Sample records for absorption rate mapping

  1. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  2. Soft black hole absorption rates as conservation laws

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2017-04-10

    The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. Here, we interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend our previous analytic results regarding the absorption rate for the minimal scalar and the photon.

  3. Soft black hole absorption rates as conservation laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, Steven G.; Schwab, Burkhard U. W.

    The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. Here, we interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend our previous analytic results regarding the absorption rate for the minimal scalar and the photon.

  4. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10%more » on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.« less

  5. A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A. G.; Krauß, F.; Miniutti, G.; Longinotti, A. L.; Guainazzi, M.; de La Calle Pérez, I.; Malkan, M.; Elvis, M.; Miyaji, T.; Hiriart, D.; López, J. M.; Agudo, I.; Dauser, T.; Garcia, J.; Kreikenbohm, A.; Kadler, M.; Wilms, J.

    2015-12-01

    Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of active galactic nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims: Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV broad line region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods: We examine six Suzaku and 12 Swift observations from a 2008 campaign spanning five weeks. We use a model accounting for the complex spectral interplay of three absorbers with different levels of ionization. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR to X-ray spectral energy distribution (SED) to test for reddening by dust. Results: The 2008 absorption event is due to moderately-ionized (log ξ ~ 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions: The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.

  6. Multi-frequency Optical-depth Maps And The Case For Free-free Absorption In Two Compact Symmetric Objects: 1321+410 And 0026+346

    NASA Astrophysics Data System (ADS)

    Perry, Thomas M.; Marr, J. M.; Read, J. W.; Taylor, G. B.

    2011-01-01

    We obtained VLBI observations at six frequencies of two Compact Symmetric Objects, 1321+410 and 0026+346. By comparing the lower frequency maps with spectral extrapolations of the higher frequency maps, we produced maps of the optical depth as a function of frequency. The optical-depth maps of 1321+410 are strikingly uniform, consistent with a foreground screen of absorbing gas; the optical depths as a function of frequency are consistent with free-free absorption; and no net polarization was detected. We conclude that the case for free-free absorption in 1321+410 is strong. The optical-depth maps of 0026+346 exhibit structure but the morphology does not correlate with that in the intensity maps, in conflict with that expected in the case of synchrotron self-absorption. No net polarization was detected. The frequency dependence of the optical depths does not fit well to a simple free-free absorption model, but this does not take into account possible structure in the absorbing gas on smaller scales. We conclude that free-free absorption by a thin amount of gas with structure on the scale of our maps and smaller is possible in 0026+346, although no definitive conclusion can be made. A compact feature between the lobes in 0026+346 has an inverted spectrum even at the highest frequencies, suggesting that this component is synchrotron self-absorbed. We infer this to be the location of the core. We estimate an upper limit to the magnetic field in the core of 50 Gauss at a radius of 1 pc. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  7. Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate

    DTIC Science & Technology

    2008-11-01

    ISTC Project No. #1571P Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate Final Project Technical...Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information...polymer materials having high radiowave absorption rate 5a. CONTRACT NUMBER ISTC Registration No: A-1571p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  8. X-Ray Absorption Microspectroscopy with Electrostatic Force Microscopy and its Application to Chemical States Mapping

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.

    2007-02-01

    A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.

  9. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.

    PubMed

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-06-13

    The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.

  10. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

    PubMed Central

    Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge

    2013-01-01

    Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271

  11. Distribution of photon absorption rates across the rat retina.

    PubMed

    Williams, T P; Webbers, J P; Giordano, L; Henderson, R P

    1998-04-15

    1. An investigation into the distribution of light intensity across the rat retina was carried out on excised, intact rat eyes exposed to Ganzfeld illumination from a helium-neon laser (543 nm). 2. Some of the light entering the eyes exits through the sclera where its intensity can be monitored with an optical 'pick-up' that samples the intensity coming from a small region of external sclera and underlying retina. The spatial resolution of the pick-up is such that it samples light that has passed through ca 2 % of the rods in the rat eye. 3. Some of the laser light is absorbed by the rod pigment, rhodopsin, which gradually bleaches. Bleaching in the retina, in turn, causes an exponential increase in intensity emanating from the sclera. By monitoring this intensity increase, we are able to measure two important parameters in a single bleaching run: the local rhodopsin concentration and the local intensity falling on the rods. 4. With an ocular transmission photometer, we have measured both the local intensity and the local rhodopsin concentration across wide regions of rat retina. Both pigmented and albino rats were studied. 5. The distributions of rhodopsin and intensity were both nearly uniform; consequently, the product, (rhodopsin concentration) x (intensity), was similarly nearly equal across the retina. This means that the initial rate of photon absorption is about the same at all retinal locations. 6. Interpreted in terms of photostasis (the regulation of daily photon catch), this means that the rate of photon absorption is about the same in each rod, viz. 14 400 photons absorbed per rod per second. Since this rate of absorption is sufficient to saturate the rod, one possible purpose of photostasis is to maintain the rod system in a saturated state during daylight hours.

  12. Water-absorption rate equation of rice for brewing sake.

    PubMed

    Mizuma, Tomochika; Tomita, Akiko; Kitaoka, Atsushi; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2007-01-01

    This study was undertaken to analyze the kinetics of water absorption and to derive an equation for the rate at which water is absorbed by rice for brewing sake. We used two rice varieties: Gin-oumi, commonly used as a staple food, and Gohyakumangoku, a variety used particularly for brewing sake. The water-absorption rate equations of Gin-oumi and Gohyakumangoku were postulated based on the following equations. For Gin-oumi (water content, 11.5%), dx/dtheta=k(1-x)(n), n=1, k=(2 x 10(-9))exp(0.0604 x (t+273.15)). For Gohyakumangoku (11.5%), dx/dtheta=k(1-x)(n)(x+a), n=1, a=0.29, k=(2 x 10(-8))exp(0.0534 x (t+273.15)). Here, x, theta (min), and t ( degrees C) are the water absorbing ratio, time, and temperature, respectively. The result shows that the values of the temperature-dependence parameter k (min(-1)), as well as its curves, are different; a typical rice grain has a monotonically smooth curve, whereas that suitable for sake brewing has an S-shaped curve.

  13. Interactive Web Interface to the Global Strain Rate Map Project

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Estey, L.; Kreemer, C.; Holt, W.

    2004-05-01

    An interactive web interface allows users to explore the results of a global strain rate and velocity model and to compare them to other geophysical observations. The most recent model, an updated version of Kreemer et al., 2003, has 25 independent rigid plate-like regions separated by deformable boundaries covered by about 25,000 grid areas. A least-squares fit was made to 4900 geodetic velocities from 79 different geodetic studies. In addition, Quaternary fault slip rate data are used to infer geologic strain rate estimates (currently only for central Asia). Information about the style and direction of expected strain rate is inferred from the principal axes of the seismic strain rate field. The current model, as well as source data, references and an interactive map tool, are located at the International Lithosphere Program (ILP) "A Global Strain Rate Map (ILP II-8)" project website: http://www-world-strain-map.org. The purpose of the ILP GSRM project is to provide new information from this, and other investigations, that will contribute to a better understanding of continental dynamics and to the quantification of seismic hazards. A unique aspect of the GSRM interactive Java map tool is that the user can zoom in and make custom views of the model grid and results for any area of the globe selecting strain rate and style contour plots and principal axes, observed and model velocity fields in specified frames of reference, and geologic fault data. The results can be displayed with other data sets such Harvard CMT earthquake focal mechanisms, stress directions from the ILP World Stress Map Project, and topography. With the GSRM Java map tool, the user views custom maps generated by a Generic Mapping Tool (GMT) server. These interactive capabilities greatly extend what is possible to present in a published paper. A JavaScript version, using pre-constructed maps, as well as a related information site have also been created for broader education and outreach access

  14. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  15. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  16. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less

  17. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A.

    2016-02-01

    Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t \\gt 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm-1. In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.

  18. A review of lung-to-blood absorption rates for radon progeny.

    PubMed

    Marsh, J W; Bailey, M R

    2013-12-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.

  19. Absorption of subcutaneously infused insulin: influence of the basal rate pulse interval.

    PubMed

    Hildebrandt, P; Birch, K; Jensen, B M; Kühl, C; Brange, J

    1985-01-01

    Eight insulin-dependent diabetic patients were given two constant infusions (each 1 IU/h) of 125I-labeled insulin into the abdominal subcutaneous tissue for about 12 h. Insulin was infused in pulses into one side of the abdomen in 6-min intervals (by means of an Auto-Syringe pump) and in the other side of the abdomen, insulin was infused in 1-h intervals (by means of a Medix pump). The size of the subcutaneous depots was continuously measured by counting the radioactivity at the infusion sites. After starting the infusions, the two depots were built up to steady-state levels at the same time and of the same size (approximately 3 IU) and with similar absorption rates. Thus, during basal rate insulin infusion, identical insulin absorption kinetics was achieved, irrespective of a 10-fold difference in the pulse rate.

  20. Variation in recombination rate may bias human genetic disease mapping studies.

    PubMed

    Boyle, A Susannah; Noor, Mohamed A F

    2004-11-01

    The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.

  1. Ingestion Rates and Absorption Efficiencies of Abra ovata(Mollusca: Bivalvia) Fed on Macrophytobenthic Detritus

    NASA Astrophysics Data System (ADS)

    Charles, F.; Grémare, A.; Amouroux, J. M.

    1996-01-01

    Ingestion and absorption were investigated in the deposit-feeding bivalve Abra ovatafed on 14C-formaldehyde-labelled detritus derived from 11 macrophytes: Posidonia oceanica, Cystoseira compressa, Padina pavonica, Stypocaulon scoparium, Colpomenia sinuosa, Cystoseira mediterranea, Dilophus spiralis, Rissoella verruculosa, Ulva rigida, Corallina elongata andCodium vermilara . Labelling efficiency ranged from 3·2 (R. verruculosa ) to 53·0% (C. sinuosa) depending on the detritus. The stability of the labelling also varied among detritus types, and was negatively correlated with labelling efficiency. For all types of detritus, the exchanges of radioactivity between compartments were dominated by the transfer between particulate organic matter (POM) and bivalves. These transfers resulted from the interactions between the processes of ingestion, defaecation, and recycling of faeces. The coexistence of these processes together with the occasional lack of stability of the label complicated the actual determination of ingestion rates and absorption efficiencies, which necessitated the use of mathematical modelling. The model was initially composed of five compartments: Detritus, Bivalves, Dissolved organic matter (DOM), CO 2, and Faeces. Two first-order time delays were introduced to account for the production of faeces and CO 2by the bivalves. These delays resulted in the subdivision of the Bivalves compartment into three subcompartments: bivIng, bivDig, and bivAbs. The model also accounts for differences in utilization rates of detritus and faeces by the bivalves. It simulates the exchange of radioactivity between compartments and allows the quantification of ingestion and absorption efficiencies. Our results show large differences in both ingestion rates and absorption efficiencies of A. ovatafed on different types of detritus. Ingestion rates ranged between 0·16 ( C. mediterraneaand D. spiralis) and 8·65 μgOM mgDW -1 h -1( U. rigida). Absorption efficiencies ranged

  2. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  3. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    PubMed

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-11

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  4. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia.

    PubMed

    Prasad, Bibin; Kim, Subin; Cho, Woong; Kim, Suzy; Kim, Jung Kyung

    2018-05-01

    Computational techniques can enhance personalized hyperthermia-treatment planning by calculating tissue energy absorption and temperature distribution. This study determined the effect of tumor properties on energy absorption, temperature mapping, and thermal dose distribution in mild radiofrequency hyperthermia using a mouse xenograft model. We used a capacitive-heating radiofrequency hyperthermia system with an operating frequency of 13.56 MHz for in vivo mouse experiments and performed simulations on a computed tomography mouse model. Additionally, we measured the dielectric properties of the tumors and considered temperature dependence for thermal properties, metabolic heat generation, and perfusion. Our results showed that dielectric property variations were more dominant than thermal properties and other parameters, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values taken from previous study. Furthermore, consideration of temperature dependency in the bio heat-transfer model allowed elucidation of precise thermal-dose calculations. These results suggested that this method might contribute to effective thermoradiotherapy planning in clinics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  6. MareyMap Online: A User-Friendly Web Application and Database Service for Estimating Recombination Rates Using Physical and Genetic Maps.

    PubMed

    Siberchicot, Aurélie; Bessy, Adrien; Guéguen, Laurent; Marais, Gabriel A B

    2017-10-01

    Given the importance of meiotic recombination in biology, there is a need to develop robust methods to estimate meiotic recombination rates. A popular approach, called the Marey map approach, relies on comparing genetic and physical maps of a chromosome to estimate local recombination rates. In the past, we have implemented this approach in an R package called MareyMap, which includes many functionalities useful to get reliable recombination rate estimates in a semi-automated way. MareyMap has been used repeatedly in studies looking at the effect of recombination on genome evolution. Here, we propose a simpler user-friendly web service version of MareyMap, called MareyMap Online, which allows a user to get recombination rates from her/his own data or from a publicly available database that we offer in a few clicks. When the analysis is done, the user is asked whether her/his curated data can be placed in the database and shared with other users, which we hope will make meta-analysis on recombination rates including many species easy in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Measurement of absorption rates of HFC single and blended refrigerants in POE oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, M.; Jotshi, C.K.; Goswami, D.Y.

    1999-07-01

    Thermophysical properties of refrigerant/lubricant mixtures play an important role in refrigeration and air-conditioning system design. Therefore it is important to have a good understanding of the mixture composition in each system component such as the compressor or evaporator. Because the system operation is dynamic the rates of absorption and desorption become significant parameters. In this paper measured absorption rates of alternative refrigerants in polyolester (POE) oils are reported. An effective online mass gain method was designed and constructed to measure the absorption rates and solubility of refrigerants in lubricants. HFC single refrigerants (R-32, R-125, R-134a, and R-143a), and blended refrigerantsmore » (R-404A, R-407C, and R-410A) were tested with POE ISO 68 lubricant under various conditions. The experimental results showed that, at room temperature, R-134a is the most soluble in POE ISO 68 oil among all the refrigerants tested at pressures of 239 kPa (20 psig) to 446 kPa (70 psig). Among the blended refrigerants tested, R-407C was found to be the most soluble at room temperature and pressures of 239 kPa and 446 kPa. Experimental solubility data from this new measurement method were compared with data available in the literature. Good agreement between the two indicates the feasibility of the new method employed in this investigation.« less

  8. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  9. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  10. Dynamic prescription maps for site-specific variable rate irrigation of cotton

    USDA-ARS?s Scientific Manuscript database

    A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...

  11. Influence of Subjectivity in Geological Mapping on the Net Penetration Rate Prediction for a Hard Rock TBM

    NASA Astrophysics Data System (ADS)

    Seo, Yongbeom; Macias, Francisco Javier; Jakobsen, Pål Drevland; Bruland, Amund

    2018-05-01

    The net penetration rate of hard rock tunnel boring machines (TBM) is influenced by rock mass degree of fracturing. This influence is taken into account in the NTNU prediction model by the rock mass fracturing factor ( k s). k s is evaluated by geological mapping, the measurement of the orientation of fractures and the spacing of fractures and fracture type. Geological mapping is a subjective procedure. Mapping results can therefore contain considerable uncertainty. The mapping data of a tunnel mapped by three researchers were compared, and the influence of the variation in geological mapping was estimated to assess the influence of subjectivity in geological mapping. This study compares predicted net penetration rates and actual net penetration rates for TBM tunneling (from field data) and suggests mapping methods that can reduce the error related to subjectivity. The main findings of this paper are as follows: (1) variation of mapping data between individuals; (2) effect of observed variation on uncertainty in predicted net penetration rates; (3) influence of mapping methods on the difference between predicted and actual net penetration rate.

  12. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head

    PubMed Central

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169

  13. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-09-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  14. New constraints in absorptive capacity and the optimum rate of petroleum output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraintsmore » on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)« less

  15. Estimation of absorption rate constant (ka) following oral administration by Wagner-Nelson, Loo-Riegelman, and statistical moments in the presence of a secondary peak.

    PubMed

    Mahmood, Iftekhar

    2004-01-01

    The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.

  16. Neutron absorption constraints on the composition of 4 Vesta

    USGS Publications Warehouse

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-01-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  17. Neutron absorption constraints on the composition of 4 Vesta

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Peplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-11-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's "dark" hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  18. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by

  19. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    NASA Astrophysics Data System (ADS)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  20. A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna.

    PubMed

    Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter

    2016-10-13

    Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.

  1. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    NASA Astrophysics Data System (ADS)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  2. Surface Chemistry Maps

    NASA Image and Video Library

    2015-03-13

    Maps of magnesium/silicon (left) and thermal neutron absorption (right) across Mercury's surface (red indicates high values, blue low) are shown. These maps, together with maps of other elemental abundances, reveal the presence of distinct geochemical terranes. Volcanic smooth plains deposits are outlined in white. Read the mission news story to learn more! http://photojournal.jpl.nasa.gov/catalog/PIA19242

  3. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  4. Genome-wide recombination rate variation in a recombination map of cotton.

    PubMed

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  5. Genome-wide recombination rate variation in a recombination map of cotton

    PubMed Central

    Shen, Chao; Li, Ximei; Zhang, Ruiting

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species’ genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton. PMID:29176878

  6. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  7. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  8. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  9. Greater apparent absorption of flavonoids is associated with lesser human fecal flavonoid disappearance rates.

    PubMed

    Simons, Andrean L; Renouf, Mathieu; Murphy, Patricia A; Hendrich, Suzanne

    2010-01-13

    It was hypothesized that 5,7,4'-OH-flavonoids disappeared more rapidly from human fecal incubations and were less absorbable by humans than flavonoids without 5-OH moieties. Anaerobic fecal disappearance rates over 24 h were determined for 15 flavonoids in samples from 20 men and 13 women. In these anaerobic fecal mixtures, flavonoids with 5,7,4'-OH groups, genistein, apigenin, naringenin, luteolin, kaempferol, and quercetin (disappearance rate, k=0.46+/-0.10 h(-1)), and methoxylated flavonoids, hesperetin and glycitein (k=0.24+/-0.21 h(-1)), disappeared rapidly compared with flavonoids lacking 5-OH (e.g., daidzein, k=0.07+/-0.03 h(-1)). Apparent absorption of flavonoids that disappeared rapidly from in vitro fecal incubations, genistein, naringenin, quercetin, and hesperetin, was compared with that of daidzein, a slowly disappearing flavonoid, in 5 men and 5 women. Subjects ingested 104 micromol of genistein and 62 micromol of daidzein (soy milk), 1549 micromol of naringenin and 26 micromol of hesperetin (grapefruit juice), and 381 micromol of quercetin (onions) in three test meals, each separated by 1 week. Blood and urine samples were collected over 24 h after each test meal. Plasma flavonoid concentrations ranged from 0.01 to 1 microM. The apparent absorption, expressed as percentage of ingested dose excreted in urine, was significantly less for naringenin (3.2+/-1.7%), genistein (7.2+/-4.6%), hesperetin (7.3+/-3.2%), and quercetin (5.6+/-3.7%) compared with daidzein (43.4+/-15.5%, p=0.02). These data affirmed the hypothesis that the 5,7,4'-OH of flavonoids limited apparent absorption of these compounds in humans.

  10. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation.more » That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.« less

  11. Simplification of femtosecond transient absorption microscopy data from CH 3NH 3PbI 3 perovskite thin films into decay associated amplitude maps

    DOE PAGES

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; ...

    2016-02-16

    Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less

  12. Cathepsin B is a novel gender-dependent determinant of cholesterol absorption from the intestine[S

    PubMed Central

    Wong, Winifred P. S.; Altemus, Jessica B.; Hester, James F.; Chan, Ernest R.; Côté, Jean-François; Serre, David; Sehayek, Ephraim

    2013-01-01

    We used a mouse C57BL/6J×CASA/Rk intercross to map a locus on chromosome 14 that displayed a gender-dependent effect on cholesterol absorption from the intestine. Studies in congenic animals revealed a complex locus with multiple operating genetic determinants resulting in alternating gender-dependent phenotypic effects. Fine-mapping narrowed the locus to a critical 6.3 Mb interval. Female subcongenics, but not males, of the critical interval displayed a decrease of 33% in cholesterol absorption. RNA-Seq analysis of female subcongenic jejunum revealed that cysteine protease cathepsin B (Ctsb) is a candidate to explain the interval effect. Consistent with the phenotype in critical interval subcongenics, female Ctsb knockout mice, but not males, displayed a decrease of 31% in cholesterol absorption. Although studies in Ctsb knockouts revealed a gender-dependent effect on cholesterol absorption, further fine-mapping dismissed a role for Ctsb in determining the effect of the critical 6.3 Mb interval on cholesterol absorption. PMID:23248330

  13. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  15. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    NASA Astrophysics Data System (ADS)

    Wuhrer, R.; Moran, K.

    2014-03-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.

  16. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less

  17. Cerebral metabolic rate of oxygen (CMRO2 ) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM).

    PubMed

    Zhang, Jingwei; Zhou, Dong; Nguyen, Thanh D; Spincemaille, Pascal; Gupta, Ajay; Wang, Yi

    2017-05-01

    Our objective was to demonstrate the feasibility of using hyperventilation as an efficient vasoconstrictive challenge and prior knowledge as denoising constraints for cerebral metabolic rate of oxygen (CMRO 2 ) mapping based upon quantitative susceptibility mapping (QSM). Three-dimensional (3D) multi-echo gradient echo and arterial spin labeling imaging were performed to calculate QSM and perfusion maps before and after a hyperventilation challenge in 11 healthy subjects. For comparison, this was repeated using a caffeine challenge. Whole-brain CMRO 2 and oxygen extraction fraction (OEF) maps were computed using constrained optimization. Hyperventilation scans were repeated to measure reproducibility. Regional agreement of CMRO 2 and OEF maps was analyzed within the cortical gray matter (CGM) using t-test and Bland-Altman plots. Hyperventilation challenge eliminates the 30-min waiting time needed for caffeine to exert its vasoconstrictive effects. Mean CMRO 2 (in µmol/100g/min) obtained in CGM using the caffeine and repeated hyperventilation scans were 149 ± 16, 153 ± 19, and 150 ± 20, respectively. This corresponded to an OEF of 33.6 ± 3.4%, 32.3 ± 3.2%, and 34.1 ± 3.8% at baseline state and 39.8 ± 4.8%, 43.6 ± 6.2%, and 42.8 ± 6.8% at challenged state, respectively. Hyperventilation scans produced a good agreement of CMRO 2 and OEF values. Hyperventilation is a feasible, reproducible, and efficient vasoconstrictive challenge for QSM-based quantitative CMRO 2 mapping. Magn Reson Med 77:1762-1773, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  19. A Case For Free-free Absorption In The GPS Sources 1321+410 And 0026+346

    NASA Astrophysics Data System (ADS)

    Marr, Jonathan M.; Perry, T. M.; Read, J. W.; Taylor, G. B.

    2010-05-01

    We report on the results of VLBI observations of two gigahertz-peaked spectrum sources, 1321+410 and 0026+346, at five frequencies bracketing the spectral peaks. By comparing the three lower-frequency flux-density maps with extrapolations of the high frequency spectra we obtained maps of the optical depths as a function of frequency. The morphologies of the optical depth maps of 1321+410, at all frequencies, are strikingly uniform, consistent with there being a foreground screen of absorbing gas. We also find that the flux densities across the map fit free-free absorption spectra within the uncertainties. The required free-free optical depths are satisfied with reasonable gas parameters (ne 4000 cm-3, T 104 K, and L 1 pc). We conclude that the case for free-free absorption in 1321+410 is strong. In 0026+346, there is a compact feature with an inverted spectrum at the highest frequencies which we take to be the core. The optical depth maps, even excluding the possible core component, exhibit a noticeable amount of structure, but the morphology does not correlate with that in the flux-density maps, as would be expected if the absorption was due to synchrotron self-absorption. Additionally, the spectra (except at the core component) are consistent with free-free absorption, to within the uncertainties, and require column depths about one half of that in 1321+410. We conclude that free-free absorption by a relatively thin amount of gas with structure apparent on the scale of our maps in 0026+346 is likely, although the case is weaker than in 1321+410. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and by a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Nonlinear systems dynamics in cardiovascular physiology: The heart rate delay map and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Hooker, John C.

    1990-01-01

    A preliminary study of the applicability of nonlinear dynamic systems analysis techniques to low body negative pressure (LBNP) studies. In particular, the applicability of the heart rate delay map is investigated. It is suggested that the heart rate delay map has potential as a supplemental tool in the assessment of subject performance in LBNP tests and possibly in the determination of susceptibility to cardiovascular deconditioning with spaceflight.

  1. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  2. Space Telescope and Optical Reverberation Mapping Project: Unraveling the Broad Line Region and the Intrinsic Absorption in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, G.; Storm Team

    2015-07-01

    The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  3. Zinc absorption from composite meals. I. The significance of whest extraction rate, zinc, calcium, and protein content in meals based on bread.

    PubMed

    Sandström, B; Arvidsson, B; Cederblad, A; Björn-Rasmussen, E

    1980-04-01

    The absorption of zinc in man from composite meals based on bread was measured with a radionuclide technique using 65Zn and whole-body counting. Bread was made up from wheat flour of 100 and 72% extraction rate. A lower absolute amount of zinc was absorbed from the white bread compared to the absorption from the same amount of wholemeal bread. When the two types of bread were enriched with zinc chloride the absorption was higher from the white bread than from the wholemeal bread. Addition of calcium in the form of milk products improved the absorption of zinc from a meal with wholemeal bread. A significant positive correlation was found between zinc absorption and the protein content in meals containing milk, cheese, beef, and egg in various combinations with the wholemeal bread.

  4. Using a detailed uncertainty analysis to adjust mapped rates of forest disturbance derived from Landsat time series data (Invited)

    NASA Astrophysics Data System (ADS)

    Cohen, W. B.; Yang, Z.; Stehman, S.; Huang, C.; Healey, S. P.

    2013-12-01

    Forest ecosystem process models require spatially and temporally detailed disturbance data to accurately predict fluxes of carbon or changes in biodiversity over time. A variety of new mapping algorithms using dense Landsat time series show great promise for providing disturbance characterizations at an annual time step. These algorithms provide unprecedented detail with respect to timing, magnitude, and duration of individual disturbance events, and causal agent. But all maps have error and disturbance maps in particular can have significant omission error because many disturbances are relatively subtle. Because disturbance, although ubiquitous, can be a relatively rare event spatially in any given year, omission errors can have a great impact on mapped rates. Using a high quality reference disturbance dataset, it is possible to not only characterize map errors but also to adjust mapped disturbance rates to provide unbiased rate estimates with confidence intervals. We present results from a national-level disturbance mapping project (the North American Forest Dynamics project) based on the Vegetation Change Tracker (VCT) with annual Landsat time series and uncertainty analyses that consist of three basic components: response design, statistical design, and analyses. The response design describes the reference data collection, in terms of the tool used (TimeSync), a formal description of interpretations, and the approach for data collection. The statistical design defines the selection of plot samples to be interpreted, whether stratification is used, and the sample size. Analyses involve derivation of standard agreement matrices between the map and the reference data, and use of inclusion probabilities and post-stratification to adjust mapped disturbance rates. Because for NAFD we use annual time series, both mapped and adjusted rates are provided at an annual time step from ~1985-present. Preliminary evaluations indicate that VCT captures most of the higher

  5. Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analysing the local indium distribution in rough samples of InGaN alloy layers.

    PubMed

    Wang, X; Chauvat, M-P; Ruterana, P; Walther, T

    2017-12-01

    We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  6. Mapping and expression of candidate genes for development rate in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Development rate has important implications for many aspects of an individual's biology. In rainbow trout (Oncorhynchus mykiss), a major QTL for embryonic development rate has been detected on chromosome 5, but at present, few candidate genes have been mapped to this region. This paucity of known ge...

  7. Development of picosecond time-resolved X-ray absorption spectroscopy by high-repetition-rate laser pump/X-ray probe at Beijing Synchrotron Radiation Facility.

    PubMed

    Wang, Hao; Yu, Can; Wei, Xu; Gao, Zhenhua; Xu, Guang Lei; Sun, Da Rui; Li, Zhenjie; Zhou, Yangfan; Li, Qiu Ju; Zhang, Bing Bing; Xu, Jin Qiang; Wang, Lin; Zhang, Yan; Tan, Ying Lei; Tao, Ye

    2017-05-01

    A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.

  8. Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands.

    PubMed

    Hiemstra, Paul H; Pebesma, Edzer J; Heuvelink, Gerard B M; Twenhöfel, Chris J W

    2010-12-01

    The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations in dose rate. The increase in dose rate at a given time is a function of the amount of progeny decaying, which in turn is a balance between deposition of progeny by rainfall and radioactive decay. The increase in progeny is closely related to average rainfall intensity over the last 2.5h. We included decay of progeny by using weighted averaged rainfall intensity, where the weight decreases back in time. The decrease in weight is related to the half-life of radon progeny. In this paper we show for a rainstorm on the 20th of July 2007 that weighted averaged rainfall intensity estimated from rainfall radar images, collected every 5min, performs much better as a predictor of increases in dose rate than using the non-averaged rainfall intensity. In addition, we show through cross-validation that including weighted averaged rainfall intensity in an interpolated map using universal kriging (UK) does not necessarily lead to a more accurate map. This might be attributed to the high density of monitoring stations in comparison to the spatial extent of a typical rain event. Reducing the network density improved the accuracy of the map when universal kriging was used instead of ordinary kriging (no trend). Consequently, in a less dense network the positive influence of including a trend is likely to increase. Furthermore, we suspect that UK better reproduces the sharp boundaries present in rainfall maps, but that the lack of short-distance monitoring station pairs prevents cross-validation from revealing this effect. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Absorption rates and free radical scavenging values of vitamin C-lipid metabolites in human lymphoblastic cells.

    PubMed

    Weeks, Benjamin S; Perez, Pedro P

    2007-10-01

    In this study we investigated the cellular absorption rates, antioxidant and free radical scavenging activity of vitamin C-lipid metabolites. The absorption was measured in a human lymphoblastic cell line using a spectrophotometric technique. Cellular vitamin C levels in the human lymphoblastic H9 cell line were measured using the 2,4-dinitrophenylhydrazine spectrophotometric technique. Free radical scavenging activity of vitamin C-lipid metabolites was measured by the reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH) to 1,1-diphenyl-2-picryl hydrazine. Vitamin C-lipid metabolite scavenging of peroxyl radical oxygen reactive species (ORAC) was determined by fluorescence spectrophotometry. Compared to ascorbic acid (AA), calcium ascorbate (CaA), and calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C), vitamin C-lipid metabolites (PureWay-C) were more rapidly absorbed by the H9 human T-lymphocytes. The vitamin C-lipid metabolites (PureWay-C) also reduced pesticide-induced T-lymphocyte aggregation by 84%, while calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C) reduced aggregation by only 34%. The vitamin C-lipid metabolites (PureWay-C) demonstrated free radical scavenging activity of nearly 100% reduction of DPPH at 20 microg/ml and oxygen radical scavenging of over 1200 micro Trolox equivalents per gram. These data demonstrate that the vitamin C-lipid metabolites (PureWay-C) are more rapidly taken-up and absorbed by cells than other forms of vitamin C, including Ester-C. This increased rate of absorption correlates with an increased protection of the T-lymphocytes from pesticide toxicities. Further, vitamin C-lipid metabolites (PureWay-C) are a potent antioxidant and have significant free radical scavenging capabilities.

  10. Mapping Pluto Methane Ice

    NASA Image and Video Library

    2015-09-24

    The Ralph/LEISA infrared spectrometer on NASA's New Horizons spacecraft mapped compositions across Pluto's surface as it flew past the planet on July 14, 2015. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors, and lower abundances shown in black. Data have only been received so far for the left half of Pluto's disk. At right, the methane map is merged with higher-resolution images from the spacecraft's Long Range Reconnaissance Imager (LORRI). http://photojournal.jpl.nasa.gov/catalog/PIA19953

  11. Simplification of femtosecond transient absorption microscopy data from CH3NH3PbI3 perovskite thin films into decay associated amplitude maps

    NASA Astrophysics Data System (ADS)

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong

    2016-03-01

    This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.

  12. Toroidal Optical Microresonators as Single-Particle Absorption Spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.

    Single-particle and single-molecule measurements are invaluable tools for characterizing structural and energetic properties of molecules and nanomaterials. Photothermal microscopy in particular is an ultrasensitive technique capable of single-molecule resolution. In this thesis I introduce a new form of photothermal spectroscopy involving toroidal optical microresonators as detectors and a pair of non-interacting lasers as pump and probe for performing single-target absorption spectroscopy. The first three chapters will discuss the motivation, design principles, underlying theory, and fabrication process for the microresonator absorption spectrometer. With an early version of the spectrometer, I demonstrate photothermal mapping and all-optical tuning with toroids of different geometries in Chapter 4. In Chapter 5, I discuss photothermal mapping and measurement of the absolute absorption cross-sections of individual carbon nanotubes. For the next generation of measurements I incorporate all of the advances described in Chapter 2, including a double-modulation technique to improve detection limits and a tunable pump laser for spectral measurements on single gold nanoparticles. In Chapter 6 I observe sharp Fano resonances in the spectra of gold nanoparticles and describe them with a theoretical model. I continued to study this photonic-plasmonic hybrid system in Chapter 7 and explore the thermal tuning of the Fano resonance phase while quantifying the Fisher information. The new method of photothermal single-particle absorption spectroscopy that I will discuss in this thesis has reached record detection limits for microresonator sensing and is within striking distance of becoming the first single-molecule room-temperature absorption spectrometer.

  13. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    NASA Astrophysics Data System (ADS)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  14. Outskirts of Distant Galaxies in Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.

  15. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Martino, Luca; Kane, Shashank N; Raghuvanshi, Saroj; Vinai, Franco; Tiberto, Paola

    2017-06-01

    Magnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR). The SAR of Fe 3 O 4 nanoparticles with two different mean sizes, and Ni 1-x Zn x Fe 2 O 4 ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69kHz and ≈ 100kHz respectively) and rf magnetic field peak values (up to 100mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents. Dynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples. A means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods. This work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The mortality rates and the space-time patterns of John Snow's cholera epidemic map.

    PubMed

    Shiode, Narushige; Shiode, Shino; Rod-Thatcher, Elodie; Rana, Sanjay; Vinten-Johansen, Peter

    2015-06-17

    Snow's work on the Broad Street map is widely known as a pioneering example of spatial epidemiology. It lacks, however, two significant attributes required in contemporary analyses of disease incidence: population at risk and the progression of the epidemic over time. Despite this has been repeatedly suggested in the literature, no systematic investigation of these two aspects was previously carried out. Using a series of historical documents, this study constructs own data to revisit Snow's study to examine the mortality rate at each street location and the space-time pattern of the cholera outbreak. This study brings together records from a series of historical documents, and prepares own data on the estimated number of residents at each house location as well as the space-time data of the victims, and these are processed in GIS to facilitate the spatial-temporal analysis. Mortality rates and the space-time pattern in the victims' records are explored using Kernel Density Estimation and network-based Scan Statistic, a recently developed method that detects significant concentrations of records such as the date and place of victims with respect to their distance from others along the street network. The results are visualised in a map form using a GIS platform. Data on mortality rates and space-time distribution of the victims were collected from various sources and were successfully merged and digitised, thus allowing the production of new map outputs and new interpretation of the 1854 cholera outbreak in London, covering more cases than Snow's original report and also adding new insights into their space-time distribution. They confirmed that areas in the immediate vicinity of the Broad Street pump indeed suffered from excessively high mortality rates, which has been suspected for the past 160 years but remained unconfirmed. No distinctive pattern was found in the space-time distribution of victims' locations. The high mortality rates identified around the

  17. Mapping Extinction and Star Formation Rates of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ridenour, Anthony; Takamiya, M.

    2010-01-01

    Star Formation Rate (SFR) is a physical characteristic of galaxies vital to our understanding of such problems as the evolution of the Universe. In computing SFRs obscuring dust systematically lowers them at shorter wavelengths compared to longer wavelengths. This issue of dust extinction has been handled well by multi-wavelength studies of nearby galaxies. Star Formation Rate measurements of distant galaxies are currently reliant on the emission of visible spectroscopic lines like Hα and [OII] after correction for extinction. However, if the visible light is completely obscured an incorrect assumption may be drawn; namely that there is neither SFR nor extinction. The work purposed here is to calibrate the SFR ascertained from Hα emission in nearby galaxies and compare it to radio and infrared emission. The Balmer decrement, or the ratio of Hβ to Hα emission, used to determine extinction, will also be studied and compared to infrared images. 30 nearby galaxies will be sampled and 2-D maps and Balmer decrements will be formed to do two things: measure SFRs and determine differences between Hα and infrared emission, and explore in what ways this difference corresponds with such things as the radio SFR, galaxy luminosity and morphological type. The accuracy of Hα as a SFR indicator and its determination as a sound tool in measuring SFRs of distant galaxies can both be quantified by interpreting these maps. Dr. Marianne Takamiya, the principal investigator and my mentor, secured funds through a grant to the University of Hawai'i at Hilo from The Research Corporation for Science Advancement Cottrell College Science Awards for this research.

  18. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  19. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  20. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, D; Spaans, J; Kumaraswamy, L

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty onmore » and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in

  1. The Effect of Sensor Failure on the Attitude and Rate Estimation of MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2003-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, its conclusions are more general.

  2. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  3. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.)

    PubMed Central

    Farmer, Andrew D.; Huang, Wei; Ambachew, Daniel; Penmetsa, R. Varma; Carrasquilla-Garcia, Noelia; Assefa, Teshale; Cannon, Steven B.

    2018-01-01

    Recombination (R) rate and linkage disequilibrium (LD) analyses are the basis for plant breeding. These vary by breeding system, by generation of inbreeding or outcrossing and by region in the chromosome. Common bean (Phaseolus vulgaris L.) is a favored food legume with a small sequenced genome (514 Mb) and n = 11 chromosomes. The goal of this study was to describe R and LD in the common bean genome using a 768-marker array of single nucleotide polymorphisms (SNP) based on Trans-legume Orthologous Group (TOG) genes along with an advanced-generation Recombinant Inbred Line reference mapping population (BAT93 x Jalo EEP558) and an internationally available diversity panel. A whole genome genetic map was created that covered all eleven linkage groups (LG). The LGs were linked to the physical map by sequence data of the TOGs compared to each chromosome sequence of common bean. The genetic map length in total was smaller than for previous maps reflecting the precision of allele calling and mapping with SNP technology as well as the use of gene-based markers. A total of 91.4% of TOG markers had singleton hits with annotated Pv genes and all mapped outside of regions of resistance gene clusters. LD levels were found to be stronger within the Mesoamerican genepool and decay more rapidly within the Andean genepool. The recombination rate across the genome was 2.13 cM / Mb but R was found to be highly repressed around centromeres and frequent outside peri-centromeric regions. These results have important implications for association and genetic mapping or crop improvement in common bean. PMID:29522524

  4. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    PubMed

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  5. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL...

  6. Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.).

    PubMed

    Ross, Caitlin R; DeFelice, Dominick S; Hunt, Greg J; Ihle, Kate E; Amdam, Gro V; Rueppell, Olav

    2015-02-21

    Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

  7. The Small-Scale Structure of High-Velocity Na I Absorption Toward M81

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Meyer, D. M.; Lauroesch, J. T.

    2000-12-01

    We present high-resolution (R=20,000) integral field spectra of the Na I absorption toward the nucleus of the nearby spiral galaxy M81 (NGC 3031) obtained in April 2000 with the WIYN 3.5-m telescope and the DensePak fiber optic bundle. Our DensePak map covers the central 27 x 43 arcsec of M81 at a spatial resolution of 4 arcsec which corresponds to a projected length scale of 63 pc at the distance of the galaxy (3.25 Mpc). These data were intended to explore the spatial extent of high-velocity (v = 110-130 km/s) gas seen in Na I, Mg I and Mg II absorption toward SN 1993J by Bowen et al. (1994), which they proposed is due to tidal material associated with interactions between M81 and nearby M82 (Yun, Ho & Lo 1993). No H I gas at these velocities has been detected in 21 cm interferometry maps near the position of SN 1993J (2.6 arcmin SW of the M81 nucleus). Our Na I map of the M81 core shows no evidence of the strong absorption seen at v = 110-130 km/s toward SN 1993J. However, our map does reveal a strong Na I component at v = 220 km/s in several fibers that appears to trace a filamentary structure running from the SW to the NE across the M81 nuclear region. The origin and distance of this filament are unknown. No H I gas at v = 220 km/s has previously been detected in 21 cm studies of the core. At the location of SN 1993J, Bowen et al. measured weak Mg II absorption at this velocity but found no evidence of corresponding Na I absorption. The only known H I gas that corresponds to this velocity in the M81 group are the H I streamers found around M82 by Yun, Ho, & Lo that they interpreted as tidally disrupted M82 disk material.

  8. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less

  9. A Study of the Skin Absorption of Ethylbenzene in Man

    PubMed Central

    Dutkiewicz, Tadeusz; Tyras, Halina

    1967-01-01

    The absorption of ethylbenzene through the skin of the hand and the forearm in men was investigated experimentally. Both the absorption of liquid ethylbenzene and the absorption from aqueous solutions were studied. The rate of absorption of liquid ethylbenzene was 22 to 33 mg./cm.2/hr, and the rates from aqueous solutions were 118 and 215 μg./cm.2/hr from mean concentrations of 112 and 156 mg./litre. The mandelic acid excreted in urine was equivalent to about 4·6% of the absorbed dose—much less than after lung absorption. Urinary mandelic acid does not provide a reliable index of absorption when there is simultaneous skin and lung exposure. PMID:6073092

  10. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  11. Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation.

    PubMed

    Zhao, Lei; Li, Songnan; Ma, Xiaohai; Greiser, Andreas; Zhang, Tianjing; An, Jing; Bai, Rong; Dong, Jianzeng; Fan, Zhanming

    2016-03-15

    T1 mapping enables assessment of myocardial characteristics. As the most common type of arrhythmia, atrial fibrillation (AF) is often accompanied by a variety of cardiac pathologies, whereby the irregular and usually rapid ventricle rate of AF may cause inaccurate T1 estimation due to mis-triggering and inadequate magnetization recovery. We hypothesized that systolic T1 mapping with a heart-rate-dependent (HRD) pulse sequence scheme may overcome this issue. 30 patients with AF and 13 healthy volunteers were enrolled and underwent cardiovascular magnetic resonance (CMR) at 3 T. CMR was repeated for 3 patients after electric cardioversion and for 2 volunteers after lowering heart rate (HR). A Modified Look-Locker Inversion Recovery (MOLLI) sequence was acquired before and 15 min after administration of 0.1 mmol/kg gadopentetate dimeglumine. For AF patients, both the fixed 5(3)3/4(1)3(1)2 and the HRD sampling scheme were performed at diastole and systole, respectively. The HRD pulse sequence sampling scheme was 5(n)3/4(n)3(n)2, where n was determined by the heart rate to ensure adequate magnetization recovery. Image quality of T1 maps was assessed. T1 times were measured in myocardium and blood. Extracellular volume fraction (ECV) was calculated. In volunteers with repeated T1 mapping, the myocardial native T1 and ECV generated from the 1st fixed sampling scheme were smaller than from the 1st HRD and 2nd fixed sampling scheme. In healthy volunteers, the overall native T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than in systolic T1 maps (P < 0.01, P < 0.05). In the 3 AF patients that had received electrical cardioversion therapy, the myocardial native T1 times and ECV generated from the fixed sampling scheme were smaller than in the 1st and 2nd HRD sampling scheme (all P < 0.05). In patients with AF (HR: 88 ± 20 bpm, HR fluctuation: 12 ± 9 bpm), more T1 maps with artifact were found in diastole than in systole (P

  12. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  13. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study.

    PubMed

    Marggi Poullain, Sonia; Chicharro, David V; Navarro, Eduardo; Rubio-Lago, Luis; González-Vázquez, Jesús; Bañares, Luis

    2018-01-31

    The photodissociation dynamics of bromoiodomethane (CH 2 BrI) have been investigated at the maximum of the first A and second A' absorption bands, at 266 and 210 nm excitation wavelengths, respectively, using velocity map and slice imaging techniques in combination with a probe detection of both iodine and bromine fragments, I( 2 P 3/2 ), I*( 2 P 1/2 ), Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) via (2 + 1) resonance enhanced multiphoton ionization. Experimental results, i.e. translational energy and angular distributions, are reported and discussed in conjunction with high level ab initio calculations of potential energy curves and absorption spectra. The results indicate that in the A-band, direct dissociation through the 5A' excited state leads to the I( 2 P 3/2 ) channel while I*( 2 P 1/2 ) atoms are produced via the 5A' → 4A'/4A'' nonadiabatic crossing. The presence of Br and Br* fragments upon excitation to the A-band is attributed to indirect dissociation via a curve crossing between the 5A' with upper excited states such as the 9A'. The A'-band is characterized by a strong photoselectivity leading exclusively to the Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) channels, which are likely produced by dissociation through the 9A' excited state. Avoided crossings between several excited states from both the A and A' bands entangle however the possible reaction pathways.

  14. Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions

    NASA Astrophysics Data System (ADS)

    Innocenti, Fabrizio; Robinson, Rod; Gardiner, Tom; Finlayson, Andrew; Connor, Andy

    2017-04-01

    DIFFERENTIAL ABSORPTION LIDAR (DIAL) MEASURMENTS OF LANDFILL METHANE EMISSIONS F. INNOCENTI *, R.A. ROBINSON *, T.D. GARDINER, A. FINLAYSON *, A. CONNOR* * National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom Methane is one of the most important gaseous hydrocarbon species for both industrial and environmental reasons. Understanding and quantifying methane emissions to atmosphere is an important element of climate change research. Range-resolved infrared Differential Absorption Lidar (DIAL) measurements provide the means to map and quantify a wide range of different methane sources. DIAL is a powerful technique that can be used to track and quantify plumes emitted from area emission sources such as landfill sites, waste water treatment plants and petrochemical plants. By using lidar (light detection and ranging), the DIAL technique is able to make remote range-resolved single-ended measurements of the actual distribution of target gases in the atmosphere, with no disruption to normal site operational activities. DIAL provides 3D mapping of emission concentrations and quantification of emission rates for a wide range of target gases such as methane. The NPL DIAL laser source is operated alternately at two similar wavelengths. One of these, termed the "on-resonant wavelength", is chosen to be at a wavelength which is absorbed by the target species. The other, the "off-resonant wavelength", is chosen to be at a nearby wavelength which is not absorbed significantly by the target species. The two wavelengths are chosen to be close, so that the atmospheric scattering properties are the same for both wavelengths. They are also chosen so that any differential absorption due to other atmospheric species are minimised. Any measured difference in the returned signals is therefore due to absorption by the target gas. In the typical DIAL measurement configuration the mobile DIAL facility is positioned downwind of the area being

  15. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    PubMed

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  16. A search for intervening HI absorption

    NASA Astrophysics Data System (ADS)

    Reeves, Sarah N.; Sadler, Elaine M.; Allison, James R.; Koribalski, Baerbel S.; Curran, Stephen J.

    2013-03-01

    HI absorption-line studies provide a unique probe of the gas distribution and kinematics in galaxies well beyond the local universe (z ≳ 0.3). HI absorption-line surveys with next-generation radio telescopes will provide the first large-scale studies of HI in a redshift regime which is poorly understood. However, we currently lack the understanding to infer galaxy properties from absorption-line observations alone. To address this issue, we are conducting a search for intervening HI absorption in a sample of 20 nearby galaxies. Our aim is to investigate how the detection rate varies with distance from the galaxy. We target sight-lines to bright continuum sources, which intercept known gas-rich galaxies, selected from the HIPASS Bright Galaxy Catalogue (Koribalski et al. 2004). In our pilot sample, six galaxies with impact parameters < 20 kpc, we do not detect any absorption lines - although all are detected in 21cm emission. This indicates that an absorption non-detection cannot simply be interpreted as an absence of neutral gas - see Fig. 1. Our detection rate is low compared to previous surveys e.g. Gupta et al. (2010). This is, at least partially, due to the high resolution of the observations reducing the flux of the background source, which will also be an issue in future surveys, such as ASKAP-FLASH.

  17. MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu

    2015-11-20

    The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.

  18. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    PubMed

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  19. Collisionless absorption of intense laser radiation in nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V

    The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less

  20. Human biokinetics of strontium. Part I: intestinal absorption rate and its impact on the dose coefficient of 90Sr after ingestion.

    PubMed

    Li, Wei Bo; Höllriegl, Vera; Roth, Paul; Oeh, Uwe

    2006-07-01

    Intestinal absorption of strontium (Sr) in thirteen healthy adult German volunteers has been investigated by simultaneous oral and intravenous administration of two stable tracer isotopes, i.e. (84)Sr and (86)Sr. The measured Sr tracer concentration in plasma was analyzed using the convolution integral technique to obtain the intestinal absorption rate. The results showed that the Sr labeled in different foodstuffs was absorbed into the body fluids in a large range of difference. The maximum Sr absorption rates were observed within 60-120 min after administration. The rate of absorption is used to evaluate the intestinal absorption fraction, i.e. the f (1) value for various foodstuffs. The equivalent and effective dose coefficients for ingestion of (90)Sr were calculated using these f (1) values, and they were compared with those recommended by the International Commission on Radiological Protection (ICRP). The geometric and arithmetic means of the f (1) values are 0.38 and 0.45 associated with a geometric standard deviation and a standard deviation of 1.88 and 0.22, respectively. The 90% confidence interval of the f (1) values obtained in the present study ranges from 0.13 to 0.98. Expressed as the ratio of the 95 and 50% percentiles of the estimated probability, the uncertainty for the f (1) value corresponds to a factor of 2.58. The effective dose coefficients of (90)Sr after ingestion are 6.1 x 10(-9) Sv Bq(-1) for an f(1) value of 0.05, 1.0 x 10(-8) Sv Bq(-1) for 0.1, 1.9 x 10(-8) Sv Bq(-1) for 0.2, 2.8 x 10(-8) Sv Bq(-1) for 0.3, 3.6 x 10(-8) Sv Bq(-1) for 0.4, 5.3 x 10(-8) Sv Bq(-1) for 0.6, 7.1 x 10(-8) Sv Bq(-1) for 0.8, and 7.9 x 10(-8) Sv Bq(-1) for 0.9, respectively. Taking the effective dose coefficient of 2.8 x 10(-8) Sv Bq(-1) for an f (1) value of 0.3, which is recommended by the ICRP, as a reference, the effective dose coefficient of (90)Sr after ingestion varies by a factor of 2.8 when the f (1) value changes by a factor of 3, i.e. it decreases

  1. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  2. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  3. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  4. Mapping Variables.

    ERIC Educational Resources Information Center

    Stone, Mark H.; Wright, Benjamin D.; Stenner, A. Jackson

    1999-01-01

    Describes mapping variables, the principal technique for planning and constructing a test or rating instrument. A variable map is also useful for interpreting results. Provides several maps to show the importance and value of mapping a variable by person and item data. (Author/SLD)

  5. Monitoring survival rates of landbirds at varying spatial scales: An application of the MAPS Program

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; Hines, J.E.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Survivorship is a primary demographic parameter affecting population dynamics, and thus trends in species abundance. The Monitoring Avian Productivity and Survivorship (MAPS) program is a cooperative effort designed to monitor landbird demographic parameters. A principle goal of MAPS is to estimate annual survivorship and identify spatial patterns and temporal trends in these rates. We evaluated hypotheses of spatial patterns in survival rates among a collection of neighboring sampling sites, such as within national forests, among biogeographic provinces, and between breeding populations that winter in either Central or South America, and compared these geographic-specific models to a model of a common survival rate among all sampling sites. We used data collected during 1992-1995 from Swainson's Thrush (Cathorus ustulatus) populations in the western region of the United States. We evaluated the ability to detect spatial and temporal patterns of survivorship with simulated data. We found weak evidence of spatial differences in survival rates at the local scale of 'location,' which typically contained 3 mist-netting stations. There was little evidence of differences in survival rates among biogeographic provinces or between populations that winter in either Central or South America. When data were pooled for a regional estimate of survivorship, the percent relative bias due to pooling 'locations' was 12 years of monitoring. Detection of spatial patterns and temporal trends in survival rates from local to regional scales will provide important information for management and future research directed toward conservation of landbirds.

  6. Molecular insights into the enhanced rate of CO2 absorption to produce bicarbonate in aqueous 2-amino-2-methyl-1-propanol.

    PubMed

    Stowe, Haley M; Hwang, Gyeong S

    2017-12-06

    2-Amino-2-methyl-1-propanol (AMP), a sterically hindered amine, exhibits a much higher CO 2 absorption rate relative to tertiary amine diethylethanolamine (DEEA), while both yield bicarbonate as a major product in aqueous solution, despite their similar basicity. We present molecular mechanisms underlying the significant difference of CO 2 absorption rate based on ab initio molecular dynamics simulations combined with metadynamics. Our calculations predict the free energy barrier for base-catalyzed CO 2 hydration to be lower in aqueous AMP compared to DEEA. Further molecular analysis suggests that the difference in free energy barrier is largely attributed to entropic effects associated with reorganization of H 2 O molecules adjacent to the basic N site. Stronger hydrogen bonding of H 2 O with N of DEEA than AMP, in addition to the presence of bulky ethyl groups, suppresses the thermal rearrangement of adjacent H 2 O molecules, thereby leading to lower stability of the transition state involving OH - creation and CO 2 polarization. Moreover, the hindered reorganization of adjacent H 2 O molecules is found to facilitate migration of OH - (created via proton abstraction by DEEA) away from the N site while suppressing CO 2 approach. This leads us to speculate that catalyzed CO 2 hydration in aqueous DEEA may involve OH - migration through multiple hydrogen-bonded H 2 O molecules prior to reaction with CO 2 , whereas in aqueous AMP it seems to preferentially follow the one H 2 O-mediated mechanism. This study highlights the importance of entropic effects in determining both mechanisms and rates of CO 2 absorption into aqueous sterically hindered amines.

  7. Food, gastrointestinal pH, and models of oral drug absorption.

    PubMed

    Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R

    2017-03-01

    This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California

    USGS Publications Warehouse

    Kruse, F.A.

    1988-01-01

    Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.

  9. Population differences in the rate of proliferation of international HapMap cell lines.

    PubMed

    Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen

    2010-12-10

    The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p < 0.0001) than the CEU or YRI cell lines. Phase 3 YRI cell lines grow significantly slower than Phase 2 YRI lines (p < 0.0001), with no widespread genetic differences based on common SNPs. In addition, we found significant growth differences between the cell lines in the Phase 2 ASN populations and the Han Chinese from the Denver metropolitan area panel in Phase 3 (p < 0.0001). Therefore, studies that separate HapMap panels into discovery and replication sets must take this into consideration. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption. © 2011 American Chemical Society

  11. Absorption performance for CO2 capture process using MDEA-AMP aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Kou, Liqing; Li, Chao

    2017-03-01

    The absorption capacity and the absorption rate of CO2 in 2-amino-2-methyl-1-propanol (AMP)-N-methyldiethanolamine (MDEA) aqueous solution were measured. The temperatures ranged from 303.2K to 323.2K. The mass fractions of AMP and MDEA respectively ranged from 0 to 0.03 and 0.2 to 0.3. The influence of temperature and w AMP on the absorption capacity and absorption rate of CO2 was illustrated.

  12. A high-resolution genetic map of yellow monkeyflower identifies chemical defense QTLs and recombination rate variation.

    PubMed

    Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K

    2014-03-13

    Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.

  13. Living on a trophic subsidy: Algal quality drives an upper-shore herbivore's consumption, preference and absorption but not growth rates.

    PubMed

    Quintanilla-Ahumada, Diego; Quijón, Pedro A; Navarro, Jorge M; Pulgar, José; Duarte, Cristian

    2018-01-01

    The transfer of seaweeds from subtidal bottoms to nearby intertidal rocky shores is a common but often overlooked phenomenon. Freshly detached seaweeds often represent critical trophic subsidies for herbivores living in upper-shore rocky intertidal areas, such as the marine snail Diloma nigerrima. This species relies on three species of seaweeds for food and displays feeding strategies to deal with a resource that is scarce and at times unpredictable. This study focused on the nutritional quality of freshly detached algae (Durvillaea antarctica, Lessonia spicata and Lessonia trabeculata) and measured Diloma nigerrima's algal consumption rates in trials with and without choice. Absorption efficiency and growth of individual snails fed on each alga were also measured. Durvillaea antarctica had the highest nutritional quality and was the most consumed algae in both single and multiple-choice trials. Absorption efficiency was also highest for D. antarctica but growth rates of snails fed with this species were similar to those fed with the other algae. Combined, these results suggest that D. nigerrima has the ability to discriminate among seaweeds based on their nutritional quality. A potential increase in oxygen uptake when D. nigerrima is consuming the preferred food item is also proposed as a plausible hypothesis to explain the mismatch between snails' preference and growth rate. These results aim to guide further studies on trophic subsidies and their role in coastal systems.

  14. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats.

    PubMed

    Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P

    2001-10-01

    We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.

  15. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

  16. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    PubMed Central

    Stigliano, Robert; Baker, Ian

    2015-01-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545

  17. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  18. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.

    PubMed

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-07

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe 2 O 3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  19. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  20. Open quantum maps from complex scaling of kicked scattering systems

    NASA Astrophysics Data System (ADS)

    Mertig, Normann; Shudo, Akira

    2018-04-01

    We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.

  1. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  2. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  3. Absorption of Carbon Dioxide in Aqueous Solutions of N-methyldiethanolamine Mixtures

    NASA Astrophysics Data System (ADS)

    Ma’mun, S.; Svendsen, H. F.

    2018-05-01

    Carbon dioxide (CO2) is one of the greenhouse gases (GHG) that has contributed to the global warming problem. Carbon dioxide is produced in large quantity from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical industries, natural gas purification, and transportation. Some efforts to reduce the CO2 emissions to the atmosphere are then required. Amine-based absorption may be an option for post-combustion capture. The objective of this study is to measure the effect of promoter addition as well as MDEA concentration for the CO2 absorption into the aqueous solutions of MDEA to improve its performances, i.e. increasing the absorption rate and the absorption capacity. Absorption of CO2 in aqueous solutions of MDEA mixtures were measured at 40 °C in a bubble tank reactor. The systems tested were the mixtures of 30 wt% MDEA with 5 and 10 wt% BEA and the mixtures of 40 and 50 wt% MDEA with 6 wt% AEEA. It was found that for MDEA-BEA-H2O mixtures, the higher the promoter concentraation the higher the CO2 absorption rate, while for the MDEA-AEEA-H2O mixtures, the higher the MDEA concentration the lower the CO2 absorption rate.

  4. X-ray absorption radiography for high pressure shock wave studies

    NASA Astrophysics Data System (ADS)

    Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.

    2018-01-01

    The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.

  5. Acetaminophen (paracetamol) oral absorption and clinical influences.

    PubMed

    Raffa, Robert B; Pergolizzi, Joseph V; Taylor, Robert; Decker, John F; Patrick, Jeffrey T

    2014-09-01

    Acetaminophen (paracetamol) is a widely used nonopioid, non-NSAID analgesic that is effective against a variety of pain types, but the consequences of overdose can be severe. Because acetaminophen is so widely available as a single agent and is increasingly being formulated in fixed-ratio combination analgesic products for the potential additive or synergistic analgesic effect and/or reduced adverse effects, accidental cumulative overdose is an emergent concern. This has rekindled interest in the sites, processes, and pharmacokinetics of acetaminophen oral absorption and the clinical factors that can influence these. The absorption of oral acetaminophen occurs primarily along the small intestine by passive diffusion. Therefore, the rate-limiting step is the rate of gastric emptying into the intestines. Several clinical factors can affect absorption per se or the rate of gastric emptying, such as diet, concomitant medication, surgery, pregnancy, and others. Although acetaminophen does not have the abuse potential of opioids or the gastrointestinal bleeding or organ adverse effects of NSAIDs, excess amounts can produce serious hepatic injury. Thus, an understanding of the sites and features of acetaminophen absorption--and how they might be influenced by factors encountered in clinical practice--is important for pain management using this agent. It can also provide insight for design of formulations that would be less susceptible to clinical variables. © 2013 World Institute of Pain.

  6. Percutaneous absorption

    PubMed Central

    Brisson, Paul

    1974-01-01

    Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976

  7. Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head

    PubMed Central

    Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone. PMID:25350398

  8. Design of miniaturized double-negative material for specific absorption rate reduction in human head.

    PubMed

    Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone.

  9. Living on a trophic subsidy: Algal quality drives an upper-shore herbivore’s consumption, preference and absorption but not growth rates

    PubMed Central

    Quintanilla-Ahumada, Diego; Quijón, Pedro A.; Navarro, Jorge M.; Pulgar, José

    2018-01-01

    The transfer of seaweeds from subtidal bottoms to nearby intertidal rocky shores is a common but often overlooked phenomenon. Freshly detached seaweeds often represent critical trophic subsidies for herbivores living in upper-shore rocky intertidal areas, such as the marine snail Diloma nigerrima. This species relies on three species of seaweeds for food and displays feeding strategies to deal with a resource that is scarce and at times unpredictable. This study focused on the nutritional quality of freshly detached algae (Durvillaea antarctica, Lessonia spicata and Lessonia trabeculata) and measured Diloma nigerrima’s algal consumption rates in trials with and without choice. Absorption efficiency and growth of individual snails fed on each alga were also measured. Durvillaea antarctica had the highest nutritional quality and was the most consumed algae in both single and multiple-choice trials. Absorption efficiency was also highest for D. antarctica but growth rates of snails fed with this species were similar to those fed with the other algae. Combined, these results suggest that D. nigerrima has the ability to discriminate among seaweeds based on their nutritional quality. A potential increase in oxygen uptake when D. nigerrima is consuming the preferred food item is also proposed as a plausible hypothesis to explain the mismatch between snails’ preference and growth rate. These results aim to guide further studies on trophic subsidies and their role in coastal systems. PMID:29672599

  10. Intensity mapping the Universe

    NASA Astrophysics Data System (ADS)

    Croft, Rupert

    Intensity mapping (IM) is the use of one or more emission lines to trace out the structure of the Universe without needing to resolve individual objects (such as galaxies or gas clouds). It is one of the most promising ways to radically extend the sky survey revolution in cosmology. By making spectra of the entire sky, rather than the one part in one million captured by current fiber spectrographs, one would be sensitive to all structure. There are potentially huge discoveries to be made in the vast majority of the sky that is currently spectrally unmapped, and also great gains in signal to noise of cosmological clustering measurements. Intensity mapping with the 21cm radio line has been explored theoretically by many and instruments are being built, particularly targeting the epoch of reionization. In the UV, visible and infrared, however other lines have enormous promise, and will be exploited by a range of future NASA missions including WFIRST, Euclid, and the proposed SPHEREx instrument, a dedicated intensity mapping satellite. The first measurement of large-scale structure outside the radio (using Lyman-alpha emission) was recently made by the PI and collaborators. The Ly-a absorption line also traces a continuous cosmological field, the Lyman-alpha forest, and the enormous recent increase in the number of observed quasar spectra have made it possible to interpolate between quasar sightlines to create three-dimensional maps. Being able to trace the same cosmic structure in emission and absorption offers huge advantages when we seek to understand the processes involved. It will help us make comprehensive maps of the Universe's contents and offer us the opportunity to create new powerful cosmological tests. In our proposed work we will explore the possibilities afforded by taking grism and integral field spectra of large volumes of the Universe, using state-of-the-art cosmological hydrodynamic simulations. We will make use of analysis techniques developed for

  11. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S

  12. Classification by diagnosing all absorption features (CDAF) for the most abundant minerals in airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Mobasheri, Mohammad Reza; Ghamary-Asl, Mohsen

    2011-12-01

    Imaging through hyperspectral technology is a powerful tool that can be used to spectrally identify and spatially map materials based on their specific absorption characteristics in electromagnetic spectrum. A robust method called Tetracorder has shown its effectiveness at material identification and mapping, using a set of algorithms within an expert system decision-making framework. In this study, using some stages of Tetracorder, a technique called classification by diagnosing all absorption features (CDAF) is introduced. This technique enables one to assign a class to the most abundant mineral in each pixel with high accuracy. The technique is based on the derivation of information from reflectance spectra of the image. This can be done through extraction of spectral absorption features of any minerals from their respected laboratory-measured reflectance spectra, and comparing it with those extracted from the pixels in the image. The CDAF technique has been executed on the AVIRIS image where the results show an overall accuracy of better than 96%.

  13. Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.

    PubMed

    Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan

    2018-04-30

    In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.

  14. Kinetics study of carbon dioxide absorption reaction into the promoted methyldiethanolamine solution

    NASA Astrophysics Data System (ADS)

    Sitorus, Yasmikha Tiurlan Susanti; Taurina, Hanna Sucita; Altway, Ali; Rahmawati, Yeni; Nurkhamidah, Siti

    2017-05-01

    The absorption of carbon dioxide (CO2) is important in the industrial world. In industries, especially petrochemical, oil, and natural gas sectors, separation process of CO2 gas which is a corrosive gas (acid gas) is required. So, the separation process of CO2 gas stream is important, one of the methods used to remove CO2 from the gas stream is reactive absorption process using the promoted methyldiethanolamine (MDEA) solution. Therefore, this study is aimed to obtain the reaction kinetics data of CO2 absorption in MDEA solution using arginine as a promoter. Arginine was chosen because of its amino acid molecule which is reactive, so it can accelerate the reaction rate of MDEA. Moreover, this study also made a comparison between the reactivity of MDEA solution using arginine and MDEA solution using other promoters (glycine and piperazine) for CO2 absorption. The method used is absorption using laboratory scale of Wetted Wall Column (WWC) equipment at 1 atm. This study provides the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that CO2 absorption rate at 323.15 K without any additon of arginine is 2.33 × 10-7 kmol/sec. By addition of 0.5 and 1 wt% of arginine, the absorption rate becomes 4 × 10-7 kmol/sec (2 times larger) and 6 × 10-7 kmol/sec (3 times larger). These results show that the addition of arginine as a promoter can increase the absorption rate of CO2 in MDEA solution and cover the weaknesses of MDEA solution. Based on the experimental result, the reaction kinetics constant for arginine is 1.91 × 1025 exp (-12296/T) (m3/kmol.s). Although, arginine reaction rate constant is lower than glycine and piperazine.

  15. Psychological absorption. Affect investment in marijuana intoxication.

    PubMed

    Fabian, W D; Fishkin, S M

    1991-01-01

    Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.

  16. Effect of adrenaline and alpha-agonists on net rate of liquid absorption from the pleural space of rabbits.

    PubMed

    Zocchi, L; Raffaini, A; Agostoni, E

    1997-05-01

    Indirect evidence supporting a solute-coupled liquid absorption from the pleural space of rabbits has recently been provided; moreover, the beta 2-adrenoceptor agonist terbutaline has been found to increase this absorption. In this study the effect of adrenaline and alpha-adrenoceptor agonists on net rate of liquid absorption (Jnet) from albumin Ringer hydrothoraces of various sizes has been determined in anaesthetized rabbits. In hydrothoraces with adrenaline (5 x 10(-6) M) the relationship between Jnet and volume of liquid injected was displaced upwards by 0.09 ml h-1 relative to that in control hydrothoraces (P < 0.01). This displacement did not occur with lower adrenaline concentrations or after pretreatment with the beta-blocker propranolol. Hence, this increase in Jnet is mediated by stimulation of beta-receptors. It seems to be caused by an increase in solute-coupled liquid absorption, since beta-agonists inhibit lymphatic activity while, at relatively high concentrations, they may increase active transport. Conversely, the strong stimulation of lymphatic alpha-receptors that should occur with adrenaline after beta-blockade may fail to increase lymphatic drainage, because it has been shown that the increase in contraction frequency of lymphatics may be balanced by the decrease in their stroke volume. Arterial blood pressure during the hydrothoraces with adrenaline was unchanged. In hydrothoraces with the alpha 2-agonist clonidine (5 x 10(-6) M; a less potent agent than adrenaline) the slope of the relationship between Jnet and volume injected increased by 26% (P < 0.01), while its origin did not change. This increase in slope did not occur with a lower clonidine concentration or after pretreatment with the alpha-blocker phentolamine. Hence, it is caused by stimulation of alpha 2-receptors, which probably lead to an increase in lymphatic drainage related to liquid load. In hydrothoraces with the alpha 1-agonist phenylephrine (5 x 10(-6) or 10(-7) M) Jnet was

  17. Application of gas cyclone-liquid jet absorption separator for purification of tail gas containing ammonia.

    PubMed

    Ma, Liang; Zhao, Zhi-Huang; Peng, Lv; Yang, Xue-Jing; Fu, Peng-Bo; Liu, Yi; Huang, Yuan

    2018-05-31

    In this experiment, with stainless steel gas cyclone-liquid jet absorption separator as carrier, NH 3 as experimental gas, and water and H 3 PO 4 solution as absorbents, corresponding NH 3 absorption rate change is obtained through the adjustment of experimental parameters, such as NH 3 inlet concentration, inlet velocity of mixed gas, injection flow rate of absorbent, temperature of absorbent, and H 3 PO 4 absorbent concentration. The NH 3 absorption rate decreases with the increase in NH 3 inlet concentration and inlet gas velocity. The NH 3 absorption rate will increase first and then tends to remain unchanged after reaching a certain degree with the increase in liquid injection flow rate and absorbent concentration. The NH 3 absorption rate will increase first and then decrease with the increase in the absorbent temperature. The maximum NH 3 removal efficiencies of water and H 3 PO 4 were 96% and 99%, respectively.

  18. Insulin analogues with improved absorption characteristics.

    PubMed

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  19. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  20. Historical shoreline mapping (II): Application of the Digital Shoreline Mapping and Analysis Systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A new, state-of-the-art method for mapping historical shorelines from maps and aerial photographs, the Digital Shoreline Mapping System (DSMS), has been developed. The DSMS is a freely available, public domain software package that meets the cartographic and photogrammetric requirements of precise coastal mapping, and provides a means to quantify and analyze different sources of error in the mapping process. The DSMS is also capable of resolving imperfections in aerial photography that commonly are assumed to be nonexistent. The DSMS utilizes commonly available computer hardware and software, and permits the entire shoreline mapping process to be executed rapidly by a single person in a small lab. The DSMS generates output shoreline position data that are compatible with a variety of Geographic Information Systems (GIS). A second suite of programs, the Digital Shoreline Analysis System (DSAS) has been developed to calculate shoreline rates-of-change from a series of shoreline data residing in a GIS. Four rate-of-change statistics are calculated simultaneously (end-point rate, average of rates, linear regression and jackknife) at a user-specified interval along the shoreline using a measurement baseline approach. An example of DSMS and DSAS application using historical maps and air photos of Punta Uvero, Puerto Rico provides a basis for assessing the errors associated with the source materials as well as the accuracy of computed shoreline positions and erosion rates. The maps and photos used here represent a common situation in shoreline mapping: marginal-quality source materials. The maps and photos are near the usable upper limit of scale and accuracy, yet the shoreline positions are still accurate ±9.25 m when all sources of error are considered. This level of accuracy yields a resolution of ±0.51 m/yr for shoreline rates-of-change in this example, and is sufficient to identify the short-term trend (36 years) of shoreline change in the study area.

  1. Effect on phloridzin on net rate of liquid absorption from the pleural space of rabbits.

    PubMed

    Zocchi, L; Agostoni, E; Raffaini, A

    1996-11-01

    Previous indirect findings have suggested the occurrence of solute-coupled liquid absorption from the pleural space, consistent with Na(+)-K(+)-ATPase on the interstitial side plus a Na(+)-H+ and CI(-)-HCO3- double exchange on the luminal side of the pleural mesothelium. To assess whether Na(+)-glucose cotransport also operates on the luminal side, the relationship between net rate of liquid absorption from the right pleural space (Jnet) and volume of liquid injected into this space (0.5, 1 or 2 ml) was determined in anaesthetized rabbits during hydrothoraces with phloridzin (10(-3)M) or with phloridzin plus 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulphonic acid (SITS; 1.5 x 10(-4)M). The relationship obtained during hydrothoraces with phloridzin was displaced downwards by 0.09 ml h-1 relative to that in control hydrothoraces (P < 0.01). The decrease in Jnet was similar in hydrothoraces of various sizes. The relationship obtained in hydrothoraces with phloridzin plus SITS was displaced downwards by 0.16 ml h-1 relative to that in control hydrothoraces (P < 0.01), i.e. the decrease in Jnet was similar to the sum (0.17 ml h-1) of the decreases in Jnet produced individually by phloridzin and by SITS (0.08 ml h-1). The decrease in Jnet was similar in hydrothoraces of differing size. The above findings are consistent with the occurrence of Na(+)-glucose cotransport on the luminal side of the pleural mesothelium, operating simultaneously with the double exchange also under physiological conditions.

  2. [Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple].

    PubMed

    Chen, Qian; Ding, Ning; Peng, Ling; Ge, Shun Feng; Jiang, Yuan Mao

    2017-07-18

    Seven-year-old 'Yanfu3'/M 26 /M. hupehensis Rehd. seedlings and 15 N trace technique were used to explore the characteristics of 15 N-urea absorption, utilization, loss and fruit yield and quality under different nitrogen application rates (N 100 , N 200 and N 300 ). The main results were as follows: the plant growth, 15 N absorption, utilization and loss differed significantly under different treatments. The plant leaf chlorophyll content (SPAD value), photosynthetic rate (P n ), total N content of leaves and the biomass, as well as the root-shoot ratio of N 200 treatment were obviously higher than the N 100 and N 300 treatments. Significant differences were observed in the 15 N derived from fertilizer (Ndff value) of different organs under different nitrogen application rates. The Ndff of fruits (flowers), leaves, one-year-old branch, and perennial branches in each measurement period was N 100 >N 200 >N 300 , while that of the roots at full-bloom and spring shoot growing slowly stage was N 100 >N 200 >N 300 , and in a trend of N 200 >N 100 >N 300 at autumn shoot growing stage, fruit rapid-swel-ling stage and fruit maturity stage. At fruit maturity stage, plant 15 N nitrogen utilization ratio of N 200 treatment was 23.6%, which was obviously higher than the N 100 (16.3%) and N 300 (14.4%) treatments, with the 15 N loss rate of 56.4%, obviously lower than the N 100 (60.6%) and N 300 (66.1%) treatments. There were significant differences among the treatments in fruit mass, yield per plant, soluble solid, fruit firmness, soluble sugar, titratable acids and sugar-acid ratio of different nitrogen rates, and the N 200 treatment showed the best performance, followed by the N 300 treatment, and then the N 100 treatment.

  3. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.

    PubMed

    Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji

    2013-01-01

    Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.

  4. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  5. Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea

    1992-01-01

    The sedimentary sections exposed in the Canyonlands and Arches National Parks region of Utah (generally referred to as 'Canyonlands') consist of sandstones, shales, limestones, and conglomerates. Reflectance spectra of weathered surfaces of rocks from these areas show two components: (1) variations in spectrally detectable mineralogy, and (2) variations in the relative ratios of the absorption bands between minerals. Both types of information can be used together to map each major lithology and the Clark spectral features mapping algorithm is applied to do the job.

  6. Optimized efficient liver T1ρ mapping using limited spin lock times

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Zhao, Feng; Griffith, James F.; Chan, Queenie; Wang, Yi-Xiang J.

    2012-03-01

    T1ρ relaxation has recently been found to be sensitive to liver fibrosis and has potential to be used for early detection of liver fibrosis and grading. Liver T1ρ imaging and accurate mapping are challenging because of the long scan time, respiration motion and high specific absorption rate. Reduction and optimization of spin lock times (TSLs) are an efficient way to reduce scan time and radiofrequency energy deposition of T1ρ imaging, but maintain the near-optimal precision of T1ρ mapping. This work analyzes the precision in T1ρ estimation with limited, in particular two, spin lock times, and explores the feasibility of using two specific operator-selected TSLs for efficient and accurate liver T1ρ mapping. Two optimized TSLs were derived by theoretical analysis and numerical simulations first, and tested experimentally by in vivo rat liver T1ρ imaging at 3 T. The simulation showed that the TSLs of 1 and 50 ms gave optimal T1ρ estimation in a range of 10-100 ms. In the experiment, no significant statistical difference was found between the T1ρ maps generated using the optimized two-TSL combination and the maps generated using the six TSLs of [1, 10, 20, 30, 40, 50] ms according to one-way ANOVA analysis (p = 0.1364 for liver and p = 0.8708 for muscle).

  7. In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping.

    PubMed

    Poland, Jesse A; Nelson, Rebecca J

    2011-02-01

    The agronomic importance of developing durably resistant cultivars has led to substantial research in the field of quantitative disease resistance (QDR) and, in particular, mapping quantitative trait loci (QTL) for disease resistance. The assessment of QDR is typically conducted by visual estimation of disease severity, which raises concern over the accuracy and precision of visual estimates. Although previous studies have examined the factors affecting the accuracy and precision of visual disease assessment in relation to the true value of disease severity, the impact of this variability on the identification of disease resistance QTL has not been assessed. In this study, the effects of rater variability and rating scales on mapping QTL for northern leaf blight resistance in maize were evaluated in a recombinant inbred line population grown under field conditions. The population of 191 lines was evaluated by 22 different raters using a direct percentage estimate, a 0-to-9 ordinal rating scale, or both. It was found that more experienced raters had higher precision and that using a direct percentage estimation of diseased leaf area produced higher precision than using an ordinal scale. QTL mapping was then conducted using the disease estimates from each rater using stepwise general linear model selection (GLM) and inclusive composite interval mapping (ICIM). For GLM, the same QTL were largely found across raters, though some QTL were only identified by a subset of raters. The magnitudes of estimated allele effects at identified QTL varied drastically, sometimes by as much as threefold. ICIM produced highly consistent results across raters and for the different rating scales in identifying the location of QTL. We conclude that, despite variability between raters, the identification of QTL was largely consistent among raters, particularly when using ICIM. However, care should be taken in estimating QTL allele effects, because this was highly variable and rater

  8. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    PubMed

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  9. The facilitated component of intestinal glucose absorption

    PubMed Central

    Kellett, George L

    2001-01-01

    Over the last decade, a debate has developed about the mechanism of the passive or ‘diffusive’ component of intestinal glucose absorption and, indeed, whether it even exists. Pappenheimer and colleagues have proposed that paracellular solvent drag contributes a passive component, which, at high concentrations of sugars similar to those in the jejunal lumen immediately after a meal, is severalfold greater than the active component mediated by the Na+-glucose cotransporter SGLT1. On the other hand, Ferraris & Diamond maintain that the kinetics of glucose absorption can be explained solely in terms of SGLT1 and that a passive or paracellular component plays little, if any, part. Recently, we have provided new evidence that the passive component of glucose absorption exists, but is in fact facilitated since it is mediated by the rapid, glucose-dependent activation and recruitment of the facilitative glucose transporter GLUT2 to the brush-border membrane; regulation involves a protein kinase C (PKC)-dependent pathway activated by glucose transport through SGLT1 and also involves mitogen-activated protein kinase (MAP kinase) signalling pathways. This topical review seeks to highlight the significant points of the debate, to show how our proposals on GLUT2 impact on different aspects of the debate and to look at the regulatory events that are likely to be involved in the short-term regulation of sugar absorption during the assimilation of a meal. PMID:11251042

  10. Mixing rates and limit theorems for random intermittent maps

    NASA Astrophysics Data System (ADS)

    Bahsoun, Wael; Bose, Christopher

    2016-04-01

    We study random transformations built from intermittent maps on the unit interval that share a common neutral fixed point. We focus mainly on random selections of Pomeu-Manneville-type maps {{T}α} using the full parameter range 0<α <∞ , in general. We derive a number of results around a common theme that illustrates in detail how the constituent map that is fastest mixing (i.e. smallest α) combined with details of the randomizing process, determines the asymptotic properties of the random transformation. Our key result (theorem 1.1) establishes sharp estimates on the position of return time intervals for the quenched dynamics. The main applications of this estimate are to limit laws (in particular, CLT and stable laws, depending on the parameters chosen in the range 0<α <1 ) for the associated skew product; these are detailed in theorem 3.2. Since our estimates in theorem 1.1 also hold for 1≤slant α <∞ we study a second class of random transformations derived from piecewise affine Gaspard-Wang maps, prove existence of an infinite (σ-finite) invariant measure and study the corresponding correlation asymptotics. To the best of our knowledge, this latter kind of result is completely new in the setting of random transformations.

  11. The Soviet contributions towards MAP/WINE

    NASA Technical Reports Server (NTRS)

    Rapoport, Z. TA.; Kazimirovsky, E. S.

    1989-01-01

    In the winter of 1983 to 1984, the research institutes of the Soviet Union took an active part in the accomplishment of the project Winter in Northern Europe (MAP/WINE) of the Middle Atmosphere Program. Different methods were used to measure temperature, direction and velocity of wind, turbulence, electron concentration in the lower ionosphere, and radio wave absorption. The study of the stratopheric warmings and the related changes in the mesosphere and lower ionosphere was considered of special importance. The analysis of the obtained data has shown, in particular, that during the stratospheric warmings the western wind in winter time becomes weaker and even reverses. At the same time period the electron concentration and the radio wave absorption in the lower ionosphere are often reduced. It is also observed that the high absorption zones move from west to east. These results confirm the concept about the role of the cyclonic circumpolar vortex in the transport of the auroral air to temperate latitudes and about the appearance of conditions for the winter anomalous radio wave absorption.

  12. New horizons mapping of Europa and Ganymede.

    PubMed

    Grundy, W M; Buratti, B J; Cheng, A F; Emery, J P; Lunsford, A; McKinnon, W B; Moore, J M; Newman, S F; Olkin, C B; Reuter, D C; Schenk, P M; Spencer, J R; Stern, S A; Throop, H B; Weaver, H A

    2007-10-12

    The New Horizons spacecraft observed Jupiter's icy satellites Europa and Ganymede during its flyby in February and March 2007 at visible and infrared wavelengths. Infrared spectral images map H2O ice absorption and hydrated contaminants, bolstering the case for an exogenous source of Europa's "non-ice" surface material and filling large gaps in compositional maps of Ganymede's Jupiter-facing hemisphere. Visual wavelength images of Europa extend knowledge of its global pattern of arcuate troughs and show that its surface scatters light more isotropically than other icy satellites.

  13. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  14. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  15. Water absorption characteristic of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  16. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium.

    PubMed

    Matiukas, Arvydas; Mitrea, Bogdan G; Qin, Maochun; Pertsov, Arkady M; Shvedko, Alexander G; Warren, Mark D; Zaitsev, Alexey V; Wuskell, Joseph P; Wei, Mei-de; Watras, James; Loew, Leslie M

    2007-11-01

    Styryl voltage-sensitive dyes (e.g., di-4-ANEPPS) have been used successfully for optical mapping in cardiac cells and tissues. However, their utility for probing electrical activity deep inside the myocardial wall and in blood-perfused myocardium has been limited because of light scattering and high absorption by endogenous chromophores and hemoglobin at blue-green excitation wavelengths. The purpose of this study was to characterize two new styryl dyes--di-4-ANBDQPQ (JPW-6003) and di-4-ANBDQBS (JPW-6033)--optimized for blood-perfused tissue and intramural optical mapping. Voltage-dependent spectra were recorded in a model lipid bilayer. Optical mapping experiments were conducted in four species (mouse, rat, guinea pig, and pig). Hearts were Langendorff perfused using Tyrode's solution and blood (pig). Dyes were loaded via bolus injection into perfusate. Transillumination experiments were conducted in isolated coronary-perfused pig right ventricular wall preparations. The optimal excitation wavelength in cardiac tissues (650 nm) was >70 nm beyond the absorption maximum of hemoglobin. Voltage sensitivity of both dyes was approximately 10% to 20%. Signal decay half-life due to dye internalization was 80 to 210 minutes, which is 5 to 7 times slower than for di-4-ANEPPS. In transillumination mode, DeltaF/F was as high as 20%. In blood-perfused tissues, DeltaF/F reached 5.5% (1.8 times higher than for di-4-ANEPPS). We have synthesized and characterized two new near-infrared dyes with excitation/emission wavelengths shifted >100 nm to the red. They provide both high voltage sensitivity and 5 to 7 times slower internalization rate compared to conventional dyes. The dyes are optimized for deeper tissue probing and optical mapping of blood-perfused tissue, but they also can be used for conventional applications.

  17. Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within

  18. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  19. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  20. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane; Ganguly, Rajib

    2018-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000 km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 75 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  1. Paracetamol absorption from different sites in the human small intestine.

    PubMed Central

    Gramatté, T; Richter, K

    1994-01-01

    Site-specificity in the small intestinal absorption of paracetamol was investigated using a segmental intestinal steady state perfusion technique (triple-lumen tubing system) combined with simultaneous measurements of serum drug concentrations. Dissolved paracetamol was perfused over 160 min into different parts of the small intestine (65-210 cm beyond the teeth). Each of the four healthy subjects was studied twice with a proximal and a more distal site of perfusion. Serum drug concentrations were similar after proximal and distal perfusions. Mean drug absorption rates calculated from intestinal aspirate concentrations were similar in both parts of the intestine--proximal: 869 micrograms 30 cm-1 min-1 (95% CI: 659-1079) vs distal: 941 micrograms 30 cm-1 min-1 (794-1088). The absorption rate was related directly to the amount of paracetamol perfused per unit time as well as to the rate of transmucosal water fluxes. PMID:7917782

  2. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  3. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model.

    PubMed

    Rygg, Alex; Longest, P Worth

    2016-10-01

    The objective of this study was to develop a computational fluid dynamics (CFD) model to predict the deposition, dissolution, clearance, and absorption of pharmaceutical particles in the human nasal cavity. A three-dimensional nasal cavity geometry was converted to a surface-based model, providing an anatomically-accurate domain for the simulations. Particle deposition data from a commercial nasal spray product was mapped onto the surface model, and a mucus velocity field was calculated and validated with in vivo nasal clearance rates. A submodel for the dissolution of deposited particles was developed and validated based on comparisons to existing in vitro data for multiple pharmaceutical products. A parametric study was then performed to assess sensitivity of epithelial drug uptake to model conditions and assumptions. The particle displacement distance (depth) in the mucus layer had a modest effect on overall drug absorption, while the mucociliary clearance rate was found to be primarily responsible for drug uptake over the timescale of nasal clearance for the corticosteroid mometasone furoate (MF). The model revealed that drug deposition in the nasal vestibule (NV) could slowly be transported into the main passage (MP) and then absorbed through connection of the liquid layer in the NV and MP regions. As a result, high intersubject variability in cumulative uptake was predicted, depending on the length of time the NV dose was left undisturbed without blowing or wiping the nose. This study has developed, for the first time, a complete CFD model of nasal aerosol delivery from the point of spray formation through absorption at the respiratory epithelial surface. For the development and assessment of nasal aerosol products, this CFD-based in silico model provides a new option to complement existing in vitro nasal cast studies of deposition and in vivo imaging experiments of clearance.

  4. Analysis of LANDSAT-4 TM Data for Lithologic and Image Mapping Purpose

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Salisbury, J. W.; Bender, L. V.; Jones, O. D.; Mimms, D. L.

    1984-01-01

    Lithologic mapping techniques using the near infrared bands of the Thematic Mapper onboard the LANDSAT 4 satellite are investigated. These methods are coupled with digital masking to test the capability of mapping geologic materials. Data are examined under medium to low Sun angle illumination conditions to determine the detection limits of materials with absorption features. Several detection anomalies are observed and explained.

  5. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  6. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  7. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  8. CALCIUM ABSORPTION IN MAN: BASED ON LARGE VOLUME LIQUID SCINTILLATION COUNTER STUDIES.

    PubMed

    LUTWAK, L; SHAPIRO, J R

    1964-05-29

    A technique has been developed for the in vivo measurement of absorption of calcium in man after oral administration of 1 to 5 microcuries of calcium-47 and continuous counting of the radiation in the subject's arm with a large volume liquid scintillation counter. The maximum value for the arm counting technique is proportional to the absorption of tracer as measured by direct stool analysis. The rate of uptake by the arm is lower in subjects with either the malabsorption syndrome or hypoparathyroidism. The administration of vitamin D increases both the absorption rate and the maximum amount of calcium absorbed.

  9. High-resolution genetic map for understanding the effect of genome-wide recombination rate, selection sweep and linkage disequilibrium on nucleotide diversity in watermelon

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...

  10. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    PubMed

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  11. Distortion correction of echo planar images applying the concept of finite rate of innovation to point spread function mapping (FRIP).

    PubMed

    Nunes, Rita G; Hajnal, Joseph V

    2018-06-01

    Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.

  12. Io: Near-Infrared Absorptions Not Attributable to SO2

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Clark, R. N.; Soderblom, L. A.; Carlson, R. W.; Kamp, L. W.; Galileo NIMS Team

    2001-11-01

    The Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft imaged the leading side of Jupiter's satellite Io at full spectral resolution and with triple Nyquist spatial sampling during the fifteenth orbital encounter (E15). New despiking and "dejittering" algorithms have been applied to this high S/N observation (15INHRSPEC01A). Spectral absorption features not attributable to SO2 are found between 3.0-3.4 microns and near 4.65 microns. The patterns of the spatial distributions of both absorbers differ from that of the omnipresent SO2. The broad 3.0-3.4 micron absorption is most pronounced in polar regions. Preliminary work suggests that the 4.65 micron feature may be associated with an unidentified sulfate mineral, while the 3.0-3.4 micron feature may result from the presence of more than one absorbing material. Hydrogen-bearing species are likely candidates. For example, H2O ice provides a good match for the absorption near 3.2 microns, but the absorption is shifted to wavelengths longer than that in pure H2O ice. If only one absorber is present, then hydrogen bonding of small numbers of H2O molecules could perhaps account for the shift. The absorption is weak; if H20 related, optical path lengths of a fraction of a micron are indicated. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Regulation of intramembranous absorption and amniotic fluid volume by constituents in fetal sheep urine

    PubMed Central

    Jonker, Sonnet S.; Louey, Samantha; Cheung, Cecilia Y.; Brace, Robert A.

    2013-01-01

    Our objective was to test the hypothesis that fetal urine contains a substance(s) that regulates amniotic fluid volume by altering the rate of intramembranous absorption of amniotic fluid. In late gestation ovine fetuses, amniotic fluid volumes, urine, and lung liquid production rates, swallowed volumes and intramembranous volume and solute absorption rates were measured over 2-day periods under control conditions and when urine was removed and continuously replaced at an equal rate with exogenous fluid. Intramembranous volume absorption rate decreased by 40% when urine was replaced with lactated Ringer solution or lactated Ringer solution diluted 50% with water. Amniotic fluid volume doubled under both conditions. Analysis of the intramembranous sodium and chloride fluxes suggests that the active but not passive component of intramembranous volume absorption was altered by urine replacement, whereas both active and passive components of solute fluxes were altered. We conclude that fetal urine contains an unidentified substance(s) that stimulates active intramembranous transport of amniotic fluid across the amnion into the underlying fetal vasculature and thereby functions as a regulator of amniotic fluid volume. PMID:23824958

  14. Surface-plasmon mediated total absorption of light into silicon.

    PubMed

    Yoon, Jae Woong; Park, Woo Jae; Lee, Kyu Jin; Song, Seok Ho; Magnusson, Robert

    2011-10-10

    We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.

  15. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  16. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  17. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  18. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  19. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    USGS Publications Warehouse

    Mars, John C.; Rowan, Lawrence C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that

  20. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.

  1. Particle agglomerated 3-d nanostructures for photon absorption

    NASA Astrophysics Data System (ADS)

    Sivayoganathan, Mugunthan

    The main objective of this thesis is to investigate the photon absorption properties of particle agglomerated 3-D structures that are synthesized through femtosecond laser ablation of solids. The size and morphology of these particle agglomerated 3-D structures, which can be tailored through adjusting laser parameters, determine the photon absorption property. A systematic theoretical and experimental study was performed to identify the effect of lasers on the size of the formed particles. The literature survey showed that the amount of supersaturation influences the growth rate as well as the nucleation rate of vapour condensed nanoparticles. Based on this theory, a mechanism was formed to explain the control of laser parameters over the size of formed particles. Further, a theoretical explanation was proposed from the experimental results for the transition of particle size distribution modals. These proposed mechanisms and explanations show the variation in particle size in the particle agglomerated 3-D nanostructures with laser parameters. The effect of laser parameters on the formed ring size was studied. Based on the previous studies, a mechanism was proposed for the formation of ring nanoclusters. The laser pulse intensity dependent ponderomotive force was the key force to define the formation of ring nanoclusters. Then the effect of laser parameters on ring size was studied. Structures fabricated on several materials such as graphite, aluminosilicate ceramic, zinc ingot, gold, and titanium were analyzed to show the influence of material properties, laser parameters, and the environmental conditions on the size of ring formed. The studies performed on the structures showed a minimum absorption of 0.75 A.U. in the bandwidth from UV to IR. The absorption spectrum is much wider compared to existing nanomaterials, such as silicon nanostructures and titanium dioxide nanostructures. To the best of the author's knowledge, it is a very competitive absorption rate

  2. Fluid Absorption and Release of Nonwovens and their Response to Compression

    NASA Astrophysics Data System (ADS)

    Bateny, Fatemeh

    Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.

  3. CrowdMapping: A Crowdsourcing-Based Terminology Mapping Method for Medical Data Standardization.

    PubMed

    Mao, Huajian; Chi, Chenyang; Huang, Boyu; Meng, Haibin; Yu, Jinghui; Zhao, Dongsheng

    2017-01-01

    Standardized terminology is the prerequisite of data exchange in analysis of clinical processes. However, data from different electronic health record systems are based on idiosyncratic terminology systems, especially when the data is from different hospitals and healthcare organizations. Terminology standardization is necessary for the medical data analysis. We propose a crowdsourcing-based terminology mapping method, CrowdMapping, to standardize the terminology in medical data. CrowdMapping uses a confidential model to determine how terminologies are mapped to a standard system, like ICD-10. The model uses mappings from different health care organizations and evaluates the diversity of the mapping to determine a more sophisticated mapping rule. Further, the CrowdMapping model enables users to rate the mapping result and interact with the model evaluation. CrowdMapping is a work-in-progress system, we present initial results mapping terminologies.

  4. Studies on Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534

  5. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    USGS Publications Warehouse

    Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.

    2012-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  6. Petrological Mapping of the Crater Boguslawsky

    NASA Astrophysics Data System (ADS)

    Wöhler, C.; Evdokimova, N. A.; Feoktistova, E. A.; Grumpe, A.; Kapoor, K.; Berezhnoy, A. A.; Shevchenko, V. V.

    2015-10-01

    An analysis of orbital spectral data of the crater Boguslawsky, the intended target region of the Russian Luna-Glob mission, is performed. We have constructed a high- resolution DEM of the crater Boguslawsky, based on which the temperature regime on the surface is investigated. The depth of the OH absorption feature is analysed.The content of the main elements is estimated, and a petrologic map is constructed accordingly.

  7. Intestinal absorption and biomagnification of organochlorines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.

    1993-03-01

    Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organicmore » chemicals in fish and mammals.« less

  8. Bicarbonate absorption by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-02-01

    The rate of transport of bicarbonate was studied in isolated perfused rabbit cortical collecting tubules that were absorbing bicarbonate in vitro. Acetazolamide completely inhibited bicarbonate absorption, as was previously observed with isolated proximal tubules. Therefore, carbonic anhydrase probably is important for bicarbonate absorption in both the proximal tubules and collecting tubules. Inhibition of sodium transport by ouabain or elimination of its transport by completely removing the sodium did not cause a decrease in bicarbonate absorption by the collecting tubules. We previously found that inhibition of sodium transport caused a great decrease in bicarbonate absorption by proximal tubules. Therefore, absorption of bicarbonate is not directly related to sodium transport in collecting tubules, but it probably is related to sodium transport in isolated perfused rabbit proximal tubules. Amiloride inhibited bicarbonate absorption by the collecting tubules consistent with previous observations that the drug inhibits urinary acidification. Although amiloride also inhibits sodium transport and reduces the transepithelial voltage across the collecting tubules, the effect of the drug on bicarbonate transport apparently is independent of the other effects.

  9. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  10. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  11. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala.

    PubMed

    Xu, Chao; Li, Xiang-Fei; Tian, Hong-Yan; Jiang, Guang-Zhen; Liu, Wen-Bin

    2016-04-01

    This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0% body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0% BW/day. In addition, moderate ration sizes (2.0-4.0% BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% and 6.0% BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57% BW/day.

  12. Investigating the origins of double photopeaks in CsI:Tl samples through activator mapping

    NASA Astrophysics Data System (ADS)

    Onken, Drew R.; Gridin, Sergii; Williams, Richard T.; Williams, Charles B.; Donati, George L.; Gayshan, Vadim; Vasyukov, Sergey; Gektin, Alex

    2018-06-01

    Careful examination of the origins of double photopeaks in CsI:Tl provides a foundation for exploring the relationship between activator homogeneity and photopeak resolution in scintillators. In rare cases, certain CsI:Tl crystals exhibit a second photopeak in the pulse-height spectrum. A combination of optical mapping and ICP-MS measurements reveals the presence of two distinct regions with differing Tl concentrations in these crystals. The oscillator strength of the 299 nm absorption A-band of Tl in CsI was measured to be 0.0526 ± 0.0008; this parameter can be used to quantify activator concentration from the optical absorption. Using published measurements of luminescence intensity versus Tl concentration, the distributions of Tl measured from optical absorption maps of the samples were reconstructed into photopeaks in good agreement with experiment. The distribution of Tl concentrations in these particular crystals allowed examining luminescence pulse shape as a function of Tl concentration.

  13. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    PubMed

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  14. New dust opacity maps from Viking IR thermal mapper data

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Richardson, M. I.

    1992-01-01

    Mapping of dust opacity of the Martian atmosphere, using the silicate-induced absorption of 9 micron radiation, was performed with the Viking Infrared Thermal Mapper (IRTM) data for several local dust storms and in a global sense. We present here the first results from an effort to extend the earlier mapping work to the period of the 1977b major storm, and to concentrate attention on the details of opacity behavior during the initial phases of the 1977a and b storms.

  15. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  16. Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2012-03-01

    This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative humidity (RH), respectively. The globally and annually averaged modeled 550 nm aerosol mass absorption coefficient (AMAC) of externally mixed BC was 6.72 (6.3-7.3) m2/g, within the laboratory range (6.3-8.7 m2/g). The global AMAC of internally mixed (IM) BC was 16.2 (13.9-18.2) m2/g, less than the measured maximum at 100% RH (23 m2/g). The resulting AMAC amplification factor due to internal mixing was 2.41 (2-2.9), with highest values in high RH regions. The global 650 nm hydrometeor mass absorption coefficient (HMAC) due to BC inclusions was 17.7 (10.6-19) m2/g, ˜9.3% higher than that of the IM-AMAC. The 650 nm HMACs of TBs and SD were half and 1/190th, respectively, that of BC. Modeled aerosol absorption optical depths were consistent with data. In column tests, BC inclusions in low and mid clouds (CAE I) gave column-integrated BC heating rates ˜200% and 235%, respectively, those of interstitial BC at the actual cloud RH (CAE II), which itself gave heating rates ˜120% and ˜130%, respectively, those of interstitial BC at the clear-sky RH. Globally, cloud optical depth increased then decreased with increasing aerosol optical depth, consistent with boomerang curves from satellite studies. Thus, CAEs, which are largely ignored, heat clouds significantly.

  17. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors.

    PubMed

    Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan

    2017-09-01

    To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.

  18. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate ofmore » the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.« less

  19. Enhancement of specific absorption rate in lossy dielectric objects using a slab of left-handed material.

    PubMed

    Zhao, Lei; Cui, Tie Jun

    2005-12-01

    An enhancement of the specific absorption rate (SAR) inside a lossy dielectric object has been investigated theoretically based on a slab of left-handed medium (LHM). In order to make an accurate analysis of SAR distribution, a proper Green's function involved in the LHM slab is proposed, from which an integral equation for the electric field inside the dielectric object is derived. Such an integral equation has been solved accurately and efficiently using the conjugate gradient method and the fast Fourier transform. We have made a lot of numerical experiments on the SAR distributions inside the dielectric object excited by a line source with and without the LHM slab. Numerical experiments show that SAR can be enhanced tremendously when the LHM slab is involved due to the proper usage of strong surface waves, which will be helpful in the potential biomedical applications for hyperthermia. The physical insight for such a phenomenon has also been discussed.

  20. Constant Head Evaluation of Full Scale Soil Absorption Fields

    NASA Astrophysics Data System (ADS)

    Dix, S. P.

    2001-05-01

    Design loading rates for septic tank effluent in trenches of various designs with different geometry and media has been debated for decades. The role of bottom and sidewall is a hot topic with many opinion by experts in the field of agricultural and environmental engineering. Research institutions have conducted numerous studies and developed procedures for measuring both test systems and fundamental of soil hydraulics. Falling head tests have been used more recently to evaluate mature test cells and evaluate both sidewall and basal absorption, (Keys et al). The proposed paper will discuss the design and testing of a constant head permeameter. Testing this equipment and developing the test protocol followed the application of the procedure to on a number of residential systems in both sandy and clay loam soil. Results from this testing showed the relability step that must be taken to successfully use this equipment. Result of the testing show the variability and consistency of absorption, the changes in absorption when systems are flooded above their equilibrium condition and the longer-term changes that occur when trenches are rested in a warm climate. More recent application of the test procedure evaluated affects of head and increased depth sidewall on absorption rates when the effluent level in the trenches was raised. Future modification of the test equipment and procedure by integrating a data logger will permits more exact recording of dose cycles and improved estimate of soil absorption efficiency over time.

  1. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  2. CHLORINE ABSORPTION IN S(IV) SOLUTIONS

    EPA Science Inventory

    The report gives results of measurements of the rate of Chlorine (Cl2) absorption into aqueous sulfite/bisulfite -- S(IV) -- solutions at ambient temperature using a highly characterized stirred-cell reactor. The reactor media were 0 to 10 mM S(IV) with pHs of 3.5-8.5. Experiment...

  3. Endovascular vein harvest: systemic carbon dioxide absorption.

    PubMed

    Maslow, Andrew M; Schwartz, Carl S; Bert, Arthur; Hurlburt, Peter; Gough, Jeffrey; Stearns, Gary; Singh, Arun K

    2006-06-01

    Endovascular vein harvest (EDVH) requires CO(2) insufflation to expand the subcutaneous space, allowing visualization and dissection of the saphenous vein. The purpose of this study was to assess the extent of CO(2) absorption during EDVH. Prospective observational study. Single tertiary care hospital. Sixty patients (30 EDVH and 30 open-vein harvest) undergoing isolated coronary artery bypass graft surgery. Hemodynamic, procedural, and laboratory data were collected prior to (baseline), during, and at it the conclusion (final) of vein harvesting. Data were also collected during cardiopulmonary bypass (CPB). Data were compared by using t tests, analysis of variance, and correlation statistics when needed. There were significant increases in arterial CO(2) (PaCO(2), 35%) and decreases in pH (1.35%) during EDVH. These were associated with increases in heart rate, mean blood pressure, and cardiac output. Within the EDVH group, greater elevations (>10 mmHg) in PaCO2 were more likely during difficult harvest procedures, and these patients exhibited greater increase in heart rate. Elevated CO(2) persisted during CPB, requiring higher systemic gas flows and greater use of phenylephrine to maintain desired hemodynamics. EDVH was associated with systemic absorption of CO(2). Greater absorption was more likely in difficult procedures and was associated with greater hemodynamic changes requiring medical therapy.

  4. Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.

    PubMed

    Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas

    2014-03-01

    We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.

  5. Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset.

    PubMed

    Dimbylow, Peter; Khalid, Mohammed; Mann, Simon

    2003-12-07

    Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered. operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to approximately 50% if kept in the position of maximum SAR for 6 min continuously.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  8. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  9. Measuring the Absorption Rate of CO 2 in Nonaqueous CO 2 -Binding Organic Liquid Solvents with a Wetted-Wall Apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathias, Paul M.; Zheng, Feng; Heldebrant, David J.

    2015-09-17

    The kinetics of the absorption of CO 2 into two nonaqueous CO 2-binding organic liquid (CO 2BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO 2 loadings were run with a so-called “first-generation” CO 2BOL, comprising an independent base and alcohol, and a “second-generation” CO 2BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of themore » k'g value was also observed, which suggests that the physical solubility of CO 2 in organic liquids may be making CO 2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO 2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2BOL solvents. Previous work established the thermodynamic properties related to CO 2 capture. The present paper quantitatively studies the kinetics of CO 2 capture and develops a rate-based model.« less

  10. Absorption sites of orally administered drugs in the small intestine.

    PubMed

    Murakami, Teruo

    2017-12-01

    In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.

  11. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

    PubMed Central

    Star, R A; Burg, M B; Knepper, M A

    1985-01-01

    Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570

  12. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  13. A Comprehensive Linkage Map of the Dog Genome

    PubMed Central

    Wong, Aaron K.; Ruhe, Alison L.; Dumont, Beth L.; Robertson, Kathryn R.; Guerrero, Giovanna; Shull, Sheila M.; Ziegle, Janet S.; Millon, Lee V.; Broman, Karl W.; Payseur, Bret A.; Neff, Mark W.

    2010-01-01

    We have leveraged the reference sequence of a boxer to construct the first complete linkage map for the domestic dog. The new map improves access to the dog's unique biology, from human disease counterparts to fascinating evolutionary adaptations. The map was constructed with ∼3000 microsatellite markers developed from the reference sequence. Familial resources afforded 450 mostly phase-known meioses for map assembly. The genotype data supported a framework map with ∼1500 loci. An additional ∼1500 markers served as map validators, contributing modestly to estimates of recombination rate but supporting the framework content. Data from ∼22,000 SNPs informing on a subset of meioses supported map integrity. The sex-averaged map extended 21 M and revealed marked region- and sex-specific differences in recombination rate. The map will enable empiric coverage estimates and multipoint linkage analysis. Knowledge of the variation in recombination rate will also inform on genomewide patterns of linkage disequilibrium (LD), and thus benefit association, selective sweep, and phylogenetic mapping approaches. The computational and wet-bench strategies can be applied to the reference genome of any nonmodel organism to assemble a de novo linkage map. PMID:19966068

  14. Mapping the Frozen Void

    NASA Astrophysics Data System (ADS)

    Suutarinen, Aleksi; Fraser, Helen

    2013-07-01

    Reactions on the surfaces of dust grains play a vital role in the overall chemistry of interstellar matter. These grains become covered by icy layers, which are the largest molecular reservoir in the interstellar medium. Given this, it is surprising that the effect ice has on the overall chain of reactions is poorly characterized. One step on the path of gaining better understanding here is to develop methods of figuring out how much ice is present in these clouds, the links between ice components, and synergy between the ices and gas phase molecules. We do this by examining the absorption spectra of ices on lines of sight towards several stars behind clouds of interstellar matter. From these we can reconstruct spatial maps of the ice distribution on scales of as little as 1000 AU, as a test of the chemical variation within a cloud. By overlapping the ice data with other maps of the same region (gas emission, temperature, density etc) we create combined maps to reveal the astrochemistry of star-forming regions and pre-stellar cores. In this poster we present the continuing results of our ice mapping programme, using data from the AKARI satellite, specifically in slitless spectroscopy observations in the NIR. In this region the key ice features encompass H2O, CO and CO2. The maps illustrate the power of our dedicated AKARI data reduction pipeline, and the novelty of our observing programme. We also detail the next steps' in our ice mapping research. The method is being expanded to include the full 10'x10' AKARI field of view, taking account of image distortion induced by the dispersing optics. These maps are then combined with exiting gas-phase observations and SCUBA maps. The latest attempts at this are shown here. What is clear already is that it is difficult to predict ice abundances from factors such as extinction or gas density alone, and that ice formation and evolution can vary hugely over even very small astronomical scales.

  15. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  16. Mapping the serological prevalence rate of West Nile fever in equids, Tunisia.

    PubMed

    Bargaoui, R; Lecollinet, S; Lancelot, R

    2015-02-01

    West Nile fever (WNF) is a viral disease of wild birds transmitted by mosquitoes. Humans and equids can also be affected and suffer from meningoencephalitis. In Tunisia, two outbreaks of WNF occurred in humans in 1997 and 2003; sporadic cases were reported on several other years. Small-scale serological surveys revealed the presence of antibodies against WN virus (WNV) in equid sera. However, clinical cases were never reported in equids, although their population is abundant in Tunisia. This study was achieved to characterize the nationwide serological status of WNV in Tunisian equids. In total, 1189 sera were collected in 2009 during a cross-sectional survey. Sera were tested for IgG antibodies, using ELISA and microneutralization tests. The estimated overall seroprevalence rate was 28%, 95% confidence interval [22; 34]. The highest rates were observed (i) in the north-eastern governorates (Jendouba, 74%), (ii) on the eastern coast (Monastir, 64%) and (iii) in the lowlands of Chott El Jerid and Chott el Gharsa (Kebili, 58%; Tozeur, 52%). Environmental risk factors were assessed, including various indicators of wetlands, wild avifauna, night temperature and chlorophyllous activity (normalized difference vegetation index: NDVI). Multimodel inference showed that lower distance to ornithological sites and wetlands, lower night-time temperature, and higher NDVI in late spring and late fall were associated with higher serological prevalence rate. The model-predicted nationwide map of WNF seroprevalence rate in Tunisian equids highlighted different areas with high seroprevalence probability. These findings are discussed in the perspective of implementing a better WNF surveillance system in Tunisia. This system might rely on (i) a longitudinal survey of sentinel birds in high-risk areas and time periods for WNV transmission, (ii) investigations of bird die-offs and (iii) syndromic surveillance of equine meningoencephalitis. © 2013 Blackwell Verlag GmbH.

  17. Nonlinear intestinal absorption kinetics of cefuroxime axetil in rats.

    PubMed Central

    Ruiz-Balaguer, N; Nacher, A; Casabo, V G; Merino, M

    1997-01-01

    Cefuroxime is commercially available for parenteral administration as a sodium salt and for oral administration as cefuroxime axetil, the 1-(acetoxy)ethyl ester of the drug. Cefuroxime axetil is a prodrug of cefuroxime and has little, if any, antibacterial activity until hydrolyzed in vivo to cefuroxime. In this study, the absorption of cefuroxime axetil in the small intestines of anesthetized rats was investigated in situ, by perfusion at four concentrations (11.8, 5, 118 and 200 microM). Oral absorption of cefuroxime axetil can apparently be described as a specialized transport mechanism which obeys Michaelis-Menten kinetics. Parameters characterizing absorption of prodrug in free solution were obtained: maximum rate of absorption (Vmax) = 289.08 +/- 46.26 microM h-1, and Km = 162.77 +/- 31.17 microM. Cefuroxime axetil transport was significantly reduced in the presence of the enzymatic inhibitor sodium azide. On the other hand, the prodrug was metabolized in the gut wall through contact with membrane-bound enzymes in the brush border membrane before absorption occurred. This process reduces the prodrug fraction directly available for absorption. From a bioavailability point of view, therefore, the effects mentioned above can explain the variable and poor bioavailability following oral administration of cefuroxime axetil. Thus, future strategies in oral cefuroxime axetil absorption should focus on increasing the stability of the prodrug in the intestine by modifying the prodrug structure and/or targeting the compound to the absorption site. PMID:9021205

  18. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  19. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  20. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    NASA Astrophysics Data System (ADS)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  1. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

    NASA Astrophysics Data System (ADS)

    Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.

    2014-12-01

    In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

  2. Isothermal absorption of soluble gases by atmospheric nanoaerosols

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Fominykh, A.; Krasovitov, B.; Lushnikov, A.

    2013-01-01

    We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3), and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.

  3. Isothermal absorption of soluble gases by atmospheric nanoaerosols.

    PubMed

    Elperin, T; Fominykh, A; Krasovitov, B; Lushnikov, A

    2013-01-01

    We investigate mass transfer during the isothermal absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first-order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO(2)), dinitrogen trioxide (N(2)O(3)), and chlorine (Cl(2)) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols, the kinetic effects play a significant role, and neglecting kinetic effects leads to a significant overestimation of the soluble gas flux into a droplet during the entire period of gas absorption.

  4. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    PubMed Central

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument. PMID:26593699

  5. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    NASA Astrophysics Data System (ADS)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  6. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester.

    PubMed

    Tang, K P M; Chau, K H; Kan, C W; Fan, J T

    2015-11-23

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  7. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Role of Trait and State Absorption in the Enjoyment of Music

    PubMed Central

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener’s music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content. PMID:27828970

  9. The Role of Trait and State Absorption in the Enjoyment of Music.

    PubMed

    Hall, Sarah E; Schubert, Emery; Wilson, Sarah J

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener's music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content.

  10. NO plume mapping by laser-radar techniques.

    PubMed

    Edner, H; Sunesson, A; Svanberg, S

    1988-09-01

    Mapping of NO plumes by using laser-radar techniques has been demonstrated with a mobile differential absorption lidar system. The system was equipped with a narrow-linewidth Nd:YAG-pumped dye laser that, with doubling and mixing, generated pulse energies of 3-5 mJ at 226 nm, with a linewidth of 1pm. This permitted range-resolved measurements of NO, with a range of about 500 m. The detection limit was estimated to 3 microg/m(3), with an integration interval of 350 m. Spectroscopic studies on the gamma(0, 0) bandhead near 226.8 nm were performed with 1-pm resolution, and the differential absorption cross section was determined to be (6.6 +/- 0.6) x 10(-22) m(2), with a wavelength difference of 12 pm.

  11. Lecithin inhibits fatty acid and bile salt absorption from rat small intestine in vivo.

    PubMed

    Saunders, D R; Sillery, J

    1976-12-01

    During digestion of a fatty meal, long chain free fatty acids (FFA) and lecithin are among the lipids solubilized in intestinal contents as mixed micelles with bile salts. We hypothesized that if lecithin were not hydrolyzed, the mixed micelles would be abnormal, and absorption of FFA and bile salts would be depressed. To test this hypothesis, isolated segments of rat small intestine were infused in vivo with micellar solutions of 2 mMolar linoleic acid and 10 mMolar taurocholate to which was added 3 mMolar 1-palmitoyl, 2-oleoyl lecithin (a common lecithin in bile and food), or 1-palmitoyl lysolecithin (the hydrolytic product of lecithin). Absorption of FFA and bile salt was measured under steady state conditions using a single-pass technique. Lecithin depressed the rate of FFA absorption by 40% (p less than 0.025) in jejunal and ileal segments whereas lysolecithin was associated with normal rates of FFA absorption. Lecithin also reduced taurocholate absorption from the ileum by 30% (p less than 0.05). These data support the idea that lecithin may depress FFA and bile salt absorption from the small intestine in pancreatic insufficiency.

  12. Control of pulmonary absorption of water-soluble compounds by various viscous vehicles.

    PubMed

    Yamamoto, Akira; Yamada, Keigo; Muramatsu, Hideaki; Nishinaka, Asako; Okumura, Shigeki; Okada, Naoki; Fujita, Takuya; Muranishi, Shozo

    2004-09-10

    Effects of various viscous vehicles on the pulmonary absorption of water-soluble drugs were examined by an in situ pulmonary absorption experiment. Gelatin, polyvinylacohol (PVA), hydroxypropylcellose (HPC), chondroitin sulfate A sodium salt (CS), polyacrylic acid (PAA), methylcellulose #400 (MC400) and hyaluronic acid sodium salt (HA) were used as models of viscous vehicles. 5(6)-Carboxyfluorescein (CF) and fluorescein isothiocayanate-labeled dextran with an average molecular weight of 4000 (FD4) were used as water-soluble drugs. The plasma concentration of CF was controlled and regulated in the presence of these viscous vehicles, especially gelatin (1-5%) and polyvinyl alcohol (PVA) 1%. In the pharmacokinetic analysis, the Cmax values of CF significantly decreased, and its Tmax values increased in the presence of these viscous vehicles compared with the control. The MRT and MAT values of CF with these vehicles were significantly higher than those without these vehicles. Therefore, these findings indicated that the viscous vehicles were effective to regulate the absorption rate of CF. On the other hand, the pulmonary absorption of FD4 was not so much affected even in the presence of gelatin and PVA, although PVA slightly decreased MRT value, and significantly decreased Tmax value. Furthermore, we examined the release rate of CF from the cellulose tube containing various concentrations of gelatin. The release rate of CF from the cellulose tube with gelatin was inversely related to the viscosity of gelatin. In addition, the release rate of CF was inversely related to DeltaMAT (DeltaMAT = MATgel(MAT with gelatin)-MATsol(MAT without gelatin)) in the presence of varying concentrations of gelatin. These findings indicated that these viscous vehicles were effective to control the pulmonary absorption of CF, a water-soluble drug with low molecular weight and they might be useful to increase the local concentration of drugs in the lung.

  13. Intestinal absorption of 5 chromium compounds in young black ducks (Anas rubripes)

    USGS Publications Warehouse

    Eastin, W.C.; Haseltine, S.D.; Murray, H.C.

    1980-01-01

    An in vivo intestinal perfusion technique was used to measure the absorption rates of five Cr compounds in black ducks. Cr was absorbed from saline solutions of KCr(SO4 )2 and CrO3 at a rate about 1.5 to 2.0 times greater than from solutions of Cr, Cr(NO3 )3, and Cr(C5H7O2)3. These results suggest the ionic form of Cr in solution may be an important factor in determining absorption of Cr compounds from the small intestine.

  14. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings

    PubMed Central

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-01-01

    Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026

  15. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings.

    PubMed

    Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-04-01

    Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.

  16. Effect of Map-vaccination in ewes on body condition score, weight and Map-shedding.

    PubMed

    Hüttner, Klim; Krämer, Ulla; Kleist, Petra

    2012-01-01

    Vaccination against Mycobacterium avium subspecies paratuberculosis (Map) in sheep receives growing attention worldwide, particularly in countries with national Map control strategies. A field study was conducted, investigating the effect of GUDAIR on body condition, weight and Map-shedding in a professionally managed but largely Map-affected suffolk flock prior and after vaccination. For this, 80 ewes out of 1000 animals were randomly sampled. In the univariate analysis body condition scores of ewes twelve months after vaccination improved significantly compared to those sampled prior to vaccination. At the same time the rate of ewes shedding Map was reduced by 37%.

  17. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  18. Mapping Skills and Activities with Children's Literature

    ERIC Educational Resources Information Center

    Gandy, S. Kay

    2006-01-01

    In the primary grades, maps are useful tools to help the young reader put stories into perspective. This article presents 18 quality children's books that contain maps or lessons about maps, as well as activities to use in the classroom to teach map skills. A table is included with ratings of the usability of the maps.

  19. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  20. Moisture absorption and bakeout characteristics of rigid-flexible multilayer printed wiring boards

    NASA Astrophysics Data System (ADS)

    Lula, J. W.

    1991-01-01

    Moisture absorption and bakeout characteristics of rigid flexible printed wiring boards were determined. It was found that test specimens had absorbed 0.95 weight percent moisture when equilibrated to a 50 percent RH, 25 C environment. Heating those equilibrated specimens in a 120 C static air oven removed 92 percent of this absorbed moisture in 24 h. Heating the samples in a 80 C static air oven removed only 64 percent of the absorbed moisture at the end of 24 h. A 120 C vacuum bake removed moisture at essentially the same rate with parylene slowed the absorption rate by approximately 50 percent but did not appreciably affect the equilibrium moisture content or the drying rate.

  1. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    PubMed

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration. © 2014 S. Karger AG, Basel.

  2. Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps

    USGS Publications Warehouse

    Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.

    2001-01-01

    The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude

  3. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    PubMed

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this

  4. Absorption of nutrients is only slightly reduced by supplementing enteral formulas with viscous fiber in miniature pigs.

    PubMed

    Ehrlein, H; Stockmann, A

    1998-12-01

    Viscous polysaccharides reduce intestinal absorption of glucose and diminish postprandial hyperglycemia. However, it is unknown whether viscous fiber also inhibits absorption of nutrients under conditions of enteric feeding. Therefore, we measured the absorption rates of nutrients in miniature pigs by perfusing a 150-cm length of jejunum with 8.37 kJ/min of the three following enteral diets: an isoosmotic oligomeric diet (1670 kJ/L), a hyperosmotic oligomeric diet and an isoosmotic polymeric diet (both 3350 kJ/L). The diets were supplemented with guar gum from 0 to 4.4 g/L. With the three guar-free diets, the mean absorption rate of energy was 5.2 +/- 0.32 kJ/min, corresponding to 62% of the energy infused. Absorption rates of carbohydrate, protein, fat and energy linearly declined as concentrations of guar or the logarithm of chyme viscosity increased. Due to modulations in viscosity, the inhibitory effects of guar were significantly different among the three diets. With the isoosmotic and hyperosmotic oligomeric and the polymeric diets, the addition of 1 g guar/L diminished the absorption of energy by 9.7, 6. 6 and 3.7%, respectively. The strong inhibitory effect on nutrient absorption with the isoosmotic oligomeric diet was caused by an increase in chyme viscosity due to water absorption. With the hyperosmotic oligomeric and the polymeric diets, the chyme viscosity and thus inhibitory effects on absorption were diminished by water secretion and the concomitant infusion of pancreatic enzymes. Results indicate that the addition of small amounts of guar gum to enteral diets of high energy density exerts only small effects on absorption of nutrients.

  5. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    NASA Astrophysics Data System (ADS)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  6. Water absorption characteristics and structural properties of rice for sake brewing.

    PubMed

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  7. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  8. Correlation between high-resolution remote-sensing imagery and detailed field mapping in Cordilleran Miogeocline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, S.C.; Taranik, J.V.

    1986-05-01

    Selected areas were mapped at a scale of 1:6000 in the southern hot Creek Range (south-central Nevada), which is underlain by Paleozoic autochthonous limestone, shale, and sandstone, Paleozoic allochthonous chert and siltstone, and Tertiary rhyolitic to dactitic ash flow tuff. The mapping was compared with computer-processed Airborne Imaging Spectrometer (AIS) data and Landsat Thematic Mapper (TM) imagery. The AIS imagery of the Hot Creek Range was acquired in 1984 by a NASA C-130 aircraft; it has a spatial resolution of 12 m, and swath width of 380 m. The sensor was developed by the Jet Propulsion Laboratory and is themore » first in a series of NASA imaging spectrometers. The AIS collects 128 spectral bands, having a bandwidth of approximately 9 nm, in the short-wave infrared between 1.2 and 2.4 ..mu..m. This part of the spectrum contains important narrow spectral absorption features for the carbonate ion, hydroxyl ion, and water of hydration. Using computer-processed AIS imagery, therefore, the authors can separate calcite from dolomite, and kaolinite from illite and montmorillonite as well as differentiate geologic units containing these minerals. On the AIS imagery, the Upper Mississippian Tripon Pass Limestone shows a distinctive calcite absorption feature at 2.34 ..mu..m; this feature is not as pronounced in Cambrian and Ordovician limestones. The dolomitized Nevada Formation exhibits the dolomite absorption feature at 2.32 ..mu..m. Clay mineral absorption features near 2.2 ..mu..m can be distinguished in altered volcanics. Mineralogic identification was confirmed with field and laboratory spectroradiometer measurements, thin-section examination, and x-ray analysis. AIS results and field mapping were also compared to computer-processed Landsat TM imagery, the highest spectral and spatial resolution worldwide data set currently available.« less

  9. Absorption and emission properties of photonic crystals and metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lili

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  10. Absorption of current use pesticides by snapping turtle (Chelydra serpentina) eggs in treated soil.

    PubMed

    Solla, Shane Raymond de; Martin, Pamela Anne

    2011-10-01

    Reptiles often breed within agricultural and urban environments that receive frequent pesticide use. Consequently, their eggs and thus developing embryos may be exposed to pesticides. Our objectives were to determine (i) if turtle eggs are capable of absorbing pesticides from treated soil, and (ii) if pesticide absorption rates can be predicted by their chemical and physical properties. Snapping turtle (Chelydra serpentina) eggs were incubated in soil that was treated with 10 pesticides (atrazine, simazine, metolachlor, azinphos-methyl, dimethoate, chlorpyrifos, carbaryl, endosulfan (I and II), captan, and chlorothalonil). There were two treatments, consisting of pesticides applied at application rate equivalents of 1.92 or 19.2 kg a.i/ha. Eggs were removed after one and eight days of exposure and analyzed for pesticides using gas chromatography coupled with a mass selective detector (GC-MSD) or high performance liquid chromatography (HPLC). Absorption of pesticides in eggs from soil increased with both magnitude and duration of exposure. Of the 10 pesticides, atrazine and metolachlor generally had the greatest absorption, while azinphos-methyl had the lowest. Chlorothalonil was below detection limits at both exposure rates. Our preliminary model suggests that pesticides having the highest absorption into eggs tended to have both low sorption to organic carbon or lipids, and high water solubility. For pesticides with high water solubility, high vapor pressure may also increase absorption. As our model is preliminary, confirmatory studies are needed to elucidate pesticide absorption in turtle eggs and the potential risk they may pose to embryonic development. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  11. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  12. Spectral Absorption Properties of Aerosol Particles from 350-2500nm

    NASA Technical Reports Server (NTRS)

    Martins, J. Vanderlei; Artaxo, Paulo; Kaufman, Yoram J.; Castanho, Andrea D.; Remer, Lorraine A.

    2009-01-01

    The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.

  13. Molecular hydrogen absorption systems in Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Klimenko, V. V.; Ivanchik, A. V.; Varshalovich, D. A.; Petitjean, P.; Noterdaeme, P.

    2014-05-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS)-II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Lyα forest can effectively mimic H2 absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H2 absorption systems can be confidently identified. We find that H2 absorption systems with column densities log NH2 > 19 can be detected in only less than 3 per cent of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H2 absorption systems (NH2 > 19) in damped Lyα (DLA) systems to be about 7 per cent. We provide a sample of 23 confident H2 absorption system candidates that would be interesting to follow up with high-resolution spectrographs. There is a 1σ r - i colour excess and non-significant AV extinction excess in quasar spectra with an H2 candidate compared to standard DLA-bearing quasar spectra. The equivalent widths of C II, Si II and Al III (but not Fe II) absorptions associated with H2 candidate DLAs are larger compared to standard DLAs. This is probably related to a larger spread in velocity of the absorption lines in the H2-bearing sample.

  14. Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery

    NASA Technical Reports Server (NTRS)

    Kiefer, Dale A.; Stramski, Dariusz

    1997-01-01

    Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.

  15. Fundamental understanding of drug absorption from a parenteral oil depot.

    PubMed

    Kalicharan, Raween W; Schot, Peter; Vromans, Herman

    2016-02-15

    Oil depots are parenteral drug formulations meant for sustained release of lipophilic compounds. Until now, a comprehensive understanding of the mechanism of drug absorption from oil depots is lacking. The aim of this paper was to fill this gap. A clinical study with healthy volunteers was conducted. An oil depot with nandrolone decanoate and benzyl alcohol was subcutaneously administered in the upper arm of female volunteers. Pharmacokinetic profiles of both substances were related to each other and to literature data. Benzyl alcohol absorbs much more rapidly than nandrolone. In detail, it appears that benzyl alcohol enters the central compartment directly, while nandrolone decanoate is recovered in serum after a lag time. This lag time is also seen in literature data, although not reported explicitly. The absorption of nandrolone is enhanced by the presence of benzyl alcohol. This is most likely an effect of altered oil viscosity and partition coefficient between the oil and aqueous phase. The absorption rate constant of compounds is found to be related to the logP of the solubilized prodrug. The absorption rate is however not only determined by the physico-chemical properties of the formulation but also by the tissue properties. Here, it is argued that lymphatic flow must be considered as a relevant parameter. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. General comparison of ozone vertical profiles obtained by various techniques during the 1983 MAP/GLOBUS campaign

    NASA Technical Reports Server (NTRS)

    Matthews, W. A.; Aimedieu, P.; Megie, G.; Pelon, J.; Attmannspacher, W.; Komhyr, W.; Marche, P.; De La Noe, J.; Rigaud, P.; Robbins, D. E.

    1987-01-01

    As part of the 1983 MAP/GLOBUS campaign, atmospheric ozone profile measurements were made using a large variety of different techniques both from balloon platforms and the ground. It is shown that, for most techniques, the measured height distributions agree to within + or - 5 percent with the exception of the remote visible absorption method. This + or - 5 percent uncertainty is of the order of the individual intersystem accuracy. It is suggested that since the differences with the visible absorption method are in magnitude rather than in form, the absorption cross-section data could be the possible cause for the discrepancy.

  17. Jejunal and ileal absorption of oxprenolol in man: influence of nutrients and digestive secretions on jejunal absorption and systemic availability.

    PubMed Central

    Godbillon, J; Vidon, N; Palma, R; Pfeiffer, A; Franchisseur, C; Bovet, M; Gosset, G; Bernier, J J; Hirtz, J

    1987-01-01

    1 Study I evaluated the absorption of oxprenolol in the ileum, compared to jejunum, in healthy volunteers by an intestinal perfusion technique. Around 80 mg of drug were delivered as a saline solution directly in the small bowel. 2 Samples taken 30 cm distally to the site of perfusion showed that 63% of perfused oxprenolol was absorbed in the jejunum and 48% in the ileum; the differences were significant. 3 The plasma concentration-time profiles were similar for the two perfusions. The AUC and Cmax values of free and conjugated oxprenolol for the jejunal perfusion were significantly lower than those of ileum. They showed large but consistent intersubject variations in the two treatments. 4 Study II investigated, using the same technique, the influence of nutrients and digestive secretions on jejunal absorption and systemic availability of this drug. A saline (in treatments A and B) or a nutrient (in treatment C) solution containing oxprenolol was perfused into the jejunum below a balloon either inflated (A) or deflated (B and C). 5 The disappearance rate of oxprenolol from the jejunum was unaffected by endogenous secretions. The mean amount of drug absorbed along a 30-cm jejunal segment accounted for 52 (A) and 57% (B) of the total amount perfused. The intestinal absorption rate was markedly increased in the presence of nutrients (mean amount absorbed 96% for C). 6 The change in the rate of disappearance from the intestine had no effect on the systemic availability of oxprenolol (mean AUC values 8740, 8250 and 8020 nmol l-1 h for A, B and C, respectively) or its elimination from plasma.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3663450

  18. Optical mapping at increased illumination intensities

    NASA Astrophysics Data System (ADS)

    Kanaporis, Giedrius; Martišienė, Irma; Jurevičius, Jonas; Vosyliūtė, Rūta; Navalinskas, Antanas; Treinys, Rimantas; Matiukas, Arvydas; Pertsov, Arkady M.

    2012-09-01

    Voltage-sensitive fluorescent dyes have become a major tool in cardiac and neuro-electrophysiology. Achieving high signal-to-noise ratios requires increased illumination intensities, which may cause photobleaching and phototoxicity. The optimal range of illumination intensities varies for different dyes and must be evaluated individually. We evaluate two dyes: di-4-ANBDQBS (excitation 660 nm) and di-4-ANEPPS (excitation 532 nm) in the guinea pig heart. The light intensity varies from 0.1 to 5 mW/mm2, with the upper limit at 5 to 10 times above values reported in the literature. The duration of illumination was 60 s, which in guinea pigs corresponds to 300 beats at a normal heart rate. Within the identified duration and intensity range, neither dye shows significant photobleaching or detectable phototoxic effects. However, light absorption at higher intensities causes noticeable tissue heating, which affects the electrophysiological parameters. The most pronounced effect is a shortening of the action potential duration, which, in the case of 532-nm excitation, can reach ˜30%. At 660-nm excitation, the effect is ˜10%. These findings may have important implications for the design of optical mapping protocols in biomedical applications.

  19. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  20. Nitrogen dioxide absorption in aqueous sodium sulfite

    NASA Astrophysics Data System (ADS)

    Shen, Chen Hua

    The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect

  1. United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; ,

    2008-01-01

    The U.S. Geological Survey?s maps of earthquake shaking hazards provide information essential to creating and updating the seismic design provisions of building codes and insurance rates used in the United States. Periodic revisions of these maps incorporate the results of new research. Buildings, bridges, highways, and utilities built to meet modern seismic design provisions are better able to withstand earthquakes, not only saving lives but also enabling critical activities to continue with less disruption. These maps can also help people assess the hazard to their homes or places of work and can also inform insurance rates.

  2. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph;more » (iii) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.« less

  3. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    2017-09-01

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (I) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (II) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (III) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (IV) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (VI) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.

  4. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  5. Precise dielectric property measurements and E-field probe calibration for specific absorption rate measurements using a rectangular waveguide

    PubMed Central

    Hakim, B M; Beard, B B; Davis, C C

    2018-01-01

    Specific absorption rate (SAR) measurements require accurate calculations of the dielectric properties of tissue-equivalent liquids and associated calibration of E-field probes. We developed a precise tissue-equivalent dielectric measurement and E-field probe calibration system. The system consists of a rectangular waveguide, electric field probe, and data control and acquisition system. Dielectric properties are calculated using the field attenuation factor inside the tissue-equivalent liquid and power reflectance inside the waveguide at the air/dielectric-slab interface. Calibration factors were calculated using isotropicity measurements of the E-field probe. The frequencies used are 900 MHz and 1800 MHz. The uncertainties of the measured values are within ±3%, at the 95% confidence level. Using the same waveguide for dielectric measurements as well as calibrating E-field probes used in SAR assessments eliminates a source of uncertainty. Moreover, we clearly identified the system parameters that affect the overall uncertainty of the measurement system. PMID:29520129

  6. Model studies of laser absorption computed tomography for remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Wolfe, D. C., Jr.; Byer, R. L.

    1982-01-01

    Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.

  7. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  8. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  9. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOEpatents

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  10. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated. 2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974). 3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled. 4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion. 5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline. 6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l. 7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone. 8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration. PMID:4422318

  11. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity ofmore » an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.« less

  12. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  13. Promotive effects of resistant maltodextrin on apparent absorption of calcium, magnesium, iron and zinc in rats.

    PubMed

    Miyazato, Shoko; Nakagawa, Chie; Kishimoto, Yuka; Tagami, Hiroyuki; Hara, Hiroshi

    2010-04-01

    It has been reported that low-viscous and fermentable dietary fiber and nondigestible oligosaccharides enhance mineral absorption. Resistant maltodextrin, nonviscous, fermentable and soluble source of dietary fiber, has several physiological functions. However, influence of resistant maltodextrin on mineral absorption is unclear. We conducted balance studies in rats to investigate effects of resistant maltodextrin and hydrogenated resistant maltodextrin on apparent mineral absorption. In experiment 1 (Exp. 1), 40 rats were fed test diets based on AIN-93G with or without resistant maltodextrin or hydrogenated resistant maltodextrin for 2 weeks. In experiment 2 (Exp. 2), 32 rats were cecectomized (CX) or sham-operated (Sham) and fed diets with or without hydrogenated resistant maltodextrin for 1 week. In Exp. 1, ingestion of resistant maltodextrin and hydrogenated resistant maltodextrin dose-dependently enhanced apparent absorption rates of Ca, Mg, Fe and Zn, and increased cecal fermentation with cecal expansion. In Exp. 2, the absorption rates of Ca and Mg were significantly enhanced by ingestion of hydrogenated resistant maltodextrin in Sham group but not in CX group. The promotion of Fe and Zn absorption was not affected by cecectomy. Ingestion of resistant maltodextrin and hydrogenated resistant maltodextrin increased apparent Ca and Mg absorptions dependent on cecal fermentation, while other mechanisms may also be involved in promotion of apparent Fe and Zn absorption by resistant maltodextrin.

  14. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  15. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system

    NASA Astrophysics Data System (ADS)

    van der Meer, Freek; Kopačková, Veronika; Koucká, Lucie; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Bakker, Wim H.

    2018-02-01

    The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while hyperspectral data allow to quantify this. As input to most image classification or spectral processing approach, endmembers are required. An alternative approach to classification is to derive absorption feature characteristics such as the wavelength position of the deepest absorption, depth of the absorption and symmetry of the absorption feature from hyperspectral data. Two approaches are presented, tested and compared in this paper: the 'Wavelength Mapper' and the 'QuanTools'. Although these algorithms use a different mathematical solution to derive absorption feature wavelength and depth, and use different image post-processing, the results are consistent, comparable and reproducible. The wavelength images can be directly linked to mineral type and abundance, but more importantly also to mineral chemical composition and subtle changes thereof. This in turn allows to interpret hyperspectral data in terms of mineral chemistry changes which is a proxy to pressure-temperature of formation of minerals. We show the case of the Rodalquilar epithermal system of the southern Spanish Gabo de Gata volcanic area using HyMAP airborne hyperspectral images.

  16. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatialmore » resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.« less

  17. Engaging national organizations for knowledge translation: comparative case studies in knowledge value mapping.

    PubMed

    Lane, Joseph P; Rogers, Juan D

    2011-09-12

    Government sponsors of research and development, along with their funded investigators, are increasingly tasked with demonstrating evidence of knowledge use by nontraditional audiences. This requires efforts to translate their findings for effective communication. For technology-related knowledge, these audiences include clinicians, consumers, manufacturers, public policy agencies, and knowledge brokers. One potentially efficient approach is to communicate research findings through relevant national organizations. However, this requires an understanding of how such organizations view and treat research knowledge, which can be determined through knowledge-value mapping. Do knowledge values differ between national organizations representing different audiences? Can a deeper understanding of knowledge values help sponsors, investigators, and organizations better communicate research findings to stakeholders? A series of comparative case studies on knowledge-value mapping were derived through interviews with spokespersons for six national organizations. The semi-structured interviews followed a 10-item questionnaire to characterize different ways in which each organization engages with research-based knowledge. Each participating organization represents a particular stakeholder group, while all share a common interest in the research subject matter. Each national organization considers the value of the research knowledge in the context of their organization's mission and the interests of their members. All are interested in collaborating with researchers to share relevant findings, while they vary along the following dimensions of knowledge engagement: create, identify, translate, adapt, communicate, use, promote, absorptive capacity, and recommendations for facilitation. The principles of knowledge translation suggest that investigators can increase use by tailoring the format and context of their findings to the absorptive capacity of nonscholars. Greater absorption

  18. [Study on intestinal absorption of formononetin in Millettia nitita var. hirsutissima in rats].

    PubMed

    Liu, Ya-Li; Xiong, Xian-Bing; Su, Dan; Song, Yong-Gui; Zhang, Ling; Yang, Shi-Lin

    2013-10-01

    To use the single-pass intestine perfusion (SPIP) model and HPLC to determine the concentration of formononetin, the effect of quality concentrations of formononetin, different intestinal segments and P-glycoprotein inhibitor on intestinal absorption of formononetin, in order to observe the intestinal absorption mechanism of formononetin from Millettia nitita var. hirsutissima in rats. The experimental results showed that the qulaity concentration of formononetin in the perfusate had no significant effect on the absorption rate constant (K(a)) and the apparent absorption coefficient (P(app)); K(a) and P(app) of formononetin in duodenum, jejunum and ileum showed no significant difference. However, K(a) was significantly higher than that in colon (P < 0.05), with significant difference between that in intestinum tenue and colon. P-glycoprotein inhibitor verapamil showed significant difference in K(a) and P(app) in intestinal segments (P < 0.05). This indicated that the absorption mechanism of formononein in rat intestinal tracts passive diffusion, without any saturated absorption. Formononein is absorbed well in all intestines. Their absorption windows were mainly concentrated in the intestinum tenue, without specific absorption sites. Formononein may be the substrate of P-glycoprotein.

  19. Field demonstration of the combined effects of absorption and evapotranspiration on septic system drainfield capacity.

    PubMed

    Rainwater, Ken; Jackson, Andrew; Ingram, Wesley; Lee, Chang Yong; Thompson, David; Mollhagen, Tony; Ramsey, Heyward; Urban, Lloyd

    2005-01-01

    Drainfields for disposal of septic tank effluents are typically designed by considering the loss of water by either upward evapotranspiration into the atmosphere or lateral and downward absorption into the adjacent soil. While this approach is appropriate for evapotranspiration systems, absorption systems allow water loss by both mechanisms. It was proposed that, in areas where high evapotranspiration rates coincide with permeable soils, drainfield sizes could be substantially reduced by accounting for both mechanisms. A two-year field demonstration was conducted to determine appropriate design criteria for areas typical of the Texas High Plains. The study consisted of evaluating the long-term acceptance rates for three different drainfield configurations: evapotranspiration only, absorption only, and combined conditions. A second field demonstration repeated the experiments for additional observation of the combined evapotranspiration and absorption and achieved similar results as the first study. The field tests indicated that the current design loading criteria may be increased by at least a factor of two for the Texas High Plains region and other Texas areas with similar soil composition and evapotranspiration rates, while still retaining a factor of safety of two.

  20. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Shen, Bo; Keinath, Chris

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less

  1. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    PubMed

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki

    2015-06-01

    In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.

  3. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate.

    PubMed

    Süssmann, F; Zherebtsov, S; Plenge, J; Johnson, Nora G; Kübel, M; Sayler, A M; Mondes, V; Graf, C; Rühl, E; Paulus, G G; Schmischke, D; Swrschek, P; Kling, M F

    2011-09-01

    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres. © 2011 American Institute of Physics

  4. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.

    PubMed

    Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans

    2018-03-01

    Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    NASA Astrophysics Data System (ADS)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  6. Web access and dissemination of Andalusian coastal erosion rates: viewers and standard/filtered map services.

    NASA Astrophysics Data System (ADS)

    Álvarez Francoso, Jose; Prieto Campos, Antonio; Ojeda Zujar, Jose; Guisado-Pintado, Emilia; Pérez Alcántara, Juan Pedro

    2017-04-01

    The accessibility to environmental information via web viewers using map services (OGC or proprietary services) has become more frequent since newly information sources (ortophotos, LIDAR, GPS) are of great detailed and thus generate a great volume of data which barely can be disseminated using either analogue (paper maps) or digital (pdf) formats. Moreover, governments and public institutions are concerned about the need of facilitates provision to research results and improve communication about natural hazards to citizens and stakeholders. This information ultimately, if adequately disseminated, it's crucial in decision making processes, risk management approaches and could help to increase social awareness related to environmental issues (particularly climate change impacts). To overcome this issue, two strategies for wide dissemination and communication of the results achieved in the calculation of beach erosion for the 640 km length of the Andalusian coast (South Spain) using web viewer technology are presented. Each of them are oriented to different end users and thus based on different methodologies. Erosion rates has been calculated at 50m intervals for different periods (1956-1977-2001-2011) as part of a National Research Project based on the spasialisation and web-access of coastal vulnerability indicators for Andalusian region. The 1st proposal generates WMS services (following OGC standards) that are made available by Geoserver, using a geoviewer client developed through Leaflet. This viewer is designed to be used by the general public (citizens, politics, etc) by combining a set of tools that give access to related documents (pdfs), visualisation tools (panoramio pictures, geo-localisation with GPS) are which are displayed within an user-friendly interface. Further, the use of WMS services (implemented on Geoserver) provides a detailed semiology (arrows and proportional symbols, using alongshore coastaline buffers to represent data) which not only

  7. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  8. Preliminary analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mineralogic mapping at sites in Nevada and Colorado

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.

  9. Steroids alter ion transport and absorptive capacity in proximal and distal colon.

    PubMed

    Sellin, J H; DeSoignie, R C

    1985-07-01

    Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging

    PubMed Central

    Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas

    2014-01-01

    Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339

  11. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy

    PubMed Central

    2017-01-01

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933

  12. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy.

    PubMed

    Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther

    2017-09-20

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.

  13. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.

  14. A study on reducing the absorption of lidocaine from the airway in cats.

    PubMed

    Chen, Yunfeng; Zeng, Yiming; Zhang, Yin

    2017-08-01

    To determine if the combination of lidocaine with epinephrine or gamma globulin would decrease the rate or reduce the amount of local absorption of lidocaine through the airway. Twenty adult male cats were randomly and evenly distributed into four groups: 1) Group LG: lidocaine administered with gamma globulin; 2) Group LS: lidocaine administered with physiological saline); 3) Group LE: lidocaine administered with epinephrine; 4) Group C: control group. Invasive blood pressure, heart rate, and concentration of lidocaine were recorded before and after administration. The peak of plasma concentrations appeared difference (Group LG: 1.39 ± 0.23 mg/L; Group LS: 1.47 ± 0.29 mg/L and Group LE: 0.99 ± 0.08 mg/L). Compared to Group C, there were significant differences in the average heart rate of Groups LG, LS, and LE (P < 0.05). The average systolic blood pressures were significantly different when each group was compared to Group C (P < 0.05). The biological half-life, AUC0-120, peak time, and half-life of absorption among the three groups have not presented statistically significant differences (P > 0.05). Administering lidocaine in combination with gamma globulin through airway causes significant decrease the rate and reduce the amount of local absorption of lidocaine in cats.

  15. Drug gastrointestinal absorption in rat: Strain and gender differences.

    PubMed

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sulphate absorption across biological membranes.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2016-01-01

    1. Sulphonation is unusual amongst the common Phase II (condensation; synthetic) reactions experienced by xenobiotics, in that the availability of the conjugating agent, sulphate, may become a rate-limiting factor. This sulphate is derived within the body via the oxygenation of sulphur moieties liberated from numerous ingested compounds including the sulphur-containing amino acids. Preformed inorganic sulphate also makes a considerable contribution to this pool. 2. There has been a divergence of opinion as to whether or not inorganic sulphate may be readily absorbed from the gastrointestinal tract and this controversy still continues in some quarters. Even more so, is the vexing question of potential absorption of inorganic sulphate via the lungs and through the skin. 3. This review examines the relevant diverse literature and concludes that sulphate ions may move across biological membranes by means of specific transporters and, although the gastrointestinal tract is by far the major portal of entry, some absorption across the lungs and the skin may take place under appropriate circumstances.

  17. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE PAGES

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    2017-10-16

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  18. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  19. Lod scores for gene mapping in the presence of marker map uncertainty.

    PubMed

    Stringham, H M; Boehnke, M

    2001-07-01

    Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.

  20. SLAMM: Visual monocular SLAM with continuous mapping using multiple maps

    PubMed Central

    Md. Sabri, Aznul Qalid; Loo, Chu Kiong; Mansoor, Ali Mohammed

    2018-01-01

    This paper presents the concept of Simultaneous Localization and Multi-Mapping (SLAMM). It is a system that ensures continuous mapping and information preservation despite failures in tracking due to corrupted frames or sensor’s malfunction; making it suitable for real-world applications. It works with single or multiple robots. In a single robot scenario the algorithm generates a new map at the time of tracking failure, and later it merges maps at the event of loop closure. Similarly, maps generated from multiple robots are merged without prior knowledge of their relative poses; which makes this algorithm flexible. The system works in real time at frame-rate speed. The proposed approach was tested on the KITTI and TUM RGB-D public datasets and it showed superior results compared to the state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and the retrieved map can reach up to 90 percent more in terms of information preservation depending on tracking loss and loop closure events. For the benefit of the community, the source code along with a framework to be run with Bebop drone are made available at https://github.com/hdaoud/ORBSLAMM. PMID:29702697

  1. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.

    PubMed

    Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer

    2013-07-16

    Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC

  2. Comparison of cryoablation with 3D mapping versus conventional mapping for the treatment of atrioventricular re-entrant tachycardia and right-sided paraseptal accessory pathways.

    PubMed

    Russo, Mario S; Drago, Fabrizio; Silvetti, Massimo S; Righi, Daniela; Di Mambro, Corrado; Placidi, Silvia; Prosperi, Monica; Ciani, Michele; Naso Onofrio, Maria T; Cannatà, Vittorio

    2016-06-01

    Aim Transcatheter cryoablation is a well-established technique for the treatment of atrioventricular nodal re-entry tachycardia and atrioventricular re-entry tachycardia in children. Fluoroscopy or three-dimensional mapping systems can be used to perform the ablation procedure. The aim of this study was to compare the success rate of cryoablation procedures for the treatment of right septal accessory pathways and atrioventricular nodal re-entry circuits in children using conventional or three-dimensional mapping and to evaluate whether three-dimensional mapping was associated with reduced patient radiation dose compared with traditional mapping. In 2013, 81 children underwent transcatheter cryoablation at our institution, using conventional mapping in 41 children - 32 atrioventricular nodal re-entry tachycardia and nine atrioventricular re-entry tachycardia - and three-dimensional mapping in 40 children - 24 atrioventricular nodal re-entry tachycardia and 16 atrioventricular re-entry tachycardia. Using conventional mapping, the overall success rate was 78.1 and 66.7% in patients with atrioventricular nodal re-entry tachycardia or atrioventricular re-entry tachycardia, respectively. Using three-dimensional mapping, the overall success rate was 91.6 and 75%, respectively (p=ns). The use of three-dimensional mapping was associated with a reduction in cumulative air kerma and cumulative air kerma-area product of 76.4 and 67.3%, respectively (p<0.05). The use of three-dimensional mapping compared with the conventional fluoroscopy-guided method for cryoablation of right septal accessory pathways and atrioventricular nodal re-entry circuits in children was associated with a significant reduction in patient radiation dose without an increase in success rate.

  3. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    NASA Astrophysics Data System (ADS)

    Liu, Jonathan T. C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-11-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34 1.47 μm spectral region (2v1 and v1+v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

  4. Imaging of diffuse H I absorption structure in the SSA22 protocluster region at z = 3.1

    NASA Astrophysics Data System (ADS)

    Mawatari, Ken; Inoue, Akio K.; Yamada, Toru; Hayashino, Tomoki; Otsuka, Takuya; Matsuda, Yuichi; Umehata, Hideki; Ouchi, Masami; Mukae, Shiro

    2017-06-01

    Using galaxies as background light sources to map intervening Ly α absorption is a novel approach to study the interplay among galaxies, the circumgalactic medium (CGM) and the intergalactic medium. Introducing a new measure of z = 3.1 H I Ly α absorption relative to the cosmic mean, ΔNB497, estimated from photometric data of star-forming galaxies at 3.3 ≲ z ≲ 3.5, we have made two-dimensional ΔNB497 maps in the z = 3.1 SSA22 protocluster region and two control fields (Subaru/XMM-Newton Deep Survey; Great Observatory Optical Deep Survey North) with a spatial resolution of ˜5 comoving Mpc. The ΔNB497 measurements in the SSA22 field are systematically larger than those in the control fields, and this H I absorption enhancement extends more than 50 comoving Mpc. The field-averaged (I.e. ˜50 comoving Mpc scale) ΔNB497 and the overdensity of Ly α emitters (LAEs) seem to be correlated, while there is no clear dependency of the ΔNB497 on the local LAE overdensity in a few comoving Mpc scale. These results suggest that diffuse H I gas spreads out in/around the SSA22 protocluster. We have also found an enhancement of ΔNB497 at a projected distance <100 physical kpc from the nearest z = 3.1 galaxies at least in the SSA22 field, which is probably due to H I gas associated with the CGM of individual galaxies. The H I absorption enhancement in the CGM-scale tends to be weaker around galaxies with stronger Ly α emission, which suggests that the Ly α escape fraction from galaxies depends on hydrogen neutrality in the CGM.

  5. Absence of food effect on the extent of alprazolam absorption from an orally disintegrating tablet.

    PubMed

    Erdman, Keith; Stypinski, Daria; Combs, Michelle; Witt, Patricia; Stiles, Mark; Pollock, Steve

    2007-08-01

    To evaluate the effect of a standardized meal on the bioavailability of alprazolam formulated as an immediate-release orally disintegrating tablet (ODT) in healthy volunteers. Single-dose, randomized, open-label, two-period crossover study. Contract research organization clinic. Sixteen healthy volunteers (seven men, nine women), aged 20-50 years. Intervention. Subjects were administered a single dose of alprazolam ODT 1.0 mg during two treatment periods-under fasting conditions and after a standard high-fat breakfast-separated by a 7-day washout period, Blood samples for determination of alprazolam pharmacokinetics were collected by venipuncture up to 72 hours after dosing. A validated liquid chromatography with tandem mass spectrometry detection method was used to quantify the alprazolam plasma concentration. The overall extent of alprazolam absorption from the ODT formulation, as measured by area under the concentration-time curve, was unaffected during fed conditions. However, the rate of alprazolam absorption was slower after administration during fed relative to fasted conditions. The mean maximum observed plasma concentration (Cmax) decreased approximately 25%, and time to Cmax (Tmax) was delayed approximately 1.5 hours when food was administered before dosing. Coadministration of food was shown to have no effect on extent of absorption of immediate-release alprazolam ODT 1.0 mg when compared with drug administration in the fasted condition; however, the rate of drug absorption was decreased. The clinical significance of the difference in rate of alprazolam absorption is unknown but thought to be minimal.

  6. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  7. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  8. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2009-03-01

    We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.

  9. Absorption spectrum and absorption cross sections of the 2ν1 band of HO2 between 20 and 760 Torr air in the range 6636 and 6639 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Emmanuel; Liu, Lu; Schoemaecker, Coralie; Fittschen, Christa

    2018-05-01

    The absorption spectrum of HO2 radicals has been measured in the range 6636-6639 cm-1 at several pressures between 20 and 760 Torr of air. Absolute absorption cross sections of the strongest line at around 6638.2 cm-1 have been determined from kinetic measurements, taking advantage of the well known rate constant of the self-reaction. Peak absorption cross sections of 22.6, 19.5, 14.4, 7.88, 5.12 and 3.23 × 10-20 cm2 were obtained at 20, 50, 100, 200, 400 and 760 Torr, respectively. By fitting these data, an empirical expression has been obtained for the absorption cross section of HO2 in the range 20-760 Torr air: σ6638.2cm-1 = 1.18 × 10-20 + (2.64 × 10-19 × (1-exp (-63.1/p (Torr))) cm2.

  10. Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine.

    PubMed

    Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S

    2006-10-01

    Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).

  11. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Time dependence of absorption voltages (V(sub abs)) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on V(sub abs)), cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on V(sub abs)), are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks.

  12. Diffusive transport in the presence of stochastically gated absorption

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Karamched, Bhargav R.; Lawley, Sean D.; Levien, Ethan

    2017-08-01

    We analyze a population of Brownian particles moving in a spatially uniform environment with stochastically gated absorption. The state of the environment at time t is represented by a discrete stochastic variable k (t )∈{0 ,1 } such that the rate of absorption is γ [1 -k (t )] , with γ a positive constant. The variable k (t ) evolves according to a two-state Markov chain. We focus on how stochastic gating affects the attenuation of particle absorption with distance from a localized source in a one-dimensional domain. In the static case (no gating), the steady-state attenuation is given by an exponential with length constant √{D /γ }, where D is the diffusivity. We show that gating leads to slower, nonexponential attenuation. We also explore statistical correlations between particles due to the fact that they all diffuse in the same switching environment. Such correlations can be determined in terms of moments of the solution to a corresponding stochastic Fokker-Planck equation.

  13. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  14. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new technique has been developed for making serial measurements of water and solute absorption from the lumen of isolated small intestine. 2. The isolated intestine is perfused in a single pass with a segmented flow of slugs of liquid separated by bubbles of oxygen-carbon dioxide mixture. Simultaneous collections are made of effluent from the lumen and of the fluid which is transported across the mucosa. This latter fluid appears to be a fair sample of the tissue fluid. 3. Conditions in the lumen can be changed within less than 5 min. The effects of two or more treatments applied to the same segment of intestine can be determined and the time course of a change in luminal conditions. 4. The rate of appearance of solutes on the serosal side depends on the rate of water absorption, and changes exponentially towards a steady state. The rate constant is a function of tissue fluid volume. 5. In the steady state the concentration of glucose in the tissue fluid is 71 mM when the luminal concentration is 28 mM, and is 45 mM when the luminal concentration is 8·3 mM. 6. For solutes such as glucose for which reflux from tissue fluid to lumen is small relative to flux from lumen to tissue fluid, the time of attainment of a steady state in secretion is usually 50-60 min. 7. For solutes such as sodium for which the reflux is relatively high, the steady state may be reached in 15-20 min. 8. The Km for glucose absorption (14-19 mM) is much lower than is found with unsegmented flow perfusion. 9. These findings emphasize problems in interpreting results from other types of intestinal preparation. 10. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium concentration is reduced abruptly. In contrast the rate of glucose absorption falls suddenly when the luminal glucose concentration is reduced abruptly. This suggests that glucose absorption is not directly dependent on luminal sodium ions. ImagesPlate 1 PMID:4422346

  15. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  16. Kinetics of the Absorption of CO{sub 2} in Aqueous Solutions of N-Methyldiethanolamine plus Triethylene Tetramine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amann, J.M.G.; Bouallou, C.

    2009-04-15

    This work focuses on the development of a new solvent for CO{sub 2} capture. This new solvent is an aqueous solution with a blend of N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA), an amine with four amino groups. CO{sub 2} absorption was investigated between 298 and 333 K using a Lewis cell with a constant interfacial area. Several concentrations of MDEA (17.5 and 40 wt %) and TETA (3 and 6 wt %) were assessed. The influence of the CO{sub 2} partial pressure on the absorption rate was pointed out. The addition of small amount of TETA leads to a highmore » increase in the CO{sub 2} absorption rates. A numerical model based on the film theory was used to determine the rate coefficients between CO{sub 2} and TETA for the different solvents. The physicochemical parameters have a huge influence on the determination of the rate coefficients.« less

  17. Influence of synchrotron self-absorption on 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Gu, Jun-Hua; Wang, Jingying; Xu, Haiguang

    2012-08-01

    The presence of spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources could break down the spectral smoothness feature. This leads to the premise that the bright radio foreground can be successfully removed in 21-cm experiments that search for the epoch of reionization (EoR). We present a quantitative estimate of the effect of the spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources on the measurement of the angular power spectrum of the low-frequency sky. We incorporate a phenomenological model, which is characterized by the fraction (f) of radio sources with turnover frequencies in the range of 100-1000 MHz and by a broken power law for the spectral transition around the turnover frequencies νm, into simulated radio sources over a small sky area of 10° × 10°. We compare statistically the changes in their residual maps with and without the inclusion of the synchrotron self-absorption of extragalactic radio sources after the bright sources of S150 MHz ≥100 mJy are excised. Furthermore, the best-fitting polynomials in the frequency domain on each pixel are subtracted. It has been shown that the effect of synchrotron self-absorption on the detection of the EoR depends sensitively on the spectral profiles of the radio sources around the turnover frequencies νm. A hard transition model, described by the broken power law with the turnover of spectral index at νm, would leave pronounced imprints on the residual background and would therefore cause serious confusion with the cosmic EoR signal. However, the spectral signatures on the angular power spectrum of the extragalactic foreground, generated by a soft transition model in which the rising and falling power laws of the spectral distribution around νm are connected through a smooth transition spanning ≥200 MHz in a characteristic width, can be fitted and consequently subtracted by the use of polynomials to an acceptable

  18. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  19. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  20. Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome.

    PubMed

    Schucht, Philippe; Seidel, Kathleen; Beck, Jürgen; Murek, Michael; Jilch, Astrid; Wiest, Roland; Fung, Christian; Raabe, Andreas

    2014-12-01

    Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for

  1. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  2. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    PubMed

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  3. Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI

    PubMed Central

    Zhang, Xiaotong; Zhu, Shanan; He, Bin

    2010-01-01

    The electric properties (EPs) of biological tissue, i.e., the electric conductivity and permittivity, can provide important information in the diagnosis of various diseases. The EPs also play an important role in specific absorption rate (SAR) calculation, a major concern in high-field Magnetic Resonance Imaging (MRI), as well as in non-medical areas such as wireless-telecommunications. The high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on the EPs of biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we propose a dual-excitation algorithm, which uses two sets of measured B1 data to noninvasively reconstruct the electric properties of biological tissues. The Finite Element Method (FEM) was utilized in three-dimensional (3D) modeling and B1 field calculation. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3D head model within a transverse electromagnetic (TEM) coil and a birdcage (BC) coil. Using a TEM coil, when noise free, the reconstructed EP distribution of tissues in the brain has relative errors of 12% ∼ 28% and correlated coefficients of greater than 0.91. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results suggest that good reconstruction of electric properties from B1 mapping can be achieved. PMID:20129847

  4. Absorption of thiamine and nicotinic acid in the rat intestine during fasting and immobilization stress

    NASA Technical Reports Server (NTRS)

    Kirilyuk, O. G.; Khmelevskiy, Y. V.

    1980-01-01

    By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.

  5. High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui

    2017-05-01

    This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.

  6. Avian species differences in the intestinal absorption of xenobiotics (PCB, dieldrin, Hg2+)

    USGS Publications Warehouse

    Serafin, J.A.

    1984-01-01

    1. Intestinal absorption of a polychlorinated biphenyl, dieldrin, and mercury (from HgCl2) was measured in adult Northern bobwhites, Eastern screech owls, American kestrels, black-crowned night-herons and mallards in vivo by an in situ luminal perfusion technique.2. Bobwhites, screech owls and kestrels absorbed much more of each xenobiotic than black-crowned night-herons and mallards.3. Mallards absorbed less dieldrin and mercury than black-crowned night-herons.4. Mercury absorption by kestrels was more than twice that in screech owls and eight times that observed in mallards.5. Pronounced differences in xenobiotic absorption rates between bobwhites, screech owls and kestrels on the one hand, and black-crowned night-herons and mallards on the other, raise the possibility that absorptive ability may be associated with the phylogenetic classification of birds.

  7. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission: Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1984-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  8. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission - Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1985-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  9. Estimation of Rainfall Rates from Passive Microwave Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Sharma, Awdhesh Kumar

    Rainfall rates have been estimated using the passive microwave and visible/infrared remote sensing techniques. Data of September 14, 1978 from the Scanning Multichannel Microwave Radiometer (SMMR) on board SEA SAT-A and the Visible and Infrared Spin Scan Radiometer (VISSR) on board GOES-W (Geostationary Operational Environmental Satellite - West) was obtained and analyzed for rainfall rate retrieval. Microwave brightness temperatures (MBT) are simulated, using the microwave radiative transfer model (MRTM) and atmospheric scattering models. These MBT were computed as a function of rates of rainfall from precipitating clouds which are in a combined phase of ice and water. Microwave extinction due to ice and liquid water are calculated using Mie-theory and Gamma drop size distributions. Microwave absorption due to oxygen and water vapor are based on the schemes given by Rosenkranz, and Barret and Chung. The scattering phase matrix involved in the MRTM is found using Eddington's two stream approximation. The surface effects due to winds and foam are included through the ocean surface emissivity model. Rainfall rates are then inverted from MBT using the optimization technique "Leaps and Bounds" and multiple linear regression leading to a relationship between the rainfall rates and MBT. This relationship has been used to infer the oceanic rainfall rates from SMMR data. The VISSR data has been inverted for the rainfall rates using Griffith's scheme. This scheme provides an independent means of estimating rainfall rates for cross checking SMMR estimates. The inferred rainfall rates from both techniques have been plotted on a world map for comparison. A reasonably good correlation has been obtained between the two estimates.

  10. Mapping radon-prone areas using γ-radiation dose rate and geological information.

    PubMed

    García-Talavera, M; García-Pérez, A; Rey, C; Ramos, L

    2013-09-01

    Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions.

  11. HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging.

    PubMed

    Bergsträsser, Sergej; Fanourakis, Dimitrios; Schmittgen, Simone; Cendrero-Mateo, Maria Pilar; Jansen, Marcus; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Combined assessment of leaf reflectance and transmittance is currently limited to spot (point) measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging (HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf. We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with the FluoWat device. The working principle of the HyperART system relies on the upward redirection of transmitted and reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of Cercospora leaf spot disease and determination of chlorophyll content. The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal dynamics of various plant

  12. Mapping UV properties throughout the Cosmic Horseshoe: lessons from VLT-MUSE

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Auger, Matt; Pettini, Max; Stark, Daniel P.; Belokurov, V.; Carniani, Stefano

    2018-05-01

    We present the first spatially resolved rest-frame ultraviolet (UV) study of the gravitationally lensed galaxy, the `Cosmic Horseshoe' (J1148+1930) at z = 2.38. Our gravitational lens model shows that the system is made up of four star-forming regions, each ˜4-8 kpc2 in size, from which we extract four spatially exclusive regional spectra. We study the interstellar and wind absorption lines, along with C III] doublet emission lines, in each region to investigate any variation in emission/absorption line properties. The mapped C III] emission shows distinct kinematical structure, with velocity offsets of ˜±50 km s-1 between regions suggestive of a merging system, and a variation in equivalent width that indicates a change in ionization parameter and/or metallicity between the regions. Absorption line velocities reveal a range of outflow strengths, with gas outflowing in the range -200 ≲ v (km s-1) ≲ -50 relative to the systemic velocity of that region. Interestingly, the strongest gas outflow appears to emanate from the most diffuse star-forming region. The star formation rates remain relatively constant (˜8-16 M⊙ yr-1), mostly due to large uncertainties in reddening estimates. As such, the outflows appear to be `global' rather than `locally' sourced. We measure electron densities with a range of log (Ne) = 3.92-4.36 cm-3, and point out that such high densities may be common when measured using the C III] doublet due to its large critical density. Overall, our observations demonstrate that while it is possible to trace variations in large-scale gas kinematics, detecting inhomogeneities in physical gas properties and their effects on the outflowing gas may be more difficult. This study provides important lessons for the spatially resolved rest-frame UV studies expected with future observatories, such as James Webb Space Telescope.

  13. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  14. Constraints on the Compositions of Phobos and Deimos from Mineral Absorptions

    NASA Technical Reports Server (NTRS)

    Fraeman, A. A.; Murchie, S. L.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.

    2013-01-01

    The compositions of Phobos and Deimos have remained controversial despite multiple Earth- and space-based observations acquired during the last 40 years. Phobos is composed of at least two spectral units that are both dark yet distinct at visible to near infrared wavelenghts; a spectrally red-sloped "red" unit covers most of the moon and a less red-sloped "blue" unit is present in the ejecta of the approximately 9-km diameter impact crater Stickney [1,2]. Deimos is similar spectrally to Phobos' "red" unit [2]. Here we report results from mapping mineral absorptions on Phobos and Deimos using visible/near infrared observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We find evidence for an absorption feature at 0.65 m in the Phobos red unit and Deimos that is reproducible in observations from other instruments. The phase responsible is uncertain but may be a Fe-bearing phyllosilicate and/or graphite, consistent with the notion that Phobos and Deimos have compositions similar to CM carbonaceous chondrites [3].

  15. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  16. Interactive Geophysical Mapping on the Web

    NASA Astrophysics Data System (ADS)

    Meertens, C.; Hamburger, M.; Estey, L.; Weingroff, M.; Deardorff, R.; Holt, W.

    2002-12-01

    We have developed a set of interactive, web-based map utilities that make geophysical results accessible to a large number and variety of users. These tools provide access to pre-determined map regions via a simple Html/JavaScript interface or to user-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Users can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Developed initially by UNAVCO for study of global-scale geodynamic processes, users can choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays for example coastlines, political boundaries, rivers and lakes, NEIC earthquake and volcano locations, stress axes, and observed and model plate motion and deformation velocity vectors representing a compilation of 2933 geodetic measurements from around the world. The software design is flexible allowing for construction of special editions for different target audiences. Custom maps been implemented for UNAVCO as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the later, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. In addition, we are developing a website that incorporates background materials and curricular activities that encourage users to explore Earth processes. A cluster of map processing computers and nearly a terabyte of disk storage has been assembled to power the generation of

  17. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  18. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  19. 2008 United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; ,

    2008-01-01

    The U.S. Geological Survey recently updated the National Seismic Hazard Maps by incorporating new seismic, geologic, and geodetic information on earthquake rates and associated ground shaking. The 2008 versions supersede those released in 1996 and 2002. These maps are the basis for seismic design provisions of building codes, insurance rate structures, earthquake loss studies, retrofit priorities, and land-use planning. Their use in design of buildings, bridges, highways, and critical infrastructure allows structures to better withstand earthquake shaking, saving lives and reducing disruption to critical activities following a damaging event. The maps also help engineers avoid costs from over-design for unlikely levels of ground motion.

  20. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  1. 3D maps of the local interstellar medium: the impact of Gaia

    NASA Astrophysics Data System (ADS)

    Capitanio, L.; Lallement, R.; Vergely, J. L.; Elyajouri, M.; Babusiaux, C.; Ruiz-Dern, L.; Monreal-Ibero, A.; Arenou, F.; Danielski, C.

    2017-12-01

    Gaia parallaxes combined with colour excess and absorption measurements from large stellar surveys will allow building increasingly precise three-dimensional maps of the interstellar matter (ISM). Reciprocally, detailed maps of the ISM will allow improving photometric calibrations of Gaia and measuring more precisely the amounts of reddening. In the future, the extraction of a diffuse interstellar band (DIB) from Gaia RVS (Radial Velocity Spectrometer) spectra will allow to build a tomography of the carrier of this DIB and compare it with dust and gas distributions. Here we show several results that illustrate current progress in local ISM mapping and a first example of the stellar-interstellar synergy linked to Gaia: a) how Gaia-DR1 parallaxes already modify the ISM maps obtained by means of a full-3D inversion of a compilation of colour excess data, b) how DIB measurements and corresponding Gaia parallaxes can complement colour excess data and improve the maps, c) new hierarchical methods combining distinct surveys, d) improved maps including APOGEE colour excess estimates deduced from the recent Gaia-based photometric calibrations of Ruiz-Dern et al (this issue), e) additional inclusion of LAMOST colour excess estimates (Wang et al, 2016).

  2. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  3. Cassini Visual and Infrared Mapping Spectrometer observations of Iapetus: Detection of CO2

    USGS Publications Warehouse

    Buratti, B.J.; Cruikshank, D.P.; Brown, R.H.; Clark, R.N.; Bauer, J.M.; Jaumann, R.; McCord, T.B.; Simonelli, D.P.; Hibbitts, C.A.; Hansen, G.B.; Owen, T.C.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Roush, T.L.; Soderlund, K.; Muradyan, A.

    2005-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite lapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe 2O3. The high-albedo hemisphere is modeled with H 2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellite's orbital motion. ?? 2005. The American Astronomical Society. All rights reserved.

  4. Mapping Air Population

    NASA Astrophysics Data System (ADS)

    Peterson, Michael P.; Hunt, Paul; Weiß, Konrad

    2018-05-01

    "Air population" refers to the total number of people flying above the earth at any point in time. The total number of passengers can then be estimated by multiplying the number of seats for each aircraft by the current seat occupancy rate. Using this method, the estimated air population is determined by state for the airspace over the United States. In the interactive, real-time mapping system, maps are provided to show total air population, the density of air population (air population / area of state), and the ratio of air population to ground population.

  5. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Quantitative X-ray fluorescence computed tomography for low-Z samples using an iterative absorption correction algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Limburg, Karin; Rohtla, Mehis

    2017-05-01

    X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.

  7. Spectral Mapping at Asteroid 101955 Bennu

    NASA Astrophysics Data System (ADS)

    Clark, Beth Ellen; Hamilton, Victoria E.; Emery, Joshua P.; Hawley, C. Luke; Howell, Ellen S.; Lauretta, Dante; Simon, Amy A.; Christensen, Philip R.; Reuter, Dennis

    2017-10-01

    The OSIRIS-REx Asteroid Sample Return mission was launched in September 2016. The main science surveys of asteroid 101955 Bennu start in March 2019. Science instruments include a Visible-InfraRed Spectrometer (OVIRS) and a Thermal Emission Spectrometer (OTES) that will produce observations that will be co-registered to the tessellated shape model of Bennu (the fundamental unit of which is a triangular facet). One task of the science team is to synthesize the results in real time during proximity operations to contribute to selection of the sampling site. Hence, we will be focused on quickly producing spectral maps for: (1) mineral abundances; (2) band strengths of minerals and chemicals (including a search for the subtle ~5% absorption feature produced by organics in meteorites); and (3) temperature and thermal inertia values. In sum, we will be producing on the order of ~60 spectral maps of Bennu’s surface composition and thermophysical properties. Due to overlapping surface spots, simulations of our spectral maps show there may be an opportunity to perform spectral super-resolution. We have a large parameter space of choices available in creating spectral maps of Bennu, including: (a) mean facet size (shape model resolution), (b) percentage of overlap between subsequent spot measurements, (c) the number of spectral spots measured per facet, and (d) the mathematical algorithm used to combine the overlapping spots (or bin them on a per-facet basis). Projection effects -- caused by irregular sampling of an irregularly shaped object with circular spectrometer fields-of-view and then mapping these circles onto triangular facets -- can be intense. To prepare for prox ops, we are simulating multiple mineralogical “truth worlds” of Bennu to study the projection effects that result from our planned methods of spectral mapping. This presentation addresses: Can we combine the three planned global surveys of the asteroid (to be obtained at different phase angles) to

  8. Enrichment process of biogas using simultaneous Absorption - Adsorption methods

    NASA Astrophysics Data System (ADS)

    Kusrini, Eny; Lukita, Maya; Gozan, Misri; Susanto, Bambang Heru; Nasution, Dedy Alharis; Rahman, Arif; Gunawan, Cindy

    2017-03-01

    Removal of CO2 in biogas is an essential methods to the purification and upgrading of biogas. Natural Clinoptilolite zeolites were evaluated as sorbents for purification of biogas that produced from palm oil mill effluent (POME) by anerobic-digestion method. The absorption and adsorption experiments were conducted in a fixed-bed two column adsorption unit by simultaneous absorption-adsorption method. The Ca(OH)2 solution with concentration of 0.062 M was used as absorption method. Sorbent for removal of CO2 in biogas have been prepared by modifying of Clinoptilolite zeolites with an acid (HCl, 2M) and alkaline (NaOH, 2M), calcined at 450°C and then coated using chitosan (0.5 w/v%) in order to increase their adsorption capacity. The removal of CO2 in biogas was achieved about ˜83% using 2.5 g of sorbent zeolite (2M)/chitosan dosage for each column, breakthrough time of 30 min, and flow rate of 100 mL/min. Clinoptilolite zeolites with modifications of an acid-alkaline and chitosan (zeolite (2M)/chitosan) are promising sorbents due to the amine groups from chitosan and high surface-volume ratio are one of important factors in a simultaneous absorption-adsorption method.

  9. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-24

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  10. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  11. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  12. Detection, mapping and estimation of rate of spread of grass fires from southern African ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wightman, J. M.

    1973-01-01

    Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.

  13. Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce

    2002-01-01

    Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.

  14. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  15. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  16. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    PubMed

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  17. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vogel, S. C.; Mocko, M.; Bourke, M. A. M.; Yuan, V.; Nelson, R. O.; Brown, D. W.; Feller, W. B.

    2013-09-01

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1-1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  18. Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2013-01-01

    This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.

  19. Accounting for rate instability and spatial patterns in the boundary analysis of cancer mortality maps

    PubMed Central

    Goovaerts, Pierre

    2006-01-01

    Boundary analysis of cancer maps may highlight areas where causative exposures change through geographic space, the presence of local populations with distinct cancer incidences, or the impact of different cancer control methods. Too often, such analysis ignores the spatial pattern of incidence or mortality rates and overlooks the fact that rates computed from sparsely populated geographic entities can be very unreliable. This paper proposes a new methodology that accounts for the uncertainty and spatial correlation of rate data in the detection of significant edges between adjacent entities or polygons. Poisson kriging is first used to estimate the risk value and the associated standard error within each polygon, accounting for the population size and the risk semivariogram computed from raw rates. The boundary statistic is then defined as half the absolute difference between kriged risks. Its reference distribution, under the null hypothesis of no boundary, is derived through the generation of multiple realizations of the spatial distribution of cancer risk values. This paper presents three types of neutral models generated using methods of increasing complexity: the common random shuffle of estimated risk values, a spatial re-ordering of these risks, or p-field simulation that accounts for the population size within each polygon. The approach is illustrated using age-adjusted pancreatic cancer mortality rates for white females in 295 US counties of the Northeast (1970–1994). Simulation studies demonstrate that Poisson kriging yields more accurate estimates of the cancer risk and how its value changes between polygons (i.e. boundary statistic), relatively to the use of raw rates or local empirical Bayes smoother. When used in conjunction with spatial neutral models generated by p-field simulation, the boundary analysis based on Poisson kriging estimates minimizes the proportion of type I errors (i.e. edges wrongly declared significant) while the frequency of

  20. Hydrochromic Approaches to Mapping Human Sweat Pores.

    PubMed

    Park, Dong-Hoon; Park, Bum Jun; Kim, Jong-Man

    2016-06-21

    Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a

  1. Computational Studies of Drug Release, Transport and Absorption in the Human Intestines

    NASA Astrophysics Data System (ADS)

    Behafarid, Farhad; Brasseur, J. G.; Vijayakumar, G.; Jayaraman, B.; Wang, Y.

    2016-11-01

    Following disintegration of a drug tablet, a cloud of particles 10-200 μm in diameter enters the small intestine where drug molecules are absorbed into the blood. Drug release rate depends on particle size, solubility and hydrodynamic enhancements driven by gut motility. To quantify the interrelationships among dissolution, transport and wall permeability, we apply lattice Boltzmann method to simulate the drug concentration field in the 3D gut released from polydisperse distributions of drug particles in the "fasting" vs. "fed" motility states. Generalized boundary conditions allow for both solubility and gut wall permeability to be systematically varied. We apply a local 'quasi-steady state' approximation for drug dissolution using a mathematical model generalized for hydrodynamic enhancements and heterogeneity in drug release rate. We observe fundamental differences resulting from the interplay among release, transport and absorption in relationship to particle size distribution, luminal volume, motility, solubility and permeability. For example, whereas smaller volume encourages higher bulk concentrations and reduced release rate, it also encourages higher absorption rate, making it difficult to generalize predictions. Supported by FDA.

  2. Engaging national organizations for knowledge translation: Comparative case studies in knowledge value mapping

    PubMed Central

    2011-01-01

    Background Government sponsors of research and development, along with their funded investigators, are increasingly tasked with demonstrating evidence of knowledge use by nontraditional audiences. This requires efforts to translate their findings for effective communication. For technology-related knowledge, these audiences include clinicians, consumers, manufacturers, public policy agencies, and knowledge brokers. One potentially efficient approach is to communicate research findings through relevant national organizations. However, this requires an understanding of how such organizations view and treat research knowledge, which can be determined through knowledge-value mapping. Do knowledge values differ between national organizations representing different audiences? Can a deeper understanding of knowledge values help sponsors, investigators, and organizations better communicate research findings to stakeholders? Methods A series of comparative case studies on knowledge-value mapping were derived through interviews with spokespersons for six national organizations. The semi-structured interviews followed a 10-item questionnaire to characterize different ways in which each organization engages with research-based knowledge. Each participating organization represents a particular stakeholder group, while all share a common interest in the research subject matter. Results Each national organization considers the value of the research knowledge in the context of their organization's mission and the interests of their members. All are interested in collaborating with researchers to share relevant findings, while they vary along the following dimensions of knowledge engagement: create, identify, translate, adapt, communicate, use, promote, absorptive capacity, and recommendations for facilitation. Conclusions The principles of knowledge translation suggest that investigators can increase use by tailoring the format and context of their findings to the absorptive

  3. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.

    PubMed

    Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming

    2018-04-06

    To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.

  4. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  5. Use of Inert Gases to Study the Interaction of Blood Flow and Diffusion during Passive Absorption from the Gastrointestinal Tract of the Rat

    PubMed Central

    Levitt, Michael D.; Levitt, David G.

    1973-01-01

    Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667

  6. Absorption of CO2 from modified flue gases of power generation Tarahan chemically using NaOH and Na2CO3 and biologically using microalgae

    NASA Astrophysics Data System (ADS)

    Purba, Elida; Agustina, Dewi; Putri Pertama, Finka; Senja, Fita

    2018-03-01

    This research was carried out on the absorption of CO2 from the modified flue gases of power generation Tarahan using NaOH (sodium hydroxide) and Na2CO3 (sodium carbonate). The operation was conducted in a packed column absorber and then the output gases from the packed column was fed into photo-bioreactor for biological absorption. In the photo-bioreactor, two species of microalgae, N. occulata and T. chuii, were cultivated to both absorb CO2 gas and to produce biomass for algal oil. The aims of this research were, first, to determine the effect of absorbent flow rate on the reduction of CO2 and on the decrease of output gas temperature, second, to determine the characteristics of methyl ester obtained from biological absorption process. Flow rates of the absorbent were varied as 1, 2, and 3 l/min. The concentrations of NaOH and Na2CO3 were 1 M at a constant gas flow rate of 6 l/min. The output concentrations of CO2 from the absorber was analyzed using Gas Chromatography 2014-AT SHIMADZU Corp 08128. The results show that both of the absorbents give different trends. From the absorption using NaOH, it can be concluded that the higher the flow rate, the higher the absorption rate obtained. The highest flow rate achieved maximum absorption of 100%. On the other hand, absorption with Na2CO3 revealed the opposite trend where the higher the flow rates the lower the absorption rate. The highest absorption using Na2CO3 was obtained with the lowest flow rate, 1 l/min, that was 45,5%. As the effect of flow rate on output gas temperature, the temperature decreased with increasing flow rates for both absorbents. The output gas temperature for NaOH and Na2CO3 were consecutively 35 °C and 31 °C with inlet gas temperature of 50°C. Absorption of CO2 biologically resulted a reduction of CO2 up to 60% from the input gas concentration. Algal oil was extracted with mixed hexane and chloroform to obtain algal oil. Extracted oil was transesterified to methyl ester using sodium

  7. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

    PubMed

    Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J

    2013-10-15

    This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Study on intestinal absorption features of oligosaccharides in Morinda officinalis How. with sigle-pass perfusion].

    PubMed

    Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran

    2015-01-01

    To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum.

  9. QTL Mapping of Genome Regions Controlling Manganese Uptake in Lentil Seed.

    PubMed

    Ates, Duygu; Aldemir, Secil; Yagmur, Bulent; Kahraman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Muhammed Bahattin

    2018-05-04

    This study evaluated Mn concentration in the seeds of 120 RILs of lentil developed from the cross "CDC Redberry" × "ILL7502". Micronutrient analysis using atomic absorption spectrometry indicated mean seed manganese (Mn) concentrations ranging from 8.5 to 26.8 mg/kg, based on replicated field trials grown at three locations in Turkey in 2012 and 2013. A linkage map of lentil was constructed and consisted of seven linkage groups with 5,385 DNA markers. The total map length was 973.1 cM, with an average distance between markers of 0.18 cM. A total of 6 QTL for Mn concentration were identified using composite interval mapping (CIM). All QTL were statistically significant and explained 15.3-24.1% of the phenotypic variation, with LOD scores ranging from 3.00 to 4.42. The high-density genetic map reported in this study will increase fundamental knowledge of the genome structure of lentil, and will be the basis for the development of micronutrient-enriched lentil genotypes to support biofortification efforts. Copyright © 2018 Ates et al.

  10. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  11. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  12. Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping.

    PubMed

    Schucht, Philippe; Beck, Jürgen; Abu-Isa, Janine; Andereggen, Lukas; Murek, Michael; Seidel, Kathleen; Stieglitz, Lennard; Raabe, Andreas

    2012-11-01

    Complete resection of contrast-enhancing tumor has been recognized as an important prognostic factor in patients with glioblastoma and is a primary goal of surgery. Various intraoperative technologies have recently been introduced to improve glioma surgery. To evaluate the impact of using 5-aminolevulinic acid and intraoperative mapping and monitoring on the rate of complete resection of enhancing tumor (CRET), gross total resection (GTR), and new neurological deficits as part of an institutional protocol. One hundred three consecutive patients underwent resection of glioblastoma from August 2008 to November 2010. Eligibility for CRET was based on the initial magnetic resonance imaging assessed by 2 reviewers. The primary end point was the number of patients with CRET and GTR. Secondary end points were volume of residual contrast-enhancing tissue and new postoperative neurological deficits. Fifty-three patients were eligible for GTR/CRET (n = 43 newly diagnosed glioblastoma, n = 10 recurrent); 13 additional patients received surgery for GTR/CRET-ineligible glioblastoma. GTR was achieved in 96% of patients (n = 51, no residual enhancement >0.175 cm); CRET was achieved in 89% (n = 47, no residual enhancement). Postoperatively, 2 patients experienced worsening of preoperative hemianopia, 1 patient had a new mild hemiparesis, and another patient sustained sensory deficits. Using 5-aminolevulinic acid imaging and intraoperative mapping/monitoring together leads to a high rate of CRET and an increased rate of GTR compared with the literature without increasing the rate of permanent morbidity. The combination of safety and resection-enhancing intraoperative technologies was likely to be the major drivers for this high rate of CRET/GTR.

  13. Effects of absorption enhancers in chloroquine suppository formulations: I. In vitro release characteristics.

    PubMed

    Onyeji, C O; Adebayo, A S; Babalola, C P

    1999-12-01

    The need to develop chloroquine suppository formulations that yield optimal bioavailability of the drug has been emphasized. This study demonstrates the effects of incorporation of known absorption-enhancing agents (nonionic surfactants and sodium salicylate) on the in vitro release characteristics of chloroquine from polyethylene glycol (1000:4000, 75:25%, w/w) suppositories. The release rates were determined using a modification of the continuous flow bead-bed dissolution apparatus for suppositories. Results showed that the extent of drug release from suppositories containing any of three surfactants (Tween 20, Tween 80 and Brij 35) was 100%, whereas 88% release was obtained with control formulation (without enhancer) (P<0.05). However, Tween 20 was more effective than Brij 35 and Tween 80 in improving the drug release rate. There was a concentration-dependent effect with Tween 20, and 4% (w/w) of this surfactant was associated with the highest increase in the rate of drug release from the suppositories. Sodium salicylate at a concentration of 25% (w/w) also significantly enhanced the drug release rate, but a higher concentration of the adjuvant markedly reduced both the rate and extent of drug release. Combined incorporation of Tween 20 and sodium salicylate did not significantly modify (P0.05) the rate of drug release when compared to the effect of the more effective single agent. Due to their effects in improving the drug release profiles coupled with their intrinsic absorption-promoting properties, it is suggested that incorporation of 4% (w/w) Tween 20 and/or 25% (w/w) sodium salicylate in the composite polyethylene glycol chloroquine suppository formulations, may result in enhancement of rectal absorption of the drug. This necessitates an in vivo validation.

  14. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jung Kyung; Prasad, Bibin; Kim, Suzy

    2017-02-01

    To evaluate the synergistic effect of radiotherapy and radiofrequency hyperthermia therapy in the treatment of lung and liver cancers, we studied the mechanism of heat absorption and transfer in the tumor using electro-thermal simulation and high-resolution temperature mapping techniques. A realistic tumor-induced mouse anatomy, which was reconstructed and segmented from computed tomography images, was used to determine the thermal distribution in tumors during radiofrequency (RF) heating at 13.56 MHz. An RF electrode was used as a heat source, and computations were performed with the aid of the multiphysics simulation platform Sim4Life. Experiments were carried out on a tumor-mimicking agar phantom and a mouse tumor model to obtain a spatiotemporal temperature map and thermal dose distribution. A high temperature increase was achieved in the tumor from both the computation and measurement, which elucidated that there was selective high-energy absorption in tumor tissue compared to the normal surrounding tissues. The study allows for effective treatment planning for combined radiation and hyperthermia therapy based on the high-resolution temperature mapping and high-precision thermal dose calculation.

  15. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  16. A Developed Spectral Identification Tree for Mineral Mapping using Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Gan, Fuping; Wang, Runsheng; Yan, Bokun; Shang, Kun

    2016-04-01

    The relationship between the spectral features and the composition of minerals are the basis of mineral identification using hyperspectral data. The reflectance spectrum of minerals results from the systematic combination of several modes of interaction between electromagnetic energy and mineral particles in the form of reflection and absorption. Minerals tend to have absorbing features at specific wavelengths with a characteristic shape, which can be used as diagnostic indicators for identification. The spectral identification tree (SIT) method for mineral identification is developed in our research to map minerals accurately and applied in some typical mineral deposits in China. The SIT method is based on the diagnostic absorption features of minerals through comparing and statistically analyzing characteristic spectral data of minerals. We establish several levels of identification rules for the type, group and species of minerals using IF-THEN rule according to the spectral identification criteria so that the developed SIT can be further used to map minerals at different levels of detail from mineral type to mineral species. Identifiable minerals can be grouped into six types: Fe2+-bearing, Fe3+-bearing, Mn2+-bearing, Al-OH-bearing, Mg-OH-bearing and carbonate minerals. Each type can be further divided into several mineral groups. Each group contains several mineral species or specific minerals. A mineral spectral series, therefore, can be constructed as "type-group-species-specific mineral (mineral variety)" for mineral spectral identification. It is noted that the mineral classification is based mainly on spectral reflectance characteristics of minerals which may not be consistent with the classification in mineralogy. We applied the developed SIT method to the datasets acquired at the Eastern Tianshan Mountains of Xinjiang (HyMap data) and the Qulong district of Xizang (Hyperion data). In Xinjiang, the two major classes of Al-OH and Mg-OH minerals were

  17. Objective quality assessment of tone-mapped images.

    PubMed

    Yeganeh, Hojatollah; Wang, Zhou

    2013-02-01

    Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.

  18. Adenine radicals generated in alternating AT duplexes by direct absorption of low-energy UV radiation.

    PubMed

    Banyasz, Akos; Ketola, Tiia; Martínez-Fernández, Lara; Improta, Roberto; Markovitsi, Dimitra

    2018-04-17

    There is increasing evidence that the direct absorption of photons with energies that are lower than the ionization potential of nucleobases may result in oxidative damage to DNA. The present work, which combines nanosecond transient absorption spectroscopy and quantum mechanical calculations, studies this process in alternating adenine-thymine duplexes (AT)n. We show that the one-photon ionization quantum yield of (AT)10 at 266 nm (4.66 eV) is (1.5 ± 0.3) × 10-3. According to our PCM/TD-DFT calculations carried out on model duplexes composed of two base pairs, (AT)1 and (TA)1, simultaneous base pairing and stacking does not induce important changes in the absorption spectra of the adenine radical cation and deprotonated radical. The adenine radicals, thus identified in the time-resolved spectra, disappear with a lifetime of 2.5 ms, giving rise to a reaction product that absorbs at 350 nm. In parallel, the fingerprint of reaction intermediates other than radicals, formed directly from singlet excited states and assigned to AT/TA dimers, is detected at shorter wavelengths. PCM/TD-DFT calculations are carried out to map the pathways leading to such species and to characterize their absorption spectra; we find that, in addition to the path leading to the well-known TA* photoproduct, an AT photo-dimerization path may be operative in duplexes.

  19. Absorption heat pump for space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  20. POSTERIOR PREDICTIVE MODEL CHECKS FOR DISEASE MAPPING MODELS. (R827257)

    EPA Science Inventory

    Disease incidence or disease mortality rates for small areas are often displayed on maps. Maps of raw rates, disease counts divided by the total population at risk, have been criticized as unreliable due to non-constant variance associated with heterogeneity in base population si...

  1. Environmental mapping of the World Trade Center area with imaging spectroscopy after the September 11, 2001 attack

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Hoefen, Todd M.; Green, Robert O.; Livo, Keith E.; Meeker, Gregory P.; Sutley, Stephen J.; Plumlee, Geoffrey S.; Pavri, Betina; Sarture, Charles M.; Boardman, Joe; Brownfield, Isabelle; Morath, Laurie C.

    2009-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was flown over the World Trade Center area on September 16, 18, 22, and 23, 2001. The data were used to map the WTC debris plume and its contents, including the spectral signatures of asbestiform minerals. Samples were collected and used as ground truth for the AVARIS mapping. A number of thermal hot spots were observed with temperatures greater than 700 °C. The extent and temperatures of the fires were mapped as a function of time. By September 23, most of the fires observed by AVIRIS had been eliminated or reduced in intensity. The mineral absorption features mapped by AVARIS only indicated the presence of serpentine mineralogy and not if the serpentine has asbestiform.

  2. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  3. Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption.

    PubMed Central

    Preisig, P A; Ives, H E; Cragoe, E J; Alpern, R J; Rector, F C

    1987-01-01

    Amiloride and the more potent amiloride analog, 5-(N-t-butyl) amiloride (t-butylamiloride), were used to examine the role of the Na+/H+ antiporter in bicarbonate absorption in the in vivo microperfused rat proximal convoluted tubule. Bicarbonate absorption was inhibited 29, 46, and 47% by 0.9 mM or 4.3 mM amiloride, or 1 mM t-butylamiloride, respectively. Sensitivity of the Na+/H+ antiporter to these compounds in vivo was examined using fluorescent measurements of intracellular pH with (2', 7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein (BCECF). Amiloride and t-butylamiloride were shown to be as potent against the antiporter in vivo as in brush border membrane vesicles. A model of proximal tubule bicarbonate absorption was used to correct for changes in the luminal profiles for pH and inhibitor concentration, and for changes in luminal flow rate in the various series. We conclude that the majority of apical membrane proton secretion involved in transepithelial bicarbonate absorption is mediated by the Na+-dependent, amiloride-sensitive Na+H+ antiporter. However, a second mechanism of proton secretion contributes significantly to bicarbonate absorption. This mechanism is Na+-independent and amiloride-insensitive. PMID:2888788

  4. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    PubMed

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  5. Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2018-01-01

    With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.

  6. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  7. Zinc Absorption from Representative Diet in a Chinese Elderly Population Using Stable Isotope Technique.

    PubMed

    Li, Ya Jie; Li, Min; Liu, Xiao Bing; Ren, Tong Xiang; Li, Wei Dong; Yang, Chun; Wu, Meng; Yang, Lin Li; Ma, Yu Xia; Wang, Jun; Piao, Jian Hua; Yang, Li Chen; Yang, Xiao Guang

    2017-06-01

    To determine the dietary zinc absorption in a Chinese elderly population and provide the basic data for the setting of zinc (Zn) recommended nutrient intakes (RNI) for Chinese elderly people. A total of 24 elderly people were recruited for this study and were administered oral doses of 3 mg 67Zn and 1.2 mg dysprosium on the fourth day. The primary macronutrients, energy, and phytic acid in the representative diet were examined based on the Chinese National Standard Methods. Fecal samples were collected during the experimental period and analyzed for zinc content, 67Zn isotope ratio, and dysprosium content. The mean (± SD) zinc intake from the representative Chinese diet was 10.6 ± 1.5 mg/d. The phytic acid-to-zinc molar ratio in the diet was 6.4. The absorption rate of 67Zn was 27.9% ± 9.2%. The RNI of zinc, which were calculated by the absorption rate in elderly men and women, were 10.4 and 9.2 mg/d, respectively. This study got the dietary Zn absorption in a Chinese elderly population. We found that Zn absorption was higher in elderly men than in elderly women. The current RNI in elderly female is lower than our finding, which indicates that more attention is needed regarding elderly females' zinc status and health. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming.

    PubMed

    Pack, Eun Chul; Lee, Seung Ha; Kim, Chun Huem; Lim, Chae Hee; Sung, Dea Gwan; Kim, Mee Hye; Park, Ki Hwan; Lim, Kyung Min; Choi, Dal Woong; Kim, Suhng Wook

    2014-01-01

    Because of global warming, the quantity of naturally generated mercury (Hg) will increase, subsequently methylation of Hg existing in seawater may be enhanced, and the content of metal in marine products rise which consequently results in harm to human health. Studies of the effects of temperatures on Hg absorption have not been adequate. In this study, in order to observe the effects of temperature changes on Hg absorption, inorganic Hg or methylmercury (MeHg) was added to water tanks containing loaches. Loach survival rates decreased with rising temperatures, duration, and exposure concentrations in individuals exposed to inorganic Hg and MeHg. The MeHg-treated group died sooner than the inorganic Hg-exposed group. The total Hg and MeHg content significantly increased with temperature and time in both metal-exposed groups. The MeHg-treated group had higher metal absorption rates than inorganic Hg-treated loaches. The correlation coefficients for temperature elevation and absorption were significant in both groups. The results of this study may be used as basic data for assessing in vivo hazards from environmental changes such as climate warming.

  9. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    NASA Astrophysics Data System (ADS)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  10. An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

    NASA Astrophysics Data System (ADS)

    Silsbe, G.; Westberry, T. K.; Behrenfeld, M. J.; Halsey, K.; Milligan, A.

    2016-02-01

    As a vital living link in the global carbon cycle, understanding how net primary production (NPP) varies through space, time, and across climatic oscillations (e.g. ENSO) is a key objective in oceanographic research. The continual improvement of ocean observing satellites and data analytics now present greater opportunities for advanced understanding and characterization of the factors regulating NPP. In particular, the emergence of spectral inversion algorithms now permits accurate retrievals of the phytoplankton absorption coefficient (aΦ) from space. As NPP is the efficiency in which absorbed energy is converted into carbon biomass, aΦ measurements circumvents chlorophyll-based empirical approaches by permitting direct and accurate measurements of phytoplankton energy absorption. It has long been recognized, and perhaps underappreciated, that NPP and phytoplankton growth rates display muted variability when normalized to aΦ rather than chlorophyll. Here we present a novel absorption-based NPP model that parameterizes the underlying physiological mechanisms behind this muted variability, and apply this physiological model to the global ocean. Through a comparison against field data from the Hawaii and Bermuda Ocean Time Series, we demonstrate how this approach yields more accurate NPP measurements than other published NPP models. By normalizing NPP to satellite estimates of phytoplankton carbon biomass, this presentation also explores the seasonality of phytoplankton growth rates across several oceanic regions. Finally, we discuss how future advances in remote-sensing (e.g. hyperspectral satellites, LIDAR, autonomous profilers) can be exploited to further improve absorption-based NPP models.

  11. Evidence for direct water absorption by shallow-rooted desert plants in desert-oasis ecotone, Northwest China

    NASA Astrophysics Data System (ADS)

    Fang, Jing

    2014-05-01

    Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.

  12. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo.

    PubMed Central

    Nøhr, Martha Kampp; Thale, Zia I; Brodin, Birger; Hansen, Steen H; Holm, René; Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin in Caco-2 cells. Oral coadministration of vigabatrin and infant formula significantly reduced Cmax and prolonged tmax of vigabatrin absorption. Ligands for the proton-coupled amino acid transporter PAT1, sarcosine, and proline/l-tryptophan had similar effects on the pharmacokinetic profile of vigabatrin. The infant formula decreased the rate of gastric emptying. Here we provide experimental evidence for an in vivo role of PAT1 in the intestinal absorption of vigabatrin. The effect of infant formula on the oral absorption of vigabatrin was found to be due to delayed gastric emptying, however, it seems reasonable that infant formula may also directly affect the intestinal absorption rate of vigabatrin possibly via PAT1. PMID:25505585

  13. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhang, B.; Lu, L.; Lin, Q.

    2014-03-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.

  14. Determination of UV-visible-NIR absorption coefficient of graphite bulk using direct and indirect methods

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.

    2017-10-01

    Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.

  15. Saturation of an Intra-Gene Pool Linkage Map: Towards a Unified Consensus Linkage Map for Fine Mapping and Synteny Analysis in Common Bean

    PubMed Central

    Galeano, Carlos H.; Fernandez, Andrea C.; Franco-Herrera, Natalia; Cichy, Karen A.; McClean, Phillip E.; Vanderleyden, Jos; Blair, Matthew W.

    2011-01-01

    Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364×BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364×G19833 (DG) and BAT93×JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning. PMID:22174773

  16. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  17. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  18. Mineral Physicochemistry based Geoscience Products for Mapping the Earth's Surface and Subsurface

    NASA Astrophysics Data System (ADS)

    Laukamp, C.; Cudahy, T.; Caccetta, M.; Haest, M.; Rodger, A.; Western Australian Centre of Excellence3D Mineral Mapping

    2011-12-01

    Mineral maps derived from remotes sensing data can be used to address geological questions about mineral systems important for exploration and mining. This paper focuses on the application of geoscience-tuned multi- and hyperspectral sensors (e.g. ASTER, HyMap) and the methods to routinely create meaningful higher level geoscience products from these data sets. The vision is a 3D mineral map of the earth's surface and subsurface. Understanding the physicochemistry of rock forming minerals and the related diagnostic absorption features in the visible, near, mid and far infrared is a key for mineral mapping. For this, reflectance spectra obtained with lab based visible and infrared spectroscopic (VIRS) instruments (e.g. Bruker Hemisphere Vertex 70) are compared to various remote and proximal sensing techniques. Calibration of the various sensor types is a major challenge with any such comparisons. The spectral resolution of the respective instruments and the band positions are two of the main factors governing the ability to identify mineral groups or mineral species and compositions of those. The routine processing method employed by the Western Australian Centre of Excellence for 3D Mineral Mapping (http://c3dmm.csiro.au) is a multiple feature extraction method (MFEM). This method targets mineral specific absorption features rather than relying on spectral libraries or the need to find pure endmembers. The principle behind MFEM allows us to easily compare hyperspectral surface and subsurface data, laying the foundation for a seamless and accurate 3-dimensional mineral map. The advantage of VIRS techniques for geoscientific applications is the ability to deliver quantitative mineral information over multiple scales. For example, C3DMM is working towards a suite of ASTER-derived maps covering the Australian continent, scheduled for publication in 2012. A suite of higher level geoscience products of Western Australia (e.g. AlOH group abundance and composition) are now

  19. Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA

    PubMed Central

    Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong

    2016-01-01

    A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between tig−0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate. PMID:28773940

  20. Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA.

    PubMed

    Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong

    2016-10-05

    A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between t ig -0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate.

  1. Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10-12 cm-1 Hz-1/2 with a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.

    2014-03-01

    We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.

  2. Nicotine Absorption from Smokeless Tobacco Modified to Adjust pH

    PubMed Central

    Pickworth, Wallace B.; Rosenberry, Zachary R.; Gold, Wyatt; Koszowski, Bartosz

    2014-01-01

    Introduction Nicotine delivery from smokeless tobacco (ST) products leads to addiction and the use of ST causes pathology that is associated with increased initiation of cigarette smoking. The rapid delivery of nicotine from ST seems to be associated with the pH of the aqueous suspension of the products - high pH is associated with high nicotine absorption. However, early studies compared nicotine absorption from different commercial products that not only differed in pH but in flavoring, nicotine content, and in format-pouches and loose tobacco. Methods The present study compared nicotine absorption from a single unflavored referent ST product (pH 7.7) that was flavored with a low level of wintergreen (2 mg/g) and the pH was amended to either high (8.3) or low (5.4) pH with sodium carbonate or citric acid, respectively. Results In a within-subject clinical study, the higher pH products delivered more nicotine. No significant differences were seen between perceived product strengths and product experience in all conditions. Heart rate increased by 4 to 6 beats per minute after the high pH flavored and the un-amended product but did not change after the low pH flavored product. Conclusions These results indicate that pH is a primary determinant of buccal nicotine absorption. The role of flavoring and other components of ST products in nicotine absorption remain to be determined. PMID:25530912

  3. MAP-oriented research in the People's Republic of China

    NASA Technical Reports Server (NTRS)

    Lu, D.

    1985-01-01

    A brief accounting of MAP oriented research in the Republic of China is given. A stratosphere balloon launching facility and its capabilities are reviewed. Observations of the stratospheric aerosols with a balloon-borne aerosol computer were made. Long term monitoring of stratospheric aerosols induced by volcanic eruptions are made with a ruby lidar. The main parameters of an ST radar system are given. The ionospheric D region is investigated with the method of ionospheric absorption. And photochemical modeling and radiation parameterization of the middle atmosphere are made.

  4. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  5. Mapping the Indonesian territory, based on pollution, social demography and geographical data, using self organizing feature map

    NASA Astrophysics Data System (ADS)

    Hernawati, Kuswari; Insani, Nur; Bambang S. H., M.; Nur Hadi, W.; Sahid

    2017-08-01

    This research aims to mapping the 33 (thirty-three) provinces in Indonesia, based on the data on air, water and soil pollution, as well as social demography and geography data, into a clustered model. The method used in this study was unsupervised method that combines the basic concept of Kohonen or Self-Organizing Feature Maps (SOFM). The method is done by providing the design parameters for the model based on data related directly/ indirectly to pollution, which are the demographic and social data, pollution levels of air, water and soil, as well as the geographical situation of each province. The parameters used consists of 19 features/characteristics, including the human development index, the number of vehicles, the availability of the plant's water absorption and flood prevention, as well as geographic and demographic situation. The data used were secondary data from the Central Statistics Agency (BPS), Indonesia. The data are mapped into SOFM from a high-dimensional vector space into two-dimensional vector space according to the closeness of location in term of Euclidean distance. The resulting outputs are represented in clustered grouping. Thirty-three provinces are grouped into five clusters, where each cluster has different features/characteristics and level of pollution. The result can used to help the efforts on prevention and resolution of pollution problems on each cluster in an effective and efficient way.

  6. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  7. Towards a Global Land Subsidence Map

    NASA Astrophysics Data System (ADS)

    Erkens, G.; Kooi, H.; Sutanudjaja, E.

    2017-12-01

    Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). Insights in the rates of subsidence are particularly relevant for low lying deltas and coastal zones, for which any further loss in elevation is unwanted. With the global land subsidence map relative sea level rise predictions may be improved, contributing to global flood risk calculations. In this contribution, we discuss the approach and progress we have made so far in making a global land subsidence map. The first results will be presented and discussed, and we give an outlook on the work needed to derive a global land subsidence map.

  8. Iron absorption from Southeast Asian diets. II. Role of various factors that might explain low absorption.

    PubMed

    Hallberg, L; Björn-Rasmussen, E; Rossander, L; Suwanik, R

    1977-04-01

    Previously reported levels of iron absorption from common Southeast Asian meals composed of rice, vegetables, and spices were too low to be consistent with the known prevalence of iron deficiency. In the present paper the cause of the low absorption was systematically sought. Variables investigated comprised methodological errors, factors in the diet such as certain foodstuffs, or contaminants inhibiting the absorption and characteristics of the subjects accompanied by malabsorption of dietary iron. The latter was excluded by comparing the absorption from both wheat rolls and a composit rice meal in Thai and Swedish women using the absorption of a small dose of ferrous ascorbate as a common basis of comparison. Two main factors were identified as causing the low absorption in the previous studies: the homogenization of the labeled meals before serving and the use of rice flour instead of rice. Iron absorption from nonhomogenized meals of identical composition as studied previously was many times higher (on an average 0.16 mg) and was consistent with the actual prevalence of iron deficiency in lower socioeconomic groups of Thais mainly consuming the simple meals studied. Recent modifications of the method to measure nonheme iron absorption from composite meals have thus not only made the determination simpler but also more accurate.

  9. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  10. Physicochemical patterns of ozone absorption by wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  11. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  12. MARs Color Imager (MARCI) Daily Global Ozone Column Mapping from the Mars Reconnaissance Orbiter (MRO): A Survey of 2006-2010 Results

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Malin, M. C.; Cantor, B. A.

    2010-12-01

    MARCI UV band imaging photometry within (260nm) and outside (320nm) the Hartley ozone band absorption supports daily global mapping of Mars ozone column abundances. Key retrieval issues include accurate UV radiometric calibrations, detailed specifications of surface and atmospheric background reflectance (surface albedo, atmospheric Raleigh and dust scattering/absorption), and simultaneous cloud retrievals. The implementation of accurate radiative transfer (RT) treatments of these processes has been accomplished (Wolff et al., 2010) such that daily global mapping retrievals for Mars ozone columns have been completed for the 2006-2010 period of MARCI global imaging. Ozone retrievals are most accurate for high column abundances associated with mid-to-high latitude regions during fall, winter, and spring seasons. We present a survey of these MARCI ozone column retrievals versus season, latitude, longitude, and year.

  13. [Consideration of drug absorption in customizing drug therapy].

    PubMed

    Walter-Sack, I; Haefeli, W E

    2000-09-01

    The rate and extent of drug absorption from the small intestine are related to the release of the active ingredient from a dosage form, its solubility in the liquid phase of gastrointestinal contents, and the transport of the dissolved compound or the intact dosage form from the stomach into the duodenum. With pharmaceutical preparations releasing the active compound within the stomach, and enteric-coated "micro"-formulations (micropellets), gastric emptying is possible during the interdigestive and the digestive period. Potential differences of drug absorption between fasting administration and intake during the digestive period are unpredictable, because they are related to the release characteristics of the dosage form. However, larger enteric-coated preparations like tablets can leave the stomach only with a phase 3 contraction of fasting motility; intake during the digestive period will result in gastric retention of this type of dosage form until all food has left the stomach and fasting motility is restored. Consequently the onset of drug absorption is delayed. This interaction between food and large enteric-coated dosage forms is predictable from pyloric function in relation to the gastric motility. As it occurs regularly, it can be taken into account when prescribing enteric-coated dosage forms. If concomitant intake of food and enteric-coated drugs is unavoidable, but a rapid onset of drug absorption is necessary, micropellets are the dosage form of choice. When the therapeutic effect is insufficient, drug dosage form and timing of drug administration should be checked before prescribing a different active compound.

  14. Zinc Absorption from Fortified Milk Powder in Adolescent Girls.

    PubMed

    Méndez, Rosa O; Hambidge, Michael; Baker, Mark; Salgado, Sergio A; Ruiz, Joaquín; García, Hugo S; Calderón de la Barca, Ana M

    2015-11-01

    Zinc (Zn) is essential for development, growth, and reproduction. The Mexican government subsidizes micronutrient-fortified milk for risk groups, with positive effect on the targeted groups' plasma Zn level, inferring a good absorption is achieved although it has not being measured. The aim of this study was to determine the impact of micronutrient-fortified milk intake during 27 days on Zn absorption in adolescent girls from northwest Mexico. Therefore, Zn absorption was evaluated in 14 healthy adolescent girls (14.1 years old) with adequate plasma Zn levels, before and after 27 days of fortified Zn milk intake. Fractional Zn absorption (FZA) was calculated from urinary ratios of stable isotopic Zn tracers administered orally and intravenously on days 0 and 27, and total absorbed Zn (TZA) was calculated. At the beginning, Zn intake was 6.8 ± 0.85 mg/d (mean ± SE), and 50 % of the adolescent girls did not achieve their requirement (7.3 mg/d). Additionally, FZA was negatively correlated with Zn intake (r =-0.61, p = 0.02), while TZA (1.06 mg/d) was insufficient to cover the physiologic requirements of adolescent girls (3.02 mg/d). At the end of the intervention, all the girls reached the Zn intake recommendation and TZA, 3.09 mg/d, which was enough to meet the physiological requirement for 57 % of the adolescent girls. Therefore, the low Zn intake and the Zn status of adolescent girls were positively impacted by Zn-fortified milk intake and its good absorption rate.

  15. Verification of the radiometric map of the Czech Republic.

    PubMed

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a 226 Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The influence of water mixtures on the dermal absorption of glycol ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a correspondingmore » increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.« less

  17. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  18. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  19. Characterization of absorption and degradation on optical components for high power excimer lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, K.; Eva, E.; Granitza, B.

    1996-12-31

    At Laser-Laboratorium Goettingen, the performance of UV optical components for high power excimer lasers is characterized, aiming to employ testing procedures that meet industrial conditions, i.e. very high pulse numbers and repetition rates. Measurements include determination of single and multiple pulse damage thresholds, absorption loss and degradation of optical properties under long-term irradiation. Absorption of excimer laser pulses is investigated by a calorimetric technique which provides greatly enhanced sensitivity compared to transmissive measurements. Thus, it allows determining both single and two photon absorption coefficients at intensities of standard excimer lasers. Results of absorption measurements at 248nm are presented for baremore » substrates (CaF{sub 2}, BaF{sub 2}, z-cut quartz and fused silica). UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica. A separation of transient and cumulative effects as a function of intensity is achieved, giving insight into various loss mechanisms.« less

  20. Energy absorption characterization of human enamel using nanoindentation.

    PubMed

    He, Li Hong; Swain, Michael V

    2007-05-01

    Enamel is a natural composite, which has much higher toughness than its major component, crystalline hydroxyapatite. In this study, the energy absorption behavior of human sound enamel was investigated with nanoindentation techniques. A UMIS nanoindenter system as well as a Berkovich and two spherical indenters with nominal tip radii of 5 and 20 microm were used to indent enamel at different loading forces in the direction parallel to enamel prisms. Inelastic energy dissipation versus depth of indenter penetration (U%-h(p) curve) as well as a function of indentation strain (U%-epsilon curve) of enamel was determined. Enamel showed much higher energy absorption capacity than a ceramic material with equivalent modulus (fused silica). Even at the lowest forces (1 mN) for the 20 microm indenter, inelastic response was found. Additional tests done at different force loading rates illustrated that load rate has little influence on P-h response of enamel. The top surface of enamel has the plastic work of indentation of approximately 5.2 nJ/microm(3). The energy absorbing ability is influenced by the very small protein rich component that exists between the hydroxyapatite nanocrystals as well as within the sheath structure surrounding the enamel rods. Copyright 2006 Wiley Periodicals, Inc.

  1. In situ electrical and thermal monitoring of printed electronics by two-photon mapping.

    PubMed

    Pastorelli, Francesco; Accanto, Nicolò; Jørgensen, Mikkel; van Hulst, Niek F; Krebs, Frederik C

    2017-06-19

    Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed electronic devices relies principally on the carrier mobility and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid, in situ, non-destructive and low-cost testing method is needed. In this study, we demonstrate that nonlinear optical microscopy is a promising technique to achieve this goal. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence and second harmonic response. We show that, in our experimental conditions, it is possible to relate the total amount of photoluminescence detected to important material properties such as the charge carrier density and the molecular packing of the printed polymer material, all with a spatial resolution of 400 nm. Importantly, this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.

  2. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  3. High-Resolution Mapping of Thermal History in Polymer Nanocomposites: Gold Nanorods as Microscale Temperature Sensors.

    PubMed

    Kennedy, W Joshua; Slinker, Keith A; Volk, Brent L; Koerner, Hilmar; Godar, Trenton J; Ehlert, Gregory J; Baur, Jeffery W

    2015-12-23

    A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.

  4. Space Telescope and Optical Reverberation Mapping Project VI. Variations of the Intrinsic Absorption Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Agn Storm Team

    2015-01-01

    The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.

  5. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  6. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; ...

    2015-09-01

    One effective method of reducing NO x emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO 2 concentration at various locationsmore » in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO 2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  7. Ionospheric absorption, typical ionization, conductivity, and possible synoptic heating parameters in the upper atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, J.K.; Bhatnagar, V.P.

    1989-04-01

    Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and relatedmore » to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989« less

  8. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  9. Tunneling induced absorption with competing Nonlinearities.

    PubMed

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-12-13

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.

  10. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans

    USDA-ARS?s Scientific Manuscript database

    Calcium absorption efficiency and bone mineral mass are increased in adolescents who regularly consume inulin-type fructans (ITF). The mechanism of action in increasing absorption is unknown but may be related to increased colonic calcium absorption. We conducted a study in young adults designed to ...

  11. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    NASA Astrophysics Data System (ADS)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 < log N < 13.7), and strong absorbers (log N > 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 < log N < 15.0 of Ω _{{{Ne {VIII}}}} = 2.2 ^{+1.6 }_{ _-1.2} × 10^{-8}, a value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  12. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  13. A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL AREAS WITH R-INLA.

    PubMed

    Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret

    2018-01-01

    Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.

  14. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  15. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    NASA Technical Reports Server (NTRS)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  16. Insulin absorption and subcutaneous blood flow in normal subjects during insulin-induced hypoglycemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernqvist-Forbes, E.; Linde, B.; Gunnarsson, R.

    1988-09-01

    We studied the effects of insulin-induced hypoglycemia on the absorption of 10 U /sup 125/I-labeled soluble human insulin injected sc in the thigh in 10 normal subjects. The disappearance of /sup 125/I from the injection site was followed by external gamma-counting. Subcutaneous blood flow (ATBF) was measured concomitantly with the 133Xe washout technique. The plasma glucose nadir (mean, 2.0 +/- 0.1 (+/- SE) mmol/L) occurred at 33 +/- 3 min and resulted in maximal arterial plasma epinephrine concentrations of approximately 6 nmol/L. From 30 min before to 60 min after the glucose nadir the (/sup 125/I)insulin absorption rate was depressedmore » compared to that during normoglycemia. The first order disappearance rate constants were reduced by approximately 50% (P less than 0.01) during the first 30-min interval after the glucose nadir. During the same period ATBF increased by 100% (P less than 0.05). The results suggest that in normal subjects the absorption of soluble insulin from a sc depot is depressed in connection with hypoglycemia, despite considerably elevated ATBF.« less

  17. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  18. Differential-optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1977-01-01

    Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.

  19. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less

  20. Compositional analysis of Hyperion with the Cassini Visual and Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Brad Dalton, J.; Cruikshank, Dale P.; Clark, Roger N.

    2012-08-01

    Compositional mapping of the surface of Hyperion using Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations reveals a heterogeneous surface dominated by water ice accompanied by additional materials. Carbon dioxide, as evidenced by a prominent absorption band centered at 4.26 μm, is distributed over most of the surface, including icy regions. This does not represent exposures of pure CO2 ice, but concentrations of CO2 molecules adsorbed on other materials or complexed in H2O, perhaps as a clathrate (Cruikshank, D.P., Meyer, A.W., Brown, R.H., Clark, R.N., Jaumann, R., Stephan, K., Hibbitts, C.A., Sandford, S.A., Mastrapa, R., Filacchione, G., Dalle Ore, C.M., Nicholson, P.D., Buratti, B.J., McCord, T.B., Nelson, R.M., Dalton, J.B., Baines, K.H., Matson, D.L., The VIMS Team [2010]. Icarus 206, 561-572). Localized deposits of low-albedo material in subcircular depressions exhibit spectral absorptions indicative of C-H in aromatic (3.29 μm) and aliphatic (3.35-3.50 μm) hydrocarbons. An absorption band at 2.42 μm that is also seen on other saturnian satellites, tentatively identified as H2 (Clark, R.N. et al. [2011]. In: Proc. AAS-DPS Meeting, 43, 1563; Clark et al., in preparation, 2012) adsorbed on dark material grains, is also prominent. Our best spectral models included H2O and CO2 ice, with small amounts of nanophase Fe and Fe2O3. Weaker and more spatially scattered absorption features are also found at 4.48, 4.60, and 4.89 μm, although no clear molecular identifications have yet been made. While strongest in the low-albedo deposits, the CO2, hydrocarbon and putative H2 bands vary in strength throughout the icy regions, as do the 4.48-, 4.60- and 4.89-μm bands, suggesting that this background ice is laced with a complex mixture of non-ice compounds.

  1. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz.

  2. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  3. HapMap filter 1.0: a tool to preprocess the HapMap genotypic data for association studies.

    PubMed

    Zhang, Wei; Duan, Shiwei; Dolan, M Eileen

    2008-05-13

    The International HapMap Project provides a resource of genotypic data on single nucleotide polymorphisms (SNPs), which can be used in various association studies to identify the genetic determinants for phenotypic variations. Prior to the association studies, the HapMap dataset should be preprocessed in order to reduce the computation time and control the multiple testing problem. The less informative SNPs including those with very low genotyping rate and SNPs with rare minor allele frequencies to some extent in one or more population are removed. Some research designs only use SNPs in a subset of HapMap cell lines. Although the HapMap website and other association software packages have provided some basic tools for optimizing these datasets, a fast and user-friendly program to generate the output for filtered genotypic data would be beneficial for association studies. Here, we present a flexible, straight-forward bioinformatics program that can be useful in preparing the HapMap genotypic data for association studies by specifying cell lines and two common filtering criteria: minor allele frequencies and genotyping rate. The software was developed for Microsoft Windows and written in C++. The Windows executable and source code in Microsoft Visual C++ are available at Google Code (http://hapmap-filter-v1.googlecode.com/) or upon request. Their distribution is subject to GNU General Public License v3.

  4. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  5. Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption

    NASA Astrophysics Data System (ADS)

    Ghijsen, Michael; Lentsch, Griffin R.; Gioux, Sylvain; Brenner, Matthew; Durkin, Anthony J.; Choi, Bernard; Tromberg, Bruce J.

    2018-03-01

    The tissue metabolic rate of oxygen consumption (tMRO2) is a clinically relevant marker for a number of pathologies including cancer and arterial occlusive disease. We present and validate a noncontact method for quantitatively mapping tMRO2 over a wide, scalable field of view at 16 frames / s. We achieve this by developing a dual-wavelength, near-infrared coherent spatial frequency-domain imaging (cSFDI) system to calculate tissue optical properties (i.e., absorption, μa, and reduced scattering, μs‧, parameters) as well as the speckle flow index (SFI) at every pixel. Images of tissue oxy- and deoxyhemoglobin concentration ( [ HbO2 ] and [HHb]) are calculated from optical properties and combined with SFI to calculate tMRO2. We validate the system using a series of yeast-hemoglobin tissue-simulating phantoms and conduct in vivo tests in humans using arterial occlusions that demonstrate sensitivity to tissue metabolic oxygen debt and its repayment. Finally, we image the impact of cyanide exposure and toxicity reversal in an in vivo rabbit model showing clear instances of mitochondrial uncoupling and significantly diminished tMRO2. We conclude that dual-wavelength cSFDI provides rapid, quantitative, wide-field mapping of tMRO2 that can reveal unique spatial and temporal dynamics relevant to tissue pathology and viability.

  6. How does creating a concept map affect item-specific encoding?

    PubMed

    Grimaldi, Phillip J; Poston, Laurel; Karpicke, Jeffrey D

    2015-07-01

    Concept mapping has become a popular learning tool. However, the processes underlying the task are poorly understood. In the present study, we examined the effect of creating a concept map on the processing of item-specific information. In 2 experiments, subjects learned categorized or ad hoc word lists by making pleasantness ratings, sorting words into categories, or creating a concept map. Memory was tested using a free recall test and a recognition memory test, which is considered to be especially sensitive to item-specific processing. Typically, tasks that promote item-specific processing enhance free recall of categorized lists, relative to category sorting. Concept mapping resulted in lower recall performance than both the pleasantness rating and category sorting condition for categorized words. Moreover, concept mapping resulted in lower recognition memory performance than the other 2 tasks. These results converge on the conclusion that creating a concept map disrupts the processing of item-specific information. (c) 2015 APA, all rights reserved.

  7. Development of one-minute rain-rate and rain-attenuation contour maps for satellite propagation system planning in a subtropical country: South Africa

    NASA Astrophysics Data System (ADS)

    Ojo, J. S.; Owolawi, P. A.

    2014-10-01

    Millimeter and microwave system design at higher frequencies require as input a 1-min rain-rate cumulative distribution function for estimating the level of degradation that can be encountered at such frequency bands. Owing to the lack of 1-min rain-rate data in South Africa and the availability of 5-min and hourly rainfall data, we have used rain-rate conversion models and the refined Moupfouma model to convert the available data into 1-min rain-rate statistics. The attenuation caused by these rain rates was predicted using the International Telecommunication Union (ITU) recommendations model. The Kriging interpolation method was used to draw contour maps over different percentages of time for spatial interpolation of rain-rate values into a regular grid in order to obtain a highly consistent and predictable inter-gauge rain-rate variation over South Africa. The present results will be useful for system designers of modern broadband wireless access (BWA) and high-density cell-based Ku/Ka, Q/V band satellite systems, over the desired area of coverage in order to determine the appropriate effective isotropically radiated power (EIRP) and receiver characteristics of this region.

  8. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    PubMed

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.

  9. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  10. Increasing influenza vaccination rates via low cost messaging interventions.

    PubMed

    Baskin, Ernest

    2018-01-01

    This article tests low cost interventions to increase influenza vaccination rates. By changing an email announcement sent out to employees in 2014 (n > 30,000), the following interventions are tested: incentives, attention to the negative impacts of not get vaccinated, and showing a map to the vaccination centers at the end of the email announcement. Only the map condition helped increase influenza vaccination rates. The use of low-cost interventions can improve influenza vaccination rates though not all interventions work as well as others in the field. In particular, while including maps helped increase vaccination rates, other factors such as negative impact reminders and incentives, which previous studies have found to be successful in the laboratory, did not.

  11. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  12. Mariner 9 mapping science sequence design.

    NASA Technical Reports Server (NTRS)

    Goldman, A. M., Jr.

    1973-01-01

    The primary mission of Mariner 9 was to map the Martian surface. This paper discusses in detail the design of the mapping science sequences which were executed by the spacecraft in sixty days and during which over eighty percent of the surface was photographed. The sequence design was influenced by many factors: experimenter scientific objectives, instrument capabilities, spacecraft capabilities, orbit characteristics, and data return rates, which are illustrated graphically. Typical orbits are depicted for each of the three different mapping phases lasting twenty days. Examples of typical orbital sequence plans prepared daily during mission operations are given.

  13. High-definition X-ray fluorescence elemental mapping of paintings.

    PubMed

    Howard, Daryl L; de Jonge, Martin D; Lau, Deborah; Hay, David; Varcoe-Cocks, Michael; Ryan, Chris G; Kirkham, Robin; Moorhead, Gareth; Paterson, David; Thurrowgood, David

    2012-04-03

    A historical self-portrait painted by Sir Arthur Streeton (1867-1943) has been studied with fast-scanning X-ray fluorescence microscopy using synchrotron radiation. One of the technique's unique strengths is the ability to reveal metal distributions in the pigments of underlying brushstrokes, thus providing information critical to the interpretation of a painting. We have applied the nondestructive technique with the event-mode Maia X-ray detector, which has the capability to record elemental maps at megapixels per hour with the full X-ray fluorescence spectrum collected per pixel. The painting poses a difficult challenge to conventional X-ray analysis, because it was completely obscured with heavy brushstrokes of highly X-ray absorptive lead white paint (2PbCO(3)·Pb(OH)(2)) by the artist, making it an excellent candidate for the application of the synchrotron-based technique. The 25 megapixel elemental maps were successfully observed through the lead white paint across the 200 × 300 mm(2) scan area. The sweeping brushstrokes of the lead white overpaint contributed significant detrimental structure to the elemental maps. A corrective procedure was devised to enhance the visualization of the elemental maps by using the elastic X-ray scatter as a proxy for the lead white overpaint. We foresee the technique applied to the most demanding of culturally significant artworks where conventional analytical methods are inadequate.

  14. Mapping the Views of Adolescent Health Stakeholders.

    PubMed

    Ewan, Lindsay A; McLinden, Daniel; Biro, Frank; DeJonckheere, Melissa; Vaughn, Lisa M

    2016-01-01

    Health research that includes youth and family stakeholders increases the contextual relevance of findings, which can benefit both the researchers and stakeholders involved. The goal of this study was to identify youth and family adolescent health priorities and to explore strategies to address these concerns. Stakeholders identified important adolescent health concerns, perceptions of which were then explored using concept mapping. Concept mapping is a mixed-method participatory research approach that invites input from various stakeholders. In response to prompts, stakeholders suggested ways to address the identified health conditions. Adolescent participants then sorted the statements into groups based on content similarity and rated the statements for importance and feasibility. Multidimensional scaling and cluster analysis were then applied to create the concept maps. Stakeholders identified sexually transmitted infections (STIs) and obesity as the health conditions they considered most important. The concept map for STIs identified 7 clusters: General sex education, support and empowerment, testing and treatment, community involvement and awareness, prevention and protection, parental involvement in sex education, and media. The obesity concept map portrayed 8 clusters: Healthy food choices, obesity education, support systems, clinical and community involvement, community support for exercise, physical activity, nutrition support, and nutrition education. Ratings were generally higher for importance than for feasibility. The concept maps demonstrate stakeholder-driven ideas about approaches to target STIs and obesity in this context. Strategies at multiple social ecological levels were emphasized. The concept maps can be used to generate discussion regarding these topics and to identify interventions. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  15. A comprehensive map of the porcine genome.

    PubMed

    Rohrer, G A; Alexander, L J; Hu, Z; Smith, T P; Keele, J W; Beattie, C W

    1996-05-01

    We report the highest density genetic linkage map for a livestock species produced to date. Three published maps for Sus scrofa were merged by genotyping virtually every publicly available microsatellite across a single reference population to yield 1042 linked loci, 536 of which are novel assignments, spanning 2286.2 cM (average interval 2.23 cM) in 19 linkage groups (18 autosomal and X chromosomes, n = 19). Linkage groups were constructed de novo and mapped by locus content to avoid propagation of errors in older genotypes. The physical and genetic maps were integrated with 123 informative loci assigned previously by fluorescence in situ hybridization (FISH). Fourteen linkage groups span the entire length of each chromosome. Coverage of chromosomes 11, 12, 15, and 18 will be evaluated as more markers are physically assigned. Marker-deficient regions were identified only on 11q1.7-qter and 14 cen-q1.2. Recombination rates (cM/Mbp) varied between and within chromosomes. Short chromosomal arms recombined at higher rates than long arms, and recombination was more frequent in telomeric regions than in pericentric regions. The high-resolution comprehensive map has the marker density needed to identify quantitative trait loci (QTL), implement marker-assisted selection or introgression and YAC contig construction or chromosomal microdissection.

  16. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  17. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE PAGES

    Ally, Moonis Raza; Sharma, Vishaldeep

    2017-11-02

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  18. Variability of absorption heat pump efficiency for domestic water heating and space heating based on time-weighted bin analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza; Sharma, Vishaldeep

    Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less

  19. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    NASA Astrophysics Data System (ADS)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  20. Construction of Ultradense Linkage Maps with Lep-MAP2: Stickleback F2 Recombinant Crosses as an Example

    PubMed Central

    Rastas, Pasi; Calboli, Federico C. F.; Guo, Baocheng; Shikano, Takahito; Merilä, Juha

    2016-01-01

    High-density linkage maps are important tools for genome biology and evolutionary genetics by quantifying the extent of recombination, linkage disequilibrium, and chromosomal rearrangements across chromosomes, sexes, and populations. They provide one of the best ways to validate and refine de novo genome assemblies, with the power to identify errors in assemblies increasing with marker density. However, assembly of high-density linkage maps is still challenging due to software limitations. We describe Lep-MAP2, a software for ultradense genome-wide linkage map construction. Lep-MAP2 can handle various family structures and can account for achiasmatic meiosis to gain linkage map accuracy. Simulations show that Lep-MAP2 outperforms other available mapping software both in computational efficiency and accuracy. When applied to two large F2-generation recombinant crosses between two nine-spined stickleback (Pungitius pungitius) populations, it produced two high-density (∼6 markers/cM) linkage maps containing 18,691 and 20,054 single nucleotide polymorphisms. The two maps showed a high degree of synteny, but female maps were 1.5–2 times longer than male maps in all linkage groups, suggesting genome-wide recombination suppression in males. Comparison with the genome sequence of the three-spined stickleback (Gasterosteus aculeatus) revealed a high degree of interspecific synteny with a low frequency (<5%) of interchromosomal rearrangements. However, a fairly large (ca. 10 Mb) translocation from autosome to sex chromosome was detected in both maps. These results illustrate the utility and novel features of Lep-MAP2 in assembling high-density linkage maps, and their usefulness in revealing evolutionarily interesting properties of genomes, such as strong genome-wide sex bias in recombination rates. PMID:26668116

  1. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  2. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Mckay, C. P.; Ackerman, T. P.; Santhanam, K.

    1989-01-01

    The solution of the generalized two-stream approximation for radiative transfer in homogeneous multiple scattering atmospheres is extended to vertically inhomogeneous atmospheres in a manner which is numerically stable and computationally efficient. It is shown that solar energy deposition rates, photolysis rates, and infrared cooling rates all may be calculated with the simple modifications of a single algorithm. The accuracy of the algorithm is generally better than 10 percent, so that other uncertainties, such as in absorption coefficients, may often dominate the error in calculation of the quantities of interest to atmospheric studies.

  3. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid.

    PubMed

    Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M

    2014-03-15

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored. Also, water retention under mechanical strain is usually not reported. Cassava starch was used since it has considerable economic potential in Asia. The gelatinized starch was grafted with acrylic acid and Fenton's initiator and crosslinked with N,N'-methylenebisacrylamide (MBAM). Besides a good initial absorption capacity, the product could retain up to 63 g H2O/g under severe suction. The material thus combines a good absorption capacity with sufficient gel strength. The mathematical analysis of the absorption kinetics shows that at conditions of practical interest, the rate of water penetration into the gel is determined by polymer chain relaxations and not by osmotic driven diffusion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  5. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE PAGES

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua; ...

    2017-11-30

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  6. Single-ended retroreflection sensors for absorption spectroscopy in high-temperature environments

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Wang, Ze; Neal, Nicholas J.; Rothamer, David A.; Sanders, Scott T.

    2017-04-01

    Novel single-ended sensor arrangements are demonstrated for in situ absorption spectroscopy in combustion and related test articles. A single-ended optical access technique based on back-reflection from a polished test article surface is presented. H2O vapor absorption spectra were measured at 10 kHz in a homogeneous-charge compression-ignition engine using a sensor of this design collecting back-reflection from a polished piston surface. The measured spectra show promise for high-repetition-rate measurements in practical combustion devices. A second sensor was demonstrated based on a modification to this optical access technique. The sensor incorporates a nickel retroreflective surface as back-reflector to reduce sensitivity to beam steering and misalignment. In a propane-fired furnace, H2O vapor absorption spectra were obtained over the range 7315-7550 cm- 1 at atmospheric pressure and temperatures up to 775 K at 20 Hz using an external-cavity diode laser spectrometer. Gas properties of temperature and mole fraction were obtained from this furnace data using a band-shape spectral fitting technique. The temperature accuracy of the band-shape fitting was demonstrated to be ±1.3 K for furnace measurements at atmospheric pressure. These results should extend the range of applications in which absorption spectroscopy sensors are attractive candidates.

  7. Detection of H I absorption in the dwarf galaxy Haro 11

    NASA Astrophysics Data System (ADS)

    MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie

    2014-02-01

    We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).

  8. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  9. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  10. Duodenal Ca2+ absorption is not stimulated by calcitriol during early postnatal development of pigs.

    PubMed

    Schroeder, B; Dahl, M R; Breves, G

    1998-08-01

    The role of calcitriol in stimulating intestinal active Ca2+ absorption during postnatal life was studied in newborn, suckling, and weaned control (Con) piglets and piglets suffering from inherited calcitriol deficiency (Def piglets). In addition, a group of Def piglets was treated with vitamin D3 (Def-D3 piglets), which normalized plasma calcitriol levels. Regardless of age, duodenal calbindin-D9k concentrations ranged between 1,839 and 2,846 microg/g mucosa in Con piglets, between 821 and 1,219 microg/g mucosa in Def piglets, and between 2,960 and 3,692 microg/g mucosa in Def-D3 animals. In weaned animals, active Ca2+ absorption as calculated from in vitro 45Ca2+ flux rate measurements in Ussing chambers could be related to calbindin-D9k levels. Thus active Ca2+ absorption was completely absent in Def animals but was reconstituted in Def-D3 animals. In contrast, in newborn Def piglets active Ca2+ absorption functioned normally despite the low plasma calcitriol and mucosal calbindin-D9k levels and could not be affected by treatment with vitamin D3. Similar results were obtained from suckling Def piglets. The microtubule-disrupting agent colchicine caused significant inhibition of transepithelial net Ca2+ absorption in duodenal epithelia from newborn piglets without exerting an effect in suckling and weaned animals. Colchicine had no effect on Ca2+ uptake across the brush border membrane of mucosal enterocytes or on glucose-dependent electrogenic net ion flux rates in duodenal preparations from newborn Con piglets. In conclusion, our findings reveal intestinal active Ca2+ absorption during early postnatal life of pigs that involves calcitriol-independent mechanisms and that may include intact microtubule actions.

  11. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  12. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  13. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  14. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets.

    PubMed

    Qumar, Muhammad; Khiaosa-Ard, Ratchaneewan; Pourazad, Poulad; Wetzels, Stefanie U; Klevenhusen, Fenja; Kandler, Wolfgang; Aschenbach, Jörg R; Zebeli, Qendrim

    2016-01-01

    Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of

  15. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets

    PubMed Central

    Qumar, Muhammad; Khiaosa-ard, Ratchaneewan; Pourazad, Poulad; Wetzels, Stefanie U.; Klevenhusen, Fenja; Kandler, Wolfgang; Aschenbach, Jörg R.; Zebeli, Qendrim

    2016-01-01

    Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of

  16. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.

    1995-01-01

    One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.

  17. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  18. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...

  19. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...

  20. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. [Statutory Provisions] The location and the electrical rating of all stationary electric...

  1. Developing an Erosion Rate Map for Myanmar Using USLE, GIS and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Emtehani, Sobhan; Rutten, Martine

    2017-04-01

    Predicting erosion and estimating sediment loads in rivers are of major tasks in water resources system planning and management. In Myanmar erosion and collapse of river banks is common during the rainy season and riverine communities are frequently forced to relocate as their homes are dangerously close to the disintegrating river banks (Mann 2013). Myanmar is one of climatically most diverse countries located in Southeast Asia, where sheet, rill, and gully erosion affect crop yields as well as livelihood strategies of many people (Htwe, Brinkmann et al. 2015). In Myanmar, soil erosion measurement and monitoring approaches are increasingly important for land management planning to effectively avoid erosion and soil degradation, but such monitoring is limited by the availability of data and budgetary constraints. Therefore, spatial modeling approaches using GIS and remote sensing techniques play an important role for rapid risk assessments (Htwe 2016). In this study ''Model Builder'' tool in ArcGIS was used to create a model which generates an erosion rate map using Universal Soil Loss Equation (USLE). USLE is the product of five factors: rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), crop management factor (C), and support practice factor (P). Input data files for this model were acquired from online open source databases. Precipitation data was downloaded from Tropical Rainfall Measuring Mission (TRMM) for calculation of R factor. The resolution of TRMM data is very coarse (0.25 degree × 0.25 degree), therefore it was spatially downscaled by developing a relation between TRMM and Normalized Difference Vegetation Index (NDVI) using regression analysis method. Soil maps depicting percentages of sand, clay and silt were obtained from soilgrids website for calculation of K factor. Digital Elevation Model (DEM) with resolution of 90 meters was taken from Shuttle Radar Topography Mission (SRTM) for calculation of LS

  2. [Experimental study and correction of the absorption and enhancement effect between Ti, V and Fe].

    PubMed

    Tuo, Xian-Guo; Mu, Ke-Liang; Li, Zhe; Wang, Hong-Hui; Luo, Hui; Yang, Jian-Bo

    2009-11-01

    The absorption and enhancement effects in X-ray fluorescence analysis for Ti, V and Fe elements were studied in the present paper. Three bogus duality systems of Ti-V/Ti-Fe/V-Fe samples were confected and measured by X-ray fluorescence analysis technique using HPGe semiconductor detector, and the relation curve between unitary coefficient (R(K)) of element count rate and element content (W(K)) were obtained after the experiment. Having analyzed the degree of absorption and enhancement effect between every two elements, the authors get the result, and that is the absorption and enhancement effect between Ti and V is relatively distinctness, while it's not so distinctness in Ti-Fe and V-Fe. After that, a mathematics correction method of exponential fitting was used to fit the R(K)-W(K) curve and get a function equation of X-ray fluorescence count rate and content. Three groups of Ti-V duality samples were used to test the fitting method and the relative errors of Ti and V were less than 0.2% as compared to the actual results.

  3. Covariance mapping techniques

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  4. Adaptive training of cortical feature maps for a robot sensorimotor controller.

    PubMed

    Adams, Samantha V; Wennekers, Thomas; Denham, Sue; Culverhouse, Phil F

    2013-08-01

    This work investigates self-organising cortical feature maps (SOFMs) based upon the Kohonen Self-Organising Map (SOM) but implemented with spiking neural networks. In future work, the feature maps are intended as the basis for a sensorimotor controller for an autonomous humanoid robot. Traditional SOM methods require some modifications to be useful for autonomous robotic applications. Ideally the map training process should be self-regulating and not require predefined training files or the usual SOM parameter reduction schedules. It would also be desirable if the organised map had some flexibility to accommodate new information whilst preserving previous learnt patterns. Here methods are described which have been used to develop a cortical motor map training system which goes some way towards addressing these issues. The work is presented under the general term 'Adaptive Plasticity' and the main contribution is the development of a 'plasticity resource' (PR) which is modelled as a global parameter which expresses the rate of map development and is related directly to learning on the afferent (input) connections. The PR is used to control map training in place of a traditional learning rate parameter. In conjunction with the PR, random generation of inputs from a set of exemplar patterns is used rather than predefined datasets and enables maps to be trained without deciding in advance how much data is required. An added benefit of the PR is that, unlike a traditional learning rate, it can increase as well as decrease in response to the demands of the input and so allows the map to accommodate new information when the inputs are changed during training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  6. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging.

    PubMed

    Thorat, Nanasaheb D; Bohara, Raghvendra A; Malgras, Victor; Tofail, Syed A M; Ahamad, Tansir; Alshehri, Saad M; Wu, Kevin C-W; Yamauchi, Yusuke

    2016-06-15

    Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs.

  7. The "Chocolate Experiment"--A Demonstration of Radiation Absorption by Different Colored Surfaces

    ERIC Educational Resources Information Center

    Fung, Dennis

    2015-01-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using…

  8. Coupling between absorption and scattering in disordered colloids

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.

    We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.

  9. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map.

    PubMed

    Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie

    2007-01-01

    The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.

  10. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

    PubMed

    Murphy, Sean; Huang, Libai

    2013-04-10

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM-AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films.

  11. Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.

    PubMed

    Kao, Joseph P Y; Muralidharan, Sukumaran

    2013-01-01

    Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter.

  12. Absorption from a mixture of seventeen free amino acids by the isolated small intestine of the rat.

    PubMed Central

    Gardner, M L

    1976-01-01

    Absorption and secretion from a mixture of seventeen free amino acids has been measured in isolated perfused rat small intestine. 2. The absorption rate of an amino acid from this mixture is proportional to its concentration in the perfusate and independent of its chemical constitution. The constant of proportionality is the same as that previously observed when the perfusate contained peptides as well as amino acids. 3. Amino acids are concentrated, on average, sixfold during passage across the mucosa, and the free amino acid composition of the secretion into the tissue fluid is very similar to that of the luminal perfusate. 4. Peptides do not appear to be added to the tissue fluid during absorption of free amino acids. 5. It is concluded that the mechanisms for absorption of free amino acids are in general independent of those for absorption of peptides. PMID:1255532

  13. Wide area methane emissions mapping with airborne IPDA lidar

    NASA Astrophysics Data System (ADS)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  14. Glucose absorption in acute peritoneal dialysis.

    PubMed

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  15. Scoping of Flood Hazard Mapping Needs for Belknap County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle DTM...Agriculture Imag- ery Program (NAIP) color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data...found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map accuracy. NH GRANIT is

  16. Scoping of Flood Hazard Mapping Needs for Coos County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    Technical Partner DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle...color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data, E911 data, Digital Elevation...the feature types found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map

  17. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate.

    PubMed

    Jung, Hyuck Jun; Ahn, Hye In; Park, Ji Yeon; Ho, Myoung Jin; Lee, Dae Ro; Cho, Ha Ra; Park, Jun Seo; Choi, Yong Seok; Kang, Myung Joo

    2016-02-01

    A novel surfactant-incorporated hydroxypropyl methylcellulose (HPMC) solid dispersion (SD) system was constructed in order to facilitate the release rate and oral absorption of tacrolimus (FK506), a poorly water-soluble immunosuppressant. Several emulsifiers including sodium lauryl sulfate (SLS), as drug release promotors, were employed with HPMC to fabricate SD using the solvent wetting method. The solid state characteristics using differential scanning calorimetry and X-ray powder diffraction, revealed that FK506 was molecularly distributed within all dispersions in amorphous form. The dissolution rates of FK506 in SLS-incorporated SDs were much higher than those in SDs prepared with HPMC alone, and even with stearoyl polyoxyl-32 glycerides or tocopheryl polyethylene glycol 1000 succinate. In particular, the greatest dissolution enhancement was obtained from the SD consisting of the drug, HPMC, and SLS in a weight ratio of 1:1:3, providing a 50-fold higher drug concentration within 15 min, compared with HPMC SD. In vivo absorption study in rats demonstrates that the optimized formula remarkably increased the oral absorption of FK506, providing about 4.0-fold greater bioavailability (p<0.05) compared with the marketed product (Prograf®, Astellas Pharma). These data suggest that a novel SLS/HPMC SD may be an advantageous dosage form of FK506, boosting the dissolution and absorption in gastrointestinal tract. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. CO/sub 2/ absorption into aqueous MDEA and MDEA/MEA solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchfield, J.; Rochelle, G.T.

    1987-01-01

    The rate of absorption of CO/sub 2/ into 2 molal MDEA was measured by following solution composition in a stirred-cell batch reactor. The conditions investigated were 9.5 - 62/sup 0/C at a nominal CO/sub 2/ pressure of 1 atm. The data were modelled with a combined mass transfer and equilibrium model which treated the reaction of CO/sub 2/ with MDEA as second order and reversible, rather than pseudo-first order. The resulting activation energy was 13.7 kcal/gmol, and the rate constant at 30.5/sup 0/C was 4.0 (Ms)/sup -1/. The assumption of pseudo-first order conditions was found to reduce the apparent activationmore » energy to approximately 9 kcal/gmol. CO/sub 2/ absorption into 1.36 molal MDEA/0.61 molal MEA was studied at 31/sup 0/C. The experimental data were predicted better by a mass transfer model based on a shuttle mechanism than by one with two parallel reactions.« less

  19. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    instrumental uncertainties related to our FP-RF experiment proves a total uncertainty of the OH reaction rate constant to be as small as ca. 2-3%. The high precision of kinetic measurements allows reliable determination of weak temperature dependences of the rate constants and clear resolution of the curvature of the Arrhenius plots for the OH reaction rate constants of various compounds. The results of OH reaction rate constant determinations between 220 K and 370 K will be presented. Similarly, the accuracy of UV and IR absorption measurements will be highlighted to provide an improved basis for atmospheric modeling.

  20. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns.

    PubMed

    Hu, Sen; Liu, Wei-wei; Zhao, Ying; Lin, Zhi-long; Luo, Hong-min; Bai, Xiao-dong; Sheng, Zhi-yong; Zhou, Fang-qiang

    2014-06-01

    To investigate alteration in intestinal absorption during enteral resuscitation with pyruvate-enriched oral rehydration solution (Pyr-ORS) in scalded rats. To compare pyruvate-enriched oral rehydration solution (Pyr-ORS) with World Health Organisation oral rehydration solution (WHO-ORS), 120 rats were randomly divided into 6 groups and 2 subgroups. At 1.5 and 4.5 h after a 35% TBSA scald, the intestinal absorption rate, mucosal blood flow (IMBF), Na(+)-K(+)-ATPase activity and aquaporin-1 (AQP-1) expression were determined (n = 10), respectively. The intestinal Na(+)-K(+)-ATPase activity, AQP-1 expression and IMBF were markedly decreased in scald groups, but they were profoundly preserved by enteral resuscitation with WHO-ORS and further improved significantly with Pyr-ORS at both time points. Na(+)-K+-ATPase activities remained higher in enteral resuscitation with Pyr-ORS (Group SP) than those with WHO-ORS (Group SW) at 4.5 h. AQP-1 and IMBF were significantly greater in Group SP than in Group SW at both time points. Intestinal absorption rates of water and sodium were obviously inhibited in scald groups; however, rates were also significantly preserved in Group SP than in Group SW with an over 20% increment at both time points. The Pyr-ORS may be superior to the standard WHO-ORS in the promotion of intestinal absorption of water and sodium during enteral resuscitation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.