Science.gov

Sample records for absorption path length

  1. Path length enhancement in disordered media for increased absorption

    NASA Astrophysics Data System (ADS)

    Mupparapu, Rajeshkumar; Vynck, Kevin; Svensson, Tomas; Burresi, Matteo; Wiersma, Diederik S.

    2015-11-01

    We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optimal scattering strength, in-between the single-scattering and the diffusive (strong multiple-scattering) regimes. This study can guide experimentalists towards more efficient and potentially low-cost solutions in photovoltaic technologies.

  2. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, W.S.

    1993-12-07

    A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.

  3. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

    1993-01-01

    A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.

  4. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  5. Monitoring of Atmospheric Hydrogen Peroxide in Houston Using Long Path-Length Laser-Based Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Cao, Y.; Jiang, W.; Tittel, F. K.; Griffin, R. J.

    2014-12-01

    Hydrogen peroxide (H2O2) is a relevant atmospheric species mainly formed by recombination of hydroperoxyl radicals. H2O2 participates in the formation of sulfate aerosol by in-cloud oxidation of S(IV) to S(VI) and has been associated with the generation of multi-functional water soluble organic compounds in atmospheric particulate matter. Furthermore, H2O2 plays an important role in the oxidative capacity of the atmosphere as it acts as a reservoir for HOx radicals (OH and HO2). Particular conditions in the Houston area (e.g. extensive presence of petrochemical industry and high ozone and humidity levels) indicate the potential relevance of this species at this location. Despite its atmospheric relevance, no reports on the levels of H2O2 in Houston have been presented previously in the scientific literature. Determination of atmospheric H2O2 usually has been conducted based on transfer of the gas-phase H2O2 to the liquid phase prior to quantification by techniques such as fluorescence spectroscopy. Although these methods allow detection of H2O2 at the sub-ppb level, they present some limitations including the interference from other atmospheric constituents and potential sampling artifacts. In this study, a high sensitivity sensor based on long-path absorption spectroscopy using a distributed-feedback quantum cascade laser was developed and used to conduct direct gas-phase H2O2 monitoring in Houston. The sensor, which targets a strong H2O2 absorption line (~7.73 ?m) with no interference from other atmospheric species, was deployed at a ground level monitoring station near the University of Houston main campus during summer 2014. The performance of this novel sensor was evaluated by side-by-side comparison with a fluorescence-based instrument typically used for atmospheric monitoring of H2O2. H2O2 levels were determined, and time series of H2O2 mixing ratios were generated allowing insight into the dynamics, trends, and atmospheric inter-relations of H2O2 in the Houston area.

  6. Photon path length retrieval from GOSAT observations

    NASA Astrophysics Data System (ADS)

    Kremmling, Beke; Penning de Vries, Marloes; Deutschmann, Tim; Wagner, Thomas

    2013-04-01

    The influence of clouds on the atmospheric radiation budget is investigated, focussing on the photon path length distributions of the scattered sunlight. Apart from the reflection of incoming solar radiation at the cloud top, clouds can also introduce a large number of additional scattering events causing an enhancement of the photon paths. In certain cloud formations, these scattering events also result in a ``ping-pong`` behaviour between different cloud patches and cloud layers. It has been shown from ground based measurements that it is possible to retrieve photon path lengths by analysis of high resolution oxygen A-band spectra (O. Funk et al.). This study uses similar space based measurements of the oxygen A-band for the path length retrieval. The oxygen A-band spectra are retrieved from the Japanese Greenhouse Gases Observing Satellite (GOSAT) which was successfully launched in 2009. The high spectral resolution of the GOSAT TANSO-FTS instrument allows to almost completely resolve the individual absorption lines. The considered spectral range is particularly suitable for this study because it shows clear absorption structures of different strength. From the analysis of the spectral signatures, cloud properties and the underlying path length distributions can be derived. The retrieval is done by analysis and comparison of the extracted TANSO-FTS spectra with simulations from the Monte Carlo radiative transfer Model McArtim. The model permits modelling of altitude dependent oxygen absorption cross sections and three-dimensional cloud patterns. Case studies of clear and cloudy sky scenarios will be presented. Future studies will focus on more complicated cloud structures, especially considering three-dimensional geometries and heterogeneities.

  7. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  8. Heterodyne interferometer with unequal path lengths

    SciTech Connect

    Kumar, Deepak; Bellan, Paul M.

    2006-08-15

    Laser interferometry is an extensively used diagnostic for plasma experiments. Existing plasma interferometers are designed on the presumption that the scene and reference beam path lengths have to be equal, a requirement that is costly in both the number of optical components and the alignment complexity. It is shown here that having equal path lengths is not necessary, instead, what is required is that the path length difference be an even multiple of the laser cavity length. This assertion has been verified in a heterodyne laser interferometer that measures typical line-average densities of {approx}10{sup 21}/m{sup 2} with an error of {approx}10{sup 19}/m{sup 2}.

  9. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E. (157 Greenwood Dr., Martiney, GA 30907); McCarty, Jerry E. (104 Recreation Dr., Aiken, SC 29803); Haggard, Ricky A. (1144 Thornwood Drive, North Augusta, SC 29891)

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  10. Optical path-length matrix method for estimating skin spectrum

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoshi; Fujiwara, Izumi; Yamauchi, Midori; Tsumura, Norimichi; Ogawa-Ochiai, Keiko

    2012-11-01

    In this article, we propose a new method—the optical path-length matrix method (OPLM)—as a faster alternative to the Monte Carlo for multi-layered media (MCML), which is often used to simulate the skin spectrum. Theoretically, peripheral oxygen saturation can be estimated by iterating MCML, but it is not a realistic strategy because it requires huge computation time. The optical path-length matrix is obtained as the probabilistic density histograms of the optical path length in skin using MCML, and once the matrix is obtained, skin spectral reflectance can be calculated by accumulating all combinations of elements in the matrix and by setting an absorption coefficient based on the Beer-Lambert law. The computational time of OPLM was approximately 26,000 times faster than that of MCML.

  11. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  12. Absorption Lengths in the Holographic Plasma

    E-print Network

    Amado, Irene; Landsteiner, Karl; Montero, Sergio

    2007-01-01

    We consider the effect of a periodic perturbation with frequency $\\omega$ on the holographic N=4 plasma represented by the planar AdS black hole. The response of the system is given by exponentially decaying waves. The corresponding complex wave numbers can be found by solving wave equations in the AdS black hole background with infalling boundary conditions on the horizon in an analogous way as in the calculation of quasinormal modes. The complex momentum eigenvalues have an interpretation as poles of the retarded Green's functions, where the inverse of the imaginary part gives an absorption length $\\lambda$. At zero frequency we obtain the screening length for a static field. These are directly related to the glueball masses in the dimensionally reduced theory. We also point out that the longest screening length corresponds to an operator with non-vanishing R-charge and thus does not have an interpretation as a QCD3 glueball.

  13. Absorption Lengths in the Holographic Plasma

    E-print Network

    Irene Amado; Carlos Hoyos; Karl Landsteiner; Sergio Montero

    2007-07-11

    We consider the effect of a periodic perturbation with frequency $\\omega$ on the holographic N=4 plasma represented by the planar AdS black hole. The response of the system is given by exponentially decaying waves. The corresponding complex wave numbers can be found by solving wave equations in the AdS black hole background with infalling boundary conditions on the horizon in an analogous way as in the calculation of quasinormal modes. The complex momentum eigenvalues have an interpretation as poles of the retarded Green's functions, where the inverse of the imaginary part gives an absorption length $\\lambda$. At zero frequency we obtain the screening length for a static field. These are directly related to the glueball masses in the dimensionally reduced theory. We also point out that the longest screening length corresponds to an operator with non-vanishing R-charge and thus does not have an interpretation as a QCD3 glueball.

  14. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Minimum path length requirements. 101.143 Section 101.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The distance between end points of a fixed...

  15. DIGITAL SEARCH TREES AGAIN REVISITED: THE INTERNAL PATH LENGTH PERSPECTIVE

    E-print Network

    Prodinger, Helmut

    DIGITAL SEARCH TREES AGAIN REVISITED: THE INTERNAL PATH LENGTH for the inte* *rnal path length in a symmetric digital search tree. The problem was open up to no* *w. We prove that for the binary digital search tree the variance is asymptotica* *lly equal

  16. Radio path length correction using water vapour radiometry

    E-print Network

    R. J. Sault; G. J. Carrad; P. J. Hall; J. Crofts

    2006-12-31

    Path length changes through the atmosphere cause significant errors for astronomical radio interferometry at high frequencies (e.g. 100 GHz). Path length differences typically give rise to a differential excess path of 1mm for antennas separated by 1km, and have fluctuation time scales of greater than 10 seconds. To measure these fluctuations, we are building a four-channel radiometer centred on the 22 GHz water line. By sensing the water vapour emission, the excess path can be deduced and corrected. Multiple channels give us robustness against various systematic errors, but gain stability of the radiometer of 1 pair in 10^4 is still required.

  17. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Standards § 101.143 Minimum path length requirements. (a) The distance between end points of a fixed link in the private operational fixed point-to-point and the common carrier fixed point-to-point microwave services must equal...

  18. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Standards § 101.143 Minimum path length requirements. (a) The distance between end points of a fixed link in the private operational fixed point-to-point and the common carrier fixed point-to-point microwave services must equal...

  19. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the...

  20. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the...

  1. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the...

  2. On the Optimal Path Length for Tor Kevin Bauer1

    E-print Network

    Borisov, Nikita

    On the Optimal Path Length for Tor Kevin Bauer1 , Joshua Juen2 , Nikita Borisov2 , Dirk Grunwald1 that optimally balances security and performance is an open problem. Tor's design decision to build paths frequently involve achieving a correct balance between security and performance. For example, Tor does

  3. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation. PMID:23736401

  4. The path-length distribution for galactic cosmic-ray propagation - An energy-dependent depletion of short path lengths

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Guzik, T. G.; Simpson, J. A.; Wefel, J. P.

    1984-01-01

    It is shown that at low energies, the depletion of short path lengths in the interstellar cosmic-ray path-length distribution is a function of energy, decreasing in magnitude with increasing energy. The analysis leading to this conclusion is based on the comparison of compiled data for the B/C and sub-Fe/Fe ratios at 0.08-50 GeV per nucleon, with the results of detailed galactic propagation and solar modulation calculations, which include experimental values for the important nuclear cross sections. This energy dependence of the depletion resolves some of the conflicts between previous reports on the question of short path lengths and may be explained by models including a matter distribution around discrete sources or, possibly, by models invoking waves generated by particle-magnetic field interactions in the Galaxy.

  5. Similarity and Prioritization of Disease Proteins using Path Length Measure

    E-print Network

    Al-Mubaid, Hisham

    Similarity and Prioritization of Disease Proteins using Path Length Measure Anurag Nagar University for prioritization of disease proteins and for computing the similarity between diseases and proteins. Our measure is fairly effective in assessing the closeness of proteins and diseases in the disease protein ranking

  6. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the table below or the EIRP must be reduced in accordance with the equation set forth below: Frequency band...

  7. DIGITAL SEARCH TREES AGAIN REVISITED: THE INTERNAL PATH LENGTH PERSPECTIVE

    E-print Network

    Prodinger, Helmut

    DIGITAL SEARCH TREES AGAIN REVISITED: THE INTERNAL PATH LENGTH PERSPECTIVE Peter Kirschenhofery digital search tree. The problem was open up to now. We prove that for the binary digital search tree indicator how well the digital trees are balanced. We shall show that the digital search tree is the best

  8. Limited-path-length entanglement percolation in quantum complex networks

    SciTech Connect

    Cuquet, Marti; Calsamiglia, John

    2011-03-15

    We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.

  9. Photon path length distributions for cloudy atmospheres from GOSAT satellite measurements

    NASA Astrophysics Data System (ADS)

    Kremmling, Beke; Penning de Vries, Marloes; Wagner, Thomas

    2014-05-01

    The presence of clouds in the atmosphere has significant influence on the photon paths of the scattered sunlight. Besides reflections of radiation at the cloud top, additional scattering events inside the cloud may occur and thus lengthening or shortening of the photon path in the atmosphere. Clouds consisting of multiple layers or patches may lead to a "ping pong" behaviour of the photons due to reflections at the individual surfaces. The objective of our study is the retrieval of photon path length distributions for various atmospheric cloud situations which will lead to a better understanding of the influence of clouds on the atmospheric radiative transport. Following principles from ground based photon path length retrieval (Funk et al., 2003), our research uses the combination of space based measurements of the oxygen A-band and radiative transfer simulations. The experimental spectra originate from the Japanese Greenhouse gases Observing SATellite (GOSAT), more precisely the Fourier Transform Spectrometer TANSO-FTS. Its high spectral resolution allows to almost completely resolve the individual absorption lines which is a prerequisite to our study. The Monte Carlo radiative transfer model McArtim (Deutschmann et al., 2011) is used to model the measured spectra. This model allows user-defined input for the altitude dependent cross sections and furthermore the incorporation of three dimensional cloud shapes and properties. From the simulation output and the sun-satellite geometry, photon path length distributions can be obtained. Distributions of photon path lengths are presented for a selection of GOSAT observations of entirely cloud covered atmospheres with similar measurement geometries.

  10. High-speed simulation of skin spectral reflectance based on an optical path-length matrix method and its application

    NASA Astrophysics Data System (ADS)

    Fujiwara, Izumi; Yamamoto, Satoshi; Yamauchi, Midori; Ogawa-Ochiai, Keiko; Nakaguchi, Toshiya; Tsumura, Norimichi

    2011-03-01

    In this paper, we propose optical path-length matrix method for high-speed simulation of photon migration in human skin. The optical path-length matrix is defined as the probability density distribution of optical pathlength in the skin. Generally, Monte Carlo simulation is used to simulate a skin reflectance, since it can simulate the reflectance accurately. However, it requires a huge computation time, thus this is not easily applicable in practical imaging system with large number of pixels. On the other hand, the proposed optical path-length matrix method achieves the simulation in shorter time. The skin model was assumed to be two-layered media of the epidermal and dermal layers. For obtaining the path-length matrix, photon migration in the model without any absorption was simulated only once by Monte Carlo simulation for each wavelength, and the probabilistic density histograms of the optical path-length at each layer were acquired and stored in the optical path-length matrix. Skin spectral reflectance for arbitrary absorption can be calculated easily by accumulating all combination of an element in the above pre-recomputed path-length matrix and absorption coefficient based on the Beer-Lambert law. Our proposed method was compared with the conventional Monte Carlo simulation. Computational time of the proposed method was approximately two minutes; while that of the conventional method was 15 hours. In addition, error margin of the proposed method was approximately less than 1.6%. This method would applied to skin spectral image analysis for skin chromophore quantification.

  11. Path Length Fluctuations Derived from Site Testing Interferometer Data

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Morse, Jacquelynne R.

    2010-01-01

    To evaluate possible sites for NASA's proposed Ka-band antenna array, the NASA Glenn Research Center has constructed atmospheric phase monitors (APM) which directly measure the tropospheric phase stability. These instruments observe an unmodulated 20.2 GHz beacon signal broadcast from a geostationary satellite (Anik F2) and measure the phase difference between the signals received by the two antennas. Two APM's have been deployed, one at the NASA Deep Space Network (DSN) Tracking Complex in Goldstone, California, and the other at the NASA White Sands Complex, in Las Cruces, New Mexico. Two station-years of atmospheric phase fluctuation data have been collected at Goldstone since operations commenced in May 2007 and 0.5 station-years of data have been collected at White Sands since operations began February 2009. With identical instruments operating simultaneously, we can directly compare the phase stability at the two sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric path length fluctuations over 10 min blocks. Correlation between surface wind speed and relative humidity with interferometer phase are discussed. For 2 years, the path length fluctuations at the DSN site in Goldstone, California, have been better than 757 micrometer (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. For the 6 months of data collected at White Sands, New Mexico, the path length fluctuations have been better than 830 micrometers (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.), will be used to determine the suitability of both sites for NASA s future communication services at Ka-band using an array of antennas.

  12. Infrared Pulse-laser Long-path Absorption Measurement of Carbon Dioxide Using a Raman-shifted Dye Laser

    NASA Technical Reports Server (NTRS)

    Minato, Atsushi; Sugimoto, Nobuo; Sasano, Yasuhiro

    1992-01-01

    A pulsed laser source is effective in infrared laser long-path absorption measurements when the optical path length is very long or the reflection from a hard target is utilized, because higher signal-to-noise ratio is obtained in the detection of weak return signals. We have investigated the performance of a pulse-laser long-path absorption system using a hydrogen Raman shifter and a tunable dye laser pumped by a Nd:YAG laser, which generates second Stokes radiation in the 2-micron region.

  13. Long-length contaminated equipment disposal process path document

    SciTech Connect

    McCormick, W.A.

    1998-09-30

    The first objective of the LLCE Process Path Document is to guide future users of this system on how to accomplish the cradle-to-grave process for the disposal of long-length equipment. Information will be provided describing the function and approach to each step in the process. Pertinent documentation, prerequisites, drawings, procedures, hardware, software, and key interfacing organizations will be identified. The second objective is related to the decision to lay up the program until funding is made available to complete it or until a need arises due to failure of an important component in a waste tank. To this end, the document will identify work remaining to be completed for each step of the process and open items or issues that remain to be resolved.

  14. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  15. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  16. Laser Metrology for an Optical-Path-Length Modulator

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta

    2005-01-01

    Laser gauges have been developed to satisfy requirements specific to monitoring the amplitude of the motion of an optical-path-length modulator that is part of an astronomical interferometer. The modulator includes a corner-cube retroreflector driven by an electromagnetic actuator. During operation of the astronomical interferometer, the electromagnet is excited to produce linear reciprocating motion of the corner-cube retroreflector at an amplitude of 2 to 4 mm at a frequency of 250, 750, or 1,250 Hz. Attached to the corner-cube retroreflector is a small pick-off mirror. To suppress vibrations, a counterweight having a mass equal to that of the corner-cube retroreflector and pick-off mirror is mounted on another electromagnetic actuator that is excited in opposite phase. Each gauge is required to measure the amplitude of the motion of the pick-off mirror, assuming that the motions of the pick-off mirror and the corner-cube retroreflector are identical, so as to measure the amplitude of motion of the corner- cube retroreflector to within an error of the order of picometers at each excitation frequency. Each gauge is a polarization-insensitive heterodyne interferometer that includes matched collimators, beam separators, and photodiodes (see figure). The light needed for operation of the gauge comprises two pairs of laser beams, the beams in each pair being separated by a beat frequency of 80 kHz. The laser beams are generated by an apparatus, denoted the heterodyne plate, that includes stabilized helium-neon lasers, acousto-optical modulators, and associated optical and electronic subsystems. The laser beams are coupled from the heterodyne plate to the collimators via optical fibers.

  17. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication...74.644 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  18. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... false Minimum path lengths for fixed links. 78.108 Section 78.108 Telecommunication...78.108 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  19. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication...74.644 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  20. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication...74.644 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  1. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication...74.644 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  2. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... false Minimum path lengths for fixed links. 78.108 Section 78.108 Telecommunication...78.108 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  3. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication...74.644 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  4. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... false Minimum path lengths for fixed links. 78.108 Section 78.108 Telecommunication...78.108 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  5. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... false Minimum path lengths for fixed links. 78.108 Section 78.108 Telecommunication...78.108 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  6. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... false Minimum path lengths for fixed links. 78.108 Section 78.108 Telecommunication...78.108 Minimum path lengths for fixed links. (a) The distance between end points of a fixed link must equal or exceed the value set...

  7. Comparison Between Path Lengths Traveled by Solar Electrons and Ions in Ground-Level Enhancement Events

    NASA Technical Reports Server (NTRS)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios

    2013-01-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  8. COMPARISON BETWEEN PATH LENGTHS TRAVELED BY SOLAR ELECTRONS AND IONS IN GROUND-LEVEL ENHANCEMENT EVENTS

    SciTech Connect

    Tan, Lun C.; Malandraki, Olga E.; Patsou, Ioanna; Papaioannou, Athanasios; Reames, Donald V.; Ng, Chee K.; Wang, Linghua

    2013-05-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of {+-}10% the deduced path length of low-energy ({approx}27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  9. A fast and accurate algorithm for high-frequency trans-ionospheric path length determination

    NASA Astrophysics Data System (ADS)

    Wijaya, Dudy D.

    2015-12-01

    This paper presents a fast and accurate algorithm for high-frequency trans-ionospheric path length determination. The algorithm is merely based on the solution of the Eikonal equation that is solved using the conformal theory of refraction. The main advantages of the algorithm are summarized as follows. First, the algorithm can determine the optical path length without iteratively adjusting both elevation and azimuth angles and, hence, the computational time can be reduced. Second, for the same elevation and azimuth angles, the algorithm can simultaneously determine the phase and group of both ordinary and extra-ordinary optical path lengths for different frequencies. Results from numerical simulations show that the computational time required by the proposed algorithm to accurately determine 8 different optical path lengths is almost 17 times faster than that required by a 3D ionospheric ray-tracing algorithm. It is found that the computational time to determine multiple optical path lengths is the same with that for determining a single optical path length. It is also found that the proposed algorithm is capable of determining the optical path lengths with millimeter level of accuracies, if the magnitude of the squared ratio of the plasma frequency to the transmitted frequency is less than 1.33× 10^{-3}, and hence the proposed algorithm is applicable for geodetic applications.

  10. Pillar cuvettes: capillary-filled, microliter quartz cuvettes with microscale path lengths for optical spectroscopy.

    PubMed

    Holzner, Gregor; Kriel, Frederik Hermanus; Priest, Craig

    2015-05-01

    The goal of most analytical techniques is to reduce the lower limit of detection; however, it is sometimes necessary to do the opposite. High sample concentrations or samples with high molar absorptivity (e.g., dyes and metal complexes) often require multiple dilution steps or laborious sample preparation prior to spectroscopic analysis. Here, we demonstrate dilution-free, one-step UV-vis spectroscopic analysis of high concentrations of platinum(IV) hexachloride in a micropillar array, that is, "pillar cuvette". The cuvette is spontaneously filled by wicking of the liquid sample into the micropillar array. The pillar height (thus, the film thickness) defines the optical path length, which was reduced to between 10 and 20 ?m in this study (3 orders of magnitude smaller than in a typical cuvette). Only one small droplet (?2 ?L) of sample is required, and the dispensed volume need not be precise or even known to the analyst for accurate spectroscopy measurements. For opaque pillars, we show that absorbance is linearly related to platinum concentration (the Beer-Lambert Law). For fully transparent or semitransparent pillars, the measured absorbance was successfully corrected for the fractional surface coverage of the pillars and the transmittance of the pillars and reference. Thus, both opaque and transparent pillars can be applied to absorbance spectroscopy of high absorptivity, microliter samples. It is also shown here that the pillar array has a useful secondary function as an integrated (in-cuvette) filter for particulates. For pillar cuvette measurements of platinum solutions spiked with 6 ?m diameter polystyrene spheres, filtered and unfiltered samples gave identical spectra. PMID:25844800

  11. Visual target distance, but not visual cursor path length produces shifts in motor behavior

    PubMed Central

    Wendker, Nike; Sack, Oliver S.; Sutter, Christine

    2014-01-01

    When using tools effects in body space and distant space often do not correspond. Findings so far demonstrated that in this case visual feedback has more impact on action control than proprioceptive feedback. The present study varies the dimensional overlap between visual and proprioceptive action effects and investigates its impact on aftereffects in motor responses. In two experiments participants perform linear hand movements on a covered digitizer tablet to produce ?-shaped cursor trajectories on the display. The shape of hand motion and cursor motion (linear vs. curved) is dissimilar and therefore does not overlap. In one condition the length of hand amplitude and visual target distance is similar and constant while the length of the cursor path is dissimilar and varies. In another condition the length of the hand amplitude varies while the lengths of visual target distance (similar or dissimilar) and cursor path (dissimilar) are constant. First, we found that aftereffects depended on the relation between hand path length and visual target distance, and not on the relation between hand and cursor path length. Second, increasing contextual interference did not reveal larger aftereffects. Finally, data exploration demonstrated a considerable benefit from gain repetitions across trials when compared to gain switches. In conclusion, dimensional overlap between visual and proprioceptive action effects modulates human information processing in visually controlled actions. However, adjustment of the internal model seems to occur very fast for this kind of simple linear transformation, so that the impact of prior visual feedback is fleeting. PMID:24672507

  12. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fixed link must equal or exceed the value set forth in the table below or the EIRP must be reduced in...,990-7,125 17 12,200-13,250 5 Above 17,700 n/a (b) For paths shorter than those specified in the Table... = Maximum EIRP as set forth in the Table in § 74.636 of this part. A = Minimum path length from the...

  13. Temperature effects on the optical path length of infrared liquid transmission cells.

    PubMed

    Amunson, Krista E; Anderson, Benjamin A; Kubelka, Jan

    2011-11-01

    Infrared (IR) spectroscopy is widely used for studies of temperature-dependent properties of liquids and solutions, such as thermal denaturation of proteins and other molecules of biological interest. The variation of the spectroscopic signals with temperature can be affected by the changes in the optical path length due to the thermal expansion of the components of the sample cell. In this report we investigate the temperature dependence of the optical path length for a liquid IR sample cell of a design typical for aqueous solution experiments. The path lengths were measured from the interference fringes, both in dry cells and with cells partially filled with water. We found that the optical path length variations are significant, on the order of several percent within the temperature range used (0-87 °C). Several commercially available spacers (Teflon, mylar, and lead) and gaskets (Teflon, lead, silicone rubber, Viton, and neoprene) were tested to find materials with either the smallest or most reproducible effect. Teflon, due to its phase transition (known as the "knee point") near room temperature, leads to abrupt changes in path length when used as either spacer or gasket component. On the other hand, Teflon is preferred for its inertness, while several of the other tested materials, most notably lead, are not practically usable due to adhesion to the cell windows upon heating and contact with the aqueous sample. The combination that yielded the most reproducible results, with minimal complications due to adhesion, was Teflon spacer with neoprene gaskets. The implications of the optical path length changes for the temperature-dependent IR experiments and their possible corrections are discussed. PMID:22054091

  14. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2003-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  15. Single-beam diode-laser technique for optical path-length measurements.

    PubMed

    Carlisle, C B; Warren, R E; Riris, H

    1996-08-01

    A simple single-beam technique employing radio-frequency modulation of a tunable diode laser with homodyne demodulation is demonstrated as a means of measuring optical path lengths. This technique offers a straightforward method for determining path lengths traversed through optical multipass cells or performing optical range-finding over short (i.e., tens of meters) standoff distances. The radio-frequency phase-sensitive nature of the technique permits narrow-band detection and high signal-to-noise ratios, even when range-finding measurements are made with range resolutions of «1 m. This compares favorably with traditional short-pulse, wide-bandwidth optical range finders. PMID:21102846

  16. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.

    PubMed

    Yin, Biwei; Dwelle, Jordan; Wang, Bingqing; Wang, Tianyi; Feldman, Marc D; Rylander, Henry G; Milner, Thomas E

    2015-11-01

    Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics. PMID:26560931

  17. Path Length Control in a Nulling Coronagraph with a MEMS Deformable Mirror and a Calibration Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.; Wallacea, J. Kent; Samuele, Rocco; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul; Lane, Benjamin; Levine, B. Martin; Mendillo, Chris; Schmidtlin, Edouard; Shao, Mike; Stewart, Jason B.

    2008-01-01

    We report progress on a nulling coronagraph intended for direct imaging of extrasolar planets. White light is suppressed in an interferometer, and phase errors are measured by a second interferometer. A 1020-pixel MEMS deformable mirror in the first interferometer adjusts the path length across the pupil. A feedback control system reduces deflections of the deformable mirror to order of 1 nm rms.

  18. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  19. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations § 74.644...

  20. Acoustic method for measuring the sound speed of gases over small path lengths

    E-print Network

    in automotive applications, such as measuring the ex- haust gas recirculation EGR in combustion engines hydrogen in air with a response time on the order of 1­2 s. An acoustic phase shift method is a very to accurately measure the temperature of air with a path length of 50­100 mm. The advantage of the phase shift

  1. A genetic analysis of path length and pupation height in a natural population of Drosophila melanogaster

    E-print Network

    Sokolowski, Marla

    contribution to differences in path length (the distance a larva crawls in a yeasted culture dish couverte par une larve sur culture en pot contenant de la levure); de fait, les phknotypes a trajets longs). Behaviour- genetic studies have been primarily confined to pop- ulations of animals which have been reared

  2. Run length is the dimension that characterizes path integrals useful for designing passive bacterial pumps

    NASA Astrophysics Data System (ADS)

    Liao, David; Lambert, Guillaume; Galajda, Peter; Austin, Robert

    2009-03-01

    Asymmetric funnels have been used as passive pumps to concentrate E. coli in nanofabricated devices (Austin 2007). Funnel geometry changes pump efficiency, which could be important when driving cell sorters (Whitesides 2008). The large set of funnel geometries that could be considered when designing pumps motivated us to derive a path-integral-like formula to predict the flux produced by arbitrary funnel geometries. We applied this equation to a two-dimensional wedge-shaped funnel. Model and experiment agree that the steady-state ratio between concentrations on two sides of a funnel open to 60^o is 3 when the aperture is one fifth the bacterial run length and 1 when the aperture is 16 times the run length, an example of how the run length here has a role loosely analogous to the wavelength in quantum mechanical path integrals.

  3. A Variable Path Length Cell for Transverse Acoustic Studies of Superfluid 3He

    NASA Astrophysics Data System (ADS)

    Collett, C. A.; Nguyen, M. D.; Li, J. I. A.; Zimmerman, A. M.; Halperin, W. P.; Davis, J. P.

    2015-03-01

    Transverse sound has recently emerged as an effective probe of the order parameter of superfluid 3He. Both the transverse acoustic impedance and attenuation have been shown to couple to surface bound states in 3He- B, which are predicted to be Majorana states in the specular scattering limit. In order to measure the attenuation at different path lengths to separate surface from bulk effects, as well as reduce the cavity size to the micron scale where transverse sound propagation should be measurable in the normal state, we have constructed a variable path length cell. Using a 4He-actuated diaphragm we demonstrate in-situ changes to the cavity length at dilution temperatures, and report our progress in deploying the cell at sub-mK temperatures. This research was supported by the National Science Foundation grant DMR-1103625.

  4. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using ? -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  5. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  6. Modeling the average shortest-path length in growth of word-adjacency networks

    NASA Astrophysics Data System (ADS)

    Kulig, Andrzej; Dro?d?, Stanis?aw; Kwapie?, Jaros?aw; O?wiȩcimka, Pawe?

    2015-03-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  7. Visibility oscillation in a multimode laser interferometer signal and its use in optimizing path lengths.

    PubMed

    Ruden, E L; Camacho, J F; Lynn, A G

    2013-10-01

    The interference signal visibility V (difference to sum ratio of intensities at maximum and minimum interference) of an interferometer that uses a multimode laser is here derived for a given laser gain profile and spectral mode separation as a function of the difference Z(S) between the probe and reference beam optical path lengths and the spectral separation k(S) between the center of the laser gain profile and the nearest laser mode of higher frequency. k(S) has a significant effect on V for a given Z(S). This parameter, in lasers where it sweeps freely across the gain profile, and other effects, such as various misalignments and optical coupling inefficiencies, render V alone an unreliable parameter for quantifying Z(S) (for the purpose of reducing it, say). However, the difference to sum ratio of the maximum and minimum V due to variations in k(S) for a given Z(S) is an intrinsic property of the laser insensitive to configurational details. Parameter W so defined, therefore, proves very useful for balancing path lengths. This is of particular importance for systems where probe and/or reference beams are transmitted via long single mode optical fibers, so this application is detailed. Optical path lengths within such fibers often cannot be measured to sufficient accuracy by spatial path length measurements due to fiber nonuniformity resulting in variations in the mode's group velocity (needed to convert to optical path length). Two examples are provided using different makes and models of 0.633 ?m HeNe lasers with similar specifications. In the first case, the function W(Z(S)) is calculated directly from the laser's published gain profile and mode separation. In the second case, W is determined empirically for a range of Z(S)values for a laser with an unknown gain profile in a (heterodyned) interferometer whose interference signal oscillates between maximum and minimum intensity at 80 MHz due to the reference beam's optical frequency being acousto-optically upshifted by that amount, while k(S) spontaneously varies on an acoustic time scale. A single high-bandwidth waveform record for each Z(S), therefore, provides all the information needed to determine W. Despite the second laser's gain profile apparently differing in detail, qualitative agreement is achieved between the two methods sufficient to validate the technique. PMID:24182097

  8. Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures

    PubMed Central

    Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J.

    2015-01-01

    Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977

  9. Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures.

    PubMed

    Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J

    2015-01-01

    Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977

  10. Short path length pQCD corrections to energy loss in the quark gluon plasma

    E-print Network

    Isobel Kolbe; W. A. Horowitz

    2015-09-21

    Recent surprising discoveries of collective behaviour of low-$p_T$ particles in $pA$ collisions at LHC hint at the creation of a hot, fluid-like QGP medium. The seemingly conflicting measurements of non-zero particle correlations and $R_{pA}$ that appears to be consistent with unity demand a more careful analysis of the mechanisms at work in such ostensibly minuscule systems. We study the way in which energy is dissipated in the QGP created in $pA$ collisions by calculating, in pQCD, the short separation distance corrections to the well-known DGLV energy loss formulae that have produced excellent predictions for $AA$ collisions. We find that, shockingly, due to the large formation time (compared to the $1/\\mu$ Debye screening length) assumption that was used in the original DGLV calculation, a highly non-trivial cancellation of correction terms results in a null short path length correction to the DGLV energy loss formula. We investigate the effect of relaxing the large formation time assumption in the final stages of the calculation -- doing so throughout the calculation adds immense calculational complexity -- and find, since the separation distance between production and scattering centre is integrated over from $0$ to $\\infty$, $\\gtrsim 100\\%$ corrections, even in the large path length approximation employed by DGLV.

  11. LHC Predictions from an extended theory with Elastic, Inelastic, and Path Length Fluctuating Energy Loss

    E-print Network

    William A. Horowitz

    2007-02-27

    We present the LHC predictions for the WHDG model of radiative, elastic, and path length fluctuating energy loss. We find the pT dependence of RAA is qualitatively very different from AWS-based energy loss extrapolations to the LHC; the large pT reach of the year one data at the LHC should suffice to distinguish between the two. We also discuss the importance of requiring a first elastic scatter before any medium-induced elastic or radiative loss occurs, a necessary physical effect not considered in any previous models.

  12. Exploring the effective absorption length of Si nanohole array for photovoltaic by plasmonic enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Pei, Zingway; Thiyagu, S.; Devi, B. P.

    2015-03-01

    Either nanowire or nanohole array for semiconductor were proved to be an efficient nanostructure to harvest solar light. However, for Si, the length of nanostructure about several micrometers is required to have acceptable absorption. Although this length already far less than the bulk Si in which hundred micrometers are required, the micrometers length still not feasible for Si nanostructure. High density nanostructures will cause extensive surface recombination that reduces the power conversion efficiency. Therefore, explore the dependence of light absorption to the length of Si nanostructure is very important to design an efficient solar cell. In this work, the Si nanohole array was fabricated in several depths from 110 to 960 nm. The total reflection was less than 1% at visible regime for 960 nm depth hole. The Ag nanoparticles were put at the bottom of the nanohole to explore the light absorption by plasmonic enhanced Raman scattering. A chemical, pNTP, was cover Ag nanoparticle as the prober for the plasmonic effect. As the laser light incident to the Ag nanoparticle, the surface plasmonic effect will enhance the Raman scattering of the pNTP. The enhanced Raman signal obtained from pNTP indicates the incident light could penetrate into the bottom of the Si nanohole array without significant absorption. The experiment result indicate the Raman signal decay fast after the depth of nanohole exceed 240 nm. This result indicate, the length of Si nanostructure may not need micrometers length to harvest incident solar light. This finding pave a bright route for design of Si solar cell with nanostructures.

  13. New method for path-length equalization of long single-mode fibers for interferometry

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.

    2014-07-01

    The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50?. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (?c=1575 nm, ??=75 nm) using our method.

  14. A volumetric approach to path-length measurements is essential when treating radiotherapy with modulated beams

    SciTech Connect

    Forde, Elizabeth; Booth, Jeremy; Leech, Michelle

    2014-07-01

    The established dosimetric benefits of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy have lead to their increased use in prostate radiotherapy. Complimenting these techniques, volumetric image guidance has supported increased positional accuracy. In addition, 3-dimensional image guidance has also allowed for assessment of potential dosimetric variation that can be attributed to a deformation of either internal or external structures, such as rectal distension or body contour. Compounding these issues is the variation of tissue density through which the new field position passes and also the variation of dose across a modulated beam. Despite the growing level of interest in this area, there are only a limited number of articles that examine the effect of a variation in beam path length, particularly across a modulated field. IMRT and volumetric-modulated radiation therapy (VMAT) fields are dynamic in nature, and the dose gradient within these fields is variable. Assessment of variation of path length away from the beam's central axis and across the entire field is vital where there is considerable variation of dose within the field, such as IMRT and VMAT. In these cases, reliance on the traditional central axis to focus skin distances is no longer appropriate. This article discusses these more subtle challenges that may have a significant clinical effect if left unrecognized and undervalued.

  15. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  16. Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements

    NASA Astrophysics Data System (ADS)

    Tao, Long; Liu, Zhigang; Zhang, Weibo

    2015-09-01

    Because of its compact size and portability, optical fiber has been wildly used as optical paths in frequency-scanning interferometers for high-precision absolute distance measurements. However, since the fiber is sensitive to ambient temperature, its length and refractive index change with temperature, resulting in an optical path length drift that influences the repeatability of measurements. To improve the thermal stability of the measurement system, a novel frequency-scanning interferometer composed of two Michelson-type interferometers sharing a common fiber optical path is proposed. One interferometer defined as origin interferometer is used to monitor the drift of the measurement origin due to the optical path length drift of the optical fiber under on-site environment. The other interferometer defined as measurement interferometer is used to measure the distance to the target. Because the optical path length drift of the fiber appears in both interferometers, its influence can be eliminated by subtracting the optical path difference of the origin interferometer from the optical path difference of the measurement interferometer. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability. Under on-site environment, an accuracy about 4 ?m was achieved for a distance of about 1 m.

  17. Steering Dynamical Systems with Finite Plans and Limited Path Length Luca Greco, Adriano Fagiolini, Antonio Bicchi, and Benedetto Piccoli

    E-print Network

    Piccoli, Benedetto

    Steering Dynamical Systems with Finite Plans and Limited Path Length Luca Greco, Adriano Fagiolini symbolic input plans. These plans must have a finite descriptive length, and can be expressed by means of words chosen in an alphabet of symbols. In this way, such plans can be sent through a limited capacity

  18. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed.

  19. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb.

    PubMed

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed. PMID:22352662

  20. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  1. The dynamical halo and the variation of cosmic-ray path length with energy

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1978-01-01

    It is shown that the dynamical halo model offers a natural explanation for the form of the variation of the cosmic-ray path length with energy. The variation above approximately 1 GeV/nucleon can be understood as due to the variation of the diffusion coefficient, and hence the resident time, with energy. The flattening of the curve below 1 GeV/nucleon is seen to mark a transition to a convection dominated regime where coefficient is no longer the determining parameter. A fit to the observations yields a halo outflow velocity of 8 km sec/1. An attempt is made to determine the overall scale of the halo and the diffusion coefficient using recent Be-10 flux measurements but the data do not agree well enough to pin down these variables to within less than four or five orders of magnitude.

  2. Short Path Length Energy Loss in the Quark-Gluon Plasma from pQCD

    NASA Astrophysics Data System (ADS)

    Kolbe, Isobel; Horowitz, W. A.

    2015-10-01

    An outline for research to be done is given. In the heavy ion experiments at RHIC and the LHC, it is widely believed that a state of matter known as the quark-gluon plasma (QGP) has been produced. The so-called hard particles, or particles with very high momentum that are produced as a consequence of the asymptotic freedom of QCD, can be used as tomographic probes of the QGP. We will study the way in which energy is dissipated in this QGP by calculating, in pQCD, short path length corrections to the well-known energy loss formulae. This calculation is necessary to address the discovery at the LHC that shockingly small systems appear to exhibit collective behaviour.

  3. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  4. Determining average path length and average trapping time on generalized dual dendrimer

    NASA Astrophysics Data System (ADS)

    Li, Ling; Guan, Jihong

    2015-03-01

    Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.

  5. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  6. Nearly arc-length tool path generation and tool radius compensation algorithm research in FTS turning

    NASA Astrophysics Data System (ADS)

    Zhao, Minghui; Zhao, Xuesen; Li, Zengqiang; Sun, Tao

    2014-08-01

    In the non-rotational symmetrical microstrcture surfaces generation using turning method with Fast Tool Servo(FTS), non-uniform distribution of the interpolation data points will lead to long processing cycle and poor surface quality. To improve this situation, nearly arc-length tool path generation algorithm is proposed, which generates tool tip trajectory points in nearly arc-length instead of the traditional interpolation rule of equal angle and adds tool radius compensation. All the interpolation points are equidistant in radial distribution because of the constant feeding speed in X slider, the high frequency tool radius compensation components are in both X direction and Z direction, which makes X slider difficult to follow the input orders due to its large mass. Newton iterative method is used to calculate the neighboring contour tangent point coordinate value with the interpolation point X position as initial value, in this way, the new Z coordinate value is gotten, and the high frequency motion components in X direction is decomposed into Z direction. Taking a typical microstructure with 4?m PV value for test, which is mixed with two 70?m wave length sine-waves, the max profile error at the angle of fifteen is less than 0.01?m turning by a diamond tool with big radius of 80?m. The sinusoidal grid is machined on a ultra-precision lathe succesfully, the wavelength is 70.2278?m the Ra value is 22.81nm evaluated by data points generated by filtering out the first five harmonics.

  7. The processing of spatial information in short-term memory: insights from eye tracking the path length effect.

    PubMed

    Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean

    2009-10-01

    Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization. PMID:19233338

  8. Radiative energy loss in the absorptive QGP: taming the long formation lengths in coherent emission

    E-print Network

    Marcus Bluhm; Pol Bernard Gossiaux; Thierry Gousset; Joerg Aichelin

    2012-09-06

    In an absorptive plasma, damping of radiation mechanisms can influence the bremsstrahlung formation in case of large radiation formation lengths. We study qualitatively the influence of this effect on the gluon bremsstrahlung spectrum off heavy quarks in the quark-gluon plasma. Independent of the heavy-quark mass, the spectrum is found to be strongly suppressed in an intermediate gluon energy region which grows with increasing gluon damping rate and increasing energy of the heavy quark. Thus, just as polarization effects in the plasma render the bremsstrahlung spectra independent of the quark mass in the soft gluon regime, damping effects tend to have a similar impact for larger gluon energies.

  9. Continuous correction of differential path length factor in near-infrared spectroscopy.

    PubMed

    Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p < 0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p < 0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method. PMID:23640027

  10. Continuous correction of differential path length factor in near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Talukdar, Tanveer; Moore, Jason H.; Diamond, Solomon G.

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method.

  11. The effect of characteristic length on mean free path for confined gases

    NASA Astrophysics Data System (ADS)

    P. D., Sree Hari; Prabha, Sooraj K.; Sathian, Sarith P.

    2015-11-01

    Molecular Dynamics simulations are performed to investigate the influence of system boundaries and characteristic length (L) of the system on the mean free path (MFP) of rarefied gas confined to the walls of a nano-channel. Isothermal Lennard-Jones fluid confined between Reflective walls and platinum walls at different number densities (0.31 atoms/nm3 and 1.61 atoms/nm3) are independently considered. The MFP is calculated by the Lagrangian approach of tracking the trajectory of each atom and averaging the distance between successive collisions. The percentage of fluid-wall collisions is observed to predominate over fluid-fluid collisions at high levels of rarefaction. The influence of L (varying from 6 nm to 16 nm) on MFP is examined in this regime. At lower Knudsen number (Kn), it is observed that the effect of L on MFP is minimal. However, at higher rarefaction the characteristic dimension influences the MFP significantly for various wall configurations.

  12. Changes in diffusion path length with old age in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric

    2012-05-01

    Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.

  13. The enigma of effective path length for (18) O enrichment in leaf water of conifers.

    PubMed

    Roden, John; Kahmen, Ansgar; Buchmann, Nina; Siegwolf, Rolf

    2015-12-01

    The Péclet correction is often used to predict leaf evaporative enrichment and requires an estimate of effective path length (L). Studies to estimate L in conifer needles have produced unexpected patterns based on Péclet theory and leaf anatomy. We exposed seedlings of six conifer species to different vapour pressure deficits (VPD) in controlled climate chambers to produce steady-state leaf water enrichment (in (18) O). We measured leaf gas exchange, stable oxygen isotopic composition (?(18) O) of input and plant waters as well as leaf anatomical characteristics. Variation in bulk needle water ?(18) O was strongly related to VPD. Conifer needles had large amounts of water within the vascular strand that was potentially unenriched (up to 40%). Both standard Craig-Gordon and Péclet models failed to accurately predict conifer leaf water ?(18) O without taking into consideration the unenriched water in the vascular strand and variable L. Although L was linearly related to mesophyll thickness, large within-species variation prevented the development of generalizations that could allow a broader use of the Péclet effect in predictive models. Our results point to the importance of within needle water pools and isolating mechanisms that need further investigation in order to integrate Péclet corrections with 'two compartment' leaf water concepts. PMID:26037826

  14. Influence of neglecting the curved path of the Achilles tendon on Achilles tendon length change at various ranges of motion

    PubMed Central

    Fukutani, Atsuki; Hashizume, Satoru; Kusumoto, Kazuki; Kurihara, Toshiyuki

    2014-01-01

    Abstract Achilles tendon length has been measured using a straight?line model. However, this model is associated with a greater measurement error compared with a curved?line model. Therefore, we examined the influence of neglecting the curved path of the Achilles tendon on its length change at various ranges of motion. Ten male subjects participated in this study. First, the location of the Achilles tendon was confirmed by using ultrasonography, and markers were attached on the skin over the Achilles tendon path. Then, the three?dimensional coordinates of each marker at dorsiflexion (DF) 15°, plantarflexion (PF) 0°, PF15°, and PF30° were obtained. Achilles tendon length in the curved?line model was calculated as the sum of the distances among each marker. On the other hand, Achilles tendon length in the straight?line model was calculated as the straight distance between the two most proximal and distal markers projected onto the sagittal plane. The difference of the Achilles tendon length change between curved?line and straight?line models was calculated by subtracting the Achilles tendon length change obtained in curved?line model from that obtained in straight?line model with three different ranges of motion (i.e., PF0°, PF15°, and PF30° from DF15°, respectively). As a result, the difference in Achilles tendon length change between the two models increased significantly as the range of motion increased. In conclusion, neglecting the curved path of the Achilles tendon induces substantial overestimation of its length change when the extent of ankle joint angle change is large. PMID:25303951

  15. A Multi-Baseline 12 GHz Atmospheric Phase Interferometer with One Micron Path Length Sensitivity

    NASA Astrophysics Data System (ADS)

    Kimberk, Robert S.; Hunter, Todd R.; Leiker, Patrick S.; Blundell, Raymond; Nystrom, George U.; Petitpas, Glen R.; Test, John; Wilson, Robert W.; Yamaguchi, Paul; Young, Kenneth H.

    2012-12-01

    We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33-261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1° of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.

  16. Tuning light matter interaction in magnetic nanofluid based field induced photonic crystal-glass structure by controlling optical path length

    E-print Network

    Junaid M. Laskar; Baldev Raj; John Philip

    2015-09-04

    The ability to control the light matter interaction and simultaneous tuning of both structural order and disorder in materials, although are important in photonics, but still remain as major challenges. In this paper, we show that optical path length dictates light-matter interaction in the same crystal structure formed by the ordering of magnetic nanoparticle self-assembled columns inside magnetic nanofluid under applied field. When the optical path length (L=80 {\\mu}m) is shorter than the optical (for wavelength, {\\lambda}=632.8 nm) coherence length inside the magnetic nanofluid under applied field, a Debye diffraction ring pattern is observed; while for longer path length (L=1mm), a corona ring of scattered light is observed. Analysis of Debye diffraction ring pattern suggests the formation of 3D hexagonal crystal structure, where the longitudinal and lateral inter-column spacings are 5.281 and 7.344 microns, respectively. Observation of speckles within the Debye diffraction pattern confirms the presence of certain degree of structural disorder within the crystal structure, which can be tuned by controlling the applied field strength, nanoparticle size and particle volume fraction. Our results provide a new approach to develop next generation of tunable photonic devices, based on simultaneous harnessing of the properties of disordered photonic glass and 3D photonic crystal.

  17. Tuning light matter interaction in magnetic nanofluid based field induced photonic crystal-glass structure by controlling optical path length

    E-print Network

    Laskar, Junaid M; Philip, John

    2015-01-01

    The ability to control the light matter interaction and simultaneous tuning of both structural order and disorder in materials, although are important in photonics, but still remain as major challenges. In this paper, we show that optical path length dictates light-matter interaction in the same crystal structure formed by the ordering of magnetic nanoparticle self-assembled columns inside magnetic nanofluid under applied field. When the optical path length (L=80 {\\mu}m) is shorter than the optical (for wavelength, {\\lambda}=632.8 nm) coherence length inside the magnetic nanofluid under applied field, a Debye diffraction ring pattern is observed; while for longer path length (L=1mm), a corona ring of scattered light is observed. Analysis of Debye diffraction ring pattern suggests the formation of 3D hexagonal crystal structure, where the longitudinal and lateral inter-column spacings are 5.281 and 7.344 microns, respectively. Observation of speckles within the Debye diffraction pattern confirms the presence o...

  18. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm?2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm?2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10?3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  19. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  20. Enhancing light absorption within the carrier transport length in quantum junction solar cells.

    PubMed

    Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene

    2015-09-10

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31??mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells. PMID:26368966

  1. Correlation between seismic events and anomalous `VLF day-length' for west-east and east-west propagation paths

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    We present results of year-long analysis of VLF signals, both for VTX-Malda (`west-east' propagation path) and VTX-Pune (`east-west' propagation path). We analyzed whole year data of 2008 and 2009 for VTX-Malda and VTX-Pune propagation path, respectively. In both the cases we found that `VLF day-length' (defined as time difference between sunset terminator time and sunrise terminator time) became anomalously high 1-2 days before an earthquake. Besides this year-long study we have also done some case by case analysis. On 9th January, 2009 an earthquake of magnitude 5.5 occurred at Carlsberg Ridge (latitude 10.3(°) N, longitude 57.1(°) E). In a separate incident, on 3rd November, 2009, another earthquake of magnitude 5.4 occurred at Andaman Islands (latitude 14.1(°) N, longitude 93.1(°) E). We analyze VLF signals for VTX-Pune (`east-west’ propagation path) propagation path around these two earthquake days and found that for both of these cases, the `VLF-day-length' became anomalously high two days before the event. This agrees well with statistical analysis based on year-long data for VTX-Pune path. Furthermore, during time period of June, 2010, two major earthquakes of low-depth ( 10Km) and high magnitude (M>5) occurred near NWC-Salt Lake (east-west propagation path) propagation paths. First one occurred on 13th June, 2010 at Nicobar Islands, India (latitude 7.8(°) N, longitude 92.0(°) E). Its magnitude was 5.1 (in Richter scale). The second one of magnitude 6.0 (in Richter Scale) occurred on 19th June, 2010 at Andaman Islands, India (latitude 13.4(°) N, longitude 93.0(°) E). For both of these two earthquakes, we found that VLF-day-length, became anomalously high one day before earthquakes. We claim that these were pre-cursors of the earthquakes which occurred in Andaman and Nicober Islands.

  2. Measurement of Urban Air Quality by an Open-Path Quantum Cascade Laser Absorption Spectrometer in Beijing During Summer 2008

    NASA Astrophysics Data System (ADS)

    Michel, A. P.; Liu, P. Q.; Yeung, J. K.; Zhang, Y.; Baeck, M. L.; Pan, X.; Dong, H.; Wang, Z.; Smith, J. A.; Gmachl, C. F.

    2009-05-01

    The 2008 Olympic Games focused attention on the air quality of Beijing, China and served as an important test-bed for developing, deploying, and testing new technologies for analysis of air quality and regional climate in urban environments. Poor air quality in urban locations has a significant detrimental effect on the health of residents while also impacting both regional and global climate change. As a result, there exists a great need for highly sensitive trace gas sensors for studying the atmosphere of the urban environment. Open-path remote sensors are of particular interest as they can obtain data on spatial scales similar to those used in regional climate models. Quantum cascade lasers (QCLs) can be designed for operation in the mid-infrared (mid-IR) with a central wavelength anywhere between 3 to 24 ?m and made tunable over a wavelength interval of over 0.1 ?m. The Quantum Cascade Laser Open-Path System (QCLOPS) is a mid-infrared laser absorption spectrometer that uses a tunable, thermoelectrically cooled, pulsed Daylight Solutions Inc. QCL for measurement of trace gases. The system is aimed at applications with path lengths ranging from approximately 0.1 to 1.0 km. The system is designed to continuously monitor multiple trace gases [water vapor (H2O), ozone (O3), ammonia (NH3), and carbon dioxide (CO2)] in the lower atmosphere. A field campaign from July to September 2008 in Beijing used QCLOPS to study trace gas concentrations before, during, and after the Olympic Games in an effort to capture changes induced by emissions reduction methods. QCLOPS was deployed at the Institute of Atmospheric Physics - Chinese Academy of Sciences on the roof of a two-story building, at an approximate distance of 2 miles from the Olympic National Stadium ("The Bird's Nest.") QCLOPS operated with an open-path round trip distance of approximately 75 m. The system ran with minimal human interference, twenty-four hours per day for the full campaign period. In order to collect data over numerous absorption peaks belonging to the target gases of H2O, NH3, O3, and CO2, measurements were made at 317 different wavelengths within the full tuning range of the laser (1020 - 1070 cm-1). We present the design of this novel sensor which was successfully built, deployed, and operated with minimal operator intervention for the three month field campaign period. Furthermore, we present the results of the field campaign and the capabilities of the QCLOPS system to measure fluctuations of the trace gases at parts-per-billion levels. The time series data illustrate the changing levels of the trace gases over the campaign period. In addition, data from commercial sensors simultaneously deployed at the field site are presented as a validation of the capabilities of the QCLOPS system. This work was supported by MIRTHE (NSF-ERC #EEC-0540832).

  3. Ground-based integrated path coherent differential absorption lidar measurement of CO2: hard target return

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Koyama, M.; Baron, P.; Iwai, H.; Mizutani, K.; Itabe, T.; Sato, A.; Asai, K.

    2012-11-01

    The National Institute of Information and Communications Technology (NICT) have made a great deal of effort to develop a coherent 2-?m differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a hard target (surface return) located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2-?m IPDA lidar was examined in detail using the CO2 concentration measured by the hard target. The precisions of CO2 measurement for the hard target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for measuring the CO2 concentration of the hard target with a precision of 1-2 ppm. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the hard target made comparison difficult, the CO2 volume mixing ratio measured with the Co2DiaWiL was about 5 ppm lower than that measured with the in situ sensor. The statistical results indicated that there were no differences between the hard target and atmospheric return measurements. A precision of 1.5% was achieved from the atmospheric return, which is lower than that obtained from the hard-target returns. Although long-range DIfferential Absorption Lidar (DIAL) CO2 measurement with the atmospheric return can result in highly precise measurement, the precision of the atmospheric return measurement was widely distributed comparing to that of the hard target return. Our results indicated that it is important to use a Q-switched laser to measure the range-gated differential absorption optical depth with the atmospheric return and that it is better to simultaneously conduct both hard target and atmospheric return measurements to enable highly accurate CO2 measurement.

  4. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  5. Investigation of an implantable dosimeter for single-point water equivalent path length verification in proton therapy

    SciTech Connect

    Lu, Hsiao-Ming; Mann, Greg; Cascio, Ethan

    2010-11-15

    Purpose: In vivo range verification in proton therapy is highly desirable. A recent study suggested that it was feasible to use point dose measurement for in vivo beam range verification in proton therapy, provided that the spread-out Bragg peak dose distribution is delivered in a different and rather unconventional manner. In this work, the authors investigate the possibility of using a commercial implantable dosimeter with wireless reading for this particular application. Methods: The traditional proton treatment technique delivers all the Bragg peaks required for a SOBP field in a single sequence, producing a constant dose plateau across the target volume. As a result, a point dose measurement anywhere in the target volume will produce the same value, thus providing no information regarding the water equivalent path length to the point of measurement. However, the same constant dose distribution can be achieved by splitting the field into a complementary pair of subfields, producing two oppositely ''sloped'' depth-dose distributions, respectively. The ratio between the two distributions can be a sensitive function of depth and measuring this ratio at a point inside the target volume can provide the water equivalent path length to the dosimeter location. Two types of field splits were used in the experiment, one achieved by the technique of beam current modulation and the other by manipulating the location and width of the beam pulse relative to the range modulator track. Eight MOSFET-based implantable dosimeters at four different depths in a water tank were used to measure the dose ratios for these field pairs. A method was developed to correct the effect of the well-known LET dependence of the MOSFET detectors on the depth-dose distributions using the columnar recombination model. The LET-corrected dose ratios were used to derive the water equivalent path lengths to the dosimeter locations to be compared to physical measurements. Results: The implantable dosimeters measured the dose ratios with a reasonable relative uncertainty of 1%-3% at all depths, except when the ratio itself becomes very small. In total, 55% of the individual measurements reproduced the water equivalent path lengths to the dosimeters within 1 mm. For three dosimeters, the difference was consistently less than 1 mm. Half of the standard deviations over the repeated measurements were equal or less than 1 mm. Conclusions: With a single fitting parameter, the LET-correction method worked remarkably well for the MOSFET detectors. The overall results were very encouraging for a potential method of in vivo beam range verification with millimeter accuracy. This is sufficient accuracy to expand range of clinical applications in which the authors could use the distal fall off of the proton depth dose for tight margins.

  6. Phrase Length Matters: The Interplay between Implicit Prosody and Syntax in Korean "Garden Path" Sentences

    ERIC Educational Resources Information Center

    Hwang, Hyekyung; Steinhauer, Karsten

    2011-01-01

    In spoken language comprehension, syntactic parsing decisions interact with prosodic phrasing, which is directly affected by phrase length. Here we used ERPs to examine whether a similar effect holds for the on-line processing of written sentences during silent reading, as suggested by theories of "implicit prosody." Ambiguous Korean sentence…

  7. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Koyama, M.; Baron, P.; Iwai, H.; Mizutani, K.; Itabe, T.; Sato, A.; Asai, K.

    2013-05-01

    The National Institute of Information and Communications Technology (NICT) has made a great deal of effort to develop a coherent 2 ?m differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface) located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 ?m IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2) measurement with a precision of 1-2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about -5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 ?m coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio), and to reduce uncertainty due to the presence of aerosols and clouds, it is important to make a precise range measurement with a Q-switched laser and a range-gated receiver.

  8. Radiometric correction of atmospheric path length fluctuations in interferometric experiments. [in radio astronomy

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Hogg, D. E.; Napier, P. J.

    1984-01-01

    To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.

  9. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    SciTech Connect

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  10. Investigation of atmospheric {{O}}2{{X}}{^{ 3}}{ sum_{{g}}^{ - }} {{to}} {{b}}{^{ 1}}{ sum_{{g}}^{ + }} using open-path tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, Christopher A.; Gross, Kevin C.; Perram, Glen P.

    2013-05-01

    A tunable diode laser absorption spectroscopy (TDLAS) device fiber coupled to a pair of 12.5 in. telescopes was used to study atmospheric propagation for open path lengths of 100-1,000 meters. More than 50 rotational lines in the molecular oxygen A-band O2 {{X}}{^{ 3}}{ sum_{{g}}^{ - }} {{to}} {{b}}{^{ 1}}{ sum_{{g}}^{ + }} transition near 760 nm were observed. Temperatures were determined from the Boltzmann rotational distribution to within 1.3 % (less than ±2 K). Oxygen concentration was obtained from the integrated spectral area of the absorption features to within 1.6 % (less than ±0.04 × 1018 molecules/cm3). Pressure was determined independently from the pressure-broadened Voigt lineshapes to within 10 %. A fourier transform interferometer (FTIR) was also used to observe the absorption spectra at 1 cm-1 resolution. The TDLAS approach achieves a minimum observable absorbance of 0.2 %, whereas the FTIR instrument is almost 20 times less sensitive. Applications include atmospheric characterization for high energy laser propagation and validation of monocular passive raging.

  11. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  12. Leaf morphological effects predict effective path length and enrichment of 18O in leaf water of different Eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.

    2006-12-01

    Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (?18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current ?18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of ?18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on ?18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (?18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal ?18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water ?18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water ?18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing ?18O models for a better interpretation of the observed ?18O signals.

  13. New method of estimating wavelength-dependent optical path length ratios for oxy- and deoxyhemoglobin measurement using near-infrared spectroscopy.

    PubMed

    Umeyama, Shinji; Yamada, Toru

    2009-01-01

    In near-infrared spectroscopy (NIRS), concentration changes in oxy- and deoxyhemoglobin are calculated using an attenuation change of the measurement light and by solving a linear equation based on the modified Lambert-Beer law. While solving this equation, we need to know the wavelength-dependent mean optical path lengths of the measurement lights. However, it is very difficult to know these values by a continuous-wave-type (CW-type) system. We propose a new method of estimating wavelength-dependent optical path length ratios of the measurement lights based on the data obtained by a triple wavelength CW-type NIRS instrument. The proposed method does not give a path length itself, but it gives a path length ratio. Thus, it is possible to obtain the accurate hemoglobin concentration changes without cross talk, although the method cannot contribute to the quantification of the absolute magnitude of hemoglobin changes. The method is based on the principle that two possible estimations of hemoglobin concentration changes calculated using a triple-wavelength measurement system should be identical. The method was applied to the experimental data of human subjects' foreheads. The estimated path length ratios were very similar to literature values obtained by using picosecond laser pulses and a streak camera detector [M. Essenpreis et al., Appl. Opt. 32(4), 418-425 (1993)]. PMID:19895139

  14. New method of estimating wavelength-dependent optical path length ratios for oxy- and deoxyhemoglobin measurement using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Umeyama, Shinji; Yamada, Toru

    2009-09-01

    In near-infrared spectroscopy (NIRS), concentration changes in oxy- and deoxyhemoglobin are calculated using an attenuation change of the measurement light and by solving a linear equation based on the modified Lambert-Beer law. While solving this equation, we need to know the wavelength-dependent mean optical path lengths of the measurement lights. However, it is very difficult to know these values by a continuous-wave-type (CW-type) system. We propose a new method of estimating wavelength-dependent optical path length ratios of the measurement lights based on the data obtained by a triple wavelength CW-type NIRS instrument. The proposed method does not give a path length itself, but it gives a path length ratio. Thus, it is possible to obtain the accurate hemoglobin concentration changes without cross talk, although the method cannot contribute to the quantification of the absolute magnitude of hemoglobin changes. The method is based on the principle that two possible estimations of hemoglobin concentration changes calculated using a triple-wavelength measurement system should be identical. The method was applied to the experimental data of human subjects' foreheads. The estimated path length ratios were very similar to literature values obtained by using picosecond laser pulses and a streak camera detector [M. Essenpreis et al., Appl. Opt. 32(4), 418-425 (1993)].

  15. [Measurement of atmospheric NO3 radical with long path differential optical absorption spectroscopy based on red light emitting diodes].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Wang, Jiang-Tao; Xie, Pin-Hua; Wang, Xu-De

    2013-02-01

    Nitrate radical (NO3) is the most important oxidant in the tropospheric nighttime chemistry. Due to its high reactivity and low atmospheric concentrations, modern red light emitting diodes (LEDs) was proposed as light source in long path differential optical absorption spectroscopy (LP-DOAS) to measure NO3 radical in the atmosphere. The spectral properties of Luxeon LXHL-MD1D LEDs were analyzed in the present paper. The principle of LEDs-DOAS system to measure nitrate radical was studied in this paper. The experimental setup and retrieval method of NO3 radical were discussed in this paper. The retrieved example of NO3 was given and the time series of NO3 concentrations was performed for a week. The results showed that the detection limits of LEDs-DOAS system were 12 ppt for atmospheric NO3 radical when the optical path of LEDs-DOAS system was 2.8 km. PMID:23697129

  16. Measurements of HONO in Southern Ontario using long path absorption photometry

    NASA Astrophysics Data System (ADS)

    Wentzell, Jeremy Jb

    A highly sensitive Long Path Absorption Photometer (LOPAP) was constructed and used to investigate HONO chemistry at rural and urban sites in Southern Ontario. The instrument utilizes liquid core waveguides (LCW's) to achieve part per trillion (pptv) sensitivities. The 30 detection limit of the instrument was determined to be 5 pptv. The only interference of note was NO2 and it was quantitatively removed by the subtraction of the signal due to NO2 in a second channel. The instrument was deployed in Southern Ontario for the measurement of HONO at three different measurement sites, one urban (Toronto), one forested (Borden) and one semi-rural (BAQS-Met, Harrow super site). High concentrations of HONO were observed at the urban site, which was located next to a major highway. These concentrations can largely be explained by traffic emissions from the highway. While the largest HONO mixing ratios measured were found at the urban sampling site, high HONO/NO2 ratios were observed at the forested site (as high as 16%, mean=1.9%). The forested site (Borden, Ontario) was a very clean site with mean NOx concentrations of only 1.5 ppbv. The mean first order conversion rate of NO2 to HONO during the night-time hours at this site was found to be 1.4 X 10-6 s-1, two orders of magnitude smaller than HONO photolysis at midday. Since measurable amounts of HONO were present during the midday hours this lead to the conclusion that there was a very efficient conversion process of NO2 to HONO in the forested environment. High daytime concentrations of HONO were also observed at the Harrow supersite during the BAQS-Met campaign. These concentrations were also well in excess of predicted HONO values using traditional HONO chemistry. Analysis of the daytime data from both the forested site and BAQS-Met suggests a HONO source with a dependence on UV radiation, NO2 and H20 mixing ratio. The data set at Harrow, a site impacted by different pollution sources depending on wind direction, produced a variety of apparent rate constants for HONO production in the range of 2.9-7.8 x 10-13 cm3molec-1s-1 which suggests that the HONO production was heterogeneous. In contrast at the forested site at Borden the apparent rate constants varying from only 1.2x10 -13 to 1.6 x 10-13 cm3molec -1s-1. These are similar to one reported (but disputed) value for a gas phase process involving photoexcited NO2 in a reaction with water vapour which may yield HONO, but the small variation in rate is more likely a result of the lack of dependence of the nature of the fetch on wind direction at Borden.

  17. Retrieval of atmospheric carbon dioxide and methane from GOSAT data with the photon path length probability density function method

    NASA Astrophysics Data System (ADS)

    Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio

    2014-05-01

    The Greenhouse Gases Observing Satellite "IBUKI" (GOSAT) is the world's first spacecraft to measure the concentrations of carbon dioxide (CO2) and methane (CH4). The satellite has been operating properly from January 23, 2009. This paper presents retrievals of CO2 and CH4 from GOSAT data with the photon pathlength probability density function (PPDF) method that has been developed at the National Institute of Environmental Studies. This paper focus on a validation of the retrievals using satellite data during 38 months of GOSAT operation from June 2009 and ground-based Fourier Transform Spectrometer measurements from the Total Carbon Column Observing Network (TCCON) as the reference data for the column-averaged dry air mole fractions of the atmospheric gases. The TCCON-GOSAT coincidence criteria for validating the satellite-based retrievals included GOSAT single scan data over land within a 5° radius latitude/ longitude circle centered at each of 12 TCCON stations. The ground-based TCCON data were mean values measured within plus/minus 1 hour of the GOSAT overpass time. We use the latest version of PPDF-based method that retrieves simultaneously gas abundance and light path modification through the atmosphere. The radiance spectra from all three GOSAT SWIR bands (0.76 ?m; 1.6 ?m and 2.0 ?m) were used to retrieve CO2 and basic PPDF parameters that described light path shortening and light path lengthening. The retrieval state vector also included vertical profile of CO2 mixing ratio; scaling factor of prior water vapor profile; and stretch factor for adjusting the position of the wave-number grids. Temperature and surface pressure data were prescribed and provided by Japan Meteorological Agency. For the methane retrievals we processed radiance spectra in 1.67-?m absorption band using PPDF parameters derived from simultaneous CO2 and PPDF retrievals. In particular, a statistical pairwise comparison between GOSAT and TCCON coincident measurements of CO2 column abundance (over 3500 GOSAT single scans) performed with the weighed least squares fit showed a correlation coefficient 0.8; a standard deviation of 1.9 ppm, negative bias of 0.4 ppm; and slope of 1.04 for the slope-intercept form of the linear regression. After a posteriori bias correction these characteristics were 0.9; 1.65 ppm; 0.01 ppm; and 0.99, respectively.

  18. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    EPA Science Inventory

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  19. LONG PATH DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER AND EPA-APPROVED FIXED POINT METHODS INTERCOMPARISON

    EPA Science Inventory

    Differential optical absorption spectrometry (DOAS) has been used by a number of investigators over the past 10 years to measure a wide range of gaseous air pollutants. ecently OPSIS AB, Lund, Sweden, has developed and made commercially available DOAS instrument that has a number...

  20. A stochastic simulation of the propagation of Galactic cosmic rays reflecting the discreteness of cosmic ray sources Age and path length distribution

    NASA Astrophysics Data System (ADS)

    Miyake, S.; Muraishi, H.; Yanagita, S.

    2015-01-01

    Aims: The path length distribution of Galactic cosmic rays (GCRs) is the fundamental ingredient for modeling the propagation process of GCRs based on the so-called weighted slab method. We try to derive this distribution numerically by taking into account the discreteness in both space and time of occurrences of supernova explosions where GCRs are suspected to be born. The resultant age distribution and ratio of B/C are to be compared with recent observations. Methods: We solve numerically the stochastic differential equations equivalent to the Parker diffusion-convection equation which describes the propagation process of GCR in the Galaxy. We assume the three-dimensional diffusion is an isotropic one without any free escape boundaries. We ignore any energy change of GCRs and the existence of the Galactic wind for simplicity. We also assume axisymmetric configurations for the density distributions of the interstellar matter and for the surface density of supernovae. We have calculated age and path length of GCR protons arriving at the solar system with this stochastic method. The obtained age is not the escape time of GCRs from the Galaxy as usually assumed, but the time spent by GCRs during their journey to the solar system from the supernova remnants where they were born. Results: The derived age and path length show a distribution spread in a wide range even for GCR protons arriving at the solar system with the same energy. The distributions show a cut-off at a lower range in age or path length depending on the energy of GCRs. These cut-offs clearly come from the discreteness of occurrence of supernovae. The mean age of GeV particles obtained from the distributions is consistent with the age obtained by direct observation of radioactive secondary nuclei. The energy dependence of the B/C ratio estimated with the path length distribution reproduces reliably the energy dependence of B/C obtained by recent observations in space.

  1. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  2. Monitoring complex trace-gas mixtures by long-path laser absorption spectrometry. [in long duration manned mission closed environments

    NASA Technical Reports Server (NTRS)

    Green, B. D.; Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods, which have been proposed for the detection of trace concentrations of gaseous contaminants, include Raman and passive radiometry. The paper discusses a simple long-path laser absorption method which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels. A number of species were selected which are most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Absorption coefficients at CO2 laser wavelengths were measured, accurate to + 3 per cent or better, for each of these species. This data base was then used to determine the presence and concentration of the contaminants in prepared mixtures of 12 to 15 gases. Computer programs have been developed which will permit a real-time analysis of the monitored atmosphere. Minimum detectable concentrations for individual species are generally in the ppm range, and are not seriously degraded by interferences even in complex mixtures. Estimates of the dynamic range of this monitoring technique for various system configurations and comparison with other methods of analysis are discussed

  3. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Habershon, Scott; Fanourgakis, George S.; Manolopoulos, David E.

    2008-08-01

    The ring polymer molecular dynamics (RPMD) and partially adiabatic centroid molecular dynamics (PA-CMD) methods are compared and contrasted in an application to the infrared absorption spectrum of a recently parametrized flexible, polarizable, Thole-type potential energy model for liquid water. Both methods predict very similar spectra in the low-frequency librational and intramolecular bending region at wavenumbers below 2500 cm-1. However, the RPMD spectrum is contaminated in the high-frequency O-H stretching region by contributions from the internal vibrational modes of the ring polymer. This problem is avoided in the PA-CMD method, which adjusts the elements of the Parrinello-Rahman mass matrix so as to shift the frequencies of these vibrational modes beyond the spectral range of interest. PA-CMD does not require any more computational effort than RPMD and it is clearly the better of the two methods for simulating vibrational spectra.

  4. An Alternative Solution for Modelling Lava Flow Path and Length: applied for hazard assessment at Hekla and Eyjafjallajökull, Iceland 

    E-print Network

    O'Hara, Mhairi

    2012-08-08

    This paper describes the development of a model that determines the flow path of lava by processing a DEM and estimates the maximum distance it will attain based on the average discharge rate. The effusive eruptions that ...

  5. Delivery Path Length and Holding Tree Minimization Method of Securities Delivery among the Registration Agencies Connected as Non-Tree

    NASA Astrophysics Data System (ADS)

    Shimamura, Atsushi; Moritsu, Toshiyuki; Someya, Harushi

    To dematerialize the securities such as stocks or cooporate bonds, the securities were registered to account in the registration agencies which were connected as tree. This tree structure had the advantage in the management of the securities those were issued large amount and number of brands of securities were limited. But when the securities such as account receivables or advance notes are dematerialized, number of brands of the securities increases extremely. In this case, the management of securities with tree structure becomes very difficult because of the concentration of information to root of the tree. To resolve this problem, using the graph structure is assumed instead of the tree structure. When the securities are kept with tree structure, the delivery path of securities is unique, but when securities are kept with graph structure, path of delivery is not unique. In this report, we describe the requirement of the delivery path of securities, and we describe selecting method of the path.

  6. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  7. CHARM-F: An airborne integral path differential absorption lidar for simultaneous measurements of carbon dioxide and methane columns

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Büdenbender, H.-C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Hoffmann, D.; Löhring, J.; Klein, V.

    2012-04-01

    CHARM-F (CO2 and CH4 Atmospheric Remote Monitoring - Flugzeug) is DLR's airborne Integral Path Differential Absorption (IPDA) lidar for simultaneous measurements of the column-weighted average dry-air mixing ratios of atmospheric carbon dioxide and methane, designed to be flown on DLR's new High-Altitude, LOng-range research aircraft, HALO. It is meant to serve as a demonstrator of the use of spaceborne active optical instruments in inferring atmospheric CO2 and CH4 surface fluxes from total column measurements by inverse modeling. As it will be shown, this is enabled by HALO's high flight altitude and its range of 8000 km, which will make it possible to produce real-world data at truly regional scales with a viewing geometry and vertical weighting function similar to those enabled by a space platform. In addition, CHARM-F has the potential to be used as a validation tool not only for active but also passive spaceborne instruments utilizing scattered solar radiation for remote sensing of greenhouse gases. Building on the expertise from CHARM, a helicopter-borne methane IPDA lidar for pipeline monitoring developed in collaboration with E.ON, and WALES, DLR's water vapour differential absorption lidar, CHARM-F relies on a double-pulse transmitter architecture producing nanosecond pulses which allows for a precise ranging and a clean separation of atmospheric influences from the ground returns leading to an unambiguously defined column. One pulse is tuned to an absorption line of the trace gas under consideration, the other to a nearby wavelength with much less absorption. The close temporal separation of 250 ?s within each pulse pair ensures that nearly the same spot on ground is illuminated. The ratio of both return signals is then a direct function of the column-weighted average dry-air mixing ratio. The two laser systems, one for each trace gas, use highly efficient and robust Nd:YAG lasers to pump an optical parametric oscillator (OPO) level which converts the pump radiation to the desired wavelengths. Because typical surface CO2 and CH4 sources and sinks alter the total column only by a few percent, the required precision and accuracy are very stringent. This puts particularly challenging requirements on the spectral properties of the emitted pulses. To achieve single mode operation with very high spectral purity, both pumps and OPOs are injection seeded. Absolute stability of the emitted wavelengths is achieved by locking the seed lasers to the same absorption lines as those used in the atmosphere by means of a single absorption cell filled with a mixture of CO2 and CH4, and monitoring the wavelength deviations between each outgoing laser pulse and the corresponding seed laser to detect and correct for possible mode pulling effects. Another key requirement is the monitoring of the relative outgoing pulse energies with high accuracy, which is based on a specifically designed optical architecture. Assembly and laboratory tests of the instrument are on-going, the first ground tests are planned for summer 2012.

  8. Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy

    PubMed Central

    Pöhler, Denis; Vogel, Leif; Frieß, Udo; Platt, Ulrich

    2010-01-01

    In the polar tropospheric boundary layer, reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. After polar sunrise, air masses enriched in reactive bromine cover areas of several million square kilometers. Still, the source and release mechanisms of halogens are not completely understood. We report measurements of halogen oxides performed in the Amundsen Gulf, Arctic, during spring 2008. Active long-path differential optical absorption spectroscopy (LP-DOAS) measurements were set up offshore, several kilometers from the coast, directly on the sea ice, which was never done before. High bromine oxide concentrations were detected frequently during sunlight hours with a characteristic daily cycle showing morning and evening maxima and a minimum at noon. The, so far, highest observed average mixing ratio in the polar boundary layer of 41 pmol/mol (equal to pptv) was detected. Only short sea ice contact is required to release high amounts of bromine. An observed linear decrease of maximum bromine oxide levels with ambient temperature during sunlight, between -24 °C and -15 °C, provides indications on the conditions required for the emission of RHS. In addition, the data indicate the presence of reactive chlorine in the Arctic boundary layer. In contrast to Antarctica, iodine oxide was not detected above a detection limit of 0.3 pmol/mol. PMID:20160121

  9. Global observations of atmospheric CH4 by Integrated Path Differential-Absorption Lidar: the French-German Climate Monitoring Initiative

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Flamant, Pierre; Ciais, Philippe; Fabien, Gibert; Amediek, Axel; Kiemle, Christoph; Fix, Andreas; Quatrevalet, Mathieu; Wirth, Martin

    Atmospheric methane (CH4) is a powerful greenhouse gas, which has a Greenhouse Warming Potential (GWP) of 25 relative to CO2 on a time scale of 100 years. Despite the fact that the imbalance between the sources and sinks has decreased in the early 1990's to an insignificant value, a significant renewal of the CH4 growth is reported in recent years. Questions arise whether an increase of atmospheric CH4 might be fostered through melting of permafrost soil in the Arctic region or arise from changes of the tropical wetlands which comprise the biggest natural methane source. Another reason could be the change in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The French-German Climate Monitoring Initiative, which has recently been selected to undergo Phase0/A studies in a joint project by the space agencies CNES (France)and DLR (Germany), targets on satellite observations of atmospheric CH4 for the improvement of our knowledge on regional to synoptic scale CH4 sources on a global basis. As a novel feature, the observational instrument of this mission will be an Integrated Path Differential-Absorption (IPDA) Lidar system embarked on board of the French Myriade platform for the measurement of the column-weighted dry-air mixing ratio of CH4 in a nadir viewing configuration. This data will be provided by the lidar technique with no bias due to particles scattering in the light path and can directly be used as input for flux inversion models. In our presentation we will discuss the observational principle and the sampling strategy of the envisaged mission in connection to the needs for CH4 flux inversion experiments. In addition, we report on supporting campaign activities on airborne measurements of Lidar reflectivity data in the respective spectral region. The airborne data is of prime interest for the generation of pseudo CH4 data examples using the satellite instrument in order to address questions how to optimally aggregate the satellite measurements for maximum information content and minimum error. The field campaign was funded by the European Space Agency (ESA) in the framework of the A-SCOPE mission evaluation activity on active remote sensing of CO2 from space-borne platform.

  10. Using water Raman intensities to determine the effective excitation and emission path lengths of fluorophotometers for correcting fluorescence inner filter effect.

    PubMed

    Nettles, Charles B; Hu, Juan; Zhang, Dongmao

    2015-01-01

    Fluorescence and Raman inner filter effects (IFE) cause spectral distortion and nonlinearity between spectral signal intensity with increasing analyte concentration. Convenient and effective correction of fluorescence IFE has been an active research goal for decades. Presented herein is the finding that fluorescence and Raman IFE can be reliably corrected using the equation I(corr)/I(obsd) = 10(dxAx + dmAm) when the effective excitation and emission path lengths, dx and dm, of a fluorophotometer are determined by simple linear curve-fitting of Raman intensities of a series of water Raman reference samples that have known degrees of Raman IFEs. The path lengths derived with one set of Raman measurements at one specific excitation wavelength are effective for correcting fluorescence and Raman IFEs induced by any chromophore or fluorophore, regardless of the excitation and emission wavelengths. The IFE-corrected fluorescence intensities are linearly correlated to fluorophore concentration over 5 orders of magnitude (from 5.9 nM to 0.59 mM) for 2-aminopurine in a 1 cm × 0.17 cm fluorescence cuvette. This water Raman-based method is easy to implement. It does not involve complicated instrument geometry determination or difficult data manipulation. This work should be of broad significance to physical and biological sciences given the popularity of fluorescence techniques in analytical applications. PMID:25864855

  11. Synchrotron radiation and long path cryogenic cells: New tools and results for modelling SF6 absorption in the 10?m atmospheric window

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Boudon, Vincent; Loete, Michel; Roy, Pascale; Manceron, Laurent

    2015-04-01

    Sulfur hexa?uoride (SF6) is a heavy and stable molecule used in many sectors, such as the electrical industry, but also as a gas tracer to model air masse motions in the Earth atmosphere. This anthropogenic species is also an atmospheric pollutant owing to its greenhouse effect capability. Although its six fundamental modes have been largely studied up to now, it is not the case for the numerous hot bands that represent the most important part of the SF6 spectrum at room temperature. So, to model correctly the SF6 atmospheric absorption requires the knowledge of the spectroscopic parameters of all states involved in these hot bands. Nevertheless, due to their overlapping, a direct analysis of the hot bands near the 10,5?m absorption of SF6 in the atmospheric window is not possible. It is necessary to use another strategy, gathering information in the far and mid infrared regions on initial and final states to recompute the relevant total absorption. Here, we present new results of an analysis of spectra recorded at the AILES beam line at the SOLEIL Synchrotron facility. For these measurements, we used a IFS125HR interferometer in the 100 - 3200 cm-1 range, coupled to a cryogenic multiple pass cell [1]. The optical path length was adjusted to 93m; the SF6 sample was cooled down to 153 K. We could record 17 rovibrational bands of SF6 in this region with a resolution of 0.0025 cm-1. These results allowed us to perform the detailed analysis of several bands. Adding to previous knowledge on ?3, ?2, 2?3 and new results on 3?3, 2?1 + ?3, ?1 + ?3, ?2 + ?3, ?3 - ?2 , ?3 - ?1 , we developed a global fit of the ?1, ?2, ?3 parameters, thus permitting the modelling of the ?3 + ?1 - ?1, ?3 + ?2 - ?2 hot bands. New information has also been obtained on ?6 and ?3 + ?5 and another strategy will be detailed to model the more important ?3 + ?5 - ?5 and ?3 + ?6 - ?6 hot band contributions. Including these new parameters in the XTDS model [2], we substantially improved the previous global fit [3] of SF6 parameters. [1] F. Kwabia Tchana, F. Willaert, X. Landsheere, J.- M. Flaud, L. Lago, M. Chapuis, P. Roy, L. Manceron. A new, low temperature long-pass cell for mid-IR to THz Spectroscopy and Synchrotron Radiation Use. Rev. Sci. Inst. 84, 093101, (2013). [2] C. Wenger, V. Boudon, M. Rotger, M. Sanzharov, and J.-P. Champion, 'XTDS and SPVIEW: Graphical tools for Analysis and Simulation of High Resolution Molecular Spectra', J. Mol. Spectrosc. 251, 102 (2008). [3] M. Faye, A. Le Ven, V. Boudon, L. Manceron, P. Asselin, P. Soulard, F. Kwabia Tchana, P. Roy, High-Resolution spectroscopy of difference and combination bands of SF6 to elucidate the ?3 + ?1 - ?1 and ?3+ ?2 - ?2hot band structures in the ?3 region, Mol. Phys. 112, 909059 (2014).

  12. Application of Newton's method to determine the focal length of lenses using a lateral shearing interferometer and cyclic path optical configuration setup

    NASA Astrophysics Data System (ADS)

    Kumar, Y. Pavan; Chatterjee, Sanjib

    2010-05-01

    We present a technique for the focal length measurement of lenses applying Newton's method, using a cyclic path optical configuration (CPOC) and a wedge shear plate (WSP). Two point sources of orthogonal linearly polarized light waves that have a known longitudinal separation between them are generated using CPOC. Selecting a particular state of polarization (s or p), the corresponding point source is made to coincide with the back focal point of the test lens (TL). The collimation of the output beam from TL is tested using the WSP. With a change in the state of polarization, a spherical wavefront would emerge from TL because the corresponding point source is situated slightly away from the focal plane of TL. The radius of curvature of the emerging spherical wavefront from TL approximated as image distance is evaluated by analyzing the shear fringes produced by WSP. Appropriate formulae for the determination of the focal length of TL, from the image distance and known longitudinal separation between the sources, are derived using Newton's method. Results obtained for a positive doublet lens of nominal focal length of 500.0 mm is presented.

  13. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in ?-Fe

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Solanki, K. N.; Gao, F.; Sun, X.; Khaleel, M. A.; Horstemeyer, M. F.

    2012-02-01

    The energetics and length scales associated with the interaction between point defects (vacancies and self-interstitial atoms) and grain boundaries in bcc Fe was explored. Molecular statics simulations were used to generate a grain boundary structure database that contained ?170 grain boundaries with varying tilt and twist character. Then, vacancy and self-interstitial atom formation energies were calculated at all potential grain boundary sites within 15 Å of the boundary. The present results provide detailed information about the interaction energies of vacancies and self-interstitial atoms with symmetric tilt grain boundaries in iron and the length scales involved with absorption of these point defects by grain boundaries. Both low- and high-angle grain boundaries were effective sinks for point defects, with a few low-? grain boundaries (e.g., the ?3{112} twin boundary) that have properties different from the rest. The formation energies depend on both the local atomic structure and the distance from the boundary center. Additionally, the effect of grain boundary energy, disorientation angle, and ? designation on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energy and the mean point defect formation energies. Based on point defect binding energies, interstitials have ?80% more grain boundary sites per area and ?300% greater site strength than vacancies. Last, the absorption length scale of point defects by grain boundaries is over a full lattice unit larger for interstitials than for vacancies (mean of 6-7 Å versus 10-11 Å for vacancies and interstitials, respectively).

  14. First- and zero-sound velocity and Fermi liquid parameter F{sub 2}{sup s} in liquid {sup 3}He determined by a path length modulation technique

    SciTech Connect

    Hamot, P.J.; Lee, Y.; Sprague, D.T.

    1995-06-01

    We have measured the velocity of first- and zero-sound in liquid {sup 3}He at 12.6 MHz over the pressure range of 0.6 to 14.5 bar using a path length modulation technique that we have recently developed. From these measurements, the pressure dependent value of the Fermi liquid parameter F{sub 2}{sup s} was calculated and found to be larger at low pressure than previously reported. These new values of F{sub 2}{sup s} indicate that transverse zero-sound is a propagating mode at all pressures. The new values are important for the interpretation of the frequencies of order parameter collective modes in the superfluid phases. The new acoustic technique permits measurements in regimes of very high attenuation with a sensitivity in phase velocity of about 10 ppm achieved by a feedback arrangement. The sound velocity is thus measured continuously throughout the highly attenuating crossover ({omega}t {approx} 1) regime, even at the lowest pressures.

  15. Correlation of electron path lengths observed in the highly wound outer region of magnetic clouds with the slab fraction of magnetic turbulence in the dissipation range

    SciTech Connect

    Tan, Lun C.; Shao, Xi; Reames, Donald V.; Ng, Chee K.; Wang, Linghua

    2014-05-10

    Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (?27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts. The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ?1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ?6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ?100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.

  16. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  17. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions. PMID:20019398

  18. THz Laboratory Measurements of Atmospheric Absorption Between 6% and 52% Relative Humidity

    E-print Network

    Massachusetts at Lowell, University of

    1 THz Laboratory Measurements of Atmospheric Absorption Between 6% and 52% Relative Humidity path length for relative humidity values ranging from 6% to 52%. Absorption coefficient values were calculated as a function of relative humidity, for the atmospheric windows in this region. Introduction THz

  19. Intercomparing CO2 amounts from dispersion modeling, 1.6 ?m differential absorption lidar and open path FTIR at a natural CO2 release at Caldara di Manziana, Italy

    NASA Astrophysics Data System (ADS)

    Queißer, M.; Granieri, D.; Burton, M.; La Spina, A.; Salerno, G.; Avino, R.; Fiorani, L.

    2015-04-01

    We intercompare results of three independent approaches to quantify a vented CO2 release at a strongly non-uniform CO2 Earth degassing at Caldara di Manziana, central Italy. An integrated path differential absorption lidar prototype and a commercial open path FTIR system were measuring column averaged CO2 concentrations in parallel at two different paths. An Eulerian gas dispersion model simulated 3-D CO2 concentration maps in the same area, using in situ CO2 flux input data acquired at 152 different points. Local processes the model does not account for, such as small-scale and short-lived wind eddies, govern CO2 concentrations in the instrument measurement paths. The model, on the other hand, also considers atmospheric effects that are out of the field of view of the instruments. Despite this we find satisfactory agreement between modeled and measured CO2 concentrations under certain meteorological conditions. Under these conditions the results suggest that an Eulerian dispersion model and optical remote sensing can be used as an integrated, complementary monitoring approach for CO2 hazard or leakage assessment. Furthermore, the modeling may assist in evaluating CO2 sensing surveys in the future. CO2 column amounts from differential absorption lidar are in line with those from FTIR for both paths with a mean residual of the time series of 44 and 34 ppm, respectively. This experiment is a fundamental step forward in the deployment of the differential absorption lidar prototype as a highly portable active remote sensing instrument probing vented CO2 emissions, including volcanoes.

  20. Cross-Validation of Open-Path and Closed-Path Eddy-Covariance Techniques for Observing Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Iwata, Hiroki; Kosugi, Yoshiko; Ono, Keisuke; Mano, Masayoshi; Sakabe, Ayaka; Miyata, Akira; Takahashi, Kenshi

    2014-04-01

    Methane () fluxes observed with the eddy-covariance technique using an open-path analyzer and a closed-path analyzer in a rice paddy field were evaluated with an emphasis on the flux correction methodology. A comparison of the fluxes obtained by the analyzers revealed that both the open-path and closed-path techniques were reliable, provided that appropriate corrections were applied. For the open-path approach, the influence of fluctuations in air density and the line shape variation in laser absorption spectroscopy (hereafter, spectroscopic effect) was significant, and the relative importance of these corrections would increase when observing small fluxes. A new procedure proposed by Li-Cor Inc. enabled us to accurately adjust for these effects. The high-frequency loss of the open-path analyzer was relatively large (11 % of the uncorrected covariance) at an observation height of 2.5 m above the canopy owing to its longer physical path length, and this correction should be carefully applied before correcting for the influence of fluctuations in air density and the spectroscopic effect. Uncorrected fluxes observed with the closed-path analyzer were substantially underestimated (37 %) due to high-frequency loss because an undersized pump was used in the observation. Both the bandpass and transfer function approaches successfully corrected this flux loss. Careful determination of the bandpass frequency range or the transfer function and the cospectral model is required for the accurate calculation of fluxes with the closed-path technique.

  1. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Wang, Xiaolong; Lin, Cheyun; Chen, Ray T.

    2011-01-01

    We experimentally demonstrate a 300 ?m long silicon photonic crystal slot waveguide near-infrared absorption spectrometer. Based on Beer-Lambert absorption law, our on-chip absorption spectrometer combines slow light in a photonic crystal waveguide with a high electric field intensity in a low-index 75 nm wide slot, which effectively increases the optical absorption path length of the analyte. We demonstrate near-infrared absorption spectroscopy of xylene in water, with a polydimethyl siloxane sensing phase for xylene extraction from water. Xylene concentrations up to 100 ppb (parts per billion) (86 ?g/l) in water were measured.

  2. Photonic crystal slot waveguide for high sensitivity on-chip near-infrared optical absorption spectroscopy of xylene in water

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Wang, Xiaolong; Lin, Che-Yun; Chen, Ray T.

    2011-06-01

    We experimentally demonstrate a 300?m long silicon photonic crystal slot waveguide for on-chip near-infrared absorption spectroscopy. Based on the Beer-Lambert absorption law, our device combines slow light in photonic crystal waveguide with high electric field intensity in low-index 75nm wide slot, which effectively increases the optical absorption path length of the analyte. We demonstrate near-infrared absorption spectroscopy of xylene in water, independent of near-infrared absorption signatures of water, with a hydrophobic PDMS sensing phase that extracts xylene from water. Xylene concentrations up to 100ppb (parts per billion) (86?g/L) in water were measured.

  3. Azimuthal Anisotropy of pi Production in Au+Au Collisions at s_NN = 200 GeV: Path-length Dependence of Jet-Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; PHENIX, Collaboration

    2010-01-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1 < p{sub T} < 18 GeV/c for Au+Au collisions at {radical}s{sub NN} = 200 GeV. The observed anisotropy shows a gradual decrease for 3 {approx}< p {approx}< 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least {approx}10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  4. Azimuthal Anisotropy of {pi}{sup 0} Production in Au+Au Collisions at {radical}(s{sub NN})=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Linden Levy, L. A.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Datta, A.

    2010-10-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  5. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy

    E-print Network

    Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero.6320, 010.1280. 1. Introduction Recently developed quantum-cascade lasers1 have been demonstrated

  6. Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal

    E-print Network

    John, Sajeev

    Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal Ping Kuang,1-cubic photonic-crystal. PIR is an acutely negative refraction of light inside a photonic- crystal, leading to light-bending by nearly 90 deg over broad wavelengths (). The consequence is a longer path length

  7. Integration of Fluorescence Differential Path-Length Spectroscopy to Photodynamic Therapy of the Head and Neck Tumors is Useful in Monitoring Clinical Outcome

    NASA Astrophysics Data System (ADS)

    Karakullukcu, Baris; Kanick, Stephen; Aans, Jan Bonne; Sterenborg, Henricus; Tan, Bing; Amelink, Arjen; Robinson, Dominic

    2015-04-01

    The use of fluorescence differential pathlength spectroscopy (FDPS) has the potential to provide real-time information on photosensitiser pharmacokinetics, vascular physiology and photosensitizer photobleaching based dosimetry of tumors in the oral cavity receiving m-tetrahydroxyphenylchlorin (mTHPC) photodynamic therapy (PDT). Reflectance spectra can be used provide quantitative values of oxygen saturation, blood volume fraction, blood vessel diameter, and to determine the local optical properties that can be used to correct raw fluorescence for tissue absorption. Patients and methods: Twenty-seven lesions in the oral cavity, either dysplasias or cancer were interrogated using FDPS, before and immediately after the therapeutic illumination. The average tumor center to normal mucosa ratio of fluorescence was 1.50 ± 0.66. mTHPC photobleaching was observed in 24 of the lesions treated. The average extent of photobleaching was 81% ± 17%. Information from FDPS spectroscopy coupled with the clinical results of the treatment identified 3 types of correctable errors in the application of mTHPC-PDT: Two patients exhibited very low concentrations of photosensitizer in tumour center, indicating an ineffective i.v. injection of photosensitiser or an erroneous systemic distribution of mTHPC. In one in tumor we observed no photobleaching accompanied by a high blood volume fraction in the illuminated tissue, suggesting that the presence of blood prevented therapeutic light reaching the target tissue. All 3 of the these lesions had no clinical response to PDT. In four patients we observed less than 50% photobleaching at the tumor margins , suggesting a possible geographic miss. One patient in this group had a recurrence within 2 months after PDT even though the initial response was good. The integration of FDPS to clinical PDT yields data on tissue physiology, photosensitiser content and photobleaching that can help identify treatment errors that can potentially be corrected.

  8. Absorption spectroscopy in the ultraviolet and visible spectral range of hexavalent chromium aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Spadoni, Lorenzo

    1999-09-01

    In order to demonstrate the possibility of performing direct absorption spectroscopy of Hexavalent Chromium aqueous solutions, absorption measurements were performed at the dual- beam spectrophotometer in the 250 - 850 nm spectral range, with 10 mm and 100 mm path lengths. Low concentration (26 - 520 (mu) g/l) (and high concentration (2.6 - 52 mg/l) solutions were analyzed, showing that it is possible to implement a basic instrumentation for risk condition monitoring and a more advanced instrumentation for quantitative measurements.

  9. SIGNIFICANCES OF THE VARIABILITY OF AIRWAY PATHS AND THEIR AIR FLOW RATES TO DOSIMETRY MODEL PREDICTIONS OF THE ABSORPTION OF GASES

    EPA Science Inventory

    The ozone dosimetry model developed at EPA was developed to be used in conjunction with species lung models that summarize the structure of a lung as a lung of many equivalent paths. The paper reports the results of a preliminary study into the question of whether or not more rea...

  10. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution.

    PubMed

    Moreno, J; Dobryakov, A L; Ioffe, I N; Granovsky, A A; Hecht, S; Kovalenko, S A

    2015-07-14

    1-photon (382 nm) and 2-photon (752 nm) excitations to the S1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S1 ? Sn due to resonant absorption of a third pump photon. Subsequent Sn ? S1 internal conversion (with ?1 = 1 ps) prepares a very hot S1 state which cools down with ?2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections ?(2) = 32 ? 10(-50) cm(4) s at 752 nm are evaluated from the bleach signal. PMID:26178109

  11. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide.

    PubMed

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Wang, Xiaolong; Lin, Cheyun; Chen, Ray T

    2011-03-15

    We demonstrate a 300??m long silicon photonic crystal (PC) slot waveguide device for on-chip near-infrared absorption spectroscopy, based on the Beer-Lambert law for the detection of methane gas. The device combines slow light in a PC waveguide with high electric field intensity in a low-index 90?nm wide slot, which effectively increases the optical absorption path length. A methane concentration of 100?ppm (parts per million) in nitrogen was measured. PMID:21403750

  12. Path Finder

    Energy Science and Technology Software Center (ESTSC)

    2014-01-07

    PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

  13. Global sampling of the photochemical reaction paths of bromoform by ultrafast deep-UV through near-IR transient absorption and ab initio multiconfigurational calculations

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Mereshchenko, A. S.; Butaeva, E. V.; El-Khoury, P. Z.; Tarnovsky, A. N.

    2013-03-01

    Ultrafast deep-ultraviolet through near infrared (210-950 nm) transient absorption spectroscopy complemented by ab initio multiconfigurational calculations offers a global description of the photochemical reaction pathways of bromoform following 255-nm excitation in methylcyclohexane and acetonitrile solutions. Photoexcitation of CHBr3 leads to the ground-state iso-CHBr3 product in a large quantum yield (˜35%), formed through two different mechanisms: concerted excited-state isomerization and cage-induced isomerization through the recombination of the nascent radical pair. These two processes take place on different time scales of tens of femtoseconds and several picoseconds, respectively. The novel ultrafast direct isomerization pathway proposed herein is consistent with the occurrence of a conical intersection between the first excited singlet state of CHBr3 and the ground electronic state of iso-CHBr3. Complete active space self-consistent field calculations characterize this singularity in the vicinity of a second order saddle point on the ground state which connects the two isomer forms. For cage-induced isomerization, both the formation of the nascent radical pair and its subsequent collapse into ground-state iso-CHBr3 are directly monitored through the deep-ultraviolet absorption signatures of the radical species. In both mechanisms, the optically active (i.e., those with largest Franck-Condon factors) C-Br-Br bending and Br-Br stretching modes of ground-state iso-CHBr3 have the largest projection on the reaction coordinate, enabling us to trace the structural changes accompanying vibrational relaxation of the non-equilibrated isomers through transient absorption dynamics. The iso-CHBr3 photoproduct is stable in methylcyclohexane, but undergoes either facile thermal isomerization to the parent CHBr3 structure through a cyclic transition state stabilized by the polar acetonitrile medium (˜300-ps lifetime), and hydrolysis in the presence of water.

  14. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  15. Near-infrared optical-absorption behavior in high-beta nonlinear optical chromophore-polymer guest-host materials. II. Dye spacer length effects in an amorphous polycarbonate copolymer host

    NASA Astrophysics Data System (ADS)

    Barto, Richard R.; Frank, Curtis W.; Bedworth, Peter V.; Ermer, Susan; Taylor, Rebecca E.

    2005-06-01

    In the second of a three-part series, spectral absorption behavior of nonlinear optical (NLO) dyes incorporated into amorphous polycarbonate, comprised of a homologous series of dialkyl spacer groups extending from the midsection of the dye molecule, is characterized by UV-Vis and photothermal deflection spectroscopy. The dyes are structural analogs of the NLO dye FTC [2-(3-cyano-4-{2-[5-(2-{4-[ethyl-(2-methoxyethyl)amino]phenyl}vinyl)-3,4-diethylthiophen-2-yl]vinyl}-5,5-dimethyl-5H-furan-2-ylidene)malononitrile]. Previous Monte Carlo calculations [B. H. Robinson and L. R. Dalton, J. Phys. Chem. A 104, 4785 (2000)] predict a strong dependence of the macroscopic nonlinear optical susceptibility on the chromophore waist: length aspect ratio in electric-field-poled films arising from interactions between chromophores. It is expected that these interactions will play a role in the absorption characteristics of unpoled films, as well. The spacer groups range in length from diethyl to dihexyl, and each dye is studied over a wide range of concentrations. Among the four dyes studied, a universal dependence of near-IR loss on inhomogeneous broadening of the dye main absorption peak is found. The inhomogeneous width and its concentration dependence are seen to vary with spacer length in a manner characteristic of the near-IR loss-concentration slope at transmission wavelengths of 1.06 and 1.3?m, but not at 1.55?m. The lower wavelength loss behavior is assigned to purely Gaussian broadening, and is described by classical mixing thermodynamic quantities based on the Marcus theory of inhomogeneous broadening [R. A. Marcus, J. Chem. Phys. 43, 1261 (1965)], modeled as a convolution of dye-dye dipole broadening and dye-polymer van der Waals broadening. The Gaussian dipole interactions follow a Loring dipole-broadening description [R. F. Loring, J. Phys. Chem. 94, 513 (1990)] dominated by the excited-state dipole moment, and have a correlated homogeneous broadening contribution. The long-wavelength loss behavior has a non-Gaussian dye-dye dipole contribution which follows Kador's broadening analysis [L. Kador, J. Chem. Phys. 95, 5574 (1991)], with a net broadening described by a convolution of this term with a Gaussian van der Waals interaction given by Obata et al. [M. Obata, S. Machida, and K. Horie, J. Polym. Sci. B 37, 2173 (1999)], with each term governed by the dye spacer length. A minimum in broadening and loss-concentration slope at a spacer length of four carbons per alkyl at all wavelengths has important consequences for practical waveguide devices, and is of higher aspect ratio than the spherical limit shown by Robinson and Dalton to minimize dipole interactions under a poling field.

  16. Time optimal paths for high speed maneuvering

    SciTech Connect

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  17. Path ANalysis

    Energy Science and Technology Software Center (ESTSC)

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore »courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less

  18. Counting paths in digraphs

    SciTech Connect

    Sullivan, Blair D; Seymour, Dr. Paul Douglas

    2010-01-01

    Say a digraph is k-free if it has no directed cycles of length at most k, for k {element_of} Z{sup +}. Thomasse conjectured that the number of induced 3-vertex directed paths in a simple 2-free digraph on n vertices is at most (n-1)n(n+1)/15. We present an unpublished result of Bondy proving there are at most 2n{sup 3}/25 such paths, and prove that for the class of circular interval digraphs, an upper bound of n{sup 3}/16 holds. We also study the problem of bounding the number of (non-induced) 4-vertex paths in 3-free digraphs. We show an upper bound of 4n{sup 4}/75 using Bondy's result for Thomasse's conjecture.

  19. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  20. Tapped-Hole Vent Path

    NASA Technical Reports Server (NTRS)

    Chandler, J. A.

    1983-01-01

    Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.

  1. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  2. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E. (Bedford, MA); Bien, Fritz (Concord, MA); Bernstein, Lawrence S. (Bedford, MA)

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  3. Thermooptic-based differential measurements of weak solute absorptions with an interferometer.

    PubMed

    Cremers, D A; Keller, R A

    1982-05-01

    An interferometric method of measuring small differences between weak optical absorptions of solutions has been developed using the thermooptic effect. To record the small changes in optical path length ~lambda/200 due to heating, it was necessary to stabilize the fringe pattern with respect to slow thermal drift using a galvanometer-driven compensator plate controlled by a closed feedback loop. Fringe shifts from background absorptions were nulled out to better than 1 part in 400, permitting the measurement of differences in absorptions between two solutions that were l/100th of background. Using laser powers of 100 mW, absorptions approximately 5 x 10(-6) cm(-1) (base e) could be measured with CC1(4) solutions. PMID:20389912

  4. Intracavity absorption with a continuous wave dye laser: quantification for a narowband absorber

    SciTech Connect

    Brobst, W.D.; Allen J.E. Jr.

    1987-09-01

    Although it is recognized as a very sensitive detection technique, the general application of intracavity absorption to areas such as chemical kinetics and photochemistry has been somewhat limited. Concerns are frequently expressed about the nonlinear nature, experimental difficulty, and reliability of the technique. To allay some of these objections, the dependence of intracavity absorption on factors such as transition strength, concentration, absorber path length, and pump power has been investigated experimentally for a cw dye laser with a narrowband absorber (NO/sub 2/). For this case a Beer-Lambert type relationship has been confirmed over a useful range of these parameters. The extent of intracavity absorption was quantitatively measured directly from the dye laser spectral profiles and, when compared to extracavity measurements, indicated enhancements as high as 12,000 for pump powers near lasing threshold. By defining an intracavity absorption coefficient, it was possible to demonstrate the reliability of the method by obtaining accurate transition strength ratios.

  5. Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy

    PubMed Central

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a “molecular fingerprint” that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 ?m, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells. PMID:25950513

  6. Cosmological Feynman Paths

    E-print Network

    Chew, Geoffrey F

    2008-01-01

    Arrowed-time divergence-free rules or cosmological quantum dynamics are formulated through stepped Feynman paths across macroscopic slices of Milne spacetime. Slice boundaries house totally-relativistic rays representing elementary entities--preons. Total relativity and the associated preon Fock space, despite distinction from special relativity (which lacks time arrow), are based on the Lorentz group. Each path is a set of cubic vertices connected by straight, directed and stepped arcs that carry inertial, electromagnetic and gravitational action. The action of an arc step comprises increments each bounded by Planck's constant. Action from extremely-distant sources is determined by universe mean energy density. Identifying the arc-step energy that determines inertial action with that determining gravitational action establishes both arc-step length and universe density. Special relativity is accurate for physics at laboratory spacetime scales far below that of Hubble and far above that of Planck.

  7. Cosmological Feynman Paths

    E-print Network

    Geoffrey F. Chew

    2008-02-21

    Arrowed-time divergence-free rules or cosmological quantum dynamics are formulated through stepped Feynman paths across macroscopic slices of Milne spacetime. Slice boundaries house totally-relativistic rays representing elementary entities--preons. Total relativity and the associated preon Fock space, despite distinction from special relativity (which lacks time arrow), are based on the Lorentz group. Each path is a set of cubic vertices connected by straight, directed and stepped arcs that carry inertial, electromagnetic and gravitational action. The action of an arc step comprises increments each bounded by Planck's constant. Action from extremely-distant sources is determined by universe mean energy density. Identifying the arc-step energy that determines inertial action with that determining gravitational action establishes both arc-step length and universe density. Special relativity is accurate for physics at laboratory spacetime scales far below that of Hubble and far above that of Planck.

  8. Photonic sensing of the atmosphere by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojuan; Lengignon, Christophe; Tao, Wu; Zhao, Weixiong; Wysocki, Gerard; Fertein, Eric; Coeur, Cécile; Cassez, Andy; Croize, Laurence; Chen, Weidong; Wang, Yingjian; Zhang, Weijun; Gao, Xiaoming; Liu, Wenqing; Zhang, Yujun; Dong, Fengzhong

    2012-07-01

    Chemically reactive atmospheric species play a crucial role in tropospheric processes which affect regional air quality and global climate change. Contrary to long-lived species such as greenhouse gases, interference-free accurate and precise concentration assessments of strongly reactive short-lived species represent a real challenge. In this paper, we report on the recent progress in spectroscopic instrumental developments for monitoring of OH, NO3, HONO and NO2 by using modern photonic sources (Quantum Cascade Laser, distributed feedback diode laser, light emitting diode) in conjunction with high-sensitivity spectroscopic measurement techniques such as multi-pass cell based long optical path length absorption spectroscopy, wavelength-modulation enhanced off-axis integrated cavity output spectroscopy, Faraday rotation spectroscopy, incoherent broadband cavity enhanced absorption spectroscopy. The main techniques available for routine atmospheric measurements of OH, NO3 and HONO are overviewed, in comparison with the emerging modern photonic spectroscopy techniques.

  9. Precision and accuracy of miniature tunable diode laser absorption spectrometers

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Laderer, M. C.; Parameswaran, K. R.; Sonnenfroh, D. M.; Druy, M. A.

    2011-06-01

    Tunable Diode Laser Absorption Spectroscopy (TDLAS) is finding ever increasing utility for industrial process measurement and control. The technique's sensitivity and selectivity benefit continuous concentration measurement of selected analytes in complex gas mixtures. Tradeoff options among optical path length, absorption linestrength, linewidth, cross-interferences, and sampling methodology enable sensor designers to optimize detection for specific applications. This paper describes TDLAS measurement precision and accuracy limitations in emerging applications that demand increasing volumes of distributed miniaturized sensors at diminishing costs. In these situations, the TDLAS specificity is a key attribute, while high sensitivity enables novel sampling package designs with short optical pathlengths. Under these circumstances, the traditional approaches to optimizing accuracy and precision may fail if analyzer control features are sacrificed to reduce cost. We describe here a relatively simple TDLAS sensor designed to meet the needs for acceptable cost, and discuss its theory of operation along with the implications on measurement accuracy and precision.

  10. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  11. Absorption properties of soft tissue constitutents in the 900- to 1340-nm region

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Lun; Chen, Ji-Chung; Wang, Wen-Jwu

    1998-04-01

    Light in the near-IR (NIR) spectral region can penetrate relatively deep into soft tissue. In this region, the light absorption property is determined by tissue constituents, especially water, fat, and collagen, and their combination ratio. If the light absorption spectra of tissue constituents were known, the combination ratio could be determined by quantifying the light path length in different tissue constituents. In order to obtain the accurate absorption property, the absorption spectra were measured by a Shimadzu 3101-PC spectrophotometer. Since animal fat contains many kinds of fatty acid, five kinds of major fatty acid found in human fat were mixed with proper ratio as a standard sample. The results show that temperature has a stronger effect on the absorption property of water than on that of fatty acid mixture. The absorption spectrum of hog eye lens was measured to obtain the absorption property of collagen. Its absorption spectrum is quite similar to that of dry bovine gelatin. NIR spectroscopy might be useful to characterize or identify different types of soft tissue based on their major chemical composition, such as detecting a fat plaque in a muscular tissue or a tumor in a high fat content tissue.

  12. An introduction to critical paths.

    PubMed

    Coffey, Richard J; Richards, Janet S; Remmert, Carl S; LeRoy, Sarah S; Schoville, Rhonda R; Baldwin, Phyllis J

    2005-01-01

    A critical path defines the optimal sequencing and timing of interventions by physicians, nurses, and other staff for a particular diagnosis or procedure. Critical paths are developed through collaborative efforts of physicians, nurses, pharmacists, and others to improve the quality and value of patient care. They are designed to minimize delays and resource utilization and to maximize quality of care. Critical paths have been shown to reduce variation in the care provided, facilitate expected outcomes, reduce delays, reduce length of stay, and improve cost-effectiveness. The approach and goals of critical paths are consistent with those of total quality management (TQM) and can be an important part of an organization's TQM process. PMID:15739581

  13. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  14. A cryogenic circulating advective multi-pass absorption cell

    SciTech Connect

    Stockett, M. H.; Lawler, J. E.

    2012-03-15

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10{sup 7} cm{sup -3}. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  15. Path planning control

    NASA Technical Reports Server (NTRS)

    Mcroberts, Malcolm

    1990-01-01

    Viewgraphs on path planning control are presented. Topics covered include: model based path planning; sensor based path planning; hybrid path planning; proximity sensor array; and applications for fuzzy logic.

  16. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    SciTech Connect

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determined and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.

  17. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric balance measuring thrust and integrated pressure measurements along the length of the nozzle. Assessment of its value as a combustor performance evaluation tool will be conducted.

  18. Continuously variable focal length lens

    DOEpatents

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  19. Predicting Moisture Absorption in Composite Materials

    NASA Technical Reports Server (NTRS)

    Haines, J. R.

    1984-01-01

    Heat transport programs adaptable for absorption analysis. Lightweight sandwich panel specimen used for comparison of water absorption measurements with program predictions. In program model, moisture -- like heat in heat-transport problem moves through variety of materials and structures along complex paths.

  20. The Hubble Space Telescope Quasar Absorption Line Key Project XIII; A, Census of Absorption Line Systems at Low Redshift

    E-print Network

    Jannuzi, B T; Bergeron, J; Boksenberg, A; Hartig, G F; Kirhakos, S; Sargent, W L W; Savage, B D; Schneider, D P; Turnshek, D A; Weymann, R J; Wolfe, A M; Jannuzi, Buell T.; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.; Turnshek, David A.; Weymann, Ray J.; Wolfe, Arthur M.

    1998-01-01

    We present a catalogue of absorption lines obtained from the analysis of the ultra-violet spectra of 66 quasars. The data were acquired with the Faint Object Spectrograph of the HST as part of the Quasar Absorption Line Survey, a Key Project for the first four cycles of HST observations. This is the third of a series of catalogues of absorption lines produced from the survey and increases the number of quasars whose higher resolution (R=1300) spectra we have published from 17 to 83. The general properties and execution of the survey are reviewed, including descriptions of the final sample of observed objects and the algorithmic processes used to construct the catalogue. The detection of a single damped Ly-a system in a path length of Delta_z=49 yields an observed number of damped systems per unit redshift of (dN/dz)_{damp}(z=0.58)=0.020 with 95% confidence boundaries of 0.001 to 0.096 systems per unit redshift. We include notes on our analysis of each of the observed quasars and the absorption systems detecte...

  1. A Dirac type condition for properly coloured paths and cycles

    E-print Network

    Lo, Allan

    2010-01-01

    Let $c$ be an edge colouring of a graph $G$ such that for every vertex $v$ there is at least $d$ different colours on edges incident to $v$. We prove that $G$ contains a properly coloured path of length $2d$ or a properly coloured cycle of length at least $d+1$. Moreover, if $G$ does not contain any properly coloured cycle, then there exists a properly coloured path of length $3 \\times 2^{d-1}-2$.

  2. Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials

    SciTech Connect

    Wang, Kangpeng; Ju, Yongfeng; He, Jin; Zhang, Long E-mail: lzhang@siom.ac.cn; Wang, Jun E-mail: lzhang@siom.ac.cn; Chen, Yu; Blau, Werner J.

    2014-01-13

    Laser propagation in a tandem structure comprising carbon nanotubes and phthalocyanines is studied by Z-scan method. Due to the different mechanisms of the two materials, the laser beam can be attenuated with different absorptivities, by changing the sequence of light passing through each material. Numerical simulations considering the effect of path length and the change of nonlinear coefficient within each material are conducted for understanding the distribution of laser intensity in the tandem system and hence, fitting of the asymmetric Z-scan curves. The results are helpful for the design of nonlinear optical devices comprising multiple nonlinear materials and mechanisms.

  3. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  4. Absorption Optics of Aqueous Foams

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Ranjini; Gittings, Alex; Durian, D. J.

    2002-11-01

    Aqueous foams are composed of gas bubbles packed together in a small volume of soapy water. The large number of gas-liquid interfaces in foams results in very strong scattering of light, which explains the opaque nature of conventional aqueous foams such as shaving foams and mousse. For dry foams, the interfaces can take the following three forms: the soap films where two bubbles meet, the triangular plateau borders where three soap films meet and the vertices where four plateau borders meet. Previous experiments have shown that most of the scattering occurs from the plateau borders 2,3 and the transport mean free path of light (l*), the bubble radius (R) and the liquid fraction of foam (epsilon) is related through the relation l*=R/(epsilon0.5). To understand the reflection and scattering of light at the gas-bubble interfaces, we study the absorption of photons in the liquid network as a function of the foam absorptivity. We do this to confirm if the time spent by the photons in the liquid phase is proportional to the liquid fraction of the foam. Our results indicate that for a specific range of liquid fractions (0.05 is less than e is less than 0.1), the photons seem to get trapped in the liquid network. This result is independent of the absorptivity of the foam and leads us to conclude that under appropriate conditions, an aqueous foam behaves very much like an optical fiber network. Aqueous foam is generated in the lab by the method of turbulent mixing of N2 gas with a jet of alpha-olefin-sulfonate (AOS) solution. The foam has been made absorbing by dissolving small quantities of rhodamine dye (R = 0.005 g/l, R = 0.01 g/l and R = 0.0124 g/l) in the AOS solution. The transmission of photons through the foams of liquid fractions 0.0297 is less than e is less than 0.35 has been studied using Diffuse Transmission Spectroscopy (DTS). For each liquid fraction, the transport mean free path l* (the length over which the photon travels before it gets completely randomized) has been estimated from DTS experiments on foams with R = 0.0 g/l. In the liquid fraction range 0.05 is less than epsilon is less than 0.1, the ratio is found to be lower than the theoretical prediction. The deviation of the experimental estimates of (la)foam/(la)soln from the solid line leads us to conclude that at 0.05 is less than e is less than 0.1, the foam behaves like an optical fiber network with the photons getting trapped in and then channeled through the plateau borders. We believe that our results may be explained quantitatively by relating the reflectance of light at liquid-gas and gas-liquid interfaces to the average angles of incidence at these interfaces. Additional information is included in the original extended abstract.

  5. Opportunity's Path

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This Long Term Planning graphic was created from a mosaic of navigation camera images overlain by a polar coordinate grid with the center point as Opportunity's original landing site. The blue dots represent the rover position at various locations.

    The red dots represent the center points of the target areas for the instruments on the rover mast (the panoramic camera and miniature thermal emission spectrometer). Opportunity visited Stone Mountain on Feb. 5. Stone Mountain was named after the southernmost point of the Appalachian Mountains outside of Atlanta, Ga. On Earth, Stone Mountain is the last big mountain before the Piedmont flatlands, and on Mars, Stone Mountain is at one end of Opportunity Ledge. El Capitan is a target of interest on Mars named after the second highest peak in Texas in Guadaloupe National Park, which is one of the most visited outcrops in the United States by geologists. It has been a training ground for students and professional geologists to understand what the layering means in relation to the formation of Earth, and scientists will study this prominent point of Opportunity Ledge to understand what the layering means on Mars.

    The yellow lines show the midpoint where the panoramic camera has swept and will sweep a 120-degree area from the three waypoints on the tour of the outcrop. Imagine a fan-shaped wedge from left to right of the yellow line.

    The white contour lines are one meter apart, and each drive has been roughly about 2-3 meters in length over the last few sols. The large white blocks are dropouts in the navigation camera data.

    Opportunity is driving along and taking a photographic panorama of the entire outcrop. Scientists will stitch together these images and use the new mosaic as a 'base map' to decide on geology targets of interest for a more detailed study of the outcrop using the instruments on the robotic arm. Once scientists choose their targets of interest, they plan to study the outcrop for roughly five to fifteen sols. This will include El Capitan and probably one to two other areas.

    Blue Dot Dates Sol 7 / Jan 31 = Egress & first soil data collected by instruments on the arm Sol 9 / Feb 2 = Second Soil Target Sol 12 / Feb 5 = First Rock Target Sol 16 / Feb 9 = Alpha Waypoint Sol 17 / Feb 10 = Bravo Waypoint Sol 19 or 20 / Feb 12 or 13 = Charlie Waypoint

  6. Crack-path effect on material toughness

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1990-01-01

    The main features of a toughening mechanism associated with a curvilinear crack path are examined using a model consisting of a macrocrack in a brittle solid with a curvilinear segment at the crack tip. A numerical procedure for finite and semiinfinite cracks is formulated and evaluated using an example which has an exact solution (a finite crack in the form of a circular arc in a uniform stress field). It is shown that, for a relatively small amplitude of crack path oscillations, the toughening ratio can be taken equal to the ratio of the corresponding crack path lengths.

  7. Path Length Correction for dE/dx Olushakin Olojo

    E-print Network

    Cinabro, David

    used in CLEO. Due to the recent use of Helium Propane gas in the drift chamber, it is now possible of 50­50% Argon­Ethane to 60­40% Helium­Propane in the CLEO drift chamber has reduced e#ects caused particle tracks go through this region of the detector and ionize the Helium and Propane, liberating

  8. Path Coupling and Aggregate Path Coupling

    E-print Network

    Yevgeniy Kovchegov; Peter T. Otto

    2015-01-13

    In this survey paper, we describe and characterize an extension to the classical path coupling method applied statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, we use this aggregate path coupling method to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The parameter region for rapid mixing for the generalized Curie-Weiss-Potts model is derived as a new application of the aggregate path coupling method.

  9. Path Coupling and Aggregate Path Coupling

    E-print Network

    Kovchegov, Yevgeniy

    2015-01-01

    In this survey paper, we describe and characterize an extension to the classical path coupling method applied statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, we use this aggregate path coupling method to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The parameter region for rapid mixing for the generalized Curie-Weiss-Potts model is derived as a new application of the aggregate path coupling method.

  10. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  11. The Hubble Space Telescope Quasar Absorption Line Key Project XIII. A Census of Absorption Line Systems at Low Redshift

    E-print Network

    Buell T. Jannuzi; John N. Bahcall; Jacqueline Bergeron; Alec Boksenberg; George F. Hartig; Sofia Kirhakos; W. L. W. Sargent; Blair D. Savage; Donald P. Schneider; David A. Turnshek; Ray J. Weymann; Arthur M. Wolfe

    1998-08-10

    We present a catalogue of absorption lines obtained from the analysis of the ultra-violet spectra of 66 quasars. The data were acquired with the Faint Object Spectrograph of the HST as part of the Quasar Absorption Line Survey, a Key Project for the first four cycles of HST observations. This is the third of a series of catalogues of absorption lines produced from the survey and increases the number of quasars whose higher resolution (R=1300) spectra we have published from 17 to 83. The general properties and execution of the survey are reviewed, including descriptions of the final sample of observed objects and the algorithmic processes used to construct the catalogue. The detection of a single damped Ly-a system in a path length of Delta_z=49 yields an observed number of damped systems per unit redshift of (dN/dz)_{damp}(z=0.58)=0.020 with 95% confidence boundaries of 0.001 to 0.096 systems per unit redshift. We include notes on our analysis of each of the observed quasars and the absorption systems detected in each spectrum. Some especially interesting systems include low redshift Ly-a absorbers suitable for extensive follow-up observations (in the spectra of TON28 and PG1216+069), possibly physically associated pairs of extensive metal line absorption systems (e.g., in the spectrum of PG0117+213), and systems known to be associated with galaxies (e.g., in the spectrum of 3C232).

  12. Cooperative organic mine avoidance path planning

    NASA Astrophysics Data System (ADS)

    McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David

    2005-06-01

    The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.

  13. On-column double-beam laser absorption detection for capillary electrophoresis

    SciTech Connect

    Xue, Y.; Yeung, E.S. )

    1993-08-01

    Double-beam laser absorption detection in capillary electrophoresis (CE) has been developed. This is based on the direct subtraction of reference and signal photocurrents by an electronic circuit, under feedback control, to reduce background noise. A simple equation for calculating concentrations has been proposed and was confirmed by experimental results. A practical noise-to-signal ratio of 1 [times] 10[sup [minus]5] in intensity is achieved. This is 5 times lower than that of commercial CE systems. For absorbance detection, as low as 2 [times] 10[sup [minus]8] M malachite green can be detected. This corresponds to a 25-fold improvement of detection limit over commercial systems. This gain in detectability results from both a reduction in intensity fluctuations (noise) and an increase in the effective absorption path length (signal). 22 refs., 6 figs.

  14. Effect of radiometric errors on accuracy of temperature-profile measurement by spectral scanning using absorption-emission pyrometry

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1972-01-01

    The spectral-scanning method may be used to determine the temperature profile of a jet- or rocket-engine exhaust stream by measurements of gas radiation and transmittance, at two or more wavelengths. A single, fixed line of sight is used, using immobile radiators outside of the gas stream, and there is no interference with the flow. At least two sets of measurements are made, each set consisting of the conventional three radiometric measurements of absorption-emission pyrometry, but each set is taken over a different spectral interval that gives different weight to the radiation from a different portion of the optical path. Thereby, discrimination is obtained with respect to location along the path. A given radiometric error causes an error in computed temperatures. The ratio between temperature error and radiometric error depends on profile shape, path length, temperature level, and strength of line absorption, and the absorption coefficient and its temperature dependency. These influence the choice of wavelengths, for any given gas. Conditions for minimum temperature error are derived. Numerical results are presented for a two-wavelength measurement on a family of profiles that may be expected in a practical case of hydrogen-oxygen combustion. Under favorable conditions, the fractional error in temperature approximates the fractional error in radiant-flux measurement.

  15. The absolute path command

    Energy Science and Technology Software Center (ESTSC)

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore »provide the absolute path to a relative directory from the current working directory.« less

  16. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  17. On the Drexel long path spectrophotometer: Status report

    SciTech Connect

    Ide, N.; Steinberg, R.I.

    1987-01-03

    A new horizontal version of the long path spectrophotometer is described and a preliminary measurement is reported. The attenuation length of unfiltered WITCO LP100 mineral oil is found to be 904 +- 34cm at a wavelength of 470 nm.

  18. Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths

    E-print Network

    Schmidt, A. J.

    Size effects in heat conduction, which occur when phonon mean free paths (MFPs) are comparable to characteristic lengths, are being extensively explored in many nanoscale systems for energy applications. Knowledge of MFPs ...

  19. Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2015-12-01

    In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.

  20. Robot path planning using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  1. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  2. Interband cascade laser based absorption sensor for ppb-level formaldehyde detection

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Luo, Longqiang; Cao, Yingchun; Jiang, Wenzhe; Tittel, Frank K.

    2015-01-01

    A trace gas absorption sensor for formaldehyde (H2CO) detection was developed using a continuous wave, room temperature, low-power consumption interband cascade laser (ICL) at 3.6 ?m. The recent availability of ICLs with wavelength ranged between 3-4 ?m enables the sensitive detection of trace gases such as formaldehyde that possesses a strong absorption band in this particular wavelength region. This absorption sensor detected a strong formaldehyde line at 2778.5 cm-1 in its v1 fundamental band. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) combined with a compact and novel multipass gas cell (7.6 cm physical length, 32 ml sampling volume, and 3.7 m optical path length) was utilized to achieve a sensitivity of ~6 ppbv for H2CO measurements at 1 Hz sampling rate. The Allan- Werle deviation plot reveals that a minimum detection limit of ~1.5 ppbv can be achieved for an averaging time of 140 seconds.

  3. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  4. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s?1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  5. Resonant absorption and not-so-resonant absorption in short, intense laser irradiated plasma

    SciTech Connect

    Ge, Z. Y.; Zhuo, H. B.; Ma, Y. Y.; Yang, X. H.; Yu, T. P.; Zou, D. B.; Yin, Y.; Shao, F. Q.; Yu, W.; Luan, S. X.; Zhou, C. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088 ; Peng, X. J.

    2013-07-15

    An analytical model for laser-plasma interaction during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. Both the resonant absorption and not-so-resonant absorption are self-consistently included. Different from the previous theoretical works, the physics of resonant absorption is found to be valid in more general conditions as the steepening of the electron density profile is considered. Even for a relativistic intensity laser, resonant absorption can still exist under certain plasma scale length. For shorter plasma scale length or higher laser intensity, the not-so-resonant absorption tends to be dominant, since the electron density is steepened to a critical level by the ponderomotive force. The laser energy absorption rates for both mechanisms are discussed in detail, and the difference and transition between these two mechanisms are presented.

  6. Cane Technique: Modifying the Touch Technique for Full Path Coverage

    ERIC Educational Resources Information Center

    Uslan, Mark M.

    1978-01-01

    Measurements of height of cane hand, cane length, step size, and forearm length of 17 cane using blind (14-21 years old) Ss were taken for the purpose of testing the hypothesis that the touch technique does not provide 100 percent path coverage. (Author)

  7. Percutaneously assisted total hip (PATH) and Supercapsular percutaneously assisted total hip (SuperPATH) arthroplasty: learning curves and early outcomes

    PubMed Central

    Gofton, Wade

    2015-01-01

    Background A new family of micro-posterior approaches, percutaneously assisted total hip (PATH), SuperCapsular (SuperCap) and Supercapsular percutaneously assisted total hip (SuperPATH) allow preservation of the short external rotators. This study assesses early outcomes and learning curves of the PATH and SuperPATH approaches. Methods Early outcomes of the first consecutive 49 PATH and 50 SuperPATH cases performed by a non-developer surgeon were evaluated. Analysis of variance (ANOVA) was used to compare age, body mass index (BMI), and pre-operative hemoglobin. Gender was compared using a Chi-square test. Clinical outcomes were compared using a nonparametric Wilcoxon test or a Chi-square test. Learning curves were assessed using operative time as a surrogate. Acetabular cup abduction and anteversion were compared using the first post-operative radiograph and a modified protractor. Results Both cohorts were similar with respect to diagnosis, gender, and BMI. Mean operative time in minutes was recorded for the PATH (114.5±17.5) and SuperPATH (101.7±18.3) cohorts (P value =0.0002). PATH operative time reached a plateau by case 40, but SuperPATH operative time continued to decrease by case 50. Transfusion rates were low in the PATH (4%) and SuperPATH (6%) cohorts. Mean length of stay (LOS) in days for the SuperPATH and PATH cohorts were 2.2 and 3.0, respectively (P value <0.0001). Complication rates were low in the SuperPATH (4.0%) and PATH (4.1%) cohorts. Acetabular cups in the SuperPATH cohort (anteversion: 23.5°±8.2°, abduction: 39.0°±8.4°) were significantly more anteverted (P value <0.0001) and less abducted (P value <0.05) than in the PATH cohort (anteversion: 13.1°±7.1°; abduction: 42.9°±7.6°). Conclusions Early results demonstrate that the PATH and SuperPATH approaches can be adopted with minimal complications and outcomes consistent with innovator outcomes, even during the learning curve. The SuperPATH technique was associated with shorter operative time that continued to decrease, suggesting that proficiency continues to decrease beyond the first 50 cases. In this author’s experience, acetabular cups implanted using the SuperPATH technique were more anteverted than those implanted using the PATH technique. Greater use of the transverse acetabular ligament to guide cup alignment reduced this effect. PMID:26366396

  8. Symmetries of Analytic Paths

    E-print Network

    Christian Fleischhack

    2015-03-21

    The symmetries of paths in a manifold $M$ are classified with respect to a given pointwise proper action of a Lie group $G$ on $M$. Here, paths are embeddings of a compact interval into $M$. There are at least two types of symmetries: Firstly, paths that are parts of an integral curve of a fundamental vector field on $M$ (continuous symmetry). Secondly, paths that can be decomposed into finitely many pieces, each of which is the translate of some free segment, where possibly the translate is cut at the two ends of the paths (discrete symmetry). Here, a free segment is a path $e$ whose $G$-translates either equal $e$ or intersect it in at most finitely many points. Note that all the statements above are understood up to the parametrization of the paths. We will show, for the category of analytic manifolds, that each path is of exactly one of either types. For the proof, we use that the overlap of a path $\\gamma$ with one of its translates is encoded uniquely in a mapping between subsets of $\\dom\\gamma$. Running over all translates, these mappings form the so-called reparametrization set to $\\gamma$. It will turn out that, up to conjugation with a diffeomorphism, any such set is given by the action of a Lie subgroup of $O(2)$ on $S^1$, restricted in domain and range to some compact interval on $S^1$. Now, the infinite subgroups correspond to the continuous symmetry above, finite ones to the discrete symmetry.

  9. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles ?D of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  10. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGESBeta

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles ?D of 0°more »to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  11. Leg Length Inequality

    PubMed Central

    Sharpe, Colin R.

    1983-01-01

    Leg length inequality, a common abnormality, can cause musculoskeletal pain, scoliosis, and osteoarthritis of the hip. Seven percent of the asymptomatic population has a leg length inequality greater than 12 mm; the incidence is considerably higher (13%-22%) in individuals complaining of low back pain. Correction can usually be accomplished by shoe modification, and can result in dramatic relief of pain. Leg length inequality of more than half an inch is considered clinically significant. Leg length measurement should be routine in all patients complaining of low back pain, hip pain, and atypical flank and lower quadrant pain. Correction might prove very cost-effective. PMID:21283327

  12. A new calibration system for lightweight, compact and mobile Cavity-Enhanced Differential Optical Absorption Spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Zielcke, Johannes; Horbanski, Martin; Pöhler, Denis; Frieß, Udo; Platt, Ulrich

    2013-04-01

    Absorption Spectroscopy has been employed for several decades now to study the earth's atmosphere. While the focus has been on remote sensing for a long time, lately there has been a renewed interest in in-situ methods, as point measurements allow an easier interpretation for highly inhomogeneous distributions of gases of interest compared to the integration approach of most remote sensing methods. One comparatively new method offering both advantages of in-situ measurements as well as being contactless is open-path Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS). Broadband open-path CE-DOAS instruments have been used for ten years now, and in the meantime allow the measurement of numerous atmospheric trace gases (e.g. NO2, NO3, IO, CHOCHO, HCHO). While those instruments were bulky and not very mobile at first, recent developments resulted in relatively lightweight (< 30 kg) instruments with a relatively low power consumption allowing mobile open-path measurements at remote field locations. An important operational issue has been the path length calibration in the field, necessary for the determination of the concentration of measured gases. Until now, often calibration gases were used with different scattering properties than air or known concentrations. However this methods has several major shortcomings, being rather inconvenient and cumbersome in the field with the need for compressed gas cylinders, as well as time consuming, preventing a quick check of the state of the instrument in the field after changing measurement locations. Here we present a new wavelength-resolved method for broadband CE-DOAS path length calibration. A small, custom made ring-down system is employed with a pulsed LED as light source. The wavelength is then resolved by tilting a narrow band interference filter. The system not only allows quick, automated path length calibrations without physical interaction on the instrument, but also saves weight, space and the necessity to transport compressed gas cylinders, which is a great advantage e.g. for measurements in remote coastal areas or polar regions. The technical implementation is presented and compared to other CE-DOAS calibration methods.

  13. AIR QUALITY MONITORING IN ATLANTA WITH THE DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER

    EPA Science Inventory

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. ver path 1 (1099 m) and path 2 (1824 m), ozone (O3), sulfur dioxide (SO2), nitrogen d...

  14. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  15. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    NASA Astrophysics Data System (ADS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Zoeger, N.

    2009-04-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples.

  16. Neandertal clavicle length

    PubMed Central

    Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.

    2014-01-01

    The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525

  17. Cavity enhanced absorption spectroscopy using room temperature quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Welzel, S.; Davies, P. B.; Engeln, R.; Röpcke, J.

    2009-04-01

    Achieving the high sensitivity necessary for trace gas detection generally requires long absorption path lengths. An alternative approach to conventional linear absorption spectroscopy employing multiple pass cells is to use a high finesse cavity. With the help of such cavities the effective path length of the laser beam in the absorbing medium can essentially be increased to more than the 200 m limit usually available from conventional optical multi-pass cells while keeping the sample and pumped volume small. Optical cavity based techniques, Cavity Ring Down Spectroscopy (CRDS) and Cavity Enhanced Absorption Spectroscopy (CEAS) among them, have been successfully applied as a highly sensitive absorption technique for several years. The majority of cavity based methods have used sources of radiation in the ultraviolet and visible regions. For many years the mid-infrared (MIR) molecular fingerprint region could not be employed either for CRDS or for the CEAS techniques, because of the lack of suitable radiation sources with the required power and tunability and small scale dimensions. Experiments were carried out with optical parametric oscillators, Raman cells or shifters or CO and CO2 lasers. In all these cases sophisticated optical geometries were developed which were more suitable for the research laboratory than for field applications. Attempts to use lead salt lasers clearly suffered from low laser intensity. In addition, for wider application, especially for field measurements, compact and cryogen free spectrometers are definitely preferable. Recent advances in semiconductor laser technology, in particular the advent of quantum cascade lasers (QCL) provides new possibilities for highly sensitive and selective trace gas detection using MIR absorption spectroscopy. Thermoelectrically (TE) cooled pulsed and cw QCLs have therefore been combined with resonant optical cavities. While pulsed QCLs working at room temperature have been commercially available for several years, room-temperature cw QCLs have only recently been introduced. Distributed feedback QCLs combine single-frequency operation with tunability over several wavenumbers, and average powers over a mW. Pulsed lasers seemed to be suitable for CRDS since the QCL needs to be interrupted periodically. However the inherent chirp of the laser pulse with a typical rate of 0.005 cm-1/ns (150 MHz/ns) hampers an sufficient intensity build-up on the cavity modes. Furthermore the spectral coverage of the laser pulse excites too many cavity modes simultaneously. The results achieved by this method do not show significant improvement compared to long path cells and the combination of CRDS with pulsed QCLs has only a limited number of useful applications. In contrast, CEAS employing continuous wave (cw) QCL emitting at 7.66 m and a TE cooled detector yielded path lengths of 1080 m with a ~ 0.5 m long cavity of 0.3 l. The cavity length was not actively changed or dithered nor was the cavity locked to the illuminating light source. With a noise equivalent absorption of 2 Ã- 10-7 cm-1Hz-1?2 the detection limit with a 20 s integration time was found to be 6 Ã- 108 molecules/cm3 for N2O and 2 Ã- 109 molecules/cm3 for CH4 which is good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar. The main limiting factor for achieving even higher sensitivity, such as that found for larger volume multi pass cell spectrometers, is the incomplete averaging over cavity resonances, i.e. the residual mode structure of the cavity. With a 1.3 m long cavity and an optimised averaging over the cavity modes due to a small dither on the QCL current the required integration time and the noise equivalent absorption could be reduced down to the 10-9 cm-1Hz-1?2 range. The advantage of CEAS combined with cw QCLs over CRDS with pulsed QCLs is that the spectral resolution is no longer limited by bandwidth effects of the light source. This enables measurements at low pressure to increase the selectivity in complex gas mixtures or plasma diagnostics at low pressure p

  18. Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.

    1983-01-01

    Bidirectional reflectance measurements are the only type of reflectance data available to the remote observer. For compositional interpretations, data are desired not only for identification of possible mineral components but also for modal abundance. The latter requires detailed information about the strength of absorption features. Using a new laboratory facility, the RELAB, laboratory data in the near infrared are presented that document effects of particle size, mineral mixtures, and viewing geometry for selected materials with well-developed absorption bands. The commonly observed increase in reflectance with decrease in particle size is also observed for absorption bands as well as a related decrease in absorption strength. For small particles in parts of the spectrum of maximum reflectance, however, a minor decrease in reflectance with a decrese in particle size is sometimes observed. Small particles dominate the observed characteristics of particulate surfaces, which contain a range of particle sizes. The mean optical path length (transmission through particles) of reflected radiation measured for a variety of particle sizes has an apparent upper limit of about 2 mm for particles of less than 250 microns. The typical number of particles involved in the optical path is less than 50.

  19. Tunable fiber ring laser absorption spectroscopic sensors for gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar

    2013-04-01

    Fiber-optic gas sensing techniques are commonly based on the recognition of a wide range of chemical species from characteristic absorption, fluorescence or Raman-scattering spectra signatures. By tuning over the vibrational lines of species in the path of laser beam, tunable diode laser gas sensors measure signal spectroscopic intensity, gas concentration, and other properties. However, they have limitations of bulk architecture, small change of signal on top of large background, and low sensitivity of direct absorption. Here we report the fabrication and optical measurements of tunable Er-doped fiber ring laser absorption spectroscopic sensor featuring a gas cell that is a segment of photonic crystal fiber (PCF) with a long-period grating (LPG) inscribed. The tunable laser beam is coupled into the cladding of the PCF by the LPG where the gas in air holes absorbs light. The light travels along the PCF cladding and reflects at the end of the fiber where a silver film is coated as a mirror at one end facet. The light propagates back within cladding and passes through the gas one more time thus increasing the interaction length. This light is finally recoupled into the fiber core for intensity measurement. The proposed fiber gas sensors have been experimentally used for ammonia (NH3) concentration detection. They show excellent sensitivity and selectivity, and are minimally affected by temperature and/or humidity changes. The sensors using PCF-LPG gas cell are simple to fabricate, cost-effective, and are deployed for a variety of applications not possible using conventional optical fibers.

  20. Length Paradox in Relativity

    ERIC Educational Resources Information Center

    Martins, Roberto de A.

    1978-01-01

    Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)

  1. Editorial: Redefining Length

    SciTech Connect

    Sprouse, Gene D.

    2011-07-15

    Technological changes have moved publishing to electronic-first publication where the print version has been relegated to simply another display mode. Distribution in HTML and EPUB formats, for example, changes the reading environment and reduces the need for strict pagination. Therefore, in an effort to streamline the calculation of length, the APS journals will no longer use the printed page as the determining factor for length. Instead the journals will now use word counts (or word equivalents for tables, figures, and equations) to establish length; for details please see http://publish.aps.org/authors/length-guide. The title, byline, abstract, acknowledgment, and references will not be included in these counts allowing authors the freedom to appropriately credit coworkers, funding sources, and the previous literature, bringing all relevant references to the attention of readers. This new method for determining length will be easier for authors to calculate in advance, and lead to fewer length-associated revisions in proof, yet still retain the quality of concise communication that is a virtue of short papers.

  2. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  3. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  4. Paths to Remarriage.

    ERIC Educational Resources Information Center

    Spanier, Graham B.; Glick, Paul C.

    1980-01-01

    Presents a demographic analysis of the paths to remarriage--the extent and timing of remarriage, social factors associated with remarriage, and the impact of the event which preceded remarriage (divorce or widowhood). (Author)

  5. Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing

    SciTech Connect

    Brumfield, Brian E.; Phillips, Mark C.

    2015-07-01

    A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.

  6. Fast orthogonal transforms and generation of Brownian paths

    PubMed Central

    Leobacher, Gunther

    2012-01-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545

  7. Finding Good Paths: Applications of Least Cost Caloric Path Computations

    E-print Network

    Wood, Zoë J.

    Google Earth API to explore the use of least cost caloric path computations to create an interactive path for the creation of crowd path computations that consider the terrain as one factor in agent path computations. The second application builds on the popular Google Earth API to provide a tool for users to compute

  8. Far-from-equilibrium measurements of thermodynamic length

    SciTech Connect

    Feng, Edward H.; Crooks, Gavin E.

    2008-11-05

    Thermodynamic length is a path function that generalizes the notion of length to the surface of thermodynamic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free energy change during an external perturbation on a system. We use this result to determine equilibrium averages at intermediate points of the protocol in which the system is out-of-equilibrium. This allows us to extend Bennett's method to determine the potential of mean force, as well as the thermodynamic length, in single molecule experiments.

  9. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ?300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  10. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2000-01-01

    A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-10(9) (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 micrometers. A new technique for analysis of dense high resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.

  11. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy.

    PubMed

    Kosterev, A A; Curl, R F; Tittel, F K; Gmachl, C; Capasso, F; Sivco, D L; Baillargeon, J N; Hutchinson, A L; Cho, A Y

    2000-08-20

    A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-10(9) (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 micrometers. A new technique for analysis of dense high resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit. PMID:11543546

  12. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  13. Sensitive absorption measurements of hydrogen sulfide at 1.578 ?m using wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Hua; Dong, Feng-Zhong; Wu, Bian; Zhang, Zhi-Rong; Pang, Tao; Sun, Peng-Shuai; Cui, Xiao-Juan; Han, Luo; Wang, Yu

    2015-03-01

    Sensitive detection of hydrogen sulfide (H2S) has been performed by means of wavelength modulation spectroscopy (WMS) near 1.578 ?m. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0-50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy (TDLAS) system for H2S detection has the feasibility of real-time online monitoring in many applications. Project supported by the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Sciences (Grant No. YZ201315) and the National Natural Science Foundation of China (Grant Nos. 11204320, 41405034, and 11204319).

  14. Peano-like paths for subaperture polishing of optical aspherical surfaces.

    PubMed

    Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao

    2013-05-20

    Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement. PMID:23736249

  15. liquid water path estimates in marine stratus 1.Introduction

    E-print Network

    Zuidema, Paquita

    liquid water path estimates in marine stratus P.Zuidema 1.Introduction Marine boundary-layer liquid,both liquid and dry. To date,the impact of microwave model improvements upon LWPs retrieved within marine the R/V Ron Brown.3 gaseous absorption models,and 3 liquid dielectric models are evaluated

  16. OPEN PATH AMBIENT MEASUREMENTS OF POLLUTANTS WITH A DOAS SYSTEM

    EPA Science Inventory

    A differential optical absorption spectrometer (DOAS) has been in operation since August 1991 at the U.S. EPA in RTP, NC. he analyzer unit is located in an environmentally-controlled shelter in the EPA parking lot. our separate open optical paths have been established, ranging fr...

  17. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  18. "Albedo dome": a method for measuring spectral flux-reflectance in a laboratory for media with long optical paths.

    PubMed

    Light, Bonnie; Carns, Regina C; Warren, Stephen G

    2015-06-10

    A method is presented for accurate measurement of spectral flux-reflectance (albedo) in a laboratory, for media with long optical path lengths, such as snow and ice. The approach uses an acrylic hemispheric dome, which, when placed over the surface being studied, serves two functions: (i) it creates an overcast "sky" to illuminate the target surface from all directions within a hemisphere, and (ii) serves as a platform for measuring incident and backscattered spectral radiances, which can be integrated to obtain fluxes. The fluxes are relative measurements and because their ratio is used to determine flux-reflectance, no absolute radiometric calibrations are required. The dome and surface must meet minimum size requirements based on the scattering properties of the surface. This technique is suited for media with long photon path lengths since the backscattered illumination is collected over a large enough area to include photons that reemerge from the domain far from their point of entry because of multiple scattering and small absorption. Comparison between field and laboratory albedo of a portable test surface demonstrates the viability of this method. PMID:26192823

  19. A fuzzy shortest path with the highest reliability

    NASA Astrophysics Data System (ADS)

    Keshavarz, Esmaile; Khorram, Esmaile

    2009-08-01

    This paper concentrates on a shortest path problem on a network where arc lengths (costs) are not deterministic numbers, but imprecise ones. Here, costs of the shortest path problem are fuzzy intervals with increasing membership functions, whereas the membership function of the total cost of the shortest path is a fuzzy interval with a decreasing linear membership function. By the max-min criterion suggested in [R.E. Bellman, L.A. Zade, Decision-making in a fuzzy environment, Management Science 17B (1970) 141-164], the fuzzy shortest path problem can be treated as a mixed integer nonlinear programming problem. We show that this problem can be simplified into a bi-level programming problem that is very solvable. Here, we propose an efficient algorithm, based on the parametric shortest path problem for solving the bi-level programming problem. An illustrative example is given to demonstrate our proposed algorithm.

  20. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    NASA Astrophysics Data System (ADS)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  1. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230cm(-1) with a resolution of 0.08cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400cm(-1) and 8100-8230cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. PMID:26474242

  2. Variable focal length microlenses

    NASA Astrophysics Data System (ADS)

    L. G., Commander; Day, S. E.; Selviah, D. R.

    2000-04-01

    Refractive surface relief microlenses (150 ?m diameter) are immersed in nematic liquid crystal in a cell. Application of a variable voltage across the cell effectively varies the refractive index of the liquid crystal and results in a change of the focal length by the lensmakers formula (E. Hecht, Optics, 2nd edn., Addison-Wesley, Reading, Massachusetts, 1987, p. 138). We describe the cell design and construction and demonstrate a range of focal lengths from +490 to +1000 ?m for 2 to 12 V applied. A diverging lens results when the voltage is lower. Theoretical models are developed to account for some of the observed aberrations.

  3. Autonomous Ground Vehicle Path Tracking

    E-print Network

    Florida, University of

    Autonomous Ground Vehicle Path Tracking Jeff Wit Wintec, Inc. 104 Research Road, Building 9738 vehicle navigation requires the integration of many technologies such as path planning, position of a nonholonomic ground vehicle as it tracks a given path. A new path tracking technique called ``vector pursuit

  4. Broadband Phase Spectroscopy over Turbulent Air Paths

    NASA Astrophysics Data System (ADS)

    Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  5. Broadband Phase Spectroscopy over Turbulent Air Paths.

    PubMed

    Giorgetta, Fabrizio R; Rieker, Gregory B; Baumann, Esther; Swann, William C; Sinclair, Laura C; Kofler, Jon; Coddington, Ian; Newbury, Nathan R

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70?000 comb teeth spanning 233??cm^{-1} across hundreds of near-infrared rovibrational resonances of CO_{2}, CH_{4}, and H_{2}O with submilliradian uncertainty, corresponding to a 10^{-13} refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO_{2}. While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing. PMID:26382677

  6. The experiment to detect equivalent optical path difference in independent double aperture interference light path based on step scanning method

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyan; Chen, Xin-yang; Zheng, Lixin; Ding, Yuanyuan

    2014-11-01

    Fringe test is the method which can detect the relative optical path difference in optical synthetic aperture telescope array. To get to the interference fringes, the two beams of light in the meeting point must be within the coherence length. Step scanning method is within its coherence length, selecting a specific step, changing one-way's optical path of both by changing position of micro displacement actuator. At the same time, every fringe pattern can be recorded. The process of fringe patterns is from appearing to clear to disappearing. Firstly, a particular pixel is selected. Then, we keep tract of the intensity of every picture in the same position. From the intensity change, the best position of relative optical path difference can be made sure. The best position of relative optical path difference is also the position of the clearest fringe. The wavelength of the infrared source is 1290nm and the bandwidth is 63.6nm. In this experiment, the coherence length of infrared source is detected by cube reflection experiment. The coherence length is 30?m by data collection and data processing, and that result of 30?m is less different from the 26?m of theoretical calculated. In order to further test the relative optical path of optical synthetic aperture using step scanning method, the infrared source is placed into optical route of optical synthesis aperture telescope double aperture. The precision position of actuator can be obtained when the fringe is the clearest. By the experiment, we found that the actuating step affects the degree of precision of equivalent optical path. The smaller step size, the more accurate position. But the smaller the step length, means that more steps within the coherence length measurement and the longer time.

  7. Method for Veterbi decoding of large constraint length convolutional codes

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (inventor); Truong, Trieu-Kie (inventor); Reed, Irving S. (inventor); Jing, Sun (inventor)

    1988-01-01

    A new method of Viterbi decoding of convolutional codes lends itself to a pipline VLSI architecture using a single sequential processor to compute the path metrics in the Viterbi trellis. An array method is used to store the path information for NK intervals where N is a number, and K is constraint length. The selected path at the end of each NK interval is then selected from the last entry in the array. A trace-back method is used for returning to the beginning of the selected path back, i.e., to the first time unit of the interval NK to read out the stored branch metrics of the selected path which correspond to the message bits. The decoding decision made in this way is no longer maximum likelihood, but can be almost as good, provided that constraint length K in not too small. The advantage is that for a long message, it is not necessary to provide a large memory to store the trellis derived information until the end of the message to select the path that is to be decoded; the selection is made at the end of every NK time unit, thus decoding a long message in successive blocks.

  8. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  9. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-?m CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 ?m, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  10. APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS

    EPA Science Inventory

    Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...

  11. Maximum Entropy Models of Shortest Path and Outbreak Distributions in Networks

    E-print Network

    Bauckhage, Christian; Hadiji, Fabian

    2015-01-01

    Properties of networks are often characterized in terms of features such as node degree distributions, average path lengths, diameters, or clustering coefficients. Here, we study shortest path length distributions. On the one hand, average as well as maximum distances can be determined therefrom; on the other hand, they are closely related to the dynamics of network spreading processes. Because of the combinatorial nature of networks, we apply maximum entropy arguments to derive a general, physically plausible model. In particular, we establish the generalized Gamma distribution as a continuous characterization of shortest path length histograms of networks or arbitrary topology. Experimental evaluations corroborate our theoretical results.

  12. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  13. Sampling by Length.

    ERIC Educational Resources Information Center

    Handley, John C.

    1991-01-01

    Discussion of sampling methods used in information science research focuses on Fussler's method for sampling catalog cards and on sampling by length. Highlights include simple random sampling, sampling with probability equal to size without replacement, sampling with replacement, and examples of estimating the number of books on shelves in certain…

  14. Mappability and read length

    PubMed Central

    Li, Wentian; Freudenberg, Jan

    2014-01-01

    Power-law distributions are the main functional form for the distribution of repeat size and repeat copy number in the human genome. When the genome is broken into fragments for sequencing, the limited size of fragments and reads may prevent an unique alignment of repeat sequences to the reference sequence. Repeats in the human genome can be as long as 104 bases, or 105 ? 106 bases when allowing for mismatches between repeat units. Sequence reads from these regions are therefore unmappable when the read length is in the range of 103 bases. With a read length of 1000 bases, slightly more than 1% of the assembled genome, and slightly less than 1% of the 1 kb reads, are unmappable, excluding the unassembled portion of the human genome (8% in GRCh37/hg19). The slow decay (long tail) of the power-law function implies a diminishing return in converting unmappable regions/reads to become mappable with the increase of the read length, with the understanding that increasing read length will always move toward the direction of 100% mappability. PMID:25426137

  15. Design of a simple cryogenic system for ultraviolet-visible absorption spectroscopy with a back-reflectance fiber optic probe.

    PubMed

    Vinyard, Andrew; Hansen, Kaj A; Byrd, Ross; Stuart, Douglas A; Hansen, John E

    2014-01-01

    We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter electron paramagnetic resonance (EPR) tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected using the fiber optic bundle and analyzed using a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 and 700 nm. Absorption intensity at 506, 525, 545, and 567 nm was found to be proportional to concentration, displaying Beer's law-like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64. These 6% smaller values we attribute to the curvature of the EPR tube and transmission/reflection losses. This system is particularly well-suited to studying the kinetics and dynamics of chemical reactions at cryogenic temperatures. The rapid response (100 ms) and multiplex advantage provided the opportunity of recording simultaneous time courses at several wavelengths following initiation of a chemical reaction with a pulsed laser source. PMID:24405962

  16. Shortest Path Induced Vertex Ordering and its Application to Multi-agent Formation Path Planning

    E-print Network

    Yu, Jingjin

    2012-01-01

    For the task of moving a group of indistinguishable agents on a connected graph with unit edge length into an arbitrary goal formation, it was shown previously that distance optimal paths can be planned to complete with a tight convergence time guarantee. In this study, we show that the problem formulation in fact induces a more fundamental structure on the underlying graph network, which directly leads to an algorithm with similar performance characteristics. We then generalize the results to graphs with integer edge lengths and capacities.

  17. Material Effects and Detector Response Corrections for Bunch Length Measurements

    SciTech Connect

    Zacherl, W.; Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-28

    A typical diagnostic used to determine the bunch length of ultra-short electron bunches is the auto-correlation of coherent transition radiation. This technique can produce artificially short bunch length results due to the attenuation of low frequency radiation if corrections for the material properties of the Michelson interferometer and detector response are not made. Measurements were taken using FTIR spectroscopy to determine the absorption spectrum of various materials and the response of a Molectron P1-45 pyroelectric detector. The material absorption data will be presented and limitations on the detector calibration discussed.

  18. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  19. Open-Path High Sensitivity Atmospheric Ammonia Sensing with a Quantum Cascade Laser Instrument

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Dirisu, A.; Rafferty, K.; Parkes, B.; Zondlo, M. A.

    2009-12-01

    Atmospheric trace-gas sensing with quantum cascade laser (QCL) spectroscopy offers the potential for high sensitivity, fast, selective mid-infrared absorption measurements of atmospheric species such as ammonia (NH3). As the third most abundant nitrogen species and most gaseous base in the atmosphere, ammonia plays important roles in neutralizing acidic species and as a gas-phase precursor to ammoniated fine particulate matter. High precision gas phase measurements are necessary to constrain highly uncertain emission sources and sinks with implications for understanding how chemical components of fine particulate matter affect air quality and climate as well as nitrogen deposition to ecosystems. Conventional ammonia sensors employing chemical ionization, denuder or filter techniques are labor-intensive, not gas-selective and exhibit low time resolution. As an advantageous alternative to conventional measurement techniques, we develop an open-path quantum cascade laser-based ammonia sensor operating at 9.06 ?m for ground-based measurements. A continuous wave, thermoelectrically cooled quantum cascade laser is used to perform wavelength modulation absorption spectroscopy (WMS). Room-temperature, unattended operation with minimal surface adsorption effects due to the open-path configuration represent significant improvements over cryogenically cooled, closed path systems. The feasibility of a cylindrical mirror multi-pass optical cell for achieving long path lengths near 50 m in a compact design is also assessed. Meaningful ammonia measurements require fast sub-ppbv detection limits due to ammonia’s large dynamic range and temporal and spatial atmospheric variability. When fully developed, our instrument will achieve high time resolution (up to 10 Hz) measurements with ammonia detection limits in the 100 pptv range. Initial results include ambient laboratory ammonia detection at 58 ppbv relative to a 0.4% ammonia reference cell based on the WMS signal integrated area. We estimate a limit of detection based on our signal to noise ratio of ~400 pptv NH3. Non-cryogenic, unattended operation of this compact sensor offers the potential for applications in particulate matter gas-phase precursor monitoring networks. Future sensor measurements can also be utilized for evaluations of and data assimilation into air quality and aerosol forecast models of particular importance for regions where ammonia plays a critical role in fine particulate matter formation.

  20. Extremely sensitive detection of NO? employing off-axis integrated cavity output spectroscopy coupled with multiple-line integrated absorption spectroscopy.

    PubMed

    Rao, Gottipaty N; Karpf, Andreas

    2011-05-01

    We report on the development of a new sensor for NO? with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several kilometers in a small volume cell) with multiple-line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational-vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity quantum cascade laser operating in the 1601-1670 cm?¹ range and a high-finesse optical cavity, the absorption spectra of NO? over 100 transitions in the R band have been recorded. From the observed linear relationship between the integrated absorption versus concentration of NO? and the standard deviation of the integrated absorption signal, we report an effective sensitivity of detection of approximately 28 ppt (parts in 10¹²) for NO? To the best of our knowledge, this is among the most sensitive levels of detection of NO? to date. PMID:21532674

  1. Infrared absorption of carbon dioxide at high densitites with application to the atmosphere of Venus. Ph.D. Thesis - Columbia Univ.

    NASA Technical Reports Server (NTRS)

    Moore, J. F.

    1971-01-01

    Several new infrared absorptions were found in carbon dioxide. All are normally forbidden, and were collision-induced in an absorbing cell whose combination of pressure and path length has a unique sensitivity for induced absorptions. The new absorptions in the 2.3 micron region are attributed to transitions from ground to the 3(1)1 Fermi pair at 4248 and 4391/cm. Other absorptions are attributed to simultaneous CO2-N2 transitions and to the 00(0)0-00(0)2 transition in CO2 polarizability derivatives and regular progressions in strength versus increasing quantum number. The spectra were used to predict the radiative transfer in a dry CO2 model of the lower Venus atmosphere. The results indicate that the radiation balance in the lower atmosphere is adequately explained by a dry massive atmosphere of CO2 with a layer of infrared-opaque clouds. The absorptions in the 2.3 micron region are significant in accounting for the opacity to sustain Venus' 768 K surface temperature.

  2. Optical absorption of pure water in the blue and ultraviolet 

    E-print Network

    Lu, Zheng

    2007-09-17

    length up to several meters. As a consequence, it is capable of measuring absorption coefficients as low as 0.001 m-1. The early version of the ICAM was used previously to measure the absorption spectrum of pure water over the 380-700 nm...

  3. Path to the Profession

    ERIC Educational Resources Information Center

    Coleman, Toni

    2012-01-01

    A growing number of institutions are being more deliberate about bringing in fundraisers who fit the culture of the development department and about assessing skills and providing training that fill specific needs. Development shops are paying more attention to cultivating their staffs, staying attuned to employees' needs and creating career paths

  4. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  5. DNA Computing Hamiltonian path

    E-print Network

    Hagiya, Masami

    2014 DNA DNA #12;DNA Computing · Feynman · Adleman · DNASIMD · ... · · · · · DNADNA #12;DNA · DNA · · · · DNA · · #12;2000 2005 2010 1995 Hamiltonian path DNA tweezers DNA tile DNA origami DNA box Sierpinski DNA tile self assembly DNA logic gates Whiplash PCR DNA automaton DNA spider MAYA

  6. Gas path seal

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Johnson, R. D. (inventors)

    1979-01-01

    A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.

  7. Precision distance measurement using a two-photon absorption process in a silicon avalanche photodiode with saw-tooth phase modulation.

    PubMed

    Tanaka, Yosuke; Tominaka, Seiji; Kurokawa, Takashi

    2015-10-01

    We present a novel configuration of a precision laser distance measurement based on the two-photon absorption (TPA) photocurrent from a silicon avalanche photodiode (Si-APD). The proposed system uses saw-tooth phase modulation, known as serrodyne modulation, in order to shift the frequency of the reference light from that of the probe light. It suppresses the coherent interference noise between the probe and the reference. The serrodyne modulation also enables lock-in detection of the TPA photocurrent. Furthermore, it contributes to the reduction of the system components. The precision measurement is experimentally demonstrated by measuring a fiber length difference of 2.6 m with a standard deviation of 27 ?m under constant temperature. The high-precision displacement measurement is also demonstrated by measuring the temperature-induced change in the optical path length difference of a fiber interferometer. PMID:26479662

  8. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGESBeta

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore »in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  9. Estimation of microwave absorption in the Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Coombs, W. C.

    1971-01-01

    A procedure for estimating the microwave absorption loss of the Jupiter atmosphere is presented. Estimation of microwave absorption by planetary atmospheres involves two different investigative disciplines (1) the determination of an acceptable model of the atmosphere itself and (2) the determination of the microwave attenuation rate applicable to each different volume sample of the atmosphere, and the integration of this loss over the varying radio propagation path for any given entry trajectory to obtain the total loss.

  10. D-xylose absorption

    MedlinePLUS

    D-xylose absorption is a laboratory test to determine how well the intestines absorb a simple sugar (D-xylose). The test ... test is primarily used to determine if nutrient absorption problems are due to a disease of the ...

  11. Muscle paths in biomechanical multibody simulations Ramona Maas1

    E-print Network

    Leyendecker, Sigrid

    Muscle paths in biomechanical multibody simulations Ramona Maas1 , Sigrid Leyendecker1 1 Chair, the actuation of those systems can be implemented via Hill-type muscle models. The essential task of these models is to represent the typical force-length and force-velocity relation of real muscles, hence

  12. Hausdorff dimension of a particle path in a quantum manifold

    SciTech Connect

    Nicolini, Piero; Niedner, Benjamin

    2011-01-15

    After recalling the concept of the Hausdorff dimension, we study the fractal properties of a quantum particle path. As a novelty we consider the possibility for the space where the particle propagates to be endowed with a quantum-gravity-induced minimal length. We show that the Hausdorff dimension accounts for both the quantum mechanics uncertainty and manifold fluctuations. In addition the presence of a minimal length breaks the self-similarity property of the erratic path of the quantum particle. Finally we establish a universal property of the Hausdorff dimension as well as the spectral dimension: They both depend on the amount of resolution loss which affects both the path and the manifold when quantum gravity fluctuations occur.

  13. Primary length standard adjustment

    NASA Astrophysics Data System (ADS)

    Šev?ík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  14. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus; Michailovski, Alexej; Patzke, Greta R.; Baiker, Alfons

    2005-05-01

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid/liquid interface at pressures up to 250 bar and temperatures up to 220 °C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for good mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in "supercritical" carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO3 nanorods from MoO3•2H2O.

  15. Transitional Information in Spatial Serial Memory: Path Characteristics Affect Recall Performance

    ERIC Educational Resources Information Center

    Parmentier, Fabrice B. R.; Elford, Greg; Mayberry, Murray

    2005-01-01

    This study examined the role of stimulus characteristics in a visuospatial order reconstruction task in which participants were required to recall the order of sequences of spatial locations. The complexity of the to-be-remembered sequences, as measured by path crossing, path length, and angles, was found to affect serial memory, in terms of both…

  16. OSCILLATING FRACTURE PATHS IN THIN BRITTLE SHEETS: WHEN GEOMETRY RULES CRACK PROPAGATION

    E-print Network

    Reis, Pedro Miguel

    OSCILLATING FRACTURE PATHS IN THIN BRITTLE SHEETS: WHEN GEOMETRY RULES CRACK PROPAGATION B.AUDOLY1 crack propagation when a cutting tip of moderately large width is driven through a thin brittle polymer crack paths scale linearly with the width of the cutting tip over a wide range of length scales

  17. Long-range open-path greenhouse gas monitoring using mid-infrared laser dispersion spectroscopy

    NASA Astrophysics Data System (ADS)

    Daghestani, Nart; Brownsword, Richard; Weidmann, Damien

    2015-04-01

    Accurate and sensitive methods of monitoring greenhouse gas (GHG) emission over large areas has become a pressing need to deliver improved estimates of both human-made and natural GHG budgets. These needs relate to a variety of sectors including environmental monitoring, energy, oil and gas industry, waste management, biogenic emission characterization, and leak detection. To address the needs, long-distance open-path laser spectroscopy methods offer significant advantages in terms of temporal resolution, sensitivity, compactness and cost effectiveness. Path-integrated mixing ratio measurements stemming from long open-path laser spectrometers can provide emission mapping when combined with meteorological data and/or through tomographic approaches. Laser absorption spectroscopy is the predominant method of detecting gasses over long integrated path lengths. The development of dispersion spectrometers measuring tiny refractive index changes, rather than optical power transmission, may offer a set of specific advantages1. These include greater immunity to laser power fluctuations, greater dynamic range due to the linearity of dispersion, and ideally a zero baseline signal easing quantitative retrievals of path integrated mixing ratios. Chirped laser dispersion spectrometers (CLaDS) developed for the monitoring of atmospheric methane and carbon dioxide will be presented. Using quantum cascade laser as the source, a minimalistic and compact system operating at 7.8 ?m has been developed and demonstrated for the monitoring of atmospheric methane over a 90 meter open path2. Through full instrument modelling and error propagation analysis, precision of 3 ppm.m.Hz-0.5 has been established (one sigma precision for atmospheric methane normalized over a 1 m path and 1 s measurement duration). The system was fully functional in the rain, sleet, and moderate fog. The physical model and system concept of CLaDS can be adapted to any greenhouse gas species. Currently we are developing an in-lab instrument that can measure carbon dioxide using a quantum cascade laser operating in the 4 ?m range. In this case, the dynamic range benefit of CLaDS is used to provide high precision even when peak absorbance in the CO2 spectrum gets greater than 2. Development for this deployable CO2 measurement system is still at an early stage. So far laboratory gas cell experiments have demonstrated a 9.3 ppm.m.Hz-0.5 for CO2 monitoring. This corresponds to about 0.02% relative precision in measuring CO2 atmospheric background over a 100 m open-path in one second. 1 G. Wysocki and D. Weidmann, "Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser," Opt. Express 18(25), 26123-26140 (2010). 2 N.S. Daghestani, R. Brownsword, D. Weidmann, 'Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped dispersion spectroscopy' Opt. Express 22(25), A1731-A1743 (2014).

  18. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  19. Deconvolution of mineral absorption bands - An improved approach

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.; Pratt, Stephen F.

    1990-01-01

    Although visible and near IR reflectance spectra contain absorption bands that are characteristic of the composition and structure of the absorbing species, deconvolving a complex spectrum is nontrivial. An improved approach to spectral deconvolution is presented that accurately represents absorption bands as discrete mathematical distributions and resolves composite absorption features into individual absorption bands. The frequently used Gaussian model of absorption bands is shown to be inappropriate for the Fe(2+) electronic transition absorptions in pyroxene spectra. A modified Gaussian model is derived using a power law relationship of energy to average bond length. The modified Gaussian model is shown to provide an objective and consistent tool for deconvolving individual absorption bands in the more complex orthopyroxene, clinopyroxene, pyroxene mixtures, and olivine spectra.

  20. Ab-initio path integral techniques for molecules

    E-print Network

    Daejin Shin; Ming-Chak Ho; J. Shumway

    2006-11-09

    Path integral Monte Carlo with Green's function analysis allows the sampling of quantum mechanical properties of molecules at finite temperature. While a high-precision computation of the energy of the Born-Oppenheimer surface from path integral Monte Carlo is quite costly, we can extract many properties without explicitly calculating the electronic energies. We demonstrate how physically relevant quantities, such as bond-length, vibrational spectra, and polarizabilities of molecules may be sampled directly from the path integral simulation using Matsubura (temperature) Green's functions (imaginary-time correlation functions). These calculations on the hydrogen molecule are a proof-of-concept, designed to motivate new work on fixed-node path-integral calculations for molecules.

  1. Two-sided radial SLE and length-biased chordal SLE

    E-print Network

    May, J. Peter

    Two-sided radial SLE and length-biased chordal SLE Laurence S. Field April 18th, 2015 Abstract We show that, for 4, the integral of the two-sided radial SLE measures over all interior points is chordal SLE biased by the path's natural length, which is its (1 + 8 )-dimensional Minkowski content. 1

  2. Slip length crossover on a graphene surface.

    PubMed

    Liang, Zhi; Keblinski, Pawel

    2015-04-01

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall. PMID:25854252

  3. Slip length crossover on a graphene surface

    SciTech Connect

    Liang, Zhi; Keblinski, Pawel

    2015-04-07

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

  4. Odd Length Contraction

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2013-09-01

    Let's denote by VE the speed of the Earth and byVR the speed of the rocket. Both travel in the same direction on parallel trajectories. We consider the Earth as a moving (at a constant speed VE -VR) spacecraft of almost spherical form, whose radius is r and thus the diameter 2r, and the rocket as standing still. The non-proper length of Earth's diameter, as measured by the astronaut is: L = 2 r?{ 1 -|/VE -VR|2 c2 } < 2 r . Therefore Earth's diameter shrinks in the direction of motion, thus Earth becomes an ellipsoid - which is untrue. Planet Earth may increase or decrease its diameter (volume), but this would be for other natural reasons, not because of a...flying rocket! Also, let's assume that the astronaut is laying down in the direction of motion. Therefore, he would also shrink, or he would die!

  5. Metagenomics: Read Length Matters? †

    PubMed Central

    Wommack, K. Eric; Bhavsar, Jaysheel; Ravel, Jacques

    2008-01-01

    Obtaining an unbiased view of the phylogenetic composition and functional diversity within a microbial community is one central objective of metagenomic analysis. New technologies, such as 454 pyrosequencing, have dramatically reduced sequencing costs, to a level where metagenomic analysis may become a viable alternative to more-focused assessments of the phylogenetic (e.g., 16S rRNA genes) and functional diversity of microbial communities. To determine whether the short (?100 to 200 bp) sequence reads obtained from pyrosequencing are appropriate for the phylogenetic and functional characterization of microbial communities, the results of BLAST and COG analyses were compared for long (?750 bp) and randomly derived short reads from each of two microbial and one virioplankton metagenome libraries. Overall, BLASTX searches against the GenBank nr database found far fewer homologs within the short-sequence libraries. This was especially pronounced for a Chesapeake Bay virioplankton metagenome library. Increasing the short-read sampling depth or the length of derived short reads (up to 400 bp) did not completely resolve the discrepancy in BLASTX homolog detection. Only in cases where the long-read sequence had a close homolog (low BLAST E-score) did the derived short-read sequence also find a significant homolog. Thus, more-distant homologs of microbial and viral genes are not detected by short-read sequences. Among COG hits, derived short reads sampled at a depth of two short reads per long read missed up to 72% of the COG hits found using long reads. Noting the current limitation in computational approaches for the analysis of short sequences, the use of short-read-length libraries does not appear to be an appropriate tool for the metagenomic characterization of microbial communities. PMID:18192407

  6. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  7. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  8. Application of a tunable-diode-laser absorption diagnostic for CO measurements in an automotive HCCI engine.

    SciTech Connect

    Steeper, Richard R.; Fitzgerald, Russell Paul

    2010-08-01

    An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 {micro}m. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.

  9. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  10. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.

  11. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.

  12. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  13. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  14. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at ? = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  15. Measurement of Debye length in laser-produced plasma.

    NASA Technical Reports Server (NTRS)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  16. Centrifugal length separation of carbon nanotubes.

    PubMed

    Fagan, Jeffrey A; Becker, Matthew L; Chun, Jaehun; Nie, Pingting; Bauer, Barry J; Simpson, Jeffrey R; Hight-Walker, Angela; Hobbie, Erik K

    2008-12-16

    Separation of single-wall carbon nanotubes (SWCNTs) by length via centrifugation in a high density medium, and the characterization of both the separated fractions and the centrifugation process are presented. Significant quantities of the separated SWCNTs ranging in average length from <50 nm to approximately 2 microm were produced, with the distribution width being coupled to the rate of the separation. Less rapid separation is shown to produce narrower distributions; these length fractions, produced using sodium deoxycholate dispersed SWCNTs, were characterized by UV-visible-near-infrared absorption and fluorescence spectroscopy, dynamic light scattering, Raman scattering, and atomic force microscopy. Several parameters of the separation were additionally explored: SWCNT concentration, added salt concentration, liquid density, rotor speed, surfactant concentration, and the processing temperature. The centrifugation technique is shown to support 10 mg per day scale processing and is applicable to all of the major SWCNT production methods. The cost per unit of the centrifugation-based separation is also demonstrated to be significantly less than size exclusion chromatography-based separations. PMID:19053631

  17. Coaxial atomizer liquid intact lengths

    NASA Technical Reports Server (NTRS)

    Eroglu, Hasan; Chigier, Norman; Farago, Zoltan

    1991-01-01

    Average intact lengths of round liquid jets generated by airblast coaxial atomizer were measured from over 1500 photographs. The intact lengths were studied over a jet Reynolds number range of 18,000 and Weber number range of 260. Results are presented for two different nozzle geometries. The intact lengths were found to be strongly dependent on Re and We numbers. An empirical equation was derived as a function of these parameters. A comparison of the intact lengths for round jets and flat sheets shows that round jets generate shorter intact lengths.

  18. Collisionless absorption in sharp-edged plasmas

    SciTech Connect

    Gibbon, P. ); Bell, A.R. )

    1992-03-09

    The absorption of subpicosecond, obliquely incident laser light is studied using a 11/2D particle-in-cell code. Density scale lengths from {ital L}/{lambda}=0.01 to 2 and laser irradiances between {ital I}{lambda}{sup 2}=10{sup 14} and 10{sup 18} W cm{sup {minus}2} {mu}m{sup 2} are considered. Vacuum heating'' (F. Brunel, Phys. Rev. Lett. 59, 52 (1987)) dominates over resonance absorption for scale lengths {ital L}/{lambda}{lt}0.1, and is most efficient when {ital v}{sub osc}/{ital c}{congruent}3.1({ital L}/{lambda}){sup 2}. Absorbed energy is carried mainly by a superhot'' electron population with {ital U}{sub hot}{similar to}({ital I}{lambda}{sup 2}){sup 1/3--1/2}.

  19. MOD* Lite: An Incremental Path Planning Algorithm Taking Care of Multiple Objectives.

    PubMed

    Oral, Tugcem; Polat, Faruk

    2016-01-01

    The need for determining a path from an initial location to a target one is a crucial task in many applications, such as virtual simulations, robotics, and computer games. Almost all of the existing algorithms are designed to find optimal or suboptimal solutions considering only a single objective, namely path length. However, in many real life application path length is not the sole criteria for optimization, there are more than one criteria to be optimized that cannot be transformed to each other. In this paper, we introduce a novel multiobjective incremental algorithm, multiobjective D* lite (MOD* lite) built upon a well-known path planning algorithm, D* lite. A number of experiments are designed to compare the solution quality and execution time requirements of MOD* lite with the multiobjective A* algorithm, an alternative genetic algorithm we developed multiobjective genetic path planning and the strength Pareto evolutionary algorithm. PMID:25730837

  20. Path planning and execution monitoring for a planetary rover

    NASA Technical Reports Server (NTRS)

    Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James

    1990-01-01

    A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.

  1. Handbook of Feynman Path Integrals

    NASA Astrophysics Data System (ADS)

    Grosche, Christian, Steiner, Frank

    The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.

  2. Investigating Anomalous Absorption Using Surface Measurements

    SciTech Connect

    Sengupta, Manajit; Ackerman, Thomas P.

    2003-12-17

    Flux measurements from the 415 nm band of the multi-filter rotating shadowband radiometer and liquid water path from the microwave radiometer were used to derive effective radii in warm boundary layer clouds at the US Department of Energy Atmospheric Measurement Program Southern Great Plains site. Surface fluxes computed using the effective radii retrieved using 415 nm measurements showed no bias when compared with observed broadband fluxes. It is therefore inferred that there is no excess absorption at solar and near-infrared wavelengths in the presence of warm boundary layer clouds.

  3. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015?W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  4. Calcium absorptive consistency.

    PubMed

    Heaney, R P; Weaver, C M; Fitzsimmons, M L; Recker, R R

    1990-11-01

    Calcium absorption efficiency was measured two or three times each in 74 premenopausal and 142 postmenopausal women under conditions predicted to alter absorptive performance. A woman's absorptive consistency was evaluated across differing loads, differing intervals, and substances of differing intrinsic absorbability. In all these circumstances there was a statistically significant correlation between a woman's absorption under differing test situations accounting for up to 60% of the variance typically found in cross-sectional studies. For example, when the same substance but at differing load levels was tested three times over an 8 week period, various coefficients of correlation ranged from +0.773 to +0.849 (P less than 0.001). Even over intervals as long as 5 years correlation of absorption fraction within individuals remained significant (r = +0.487, P less than 0.001). PMID:2270777

  5. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  6. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  7. The pressure exerted by adsorbing directed lattice paths and staircase polygons

    E-print Network

    E. J. Janse van Rensburg; T. Prellberg

    2013-02-07

    A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we determine asymptotic expressions for the pressure on the X-axis in models of adsorbing directed paths in the first quadrant. Our models show that the pressure vanishes in the limit of long paths in the desorbed phase, but there is a non-zero pressure in the adsorbed phase. We determine asymptotic approximations of the pressure for finite length Dyck paths and directed paths, as well as for a model of adsorbing staircase polygons with both ends grafted to the X-axis.

  8. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  9. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    NASA Astrophysics Data System (ADS)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  10. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    NASA Astrophysics Data System (ADS)

    Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.

    2013-06-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  11. Long Path Quantum Cascade Laser Based Sensor for Environment Sensing/Ambient Detection of CH4 and N2O

    NASA Astrophysics Data System (ADS)

    Castillo, P. C.; Sydoryk, I.; Gross, B.; Moshary, F.

    2013-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are long-lived greenhouse gases in the atmosphere with significant global warming effects. These gases also are known to be produced in a number of anthropogenic settings such as manure management systems, which releases substantial GHGs and is mandated by the EPA to provide continuous monitoring. In addition, natural gas leaks in urban areas is another source of strong spatially inhomogeneous methane emissions Most open path methods for quantitative detection of trace gases utilize either Fourier Transform Spectrometer (FTIR) or near-IR differential optical absorption spectroscopy (DOAS). Although, FTIR is suitable for ambient air monitoring measurement of more abundant gases such as CO2 and H20 etc., the lack of spectral resolution makes the retrieval of weaker absorbing features such as N20 more difficult. On the other hand, conventional DOAS systems can be large and impractical. As an alternative, we illustrate a robust portable quantum cascade laser (QCL) approach for simultaneous detection of CH4 and N2O. In particular, gas spectra were recorded by ultrafast pulse intensity (thermal) chirp tuning over the 1299 - 1300cm-1 spectral window. Etalon measurements insure stable tuning was obtained. To deal with multiple species, a LSQ spectral fitting approach was used which accounted for both the overlapping trace gases , background water vapor as well as detector drift and calibration. In summary, ambient concentrations of CH4 with and N2O with accuracy < 1% was obtained on the order of 5ms using optical paths of 500 m path length. In addition, unattended long term operation was demonstrated and validations using other sensors when possible were shown to be consistent. The system accuracy is limited by systemic errors, which are still being explored.

  12. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  13. Line Lengths and Starch Scores.

    ERIC Educational Resources Information Center

    Moriarty, Sandra E.

    1986-01-01

    Investigates readability of different line lengths in advertising body copy, hypothesizing a normal curve with lower scores for shorter and longer lines, and scores above the mean for lines in the middle of the distribution. Finds support for lower scores for short lines and some evidence of two optimum line lengths rather than one. (SKC)

  14. Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds

    NASA Astrophysics Data System (ADS)

    Hsu, Elton P.

    Let Wo(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that ?(0) =o, a fixed point on M, and ? the Wiener measure on Wo(M) (the law of Brownian motion on M starting at o).If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds:

  15. Computing Path Tables for Quickest Multipaths In Computer Networks

    SciTech Connect

    Grimmell, W.C.

    2004-12-21

    We consider the transmission of a message from a source node to a terminal node in a network with n nodes and m links where the message is divided into parts and each part is transmitted over a different path in a set of paths from the source node to the terminal node. Here each link is characterized by a bandwidth and delay. The set of paths together with their transmission rates used for the message is referred to as a multipath. We present two algorithms that produce a minimum-end-to-end message delay multipath path table that, for every message length, specifies a multipath that will achieve the minimum end-to-end delay. The algorithms also generate a function that maps the minimum end-to-end message delay to the message length. The time complexities of the algorithms are O(n{sup 2}((n{sup 2}/logn) + m)min(D{sub max}, C{sub max})) and O(nm(C{sub max} + nmin(D{sub max}, C{sub max}))) when the link delays and bandwidths are non-negative integers. Here D{sub max} and C{sub max} are respectively the maximum link delay and maximum link bandwidth and C{sub max} and D{sub max} are greater than zero.

  16. Absorption heat pump system

    DOEpatents

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  19. Spreading and shortest paths in systems with sparse long-range connections

    E-print Network

    Cristian F. Moukarzel

    1999-05-21

    Spreading according to simple rules (e.g. of fire or diseases), and shortest-path distances are studied on d-dimensional systems with a small density p per site of long-range connections (``Small-World'' lattices). The volume V(t) covered by the spreading quantity on an infinite system is exactly calculated in all dimensions. We find that V(t) grows initially as t^d/d for t>t^*$, generalizing a previous result in one dimension. Using the properties of V(t), the average shortest-path distance \\ell(r) can be calculated as a function of Euclidean distance r. It is found that \\ell(r) = r for rr_c. The characteristic length r_c, which governs the behavior of shortest-path lengths, diverges with system size for all p>0. Therefore the mean separation s \\sim p^{-1/d} between shortcut-ends is not a relevant internal length-scale for shortest-path lengths. We notice however that the globally averaged shortest-path length, divided by L, is a function of L/s only.

  20. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  3. Vehicle path-planning in three dimensions using optics analogs for optimizing visibility and energy cost

    NASA Technical Reports Server (NTRS)

    Rowe, Neil C.; Lewis, David H.

    1989-01-01

    Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.

  4. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.

    PubMed

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  5. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  7. Dynamic behavior of shortest path routing algorithms for communication networks

    NASA Astrophysics Data System (ADS)

    Bertsekas, D. P.

    1980-06-01

    Several proposed routing algorithms for store and forward communication networks, including one currently in operation in the ARPANET, route messages along shortest paths computed by using some set of link lengths. When these lengths depend on current traffic conditions as they must in an adaptive algorithm, dynamic behavior questions such as stability convergence, and speed of convergence are of interest. This paper is the first attempt to analyze systematically these issues. It is shown that minimum queuing delay path algorithms tend to exhibit violent oscillatory behavior in the absence of a damping mechanism. The oscillations can be damped by means of several types of schemes, two of which are analyzed in this paper. In the first scheme a constant bias is added to the queuing delay thereby providing a preference towards paths with a small number of links. In the second scheme the effects of several past routings are averaged as, for example, when the link lengths are computed and communicated asynchronously throughout the network.

  8. Path Planning with obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Krause, Donald M.

    1987-01-01

    The research report here summarizes a solution for two dimensional Path Planning with obstacle avoidance in a workspace with stationary obstacles. The solution finds the shortest path for the end effector of a manipulator arm. The program uses an overhead image of the robot work space and the starting and ending positions of the manipulator arm end effector to generate a search graph which is used to find the shortest path through the work area. The solution was originally implemented in VAX Pascal, but was later converted to VAX C.

  9. Subdimensional Expansion for Multirobot Path Glenn Wagner

    E-print Network

    Choset, Howie

    Subdimensional Expansion for Multirobot Path Planning Glenn Wagner , Howie Choset Robotics 4, 2015 #12;Subdimensional Expansion for Multirobot Path Planning Glenn Wagner , Howie Choset framework for multirobot path plan- ning called subdimensional expansion, which initially plans for each

  10. EXTENDING THE PATH-PLANNING Robotics Institute

    E-print Network

    EXTENDING THE PATH-PLANNING HORIZON Bart Nabbe Robotics Institute Carnegie Mellon University to plan inefficient paths that trace obstacle boundaries. To alleviate this problem, We present an op . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Proposed

  11. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to hydrochloric acid (HCL), is pumped through the core at the same rate as the dye. The low pH water is used as a proxy for acidic CO2-saturated brine. Both staining from the un-reactive dye and acid produce visible permanent color alterations on the cement fracture plane. Results show that nearly the entire fracture width is stained by the red dye, with only a few asperities un-dyed. However the low pH HCl forms restricted reacted channels that are a subset of the area open to un-reactive flow, occupying only 10-50% of the entire fracture width. Low pH HCl is believed to be the driving force for the reaction that causes channeling. As acid flows through the fracture, calcium is stripped from the low pH high velocity flow front and precipitates along of the edges of the channel where pH is higher due to the lower flow velocities outside the channel. It is hypothesized that this mineral precipitation restricts the flow into localized channels within the plane of fractures having apertures of tens of micrometers. Reactions restrict the flow path to a smaller fraction of the surface, which may be an indication of self-limiting behavior.

  12. Walking on inclines: how do desert ants monitor slope and step length

    PubMed Central

    Seidl, Tobias; Wehner, Rüdiger

    2008-01-01

    Background During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation). This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. Results In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. Conclusion From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length. PMID:18518946

  13. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  14. Commercializing Biorefineries The Path Forward

    E-print Network

    Commercializing Biorefineries The Path Forward Bioenergy ExCo 59 Workshop Golden, CO Lawrence J ­ Agricultural lands · Corn stover, wheat straw, soybean residue, manure, switchgrass, poplar/willow energy crops

  15. Collaborative Authoring of Walden's Paths 

    E-print Network

    Li, Yuanling

    2012-10-19

    The World Wide Web contains rich collections of digital materials that can be used in education and learning settings. The collaborative authoring prototype of Walden's Paths targets two groups of users: educators and learners. From the perspective...

  16. Morse theory in path space

    E-print Network

    Yong Seung Cho; Soon-Tae Hong

    2007-06-01

    We consider the path space of a curved manifold on which a point particle is introduced in a conservative physical system with constant total energy to formulate its action functional and geodesic equation together with breaks on the path. The second variation of the action functional is exploited to yield the geodesic deviation equation and to discuss the Jacobi fields on the curved manifold. We investigate the topology of the path space using the action functional on it and its physical meaning by defining the gradient of the action functional, the space of bounded flow energy solutions and the moduli space associated with the critical points of the action functional. We also consider the particle motion on the $n$-sphere $S^{n}$ in the conservative physical system to discuss explicitly the moduli space of the path space and the corresponding homology groups.

  17. COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS

    E-print Network

    Hristidis, Vagelis

    COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS AND RESEARCH CHALLENGES School of Computing Undergraduate Student) #12;Computer Science Misconceptions Intro to Computer Science - Florida International University 2 Some preconceived ideas & stereotypes about Computer Science (CS) are quite common

  18. Scattering Theory with Path Integrals

    E-print Network

    R. Rosenfelder

    2013-02-25

    Starting from well-known expressions for the $T$-matrix and its derivative in standard nonrelativistic potential scattering I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  19. Definition of Magnetic Exchange Length

    SciTech Connect

    Abo, GS; Hong, YK; Park, J; Lee, J; Lee, W; Choi, BC

    2013-08-01

    The magnetostatic exchange length is an important parameter in magnetics as it measures the relative strength of exchange and self-magnetostatic energies. Its use can be found in areas of magnetics including micromagnetics, soft and hard magnetic materials, and information storage. The exchange length is of primary importance because it governs the width of the transition between magnetic domains. Unfortunately, there is some confusion in the literature between the magnetostatic exchange length and a similar distance concerning magnetization reversal mechanisms in particles known as the characteristic length. This confusion is aggravated by the common usage of two different systems of units, SI and cgs. This paper attempts to clarify the situation and recommends equations in both systems of units.

  20. Formal language constrained path problems

    SciTech Connect

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.

  1. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  2. Calculating Least Risk Paths in 3d Indoor Space

    NASA Astrophysics Data System (ADS)

    Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.

    2013-08-01

    Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.

  3. Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for 13CH4 at 7 ?m

    NASA Astrophysics Data System (ADS)

    Sung, K.; Mantz, A. W.; Smith, M. A. H.; Brown, L. R.; Crawford, T. J.; Devi, V. M.; Benner, D. C.

    2010-08-01

    New absorption cells designed specifically to achieve stable temperatures down to 66 K inside the sample compartment of an evacuated Bruker IFS-125HR Fourier transform spectrometer (FTS) were developed at Connecticut College and tested at the Jet Propulsion Laboratory (JPL). The temperature stabilized cryogenic cells with path lengths of 24.29 and 20.38 cm were constructed of oxygen free high conductivity (OFHC) copper and fitted with wedged ZnSe windows using vacuum tight indium seals. In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved stability of ±0.01 K. The unwanted absorption features arising from cryodeposits on the cell windows at low temperatures were eliminated by building an internal vacuum shroud box around the cell which significantly minimized the growth of cryodeposits. The effects of vibrations from the closed-cycle helium refrigerator on the FTS spectra were characterized. Using this set up, several high-resolution spectra of methane isotopologues broadened with nitrogen were recorded in the 1200-1800 cm-1 spectral region at various sample temperatures between 79.5 and 296 K. Such data are needed to characterize the temperature dependence of spectral line shapes at low temperatures for remote sensing of outer planets and their moons. Initial analysis of a limited number of spectra in the region of the R(2) manifold of the ?4 fundamental band of 13CH4 indicated that an empirical power law used for the temperature dependence of the N2-broadened line widths would fail to fit the observed data in the entire temperature range from 80 to 296 K; instead, it follows a temperature-dependence similar to that reported by Mondelain et al. [17,18]. The initial test was very successful proving that a high precision Fourier transform spectrometer with a completely evacuated optical path can be configured for spectroscopic studies at low temperatures relevant to the planetary atmospheres.

  4. Cryogenic Absorption Cells Operating Inside a Bruker IFS-125HR: First Results for 13CH4 at 7 Micrometers

    NASA Technical Reports Server (NTRS)

    Sung, K.; Mantz, A. W.; Smith, M. A. H.; Brown, L. R.; Crawford, T. J.; Devi, V. M.; Benner, D. C.

    2010-01-01

    New absorption cells designed specifically to achieve stable temperatures down to 66 K inside the sample compartment of an evacuated Bruker IFS-125HR Fourier transform spectrometer (FTS) were developed at Connecticut College and tested at the Jet Propulsion Laboratory (JPL). The temperature stabilized cryogenic cells with path lengths of 24.29 and 20.38 cm were constructed of oxygen free high conductivity (OFHC) copper and fitted with wedged ZnSe windows using vacuum tight indium seals. In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved stability of 0.01 K. The unwanted absorption features arising from cryodeposits on the cell windows at low temperatures were eliminated by building an internal vacuum shroud box around the cell which significantly minimized the growth of cryodeposits. The effects of vibrations from the closed-cycle helium refrigerator on the FTS spectra were characterized. Using this set up, several high-resolution spectra of methane isotopologues broadened with nitrogen were recorded in the 1200-1800 per centimeter spectral region at various sample temperatures between 79.5 and 296 K. Such data are needed to characterize the temperature dependence of spectral line shapes at low temperatures for remote sensing of outer planets and their moons. Initial analysis of a limited number of spectra in the region of the R(2) manifold of the v4 fundamental band of 13CH4 indicated that an empirical power law used for the temperature dependence of the N2-broadened line widths would fail to fit the observed data in the entire temperature range from 80 to 296 K; instead, it follows a temperature-dependence similar to that reported by Mondelain et al. [17,18]. The initial test was very successful proving that a high precision Fourier transform spectrometer with a completely evacuated optical path can be configured for spectroscopic studies at low temperatures relevant to the planetary atmospheres.

  5. Absorption heat pump system

    DOEpatents

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  6. Chaotic systems with absorption.

    PubMed

    Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate ? in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of ?, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240

  7. LASER-BASED, LONG PATH MONITORING OF AMBIENT GASES, ANALYSIS OF TWO SYSTEMS

    EPA Science Inventory

    New long path absorption techniques for measurement of ambient O3 and CO have recently been demonstrated using a CO2 laser and a semiconductor diode laser, respectively. For the CO2 laser system the use of closely spaced wavelengths minimizes system drift and simplifies the deter...

  8. Diurnal cycle of liquid water path over the subtropical and tropical oceans

    E-print Network

    Hartmann, Dennis

    , consistent with a diurnal cycle driven largely by cloud solar absorption. In deep convective regions. These diurnal variations, however, were not examined quantita- tively. Ciesielski et al. [2001] has examinedDiurnal cycle of liquid water path over the subtropical and tropical oceans R. Wood, C. S

  9. Extendable nickel complex tapes that reach NIR absorptions.

    PubMed

    Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier

    2014-12-14

    Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region. PMID:25348258

  10. 10 Metric Path Planning Chapter objectives

    E-print Network

    Sukthankar, Gita Reese

    10 Metric Path Planning Chapter objectives: Define Cspace, path relaxation, digitization bias, and create a graph suitable for path planning. Apply the A* search algorithm to a graph to find the optimal between continuous and event-driven replanning. 10.1 Objectives and Overview Metric path planning

  11. Broadband solar absorption enhancement via periodic nanostructuring of electrodes

    PubMed Central

    Adachi, Michael M.; Labelle, André J.; Thon, Susanna M.; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.

    2013-01-01

    Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of ? = 600 to 1100?nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices. PMID:24121519

  12. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  13. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  14. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  15. When Does Length Cause the Word Length Effect?

    ERIC Educational Resources Information Center

    Jalbert, Annie; Neath, Ian; Bireta, Tamra J.; Surprenant, Aimee M.

    2011-01-01

    The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining…

  16. Screening length in plasma winds

    E-print Network

    Elena Caceres; Makoto Natsuume; Takashi Okamura

    2007-06-04

    We study the screening length L_s of a heavy quark-antiquark pair in strongly coupled gauge theory plasmas flowing at velocity v. Using the AdS/CFT correspondence we investigate, analytically, the screening length in the ultra-relativistic limit. We develop a procedure that allows us to find the scaling exponent for a large class of backgrounds. We find that for conformal theories the screening length is (boosted energy density)^{-1/d}. As examples of conformal backgrounds we study R-charged black holes and Schwarzschild-anti-deSitter black holes in (d+1)-dimensions. For non-conformal theories, we find that the exponent deviates from -1/d and as examples we study the non-extremal Klebanov-Tseytlin and Dp-brane geometries. We find an interesting relation between the deviation of the scaling exponent from the conformal value and the speed of sound.

  17. Time-multiplexed open-path TDLAS spectrometer for dynamic, sampling-free, interstitial H2 18O and H2 16O vapor detection in ice clouds

    NASA Astrophysics Data System (ADS)

    Kühnreich, B.; Wagner, S.; Habig, J. C.; Möhler, O.; Saathoff, H.; Ebert, V.

    2015-04-01

    An advanced in situ diode laser hygrometer for simultaneous, sampling-free detection of interstitial H2 16O and H2 18O vapor was developed and tested in the aerosol interaction and dynamics in atmosphere (AIDA) cloud chamber during dynamic cloud formation processes. The spectrometer to measure isotope-resolved water vapor concentrations comprises two rapidly time-multiplexed DFB lasers near 1.4 and 2.7 µm and an open-path White cell with 227-m absorption path length and 4-m mirror separation. A dynamic water concentration range from 2.6 ppb to 87 ppm for H2 16O and 87 ppt to 3.6 ppm for H2 18O could be achieved and was used to enable a fast and direct detection of dynamic isotope ratio changes during ice cloud formation in the AIDA chamber at temperatures between 190 and 230 K. Relative changes in the H2 18O/H2 16O isotope ratio of 1 % could be detected and resolved with a signal-to-noise ratio of 7. This converts to an isotope ratio resolution limit of 0.15 % at 1-s time resolution.

  18. THE EFFECT OF ABSORPTION SYSTEMS ON COSMIC REIONIZATION

    SciTech Connect

    Alvarez, Marcelo A.; Abel, Tom

    2012-03-10

    We use large-scale simulations to investigate the morphology of reionization during the final, overlap phase. Our method uses an efficient three-dimensional smoothing technique that takes into account the finite mean free path due to absorption systems, {lambda}{sub abs}, by only smoothing over scales R{sub s} < {lambda}{sub abs}. The large dynamic range of our calculations is necessary to resolve the neutral patches left at the end of reionization within a representative volume; we find that simulation volumes exceeding several hundred Mpc on a side are necessary in order to properly model reionization when the neutral fraction is {approx_equal} 0.01-0.3. Our results indicate a strong dependence of percolation morphology on a large and uncertain region of model parameter space. The single most important parameter is the mean free path to absorption systems, which serve as opaque barriers to ionizing radiation. If these absorption systems were as abundant as some realistic estimates indicate, the spatial structure of the overlap phase is considerably more complex than previously predicted. In view of the lack of constraints on the mean free path at the highest redshifts, current theories that do not include absorption by Lyman-limit systems, and in particular three-dimensional simulations, may underestimate the abundance of neutral clouds at the end of reionization. This affects predictions for the 21 cm signal associated with reionization, interpretation of absorption features in quasar spectra at z {approx} 5-6, the connection between reionization and the local universe, and constraints on the patchiness and duration of reionization from temperature fluctuations measured in the cosmic microwave background arising from the kinetic Sunyaev-Zel'dovich effect.

  19. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN)

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  20. A Continuous-State Version of Discrete Randomized Shortest-Paths, with Application to Path Planning

    E-print Network

    Del Moral , Pierre

    A Continuous-State Version of Discrete Randomized Shortest-Paths, with Application to Path Planning are of capital importance in a variety of problems, from robot path planning, to maze solving. Path planning [16 RSP is investigated and applied to path planning. By defining a grid where each node has four

  1. Discrete Approximations to Continuous Shortest-Path: Application to Minimum-Risk Path Planning for

    E-print Network

    Hespanha, João Pedro

    1 Discrete Approximations to Continuous Shortest-Path: Application to Minimum-Risk Path Planning Barbara Research supported by DARPA/IXO MICA program Outline 1. Motivation--minimum-risk path planning 2. Discretization approach to shortest-path 3. Sampling methods 4. Back to minimum-risk path planning... #12

  2. Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story

    NASA Technical Reports Server (NTRS)

    2001-01-01

    World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.

  3. Path queries for Web data Path queries for Web data

    E-print Network

    databases, ubiquitous in transactional applications, websites etc. follow the relational model, representing data with a fixed structure. The recent spread of graph-structured data such as linked open data the structure of graph data. Unlike basic SQL queries over relational data, path queries allow to express

  4. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  5. Path-dependent entropy production

    NASA Astrophysics Data System (ADS)

    Kwon, Chulan

    2015-09-01

    A rigorous derivation of nonequilibrium entropy production via the path-integral formalism is presented. Entropy production is defined as the entropy change piled in a heat reservoir as a result of a nonequilibrium thermodynamic process. It is a central quantity by which various forms of the fluctuation theorem are obtained. The two kinds of the stochastic dynamics are investigated: the Langevin dynamics for an even-parity state and the Brownian motion of a single particle. Mathematical ambiguities in deriving the functional form of the entropy production, which depends on path in state space, are clarified by using a rigorous quantum mechanical approach.

  6. Multiple paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene; Wiegand, Thomas; Mark, Gloria

    1987-01-01

    The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.

  7. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  8. Telomere Length Wildlife Aging Technique

    E-print Network

    Gray, Matthew

    2/22/2009 1 Telomere Length as a Wildlife Aging Technique Forestry, Wildlife and Fisheries GraduateNon-invasive genetic sampling Telomeres: · Form · Function · Methods of measuring · Telomeres in wildlife aging #12;2/22/2009 4 Telomere Form: ·Short repeated sequences of DNA ·Found at the ends of linear eukaryotic

  9. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin absorption coefficient of human skin of various pigmentation and races will be presented.

  10. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    DOE PAGESBeta

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sams, R. L.; Johnson, T. J.

    2014-04-25

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm?1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in amore »19.94 cm path length cell at 0.112 cm?1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.« less

  11. Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy

    SciTech Connect

    Fantz, U.; Wimmer, Ch.

    2011-09-26

    The use of cesium in negative hydrogen ion sources and the resulting cesium dynamics caused by the evaporation and redistribution in the vacuum and plasma phase makes a reliable and on-line monitoring of the cesium amount in the source highly desirable. For that purpose, a robust and compact laser absorption setup suitable for the ion source environment has been developed utilizing the Cs D{sub 2} resonance line at 852.1 nm. First measurements are taken in a small laboratory plasma chamber with cesium evaporation. A detection limit of {approx_equal}5x10{sup 13} m{sup -3} at a typical path length of 15 cm has been obtained with a dynamic range of more than three orders of magnitude, limited by line saturation at high densities. For on-line monitoring an automatic data analysis is established achieving a temporal resolution of 100 ms. The setup has then been applied to the ITER prototype ion sources developed at IPP. It is been shown that the method is well suited for routine measurements revealing a new insight into the cesium dynamics during source operation and cesium conditioning.

  12. On the Distribution of Free Path Lengths for the Periodic Lorentz Gas III

    NASA Astrophysics Data System (ADS)

    Caglioti, Emanuele; Golse, François

    For r(0,1), let Zr={xR2|dist(x,Z2)>r/2} and define ?r(x,v)=inf{t>0|x+tv?Zr}. Let ?r(t) be the probability that ?r(x,v)>=t for x and v uniformly distributed in Zr and §1 respectively. We prove in this paper that as t-->+?. This result improves upon the bounds on ?r in Bourgain-Golse-Wennberg [Commun. Math. Phys. 190, 491-508 (1998)]. We also discuss the applications of this result in the context of kinetic theory.

  13. Tail Asymptotics of Free Path Lengths for the Periodic Lorentz Process: On Dettmann's Geometric Conjectures

    NASA Astrophysics Data System (ADS)

    Nándori, Péter; Szász, Domokos; Varjú, Tamás

    2014-10-01

    In the simplest case, consider a -periodic ( d ? 3) arrangement of balls of radii < 1/2, and select a random direction and point (outside the balls). According to Dettmann's first conjecture, the probability that the so determined free flight (until the first hitting of a ball) is larger than t > > 1 is , where C is explicitly given by the geometry of the model. In its simplest form, Dettmann's second conjecture is related to the previous case with tangent balls (of radii 1/2). The conjectures are established in a more general setup: for -periodic configuration of—possibly intersecting—convex bodies with being a non-degenerate lattice. These questions are related to Pólya's visibility problem (Arch Math Phys Ser 2:135-142,1918), to theories of Bourgain et al. (Commun Math Phys 190:491-508,1998), and of Marklof-Strömbergsson (Ann Math 172:1949-2033,2010). The results also provide the asymptotic covariance of the periodic Lorentz process assuming it has a limit in the super-diffusive scaling, a fact if d = 2 and the horizon is infinite.

  14. Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer

    E-print Network

    Littman, Michael G.

    -pupil coronagraphs for use in the direct imaging of earth-like planets around nearby stars. The shaped-pupil idea to detect earth-like planets about the nearer stars, it is necessary that the optics of the telescope to improve potential visibility of faint planets. Two telescope entrance pupils are shown in Figure 1

  15. Applied Probability Trust (12 May 2009) SCALING LIMITS FOR SHORTEST PATH LENGTHS ALONG

    E-print Network

    Schmidt, Volker

    OF STATIONARY TESSELLATIONS FLORIAN VOSS, Ulm University CATHERINE GLOAGUEN, Orange Labs VOLKER SCHMIDT, Ulm: Orange Labs, 38-40, rue du G´en´eral Leclerc, 92794 Issy-les-Moulineaux, France 1 #12;2 F. Voss, C.g. an inner-city street system. Thus, we study a class of stochastic network models which has been introduced

  16. The Impact of Clustering on the Average Path Length in Wireless Sensor Networks

    E-print Network

    Sekercioglu, Y. Ahmet

    . Ahmet S¸ekercioglu Department of Electrical and Computer Systems Engineering, Monash University, Australia Department of Electrical and Electronic Engineering, Universiti Teknologi Petronas, Malaysia construction. They organize the nodes into smaller groups and form a structured topology allowing more

  17. Folded path LWIR system for SWAP constrained platforms

    NASA Astrophysics Data System (ADS)

    Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry

    2014-06-01

    Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.

  18. Absorption Spectra Of Toxic Compounds At CO2 Laser Wavelengths

    NASA Astrophysics Data System (ADS)

    Loper, G. L.; Sasaki, G. R.; Stamps, M. A.

    1981-09-01

    Absorption coefficient data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride at up to seventy-two CO2 laser wavelengths each. These compounds are toxic industrial substances for which improved ambient air detection methods are desired. Absorption data for these compounds are needed to determine their detectabilities by CO2 laser-based photoacoustic, long-path absorption, and laser radar (lidar) techniques. The absorption data obtained for these compounds indicate that sub parts-per-billion (ppb) level, interference-free detection limits should be possible for these compounds by the CO2 laser photoacoustic technique. CO2 laser photoacoustic detectabilities of 40 ppb or less should be possible for these compounds in the presence of expected ambient air concentrations of water vapor and other anticipated interferences. In addition, absorption data on the first four compounds are needed to assess the capability of using CO2 laser spectroscopic techniques to detect low levels of the toxic hydrazine-based rocket fuels in air samples containing these compounds as interferences. The absorption data obtained for these four compounds indicate that the hydrazine-fuels should be detectable by the CO2 laser photoacoustic technique at concentrations below proposed workplace standards for hydrazines as low as 30 ppb in the presence of expected airborne concentrations of these compounds together with other expected interferences.

  19. [Intestinal glucose absorption in rats of different ages (author's transl)].

    PubMed

    Tolu, W; Fadda, F; Carbini, L; Padalino, A

    1975-01-01

    We studied the intestinal glucose absorption in a colony of rats at different ages. The experiment was carried out on animals of the following ages: 3, 5, 10 and 20 months. All rats were fasted 48 hr prior to the administration of 2 ml. 50% glucose solution by an oesophageal sound. After one hour the animals were killed, the intestine was washed with a determinated quantity of distilled water and homogenized, to find out any trace of glucose in mucose cells. Glucose absorption was calculated as the difference between the quantity introduced and that left in the intestine. The results of this experiment show that glucose absorption expressed as mg/100 gm. body weight/hr decrease significantly during the first 10 months, with no marked changes there after. Absorption rapidly increase during the first 16 month, if expressed as mg/hr. This is probably due to a remarkable weight increase without a proportional increase of intestinal length. PMID:1243975

  20. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  1. Absorption of ac fields in amorphous indium-oxide films

    SciTech Connect

    Ovadyahu, Z.

    2014-08-20

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (In{sub x}O) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In{sub 2}O{sub 3?x}) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  2. Oral Drug Absorption

    E-print Network

    Yamashita, Shinji

    2006-10-26

    amount of various drugs in the D/P system 0 20 40 60 80 100 0.01 0.1 1.0 10.0 100.0 Permeated amount (% of dose/2 h) Human Abs. ( % of dose) Correlation between in vivo human absorption and in vitro permeated amount in the D/P system Fasted State Fed... (Fasted/Fed) 4.0 0.9 1.6 0.25 1.11 3.09 2.05 28.0 81.2 Cmax (?g/mL) Tmax 2.3 3.8 1.9 2.3 3.0 2.0 (h) 14 0 20 40 60 80 100 0.01 0.1 1.0 10.0 100.0 Estimation of food-effect on oral absorption of albendazole, quazepam and nateglinide from in vitro study in D/P...

  3. Linear length-dependent light-harvesting ability of silicon nanowire

    NASA Astrophysics Data System (ADS)

    Li, Yingfeng; Li, Meicheng; Li, Ruike; Fu, Pengfei; Jiang, Bing; Song, Dandan; Shen, Chao; Zhao, Yan; Huang, Rui

    2015-11-01

    Silicon nanowire (SiNW) is of great promising for photovoltaic applications due to its excellent performance in light-harvesting. Some experimental and theoretical results indicate its light-harvesting is dramatically length dependent, while there is still no investigation on this dependency. Through reliable simulations on the optical extinction and absorption spectra of SiNWs with varying lengths, we find that the light-harvesting ability of SiNW is linear with its length. For the SiNWs of the optimal diameter, 80 nm, the linearity between the light-concentration (light-absorption) multiples and length is about 133 ?m-1 (50 ?m-1). This linear relationship can be explained reasonably by the leaky modes theory.

  4. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  5. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  6. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali

    1989-01-01

    The complicated high-pressure cycle of the space shuttle main engine (SSME) propellant path provides many opportunities for external propellant path leaks while the engine is running. This mode of engine failure may be detected and analyzed with sufficient speed to save critical engine test hardware from destruction. The leaks indicate hardware failures which will damage or destroy an engine if undetected; therefore, detection of both cryogenic and hot gas leaks is the objective of this investigation. The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-the-art technology infrared (IR) thermal imaging systems combined with computer, digital image processing, and expert systems for the engine protection. The feasibility of IR leak plume detection is evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application.

  7. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  8. Immigration: Rubio's path to presidency?

    E-print Network

    Fernandez, Eduardo

    Immigration: Rubio's path to presidency? In media blitz retorting conservative critics, he aims Writer Of the four Democratic and four Republican senators who wrote the immigration reform proposal now, both in Congress and nationwide, need more convincing on immigration reform than Democrats. And Rubio

  9. Employer Resource Manual. Project Path.

    ERIC Educational Resources Information Center

    Kane, Karen R.; Del George, Eve

    Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…

  10. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  11. Career Paths of Academic Deans.

    ERIC Educational Resources Information Center

    Wolverton, Mimi; Gonzales, Mary Jo

    This paper examines various career paths leading to deanship and considers the implications of the findings for women and minorities who aspire to this position. The paper is part of a larger study of academic deanship conducted by the Center for Academic Leadership at Washington State University between October 1996 and January 1997. Data for the…

  12. A temporal ant colony optimization approach to the shortest path problem in dynamic scale-free networks

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Li, Yanjun; Wu, Tie-Jun

    2010-02-01

    A large number of networks in the real world have a scale-free structure, and the parameters of the networks change stochastically with time. Searching for the shortest paths in a scale-free dynamic and stochastic network is not only necessary for the estimation of the statistical characteristics such as the average shortest path length of the network, but also challenges the traditional concepts related to the “shortest path” of a network and the design of path searching strategies. In this paper, the concept of shortest path is defined on the basis of a scale-free dynamic and stochastic network model, and a temporal ant colony optimization (TACO) algorithm is proposed for searching for the shortest paths in the network. The convergence and the setup for some important parameters of the TACO algorithm are discussed through theoretical analysis and computer simulations, validating the effectiveness of the proposed algorithm.

  13. Optical absorption in amorphous silicon

    SciTech Connect

    O`Leary, S.K.; Zukotynski, S.; Perz, J.M.; Sidhu, L.S.

    1996-12-31

    The role that disorder plays in shaping the form of the optical absorption spectrum of hydrogenated amorphous silicon is investigated. Disorder leads to a redistribution of states, which both reduces the Tauc gap and broadens the absorption tail. The observed relationship between the Tauc gap and the breadth of the absorption tail is thus explained.

  14. Relations between coherence and path information

    E-print Network

    Emilio Bagan; Janos A. Bergou; Seth S. Cottrell; Mark Hillery

    2015-12-10

    We find two relations between coherence and path-information in a multi-path interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined $l_{1}$ measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy.

  15. Path querying system on mobile devices

    NASA Astrophysics Data System (ADS)

    Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun

    2006-01-01

    Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.

  16. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel (Albuquerque, NM); Ramsey, Marc (Albuquerque, NM); Schwarz, Jens (Albuquerque, NM)

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  17. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.

  18. Design improvements increase run length

    SciTech Connect

    Wood, J.R. ); Marino, C.K. )

    1991-02-25

    The Hawaiian Independent Refinery (HIRI) visbreaker recently completed 843 stream days of operation before its first heater decoke and major turnaround and inspection. This is believed to be a record and shows that, with proper design criteria, longer run lengths and lower maintenance and operating costs can be achieved than previously thought possible. From this commercial experience it can be seen that it is feasible to design coil-type visbreakers to achieve very long run lengths, and because the coke formation that does occur can be quickly and easily removed, better on-stream time and lower maintenance costs can be achieved. The capital and other costs associated with soaker drums and the difficulty and expense of removing and disposing of the coke are well known, as are the problems of fuel oil degradation with soaker drums without complex internals. This demonstrated improvement in run length and on-stream time, together with other improvements made in the past 10 years, gives modern coil design a definite advantage in most visbreaking applications. Many of the concepts employed are applicable to existing units and other processes where undesirable coke formation is normally a problem.

  19. Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors

    E-print Network

    Michael Wurm; Franz von Feilitzsch; Marianne Goeger-Neff; Martin Hofmann; Tobias Lachenmaier; Timo Lewke; Teresa Marrodan Undagoitita; Quirin Meindl; Randoplh Moellenberg; Lothar Oberauer; Walter Potzel; Marc Tippmann; Sebastian Todor; Christoph Traunsteiner; Juergen Winter

    2010-04-06

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  20. Path statistics, memory, and coarse-graining of continuous-time random walks on networks.

    PubMed

    Manhart, Michael; Kion-Crosby, Willow; Morozov, Alexandre V

    2015-12-01

    Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868

  1. Smart random walkers: the cost of knowing the path.

    PubMed

    Perotti, Juan I; Billoni, Orlando V

    2012-07-01

    In this work we study the problem of targeting signals in networks using entropy information measurements to quantify the cost of targeting. We introduce a penalization rule that imposes a restriction on the long paths and therefore focuses the signal to the target. By this scheme we go continuously from fully random walkers to walkers biased to the target. We found that the optimal degree of penalization is mainly determined by the topology of the network. By analyzing several examples, we have found that a small amount of penalization reduces considerably the typical walk length, and from this we conclude that a network can be efficiently navigated with restricted information. PMID:23005381

  2. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  3. Absorption Measure Distribution in Mrk 509

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Ró?a?ska, A.; Sobolewska, M.; Czerny, B.

    2015-12-01

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 108 cm?3.

  4. Absorption in dielectric models

    E-print Network

    Churchill, R J

    2015-01-01

    We develop a classical microscopic model of a dielectric. The model features nonlinear interaction terms between polarizable dipoles and lattice vibrations. The lattice vibrations are found to act as a pseudo-reservoir, giving broadband absorption of electromagnetic radiation without the addition of damping terms in the dynamics. The effective permittivity is calculated using a perturbative iteration method and is found to have the form associated with real dielectrics. Spatial dispersion is naturally included in the model and we also calculate the wavevector dependence of the permittivity.

  5. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  6. Physarum can compute shortest paths.

    PubMed

    Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish

    2012-09-21

    Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. PMID:22732274

  7. Spacetime path formalism: localized states

    E-print Network

    Ed Seidewitz

    2010-11-14

    This note is an addendum to quant-ph/0507115. In that paper, I present a formalism for relativistic quantum mechanics in which the spacetime paths of particles are considered fundamental, reproducing the standard results of the traditional formulation of relativistic quantum mechanics and quantum field theory. Now, it is well known that there are issues with the ability to localize the position of particles in the usual formulation of relativistic quantum mechanics. The present note shows how, in the spacetime path formalism, the natural representation of on-shell 3-momentum states is effectively a Foldy-Wouthuysen transformation of the traditional representation, addressing the localization issues of position states and, further, providing a straightforward non-relativistic limit.

  8. Multiple Paths to Encephalization and Technical Civilizations

    NASA Astrophysics Data System (ADS)

    Schwartzman, David; Middendorf, George

    2011-12-01

    We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.

  9. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  10. Path planning under spatial uncertainty.

    PubMed

    Wiener, Jan M; Lafon, Matthieu; Berthoz, Alain

    2008-04-01

    In this article, we present experiments studying path planning under spatial uncertainties. In the main experiment, the participants' task was to navigate the shortest possible path to find an object hidden in one of four places and to bring it to the final destination. The probability of finding the object (probability matrix) was different for each of the four places and varied between conditions. Givensuch uncertainties about the object's location, planning a single path is not sufficient. Participants had to generate multiple consecutive plans (metaplans)--for example: If the object is found in A, proceed to the destination; if the object is not found, proceed to B; and so on. The optimal solution depends on the specific probability matrix. In each condition, participants learned a different probability matrix and were then asked to report the optimal metaplan. Results demonstrate effective integration of the probabilistic information about the object's location during planning. We present a hierarchical planning scheme that could account for participants' behavior, as well as for systematic errors and differences between conditions. PMID:18491490

  11. Direct integration transmittance model. [for atmospheric IF molecular absorption and thermal emission

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Maguire, W. C.

    1974-01-01

    A transmittance model has been developed for interpretation of high spectral resolution measurements of laboratory absorption and of planetary thermal emission. The high spectral resolution requires transmittances to be computed monochromatically by summing the contribution of individual molecular absorption lines. A magnetic tape atlas of H2O, O3, and CO2 molecular line parameters serves as input to the transmittance model with simple empirical representations used for continuum regions wherever suitable laboratory data exist. The theoretical formulation of the transmittance model and the computational procedures used for the evaluation of the transmittances are discussed, and application of the model to several homogeneous-path laboratory absorption examples is demonstrated.

  12. Continuous Path Planning with Multiple Constraints

    E-print Network

    Mitchell, Ian

    Continuous Path Planning with Multiple Constraints Ian M. Mitchell and Shankar Sastry Department examine the problem of planning a path through a low di- mensional continuous state space subject to upper Few problems are as well studied as the path planning or routing prob- lem; it appears in engineering

  13. Evaluation of the Learning Path Specification

    ERIC Educational Resources Information Center

    Janssen, Jose; Berlanga, Adriana J.; Koper, Rob

    2011-01-01

    Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…

  14. Analogical Path Planning Saul Simhon, Gregory Dudek

    E-print Network

    Dudek, Gregory

    Analogical Path Planning Saul Simhon, Gregory Dudek Centre for Intelligent Machines Mc for path planning that considers trajectories constrained by both the environment and an ensemble of the path, and planning in the presence of such constraints in often difficult (an automobile

  15. Clearance Based Path Optimization for Motion Planning

    E-print Network

    Utrecht, Universiteit

    Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars institute;Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars Institute of Information to generate paths of a much higher quality than previous approaches. 1 Introduction Motion planning can

  16. Clearance Based Path Optimization for Motion Planning

    E-print Network

    Utrecht, Universiteit

    Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars institute; Clearance Based Path Optimization for Motion Planning Roland Geraerts Mark Overmars Institute of Information to generate paths of a much higher quality than previous approaches. 1 Introduction Motion planning can

  17. Multiresolution Path Planning Via Sector Decompositions

    E-print Network

    Tsiotras, Panagiotis

    Multiresolution Path Planning Via Sector Decompositions Compatible to On-Board Sensor Data Efstathios Bakolas and Panagiotis Tsiotras In this paper we present a hybrid local-global path planning-free manner. The path planning algorithm is based on information gathered on-line by the available on

  18. CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES

    E-print Network

    Agogino, Alice M.

    CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERFITY OF CALIFORNIA, BERKELEY Agogino, Kai Goebel SatnamAlag University of California,Berkeley CaliforniaPATH Research Report UCB-ITS-PRR-97-31 This work was performed as part of the CaliforniaPATH Program of the University of California

  19. Universal Path Spaces W. A. Bogley

    E-print Network

    Universal Path Spaces W. A. Bogley Oregon State University A. J. Sieradski University of Oregon Abstract This paper examines a theory of universal path spaces that properly includes the covering space is a wild metric 2-complex, the universal path space is simply connected if and only if the fundamental

  20. Modulated Tool-Path (MTP) Chip Breaking System

    SciTech Connect

    Graham, K. B.

    2010-04-01

    The Modulated Tool-Path (MTP) Chip Breaking System produces user-selectable chip lengths and workpiece finishes and is compatible with any material, workpiece shape, and depth of cut. The MTP chip breaking system consistently creates the desired size of chips regardless of workpiece size, shape, or material, and the machine operator does not need to make any adjustments during the machining operation. The system's programmer configures the part program that commands the machine tool to move in a specific fashion to deliver the desired part size, shape, chip length, and workpiece surface finish. The MTP chip breaking system helps manufacturers avoid the detrimental effects of continuous chips, including expensive repair costs, delivery delays, and hazards to personnel.

  1. The Length of Time's Arrow

    SciTech Connect

    Feng, Edward H.; Crooks, Gavin E.

    2008-08-21

    An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergencebetween trajectory probability distributions of an experiment and its time-reversed conjugate. Among other interesting properties, the length of time's arrow bounds the average dissipation and determines the difficulty of accurately estimating free energy differences in nonequilibrium experiments.

  2. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1) detections, which are associated with gas-rich mergers, we find three new cases of profiles with blueshifted broad wings (with FW20 ? 500 km s-1) in high radio power AGN. These detections are good candidates for being HI outflows. Together with the known cases of outflows already included in the sample (3C 293 and 3C 305), the detection rate of H I outflows is 5% in the total radio AGN sample. Because of the effects of spin temperature and covering factor of the outflowing gas, this fraction could represent a lower limit. However, if the relatively low detection rate is confirmed by more detailed observations, it would suggest that, if outflows are a characteristic phenomenon of all radio AGN, they would have a short depletion timescale compared to the lifetime of the radio source. This would be consistent with results found for some of the outflows traced by molecular gas. Using stacking techniques, in our previous paper we showed that compact radio sources have higher ?, FWHM, and column density than extended sources. In addition, here we find that blueshifted and broad/asymmetric lines are more often present among compact sources. In good agreement with the results of stacking, this suggests that unsettled gas is responsible for the larger stacked FWHM detected in compact sources. Therefore in such sources the H I is more likely to be unsettled. This may arise as a result of jet-cloud interactions, as young radio sources clear their way through the rich ambient gaseous medium. Appendices are available in electronic form at http://www.aanda.org

  3. Path statistics, memory, and coarse-graining of continuous-time random walks on networks

    E-print Network

    Manhart, Michael; Morozov, Alexandre V

    2015-01-01

    Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states, for example those in Markov models of molecular kinetics, or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. We therefore use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach is valuable for calculating higher moments (beyond the mean) of path statistics such as path length, time, and action, as well as any conservative or nonconservative force along a path. For homogeneous networks we derive exact relations between these moments, quantifying the validity of approximating a continuous-ti...

  4. Determination of unsaturated flow paths in a randomly distributed fracture network

    SciTech Connect

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.; Liu, Hui-Hai

    2003-02-17

    We present a numerical investigation of steady flow paths in a two-dimensional, unsaturated discrete-fracture network. The fracture network is constructed using field measurement data including fracture density, trace lengths, and orientations from a particular site. The fracture network with a size of 100m x 150m contains more than 20,000 fractures. The steady state unsaturated flow in the fracture network is investigated for different boundary conditions. Simulation results indicate that the flow paths are generally vertical, and horizontal fractures mainly provide pathways between neighboring vertical paths. The simulation results support that the average spacing between flow paths in a layered system tends to increase or flow becomes more focused with depth as long as flow is gravity driven (Liu et al. 2002).

  5. Absorption of Solar Radiation by Clouds: An Overview

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.

  6. Saturable absorption of intense hard X-rays in iron.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Yabashi, Makina; Katayama, Tetsuo; Ishikawa, Tetsuya; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru

    2014-01-01

    In 1913, Maurice de Broglie discovered the presence of X-ray absorption bands of silver and bromine in photographic emulsion. Over the following century, X-ray absorption spectroscopy was established as a standard basis for element analysis, and further applied to advanced investigation of the structures and electronic states of complex materials. Here we show the first observation of an X-ray-induced change of absorption spectra of the iron K-edge for 7.1-keV ultra-brilliant X-ray free-electron laser pulses with an extreme intensity of 10(20)?W?cm(-2). The highly excited state yields a shift of the absorption edge and an increase of transparency by a factor of 10 with an improvement of the phase front of the transmitted X-rays. This finding, the saturable absorption of hard X-rays, opens a promising path for future innovations of X-ray science by enabling novel attosecond active optics, such as lasing and dynamical spatiotemporal control of X-rays. PMID:25270525

  7. Study on optical weak absorption of borate crystals

    NASA Astrophysics Data System (ADS)

    Li, Xiaomao; Hu, Zhanggui; Yue, Yinchao; Yu, Xuesong; Lin, Zheshuai; Zhang, Guochun

    2013-10-01

    Borate crystal is an important type of nonlinear optical crystals used in frequency conversion in all-solid-state lasers. Especially, LiB3O5 (LBO), CsB3O5 (CBO) and CsLiB6O10 (CLBO) are the most advanced. Although these borate crystals are all constructed by the same anionic group-(B3O7)5-, they show different nonlinear optical properties. In this study, bulk weak absorption values of three borate crystals have been studied at 1064 nm by a photothermal common-path interferometer. The bulk weak absorption values of them along [1 0 0], [0 1 0] and [0 0 1] directions were obtained, respectively, to be approximately 17.5 ppm cm-1, 15 ppm cm-1 and 20 ppm cm-1 (LBO); 80 ppm cm-1, 100 ppm cm-1 and 40 ppm cm-1 (CBO); 600 ppm cm-1, 600 ppm cm-1 and 150 ppm cm-1 (CLBO) at 1064 nm. The results showed an obvious discrepancy of the values of these crystals along three axis directions. A correlation between the bulk weak absorption property and crystal intrinsic structure was then discussed. It is found that the bulk weak absorption values strongly depend on the interstitial area surrounded by the B-O frames. The interstitial area is larger, the bulk weak absorption value is higher.

  8. Remark on pion scattering lengths

    E-print Network

    Deirdre Black; Amir H. Fariborz; Renata Jora; Nae Woong Park; Joseph Schechter; M. Naeem Shahid

    2009-07-29

    First it is shown that the tree amplitude for pion pion scattering in the minimal linear sigma model has an exact expression which is proportional to a geometric series in the quantity (s-$m_\\pi^2$)/($m_B^2-m_\\pi^2$), where $m_B$ is the sigma mass which appears in the Lagrangian and is the only a priori unknown parameter in the model. This induces an infinite series for every predicted scattering length in which each term corresponds to a given order in the chiral perturbation theory counting. It is noted that, perhaps surprisingly, the pattern, though not the exact values, of chiral perturbation theory predictions for both the isotopic spin 0 and isotopic spin 2 s-wave pion-pion scattering lengths to orders $p^2$, $p^4$ and $p^6$ seems to agree with this induced pattern. The values of the $p^8$ terms are also given for comparison with a possible future chiral perturation theory calculation. Further aspects of this approach and future directions are briefly discussed.

  9. NMR Measures of Heterogeneity Length

    NASA Astrophysics Data System (ADS)

    Spiess, Hans W.

    2002-03-01

    Advanced solid state NMR spectroscopy provides a wealth of information about structure and dynamics of complex systems. On a local scale, multidimensional solid state NMR has elucidated the geometry and the time scale of segmental motions at the glass transition. The higher order correlation functions which are provided by this technique led to the notion of dynamic heterogeneities, which have been characterized in detail with respect to their rate memory and length scale. In polymeric and low molar mass glass formers of different fragility, length scales in the range 2 to 4 nm are observed. In polymeric systems, incompatibility of backbone and side groups as in polyalkylmethacrylates leads to heteogeneities on the nm scale, which manifest themselves in unusual chain dynamics at the glass transition involving extended chain conformations. References: K. Schmidt-Rohr and H.W. Spiess, Multidimensional Solid-State NMR and Polymers,Academic Press, London (1994). U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998). S.A. Reinsberg, X.H. Qiu, M. Wilhelm, M.D. Ediger, H.W. Spiess, J.Chem.Phys. 114, 7299 (2001). S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, J. Non-Crystal. Solids, in press (2002)

  10. Telomere length and cardiovascular aging.

    PubMed

    Fyhrquist, Frej; Saijonmaa, Outi

    2012-06-01

    Telomeres are located at the end of chromosomes. They are composed of repetitive TTAGGG tandem repeats and associated proteins of crucial importance for telomere function. Telomeric DNA is shortened by each cell division until a critical length is achieved and the cell enters senescence and eventually apoptosis. Telomeres are therefore considered a 'biological clock' of the cell. Telomerase adds nucleotides to telomeric DNA thereby contributing to telomere maintenance, genomic stability, functions, and proliferative capacity of the cell. In certain rare forms of progeria, point mutations within the telomere lead to accelerated telomere attrition and premature aging. Endogenous factors causing telomere shortening are aging, inflammation, and oxidative stress. Leukocyte telomere length (LTL) shortening is inhibited by estrogen and endogenous antioxidants. Accelerated telomere attrition is associated with cardiovascular risk factors such as age, gender, obesity, smoking, sedentary life-style, excess alcohol intake, and even mental stress. Cardiovascular (CV) diseases and CV aging are usually but not invariably associated with shorter telomeres than in healthy subjects. LTL appears to be a biomarker of CV aging, reflecting the cumulative burden of endogenous and exogenous factors negatively affecting LTL. Whether accelerated telomere shortening is cause or consequence of CV aging and disease is not clear. PMID:22713142

  11. Attenuation length for relativistic solar nucleons

    SciTech Connect

    Ahluwalia, H.S.; Xue, S.S.

    1992-01-01

    Sun often generates energetic particles during a large solar flare. They are called solar cosmic rays. For a solar proton to produce secondary nucleons in Earth's atmosphere, it must have an energy greater than 450 MeV (corresponding to the rigidity of 1 GV). Such nucleons are detected by a ground-based neutron monitor (NM). Protons with rigidities < 5 GV are sometimes observed during a solar activity cycle (SAC). On extremely rare occasions, solar protons of much higher rigidity have been detected with NM and muon detectors, at equatorial sites. An increase in flux observed by a ground-based detector, caused by solar protons, is referred to as a ground-level-enhancement (GLE). The amplitude of the GLE is larger, the higher the altitude where observations are made. The difference is due to the absorption of the nucleons by the atmospheric layer between the two observing sites. Data must be corrected for this effect before they are used to derive information about the rigidity spectrum of solar nucleons. The consensus value for the mean attenuation length ([lambda][sub f]) for solar nucleons, quoted in the literature, is: [lambda][sub f] = (100 [+-] 5) g cm[sup 2]. An unusual CLE was observed on 29 September, 1989 during the present SAC (No.22). This affords us an opportunity to make an independent determination of [lambda], using data from the global network of NM. For lower latitudes, we find that [lambda][sub f] = (136 [+-] 4) g cm[sup 2] which is much higher than the consensus value. It is almost the same as that applicable to galactic cosmic rays. Our method is described and the results are discussed.

  12. Link prediction based on path entropy

    E-print Network

    Xu, Zhongqi; Yang, Jian

    2015-01-01

    Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, we first study the information entropy or uncertainty of a path using the information theory. Then we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream link predictors.

  13. Processor Would Find Best Paths On Map

    NASA Technical Reports Server (NTRS)

    Eberhardt, Silvio P.

    1990-01-01

    Proposed very-large-scale integrated (VLSI) circuit image-data processor finds path of least cost from specified origin to any destination on map. Cost of traversal assigned to each picture element of map. Path of least cost from originating picture element to every other picture element computed as path that preserves as much as possible of signal transmitted by originating picture element. Dedicated microprocessor at each picture element stores cost of traversal and performs its share of computations of paths of least cost. Least-cost-path problem occurs in research, military maneuvers, and in planning routes of vehicles.

  14. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  15. A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

    E-print Network

    Jones, Benjamin James Poyner

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume ...

  16. A wide angle low coherence interferometry based eye length optometer

    NASA Astrophysics Data System (ADS)

    Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua

    2015-03-01

    Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 ?m (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.

  17. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1989-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented here.

  18. Arithmetic area for m planar Brownian paths

    NASA Astrophysics Data System (ADS)

    Desbois, Jean; Ouvry, Stéphane

    2012-05-01

    We pursue the analysis made in Desbois and Ouvry (2011 J. Stat. Mech. P05024) on the arithmetic area enclosed by m closed Brownian paths. We pay particular attention to the random variable Sn1, n2,..., nm(m), which is the arithmetic area of the set of points, also called winding sectors, enclosed n1 times by path 1, n2 times by path 2,..., and nm times by path m. Various results are obtained in the asymptotic limit m\\to \\infty . A key observation is that, since the paths are independent, one can use in the m-path case the SLE information, valid in the one-path case, on the zero-winding sectors arithmetic area.

  19. HI absorption in radio galaxies

    E-print Network

    R. Morganti; T. A. Oosterloo; G. van Moorsel; C. N. Tadhunter; N. Killeen

    2000-06-26

    Twenty-two powerful radio galaxies have been searched for HI absorption. We find the highest probability of detecting HI in absorption among narrow-line compact (or small) galaxies or galaxies with indication of richer interstellar medium (i.e. with ongoing or recent star-formation). We discuss the difficulty in the interpretation of the origin of the HI absorption due to the uncertainty in the systemic velocity of the galaxies.

  20. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  1. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  2. Evidence of different developmental trajectories for length estimation according to egocentric and allocentric viewpoints in children and adults.

    PubMed

    Poirel, Nicolas; Vidal, Manuel; Pineau, Arlette; Lanoë, Céline; Leroux, Gaëlle; Lubin, Amélie; Turbelin, Marie-Renée; Berthoz, Alain; Houdé, Olivier

    2011-01-01

    This study investigated the influence of egocentric and allocentric viewpoints on a comparison task of length estimation in children and adults. A total of 100 participants ranging in age from 5 years to adulthood were presented with virtual scenes representing a park landscape with two paths, one straight and one serpentine. Scenes were presented either from an egocentric or allocentric viewpoint. Results showed that when the two paths had the same length, participants always overestimated the length of the straight line for allocentric trials, whereas a development from a systematic overestimation in children to an underestimation of the straight line length in adults was found for egocentric trials. We discuss these findings in terms of the influences of both bias-inhibition processes and school acquisitions. PMID:21106477

  3. Nonlinear absorption and phase shift in coupled optical cavities

    NASA Astrophysics Data System (ADS)

    Hasegawa, T.

    2015-10-01

    The nonlinear absorption process and associated phase shift in coupled optical cavities are studied experimentally by observing optical resonance properties. In the coupled cavity configuration, two optical cavities, one for a fundamental beam and the other for a second-harmonic (SH) beam, are coupled by a nonlinear crystal for the second-harmonic generation (SHG). The cavity for the SH beam effectively extends the nonlinear crystal length so that the frequency-conversion efficiency of the SHG, which is proportional to the square of the crystal length, is enhanced. In the observation, power reduction of the fundamental beam at resonance is observed as a small dip in the resonance curve. According to a model calculation, it is found that this power reduction is caused by blue-induced infrared absorption.

  4. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  5. Characterizing the Evolutionary Path(s) to Early Homo

    PubMed Central

    Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780

  6. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.

  7. The Union of Shortest Path Trees of Functional Brain Networks.

    PubMed

    Meier, Jil; Tewarie, Prejaas; Van Mieghem, Piet

    2015-11-01

    Communication between brain regions is still insufficiently understood. Applying concepts from network science has shown to be successful in gaining insight in the functioning of the brain. Recent work has implicated that especially shortest paths in the structural brain network seem to play a major role in the communication within the brain. So far, for the functional brain network, only the average length of the shortest paths has been analyzed. In this article, we propose to construct the union of shortest path trees (USPT) as a new topology for the functional brain network. The minimum spanning tree, which has been successful in a lot of recent studies to comprise important features of the functional brain network, is always included in the USPT. After interpreting the link weights of the functional brain network as communication probabilities, the USPT of this network can be uniquely defined. Using data from magnetoencephalography, we applied the USPT as a method to find differences in the network topology of multiple sclerosis patients and healthy controls. The new concept of the USPT of the functional brain network also allows interesting interpretations and may represent the highways of the brain. PMID:26027712

  8. Physarum Can Compute Shortest Paths

    E-print Network

    Bonifaci, Vincenzo; Varma, Girish

    2011-01-01

    A mathematical model has been proposed by biologists to describe the feedback mechanism used by the Physarum Polycephalum slime mold to adapt its tubular channels while foraging two food sources $s_0$ and $s_1$. We give a proof of the fact that, under this model, the mass of the mold will eventually converge to the shortest $s_0$-$s_1$ path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years.

  9. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  10. Staff detection with stable paths.

    PubMed

    Dos Santos Cardoso, Jaime; Capela, Artur; Rebelo, Ana; Guedes, Carlos; Pinto da Costa, Joaquim

    2009-06-01

    The preservation of musical works produced in the past requires their digitalization and transformation into a machine-readable format. The processing of handwritten musical scores by computers remains far from ideal. One of the fundamental stages to carry out this task is the staff line detection. We investigate a general-purpose, knowledge-free method for the automatic detection of music staff lines based on a stable path approach. Lines affected by curvature, discontinuities, and inclination are robustly detected. Experimental results show that the proposed technique consistently outperforms well-established algorithms. PMID:19372615

  11. Communication path for extreme environments

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  12. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  13. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of...

  14. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of...

  15. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of...

  16. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of...

  17. 7 CFR 51.610 - Midrib length.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.610 Midrib length. Midrib length of a branch means the distance between the point of...

  18. Inheritance of Cotton Fiber Length and Strength 

    E-print Network

    Joy, Kolbyn Seth

    2014-04-23

    ), uniformity index, elongation, micronaire, advanced fiber information system (AFIS) upper quartile length on a weight basis, mean length on a number basis, short fiber content on a number basis, immature fiber content, maturity ratio, and standard fineness...

  19. Inheritance of cotton fiber length and distribution 

    E-print Network

    Braden, Chris Alan

    2006-10-30

    length and to determine the inheritance of length distribution data. Four near-long staple (NLS) upland cotton genotypes and one short-staple genotype were crossed in all combinations, excluding reciprocals. Estimates of general (GCA) and specific...

  20. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  1. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali; Powers, W. T.

    1995-01-01

    The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for the engine protection. The feasibility of the IR leak plume detection will be evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application. The theoretical analysis was undertaken with the objective of developing and testing simple, easy-to-use models to predict the amount of radiation coming from a radiation source, background plate (BP), which can be absorbed, emitted and scattered by the gas leaks.

  2. Spectral properties of microwave graphs with local absorption

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Gehler, Stefan; Barkhofen, Sonja; Stöckmann, H.-J.; Kuhl, Ulrich

    2014-02-01

    The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50? load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012), 10.1103/PhysRevLett.108.174101]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.

  3. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 2011-07-01 false Hair length. 551.4 Section 551.4 Judicial...MANAGEMENT MISCELLANEOUS Grooming § 551.4 Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and...

  4. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial...MANAGEMENT MISCELLANEOUS Grooming § 551.4 Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and...

  5. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 2013-07-01 false Hair length. 551.4 Section 551.4 Judicial...MANAGEMENT MISCELLANEOUS Grooming § 551.4 Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and...

  6. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 2012-07-01 false Hair length. 551.4 Section 551.4 Judicial...MANAGEMENT MISCELLANEOUS Grooming § 551.4 Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and...

  7. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 2014-07-01 false Hair length. 551.4 Section 551.4 Judicial...MANAGEMENT MISCELLANEOUS Grooming § 551.4 Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and...

  8. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  9. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  10. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  11. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  12. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  13. Solar Absorption in Cloudy Atmospheres

    NASA Technical Reports Server (NTRS)

    Harshvardhan; Ridgway, William; Ramaswamy, V.; Freidenreich, S. M.; Batey, Michael

    1996-01-01

    The theoretical computations used to compute spectral absorption of solar radiation are discussed. Radiative properties relevant to the cloud absorption problem are presented and placed in the context of radiative forcing. Implications for future measuring programs and the effect of horizontal inhomogeneities are discussed.

  14. Atlas of Infrared Absorption Lines

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1977-01-01

    This atlas of infrared absorption line contains absorption line parameters (line strength vs. wavenumber) from 500 to 7000 cm(exp-1) for 15 gases: H2O, CO2, O3, N2O, CO, CH4, O2, SO2, NO, NO2, NH3, HCl, HF, HNO3 and CH3Cl.

  15. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  16. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  17. Scattering Suppression and Absorption Enhancement in Contour Nanoantennas

    E-print Network

    Onal, E Doruk

    2015-01-01

    The expanding application spectrum of plasmonic nanoantennas demand versatile design approaches to tailor the antenna properties for specific requirements. The design efforts primarily concentrate on shifting the operation wavelength or enhancing the local fields by manipulating the size and shape of the nanoantenna. Here, we propose a design path to control the absorption and scattering characteristics of a dipole nanoantenna by introducing a hollow region inside the nanostructure. The resulting contour geometry can significantly suppress the scattering of the dipole nanoantenna and enhance its absorption simultaneously. Both the dipole and the contour dipole nanoantenna couple to equivalent amount of the incident radiation. The dipole nanoantenna scatters 84% of the coupled power (absorbs the remaining 16%) whereas the contour dipole structure scatters only 28% of the coupled power (absorbs the remaining 72%). This constitutes the transformation from scatter to absorber nanoantenna. The scattering of a cont...

  18. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  19. LED-Absorption-QEPAS Sensor for Biogas Plants.

    PubMed

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  20. LED-Absorption-QEPAS Sensor for Biogas Plants

    PubMed Central

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  1. Path integral measure factorization in path integrals for diffusion of Yang--Mills fields

    E-print Network

    S. N. Storchak

    2007-11-19

    Factorization of the (formal) path integral measure in a Wiener path integrals for Yang--Mills diffusion is studied. Using the nonlinear filtering stochastic differential equation, we perform the transformation of the path integral defined on a total space of the Yang--Mills principal fiber bundle and come to the reduced path integral on a Coulomb gauge surface. Integral relation between the path integral representing the "quantum" evolution given on the original manifold of Yang--Mills fields and the path integral on the reduced manifold defined by the Coulomb gauge is obtained.

  2. Adaptive smoothing lengths in SPH

    NASA Astrophysics Data System (ADS)

    Attwood, R. E.; Goodwin, S. P.; Whitworth, A. P.

    2007-03-01

    Context: There is a need to improve the fidelity of SPH simulations of self-gravitating gas dynamics. Aims: We remind users of SPH that, if smoothing lengths are adjusted so as to keep the number of neighbours, N, in the range NNEIB±?NNEIB, the tolerance, ?NNEIB, should be set to zero, as first noted by Nelson & Papaloizou. We point out that this is a very straightforward and computationally inexpensive constraint to implement. Methods: We demonstrate this by simulating acoustic oscillations of a self-gravitating isentropic monatomic gas-sphere (cf. Lucy), using NTOT˜6000 particles and NNEIB=50. Results: We show that there is a marked reduction in the rates of numerical dissipation and diffusion as ?NNEIB is reduced from 10 to zero. Moreover this reduction incurs a very small computational overhead. Conclusions: .We propose that this should become a standard test for codes used in simulating star formation. It is a highly relevant test, because pressure waves generated by the switch from approximate isothermality to approximate adiabaticity play a critical role in the fragmentation of collapsing prestellar cores. Since many SPH simulations in the literature use NNEIB=50 and ?NNEIB?10, their results must be viewed with caution.

  3. Sequential Path Entanglement for Quantum Metrology

    PubMed Central

    Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.

    2013-01-01

    Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.

  4. Multi-path light extinction approach for high efficiency filtered oil particle measurement

    NASA Astrophysics Data System (ADS)

    Pengfei, Yin; Jun, Chen; Huinan, Yang; Lili, Liu; Xiaoshu, Cai

    2014-04-01

    This work present a multi-pathlight extinction approach to determine the oil mist filter efficiency based on measuring the concentration and size distribution of oil particles. Light extinction spectrum(LES) technique was used to retrieve the oil particle size distribution and concentration. The multi-path measuring cell was designed to measure low concentration and fine particles after filtering. The path-length of the measuring cell calibrated as 200 cm. The results of oil particle size with oil mist filtering were obtained as D32 = 0.9?m. Cv=1.6×10-8.

  5. Universal range corrections to the Efimov trimer for a class of paths to the unitary limit

    E-print Network

    A. Kievsky; M. Gattobigio

    2015-12-02

    Using potential models we analyze range corrections to the universal law dictated by the Efimov theory of three bosons. In the case of finite-range interactions we have observed that, at first order, it is necessary to supplement the theory with one finite-range parameter, $\\Gamma_n^3$, for each specific $n$-level [Kievsky and Gattobigio, Phys. Rev. A {\\bf 87}, 052719 (2013)]. The value of $\\Gamma_n^3$ depends on the way the potentials is changed to tune the scattering length toward the unitary limit. In this work we analyze a particular path in which the length $r_B=a-a_B$, measuring the difference between the two-body scattering length $a$ and the energy scattering length $a_B$, results almost constant. Analyzing systems with very different scales, as atomic or nuclear systems, we observe that the finite-range parameter remains almost constant along the path with a numerical value of $\\Gamma_0^3\\approx 0.87$ for the ground state level. This observation suggests the possibility of constructing a single universal function that incorporate finite-range effects for this class of paths. The result is used to estimate the three-body parameter $\\kappa_*$ in the case of real atomic systems brought to the unitary limit thought a broad Feshbach resonances. Furthermore, we show that the finite-range parameter can be put in relation with the two-body contact $C_2$ at the unitary limit.

  6. A carbon monoxide detection device based on mid-infrared absorption spectroscopy at 4.6 ?m

    NASA Astrophysics Data System (ADS)

    Li, Guo-Lin; Sui, Yue; Dong, Ming; Ye, Wei-Lin; Zheng, Chuan-Tao; Wang, Yi-Ding

    2015-05-01

    We present a differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g., light collector) and a multi-pass gas chamber. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path, and environmental changes. The detection principle of the device is described, and both the optical part and the electrical part are designed and developed. Experiments are carried out to evaluate the sensing performances on CO concentration. The results indicate that the limit of detection is about 10 ppm with an absorption length of 40 cm. As the gas concentration gets larger than 100 ppm, the relative detection error falls into the range of -1.7 to +1.9 %. Based on 12-h long-term measurements on the 100 and 1000 ppm CO samples, the maximum detection errors are about 0.9 and 5.5 %, respectively. Benefit from low cost and competitive characteristics, the proposed device shows potential applications in CO detection under the circumstances of coal-mine production and environmental protection.

  7. Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy

    SciTech Connect

    Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Cioni, R.; Raco, B.; Taddeucci, G.

    1994-09-20

    The authors present measurements of the total flux of sulfur dioxide from three Italian volcanoes Etna, Stromboli, and Vulcano, measured in a three day period in Sept, 1992. The fluxes were measured from shipboard by means of an active differential absorption lidar technique, and a passive differential optical absorption spectroscopy technique. Corrections had to be applied to the passive optical technique because the light source paths were not well defined. The total fluxes were found to be roughly 25, 180, and 1300 tons/day for Vulcano, Stromboli, and Etna, respectively. 43 refs., 10 figs., 6 tabs.

  8. Isothermal absorption of soluble gases by atmospheric nanoaerosols

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Fominykh, A.; Krasovitov, B.; Lushnikov, A.

    2013-01-01

    We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3), and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.

  9. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range.

    PubMed

    Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I

    2015-08-24

    We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10-4 cm-1 up to 2 cm-1. Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement. PMID:26368148

  10. Path integral for Koenigs spaces

    SciTech Connect

    Grosche, C.

    2008-05-15

    I discuss a path-integral approach for the quantum motion on two-dimensional spaces according to Koenigs, for short 'Koenigs spaces'. Their construction is simple: one takes a Hamiltonian from a two-dimensional flat space and divides it by a two-dimensional superintegrable potential. These superintegrable potentials are the isotropic singular oscillator, the Holt potential, and the Coulomb potential. In all cases, a nontrivial space of nonconstant curvature is generated. We can study free motion and the motion with an additional superintegrable potential. For possible bound-state solutions, we find in all three cases an equation of the eighth order in the energy E. The special cases of the Darboux spaces are easily recovered by choosing the parameters accordingly.

  11. Fragmentation paths in dynamical models

    E-print Network

    M. Colonna; A. Ono; J. Rizzo

    2010-11-05

    We undertake a quantitative comparison of multi-fragmentation reactions, as modeled by two different approaches: the Antisymmetrized Molecular Dynamics (AMD) and the momentum-dependent stochastic mean-field (SMF) model. Fragment observables and pre-equilibrium (nucleon and light cluster) emission are analyzed, in connection to the underlying compression-expansion dynamics in each model. Considering reactions between neutron-rich systems, observables related to the isotopic properties of emitted particles and fragments are also discussed, as a function of the parametrization employed for the isovector part of the nuclear interaction. We find that the reaction path, particularly the mechanism of fragmentation, is different in the two models and reflects on some properties of the reaction products, including their isospin content. This should be taken into account in the study of the density dependence of the symmetry energy from such collisions.

  12. Fragmentation paths in dynamical models

    SciTech Connect

    Colonna, M.; Rizzo, J.; Ono, A.

    2010-11-15

    We undertake a quantitative comparison of multifragmentation reactions, as modeled by two different approaches: the antisymmetrized molecular dynamics (AMD) and the momentum-dependent stochastic mean-field (SMF) model. Fragment observables and pre-equilibrium (nucleon and light cluster) emission are analyzed, in connection with the underlying compression-expansion dynamics in each model. Considering reactions between neutron-rich systems, observables related to the isotopic properties of emitted particles and fragments are also discussed, as a function of the parametrization employed for the isovector part of the nuclear interaction. We find that the reaction path, particularly the mechanism of fragmentation, is different in the two models and reflects on some properties of the reaction products, including their isospin content. This should be taken into account in the study of the density dependence of the symmetry energy from such collisions.

  13. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  14. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  15. Methodology for Augmenting Existing Paths with Additional Parallel Transects

    SciTech Connect

    Wilson, John E.

    2013-09-30

    Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.

  16. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J. (Nesconset, NY); Lin, Horn-Bond (Manorville, NY)

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  17. Resonant Absorption of Bessel Beams

    NASA Astrophysics Data System (ADS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    1999-11-01

    We report the first observation of enhanced laser-plasma optical absorption in a subcritical density plasma resulting from spatial resonances, here in the laser breakdown of a gas with a Bessel beam. The enhancement in absorption is directly correlated to enhancements both in confinement of laser radiation to the plasma and in its heating. Under certain conditions, azimuthal asymmetry in the laser beam is essential for efficient gas breakdown. Simulations of this absorption consistently explain the experimental observations. This work is supported by the National Science Foundation (PHY-9515509) and the US Department of Energy (DEF G0297 ER 41039).

  18. Diode laser atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zybin, A.; Koch, J.; Wizemann, H. D.; Franzke, J.; Niemax, K.

    2005-01-01

    The paper reviews the past 11 years of literature on the application of diode lasers in atomic absorption spectrometry with graphite furnaces (GF), plasmas and flames as atomizers. Experimental arrangements and techniques for powerful absorption measurements as well as the theoretical background are covered. The analytical possibilities of high-resolution spectroscopy, including Doppler-free techniques for isotope selective measurements and isotope dilution analysis are discussed and various applications of element-selective detection by diode laser atomic absorption in combination with separation techniques, such as liquid (LC) and gas chromatography (GC), and with laser ablation of solid samples, are presented.

  19. Photoacoustic detection of intracavity absorption

    SciTech Connect

    Kelly, R.A.; Nogar, N.S.; Bomse, D.S.

    1983-11-01

    It is demonstrated that the photoacoustic effect in an external cell is a sensitive resonant detector of inracavity absorption. The detection limits for I/sub 2/ and Br/sub 2/ ng/cm/sup 3/ and 48 ng/cm/sup 3/, respectively. For the case of I/sub 2/ the detection limit using the photoacoustic detector is essentially the same as the detection limit using a fluorescence detector. The sensitive response of photoacoustic detection to IR absorption makes this technique particularly attractive as a potential resonance detector for intracavity absorption with IR lasers.

  20. Inheritance of Telomere Length in a Bird

    PubMed Central

    Horn, Thorsten; Robertson, Bruce C.; Will, Margaret; Eason, Daryl K.; Elliott, Graeme P.; Gemmell, Neil J.

    2011-01-01

    Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length. PMID:21364951