spectrophotometry. Liver ash from male and female tautog contained decreasing concentrations of Ni with increasing body length. Smaller males also contained greater levels of Cr and Cu in liver than larger tautogs. Larger tilefish contained proportionately more Cd, Cu, and Fe in liver than smaller tilefish. Decreasing levels of Mn and Zn with body length were apparent only for females. Livers from larger male bluefish were associated with highermore » concentrations of Fe than those from smaller males, while those from larger females contained lower concentrations of Cr than those from smaller females. The data suggest that future comparisons for trace metals which vary as a function of size be made only among fish of the same length.« less

  18. Significant suppression of myocardial (18)F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet.

    PubMed

    Kobayashi, Yasuhiro; Kumita, Shin-ichiro; Fukushima, Yoshimitsu; Ishihara, Keiichi; Suda, Masaya; Sakurai, Minoru

    2013-11-01

    (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is a useful tool for evaluating inflammation. Because, myocardial-FDG uptake occurs with diverse physiology, it should be suppressed during evaluation of myocardial inflammation by FDG-PET/CT. Diets inducing fat-based metabolism, such as a low-carbohydrate, high-fat diet (LCHF), are used in uptake-suppression protocols. However, a complete suppression of myocardial-FDG uptake has not been established. Hence, we assessed the efficacy of 24-h carbohydrate restriction along with an LCHF diet compared to that of the conventional protocol in suppressing myocardial-FDG uptake and also compared fat and glucose metabolism between these protocols. Fourteen healthy volunteers agreed to undergo >24-h carbohydrate restriction (glucose, <10g) and drank an LCHF beverage an hour before FDG administration. A scan performed under conventional fasting protocol served as the control. The maximal standardized uptake values (SUVmax) of the left ventricular (LV) myocardium, and left atrium lumen (blood pool), liver, and lung fields as background, were measured. Blood sugar, free fatty acids (FFAs), insulin, and triglyceride concentrations were measured just before FDG injection and compared between the 2 protocols. Global LV myocardial uptake was significantly lower with the diet-preparation protocol (SUVmax 1.31 [1.15-1.49] vs. 2.98 [1.76-6.43], p=0.001). Target-to-background ratios [myocardium-to-blood ratio (MBR), myocardium-to-lung ratio (MLR), and myocardium-to-liver ratio (MLvR)] were also significantly lower with the diet-preparation protocol [MBR: 0.75 (0.68-0.84) vs. 1.63 (0.98-4.09), p<0.001; MLR: 1.87 (1.53-2.47) vs. 4.54 (2.53-12.78), p=0.004; MLvR: 0.48 (0.44-0.56) vs. 1.11 (0.63-2.32), p=0.002]. Only insulin levels were significantly different between the subjects in each protocol group (11.3 [6.2-15.1] vs. 3.9 [2.9-6.2]). Carbohydrate restriction together with an LCHF supplement

  19. Glucocorticoid deprivation alters in vivo glucose uptake by muscle and adipose tissues of GTG-obese mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1995-11-01

    The effect of 1 wk of glucocorticoid deprivation by surgical adrenalectomy (ADX) on tissue 2-deoxy(-)[U-14C]glucose (2-DG) uptake and hepatic glucose production (HGP) was assessed in conscious, catheterized mice 5 wk after the induction of obesity with gold thioglucose (GTG). Despite the prevailing hyperglycemia and hyperinsulinemia, glucose uptake by heart, quadriceps muscle, and interscapular brown adipose tissue (BAT) of GTG-obese mice was unchanged compared with controls, suggesting that the hyperglycemia of GTG-obese mice is able to compensate for the insulin resistance of these tissues. In contrast, epididymal white adipose tissue (WAT) of GTG-obese mice showed increased glucose uptake with hyperglycemia and hyperinsulinemia. ADX decreased the hyperglycemia and lowered the elevated glycogen content of the liver of GTG-obese mice. ADX reduced glucose uptake by heart and WAT of control and GTG-obese mice, consistent with the concomitant decrease in insulinemia. Glucose uptake by muscle of control and GTG-obese mice was not significantly decreased after ADX despite the decrease in insulin, and ADX increased glucose uptake by BAT of GTG-obese mice, suggesting increased sympathetically mediated thermogenesis in this tissue. HGP was increased in GTG-obese mice compared with controls, and ADX significantly reduced HGP in both GTG-obese and control mice. These results suggest that the improved glucose tolerance of ADX GTG-obese mice and ADX control mice is due to a decrease in HGP rather than an increase in peripheral glucose uptake.

  20. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model.

    PubMed

    Rygg, Alex; Longest, P Worth

    2016-10-01

    The objective of this study was to develop a computational fluid dynamics (CFD) model to predict the deposition, dissolution, clearance, and absorption of pharmaceutical particles in the human nasal cavity. A three-dimensional nasal cavity geometry was converted to a surface-based model, providing an anatomically-accurate domain for the simulations. Particle deposition data from a commercial nasal spray product was mapped onto the surface model, and a mucus velocity field was calculated and validated with in vivo nasal clearance rates. A submodel for the dissolution of deposited particles was developed and validated based on comparisons to existing in vitro data for multiple pharmaceutical products. A parametric study was then performed to assess sensitivity of epithelial drug uptake to model conditions and assumptions. The particle displacement distance (depth) in the mucus layer had a modest effect on overall drug absorption, while the mucociliary clearance rate was found to be primarily responsible for drug uptake over the timescale of nasal clearance for the corticosteroid mometasone furoate (MF). The model revealed that drug deposition in the nasal vestibule (NV) could slowly be transported into the main passage (MP) and then absorbed through connection of the liquid layer in the NV and MP regions. As a result, high intersubject variability in cumulative uptake was predicted, depending on the length of time the NV dose was left undisturbed without blowing or wiping the nose. This study has developed, for the first time, a complete CFD model of nasal aerosol delivery from the point of spray formation through absorption at the respiratory epithelial surface. For the development and assessment of nasal aerosol products, this CFD-based in silico model provides a new option to complement existing in vitro nasal cast studies of deposition and in vivo imaging experiments of clearance.

  1. Uptake and Disposition of Select Pharmaceuticals by Bluegill Exposed at Constant Concentrations in a Flow-Through Aquatic Exposure System.

    PubMed

    Zhao, Jian-Liang; Furlong, Edward T; Schoenfuss, Heiko L; Kolpin, Dana W; Bird, Kyle L; Feifarek, David J; Schwab, Eric A; Ying, Guang-Guo

    2017-04-18

    The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000-4000 ng L -1 ) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g -1 , respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71-3960 and 0.13-48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log K ow (that is, log D ow ), with the strongest relations for liver and brain (r 2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (K u ) and elimination rate constants (K e ) at 0.0066-0.0330 h -1 and 0.0075-0.0384 h -1

  2. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes.

    PubMed

    Monestier, Marie; Charbonnier, Peggy; Gateau, Christelle; Cuillel, Martine; Robert, Faustine; Lebrun, Colette; Mintz, Elisabeth; Renaudet, Olivier; Delangle, Pascale

    2016-04-01

    Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  4. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging: Monitoring Transporter-Mediated Processes in Healthy Volunteers.

    PubMed

    Georgiou, Leonidas; Penny, Jeffrey; Nicholls, Glynis; Woodhouse, Neil; Blé, François-Xavier; Hubbard Cristinacce, Penny L; Naish, Josephine H

    2017-02-01

    The objective of this study was to use noninvasive dynamic contrast-enhanced magnetic resonance imaging (MRI) techniques to study, in vivo, the distribution and elimination of the hepatobiliary contrast agent gadoxetate in the human body and characterize the transport mechanisms involved in its uptake into hepatocytes and subsequent efflux into the bile using a novel tracer kinetic model in a group of healthy volunteers. Ten healthy volunteers (age range, 18-29 years), with no history of renal or hepatic impairment, were recruited via advertisement. Participants attended 2 MRI visits (at least a week apart) with gadoxetate as the contrast agent. Dynamic contrast-enhanced MRI data were acquired for approximately 50 minutes with a 3-dimensional gradient-echo sequence in the axial plane, at a temporal resolution of 6.2 seconds. Data from regions of interest drawn in the liver were analyzed using the proposed 2-compartment uptake and efflux model to provide estimates for the uptake rate of gadoxetate in hepatocytes and its efflux rate into the bile. Reproducibility statistics for the 2 visits were obtained to examine the robustness of the technique and its dependence in acquisition time. Eight participants attended the study twice and were included into the analysis. The resulting images provided the ability to simultaneously monitor the distribution of gadoxetate in multiple organs including the liver, spleen, and kidneys as well as its elimination through the common bile duct, accumulation in the gallbladder, and excretion in the duodenum. The mean uptake (ki) and efflux (kef) rates in hepatocytes, for the 2 visits using the 50-minute acquisition, were 0.22 ± 0.05 and 0.017 ± 0.006/min, respectively. The hepatic extraction fraction was estimated to be 0.19 ± 0.04/min. The variability between the 2 visits within the group level (95% confidence interval; ki: ±0.02/min, kef: ±0.004/min) was lower compared with the individual variability (repeatability; ki: ±0

  5. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  6. Murine remote preconditioning increases glucose uptake and suppresses gluconeogenesis in hepatocytes via a brain-liver neurocircuit, leading to counteracting glucose intolerance.

    PubMed

    Kurabayashi, Atsushi; Tanaka, Chiharu; Matsumoto, Waka; Naganuma, Seiji; Furihata, Mutsuo; Inoue, Keiji; Kakinuma, Yoshihiko

    2018-05-01

    Our previous study revealed that cyclic hindlimb ischaemia-reperfusion (IR) activates cardiac acetylcholine (ACh) synthesis through the cholinergic nervous system and cell-derived ACh accelerates glucose uptake. However, the mechanisms regulating glucose metabolism in vivo remain unknown. We investigated the effects and mechanisms of IR in mice under pathophysiological conditions. Using IR-subjected male C57BL/6J mice, the effects of IR on blood sugar (BS), glucose uptake, central parasympathetic nervous system (PNS) activity, hepatic gluconeogenic enzyme expression and those of ACh on hepatocellular glucose uptake were assessed. IR decreased BS levels by 20% and increased c-fos immunoreactivity in the center of the PNS (the solitary tract and the dorsal motor vagal nucleus). IR specifically downregulated hepatic gluconeogenic enzyme expression and activities (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) and accelerated hepatic glucose uptake. Transection of a hepatic vagus nerve branch decreased this uptake and reversed BS decrease. Suppressed gluconeogenic enzyme expression was reversed by intra-cerebroventricular administration of a choline acetyltransferase inhibitor. Moreover, IR significantly attenuated hyperglycaemia in murine model of type I and II diabetes mellitus. IR provides another insight into a therapeutic modality for diabetes mellitus due to regulating gluconeogenesis and glucose-uptake and advocates an adjunctive mode rectifying disturbed glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers.

    PubMed

    Zha, L-Y; Xu, Z-R; Wang, M-Q; Gu, L-Y

    2008-04-01

    This study was conducted to determine whether chromium nanoparticle (CrNano) exhibited higher absorption efficiency and possessed unique absorption mechanism in comparison to chromium picolinate (CrPic) and chromium chloride (CrCl(3)), as was postulated by previous reports. Twenty-one-day-old Caco-2 cell monolayers grown on semipermeable membranes in Snapwell tissue culture bichambers were incubated with CrNano, CrPic or CrCl(3) to examine their transport and uptake respectively. In the concentration range of 0.2-20 micromol/l, transport of CrNano, CrPic and CrCl(3) across Caco-2 monolayers both in apical-to-basolateral and basolateral-to-apical direction was concentration-, and time-dependent, and temperature independent. The apparent permeability coefficient (P(app)) of CrNano was between 5.89 and 7.92 x 10(-6) cm/s and that of CrPic and CrCl(3) was between 3.52 and 5.31 x 10(-6) cm/s and between 0.97 and 1.37 x 10(-6) cm/s respectively. Uptake of CrNano, CrPic and CrCl(3) by both apical and basolateral membranes was concentration- and time-dependent. Uptake of CrNano by apical membrane was significantly (p < 0.05) decreased when the incubation temperature was reduced from 37 degrees C to 4 degrees C. The transport efficiency of CrNano, CrPic and CrCl(3) after incubation for 120 min at 37 degrees C was 15.83% +/- 0.76%, 9.08% +/- 0.25% and 2.11% +/- 0.53% respectively. The uptake efficiency of CrNano, CrPic and CrCl(3) was 10.08% +/- 0.76%, 4.73% +/- 0.60% and 0.88% +/- 0.08% respectively. It was concluded that the epithelial transport of CrNano, CrPic and CrCl(3) across the Caco-2 cell monolayers was mainly via passive transport pathways. In addition, CrNano exhibited considerably higher absorption efficiency than both CrPic and CrCl(3) in Caco-2 cell monolayers.

  8. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.

  9. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  10. Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent.

    PubMed

    Zhou, Xiaoxuan; Ye, Mingzhou; Han, Yuxin; Tang, Jianbin; Qian, Yue; Hu, Hongjie; Shen, Youqing

    2017-07-25

    Metastasis is the main reason for cancer-associated mortality, and accurate diagnostic imaging of metastases is critical for the clinical administration and tailoring personalized treatments for metastatic tumors. However, magnetic resonance imaging of metastases in the liver is impeded by its low sensitivity because the currently used contrast agents accumulate in hepatocytes and Kupffer cells instead of cancer cells. Herein, a 4 th generation zwitterionized biodegradable dendritic contrast agent (DCA) with a size of ca. 9 nm and a longitudinal relaxivity of 15.7 mM -1 s -1 in terms of Gd was synthesized and used to enhance the MRI of liver metastasis. The DCA could remarkably enhance the MRI of metastasized tumors in the liver, because it could simultaneously reduce the background signal in the liver by avoiding uptake by hepatocytes and Kupffer cells through the zwitterionization and increase the signal in tumors through the enhanced permeability and retention effect. Moreover, in contrast to non-biodegradable DCA, this DCA showed minimal long-term Gd 3+ retention in all organs and tissues because it could be degraded into small fragments. The significant capability of enhancing the MRI of metastases in the liver plus its excellent biodegradability made this DCA a promising CA for metastatic tumor imaging.

  11. Increased Requirement of Replacement Doses of Levothyroxine Caused by Liver Cirrhosis.

    PubMed

    Benvenga, Salvatore; Capodicasa, Giovanni; Perelli, Sarah; Ferrari, Silvia Martina; Fallahi, Poupak; Antonelli, Alessandro

    2018-01-01

    Since hypothyroidism is a fairly common dysfunction, levothyroxine (L-T4) is one of the most prescribed medications. Approximately 70% of the administered L-T4 dose is absorbed. The absorption process takes place in the small intestine. Some disorders of the digestive system and some medicines, supplements, and drinks cause L-T4 malabsorption, resulting in failure of serum TSH to be normal. Only rarely liver cirrhosis is mentioned as causing L-T4 malabsorption. In this study, we report increased requirement of daily doses of l-thyroxine in two patients with the atrophic variant of Hashimoto's thyroiditis and liver cirrhosis. In one patient, this increased requirement could have been contributed by the increased serum levels of the estrogen-dependent thyroxine-binding globulin (TBG), which is the major plasma carrier of thyroid hormones. In the other patient, we switched from tablet L-T4 to liquid L-T4 at the same daily dose. Normalization of TSH levels was achieved, but TSH increased again when she returned to tablet L-T4. Liver cirrhosis can cause increased L-T4 requirements. In addition to impaired bile secretion, the mechanism could be increased serum TBG. A similar increased requirement of L-T4 is observed in other situations characterized by elevation of serum TBG. Because of better intestinal absorption, L-T4 oral liquid formulation is able to circumvent the increased need of L-T4 in these patients.

  12. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  13. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes.

    PubMed

    Arangoa, M A; Düzgüneş, N; Tros de Ilarduya, C

    2003-01-01

    A novel lipidic vector composed of DOTAP/Chol liposomes, asialofetuin (AF), protamine sulfate and DNA has been developed. The resulting protamine-AF-lipoplexes improved significantly the levels of gene expression in cultured cells and in the liver upon i.v. administration. Lipoplexes containing the optimal amount of AF (1 microg/microg DNA) showed a 16-fold higher transfection activity in HepG2 cells than non-targeted (plain) complexes. The uptake by cells having asialoglycoprotein receptors (ASGPr) on their plasma membrane was decreased by the addition of free AF, indicating that AF-lipoplexes were taken up specifically by cells via ASGPr-mediated endocytosis. Results from transfections performed in cells defective in ASGPr, ie HeLa cells, confirmed this mechanism. By addition of the condensing peptide, protamine sulfate, smaller complexes were obtained, which enhanced even more the uptake of AF-complexes in HepG2 cells and in the liver. The optimal amount of protamine was 0.4 microg/mcirog DNA, and gene expression was about 5-fold over that obtained with AF-lipoplexes in the absence of the peptide, and 75-fold higher than that with plain conventional lipoplexes. Protamine-AF-lipoplexes increased by a factor of 12 luciferase gene expression in the liver of mice administered systemically via the tail vein, compared to plain complexes. In summary, our findings extend the scope of previous studies where AF-lipoplexes were used to introduce DNA into hepatocytes. The combination of targeting and protamine condensation obviated the need for partial hepatectomy, commonly required to obtain efficient gene delivery in this organ. Since protamine sulfate has been proven to be non-toxic in humans, the novel liver-specific vector described here may be useful for the delivery of clinically important genes to this organ.

  14. Competitive Al3+ Inhibition of Net Mg2+ Uptake by Intact Lolium multiflorum Roots 1

    PubMed Central

    Rengel, Zdenko; Robinson, Donald L.

    1989-01-01

    Aluminum impairs uptake of Mg2+, but the mechanisms of this inhibition are not understood. The depletion technique was used to monitor net Mg2+ uptake from nutrient solution by intact, 23-day-old plants of ryegrass (Lolium multiflorum Lam., cv Gulf and Wilo). Activities of Mg2+ and monomeric Al species in nutrient solution were calculated and used as the basis for expressing the results. The kinetics of net Mg2+ absorption was resolved into (a) a transpiration-dependent uptake component, (b) a metabolically mediated, discontinuous saturable component that is Al3+ sensitive and p-chloromercuribenzene sulfonic acid (PCMBS) resistant, and (c) a linear, carbonyl cyanide m-chlorophenylhydrazone resistant, Al3+ sensitive component that might be a type of facilitated diffusion. Lowering the pH from 6.0 to 4.2 exerted a noncompetitive inhibition of net Mg2+ uptake, while aluminum at 6.6 micromolar Al3+ activity exerted competitive inhibition of net Mg2+ uptake at pH 4.2. The Al3+-induced effect was obvious after 30 minutes. Cultivar-specific ability to retain a higher affinity for Mg2+ by postulated transport proteins in the presence of Al3+ might be one of the mechanisms of differential Al tolerance among ryegrass cultivars. PMID:16667193

  15. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    PubMed

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  16. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Alves Junior, Clodomiro; de Oliveira Vitoriano, Jussier; da Silva, Dinnara Layza Souza; de Lima Farias, Mikelly; de Lima Dantas, Nadjamara Bandeira

    2016-09-01

    The effect of plasma applied to mulungu (Erythrina velutina) seeds was studied to verify its influence on the germination, water absorption, wettability and structure of the seeds. The plasma jet used in this study was produced by dielectric barrier discharge (DBD) in a helium gas flow of 0.03 L/s at a distance of 13 mm for 60 s. The plasma treatment significantly affected the seed germination rate, which was approximately 5% higher than that of the untreated group. Micropyle and hilum contributed a greater proportion to uptake. When sealed in the hilar or micropyle regions the amount of water absorbed into the seed decreased approximately 75% compared to the unsealed seed. This difference suggests that these two regions together act cooperatively in the water absorption. However, when plasma treated seed was blocked in the micropyle region, water absorption was higher higher than in seeds blocked hilum. This difference suggests that the plasma treatment changed the wettability of the hilum more effectively than it changed the micropyle. These results indicate that plasma can significantly change the hydrophilicity, water absorption and percentage of seed germination in E. velutina.

  17. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Hendriks, A Jan

    2010-07-01

    Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.

  18. Eudragit S100-Coated Chitosan Nanoparticles Co-loading Tat for Enhanced Oral Colon Absorption of Insulin.

    PubMed

    Chen, Shuangxi; Guo, Feng; Deng, Tiantian; Zhu, Siqi; Liu, Wenyu; Zhong, Haijun; Yu, Hua; Luo, Rong; Deng, Zeyuan

    2017-05-01

    In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.

  19. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  20. P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain

    PubMed Central

    Porteous, Carolyn M.; Menon, David K.; Aigbirhio, Franklin I.; Smith, Robin A.J.; Murphy, Michael P.

    2013-01-01

    Background Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs. Methods To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp. Results There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls. Conclusion Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver. General significance These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain. PMID:23454352

  1. Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers and Poly(Lactic Acid)

    PubMed Central

    Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor

    2016-01-01

    The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524

  2. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells

    PubMed Central

    Ramos, Danny; Vargas, Rebecca; Gaite, Michaella; Montgomery, Aaron; Linder, Maria C.

    2016-01-01

    Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42) with tight junctions grown in bicameral chambers, and purified human 64Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the 64Cu over 16h and secreted half into the apical (milk) fluid. This was partly inhibited by Ag(I). The 64Cu in ceruloplasmin purified from plasma of 64Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs) over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2°C. The ceruloplasmin-derived 64Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption) increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II)- or Fe(III)-NTA (substrates for cell surface reductases), or Cu(I)-NTA (to compete for transporter uptake) almost eliminated uptake of 64Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB). However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I) that enters cells

  3. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    PubMed Central

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  4. Absorption and translocation of nitrogen in rhizomes of Leymus chinensis.

    PubMed

    Liu, Hongsheng; Liu, Huajie; Song, Youhong

    2011-03-15

    Leymus chinensis is a dominant species in the Inner Mongolia steppe, northern China. Plant growth in northern China grassland is often limited by low soil nitrogen availability. The objective of this study is to investigate whether rhizomes of Leymus chinensis are involved in the contribution of N uptake. The N concentration, (15)N concentration and (15)N proportion in roots, rhizomes and shoots after 48 h exposure of roots (L(root)) and rhizomes (L(rhizo)) separately and roots and rhizomes together (L(r+r)) to 0.1 mM (15)NH (4)(15)NO(3) solution were measured using root-splitting equipment and stable isotope ((15)N) techniques, respectively. The N content and dry mass were not affected by the labeling treatment. In contrast, the (15)N concentration in shoots, rhizomes and roots was significantly increased by the labeling in rhizomes, indicating that the inorganic nitrogen was absorbed via rhizomes from the solution and can be transported to other tissues, with preference to shoots rather than roots. Meanwhile, the absolute N absorption and translocation among compartments were also calculated. The N absorption via rhizomes was much smaller than via roots; however, the uptake efficiency per surface unit via rhizomes was greater than via roots. The capacity and high efficiency to absorb N nutrient via rhizomes enable plants to use transient nutrient supplies in the top soil surface. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Characterization of Cadmium Uptake by Plant Tissue 12

    PubMed Central

    Cutler, Jay M.; Rains, Donald W.

    1974-01-01

    The uptake of cadmium by excised root tissue of barley (Hordeum vulgare L. cv. Arivat) was investigated with respect to kinetics, concentration, and interactions with various cations. The role of metabolism in Cd absorption was examined using a range of temperatures, anaerobic treatments, and chemical inhibitors. The uptake and distribution of Cd in intact barley plants was also determined. A large fraction of the Cd taken up by excised barley roots was apparently the result of exchange adsorption and was displaced by subsequent desorption with unlabeled Cd, Zn, Cu, or Hg. Another fraction of Cd which could not be displaced by desorption in unlabeled Cd was thought to result from strong irreversible binding of Cd, perhaps on sites of the cell wall. The fraction of the Cd taken up beyond that by exchange adsorption by fresh roots was a linear function of temperature, and inhibited by conditions of low oxygen and by the presence of 2,4-dinitrophenol. It was concluded that this fraction of Cd entered excised barley roots by diffusion. Diffusion, when followed by sequestering, probably accounts for the accumulation of Cd observed in intact barley plants. PMID:16658840

  6. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.

    PubMed

    Johansson, Adam; Balter, James; Cao, Yue

    2018-03-01

    Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P <  0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Liver congestion in heart failure contributes to inappropriately increased serum hepcidin despite anemia.

    PubMed

    Ohno, Yukako; Hanawa, Haruo; Jiao, Shuang; Hayashi, Yuka; Yoshida, Kaori; Suzuki, Tomoyasu; Kashimura, Takeshi; Obata, Hiroaki; Tanaka, Komei; Watanabe, Tohru; Minamino, Tohru

    2015-01-01

    Hepcidin is a key regulator of mammalian iron metabolism and mainly produced by the liver. Hepcidin excess causes iron deficiency and anemia by inhibiting iron absorption from the intestine and iron release from macrophage stores. Anemia is frequently complicated with heart failure. In heart failure patients, the most frequent histologic appearance of liver is congestion. However, it remains unclear whether liver congestion associated with heart failure influences hepcidin production, thereby contributing to anemia and functional iron deficiency. In this study, we investigated this relationship in clinical and basic studies. In clinical studies of consecutive heart failure patients (n = 320), anemia was a common comorbidity (41%). In heart failure patients without active infection and ongoing cancer (n = 30), log-serum hepcidin concentration of patients with liver congestion was higher than those without liver congestion (p = 0.0316). Moreover, in heart failure patients with liver congestion (n = 19), the anemia was associated with the higher serum hepcidin concentrations, which is a type of anemia characterized by induction of hepcidin. Subsequently, we produced a rat model of heart failure with liver congestion by injecting monocrotaline that causes pulmonary hypertension. The monocrotaline-treated rats displayed liver congestion with increase of hepcidin expression at 4 weeks after monocrotaline injection, followed by anemia and functional iron deficiency observed at 5 weeks. We conclude that liver congestion induces hepcidin production, which may result in anemia and functional iron deficiency in some patients with heart failure.

  8. Heme iron uptake by Caco-2 cells is a saturable, temperature sensitive and modulated by extracellular pH and potassium.

    PubMed

    Arredondo, Miguel; Kloosterman, Janneke; Núñez, Sergio; Segovia, Fabián; Candia, Valeria; Flores, Sebastián; Le Blanc, Solange; Olivares, Manuel; Pizarro, Fernando

    2008-11-01

    It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low Vmax and Km as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.

  9. Tc-99m colloid lung uptake in a rare case of toxoplasmosis with liver involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, I.; Tal, I.; Kaynan, A.

    1984-06-01

    Intensive lung accumulation of colloid (Tc-99m phytate) was demonstrated in a child suffering from acquired toxoplasmosis with a rare manifestation of severe liver damage. The possible mechanism and clinical importance of colloid lung concentration in this case is briefly discussed, including a review of the literature on this subject.

  10. Liver metastases

    MedlinePlus

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic; Colorectal cancer - liver metastases; Colon cancer - liver metastases; Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver metastases

  11. Alligators and Crocodiles Have High Paracellular Absorption of Nutrients, But Differ in Digestive Morphology and Physiology.

    PubMed

    Tracy, Christopher R; McWhorter, Todd J; Gienger, C M; Starck, J Matthias; Medley, Peter; Manolis, S Charlie; Webb, Grahame J W; Christian, Keith A

    2015-12-01

    Much of what is known about crocodilian nutrition and growth has come from animals propagated in captivity, but captive animals from the families Crocodilidae and Alligatoridae respond differently to similar diets. Since there are few comparative studies of crocodilian digestive physiology to help explain these differences, we investigated young Alligator mississippiensis and Crocodylus porosus in terms of (1) gross and microscopic morphology of the intestine, (2) activity of the membrane-bound digestive enzymes aminopeptidase-N, maltase, and sucrase, and (3) nutrient absorption by carrier-mediated and paracellular pathways. We also measured gut morphology of animals over a larger range of body sizes. The two species showed different allometry of length and mass of the gut, with A. mississippiensis having a steeper increase in intestinal mass with body size, and C. porosus having a steeper increase in intestinal length with body size. Both species showed similar patterns of magnification of the intestinal surface area, with decreasing magnification from the proximal to distal ends of the intestine. Although A. mississippiensis had significantly greater surface-area magnification overall, a compensating significant difference in gut length between species meant that total surface area of the intestine was not significantly different from that of C. porosus. The species differed in enzyme activities, with A. mississippiensis having significantly greater ability to digest carbohydrates relative to protein than did C. porosus. These differences in enzyme activity may help explain the differences in performance between the crocodilian families when on artificial diets. Both A. mississippiensis and C. porosus showed high absorption of 3-O methyl d-glucose (absorbed via both carrier-mediated and paracellular transport), as expected. Both species also showed surprisingly high levels of l-glucose-uptake (absorbed paracellularly), with fractional absorptions as high as those

  12. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism.

    PubMed

    Komatsu, Motoaki; Kanda, Takeshi; Urai, Hidenori; Kurokochi, Arata; Kitahama, Rina; Shigaki, Shuhei; Ono, Takashi; Yukioka, Hideo; Hasegawa, Kazuhiro; Tokuyama, Hirobumi; Kawabe, Hiroshi; Wakino, Shu; Itoh, Hiroshi

    2018-06-05

    Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD) + , these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD + content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD + -dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD + and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.

  13. Cadmium uptake by Pinus resinosa Ait. pollen and the effect on cation release and membrane permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, R.C.; Chaney, W.R.; Lamoreaux, R.J.

    Cadmium uptake by red pine (Pinus resinosa Ait.) pollen from a graded series of Cd/sup 2 +/ solutions (0 to 2.88 microequivalents per 50 milligrams pollen) and its effect on membrane integrity were examined by atomic absorption spectroscopy. Uptake was strongly dependent on Cd/sup 2 +/ concentration and was limited to adsorption and cation exchange in pollen walls during a 3-hour measurement period. Good correlation between measured Cd/sup 2 +/ uptake and that predicted by the Langmuir and Freundlich isotherm equations indicated the adsorptive nature of Cd/sup 2 +/ uptake. While substantial quantities of Ca/sup 2 +/ and Mg/sup 2more » +/ were released by exchange mechanisms concurrent with Cd/sup 2 +/ uptake, there was no evidence for leakage of cations due to membrane impairment as indicated by a poor correlation between Cd/sup 2 +/ uptake and K/sup +/ efflux. Virtually all Cd/sup 2 +/ removed from solution was freely exchangeable with 0.5 millimolar CaCl/sub 2/ and demonstrated that Cd/sup 2 +/ did not readily enter pine pollen but was adsorbed on the pollen wall. Ultraviolet transmission spectra of treatment solutions and analyses of phosphate and reducing sugar efflux also indicated that the potent toxicity of Cd/sup 2 +/ to pollen germination and germ tube elongation was not the result of membrane damage.« less

  14. Importance of 18F-FDG PET/CT to select patients with nonresectable colorectal liver metastases for liver transplantation.

    PubMed

    Grut, Harald; Revheim, Mona-Elisabeth; Line, Pål-Dag; Dueland, Svein

    2018-04-20

    The aim of this study was to evaluate fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT for the selection of patients with nonresectable colorectal liver metastases (NCLM) for liver transplantation (LT). In the secondary cancer study, we reported an improved 5-year overall survival in patients treated with LT for NCLM (56%) compared with chemotherapy (9%). However, many patients were rejected for LT owing to the detection of extrahepatic disease at preoperative imaging. F-FDG PET/CT and contrast-enhanced computed tomography (ceCT) examinations before tentative LT for NCLM were assessed, and findings contraindicating LT were registered. Maximum, mean and peak standardized uptake values; tumor-to-background ratio; metabolic tumor volume; and total lesion glycolysis were measured and calculated for all liver metastases. Overall survival was calculated by the Kaplan-Meier method. Thirty-two patients excluded by F-FDG PET/CT and/or ceCT before tentative LT for NCLM were identified. F-FDG PET/CT from 20 of the 32 excluded patients revealed extrahepatic disease. Eight of the other 12 patients had a negative F-FDG PET/CT finding but were excluded by ceCT. Ten patients were excluded by F-FDG PET/CT only. Four patients were excluded owing to detected malignancy from frozen sections at the start of the intended transplant operation. Tumor-to-background ratio of the liver metastases was significantly higher in patients where F-FDG PET/CT detected extrahepatic disease (P=0.03). The median (range) survival after exclusion was 16 (0-52) months. The ability of F-FDG PET/CT to detect extrahepatic disease before LT for NCLM is vital to establish LT as a treatment option.

  15. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals.

    PubMed

    Iozzo, Patricia; Bucci, Marco; Roivainen, Anne; Någren, Kjell; Järvisalo, Mikko J; Kiss, Jan; Guiducci, Letizia; Fielding, Barbara; Naum, Alexandru G; Borra, Ronald; Virtanen, Kirsi; Savunen, Timo; Salvadori, Piero A; Ferrannini, Ele; Knuuti, Juhani; Nuutila, Pirjo

    2010-09-01

    Hepatic lipotoxicity results from and contributes to obesity-related disorders. It is a challenge to study human metabolism of fatty acids (FAs) in the liver. We combined (11)C-palmitate imaging by positron emission tomography (PET) with compartmental modeling to determine rates of hepatic FA uptake, oxidation, and storage, as well as triglyceride release in pigs and human beings. Anesthetized pigs underwent (11)C-palmitate PET imaging during fasting (n = 3) or euglycemic hyperinsulinemia (n = 3). Metabolic products of FAs were measured in arterial, portal, and hepatic venous blood. The imaging methodology then was tested in 15 human subjects (8 obese subjects); plasma (11)C-palmitate kinetic analyses were used to quantify systemic and visceral lipolysis. In pigs, PET-derived and corresponding measured FA fluxes (FA uptake, esterification, and triglyceride FA release) did not differ and were correlated with each other. In human beings, obese subjects had increased hepatic FA oxidation compared with controls (mean +/- standard error of the mean, 0.16 +/- 0.01 vs 0.08 +/- 0.01 micromol/min/mL; P = .0007); FA uptake and esterification rates did not differ between obese subjects and controls. Liver FA oxidation correlated with plasma insulin levels (r = 0.61, P = .016), adipose tissue (r = 0.58, P = .024), and systemic insulin resistance (r = 0.62, P = .015). Hepatic FA esterification correlated with the systemic release of FA into plasma (r = 0.71, P = .003). PET imaging can be used to measure FA metabolism in the liver. By using this technology, we found that obese individuals have increased hepatic oxidation of FA, in the context of adipose tissue insulin resistance, and increased FA flux from visceral fat. FA flux from visceral fat is proportional with the mass of the corresponding depot. Copyright © 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  17. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia.

    PubMed

    López-Haro, S A; Gutiérrez, M I; Vera, A; Leija, L

    2015-10-01

    To evaluate the effects of thermal dependence of speed of sound (SOS) and acoustic absorption of biological tissues during noninvasive focused ultrasound (US) hyperthermia therapy. A finite element (FE) model was used to simulate hyperthermia therapy in the liver by noninvasive focused US. The model consisted of an ultrasonic focused transducer radiating a four-layer biological medium composed of skin, fat, muscle, and liver. The acoustic field and temperature distribution along the layers were obtained after 15 s of hyperthermia therapy using the bio-heat equation. The model solution was found with and without the thermal dependence of SOS and acoustic absorption of biological tissues. The inclusion of the thermal dependence of the SOS generated an increment of 0.4 mm in the longitudinal focus axis of the acoustic field. Moreover, results indicate an increment of the hyperthermia area (zone with temperature above 43 °C), and a maximum temperature difference of almost 3.5 °C when the thermal dependence of absorption was taken into account. The increment of the achieved temperatures at the treatment zone indicated that the effects produced by the thermal dependence of SOS and absorption must be accounted for when planning hyperthermia treatment in order to avoid overheating undesired regions.

  18. Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study.

    PubMed

    van den Bos, Indra C; Hussain, Shahid M; Krestin, Gabriel P; Wielopolski, Piotr A

    2008-07-01

    Institutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced black-blood echo-planar imaging (BBEPI) as a potential alternative for specific absorption rate (SAR)-intensive spin-echo sequences, in particular, the fast spin-echo (FSE) sequences, at 3.0 T. Fourteen healthy volunteers (seven men, seven women; mean age +/- standard deviation, 32.7 years +/- 6.8) were imaged for this purpose. Liver coverage (20 cm, z-axis) was always performed in one 25-second breath hold. Imaging parameters were varied interactively with regard to echo time, diffusion b value, and voxel size. Images were evaluated and compared with fat-suppressed T2-weighted FSE images for image quality, liver delineation, geometric distortions, fat suppression, suppression of the blood signal, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). An optimized short- (25 msec) and long-echo (80 msec) BBEPI provided full anatomic, single breath-hold liver coverage (100 and 50 sections, respectively), with resulting voxel sizes of 3.3 x 2.7 x 2.0 mm and 3.3 x 2.7 x 4.0 mm, respectively. Repetition time was 6300 msec, matrix size was 160 x 192, and an acceleration factor of 2.00 was used. b Values of more than 20 sec/mm(2) showed better suppression of the blood signal but b values of 10 sec/mm(2) provided improved volume coverage and signal consistency. Compared with fat-suppressed T2-weighted FSE, the optimized BBEPI sequence provided (a) comparable image quality and liver delineation, (b) acceptable geometric distortions, (c) improved suppression of fat and blood signals, and (d) high CNR and SNR. BBEPI is feasible for fast, low-SAR, thin-section morphologic imaging of the entire liver in a single breath hold at 3.0 T. (c) RSNA, 2008.

  19. /sup 54/Mn absorption and excretion in rats fed soy protein and casein diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.Y.; Johnson, P.E.

    1989-02-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interactionmore » between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets.« less

  20. Detection of Hepatic Fibrosis in Ex Vivo Liver Samples Using an Open-Photoacoustic-Cell Method: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Stolik, S.; Fabila, D. A.; de la Rosa, J. M.; Escobedo, G.; Suárez-Álvarez, K.; Tomás, S. A.

    2015-09-01

    Design of non-invasive and accurate novel methods for liver fibrosis diagnosis has gained growing interest. Different stages of liver fibrosis were induced in Wistar rats by intraperitoneally administering different doses of carbon tetrachloride. The liver fibrosis degree was conventionally determined by means of histological examination. An open-photoacoustic-cell (OPC) technique for the assessment of liver fibrosis was developed and is reported here. The OPC technique is based on the fact that the thermal diffusivity can be accurately measured by photoacoustics taking into consideration the photoacoustic signal amplitude versus the modulation frequency. This technique measures directly the heat generated in a sample, due to non-radiative de-excitation processes, following the absorption of light. The thermal diffusivity was measured with a home-made open-photoacoustic-cell system that was specially designed to perform the measurement from ex vivo liver samples. The human liver tissue showed a significant increase in the thermal diffusivity depending on the fibrosis stage. Specifically, liver samples from rats exhibiting hepatic fibrosis showed a significantly higher value of the thermal diffusivity than for control animals.

  1. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.

    PubMed

    Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam

    2007-01-01

    Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.

  2. Potential use of carbon-11 labeled alpha-aminoisobutyric acid (AIB) as an in vivo tracer of amino acid uptake in differing metabolic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conti, P.S.; Starnes, H.F.; Brennan, M.F.

    1986-05-01

    AIB has been used as a model amino acid for the evaluation of alanine-preferring amino acid transport. Hormonal factors and starvation alter the tissue distribution of amino acids, particularly in liver and muscle. With positron emission tomography and labeling of biochemical tracers with C-11, (t1/2=20.4 min), it is now possible to study amino acid kinetics in vivo using external imaging. In order to investigate the utility of C-11 AIB as an in vivo tracer of altered tissue metabolism, C-14 AIB was studied in groups of rats with either streptozotocin-induced diabetes, insulin-induced hypoglycemia or starvation. The data suggest an increased aminomore » acid uptake in liver in starvation, an increased uptake in muscle in response to insulin and associated hypoglycemia and decreased transport in muscle in starvation, as seen by other investigators. These results suggest that C-11 AIB may be useful as an in vivo monitor of metabolic changes in body tissues.« less

  3. Polyamine deprivation-induced enhanced uptake of methylglyoxal bis(guanylhydrazone) by tumor cells.

    PubMed

    Seppänen, P; Alhonen-Hongisto, L; Jänne, J

    1981-05-05

    1. Putrescine and spermidine depletion produced by alpha-difluoromethylornithine, an irreversible inhibitor or ornithine decarboxylase (EC 4.1.1.17), resulted in a strikingly enhanced cellular uptake of methylglyoxal bis(guanylhydrazone) in cultured Ehrlich ascites carcinoma cells and human lymphocytic leukemia cells. 2. A prior priming of the cells with difluoromethylornithine followed by a short exposure of the cells to methylglyoxal bis(guanylhydrazone) rapidly established intracellular concentrations of the latter drug approaching 10 mM. 3. The enhanced transport of methylglyoxal bis(guanylhydrazone) into the tumor cells apparently required metabolic energy as the uptake of extracellular drug rapidly ceased and intracellular methylglyoxal bis(guanylhydrazone) was excreted into the medium when the glycolysis of the tumor cells was inhibited by iodoacetate. 4. A sequential treatment of cultured tumor cells with difluoromethylornithine until established polyamine depletion followed by an addition of low concentrations of methylglyoxal bis(guanylhydrazone) produced an antiproliferative action not achieved with either of the drugs alone. 5. A similar treatment schedule, i.e a priming of mice inoculated with Ehrlich ascites cells with difluoromethylornithine for a few days, likewise enhanced the uptake of methylglyoxal bis(guanylhydrazone) by the carcinoma cells, but only marginally increased the drug concentration in the liver and small intestine of the animals.

  4. Can the biliary enhancement of Gd-EOB-DTPA predict the degree of liver function?

    PubMed

    Okada, Masahiro; Ishii, Kazunari; Numata, Kazushi; Hyodo, Tomoko; Kumano, Seishi; Kitano, Masayuki; Kudo, Masatoshi; Murakami, Takamichi

    2012-06-01

    Excretion of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the bile may be related to liver function, because of elimination from the liver after preferential uptake by hepatocytes. The purpose of this study was to investigate the relation between liver and biliary enhancement in patients with or without liver dysfunction, and to compare the tumor-to-liver contrast in these patients. Forty patients [group 1: normal liver and Child-Pugh class A in 20 patients, group 2: Child-Pugh class B in 18 patients and Child-Pugh C in 2] were evaluated. All patients underwent MR imaging of the liver using a 1.5-Tesla system. T1-weighted 3D images were obtained at 5, 10, 15 and 20 minutes after Gd-EOB-DTPA injection. The relation between group 3 (total bilirubin <1.8 mg/dL) and group 4 (total bilirubin ≥1.8 mg/dL) was investigated at 20 minutes. Liver and biliary signals were measured, and compared between groups 1 and 2 or groups 3 and 4. Tumor-to-liver ratio was also evaluated between groups 1 and 2. Scheffe's post-hoc test after two-way repeated-measures ANOVA and Pearson's correlation test were used for statistical analysis. Liver enhancement showed significant difference at all time points between groups 1 and 2. Biliary enhancement did not show a significant difference between groups 1 and 2 at 5 minutes, but did at 10, 15 and 20 minutes. At 20 minutes, significant differences between groups 3 and 4 were seen for liver and biliary enhancement. At all time points, liver enhancement correlated with biliary enhancement in both groups. At 5 minutes and 20 minutes, statistical differences between groups 1 and 2 were seen for tumor-to-liver ratio. The degree of biliary enhancement has a close correlation to that of liver enhancement. It is especially important that insufficient liver enhancement causes lower tumor-to-liver contrast in the hepatobiliary phase of Gd-EOB-DTPA.

  5. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  6. Targeting of VX2 Rabbit Liver Tumor by Selective Delivery of 3-Bromopyruvate: A Biodistribution and Survival Study

    PubMed Central

    Vali, Mustafa; Vossen, Josephina A.; Buijs, Manon; Engles, James M.; Liapi, Eleni; Ventura, Veronica Prieto; Khwaja, Afsheen; Acha-Ngwodo, Obele; Shanmugasundaram, Ganapathy; Syed, Labiq; Wahl, Richard L.; Geschwind, Jean-Francois H.

    2009-01-01

    The aim of this study was to determine the biodistribution and tumor targeting ability of 14C-labeled 3-bromopyruvate ([14C]3-BrPA) after i.a. and i.v. delivery in the VX2 rabbit model. In addition, we evaluated the effects of [14C]3-BrPA on tumor and healthy tissue glucose metabolism by determining 18F-deoxyglucose (FDG) uptake. Last, we determined the survival benefit of i.a. administered 3-BrPA. In total, 60 rabbits with VX2 liver tumor received either 1.75 mM [14C]3-BrPA i.a., 1.75 mM [14C]3-BrPA i.v., 20 mM [14C]3-BrPA i.v., or 25 ml of phosphate-buffered saline (PBS). All rabbits (with the exception of the 20 mM i.v. group) received FDG 1 h before sacrifice. Next, we compared survival of animals treated with i.a. administered 1.75 mM [14C]3-BrPA in 25 ml of PBS (n = 22) with controls (n = 10). After i.a. infusion, tumor uptake of [14C]3-BrPA was 1.8 ± 0.2% percentage of injected dose per gram of tissue (%ID/g), whereas other tissues showed minimal uptake. After i.v. infusion (1.75 mM), tumor uptake of [14C]3-BrPA was 0.03 ± 0.01% ID/g. After i.a. administration of [14C]3-BrPA, tumor uptake of FDG was 26 times lower than in controls. After i.v. administration of [14C]3-BrPA, there was no significant difference in tumor FDG uptake. Survival analysis showed that rabbits treated with 1.75 mM 3-BrPA survived longer (55 days) than controls (18.6 days). Intra-arterially delivered 3-BrPA has a favorable biodistribution profile, combining a high tumor uptake resulting in blockage of FDG uptake with no effects on healthy tissue. The local control of the liver tumor by 3-BrPA resulted in a significant survival benefit. PMID:18591216

  7. Effect of interfacial composition on uptake of curcumin-piperine mixtures in oil in water emulsions by Caco-2 cells.

    PubMed

    Gülseren, İbrahim; Guri, Anilda; Corredig, Milena

    2014-06-01

    Encapsulation in lipid particles is often proposed as a solution to improve curcumin bioavailability. This bioactive molecule has low water solubility and rapidly degrades during digestion. In the present study, the uptake of curcumin from oil in water emulsions, prepared with two different emulsifiers, Tween 20 and Poloxamer 407, was investigated to determine the effect of interfacial composition on absorption. Piperine was added to the curcumin to limit the degradation of curcumin because it is known to inhibit β-glucuronidase activity. The emulsions were administered to Caco-2 cell cultures, which is used as a model for intestinal uptake, and the recovery of curcumin was measured. The curcumin uptake was significantly affected by the type of interface, and the extent of curcumin uptake improved significantly by piperine addition only in the case of oil-in-water emulsions stabilized by Poloxamer 407. This work provides further evidence of the importance of interfacial composition on the delivery of bioactives.

  8. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  9. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    PubMed

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F; Broering, Ruth

    2015-01-01

    Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7) hepatocytes, 1.8 ± 0.5 × 10(6 )Kupffer cells, 4.3 ± 1.9 × 10(5) liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5) stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2%) and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+) (97.8 ± 1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  10. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    PubMed Central

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth

    2015-01-01

    Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160

  11. Synthetic hepcidin from fish: Uptake and protection against Vibrio anguillarum in sea bass (Dicentrarchus labrax).

    PubMed

    Álvarez, Claudio Andrés; Acosta, Félix; Montero, Daniel; Guzmán, Fanny; Torres, Elisa; Vega, Belinda; Mercado, Luis

    2016-08-01

    The generation of a variety of new therapeutic agents to control and reduce the effects of pathogen in aquaculture is urgently needed. The antimicrobial peptides (AMPs) are one of the major components of the innate defenses and typically have broad-spectrum antimicrobial activity. However, absorption and distributions of exogenous AMPs for therapeutics application on farmed fish species need to be studied. Previous studies in our laboratory have shown the properties of hepcidin as an effective antimicrobial peptide produced in fish in response to LPS and iron. Therefore, we decided to investigate the antimicrobial activity of four synthetic variants of hepcidin against Vibrio anguillarum in vitro, and using the more effective peptide we demonstrated the pathogen's ability to protect against the infection in European Sea bass. Additionally the uptake of this peptide after ip injection was demonstrated, reaching its distribution organs such as intestine, head kidney, spleen and liver. The synthetic peptide did not show cytotoxic effects and significantly reduced the accumulated mortalities percentage (23.5%) compared to the European Sea bass control (72.5%) at day 21. In conclusion, synthetic hepcidin shows antimicrobial activity against V. anguillarum and the in vivo experiments suggest that synthetic hepcidin was distributed trough the different organs in the fish. Thus, synthetic hepcidin antimicrobial peptide could have high potential for therapeutic application in farmed fish species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Liver transplant for cholestatic liver diseases.

    PubMed

    Carrion, Andres F; Bhamidimarri, Kalyan Ram

    2013-05-01

    Cholestatic liver diseases include a group of diverse disorders with different epidemiology, pathophysiology, clinical course, and prognosis. Despite significant advances in the clinical care of patients with cholestatic liver diseases, liver transplant (LT) remains the only definitive therapy for end-stage liver disease, regardless of the underlying cause. As per the United Network for Organ Sharing database, the rate of cadaveric LT for cholestatic liver disease was 18% in 1991, 10% in 2000, and 7.8% in 2008. This review summarizes the available evidence on various common and rare cholestatic liver diseases, disease-specific issues, and pertinent aspects of LT. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function

    PubMed Central

    Lenhard, Stephen C.; Yerby, Brittany; Forsgren, Mikael F.; Liachenko, Serguei; Johansson, Edvin; Pilling, Mark A.; Peterson, Richard A.; Yang, Xi; Williams, Dominic P.; Ungersma, Sharon E.; Morgan, Ryan E.; Brouwer, Kim L. R.; Jucker, Beat M.; Hockings, Paul D.

    2018-01-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity. PMID:29771932

  14. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells

    PubMed Central

    Ganesan, Latha P.; Mates, Jessica M.; Cheplowitz, Alana M.; Avila, Christina L.; Zimmerer, Jason M.; Yao, Zhili; Maiseyeu, Andrei; Rajaram, Murugesan V. S.; Robinson, John M.; Anderson, Clark L.

    2016-01-01

    Cholesterol from peripheral tissue, carried by HDL, is metabolized in the liver after uptake by the HDL receptor, SR-B1. Hepatocytes have long been considered the only liver cells expressing SR-B1; however, in this study we describe two disparate immunofluorescence (IF) experiments that suggest otherwise. Using high-resolution confocal microscopy employing ultrathin (120 nm) sections of mouse liver, improving z-axis resolution, we identified the liver sinusoidal endothelial cells (LSEC), marked by FcγRIIb, as the cell within the liver expressing abundant SR-B1. In contrast, the hepatocyte, identified with β-catenin, expressed considerably weaker levels, although optical resolution of SR-B1 was inadequate. Thus, we moved to a different IF strategy, first separating dissociated liver cells by gradient centrifugation into two portions, hepatocytes (parenchymal cells) and LSEC (non-parenchymal cells). Characterizing both portions for the cellular expression of SR-B1 by flow cytometry, we found that LSEC expressed considerable amounts of SR-B1 while in hepatocytes SR-B1 expression was barely perceptible. Assessing mRNA of SR-B1 by real time PCR we found messenger expression in LSEC to be about 5 times higher than in hepatocytes. PMID:26865459

  15. Liver transplant

    MedlinePlus

    ... fully working livers after a successful transplant. The donor liver is transported in a cooled salt-water (saline) ... Liver failure - liver transplant; Cirrhosis - liver transplant Images Donor liver attachment Liver transplant - series References Carrion AF, Martin ...

  16. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Wortelboer, Heleen M; Bilos, Albert; Schreurs, Marieke; Russel, Frans G M; Koenderink, Jan B

    2014-06-02

    Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12

  17. Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats.

    PubMed

    Veda, Supriya; Srinivasan, Krishnapura

    2011-05-01

    Animal studies were conducted to evaluate the influence of dietary spice compounds, piperine, capsaicin and ginger, on the absorption of orally administered β-carotene and its conversion to vitamin A. In rats maintained on these spice-containing diets for 8 weeks, concentrations of β-carotene and retinol were determined in the serum, liver and intestine 4 h after a single oral administration of β-carotene. β-Carotene concentration was significantly increased in the serum, liver and intestine of piperine- and ginger-fed rats, suggesting improved absorption of β-carotene. However, retinol concentration was not significantly changed in these animals, suggesting that the bioconversion of β-carotene to vitamin A was not similarly influenced. Between the two enzymes involved in the bioconversion of β-carotene to vitamin A, the activity of intestinal and hepatic β-carotene 15,15'-dioxygenase was either unaffected or lowered by these spice treatments. The activity of intestinal and hepatic retinal reductase was unaffected by the dietary spices. Activities of these two enzymes involved in the bioconversion of β-carotene to retinal were inhibited by the test spices in vitro, thus corroborating with the in vivo observation. Although the bioconversion of β-carotene was not promoted, increased absorption and tissue levels of β-carotene by the dietary spices may contribute to a higher antioxidant protection.

  18. Effect of specific activity on neuroblastoma uptake of I-123-meta-iodobenzylguanidine in nude mice xenografted with SK-N-SH cells.

    PubMed

    Farahati, J; Coenen, H; Dutschka, K; Stuben, G; Knuhmann, K; Budach, W; Kremens, B; Reiners, C

    1997-01-01

    The effect of specific activity of meta[I-123]iodobenzylguanidine ([I-123]MIBG) on neuroblastoma uptake was studied in a nude mouse model (NMRI nu/nu) xenografted subcutaneously with SK-N-SH cells. Groups of eight animals received [I-123]MIBG intravenously with a specific activity of greater than or equal to 260 GBq/mu mol (no-carrier-added), 3.7 GBq/mu mol, 37 MBq/mu mol, and 0.37 MBq/mu mol, respectively. All animals in the group injected with 0.37 MBq/mu mol died immediately after the injection. Al 4 and 24 h, there was no significant effect of specific activity on tumor uptake of [I-123]MIBG in the different groups. The uptake of non-tumor tissue was in general lower with 37 MBq/mu mol compared to higher specific activities. The differences in blood, heart, liver, spleen and lungs were statistically significant at 24 h, whereas at 4 h significant differences were only present in the heart, liver and lungs. The results suggest that for the treatment of children with neuroblastoma a lower specific activity of radioiodinated MIBG may minimize the radiation exposure to non-tumor tissue but not to the tumor. Higher mass of MIBG >0.5 mu mol/g, however, is considered as lethal dose in our nude mice model and corresponding doses may cause toxic side effects in human.

  19. Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism

    PubMed Central

    Salvi, Mauro; Battaglia, Valentina; Mancon, Mario; Colombatto, Sebastiano; Cravanzola, Carlo; Calheiros, Rita; Marques, Maria P. M.; Grillo, Maria A.; Toninello, Antonio

    2006-01-01

    Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism the driving force of which is ΔΨ (electrical membrane potential). Although this process showed strict electrophoretic behaviour, qualitatively similar to that of polyamines, agmatine is most probably transported by a specific uniporter. Shared transport with polyamines by means of their transporter is excluded, as divalent putrescine and cadaverine are ineffective in inhibiting agmatine uptake. Indeed, the use of the electroneutral transporter of basic amino acids can also be discarded as ornithine, arginine and lysine are completely ineffective at inducing the inhibition of agmatine uptake. The involvement of the monoamine transporter or the existence of a leak pathway are also unlikely. Flux-voltage analysis and the determination of activation enthalpy, which is dependent upon the valence of agmatine, are consistent with the hypothesis that the mitochondrial agmatine transporter is a channel or a single-binding centre-gated pore. The transport of agmatine was non-competitively inhibited by propargylamines, in particular clorgilyne, that are known to be inhibitors of MAO (monoamine oxidase). However, agmatine is normally transported in mitoplasts, thus excluding the involvement of MAO in this process. The I2 imidazoline receptor, which binds agmatine to the mitochondrial membrane, can also be excluded as a possible transporter since its inhibitor, idazoxan, was ineffective at inducing the inhibition of agmatine uptake. Scatchard analysis of membrane binding revealed two types of binding site, S1 and S2, both with mono-co-ordination, and exhibiting high-capacity and low-affinity binding for agmatine compared with polyamines. Agmatine transport in liver mitochondria may be of physiological importance as an indirect regulatory system of cytochrome c oxidase activity and as an inducer mechanism of

  20. Performance assessment of an opto-fluidic phantom mimicking porcine liver parenchyma

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; King, Travis J.; Long, Ruiqi; McShane, Michael J.; Nance Ericson, M.; Wilson, Mark A.; Coté, Gerard L.

    2012-07-01

    An implantable, optical oxygenation and perfusion sensor to monitor liver transplants during the two-week period following the transplant procedure is currently being developed. In order to minimize the number of animal experiments required for this research, a phantom that mimics the optical, anatomical, and physiologic flow properties of liver parenchyma is being developed as well. In this work, the suitability of this phantom for liver parenchyma perfusion research was evaluated by direct comparison of phantom perfusion data with data collected from in vivo porcine studies, both using the same prototype perfusion sensor. In vitro perfusion and occlusion experiments were performed on a single-layer and on a three-layer phantom perfused with a dye solution possessing the absorption properties of oxygenated hemoglobin. While both phantoms exhibited response patterns similar to the liver parenchyma, the signal measured from the multilayer phantom was three times higher than the single layer phantom and approximately 21 percent more sensitive to in vitro changes in perfusion. Although the multilayer phantom replicated the in vivo flow patterns more closely, the data suggests that both phantoms can be used in vitro to facilitate sensor design.

  1. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles.

    PubMed

    Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H

    2016-01-01

    A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. L-Theanine Administration Modulates the Absorption of Dietary Nutrients and Expression of Transporters and Receptors in the Intestinal Mucosa of Rats.

    PubMed

    Yan, Qiongxian; Tong, Haiou; Tang, Shaoxun; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe

    2017-01-01

    L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight) per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9 , neutral SLC1a5 and SLC16a10 , and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.

  3. Uptake and disposition of select pharmaceuticals by bluegill exposed at constant concentrations in a flow-through aquatic exposure system

    USGS Publications Warehouse

    Zhao, Jian-Liang; Furlong, Edward T.; Schoenfuss, Heiko L.; Kolpin, Dana W.; Bird, Kyle L.; Feifarek, David J.; Schwab, Eric A.; Ying, Guang-Guo

    2017-01-01

    The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000–4000 ng L–1) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g–1, respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71–3960 and 0.13–48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log Kow (that is, log Dow), with the strongest relations for liver and brain (r2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (Ku) and elimination rate constants (Ke) at 0.0066–0.0330 h–1 and 0.0075–0.0384 h–1

  4. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?

    PubMed Central

    2010-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water

  5. Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization.

    PubMed

    Ilhan, Harun; Goritschan, Anna; Paprottka, Phillip; Jakobs, Tobias F; Fendler, Wolfgang P; Bartenstein, Peter; Hacker, Marcus; Haug, Alexander R

    2015-03-01

    The aim of this study was to evaluate the (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) uptake of primary and secondary liver tumors in a large patient cohort before (90)Y radioembolization. We included 502 patients during the years 2005-2013 (55% male; mean age, 62 ± 11 y), who were examined with (99m)Tc-MAA SPECT or SPECT/CT before planned radioembolization. The patients had colorectal cancer (CRC; n = 195, 38.8%), neuroendocrine tumors (NET; n = 77, 15.3%), mammary cancer (MAM; n = 68, 13.5%), hepatocellular carcinoma (HCC; n = 59, 11.8%), cholangiocellular carcinoma (CCC; n = 40, 8.0%), or urologic tumors (URO; n = 14, 2.8%). SPECT with coregistered contrast-enhanced CT or MR imaging and SPECT/CT images of these patients were analyzed using dedicated software with regard to the (99m)Tc-MAA uptake of the liver tumors. Regions of interest were drawn around the lesions manually and quantified the uptake of up to 3 lesions per patient and also adjacent healthy liver tissue without evidence of tumor. We quantified maximum and mean counts per pixel and calculated tumor-to-background ratio (TBR). Data are reported as mean ± SD. Lesion uptake was classified as being homogeneously high (grade 1), heterogeneously high (grade 2), equal to that of the liver (grade 3), or low (grade 4). Grade 1 uptake was seen in 230 of 1,008 lesions (with the highest rates in sarcoma [47%], MAM [37%], and NET [32%]), grade 2 in 706 lesions (with the highest rates in CRC [77%], HCC [75%], and CCC [74%]), grade 4 in 57 lesions (with the highest rates in pancreatic cancer [17%], sarcoma [SAR] [13%], and MAM [8%]), and grade 3 in only 15 lesions. In quantitative analysis, the mean TBRmax of all lesions was 4.8 ± 4.1 (range, 0.2-50.1), with the highest values in HCC (6.0 ± 4.7; range, 1.4-21.6), NET (5.4 ± 4.9; range, 0.8-43.0), pancreatic cancer (4.0 ± 2.8; range, 0.9-12.2), and CCC (4.7 ± 2.9; range, 0.9-11.6), and the lowest values in SAR (3.5 ± 1.8; range, 0.8-2.7) and MAM (3.6 ± 2

  6. Optimized efficient liver T1ρ mapping using limited spin lock times

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Zhao, Feng; Griffith, James F.; Chan, Queenie; Wang, Yi-Xiang J.

    2012-03-01

    T1ρ relaxation has recently been found to be sensitive to liver fibrosis and has potential to be used for early detection of liver fibrosis and grading. Liver T1ρ imaging and accurate mapping are challenging because of the long scan time, respiration motion and high specific absorption rate. Reduction and optimization of spin lock times (TSLs) are an efficient way to reduce scan time and radiofrequency energy deposition of T1ρ imaging, but maintain the near-optimal precision of T1ρ mapping. This work analyzes the precision in T1ρ estimation with limited, in particular two, spin lock times, and explores the feasibility of using two specific operator-selected TSLs for efficient and accurate liver T1ρ mapping. Two optimized TSLs were derived by theoretical analysis and numerical simulations first, and tested experimentally by in vivo rat liver T1ρ imaging at 3 T. The simulation showed that the TSLs of 1 and 50 ms gave optimal T1ρ estimation in a range of 10-100 ms. In the experiment, no significant statistical difference was found between the T1ρ maps generated using the optimized two-TSL combination and the maps generated using the six TSLs of [1, 10, 20, 30, 40, 50] ms according to one-way ANOVA analysis (p = 0.1364 for liver and p = 0.8708 for muscle).

  7. The Rate and Clinical Significance of Incidental Thyroid Uptake as Detected by Gallium-68 DOTATATE Positron Emission Tomography/Computed Tomography

    PubMed Central

    Nockel, Pavel; Millo, Corina; Keutgen, Xavier; Klubo-Gwiezdzinska, Joanna; Shell, Jasmine; Patel, Dhaval; Nilubol, Naris; Herscovitch, Peter; Sadowski, Samira M.

    2016-01-01

    Background: Gallium-68 (Ga-68) DOTATATE is a radiolabeled peptide–imaging modality that targets the somatostatin receptor (SSTR), especially subtype 2 (SSTR2). Benign and malignant thyroid tumors have been observed to express SSTR. The aim of this study was to evaluate the frequency and clinical significance of incidental atypical thyroid uptake as detected by Ga-68 DOTATATE positron emission tomography/computed tomography (PET/CT). Methods: A retrospective analysis was conducted of a prospective study in which 237 patients underwent Ga-68 DOTATATE PET/CT as part of a work-up for metastatic and unknown primary neuroendocrine tumors. The types of uptake in the thyroid gland (focal/diffuse) and maximum standardized uptake value (SUVmax) levels were evaluated and compared with the background uptake in the liver and salivary glands. Results: Of 237 patients, 26 (11%) had atypical thyroid uptake as detected by Ga-68 DOTATATE PET/CT. There were no significant clinical or biochemical variables associated with atypical thyroid uptake. Fourteen (54%) patients had positive focal uptake, and 12 (46%) patients had diffuse uptake. Of the 14 patients with atypical focal uptake, 10 (71%) had thyroid nodules on the corresponding side, as detected by anatomic imaging. Three of 10 patients (21%) were found to have papillary thyroid cancer, and seven (70%) had adenomatoid nodules. Of the 12 patients with diffuse increased uptake, six (50%) had a history of hypothyroidism, five (42%) had chronic lymphocytic thyroiditis, and one (8%) had nontoxic multinodular goiter. Conclusions: Patients with an incidental focal abnormal thyroid uptake on Ga-68 DOTATATE PET/CT scan should have further clinical evaluation to exclude a diagnosis of thyroid cancer. PMID:27094616

  8. Role of liver progenitors in liver regeneration.

    PubMed

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  9. Lack of evidence in vivo for a remote effect of Escherichia coli heat stable enterotoxin on jejunal fluid absorption.

    PubMed

    Lucas, M L; Duncan, N W; o'reilly, N F; McIlvenny, T J; Nelson, Y B

    2008-05-01

    On contact with the mucosa, heat stable (STa) enterotoxin from Escherichia coli reduces fluid absorption in vivo in the perfused jejunum of the anaesthetized rat. The question of whether it also has a vagally mediated remote action on jejunal absorption, when instilled into the ileum, was re-examined, given contradictory findings in the literature. A standard perfused loop preparation was used to measure luminal uptake of fluid in vivo by means of volume recovery. STa in the ileum was found to have no effect on jejunal absorption, regardless of cervical or sub-diaphragmatic vagotomy and also regardless of the nature of the perfusate anion. The batches of toxin were shown in parallel experiments to reduce fluid absorption directly in the jejunum and also in the ileum. Similarly, vagal nerves prior to section had demonstrable in vivo physiological function. There was therefore no evidence for an indirect, vagally mediated ileal effect of STa on proximal fluid absorption.

  10. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less

  11. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geest, Rick van der, E-mail: r.van.der.geest@lacdr

    -associated liver injury and hypercholesterolemia. • GR antagonist RU-486 similarly improves the cholestasis phenotype. • Endogenous glucocorticoids promote re-uptake of circulating bile acids into liver.« less

  12. Extracorporeal Bioartificial Liver for Treating Acute Liver Diseases

    PubMed Central

    Kumar, Ashok; Tripathi, Anuj; Jain, Shivali

    2011-01-01

    Abstract: Liver is a vital organ of the human body performing myriad of essential functions. Liver-related ailments are often life-threatening and dramatically deteriorate the quality of life of patients. Management of acute liver diseases requires adequate support of various hepatic functions. Thus far, liver transplantation has been proven as the only effective solution for acute liver diseases. However, broader application of liver transplantation is limited by demand for lifelong immunosuppression, shortage of organ donors, relative high morbidity, and high cost. Therefore, research has been focused on attempting to develop alternative support systems to treat liver diseases. Earlier attempts have been made to use nonbiological therapies based on the use of conventional detoxification procedures such as filtration and dialysis. However, the absence of liver cells in such techniques reduced the overall survival rate of the patients and led to inadequate essential liver-specific functions. As a result, there has been growing interest in the development of biological therapy-based extracorporeal liver support systems as a bridge to liver transplantation or to support the ailing liver. A bioartificial liver support is an extracorporeal device through which plasma is circulated over living and functionally active hepatocytes packed in a bioreactor with the aim to aid the diseased liver until it regenerates or until a suitable graft for transplantation is available. This review article gives a brief overview of efficacy of various liver support systems that are currently available. Also, the development of advanced liver support systems, which has been analyzed for improving the important system component such as cell source and other culture and circulation conditions for the maintenance of the liver-specific functions, have been described. PMID:22416599

  13. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis.

    PubMed

    Baghdasaryan, Anna; Fuchs, Claudia D; Österreicher, Christoph H; Lemberger, Ursula J; Halilbasic, Emina; Påhlman, Ingrid; Graffner, Hans; Krones, Elisabeth; Fickert, Peter; Wahlström, Annika; Ståhlman, Marcus; Paumgartner, Gustav; Marschall, Hanns-Ulrich; Trauner, Michael

    2016-03-01

    Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1week of ASBT inhibitor feeding. A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of pro-inflammatory (Tnf-α, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3(-) and biliary phospholipid secretion resulting in an increased HCO3(-)/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-β-muricholic acid and taurocholic acid. Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA

  14. Prognostic Value of Bone Marrow Tracer Uptake Pattern in Baseline PET Scans in Hodgkin Lymphoma: Results from an International Collaborative Study.

    PubMed

    Zwarthoed, Colette; El-Galaly, Tarec Cristoffer; Canepari, Maria; Ouvrier, Matthieu John; Viotti, Julien; Ettaiche, Marc; Viviani, Simonetta; Rigacci, Luigi; Trentin, Livio; Rusconi, Chiara; Luminari, Stefano; Cantonetti, Maria; Bolis, Silvia; Borra, Anna; Darcourt, Jacques; Salvi, Flavia; Subocz, Edyta; Tajer, Joanna; Kulikowski, Waldemar; Malkowski, Bogdan; Zaucha, Jan Maciej; Gallamini, Andrea

    2017-08-01

    PET/CT-ascertained bone marrow involvement (BMI) constitutes the single most important reason for upstaging by PET/CT in Hodgkin lymphoma (HL). However, BMI assessment in PET/CT can be challenging. This study analyzed the clinicopathologic correlations and prognostic meaning of different patterns of bone marrow (BM) 18 F-FDG uptake in HL. Methods: One hundred eighty newly diagnosed early unfavorable and advanced-stage HL patients, all scanned at baseline and after 2 adriamycin-bleomycin-vinblastine-dacarbazine (ABVD) courses with 18 F-FDG PET, enrolled in 2 international studies aimed at assessing the role of interim PET scanning in HL, were retrospectively included. Patients were treated with ABVD × 4-6 cycles and involved-field radiation when needed, and no treatment adaptation on interim PET scanning was allowed. Two masked reviewers independently reported the scans. Results: Thirty-eight patients (21.1%) had focal lesions (fPET + ), 10 of them with a single (unifocal) and 28 with multiple (multifocal) BM lesions. Fifty-three patients (29.4%) had pure strong (>liver) diffuse uptake (dPET + ) and 89 (48.4%) showed no or faint (≤liver) BM uptake (nPET + ). BM biopsy was positive in 6 of 38 patients (15.7%) for fPET + , in 1 of 53 (1.9%) for dPET + , and in 5 of 89 (5.6%) for nPET + dPET + was correlated with younger age, higher frequency of bulky disease, lower hemoglobin levels, higher leukocyte counts, and similar diffuse uptake in the spleen. Patients with pure dPET + had a 3-y progression-free survival identical to patients without any 18 F-FDG uptake (82.9% and 82.2%, respectively, P = 0.918). However, patients with fPET+ (either unifocal or multifocal) had a 3-y progression-free survival significantly inferior to patients with dPET+ and nPET+ (66.7% and 82.5%, respectively, P = 0.03). The κ values for interobserver agreement were 0.84 for focal uptake and 0.78 for diffuse uptake. Conclusion: We confirmed that 18 F-FDG PET scanning is a reliable tool for

  15. Dual-Tracer PET/CT Using 18F-FDG and 11C-Acetate in Gastric Adenocarcinoma With Liver Metastasis.

    PubMed

    Vardhanabhuti, Varut; Lo, Anthony W I; Lee, Elaine Y P; Law, Simon Y K

    2016-11-01

    Dual-tracer F-FDG and C-acetate PET/CT has been shown to demonstrate good sensitivity and specificity for the diagnosis of hepatocellular carcinoma. We present a case of gastric adenocarcinoma with liver metastasis with positive uptake of F-FDG and C-acetate highlighting an unusual appearance in dual-tracer PET/CT.

  16. Role of liver progenitors in liver regeneration

    PubMed Central

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A.

    2015-01-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs. PMID:25713804

  17. Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles.

    PubMed

    Inoue, M; Arias, I M

    1988-07-01

    To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.

  18. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-02

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  19. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide.

    PubMed

    Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2016-11-01

    Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC 50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC 50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC 50 values toward R values (1 + [unbound inhibitor] inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC 50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate.

    PubMed

    Halestrap, A P; Denton, R M

    1974-02-01

    alpha-Cyano-4-hydroxycinnamate greatly inhibits the transport of pyruvate but not that of acetate or butyrate in liver mitochondria and erythrocytes. In the latter, lactate uptake is also inhibited. It is concluded that a specific carrier is involved in membrane transport of pyruvate and that the plasma-membrane carrier may also be involved in lactate transport.

  1. Liver fibrosis markers in alcoholic liver disease.

    PubMed

    Chrostek, Lech; Panasiuk, Anatol

    2014-07-07

    Alcohol is one of the main factors of liver damage. The evaluation of the degree of liver fibrosis is of great value for therapeutic decision making in patients with alcoholic liver disease (ALD). Staging of liver fibrosis is essential to define prognosis and management of the disease. Liver biopsy is a gold standard as it has high sensitivity and specificity in fibrosis diagnostics. Taking into account the limitations of liver biopsy, there is an exigency to introduce non-invasive serum markers for fibrosis that would be able to replace liver biopsy. Ideal serum markers should be specific for the liver, easy to perform and independent to inflammation and fibrosis in other organs. Serum markers of hepatic fibrosis are divided into direct and indirect. Indirect markers reflect alterations in hepatic function, direct markers reflect extracellular matrix turnover. These markers should correlate with dynamic changes in fibrogenesis and fibrosis resolution. The assessment of the degree of liver fibrosis in alcoholic liver disease has diagnostic and prognostic implications, therefore noninvasive assessment of fibrosis remains important. There are only a few studies evaluating the diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with ALD. Several noninvasive laboratory tests have been used to assess liver fibrosis in patients with alcoholic liver disease, including the hyaluronic acid, FibroTest, FibrometerA, Hepascore, Forns and APRI indexes, FIB4, an algorithm combining Prothrombin index (PI), α-2 macroglobulin and hyaluronic acid. Among these tests, Fibrotest, FibrometerA and Hepascore demonstrated excellent diagnostic accuracy in identifying advanced fibrosis and cirrhosis, and additionally, Fibrotest was independently associated with survival. Therefore, the use of biomarkers may reduce the need for liver biopsy and permit an earlier treatment of alcoholic patients.

  2. Early histological and functional effects of chronic copper exposure in rat liver.

    PubMed

    Cisternas, Felipe A; Tapia, Gladys; Arredondo, Miguel; Cartier-Ugarte, Denise; Romanque, Pamela; Sierralta, Walter D; Vial, María T; Videla, Luis A; Araya, Magdalena

    2005-10-01

    Cu is an essential trace element capable of producing toxic effects in animals and man when ingested acutely or chronically in excess. Although chronic Cu exposure is increasingly recognized as a public health issue, its early effects remain largely unknown. We approached the significance of a moderate chronic Cu load in young rats to correlate early hepatic histopathological changes with functional alterations of liver cells. For this purpose, supplementation with 1,200 ppm of Cu in rat food for 16 weeks was chosen. In these conditions, Cu load elicited a significant decrease in growth curves. There were mild light microscopy alterations in Cu-treated rats, although increasing intracellular Cu storage was correlated with longer Cu exposure both by histological and biochemical measurements. Ultrastructural alterations included lysosomal inclusions as well as mitochondrial and nuclear changes. Liver perfusion studies revealed higher rates of basal O(2) consumption and colloidal carbon-induced O(2) uptake in Cu-treated rats, with enhanced carbon-induced O(2)/carbon uptake ratios and NF-kappaB DNA binding activity. These changes were time-dependent and returned to control values after 12 or 16 weeks. It is concluded that subchronic Cu loading in young rats induces early hepatic morphological changes, with enhancement in Küpffer cell-dependent respiratory burst activity and NF-kappaB DNA binding, cellular responses that may prevent or alleviate the hepatotoxicity of the metal.

  3. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury.

    PubMed

    Esch, Mandy B; Mahler, Gretchen J; Stokol, Tracy; Shuler, Michael L

    2014-08-21

    The use of nanoparticles in medical applications is highly anticipated, and at the same time little is known about how these nanoparticles affect human tissues. Here we have simulated the oral uptake of 50 nm carboxylated polystyrene nanoparticles with a microscale body-on-a-chip system (also referred to as multi-tissue microphysiological system or micro Cell Culture Analog). Using the 'GI tract-liver-other tissues' system allowed us to observe compounding effects and detect liver tissue injury at lower nanoparticle concentrations than was expected from experiments with single tissues. To construct this system, we combined in vitro models of the human intestinal epithelium, represented by a co-culture of enterocytes (Caco-2) and mucin-producing cells (TH29-MTX), and the liver, represented by HepG2/C3A cells, within one microfluidic device. The device also contained chambers that together represented the liquid portions of all other organs of the human body. Measuring the transport of 50 nm carboxylated polystyrene nanoparticles across the Caco-2/HT29-MTX co-culture, we found that this multi-cell layer presents an effective barrier to 90.5 ± 2.9% of the nanoparticles. Further, our simulation suggests that a larger fraction of the 9.5 ± 2.9% nanoparticles that travelled across the Caco-2/HT29-MTX cell layer were not large nanoparticle aggregates, but primarily single nanoparticles and small aggregates. After crossing the GI tract epithelium, nanoparticles that were administered in high doses estimated in terms of possible daily human consumption (240 and 480 × 10(11) nanoparticles mL(-1)) induced the release of aspartate aminotransferase (AST), an intracellular enzyme of the liver that indicates liver cell injury. Our results indicate that body-on-a-chip devices are highly relevant in vitro models for evaluating nanoparticle interactions with human tissues.

  4. Routines for change: how managers can use absorptive capacity to adopt and implement evidence-based practice.

    PubMed

    Innis, Jennifer; Berta, Whitney

    2016-09-01

    This paper uses the construct of absorptive capacity to understand how nurse managers can facilitate the adoption and use of evidence-based practice within health-care organisations. How health-care organisations adopt and implement innovations such as new evidence-based practices will depend on their absorptive, or learning, capacity. Absorptive capacity manifests as routines, which are the practices, procedures and customs that organisational members use to carry out work and to make work-related decisions. Using the construct of absorptive capacity as well as a recent literature review of how health-care organisations take on best practices, we illustrate how the uptake and use of new knowledge, such as evidence-based practices, can be facilitated through the use of routines. This paper highlights routines that nurse managers can use to foster environments where evidence-based practices can be readily identified, and strategies for facilitating their adoption and implementation. The construct of absorptive capacity and the use of routines can be used to examine the ways in which nurse managers can adopt, implement and evaluate the use of evidence-based practices. © 2016 John Wiley & Sons Ltd.

  5. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  6. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  7. Liver transplantation for metastatic liver malignancies.

    PubMed

    Foss, Aksel; Lerut, Jan P

    2014-06-01

    Liver transplantation is a validated treatment of primary hepatobiliary tumours. Over the last decade, a renewed interest for liver transplantation as a curative treatment of colorectal liver metastasis (CR-LM) and neuro-endocrine metastasis (NET-LM) has developed. The ELTR and UNOS analyses showed that liver transplantation may offer excellent disease-free survival (ranging from 30 to 77%) in case of NET-LM, on the condition that stringent selection criteria are implemented. The interest for liver transplantation in the treatment of CR-LM has been fostered by the Norwegian SECA study. Five-year A 5-year survival rate of 60% could be reached. Despite the high recurrence rate (90%), one-third of patients were disease free following pulmonary surgery for metastases. Liver transplantation will take a more prominent place in the therapeutic algorithm of CR-LM and NET-LM. Larger experiences are necessary to improve knowledge about tumour biology and to refine selection criteria. A multimodal approach adding neo and adjuvant medical treatment to the transplant procedure will be key to bring this oncologic transplant project into the clinical arena. The preserved liver function in these patients will allow a more deliberate access to split liver and living donation for these indications.

  8. Matrix Optical Absorption in UV-MALDI MS.

    PubMed

    Robinson, Kenneth N; Steven, Rory T; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10 -17 cm -2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.

  9. Matrix Optical Absorption in UV-MALDI MS

    NASA Astrophysics Data System (ADS)

    Robinson, Kenneth N.; Steven, Rory T.; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10-17 cm-2 was identified as a potential minimum for desorption/ionization of analytes.

  10. Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols.

    PubMed

    Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin; Siejack, Richard A; Zhang, Haofei; Riva, Matthieu; Zhang, Zhenfa; Gold, Avram; Kautzman, Kathryn E; Surratt, Jason D

    2014-10-21

    Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.

  11. Alcoholic Liver Disease and Liver Transplantation.

    PubMed

    Gallegos-Orozco, Juan F; Charlton, Michael R

    2016-08-01

    Excessive alcohol use is a common health care problem worldwide and is associated with significant morbidity and mortality. Alcoholic liver disease represents the second most frequent indication for liver transplantation in North America and Europe. The pretransplant evaluation of patients with alcoholic liver disease should aim at identifying those at high risk for posttransplant relapse of alcohol use disorder, as return to excessive drinking can be deleterious to graft and patient survival. Carefully selected patients with alcoholic liver disease, including those with severe alcoholic hepatitis, will have similar short-term and long-term outcomes when compared with other indications for liver transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  13. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells.

    PubMed

    Tedong, Leonard; Madiraju, Padma; Martineau, Louis C; Vallerand, Diane; Arnason, John T; Desire, Dzeufiet D P; Lavoie, Louis; Kamtchouing, Pierre; Haddad, Pierre S

    2010-12-01

    Products of cashew tree (Anacardium occidentale) are used in traditional medicine for various ailments, including diabetes. The anti-diabetic properties of cashew plant parts were studied using differentiated C2C12 myoblasts (myotubes) and rat liver mitochondria. Hydroethanolic extract of cashew seed (CSE) and its active component, anacardic acid (AA), stimulated glucose transport into C2C12 myotubes in a concentration-dependent manner. Extracts of other parts (leaves, bark and apple) of cashew plant were inactive. Significant synergistic effect on glucose uptake with insulin was noticed at 100 μg/mL CSE. CSE and AA caused activation of adenosine monophosphate-activated protein kinase in C2C12 myotubes after 6 h of incubation. No significant effect was noticed on Akt and insulin receptor phosphorylation. Both CSE and AA exerted significant uncoupling of succinate-stimulated respiration in rat liver mitochondria. Activation of adenosine monophosphate-activated protein kinase by CSE and AA likely increases plasma membrane glucose transporters, resulting in elevated glucose uptake. In addition, the dysfunction of mitochondrial oxidative phosphorylation may enhance glycolysis and contribute to increased glucose uptake. These results collectively suggest that CSE may be a potential anti-diabetic nutraceutical. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of trout hepatocytes and liver S9 fractions as in ...

    EPA Pesticide Factsheets

    Isolated hepatocytes and liver S9 fractions have been used to collect in vitro biotransformation data for fish as a means of improving modeled estimates of chemical bioaccumulation. To date, however, there have been few direct comparisons of these two methods. In the present study, cryopreserved trout hepatocytes were used to measure in vitro intrinsic clearance rates for 6 polycyclic aromatic hydrocarbons (PAHs). These rates were extrapolated to estimates of in vivo intrinsic clearance and used as inputs to a well-stirred liver model to predict hepatic clearance. Predicted rates of hepatic clearance were then evaluated by comparison to measured rates determined previously using isolated perfused livers. Hepatic clearance rates predicted using hepatocytes were in good agreement with measured values (< 2.1 fold difference for 5 of 6 compounds) under two competing binding assumptions. These findings, which may be attributed in part to high rates of PAH metabolism, are similar to those obtained previously using data from liver S9 fractions. For one compound (benzo[a]pyrene), the in vivo intrinsic clearance rate calculated using S9 data was 10-fold higher than that determined using hepatocytes, possibly due to a diffusion limitation on cellular uptake. Generally, however, there was good agreement between calculated in vivo intrinsic clearance rates obtained using either in vitro test system. These results suggest that both systems can be used to improve

  15. Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies.

    PubMed

    Alqahtani, Saeed; Alayoubi, Alaadin; Nazzal, Sami; Sylvester, Paul W; Kaddoumi, Amal

    2013-07-01

    Self-emulsifying drug delivery systems (SEDDS) have been broadly used to promote the oral absorption of poorly water-soluble drugs. The purpose of the current study was to evaluate the in vivo oral bioavailability of vitamin E isoforms, δ-tocotrienol (δ-T3) and γ-tocotrienol (γ-T3) administered as SEDDS, as compared to commercially available UNIQUE E® Tocotrienols capsules. Results from studies in rats showed that low dose treatment with δ-T3 (90%) and γ-T3 (10%) formulated SEDDS showed bioavailability of 31.5% and 332%, respectively. However, bioavailability showed a progressive decrease with increased treatment dose that displayed nonlinear absorption kinetics. Additional in vitro studies examining cellular uptake studies in Caco 2 cells revealed that the SEDDS formulation increased passive permeability of δ-T3 and γ-T3 by threefold as compared to the commercial capsule formulation. These studies also showed that free surfactants decreased δ-T3 and γ-T3 absorption. Specifically, combined treatment cremophor EL or labrasol with tocotrienols caused a 60-85% reduction in the cellular uptake of δ-T3 and γ-T3 and these effects appear to result from surfactant-induced inhibition of the δ-T3 and γ-T3 transport protein Niemann-Pick C1-like 1 (NPC1L1). In summary, results showed that SEDDS formulation significantly increases the absorption and bioavailability δ-T3 and γ-T3. However, this effect is self-limiting because treatment with increasing doses of SEDDS appears to be associated with a corresponding increase in free surfactants levels that directly and negatively impact tocotrienol transport protein function and results in nonlinear absorption kinetics and a progressive decrease in δ-T3 and γ-T3 absorption and bioavailability.

  16. [The influence of hepatoprotector 2-ethylthiobenzimidazole hydrobromide (bemithyl) on the content of glycogen in cirrhotic rat liver hepatocytes located in various microenvironments].

    PubMed

    Kudriavtseva, M V; Bezborodkina, N N; Okovityĭ, S V; Kudriavtsev, B N

    2004-01-01

    Using absorption and fluorescent cytophotometry methods, glycogen contents were studied in hepatocytes located in liver lobules and in hepatocytes, which make the general population of these cells in normal and cirrhotic rat liver. In cirrhosis, the content of glycogen in hepatocytes located in lobules obviously rises in comparison with the norm, but to a lesser degree, than in hepatocytes making the general population of these cells in cirrhotic liver. The content of glycogen in hepatocytes, located in lobules of pathologically changed liver in bemithyl treated rats, did not differ from the norm. At the same time, the glycogen content in hepatocytes, representing the general population of these cells in cirrhotically altered bemithyl injected rat liver, remained higher than in the norm. The data obtained indicate that distinctions in particular cell microinvironment, obviously present in cirrhotic liver, render essential influence on hepatocyte functional activity.

  17. Structural Elucidation of a Novel Polysaccharide from Pseudostellaria heterophylla and Stimulating Glucose Uptake in Cells and Distributing in Rats by Oral.

    PubMed

    Chen, Jinlong; Pang, Wensheng; Shi, Wentao; Yang, Bin; Kan, Yongjun; He, Zhaodong; Hu, Juan

    2016-09-14

    The semi-refined polysaccharide of Pseudostellaria heterophylla is a complex polysaccharide that exhibits significantly hypoglycemic activities. A novel homogeneous polysaccharide, named as H-1-2, was isolated from the semi-refined polysaccharide. The mean molecular weight of H-1-2 was 1.4 × 10⁴ Da and it was only composed of d-glucose monosaccharide. Structure elucidation indicated that H-1-2 contains pyranride, and has the characteristics of the α-iso-head configuration, a non-reducing end (T-), 4-, 1,6-, and 1,4,6-connection, in all four ways to connect glucose. H-1-2 was a type of glucan, where chemical combination exists in the main chain between 1→4 linked glucose, and contains a small amount of 1,6-linked glucose, which was in the branched chain. In vitro HepG2, 3T3-L1, and L6 cells were used to assess cellular glucose consumption and cellular glucose uptake by glucose oxidase, and the transport of 2-NBDG fluorescence probe results showed that H-1-2 could clearly increase glucose uptake and utilization in muscle and adipose cells, which is beneficial to screen for in the discovery of anti-diabetes lead compounds. H-1-2 was labeled with radioisotopes ((99m)Tc-pertechnetate). (99m)Tc-labeled-H-1-2 was performed by SPECT/CT analysis images after oral administration in rats. At 4 h post ingestion, about 50% of the radioactivity was observed in the intestine. No significant radioactivity was found in the heart, liver, and kidney, conjecturing that absorption of (99m)Tc-labeled H-1-2 might, via intestinal mucosa, be absorbed into systemic circulation. This problem, as to whether the polysaccharide is absorbed orally, will need further examination.

  18. Liver Transplant

    MedlinePlus

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  19. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.

    PubMed

    Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo

    2007-12-01

    The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.

  20. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Nipun; Black, Paul N.; Montefusco, David

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models formore » intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.« less

  1. In vitro determination of transdermal permeation of synthetic musks and estimated dermal uptake through usage of personal care products.

    PubMed

    Zhang, Xiaolan; Yu, Yuling; Gu, Yue; Li, Xiaojing; Zhang, Xinyu; Yu, Yingxin

    2017-04-01

    Synthetic musks, chemical constituents of personal care products, enter the human body through dermal contact. Elucidation of the mechanisms underlying transdermal permeation of synthetic musks should enhance our understanding of their uptake and distribution in human skin and allow accurate evaluation of associated human exposure. Here, the transdermal permeation dynamics and distribution of galaxolide (HHCB) and tonalide (AHTN) were investigated using an in vitro skin diffusion model. The transdermal permeation amounts of HHCB and AHTN increased rapidly during the first 6 h. The applied HHCB and AHTN amounts did not affect percutaneous absorption rates. HHCB and AHTN remained primarily in the stratum corneum, accounting for 70.0% and 70.3% of the totals during the 24-h period, respectively. The percutaneous absorption rate of both chemicals was ∼11%. HHCB, AHTN, musk ketone, musk xylene, and Musk-T were detected in 29 personal care products. The average total concentrations of the musks were 3990, 54.0, 17.7, and 9.8 μg g -1 in perfume, shampoo, lotion, and shower gel, respectively. Among the four product categories, HHCB was dominant (57.4%-99.6%), followed by AHTN. The data clearly indicate that polycyclic and nitro musks are most commonly used in personal care products. The total estimated dermal intake (51.6 μg kg -1 bw  day -1 ) was markedly higher than total dermal uptake (5.9 μg kg -1 bw  day -1 ) when percutaneous absorption rates of the chemicals were added into the calculation. Uptake of HHCB and AHTN via dermal contact of personal care products was significantly higher than that from dust inhalation calculated according to earlier literature data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  3. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Progress in research of the mechanisms related with the hepatic steatosis in the nonalcoholic fatty liver disease].

    PubMed

    Shi, Li-Juan; Song, Guang-Yao

    2013-12-01

    With the increased morbidity of Nonalcoholic fatty liver disease, the pathogenesis of which has become one of the focuses for researchers. Many details need to be clarified. The hepatic steatosis has been taken as the clinical pathological characters and the "golden standard of diagnosis" for the nonalcoholic fatty liver disease. More and more studies have shown that the hepatic steatosis (mainly as triglycerides) is the consequence of hepatic lipid metabolism disequilibrium. Generally, the related metabolism pathways including lipid input, lipid uptake, de novo lipogenesis, fatty acid oxidation, fatty acid reesterification, and lipid secretion etc. In this review, we focused on the progress of some key enzymes involved in these pathways in order to clarify the possible molecular mechanisms and the effective targets so that to broad our vision about the prevention and treatment of non-alcoholic fatty liver disease.

  5. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model

    USDA-ARS?s Scientific Manuscript database

    Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...

  6. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  7. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  8. Liver Hemangioma

    MedlinePlus

    Liver hemangioma Overview A liver hemangioma (he-man-jee-O-muh) is a noncancerous (benign) mass in the liver. A liver hemangioma is made up of a tangle of blood vessels. Other terms for a liver hemangioma are hepatic hemangioma and cavernous hemangioma. Most ...

  9. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    PubMed

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  11. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration

    NASA Technical Reports Server (NTRS)

    Mukherjee, D.; Wong, J.; Griffin, B.; Ellis, S. G.; Porter, T.; Sen, S.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: In this study, the feasibility of delivering and enhancing the uptake of vascular endothelial growth factor (VEGF) into the intact endothelium by using ultrasound (US) facilitation was determined. BACKGROUND: A limitation of tissue-targeted drug delivery is the need for direct arterial cannulation. We postulate a mechanism by which agents injected intravenously may be targeted to a tissue using US and ultrasonic contrast agents. METHODS: We used a rat model to test the ability of US and an ultrasonic contrast agent perflurocarbon exposed sonicated dextrose albumin (PESDA) to increase uptake of VEGF in the myocardium. Continuous wave Doppler US (0.6 W/cm2 at 1 MHz for 15 min) was applied to the chest wall overlying the myocardium during intravenous injection with either VEGF (100 microg/kg) alone or a combination of VEGF and PESDA (0.1%). Control rats had VEGF infused without US or PESDA. The VEGF uptake was measured quantitatively in the heart, lung, liver and kidneys by enzyme-linked immunosorbent assay (ng/g of tissue) and morphologically by fluorescence microscopy. RESULTS: There was an eight-fold increase in VEGF uptake in the heart by US alone (16.86 +/- 1.56 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) and a 13-fold increase with US + PESDA (26.78 +/- 2.88 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) compared with control rats. Fluorescence microscopy revealed deposition of VEGF in the endothelium of small intramyocardial arterioles. CONCLUSIONS: These results show a marked increase in endothelial VEGF uptake with US and US + PESDA. Thus, US may be used to augment endothelial VEGF uptake 10-fold to 13-fold.

  12. Liver Immunology

    PubMed Central

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  13. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow.

    PubMed

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S

    2008-06-23

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.

  14. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis

    PubMed Central

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-01-01

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein–albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug. PMID:25864124

  15. Cadmium uptake by plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghiri, F.

    Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cdmore » toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.« less

  16. [Effects of Triton X-100 on the oxygen uptake rate of photosystem I particles treated at 70 degrees C].

    PubMed

    Chen, Wei; Yang, Zhen-Le; Li, Liang-Bi; Kuang, Ting-Yun

    2005-06-01

    The characteristics including oxygen uptake rates, fluorescence spectra and absorption spectra of photosystem I particles with or without Triton-X 100 treatment before or after the incubation at 70 degrees C for 10 min were compared. The oxygen uptake rates of photosystem I particles decreased after being incubated at 70 degrees C for 10 min, which could be recovered by the addition of Triton-X 100. Singlet oxygen was formed when the light-harvesting complex I was separated from the core complex of photosystem I, which resulted in high oxygen uptake rate. There was much difference in the fluorescence spectra of photosystem I particles between photosystem I particles treated with Triton-X 100 after the incubation at 70 degrees C for 10 min or not, which implies the ability of Triton-X 100 to promote the recovery of photosystem I particles after the incubation at 70 degrees C for 10 min.

  17. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    NASA Astrophysics Data System (ADS)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  18. Renal uptake of radioactive mercury (/sup 197/HgCl/sub 2/): method for testing the functional value of each kidney. Technique--results--and clinical application in urology and nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynaud, C.

    The first three chapters consider measurement of mercury renal uptake by external counting, by quantitative scintigraphy, and by the gamma camera. Some topics discussed in the remaining 14 chapters are as follows: renal depth; phantoms; precautions regarding the liver, spleen, and intestine; stability of /sup 197/HgCl/sub 2/ solutions; use of mercury renal uptake in pediatric and adult urology; indications for mercury renal uptake in renal transplants; and appraisal of the radiological and chemical toxicity of /sup 197/HgCl/sub 2/. It was concluded that mercury renal uptake is an accurate and nontraumatizing method of measuring the functional value of each kidney. Itmore » makes it possible to determine whether a kidney is normal or pathological and to what extent its function is diminished or increased. (HLW)« less

  19. Simultaneous Assessment of Clearance, Metabolism, Induction, and Drug-Drug Interaction Potential Using a Long-Term In Vitro Liver Model for a Novel Hepatitis B Virus Inhibitor.

    PubMed

    Kratochwil, Nicole A; Triyatni, Miriam; Mueller, Martina B; Klammers, Florian; Leonard, Brian; Turley, Dan; Schmaler, Josephine; Ekiciler, Aynur; Molitor, Birgit; Walter, Isabelle; Gonsard, Pierre-Alexis; Tournillac, Charles A; Durrwell, Alexandre; Marschmann, Michaela; Jones, Russell; Ullah, Mohammed; Boess, Franziska; Ottaviani, Giorgio; Jin, Yuyan; Parrott, Neil J; Fowler, Stephen

    2018-05-01

    Long-term in vitro liver models are now widely explored for human hepatic metabolic clearance prediction, enzyme phenotyping, cross-species metabolism, comparison of low clearance drugs, and induction studies. Here, we present studies using a long-term liver model, which show how metabolism and active transport, drug-drug interactions, and enzyme induction in healthy and diseased states, such as hepatitis B virus (HBV) infection, may be assessed in a single test system to enable effective data integration for physiologically based pharmacokinetic (PBPK) modeling. The approach is exemplified in the case of (3S)-4-[[(4R)-4-(2-Chloro-4-fluorophenyl)-5-methoxycarbonyl-2-thiazol-2-yl-1,4-dihydropyrimidin-6-yl]methyl]morpholine-3-carboxylic acid RO6889678, a novel inhibitor of HBV with a complex absorption, distribution, metabolism, and excretion (ADME) profile. RO6889678 showed an intracellular enrichment of 78-fold in hepatocytes, with an apparent intrinsic clearance of 5.2 µ l/min per mg protein and uptake and biliary clearances of 2.6 and 1.6 µ l/min per mg protein, respectively. When apparent intrinsic clearance was incorporated into a PBPK model, the simulated oral human profiles were in good agreement with observed data at low doses but were underestimated at high doses due to unexpected overproportional increases in exposure with dose. In addition, the induction potential of RO6889678 on cytochrome P450 (P450) enzymes and transporters at steady state was assessed and cotreatment with ritonavir revealed a complex drug-drug interaction with concurrent P450 inhibition and moderate UDP-glucuronosyltransferase induction. Furthermore, we report on the first evaluation of in vitro pharmacokinetics studies using HBV-infected HepatoPac cocultures. Thus, long-term liver models have great potential as translational research tools exploring pharmacokinetics of novel drugs in vitro in health and disease. Copyright © 2018 The Author(s).

  20. Noninvasive Differentiation between Hepatic Steatosis and Steatohepatitis with MR Imaging Enhanced with USPIOs in Patients with Nonalcoholic Fatty Liver Disease: A Proof-of-Concept Study.

    PubMed

    Smits, Loek P; Coolen, Bram F; Panno, Maria D; Runge, Jurgen H; Nijhof, Wouter H; Verheij, Joanne; Nieuwdorp, Max; Stoker, Jaap; Beuers, Ulrich H; Nederveen, Aart J; Stroes, Erik S

    2016-03-01

    To (a) study the optimal timing and dosing for ultrasmall superparamagnetic iron oxide particle (USPIO)-enhanced magnetic resonance (MR) imaging of the liver in nonalcoholic fatty liver disease, (b) evaluate whether hepatic USPIO uptake is decreased in nonalcoholic steatohepatitis (NASH), and (c) study the diagnostic accuracy of USPIO-enhanced MR imaging to distinguish between NASH and simple steatosis. This prospective study was approved by the local institutional review board, and informed consent was obtained from all patients. Quantitative R2* MR imaging of the liver was performed at baseline and 72 hours after USPIO administration in patients with biopsy-proven NASH (n = 13), hepatic steatosis without NASH (n = 11), and healthy control subjects (n = 9). The hepatic USPIO uptake in the liver was quantified by the difference in R2* (ΔR2*) between the contrast material-enhanced images and baseline images. Between-group differences in mean ΔR2* were tested with the Student t test, and diagnostic accuracy was tested by calculating the area under the receiver operating characteristic curve. Patients with NASH had a significantly lower ΔR2* 72 hours after USPIO administration when compared with patients who had simple steatosis and healthy control subjects (mean ± standard deviation for patients with NASH, 37.0 sec(-1) ± 16.1; patients with simple steatosis, 61.0 sec(-1) ± 17.3; and healthy control subjects, 72.2 sec(-1) ± 22.0; P = .006 for NASH vs simple steatosis; P < .001 for NASH vs healthy control subjects). The area under the receiver operating characteristic curve to distinguish NASH from simple steatosis was 0.87 (95% confidence interval: 0.72, 1.00). This proof-of-concept study provides clues that hepatic USPIO uptake in patients with NASH is decreased and that USPIO MR imaging can be used to differentiate NASH from simple steatosis.

  1. Ursodeoxycholic and deoxycholic acids: Differential effects on intestinal Ca(2+) uptake, apoptosis and autophagy of rat intestine.

    PubMed

    Rodríguez, Valeria A; Rivoira, María A; Pérez, Adriana del V; Marchionatti, Ana M; Tolosa de Talamoni, Nori G

    2016-02-01

    The aim of this work was to study the effect of sodium deoxycholate (NaDOC) and ursodeoxycholic acid (UDCA) on Ca(2+) uptake by enterocytes and the underlying mechanisms. Rats were divided into four groups: a) controls, b) treated with NaDOC, c) treated with UDCA d) treated with NaDOC and UDCA. Ca(2+) uptake was studied in enterocytes with different degrees of maturation. Apoptosis, autophagy and NO content and iNOS protein expression were evaluated. NaDOC decreased and UDCA increased Ca(2+) uptake only in mature enterocytes. The enhancement of protein expression of Fas, FasL, caspase-8 and caspase-3 activity by NaDOC indicates triggering of the apoptotic extrinsic pathway, which was blocked by UDCA. NO content and iNOS protein expression were enhanced by NaDOC, and avoided by UDCA. The increment of acidic vesicular organelles and LC3 II produced by NaDOC was also prevented by UDCA. In conclusion, the inhibitory effects of NaDOC on intestinal Ca(2+) absorption occur by decreasing the Ca(2+) uptake by mature enterocytes. NaDOC triggers apoptosis and autophagy, in part as a result of nitrosative stress. In contrast, UDCA increases the Ca(2+) uptake by mature enterocytes, and in combination with NaDOC acts as an antiapoptotic and antiautophagic agent normalizing the transcellular Ca(2+) pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolitesmore » profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins

  3. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N

    2012-06-30

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and themore » optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.« less

  4. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. [Pisolithus tinctorius, Pinus virginiana Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; O'Neill, E.G.; Ells, J.M.

    One-year-old Virgina pine (Pinus virginiana Mill.) seedlings with native or Pisolithus tinctorius mycorrhizal associations were grown in pots with soil low in organic matter and in cation exchange capacity and were exposed to one of five atmospheric CO/sub 2/ levels in the range of 340 to 940 ..mu..L/L in open-top field chambers. The mean dry weight of the seedlings increased from 4.4 to 11.0 g/plant during the 122-d exposure period. Significant increases in dry weight and uptake of N, Ca, Al, Fe, Zn, and Sr occurred with CO/sub 2/ enrichment. Greater chemical uptake was associated with greater root weight. Specificmore » absorption rates for chemicals (uptake per gram of root per day) were generally not affected by CO/sub 2/ enrichment. The uptake of P and K was not increased with elevated CO/sub 2/, and these elements showed the greater nutrient-use efficiency (C gain per element uptake). The nutrient-use efficiency for N and Ca was not influenced by atmospheric CO/sub 2/ enrichment. Large increases in Zn uptake at high CO'' suggested an increase in rhizosphere acidification, which may have resulted from the release of protons from the roots, since it was estimated that cation uptake increasingly exceeded anion uptake with CO/sub 2/ enrichment. Potassium, P, and NO/sub 3//sup -/ concentrations in the pot leachate decreased with higher CO/sub 2/ levels, and a similar trend was found for Al and Mg. These results suggest that soil-plant systems may exhibit increased nutrient and chemical retention at elevated atmospheric CO/sub 2/.« less

  5. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5.

    PubMed

    Arakawa, Hiroshi; Shirasaka, Yoshiyuki; Haga, Makoto; Nakanishi, Takeo; Tamai, Ikumi

    2012-09-01

    Fluoroquinolone antimicrobial drugs are absorbed efficiently after oral administration despite of their hydrophilic nature, implying an involvement of carrier-mediated transport in their membrane transport process. It has been that several fluoroquinolones are substrates of organic anion transporter polypeptides OATP1A2 expressed in human intestine derived Caco-2 cells. In the present study, to clarify the involvement of OATP in intestinal absorption of ciprofloxacin, the contribution of Oatp1a5, which is expressed at the apical membranes of rat enterocytes, to intestinal absorption of ciprofloxacin was investigated in rats. The intestinal membrane permeability of ciprofloxacin was measured by in situ and the vascular perfused closed loop methods. The disappeared and absorbed amount of ciprofloxacin from the intestinal lumen were increased markedly in the presence of 7,8-benzoflavone, a breast cancer resistance protein inhibitor, and ivermectin, a P-glycoprotein inhibitor, while it was decreased significantly in the presence of these inhibitors in combination with naringin, an Oatp1a5 inhibitor. Furthermore, the Oatp1a5-mediated uptake of ciprofloxacin was saturable with a K(m) value of 140 µm, and naringin inhibited the uptake with an IC(50) value of 18 µm by Xenopus oocytes expressing Oatp1a5. Naringin reduced the permeation of ciprofloxacin from the mucosal-to-serosal side, with an IC(50) value of 7.5 µm by the Ussing-type chamber method. The estimated IC(50) values were comparable to that of Oatp1a5. These data suggest that Oatp1a5 is partially responsible for the intestinal absorption of ciprofloxacin. In conclusion, the intestinal absorption of ciprofloxacin could be affected by influx transporters such as Oatp1a5 as well as the efflux transporters such as P-gp and Bcrp. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Inositol uptake in rat aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapoport, R.M.; Van Gorp, C.; Chang, Ki-Churl

    1990-01-01

    {sup 3}H-inositol uptake into deendothelialized aorta was linear for at least 2 h and was composed of both a saturable, Na{sup +}-dependent, and a nonsaturable, Na{sup +}-independent component. The Na{sup +}-dependent component of inositol uptake had a K{sub m} of 50 {mu}M and a V{sub max} of 289 pmol/mg prot/h. Exposure to LiCl, ouabain, or Ca{sup 2+} - free Krebs-Ringer bicarbonate solution inhibited uptake. Metabolic poisoning with dinitrophenol, as well as incubation with phloretin, an inhibitor of carrier-mediated hexose transport, also inhibited uptake. Exposure to norepinephrine decreased inositol uptake, while phorbol myristate acetate was without effect. Isobutylmethylxanthine significantly increased inositolmore » uptake, while the increased uptake due to dibutyryl cyclic AMP and forskolin were not statistically significant. Sodium nitroprusside, and activator of guanylate cyclase, and 8-bromo cyclic GMP, were without effect on uptake, as was methylene blue, an inhibitor of guanylate cyclase. Inositol uptake into the aorta was increased when the endothelium was allowed to remain intact, although this effect was likely due to uptake in both the endothelial and smooth muscle cells.« less

  7. Biochemical effects of the hypoglycaemic compound diphenyleneiodonium. Catalysis of anion–hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake

    PubMed Central

    Holland, P. C.; Sherratt, H. S. A.

    1972-01-01

    1. The hypoglycaemic compound diphenyleneiodonium causes rapid and extensive swelling of rat liver mitochondria suspended in 150mm-NH4Cl, and in 150mm-KCl in the presence of 2,4-dinitrophenol and valinomycin. This indicates that diphenyleneiodonium catalyses a compulsory exchange of OH− for Cl− across the mitochondrial inner membrane. Br− and SCN− were the only other anions found whose exchange for OH− is catalysed by diphenyleneiodonium. 2. Diphenyleneiodonium inhibited state 3 respiration of mitochondria and slightly stimulated state 4 respiration with succinate or glutamate as substrate in a standard Cl−-containing medium. 3. Diphenyleneiodonium did not inhibit state 3 respiration significantly in two Cl−-free media (based on glycerol 2-phosphate or sucrose) but caused some stimulation of state 4. 4. In Cl−-containing medium diphenyleneiodonium only slightly inhibited the 2,4-dinitrophenol-stimulated adenosine triphosphatase and it had little effect in the absence of Cl−. 5. The inhibition of respiration in the presence of Cl− is dependent on the Cl−–OH− exchange. 2,4-Dichlorodiphenyleneiodonium is ten times as active as diphenyleneiodonium both in causing swelling of mitochondria suspended in 150mm-NH4Cl and in inhibiting state 3 respiration in Cl−-containing medium. Indirect evidence suggests that the Cl−–OH− exchange impairs the rate of uptake of substrate anions. 6. It is proposed that stimulation of state 4 respiration in the absence of Cl− depends, at least in part, on an electrogenic uptake of diphenyleneiodonium cations. 7. Tripropyl-lead acetate, methylmercuric iodide and nine substituted diphenyleneiodonium derivatives also catalyse Cl−–OH− exchange across the mitochondrial membrane. 8. Diphenyleneiodonium is compared with the trialkyltin compounds, which are also known to mediate Cl−–OH− exchange and which have in addition strong oligomycin-like effects on respiration. It is concluded that

  8. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  9. TU-F-12A-04: Differential Radiation Avoidance of Functional Liver Regions Defined by 99mTc-Sulfur Colloid SPECT/CT with Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, S; Miyaoka, R; Kinahan, P

    2014-06-15

    Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined bymore » liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with

  10. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease.

    PubMed

    Woodhouse, C A; Patel, V C; Singanayagam, A; Shawcross, D L

    2018-01-01

    Mortality from chronic liver disease is rising exponentially. The liver is intimately linked to the gut via the portal vein, and exposure to gut microbiota and their metabolites translocating across the gut lumen may impact upon both the healthy and diseased liver. Modulation of gut microbiota could prove to be a potential therapeutic target. To characterise the changes in the gut microbiome that occur in chronic liver disease and to assess the impact of manipulation of the microbiome on the liver. We conducted a PubMed search using search terms including 'microbiome', 'liver' and 'cirrhosis' as well as 'non-alcoholic fatty liver disease', 'steatohepatitis', 'alcohol' and 'primary sclerosing cholangitis'. Relevant articles were also selected from references of articles and review of the ClinicalTrials.gov website. Reduced bacterial diversity, alcohol sensitivity and the development of gut dysbiosis are seen in several chronic liver diseases, including non-alcoholic fatty liver disease, alcohol-related liver disease and primary sclerosing cholangitis. Perturbations in gut commensals could lead to deficient priming of the immune system predisposing the development of immune-mediated diseases. Furthermore, transfer of stool from an animal with the metabolic syndrome may induce steatosis in a healthy counterpart. Patients with cirrhosis develop dysbiosis, small bowel bacterial overgrowth and increased gut wall permeability, allowing bacterial translocation and uptake of endotoxin inducing hepatic and systemic inflammation. Manipulation of the gut microbiota with diet, probiotics or faecal microbiota transplantation to promote the growth of "healthy" bacteria may ameliorate the dysbiosis and alter prognosis. © 2017 John Wiley & Sons Ltd.

  11. Intestinal absorption of triglyceride and vitamin D3 in aged and young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, P.R.; Dominguez, A.A.

    1981-12-01

    (3H)Trioleyl glycerol (TO) and (14C)vitamin D3 were perfused intraduodenally for 5 hr in aged (19-21 months) and young adult (4-5 months) Sprague-Dawley rats. The rate of intestinal uptake from the gastrointestinal lumen and transport into the body of these lipids were decreased in the aged animals. Since the distribution of TO lipolytic products in the lumen was unchanged, reduced intestinal uptake rate probably occurred at the mucosal membrane. Furthermore, in the aged rats, the rate of transintestinal transport of both trioleyl glycerol and vitamin D3 was impaired. No evidence for impaired mucosal TO reesterification or for accumulation of vitamin D3more » metabolites was found, suggesting that intestinal lipid accumulation resulted from a defect in lipoprotein assembly or in discharge from the mucosal cell. Impaired absorption of lipids may contribute to malnutrition and osteopenia of advancing age.« less

  12. New insights into the molecular mechanism of intestinal fatty acid absorption.

    PubMed

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  13. An Essential Role for Liver ERα in Coupling Hepatic Metabolism to the Reproductive Cycle.

    PubMed

    Della Torre, Sara; Mitro, Nico; Fontana, Roberta; Gomaraschi, Monica; Favari, Elda; Recordati, Camilla; Lolli, Federica; Quagliarini, Fabiana; Meda, Clara; Ohlsson, Claes; Crestani, Maurizio; Uhlenhaut, Nina Henriette; Calabresi, Laura; Maggi, Adriana

    2016-04-12

    Lipoprotein synthesis is controlled by estrogens, but the exact mechanisms underpinning this regulation and the role of the hepatic estrogen receptor α (ERα) in cholesterol physiology are unclear. Utilizing a mouse model involving selective ablation of ERα in the liver, we demonstrate that hepatic ERα couples lipid metabolism to the reproductive cycle. We show that this receptor regulates the synthesis of cholesterol transport proteins, enzymes for lipoprotein remodeling, and receptors for cholesterol uptake. Additionally, ERα is indispensable during proestrus for the generation of high-density lipoproteins efficient in eliciting cholesterol efflux from macrophages. We propose that a specific interaction with liver X receptor α (LXRα) mediates the broad effects of ERα on the hepatic lipid metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Inhibition of hepatic gluconeogenesis and enhanced glucose uptake contribute to the development of hypoglycemia in mice bearing interleukin-1beta- secreting tumor.

    PubMed

    Metzger, Shulamit; Nusair, Samir; Planer, David; Barash, Varda; Pappo, Orit; Shilyansky, Joel; Chajek-Shaul, Tova

    2004-11-01

    Mice bearing IL-1beta-secreting tumor were used to study the chronic effect of IL-1beta on glucose metabolism. Mice were injected with syngeneic tumor cells transduced with the human IL-1beta gene. Serum IL-1beta levels increased exponentially with time. Secretion of IL-1beta from the developed tumors was associated with decreased food consumption, reduced body weight, and reduced blood glucose levels. Body composition analysis revealed that IL-1beta caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities and mRNA levels of these enzymes were reduced, and 2-deoxy-glucose uptake by peripheral tissues was enhanced. mRNA levels of glucose transporters (Gluts) in the liver were determined by real-time PCR analysis. Glut-3 mRNA levels were up-regulated by IL-1beta. Glut-1 and Glut-4 mRNA levels in IL-1beta mice were similar to mRNA levels in pair-fed mice bearing nonsecreting tumor. mRNA level of Glut-2, the major Glut of the liver, was down-regulated by IL-1beta. We concluded that both decreased glucose production by the liver and enhanced glucose disposal lead to the development of hypoglycemia in mice bearing IL-1beta-secreting tumor. The observed changes in expression of hepatic Gluts that are not dependent on insulin may contribute to the increased glucose uptake.

  15. Regulation of Hepatocellular Fatty Acid Uptake in Mouse Models of Fatty Liver Disease with and without Functional Leptin Signaling: Roles of NfKB and SREBP-1C and the Effects of Spexin.

    PubMed

    Ge, Jasmine F; Walewski, J L; Anglade, D; Berk, P D

    2016-09-01

    The processes causing increased hepatic triglycerides (TGs) in mouse models of hepatic steatosis (HS) due to high fat diet (HFD)-induced obesity (DIO), EtOH consumption, or obesity mutations ( ob/ob, db/db ) are uncertain. This report summarizes two studies. Study 1 focused on regulation by five transcription factors (TFs) (NfKb, Srebp-lc, AMPK, PPARα, PPARγ) of seven, much-studied hepatic long-chain fatty acid (LCFA) transporters (FABPpm, CD36, FATPl, FATP2, FATP4, FATP5, & Caveolin-1 [CAV-1]), and expression of genes for enzymes of LCFA synthesis (SCD-1, FASN) in mice with HS from various causes. Study 2 examined the effects of spexin, a novel adipokine, on obesity, type 2 diabetes mellitus (T2DM), and HS in these mice. Study 1 showed that: (1) processes underlying HS differed in mice with normal leptin signaling (DIO, EtoH-fed) versus those without it ( ob/ob, db/db ). Increased hepatocellular LCFA uptake was the principal cause of HS in the former, but increased hepatocellular LCFA synthesis predominated in the latter. (2) Expression of individual transporters was variable in the HS models studied, but strong correlations between TF expression and mean expression of four transporter genes across multiple HS models suggested regulatory interaction, and support the postulate that complexes of several different transporters mediate hepatic LCFA uptake. Study 2 indicated (1) that obese DIO mice often also have T2DM and/or nonalcoholic fatty liver disease (NAFLD); (2) confirmed that spexin treatment caused weight loss in DIO mice; (3) in DIO mice with T2DM, spexin also improved glucose tolerance, decreasing insulin resistance and HbAlc. Incubation with spexin directly inhibited LCFA uptake by hepatocytes isolated from DIO mice with HS/NAFLD by ≤70%. Spexin treatment in vivo for 4 weeks reduced hepatic lipids by 60%, and reduced serum alanine and aspartate aminotransferases. These studies in mice with DIO, T2DM, and HS/NAFLD suggest spexin may be an effective

  16. Perioperative management of liver surgery-review on pathophysiology of liver disease and liver failure.

    PubMed

    Gasteiger, Lukas; Eschertzhuber, Stephan; Tiefenthaler, Werner

    2018-01-01

    An increasing number of patients present for liver surgery. Given the complex pathophysiological changes in chronic liver disease (CLD), it is pivotal to understand the fundamentals of chronic and acute liver failure. This review will give an overview on related organ dysfunction as well as recommendations for perioperative management and treatment of liver failure-related symptoms.

  17. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    PubMed

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  18. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    PubMed Central

    Agostinho, Flavia B.; Tubana, Brenda S.; Martins, Murilo S.; Datnoff, Lawrence E.

    2017-01-01

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants. PMID:28850079

  19. Relationship of /sup 65/Zn absorption kinetics to intestinal metallothionein in rats: effects of zinc depletion and fasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    1988-04-01

    Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less

  20. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-02

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer.

  1. The Activation by Glucose of Liver Membrane Nitric Oxide Synthase in the Synthesis and Translocation of Glucose transporter-4 in the Production of Insulin in the Mice Hepatocytes

    PubMed Central

    Bhattacharya, Suman; Ghosh, Rajeshwary; Maiti, Smarajit; Khan, Gausal Azam; Sinha, Asru K.

    2013-01-01

    Introduction Glucose has been reported to have an essential role in the synthesis and secretion of insulin in hepatocytes. As the efflux of glucose is facilitated from the liver cells into the circulation, the mechanism of transportation of glucose into the hepatocytes for the synthesis of insulin was investigated. Methods Grated liver suspension (GLS) was prepared by grating intact liver from adult mice by using a grater. Nitric oxide (NO) was measured by methemoglobin method. Glucose transporter-4 (Glut-4) was measured by immunoblot technique using Glut-4 antibody. Results Incubation of GLS with different amounts of glucose resulted in the uptake of glucose by the suspension with increased NO synthesis due to the stimulation of a glucose activated nitric oxide synthase that was present in the liver membrane. The inhibition of glucose induced NO synthesis resulted in the inhibition of glucose uptake. Glucose at 0.02M that maximally increased NO synthesis in the hepatocytes led to the translocation and increased synthesis of Glut-4 by 3.3 fold over the control that was inhibited by the inhibition of NO synthesis. The glucose induced NO synthesis was also found to result in the synthesis of insulin, in the presence of glucose due to the expression of both proinsulin genes I and II in the liver cells. Conclusion It was concluded that glucose itself facilitated its own transportation in the liver cells both via Glut-4 and by the synthesis of NO which had an essential role for insulin synthesis in the presence of glucose in these cells. PMID:24349154

  2. Dermal uptake and excretion of 4,4'-methylenedianiline during rotor blade production in helicopter industry--an intervention study.

    PubMed

    Weiss, Tobias; Schuster, Hubert; Müller, Johannes; Schaller, Karl-Heinz; Drexler, Hans; Angerer, Jürgen; Käfferlein, Heiko U

    2011-10-01

    Workers using composite materials by fibre reinforced laminate technology are exposed to 4,4'-methylenedianiline (MDA), a liver toxicant and suspected human carcinogen, during the production of rotor blades in helicopter industry. The aim of the study presented here was to assess the internal dose of MDA and the suitability of various personal protection measures at the workplace. Ambient monitoring and biological monitoring was carried out by analysing MDA in air and urine samples in seven workers of a highly specialized workplace (rotor blade production). Three different concepts of personal protection measures were applied to study the route of uptake and to evaluate strategies in decreasing workplace exposure. In addition, elimination kinetics of MDA was studied in three workers who were exposed to MDA on three consecutive working days. Ambient monitoring consistently provided air levels at or below the limit of quantification of 0.1 μg m(-3). Nevertheless, MDA was detected in 89% of all post-shift urine samples and median concentration was 4.2 μg l(-1). MDA in urine were >20 times higher than expected on data from ambient monitoring alone. A significant decrease in exposure could be achieved when workers have worn MDA-protective overalls in combination with MDA-protective gloves and a splash protection shield (from 9.8 μg l(-1) down to 3.7 μg l(-1)). The results show that MDA is taken up primarily via the skin at the workplaces under study. The excretion of MDA in urine was observed to be delayed after dermal exposure. Exposure assessment of MDA should be carried out by biological monitoring rather than ambient monitoring. For this purpose, urine samples midweek or at the end of the week should be used based on the observed delay in the excretion of MDA after dermal absorption. Uptake of MDA via the skin could not be completely avoided even if state-of-the-art personal protection measures were applied.

  3. Copper absorption from human milk, cow's milk, and infant formulas using a suckling rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loennerdal, B.B.; Bell, J.G.; Keen, C.L.

    1985-11-01

    Since copper deficiency is known to occur during infancy, it becomes important to assess copper uptake from various infant diets. The authors have investigated the uptake of copper from human milk, cow's milk, cow's milk formulas, cereal/milk formula and soy formula, compensating for the decay of /sup 64/Cu and using the suckling rat as a model. Radiocopper was added to the diet in trace amounts. Ultracentrifugation, ultrafiltration, and gel filtration were used to show that the added /sup 64/Cu bound to milk fractions and individual binding compounds in a manner analogous to the distribution of native copper, thus validating themore » use of extrinsically labeled diets. Labeled diets were intubated into 14-day-old suckling rats. Animals were killed after 6 h and tissues removed and counted. Liver copper uptake was 25% from human milk, 23% from cow's milk formula, 18% from cow's milk, 17% from premature (cow's milk based) infant formula, 17% from cereal/milk formula and 10% from soy formula. These results show that the rat pup model may provide a rapid, inexpensive, and sensitive method to assay bioavailability of copper from infant foods.« less

  4. Branchial versus intestinal silver toxicity and uptake in the marine teleost Parophrys vetulus.

    PubMed

    Grosell, M; Wood, C M

    2001-10-01

    Exposure to elevated waterborne silver as AgNO3 (4.07 microM=448 microg l(-1)) in seawater resulted in osmoregulatory disturbance in the lemon sole (Parophrys vetulus). The main effects were increased plasma Na+ and Cl- concentrations which translated into increased plasma osmolality. Plasma Mg2+ levels were also slightly increased after 96 h exposure. Using radioisotopic flux measurements, a 50% reduction in branchial unidirectional Na+ extrusion was observed after 48 h silver exposure. By applying an intestinal perfusion approach, we were able to separate and thus quantify the intestinal contribution to the observed silver-induced physiological disturbance and internal silver accumulation. This analysis revealed that the intestinal contribution to silver-induced ionoregulatory toxicity was as high as 50-60%. In marked contrast, internal silver accumulation (in liver and kidney) was found to be derived exclusively from uptake across the gills. Drinking of silver-contaminated seawater resulted in substantial silver accumulation in the intestinal tissue (but apparently not silver uptake across the intestine), which probably explains the intestinal contribution to silver-induced physiological disturbance.

  5. A model for estimating air-pollutant uptake by forests: calculation of absorption of sulfur dioxide from dispersed sources

    Treesearch

    C. E., Jr. Murphy; T. R. Sinclair; K. R. Knoerr

    1977-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant...

  6. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  7. [Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia briq].

    PubMed

    Wei, G; Wang, H

    1991-03-01

    Inoculating Schizonepeta tenuifolia with VA mycorrhizal fungi can significantly improve the plant growth and uptake of P and S, and influence the absorption of K, Na, Fe, Mo, Mn, Zn, Co, Ba, Ni and Pb. It is interesting to note that VA mycorrhiza can also increase the synthesis of volatile oil in the shoots of S. tenuifolia. The efficiency of VA mycorrhiza varies with the fungal species.

  8. Time‐course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow

    PubMed Central

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes

    2008-01-01

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a

  9. Mechanisms of digestion and absorption of dietary vitamin A.

    PubMed

    Harrison, Earl H

    2005-01-01

    Mechanisms involved in the digestion and absorption of dietary vitamin A require the participation of several proteins. Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase, and intestinal brush border enzyme, phospholipase B. Unesterified retinol taken up by the enterocyte is complexed with cellular retinol-binding protein type 2 and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). The retinyl esters are then incorporated into chylomicrons, intestinal lipoproteins containing other dietary lipids, such as triglycerides, phospholipids, and free and esterified cholesterol, and apolipoprotein B. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph. Although under normal dietary conditions much of the dietary vitamin A is absorbed via the chylomicron/lymphatic route, it is also clear that under some circumstances there is substantial absorption of unesterified retinol via the portal route. Evidence supports the idea that the cellular uptake and efflux of unesterified retinol by enterocytes is mediated by lipid transporters, but the exact number, identity, and role of these proteins is not known and is an active area of research.

  10. Profile of Some Trace Elements in the Liver of Camels, Sheep, and Goats in the Sudan

    PubMed Central

    Ibrahim, Ibrahim Abdullah; Shamat, Ali Mahmoud; Hussien, Mohammed Osman; El Hussein, Abdel Rahim Mohammed

    2013-01-01

    One hundred camels (Camelus dromedaries) and fifty sheep and goats being adult, male, and apparently healthy field animals were studied to provide data regarding the normal values of some hepatic trace elements. Liver samples were collected during postmortem examination, digested, and analyzed for Cu, Zn, Fe, Co, and Mn using atomic absorption spectrophotometry. The results showed that the differences in mean liver concentrations of Cu, Zn, Fe, and Co between camels, sheep, and goats were statistically significant (P < 0.05). Hepatic Cu, Fe, and Co concentrations were higher in camels than in sheep and goats. All liver samples were adequate for Fe and Co, whereas only camel liver was adequate for Cu. In camels, hepatic Zn concentration was inadequately lower than that in sheep and goats. No difference in Mn concentration was detected between camels, sheep, and goats. All liver samples were inadequate compared to free-ranging herbivores. In camels, significant correlation (r 2 = −0.207, P value = 0.04) was detected between Zn and Co, whereas in sheep significant correlation (r 2 = −0.444, P value = 0.026) was detected between Zn and Mn. No significant correlation between trace elements was detected in goats. PMID:26464909

  11. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  12. Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs)

    PubMed Central

    Nies, Anne T.; Hofmann, Ute; Resch, Claudia; Schaeffeler, Elke; Rius, Maria; Schwab, Matthias

    2011-01-01

    Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT) 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3), which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs) with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole) are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC50) were in the low micromolar range (3–36 µM) and thereby in the range of IC50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy. PMID:21779389

  13. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    PubMed

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  14. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  15. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  16. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-05-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.

  17. Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution.

    PubMed

    Li, Peng; Pemberton, Robert; Zheng, Guiling

    2015-01-01

    Epiphytic Tillandsia (Bromeliaceae) species have been found to be efficient biomonitors of atmospheric heavy metals and persistent organic pollutants, but have not been used to monitor or remove the primary indoor atmospheric pollutant formaldehyde (FA). The absorptive capacity of Tillandsia trichomes is well-established, but potential secondary effects of foliar trichomes on gas exchange remain unclear. Our study investigated whether Tillandsia species can absorb FA efficiently and if the leaf trichomes function to improve FA uptake, using Tillandsia velutina. Plants with intact trichomes, decreased FA concentration by 48.42% in 12 h from 1060 μg m(-3) to 546.67 μg m(-3), while FA concentration decreased only by 22.51% in the plants without trichomes. Moreover, the more trichomes removed from the leaves, the lower the capability of FA uptake per unit leaf area, which suggested that T. velutina was capable of absorbing a large amount of FA via the leaves and specialized trichomes facilitated the whole leaf tissue FA absorption. In addition, all plants exposed to FA were chloric, had a reduction in measured leaf chlorophyll, and an increment in permeability of plasma membranes. However, plants in which trichomes had been removed declined or increased more quickly than plants with intact trichomes, indicating Tillandsia leaf trichomes also give the leaves some protection against this toxin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bioavailability of zinc, copper, and manganese from infant diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less

  19. Alcoholic liver disease: The gut microbiome and liver crosstalk

    PubMed Central

    Hartmann, Phillipp; Seebauer, Caroline T.; Schnabl, Bernd

    2015-01-01

    Alcoholic liver disease is a leading cause of morbidity and mortality worldwide. Alcoholic fatty liver disease can progress to steatohepatitis, alcoholic hepatitis, fibrosis, and cirrhosis. Patients with alcohol abuse show quantitative and qualitative changes in the composition of the intestinal microbiome. Furthermore, patients with alcoholic liver disease have increased intestinal permeability and elevated systemic levels of gut-derived microbial products. Maintaining eubiosis, stabilizing the mucosal gut barrier or preventing cellular responses to microbial products protect from experimental alcoholic liver disease. Therefore, intestinal dysbiosis and pathological bacterial translocation appear fundamental for the pathogenesis of alcoholic liver disease. This review highlights causes for intestinal dysbiosis and pathological bacterial translocation, their relationship and consequences for alcoholic liver disease. We also discuss how the liver affects the intestinal microbiota. PMID:25872593

  20. Influence of biologically-active substances on {sup 137}Cs and heavy metals uptake by Barley plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruglov, Stanislav; Filipas, Alexander

    2007-07-01

    Available in abstract form only. Full text of publication follows: When solving the problem of contaminated agricultural lands rehabilitation, most of attention is concentrated on the effective means which allow the obtaining of ecologically safe production. The minimization of radionuclides and heavy metals (HM) content in farm products on the basis of their migration characteristics in agro-landscapes and with the regard for different factors influencing contaminants behavior in the soil-plant system is of great significance. Our investigation has shown that the effect of biologically active substances (BAS) using for seeds treatment on {sup 137}Cs transfer to barley grown on Cdmore » contaminated soil was dependent on their properties and dosage, characteristics of soil contamination and biological peculiarities of plants, including stage of plants development. Seeds treatment by plant growth regulator Zircon resulted in a significant increase in {sup 137}Cs activity in harvest (40- 50%), increase in K concentration and significant reduction in Ca concentration. Increased Cd content in soil reduced {sup 137}Cs transfer to barley plants by 30-60% (p<0,05) and Zircon application further reduced its concentration. Ambiol and El also reduced {sup 137}Cs uptake by roots and Cd and Pb phyto-toxicity. The experimental data do not make it possible to link the BAS effect on inhibition of {sup 137}Cs absorption by plants directly with their influence on HM phyto-toxicity. The dependence of Concentration Ratio of {sup 137}Cs on the Ambiol and El dose was not proportional and the most significant decrease in the radionuclide uptake by plants was reported with the use of dose showing the most pronounced stimulating effect on the barley growth and development. The pre-sowing seed treatment with Ambiol increased Pb absorption by 35-50% and, on the contrary, decreased Cd uptake by plants by 30-40%. (authors)« less