Sample records for absorption skin

  1. Vehicle effects on human stratum corneum absorption and skin penetration.

    PubMed

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  2. Erbium:YAG laser resurfacing increases skin permeability and the risk of excessive absorption of antibiotics and sunscreens: the influence of skin recovery on drug absorption.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Al-Suwayeh, Saleh A; Li, Yi-Ching; Fang, Jia-You

    2012-06-01

    While laser skin resurfacing is expected to result in reduced barrier function and increased risk of drug absorption, the extent of the increment has not yet been systematically investigated. We aimed to establish the skin permeation profiles of tetracycline and sunscreens after exposure to the erbium:yttrium-aluminum-garnet (Er:YAG) laser during postoperative periods. Physiological and histopathological examinations were carried out for 5 days after laser treatment on nude mice. Percutaneous absorption of the permeants was determined by an in vitro Franz cell. Ablation depths varied in reaching the stratum corneum (10 μm, 2.5 J/cm²) to approach the epidermis (25 μm, 6.25 J/cm²) and upper dermis (40 μm, 10 J/cm²). Reepithelialization evaluated by transepidermal water loss was complete within 2-4 days and depended on the ablation depth. Epidermal hyperplasia was observed in the 40-μm-treated group. The laser was sufficient to disrupt the skin barrier and allow the transport of the permeants into and across the skin. The laser fluence was found to play an important role in modulating skin absorption. A 25-μm ablation depth increased tetracycline flux 84-fold. A much smaller enhancement (3.3-fold) was detected for tetracycline accumulation within the skin. The laser with different fluences produced enhancement of oxybenzone skin deposition of 3.4-6.4-fold relative to the untreated group. No penetration across the skin was shown regardless of whether titanium dioxide was applied to intact or laser-treated skin. However, laser resurfacing increased the skin deposition of titanium dioxide from 46 to 109-188 ng/g. Tetracycline absorption had recovered to the level of intact skin after 5 days, while more time was required for oxybenzone absorption. The in vivo skin accumulation and plasma concentration revealed that the laser could increase tetracycline absorption 2-3-fold. The experimental results indicated that clinicians should be cautious when determining the

  3. A Study of the Skin Absorption of Ethylbenzene in Man

    PubMed Central

    Dutkiewicz, Tadeusz; Tyras, Halina

    1967-01-01

    The absorption of ethylbenzene through the skin of the hand and the forearm in men was investigated experimentally. Both the absorption of liquid ethylbenzene and the absorption from aqueous solutions were studied. The rate of absorption of liquid ethylbenzene was 22 to 33 mg./cm.2/hr, and the rates from aqueous solutions were 118 and 215 μg./cm.2/hr from mean concentrations of 112 and 156 mg./litre. The mandelic acid excreted in urine was equivalent to about 4·6% of the absorbed dose—much less than after lung absorption. Urinary mandelic acid does not provide a reliable index of absorption when there is simultaneous skin and lung exposure. PMID:6073092

  4. Combination strategies for enhancing transdermal absorption of sumatriptan through skin.

    PubMed

    Femenía-Font, A; Balaguer-Fernández, C; Merino, V; López-Castellano, A

    2006-10-12

    The aim of the present work was to characterize in vitro sumatriptan transdermal absorption through human skin and to investigate the effect of chemical enhancers and iontophoresis applied both individually and in combination. A secondary objective was to compare the results obtained with those in porcine skin under the same conditions, in order to characterize the relationship between the two skin models and validate the porcine model for further research use. Transdermal flux of sumatriptan was determined in different situations: (a) after pre-treatment of human skin with ethanol, Azone (1-dodecyl-azacycloheptan-2-one), polyethylene glycol 600 and R-(+)-limonene, (b) under iontophoresis application (0.25 and 0.50 mA/cm(2)) and (c) combining chemical pre-treatment and iontophoresis at 0.50 mA/cm(2) current density. All the strategies applied enhance sumatriptan transdermal absorption. A linear relationship between the fluxes in the two skin models in the different conditions assayed can be established. The combination of both strategies, Azone and iontophoresis, proved to be the most effective of the techniques for enhancing the transdermal absorption of sumatriptan. The flux obtained with porcine skin in vitro is approximately double that obtained in human skin.

  5. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: Significance of the skin reservoir and prediction of systemic absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yourick, Jeffrey J.; Jung, Connie T.; Bronaugh, Robert L.

    2008-08-15

    The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing {sup 3}H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose.more » In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h

  6. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    NASA Astrophysics Data System (ADS)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  7. Near infrared laser penetration and absorption in human skin

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  8. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  9. [In vitro percutaneous absorption of chromium powder and the effect of skin cleanser].

    PubMed

    D'Agostin, F; Crosera, M; Adami, G; Malvestio, A; Rosani, R; Bovenzi, M; Maina, G; Filon, F Larese

    2007-01-01

    Occupational chromium dermatitis occurs frequently among cement and metal workers, workers dealing with leather tanning and employees in the ceramic industry. The present study, using an in-vitro system, evaluated percutaneous absorption of chromium powder and the effect of rapid skin decontamination with a common detergent. Experiments were performed using the Franz diffusion cell method with human skin. Physiological solution was used as receiving phase and a suspension of chromium powder in synthetic sweat was used as donor phase. The tests were performed without or with decontamination using the cleanser 30 minutes after the start of exposure. The amount of chromium permeated through the skin was analysed by Inductively Coupled Plasma Atomic Emission Spectroscopy and Electro Thermal Atomic Absorption Spectroscopy. Speciation analysis and measurements of chromium skin content were also performed. We calculated a permeation flux of 0.843 +/- 0.25 ng cm(-2) h(-1) and a lag time of 1.1 +/- 0.7 h. The cleaning procedure significantly increased chromium skin content, whereas skin passage was not increased. These results showed that chromium powder can pass through the skin and that skin decontamination did not decrease skin absorption. Therefore, it is necessary to prevent skin contamination when using toxic agents.

  10. The risk of hydroquinone and sunscreen over-absorption via photodamaged skin is not greater in senescent skin as compared to young skin: nude mouse as an animal model.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Shih, Hui-Chi; Fang, Jia-You

    2014-08-25

    Intrinsic aging and photoaging modify skin structure and components, which subsequently change percutaneous absorption of topically applied permeants. The purpose of this study was to systematically evaluate drug/sunscreen permeation via young and senescent skin irradiated by ultraviolet (UV) light. Both young and senescent nude mice were subjected to UVA (10 J/cm(2)) and/or UVB radiation (175 mJ/cm(2)). Physiological parameters, immunohistology, and immunoblotting were employed to examine the aged skin. Hydroquinone and sunscreen permeation was determined by in vitro Franz cell. In vivo skin absorption was documented using a hydrophilic dye, rhodamine 123 (log P=-0.4), as a permeant. UVA exposure induced cyclooxygenase (COX)-2 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) upregulation. Epidermal tight junction (TJ) were degraded by UVA. UVB increased transepidermal water loss (TEWL) from 13 to 24 g/m(2)/h. Hyperplasia and inflammation, but not loss of TJ, were also observed in UVB-treated skin. UVA+UVB- and UVA-irradiated skin demonstrated similar changes in histology and biomarkers. UVA+UVB or UVA exposure increased hydroquinone flux five-fold. A negligible alteration of hydroquinone permeation was shown with UVB exposure. Hydroquinone exhibited a lower penetration through senescent skin than young skin. Both UVA and UVB produced enhancement of oxybenzone flux and skin uptake. However, the amount of increase was less than that of hydroquinone delivery. Photoaging did not augment skin absorption of sunscreens with higher lipophilicity, including avobenzone and ZnO. Exposure to UVA generally increased follicular entrance of these permeants, which showed two- to three-fold greater follicular uptake compared to the untreated group. Photoaging had less impact on drug/sunscreen absorption with more lipophilic permeants. Percutaneous absorption did not increase in skin subjected to both intrinsic and extrinsic aging. Copyright © 2014 Elsevier

  11. P-Glycoprotein in skin contributes to transdermal absorption of topical corticosteroids.

    PubMed

    Hashimoto, Naoto; Nakamichi, Noritaka; Yamazaki, Erina; Oikawa, Masashi; Masuo, Yusuke; Schinkel, Alfred H; Kato, Yukio

    2017-04-15

    ATP binding cassette transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed in skin, but their involvement in transdermal absorption of clinically used drugs remains unknown. Here, we examined their role in transdermal absorption of corticosteroids. Skin and plasma concentrations of dexamethasone after dermal application were reduced in P-gp and BCRP triple-knockout (Mdr1a/1b/Bcrp -/- ) mice. The skin concentration in Mdr1a/1b/Bcrp -/- mice was reduced in the dermis, but not in the epidermis, indicating that functional expression of these transporters in skin is compartmentalized. Involvement of these transporters in dermal transport of dexamethasone was also supported by the observation of a higher epidermal concentration in Mdr1a/1b/Bcrp -/- than wild-type mice during intravenous infusion. Transdermal absorption after dermal application of prednisolone, but not methylprednisolone or ethinyl estradiol, was also lower in Mdr1a/1b/Bcrp -/- than in wild-type mice. Transport studies in epithelial cell lines transfected with P-gp or BCRP showed that dexamethasone and prednisolone are substrates of P-gp, but are minimally transported by BCRP. Thus, our findings suggest that P-gp is involved in transdermal absorption of at least some corticosteroids in vivo. P-gp might be available as a target for inhibition in order to deliver topically applied drugs and cosmetics in a manner that minimizes systemic exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sensitivity of light interaction computer model to the absorption properties of skin

    NASA Astrophysics Data System (ADS)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  13. Ex vivo skin absorption of terpenes from Vicks VapoRub ointment.

    PubMed

    Cal, Krzysztof; Sopala, Monika

    2008-08-01

    The pharmaceutical market offers a wide range of inhalant drug products applied on the skin that contain essential oils and/or their isolated compounds, i.e. terpenes. Because there are few data concerning the skin penetration of terpenes, especially from complex carriers, the goal of this study was to determine the ex vivo skin absorption kinetics of chosen terpenes, namely eucalyptol, menthol, camphor, alpha-pinene, and beta-pinene, from the product Vicks VapoRub. Human cadaver skin was placed in a flow-through diffusion chamber and the product was applied for 15, 30, and 60 min. After the application time the skin was separated into layers using a tape-stripping technique: three fractions of stratum corneum and epidermis with dermis, and terpenes amounts in the samples were determined by gas-chromatography. The investigated terpenes showed different absorption characteristics related to their physicochemical properties and did not permeate through the skin into the acceptor fluid. Eucalyptol had the largest total accumulation in the stratum corneum and in the epidermis with dermis, while alpha-pinene penetrated into the skin in the smallest amount. The short time in which saturation of the stratum corneum with the terpenes occurred and the high accumulation of most of the investigated terpenes in the skin layers proved that these compounds easily penetrate and permeate the stratum corneum and that in vivo they may easily penetrate into the blood circulation.

  14. Human skin absorption of Bis-2-(chloroethyl)sulphide (sulphur mustard) in vitro.

    PubMed

    Chilcott, R P; Jenner, J; Carrick, W; Hotchkiss, S A; Rice, P

    2000-01-01

    The purpose of this study was to measure the absorption and intra-epidermal fate of 35S-radiolabelled sulphur mustard (35SM) in human breast skin in vitro. Skin (full-thickness or heat-separated epidermis) was placed into static diffusion cells and was exposed to droplets of liquid 35SM or saturated 35SM vapour. Amounts of 35SM penetrating the skin were measured from which skin absorption rates were calculated. Unbound radiolabel was washed from the surface, extracted from the skin and analysed to determine the identity of the radiolabelled species in order to measure the extent of hydrolysis of sulphur mustard. Penetration rates of liquid 35SM measured in vitro (71-294 microg cm(-2) h(-1)) were in agreement with those measured previously in vivo using human volunteers (60-240 microg cm(-2) h(-1)). Rates of liquid 35SM skin absorption under occluded, infinite dose conditions were highest through heat-separated epidermal membranes (294+/-58 microg cm(-2) h(-1)) and lowest through full-thickness skin (71+/-14 microg cm(-2) h(-1)). Fluxes of saturated 35SM vapour (110+/-75 microg cm(-2) h(-1)) through heat-separated membranes were similar to those previously measured through human forearm skin in vivo (162 microg cm(-2) h(-1)). Although hydrolysis of 35SM did occur, both on the surface and within the skin, it accounted for only a small percentage of the total applied dose (<2.7+/-1.2%). The difference in total amount of liquid 35SM penetrated between occluded and unoccluded conditions in vitro (79+/-14%) was similar to that lost as vapour from unoccluded skin in vivo (80%). A substantial reservoir of 35SM (14-36% of the applied dose) was measured within heat-separated epidermal membranes for up to 24 h which may have significant implications for the management of personnel exposed to sulphur mustard.

  15. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    EPA Science Inventory

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flowthrough diffusi...

  16. In vitro Dermal Absorption of Hydroquinone: Protocol Validation and Applicability on Illegal Skin-Whitening Cosmetics.

    PubMed

    Desmedt, Bart; Ates, Gamze; Courselle, Patricia; De Beer, Jacques O; Rogiers, Vera; Hendrickx, Benoit; Deconinck, Eric; De Paepe, Kristien

    2016-01-01

    In Europe, hydroquinone is a forbidden cosmetic ingredient. It is, however, still abundantly used because of its effective skin-whitening properties. The question arises as to whether the quantities of hydroquinone used become systemically available and may cause damage to human health. Dermal absorption studies can provide this information. In the EU, dermal absorption has to be assessed in vitro since the Cosmetic Regulation 1223/2009/EC forbids the use of animals. To obtain human-relevant data, a Franz diffusion cell protocol was validated using human skin. The results obtained were comparable to those from a multicentre validation study. The protocol was applied to hydroquinone and the dermal absorption ranged between 31 and 44%, which is within the range of published in vivo human values. This shows that a well-validated in vitro dermal absorption study using human skin provides relevant human data. The validated protocol was used to determine the dermal absorption of illegal skin-whitening cosmetics containing hydroquinone. All samples gave high dermal absorption values, rendering them all unsafe for human health. These results add to our knowledge of illegal cosmetics on the EU market, namely that they exhibit a negative toxicological profile and are likely to induce health problems. © 2017 S. Karger AG, Basel.

  17. IN VITRO DERMAL ABSORPTION OF PYRETHROID PESTICIDES IN RAT AND HUMAN SKIN

    EPA Science Inventory

    Pyrethriods are a class of neurotoxic pesticides and their use may lead to dermal exposure. This study examined the in vitro dermal absorption of pyrethroids in rat and human skin. Dorsal skin removed from adult male LD rats (hair clipped 24 h previously) was dermatomed and mou...

  18. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    PubMed

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael F., E-mail: hughes.michaelf@epa.go; Edwards, Brenda C.

    2010-07-15

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skinmore » and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important

  20. Contaminated soils (II): in vitro dermal absorption of nickel (Ni-63) and mercury (Hg-203) in human skin.

    PubMed

    Moody, Richard P; Joncas, Julie; Richardson, Mark; Petrovic, Sanya; Chu, Ih

    2009-01-01

    Dermal absorption of heavy metal soil contaminants was tested in vitro with chloride salts of radioactive nickel (Ni-63) and mercury (Hg-203). Aqueous soil suspensions, spiked with either Ni-63 or Hg-203, were applied to fresh viable human breast skin tissue in Bronaugh diffusion cells perfused with Hanks HEPES buffered (pH 7.4) receptor containing 4% bovine serum albumin (BSA). Receptor fractions were collected every 6 h for 24 h when skin was soap washed. Tests were conducted concurrently in triplicate with and without soil for each skin specimen. Mean percent dermal absorption including the skin depot for Ni-63 was 1 and 22.8% with and without soil, respectively, while for Hg-203, values of 46.6 and 78.3% were obtained. Excluding the skin depot and considering only absorption in receptor, there was 0.5 and 1.8% absorption of Ni-63 with and without soil, respectively, and 1.5 and 1.4% for Hg-203. The potential bioavailability of the skin depot is discussed in relation to dermal exposure to these metals in contaminated soil.

  1. Dermal absorption behavior of fluorescent molecules in nanoparticles on human and porcine skin models.

    PubMed

    Debotton, Nir; Badihi, Amit; Robinpour, Mano; Enk, Claes D; Benita, Simon

    2017-05-30

    The percutaneous passage of poorly skin absorbed molecules can be improved using nanocarriers, particularly biodegradable polymeric nanospheres (NSs) or nanocapsules (NCs). However, penetration of the encapsulated molecules may be affected by other factors than the nanocarrier properties. To gain insight information on the skin absorption of two fluorescent cargos, DiIC 18 (5) and coumarin-6 were incorporated in NSs or NCs and topically applied on various human and porcine skin samples. 3D imaging techniques suggest that NSs and NCs enhanced deep dermal penetration of both probes similarly, when applied on excised human skin irrespective of the nature of the cargo. However, when ex vivo pig skin was utilized, the cutaneous absorption of DiIC 18 (5) was more pronounced by means of PLGA NCs than NSs. In contrast, PLGA NSs noticeably improved the porcine skin penetration of coumarin-6, as compared to the NCs. Furthermore, the porcine skin results were reproducible when triplicated whereas from various human skin samples, as expected, the results were not sufficiently reproducible and large deviations were observed. The overall findings from this comprehensive comparison emphasize the potential of PLGA NCs or NSs to promote cutaneous bioavailability of encapsulated drugs, exhibiting different physicochemical properties but depending on the nature of the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The use of sweat to monitor lead absorption through the skin.

    PubMed

    Lilley, S G; Florence, T M; Stauber, J L

    1988-10-15

    It is usually assumed that lead can be absorbed through the skin only if it is present as an organolead compound such as tetraethyllead or lead naphthanate. It has been found, however, that finely-powdered lead metal or lead nitrate solution placed on the skin results in rapid absorption of lead, and transport of the metal around the body. The absorbed lead appears in sweat and saliva, but not in blood or urine. The application of 6 mg of lead as 0.5 M lead nitrate to the left arm resulted in an increase in lead concentration in pilocarpine-induced iontophoresis sweat samples taken from the right arm, from an initial value of 15-25 micrograms Pbl-1 to greater than 300 micrograms Pbl-1 after 2 days. Saliva lead increased from 2.5 to 15 micrograms Pbl-1 in the same period. The rate of lead absorption through the skin increases with increased sweating of the skin. Since no measurable increase in blood lead has been found, the lead must be transported in the plasma and rapidly concentrated into the extracellular fluid pool (sweat and saliva), without significant uptake by the erythrocytes, and with a very low transient concentration in the plasma. Workers occupationally exposed to lead have extremely high levels of lead in sweat even though their lead in blood is only moderately elevated. Lead absorbed through the skin may be eliminated via sweat and other extracellular fluids, and hence not be as great a health hazard as ingested lead, but this will need to be proved by further studies.

  3. Predicting human skin absorption of chemicals: development of a novel quantitative structure activity relationship.

    PubMed

    Luo, Wen; Medrek, Sarah; Misra, Jatin; Nohynek, Gerhard J

    2007-02-01

    The objective of this study was to construct and validate a quantitative structure-activity relationship model for skin absorption. Such models are valuable tools for screening and prioritization in safety and efficacy evaluation, and risk assessment of drugs and chemicals. A database of 340 chemicals with percutaneous absorption was assembled. Two models were derived from the training set consisting 306 chemicals (90/10 random split). In addition to the experimental K(ow) values, over 300 2D and 3D atomic and molecular descriptors were analyzed using MDL's QsarIS computer program. Subsequently, the models were validated using both internal (leave-one-out) and external validation (test set) procedures. Using the stepwise regression analysis, three molecular descriptors were determined to have significant statistical correlation with K(p) (R2 = 0.8225): logK(ow), X0 (quantification of both molecular size and the degree of skeletal branching), and SsssCH (count of aromatic carbon groups). In conclusion, two models to estimate skin absorption were developed. When compared to other skin absorption QSAR models in the literature, our model incorporated more chemicals and explored a large number of descriptors. Additionally, our models are reasonably predictive and have met both internal and external statistical validations.

  4. Effect of ionization and vehicle on skin absorption and penetration of azelaic acid.

    PubMed

    Li, Nan; Wu, Xiaohong; Jia, Weibu; Zhang, Michelle C; Tan, Fengping; Zhang, Jerry

    2012-08-01

    The aim of this study is to investigate the effect of ionization and vehicle of topical formulations on skin absorption and penetration of azelaic acid (AZA). In vitro transport of AZA was determined for two topical formulations containing AZA with pH values of 3.9 and 4.9, respectively. FINACEA(®) (15% AZA gel), a US Food and Drug Administration approved drug for treatment of acne and rosacea, was also used for comparison. Release profile and flux of AZA were determined in an in vitro hairless mouse skin model using Franz Diffusion Cell. The data have shown that a higher concentration of AZA is retained in the epidermis/dermis layer and the whole skin for the formulation with pH = 4.9 as compared to that with pH = 3.9 at an active loading level of 2.82 mg/cm(2). In addition, the flux of ionized species of AZA in the pH 4.9 formulation (128.4 ± 35.9 μg/cm(2)/h) is approximately five-fold greater than that in the pH 3.9 formulation (27.7 ± 4.0 μg/cm(2)/h). The results suggest that the ionized AZA penetrates through the skin and accounts for majority of the total flux. This study has demonstrated that the penetration and absorption of AZA show a strong pH- and vehicle-dependency. Solubilization is the rate-limiting step in percutaneous absorption of AZA.

  5. Application of the fiber-optic perfusion fluorometer to absorption and exsorption studies in hairless mouse skin.

    PubMed

    Shackleford, J M; Yielding, K L

    1987-09-01

    This study was undertaken to test the fiber-optic perfusion fluorometer as a direct means of evaluating skin absorption and exsorption in hairless mice. Skin-barrier compromise was accomplished in the absorption experiments by application of dimethyl sulfoxide to the skin surface or by partial removal of the stratum corneum with sticky tape. Absorbed fluorescein was measured easily in unanesthetized control (skin-barrier intact) and experimental mice. Unabsorbed chemical did not fluoresce 15 minutes after application, although it was present on the surface of the skin as a dry powder. The time course of fluorescein elimination from the skin was related to a rapid phase (vascular removal) and a slow phase (reservoir entrapment). In the exsorption experiments the fluorescein was injected intraperitoneally. Back skin on the right side was swabbed with either dimethyl sulfoxide or 1% capsaicin in alcohol prior to the injections, and differences in skin fluorescence on the left (control) and right sides were recorded. One application of dimethyl sulfoxide or capsaicin increased the level of skin exsorption. Three applications of dimethyl sulfoxide almost doubled the amount of exsorbed dye, whereas three applications of the capsaicin inhibited the exsorption process. It was concluded that the fiber-optic perfusion fluorometer provides an excellent technique in support of other methods of investigating the skin.

  6. Percutaneous absorption of aromatic amines in rubber industry workers: impact of impaired skin and skin barrier creams

    PubMed Central

    Korinth, G; Weiss, T; Penkert, S; Schaller, K H; Angerer, J; Drexler, H

    2007-01-01

    Background Several aromatic amines (AA) could cause bladder cancer and are an occupational hygiene problem in the workplace. However, little is known about the percutaneous absorption of chemicals via impaired skin and about the efficacy of skin protection measures to reduce internal exposure. Aims To determine the impact of skin status and of skin protection measures on the internal exposure to AA in workers manufacturing rubber products. Methods 51 workers occupationally exposed to aniline and o‐toluidine were examined. The workplace conditions, risk factors for skin and the use of personal protective equipment were assessed by means of a self‐administered questionnaire. The skin of hands and forearms was clinically examined. Exposure to aniline and o‐toluidine was assessed by ambient air and biological monitoring (analyses of urine samples and of haemoglobin adducts). Results Haemoglobin‐AA‐adduct levels in workers with erythema (73%) were significantly higher (p<0.04) than in workers with healthy skin (mean values: aniline 1150.4 ng/l vs 951.7 ng/l, o‐toluidine 417.9 ng/l vs 118.3 ng/l). The multiple linear regression analysis showed that wearing gloves significantly reduced the internal exposure. A frequent use of skin barrier creams leads to a higher internal exposure of AA (p<0.03). However, the use of skincare creams at the workplace was associated with a reduced internal exposure (p<0.03). From these findings we assume that internal exposure of the workers resulted primarily from the percutaneous uptake. Conclusions The study demonstrates a significantly higher internal exposure to AA in workers with impaired skin compared with workers with healthy skin. Daily wearing of gloves efficiently reduced internal exposure. However, an increased use of skin barrier creams enhances the percutaneous uptake of AA. Skincare creams seem to support skin regeneration and lead to reduced percutaneous uptake. PMID:17182646

  7. Absorption of the nerve agent VX (O-ethyl-S-[2(di-isopropylamino)ethyl] methyl phosphonothioate) through pig, human and guinea pig skin in vitro.

    PubMed

    Dalton, Christopher H; Hattersley, Ian J; Rutter, Stephen J; Chilcott, Robert P

    2006-12-01

    The physico-chemical properties of VX make the skin the most likely route of absorption into the human body. The development of effective medical countermeasures against such percutaneous threat agents relies on the use of appropriate animal models, as the inherent toxicity of nerve agents precludes the use of human volunteers. Previous studies have characterised the mechanism of nerve agent toxicity in rodent models, however, it is generally accepted that one of the most appropriate animal models for human skin absorption is the domestic pig. The purpose of the present study was to measure and compare the skin absorption kinetics of VX in vitro using pig, human and guinea pig skin to highlight any potential species differences in skin permeability. When undiluted VX was applied directly to the skin, the permeability of guinea pig skin was approximately 7-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. When VX diluted with isopropyl alcohol was applied to the skin, the permeability of guinea pig skin was approximately 4-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. From this data it may be inferred that dermatomed, abdominal pig skin is an appropriate model for the human skin absorption of VX.

  8. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption.

    PubMed

    Larese Filon, Francesca; Bello, Dhimiter; Cherrie, John W; Sleeuwenhoek, Anne; Spaan, Suzanne; Brouwer, Derk H

    2016-08-01

    The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. In vivo percutaneous absorption of boric acid, borax, and disodium octaborate tetrahydrate in humans compared to in vitro absorption in human skin from infinite and finite doses.

    PubMed

    Wester, R C; Hui, X; Hartway, T; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-09-01

    Literature from the first half of this century report concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10%, in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percentage dose, with flux and permeability constant (Kp) calculated at 0.009 microgram/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percentage of dose, with flux and Kp calculated at 0.009 microgram/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percentage, with flux and Kp calculated at 0.01 microgram/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. In vitro human skin percentage of doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 micrograms/cm2/h and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05, 0.5, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microliters/cm2 volume. At 2 microliters/cm2 (the in vivo dosing volume), flux decreased some

  10. In vitro percutaneous absorption and metabolism of Bisphenol A (BPA) through fresh human skin.

    PubMed

    Toner, Frank; Allan, Graham; Dimond, Stephen S; Waechter, John M; Beyer, Dieter

    2018-03-01

    Bisphenol A (BPA) is a high production volume compound. It is mainly used as a monomer to make polymers for various applications including food-contact materials. The primary route of exposure to BPA in the general population is through oral intake (EFSA 2015) however, other potential sources of exposure have also been identified, such as dermal contact. In the present study, the percutaneous absorption through human skin has been investigated in an in vitro study according to OECD TG 428 (Skin Absorption: In Vitro Method). In order to investigate potential dermal BPA metabolism during absorption, radiolabelled BPA was applied to fresh, metabolically competent, human skin samples (ring labelled 14 C BPA concentrations tested were 2.4, 12, 60 and 300mg/L). Measured as total radioactivity the mean absorbed dose (receptor compartment) ranged from 1.7-3.6% of the applied doses and the dermal delivery (epidermis+dermis+receptor compartment), sometimes also named bioavailable dose was 16-20% of the applied doses, with the majority of the radioactivity associated with epidermis compared to dermis and receptor fluid. No metabolism was observed in any of the epidermis samples; however some metabolism was observed in dermis and receptor fluid samples with formation of BPA-glucuronide and BPA-sulfate, and some polar metabolites. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajjar, Rachna M.; Kasting, Gerald B., E-mail: Gerald.Kasting@uc.edu

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each {sup 14}C-radiolabed compound were tested — 5, 10, 20, and 40 μL cm{sup −2}, corresponding to specific doses ranging in mass from 5.0 tomore » 63 mg cm{sup −2}. The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, K{sub sc}, and modest changes to the diffusion coefficients, D{sub sc}, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. - Highlights: • Human skin absorption of small doses of VOCs was measured in vitro in a fume hood. • The VOCs tested were ethanol, acetone, benzene and 1,2-dichloroethane. • Fraction of dose absorbed for all compounds at all doses tested was less than 0.3%. • The more aggressive VOCs absorbed at higher

  12. Analysis of absorption and spreading of moisturizer on the microscopic region of the skin surface with near-infrared imaging.

    PubMed

    Arimoto, H; Yanai, M; Egawa, M

    2016-11-01

    Near-infrared (NIR) light with high water absorption enables us to visualize the water content distribution appeared in the superficial skin layer. The light penetration depth with the wavelength of 1920 nm is almost 100 μm from the skin surface. Thus, the water distribution in the stratum corneum can be effectively imaged by detecting the wavelength band around 1920 nm. The aim of this article was to measure the time-lapse behavior of the tiny droplet of the moisturizer spreading on the skin surface by imaging in 1920 nm wavelength band for investigating the correlation with the traditional index of the skin condition such as the water content and transepidermal water loss (TEWL). Experiment is performed with three moisturizer products and seven volunteer subjects. The NIR image is acquired by an originally designed imaging scope equipped with the white light of the strong brightness [super continuum (SC) light], the bandpass filter with the center wavelength of 1920 nm, and the NIR image sensor. A tiny droplet of the moisturizer is put on the surface of the skin and the time-lapse images are saved. Each acquired image is analyzed from a view point of the droplet area and elapsed time for absorption into the skin. The water content and TEWL of all subjects are measured by the conventional electrical method for investigating the relationship with the measured droplet dynamics parameters. Elapsed time for moisturizer droplet to be absorbed into the skin, the droplet area just before absorption for three moisturizer products, skin water contents, and TEWL for seven subjects were measured and correlation coefficients for each parameters were calculated. It was found that the skin with higher water contents or lower TEWL absorbed the moisturizer faster and spreads moisturizer wider. Also absorption and spreading speed depend on moisturizer property (moisturizing or fresh) which is originated from the moisturizer constituents. The correlation values between the

  13. Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages

    NASA Astrophysics Data System (ADS)

    Vilagosh, Zoltan; Lajevardipour, Alireza; Wood, Andrew

    2018-01-01

    Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel "large sheet" simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.

  14. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions.

    PubMed

    Gajjar, Rachna M; Kasting, Gerald B

    2014-11-15

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each (14)C-radiolabed compound were tested - 5, 10, 20, and 40μLcm(-2), corresponding to specific doses ranging in mass from 5.0 to 63mgcm(-2). The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, Ksc, and modest changes to the diffusion coefficients, Dsc, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Modification of fish skin collagen film and absorption property of tannic acid.

    PubMed

    Liu, Haiying; Zhao, Lu; Guo, Shidong; Xia, Yu; Zhou, Peng

    2014-06-01

    Fish collagen is a biomacromolecule material and is usually used as a clarifying agent. However, fish collagen is not recyclable, and sedimentation usually occurs in the clarification process using fish collagen so that the filtration process is inevitable. This work aimed to provide a recyclable modified fish skin collagen film (MFCF) for adsorption of tannic acids. The collagen from channel catfish skin was extracted and used for preparation of the fish skin collagen film (FCF) and MFCF. The result indicated that the mechanical properties of MFCF were improved by addition of 2 ml/L glycerol, 6 ml/L polyvinyl alcohol (PVA) and 2 ml/L glutaraldehyde in 15 g/L collagen solution. As the most important property of adsorption material, the hydroscopicity of MFCF was only 54%, significantly lower than that of FCF (295%). Therefore, MFCF would not collapse in water. The infrared and thermal properties of MFCF were also investigated in this work. Results indicated that, in comparison to FCF, the physical and chemical properties of MFCF had been improved significantly. MFCF had higher shrink temperature (79.3 °C) and it did not collapse in distilled water at normal temperature. Furthermore, absorption and desorption properties of tannic acid were studied. MFCF showed good capability of absorption and desorption of tannic acid, which leaded to the suggestion that MFCF could have potential applications in adsorption material.

  16. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body.

  17. Risk assessment of excess drug and sunscreen absorption via skin with ablative fractional laser resurfacing : optimization of the applied dose for postoperative care.

    PubMed

    Chen, Wei-Yu; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Hung-Hsu; Li, Yi-Ching; Fang, Jia-You

    2013-09-01

    The ablative fractional laser is a new modality used for surgical resurfacing. It is expected that laser treatment can generally deliver drugs into and across the skin, which is toxicologically relevant. The aim of this study was to establish skin absorption characteristics of antibiotics, sunscreens, and macromolecules via laser-treated skin and during postoperative periods. Nude mice were employed as the animal model. The skin received a single irradiation of a fractional CO2 laser, using fluences of 4-10 mJ with spot densities of 100-400 spots/cm(2). In vitro skin permeation using Franz cells was performed. Levels of skin water loss and erythema were evaluated, and histological examinations with staining by hematoxylin and eosin, cyclooxygenase-2, and claudin-1 were carried out. Significant signs of erythema, edema, and scaling of the skin treated with the fractional laser were evident. Inflammatory infiltration and a reduction in tight junctions were also observed. Laser treatment at 6 mJ increased tetracycline and tretinoin fluxes by 70- and 9-fold, respectively. A higher fluence resulted in a greater tetracycline flux, but lower skin deposition. On the other hand, tretinoin skin deposition increased following an increase in the laser fluence. The fractional laser exhibited a negligible effect on modulating oxybenzone absorption. Dextrans with molecular weights of 4 and 10 kDa showed increased fluxes from 0.05 to 11.05 and 38.54 μg/cm(2)/h, respectively. The optimized drug dose for skin treated with the fractional laser was 1/70-1/60 of the regular dose. The skin histology and drug absorption had recovered to a normal status within 2-3 days. Our findings provide the first report on risk assessment of excessive skin absorption after fractional laser resurfacing.

  18. Comparison of light absorption levels with different skin phantoms and the Monte Carlo simulation using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jo, Hang Chan; Kim, Jae Hun; Kim, Dae Yu

    2018-02-01

    Dermatologic patients have various skin characteristics such as skin tone and pigmentation color. However most studies on laser ablation and treatment only considered laser operating conditions like wavelength, output power and pulse duration. The laser ablation arises from photothermal effect by photon energy absorption. Chromophores like melanin exist as the absorber in the skin. In this study, we painted color to mimic chromophores on in-vivo and in-vitro skin models to demonstrate influence on the laser ablation by skin color. Water-based pens were used to paint color. Cross sectional images of the laser ablation were acquired by Fourier-domain optical coherence tomography (Fd-OCT). Light source to make ablation was a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength). Irradiated light energy dose of the laser could not make ablation craters in the control group. However experimental groups showed craters with same irradiation light energy dose. These results show painting on skin increased tissue damage by absorption in painted color without dyeing cells or tissues.

  19. In vitro study of percutaneous absorption of aluminum from antiperspirants through human skin in the Franz™ diffusion cell.

    PubMed

    Pineau, Alain; Guillard, Olivier; Favreau, Frédéric; Marty, Marie-Hélène; Gaudin, Angeline; Vincent, Claire Marie; Marrauld, Annie; Fauconneau, Bernard; Marty, Jean-Paul

    2012-05-01

    Aluminum salts such as aluminum chlorohydrate (ACH) are known for use as an active antiperspirant agent that blocks the secretion of sweat. A local case report of hyperaluminemia in a woman using an aluminum-containing antiperspirant for 4 years raises the problem of transdermal absorption of aluminum (Al). Only a very limited number of studies have shown that the skin is an effective barrier to transdermal uptake of Al. In accordance with our analytical procedure, the aim of this study with an in vitro Franz™ diffusion cell was to measure aluminum uptake from three cosmetic formulations of antiperspirant: the base for an "aerosol" (38.5% of ACH), a "roll-on" emulsion (14.5% ACH), and a "stick" (21.2%), by samples of intact and stripped human skin (5 donors). The Al assays were performed by Zeeman Electrothermal Atomic Absorption Spectrophotometry (ZEAAS). Following contacts lasting 6, 12 and 24h, the Al assays showed only insignificant transdermal absorption of Al (≤0.07% of the quantity of Al deposited) and particularly low cutaneous quantities that varied according to the formulations (1.8 μg/cm² for "aerosol base" and "stick" - 0.5 μg/cm² for the "roll-on"). On stripped skin, for which only the "stick" formulation was tested, the measured uptake was significantly higher (11.50 μg/cm² versus 1.81 μg/cm² for normal skin). These results offer reassurance as regards to the use of antiperspirants for topical application of ACH-containing cosmetic formulations on healthy skin over a limited time span (24h). On the other hand, high transdermal Al uptake on stripped skin should compel antiperspirant manufacturers to proceed with the utmost caution. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Chestnut astringent skin extract, an alpha-amylase inhibitor, retards carbohydrate absorption in rats and humans.

    PubMed

    Tsujita, Takahiro; Takaku, Takeshi; Suzuki, Tsuneo

    2008-02-01

    Inhibitors of carbohydrate-hydrolyzing enzyme play an important role to control postprandial blood glucose levels. In this paper, we investigated the effect of an ethanol extract from chestnut astringent skin (CAS) on alpha-amylase. Chestnut astringent skin extract strongly inhibited human and porcine pancreatic alpha-amylase. We also investigated the effect of CAS extract on carbohydrate absorption in rats and humans. Oral administration of CAS extract to normal rats fed corn starch (2 g/kg body weight), significantly suppressed the increase of blood glucose levels after starch loading in a dose-dependent manner. The effective dose of CAS extract required to achieve 20 and 40% suppression of the rise in blood glucose level was estimated to be 40 and 155 mg/kg body weight, respectively. Chestnut astringent skin extract also suppressed the rise in plasma insulin level and the fall in plasma non-esterified fatty acid level. In the type 2 diabetic rat model, CAS extract significantly suppressed the rise in blood glucose level after starch loading in a dose-dependent manner. Chestnut astringent skin extract also suppressed the rise in plasma glucose level after boiled rice loading in a dose-dependent manner in humans. The amount of CAS extract required to achieve 11 and 23% suppression in the rise in plasma glucose level was 300 and 600 mg/person, respectively. These results suggest that CAS extract retards absorption of carbohydrate and reduces post-prandial hyperglycemia.

  1. Development of a modified in vitro skin absorption method to study the epidermal/dermal disposition of a contact allergen in human skin.

    PubMed

    Pendlington, Ruth U; Minter, Helen J; Stupart, Leanne; MacKay, Cameron; Roper, Clive S; Sanders, David J; Pease, Camilla K

    2008-01-01

    In vitro skin absorption methods exist in Organisation for Economic Co-operation and Development (OECD) guideline form (No. 428) and are used to estimate the degree of systemic penetration of chemicals through skin. More detailed kinetics of permeation through skin compartments are not described well by existing methods. This study was designed to assess the practical feasibility of generating compartmental (stratum corneum/epidermal/dermal) disposition and kinetic data of topically applied chemicals. For chemically induced effects initiated in the skin (e.g., skin allergy), the delivery of tissue concentrations of chemical will impact the incidence and severity of biological effect. Explicit data on the kinetics of chemical disposition in skin have not traditionally been needed for skin allergy risk assessment: current in vivo assays embody delivery implicitly. Under the 7th Amendment to the European Cosmetics Directive, in vivo assays (such as the local lymph node assay for skin sensitization) will not be permitted to assess cosmetic ingredients. New in vitro and in silico alternative approaches and ways of predicting risk of adverse effects in humans need to be developed, and new methods such as that described here provide a way of estimating delivered concentrations and the effect of formulation changes on that delivery. As we continue to deconstruct the contributing factors of skin allergy in humans, it will be useful to have methods available that can measure skin tissue compartment exposure levels delivered from different exposure use scenarios. Here we provide such a method. The method could also be used to generate useful data for developing in silico kinetic models of compartmental skin delivery and for refining data for skin delivery in relation to the evaluation of systemic toxicity.

  2. Dermal absorption of benzo[a]pyrene into human skin from soil: Effect of artificial weathering, concentration, and exposure duration.

    PubMed

    Peckham, Trevor K; Shirai, Jeffry H; Bunge, Annette L; Lowney, Yvette W; Ruby, Michael V; Kissel, John C

    2017-11-01

    In vitro assessments of 14 C-benzo[a]pyrene (BaP) absorption through human epidermis were conducted with the sub-63-μm fraction of four test soils containing different amounts of organic and black carbon. Soils were artificially weathered for eight weeks and applied to epidermis at nominal BaP concentrations of 3 and 10 mg/kg for 8 or 24 h. Experiments were also conducted at 24 h with unweathered soils and with BaP deposited onto skin from acetone at a comparable chemical load. For the weathered soils, absorption was independent of the amount of organic or black carbon, the mass in the receptor fluid was proportional to exposure duration but independent of concentration, and the mass recovered in the skin after washing was proportional to concentration and independent of exposure time. Results from the weathered and unweathered soils were similar except for the mass recovered in the washed skin, which was lower for the weathered soil only at the higher concentration. We hypothesize that chemical concentrations exceeded the BaP sorption capacity accessible within the artificial weathering timeframe for all soils tested, and that BaP mass in the washed skin was dominated by particles that were not removed by washing. Fluxes into and through skin from soils were lower by an order of magnitude than from acetone-deposited BaP.

  3. Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Young; Jang, Kyungmin; Yang, Seung-Jin; Baek, Jun-Hyeok; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-04-01

    We studied the thermal and the mechanical effects induced by pulsed laser absorption in human skin by numerically solving the heat-transfer and the thermoelastic wave equations. The simulation of the heat-transfer equation yielded the spatiotemporal distribution of the temperature increase in the skin, which was then used in the driving term of the thermoelastic wave equation. We compared our simulation results for the temperature increase and the skin displacements with the measured and numerical results, respectively. For the comparison, we used a recent report by Jun et al. [Sci. Rep. 5, 11016 (2015)], who measured in vivo skin temperature and performed numerical simulation of the thermoelastic wave equation using a simple assumption about the temporal evolution of the temperature distribution, and found their results to be in good agreement with our results. In addition, we obtained solutions for the stresses in the human skin and analyzed their dynamic behaviors in detail.

  4. Photoacoustic study of percutaneous absorption of Carbopol and transdermic gels for topic use in skin

    NASA Astrophysics Data System (ADS)

    Rossi, R. C. P.; de Paiva, R. F.; da Silva, M. D.; Barja, P. R.

    2008-01-01

    Topical medicine application has been used to treat a good number of pathological processes. Its efficacy is associated to an efficient penetration of the drug in the internal skin layers, promoting systemic effects and excluding the possibility of drug degradation by the digestive tract and hepatic elimination. This work analyzes the penetration kinetics of two soluble bases employed as vehicles for topic application: superficial gel (Carbopol 940) and transdermic (transdermal) gel. Analysis was performed with the photoacoustic technique, based upon the absorption of modulated light by a sample with subsequent conversion of the absorbed energy in heat, generating acoustic waves in the air layer adjacent to the sample. Each of the two vehicles was evaluated through in vivo (human skin) and in vitro application. Measurements in vitro employed samples of VitroSkin (synthetic material with properties similar to those of real skin, employed in the pharmaceutical industry research). Results show that the permeation was faster for the transdermal gel, both for in vivo and in vitro measurements, indicating that in vitro measurements may be utilized in qualitative, comparative permeation studies.

  5. LASER METHODS IN MEDICINE: Light absorption in blood during low-intensity laser irradiation of skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-06-01

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis.

  6. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Simultaneous absorption of vitamins C and E from topical microemulsions using reconstructed human epidermis as a skin model.

    PubMed

    Rozman, Branka; Gasperlin, Mirjana; Tinois-Tessoneaud, Estelle; Pirot, Fabrice; Falson, Francoise

    2009-05-01

    Antioxidants provide the mainstay for skin protection against free radical damage. The structure of microemulsions (ME), colloidal thermodynamically stable dispersions of water, oil and surfactant, allows the incorporation of both lipophilic (vitamin E) and hydrophilic (vitamin C) antioxidants in the same system. The objective of this work was to investigate the potential of non-thickened (o/w, w/o and gel-like) and thickened (with colloidal silica) ME as carriers for the two vitamins using reconstructed human epidermis (RHE). The amounts of these vitamins accumulated in and permeated across the RHE were determined, together with factors affecting skin deposition and permeation. Notable differences were observed between formulations. The absorption of vitamins C and E in RHE layers was in general enhanced by ME compared to solutions. The incorporation of vitamins in the outer phase of ME resulted in greater absorption than that when vitamins were in the inner phase. The location of the antioxidants in the ME and affinity for the vehicle appear to be crucial in the case of non-thickened ME. Addition of thickener enhanced the deposition of vitamins E and C in the RHE. By varying the composition of ME, RHE absorption of the two vitamins can be significantly modulated.

  8. Evaluation of drug and sunscreen permeation via skin irradiated with UVA and UVB: comparisons of normal skin and chronologically aged skin.

    PubMed

    Hung, Chi-Feng; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Shih-Yung; Fang, Jia-You

    2012-12-01

    Ultraviolet (UV) exposure is the predominant cause of skin aging. A systematic evaluation of drug skin permeation via photoaged skin is lacking. The aim of this work was to investigate whether UVA and UVB affect absorption by the skin of drugs and sunscreens, including tetracycline, quercetin, and oxybenzone. The dorsal skin of nude mice was subjected to UVA (24 and 39 J/cm(2)) or UVB (150, 200, and 250 mJ/cm(2)) irradiation. Levels of skin water loss, erythema, and sebum were evaluated, and histological examinations of COX-2 and claudin-1 expressions were carried out. Permeation of the permeants into and through the skin was determined in vitro using a Franz cell. In vivo skin uptake was also evaluated. Senescent skin (24 weeks old) was used for comparison. Wrinkling and scaling were significant signs of skin treated with UVA and UVB, respectively. The level of claudin-1, an indicator of tight junctions (TJs), was reduced by UVA and UVB irradiation. UVA enhanced tetracycline and quercetin skin deposition by 11- and 2-fold, respectively. A similar enhancement was shown for flux profiles. Surprisingly, a lower UVA dose revealed greater enhancement compared to the higher dose. The skin deposition and flux of tetracycline both decreased with UVB exposure. UVB also significantly reduced quercetin flux. The skin absorption behavior of chronologically aged skin approximated that of the UVA group, with photoaged skin showing higher enhancement. UV generally exhibited a negligible effect on modulating oxybenzone permeation. Skin disruption produced by UV does not necessarily result in enhanced skin absorption. It depends on the UV wavelength, irradiated energy, and physicochemical properties of the permeant. To the best of our knowledge, this is the first report establishing drug permeation profiles for UV-irradiated skin. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Huang, Chi-Ting; Lee, Chiang-Wen; Fang, Jia-You

    2015-04-01

    Ambient particulate matters (PMs) are known as inducers that adversely affect a variety of human organs. In this study, we aimed to evaluate the influence of PMs on the permeation of drugs and sunscreens via the skin. The role of skin-barrier properties such as the stratum corneum (SC) and tight junctions (TJs) during the delivery process was explored. This work was conducted using both in vitro and in vivo experiments in pigs to check the responses of the skin to PMs. PMs primarily containing heavy metals (1648a) and polycyclic aromatic hydrocarbons (PAHs, 1649b) were employed to treat the skin. According to the transepidermal water loss (TEWL), 1649b but not 1648a significantly disrupted the SC integrity by 2-fold compared to the PBS control. The immunohistochemistry (IHC) of cytokeratin, filaggrin, and E-cadherin exhibited that 1649b mildly damaged TJs. The cytotoxicity of keratinocytes and skin fibroblasts caused by 1649b was stronger than that caused by 1648a. The 1649b elicited apoptosis via caspase-3 activation. The proteomic profiles showed that PMs upregulated Annexin A2 by >5-fold, which can be a biomarker of PM-induced barrier disruption. We found that the skin uptake of ascorbic acid, an extremely hydrophilic drug, was increased from 74 to 112 μg/g by 1649b treatment. The extremely lipophilic drug tretinoin also showed a 2.6-fold increase of skin accumulation. Oxybenzone and dextran absorption was not affected by PMs. The in vivo dye distribution visualized by fluorescence microscopy had indicated that 1649b intervention promoted permeant partitioning into SC. Caution should be taken in exposing the skin to airborne dust due to its ability to reduce barrier function and increase the risk of drug overabsorption, although this effect was not very marked. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.

    PubMed

    Bello, Dhimiter; Smith, Thomas J; Woskie, Susan R; Streicher, Robert P; Boeniger, Mark F; Redlich, Carrie A; Liu, Youcheng

    2006-05-01

    Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.

  11. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  12. In vitro dermal absorption of di(2-ethylhexyl) adipate (DEHA) in a roll-on deodorant using human skin.

    PubMed

    Zhou, Simon Ningsun; Moody, Richard P; Aikawa, Bio; Yip, Anna; Wang, Bing; Zhu, Jiping

    2013-01-01

    In vitro dermal absorption experiments were conducted using a roll-on deodorant that contains 1.56% di(2-ethylhexyl) adipate (DEHA), a plasticizer widely used in consumer products. Human skin specimens were fitted in Bronaugh flow-through Teflon diffusion cells. The diffusion cells were maintained at 32 °C to reflect the skin temperature. Two amounts (low dose: 5 mg of the product; high dose: 100 mg) were applied, in triplicate, each on four different human skins. DEHA was determined in the receiver solution at 6-h intervals, using headspace solid-phase microextraction gas chromatography-mass spectrometry (GC-MS). After 24 h, the experiment was terminated and masses of DEHA in the skin depot, skin wash, and upper and lower chambers of the diffusion cell were determined. A significant portion of applied DEHA, 28% in the low amount application and 34% in the high one, was found in the skin depot. In comparison, only 0.04% and 0.002% of applied DEHA were found in the receiver solutions for the low and high doses, respectively. Under our experimental conditions, an apparent steady-state flux of low DEHA mass penetrating from skin into the receiver solution was observed with a penetration rate of 2.2 ng/cm(2)/h for both the low and high doses. The average mass recovery was 81% for the low dose application and 56% for the high dose.

  13. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  14. Chromophores in human skin

    NASA Astrophysics Data System (ADS)

    Young, Antony R.

    1997-05-01

    Human skin, especially the epidermis, contains several major solar ultraviolet-radiation- (UVR-) absorbing endogenous chromophores including DNA, urocanic acid, amino acids, melanins and their precursors and metabolites. The lack of solubility of melanins prevents their absorption spectra being defined by routine techniques. Indirect spectroscopic methods show that their spectral properties depend on the stimulus for melanogenesis. The photochemical consequences of UVR absorption by some epidermal chromophores are relatively well understood whereas we lack a detailed understanding of the consequent photobiological and clinical responses. Skin action spectroscopy is not a reliable way of relating a photobiological outcome to a specific chromophore but is important for UVR hazard assessment. Exogenous chromophores may be administered to the skin in combination with UVR exposure for therapeutic benefit, or as sunscreens for the prevention of sunburn and possibly skin cancer.

  15. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens--In vitro study mimicking real-life consumer habits.

    PubMed

    Klimová, Z; Hojerová, J; Beránková, M

    2015-09-01

    Due to health concerns about safety, three UV-filters (Benzophenone-3, BP3, 10%; Ethylhexyl Methoxycinnamate, EHMC, 10%; Butyl Methoxydibenzoylmethane, BMDBM; 5%) were examined in vitro for absorption on full-thickness pig-ear skin, mimicking human in-use conditions. Kinetic profiles confirmed the rapid permeation of BP3; after the first hour of skin (frozen-stored) exposure to 2 mg/cm(2) (W/O sunscreen; recommended but unrealistic amount), about 0.5% of the applied dose passed into the receptor fluid. The absorption rate of filters was higher from W/O than from O/W emulsions. The fresh/frozen-stored skin permeability coefficient (0.83-0.54) for each UV filter was taken into account. Systemic Exposure Dosage of BP3, EHMC, BMDBM for humans as a consequence of (i) whole-body and (ii) face treatment with 0.5 mg/cm(2) of W/O sunscreen for 6-h skin exposure followed by washing and subsequent 18-h permeation (a realistic scenario) were estimated to be (i) 4744, 1032 and 1036 μg/kg-bw/day, and (ii) 153, 33 and 34 μg/kg-bw/day, respectively. From Margin of Safety for BP3, EHMC and BMDBM (i) 42, 485 and 192 as well as (ii) 1307; 15,151 and 5882, respectively, only the value of 42 (<100) for BP3 indicated a possible health risk. Escalation of a phobia towards all organic UV filters is undesirable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin.

    PubMed

    Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F

    2003-04-01

    We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.

  17. Extent of cutaneous metabolism during percutaneous absorption of xenobiotics.

    PubMed

    Bronaugh, R L; Stewart, R F; Storm, J E

    1989-07-01

    In vitro percutaneous absorption studies generally do not determine whether biotransformation occurs during passage of a substance through the skin. Since it has recently been demonstrated that several chemicals are metabolized during skin permeation, we investigated the metabolism of five additional compounds (14C-labeled) after application to fuzzy rat skin: caffeine, p,p'-DDT, butylated hydroxytoluene (BHT), salicylic acid, and acetyl ethyl tetramethyltetralin (AETT). The viability of skin was maintained with a tissue culture medium. Radioactivity of each substrate and any metabolites in skin and receptor fluid was measured so that the absorption and metabolism of water-insoluble compounds would be accurately determined. Percutaneous absorption ranged from a low of 13% of the applied dose for BHT to a high of 49% for DDT. BHT was metabolized in skin to 4-hydroxy-BHT and an unknown metabolite. Of the absorbed radioisotope, 6.6% was isolated in biotransformed products found mainly in the receptor fluid. AETT was also metabolized during absorption, with 1.9% of the absorbed radioisotope found in two unknown peaks. Caffeine, DDT, and salicylic acid were not metabolized during skin permeation. Skin and liver microsomal metabolism was measured for all compounds except DDT. Metabolism in skin was observed only for the compounds also biotransformed in the diffusion cell; BHT and AETT were metabolized at 113 and 2.5 pmol/min/mg protein, respectively. In this study, as in others, skin metabolism was substantially less than the corresponding metabolism in liver. Therefore, a low rate of liver metabolism such as that found for caffeine, salicylic acid, and DDT might often be predictive of the absence of measurable metabolism during skin permeation. It seems likely that for many compounds, the biotransformations in skin will be small in terms of the percentage of absorbed material that is metabolized. Nevertheless, with potent compounds, even small quantities of a metabolite

  18. Efficacy of topical phenol decontamination strategies on severity of acute phenol chemical burns and dermal absorption: in vitro and in vivo studies in pig skin.

    PubMed

    Monteiro-Riviere, N A; Inman, A O; Jackson, H; Dunn, B; Dimond, S

    2001-05-01

    Pure phenol is colorless and used in the manufacture of phenolic resins, plastics, explosives, fertilizers, paints, rubber, textiles, adhesives, pharmaceuticals, paper, soap, and wood preservatives. The purpose of this study was to compare the efficacy of several phenol decontamination strategies following dermal exposure using the pig as a model for human exposure, and then assess the effect of the two best treatments on phenol absorption in the isolated perfused porcine skin flap (IPPSF). Six anesthetized Yorkshire pigs were exposed to 89% aqueous phenol for 1 min using Hilltop chambers (10 skin sites/pig; 400 microl/site). Exposure to phenol was followed by one of 10 different decontamination procedures: 1-, 5-, 15-, and 30-min water wash; Ivory soap solution; polyethylene glycol (PEG 400); PEG 400/industrial methylated spirits (IMS); PEG 400/ethanol (EtOH); polyvinyl pyrrolidone (PVP)/70% isopropanol (IPA); and 70% IPA. For each of the last five strategies, 1-min treatment washes were repeatedly alternated with 1-min water washes for a total of 15 min. Evaluation was based on scoring of erythema, edema, and histological parameters such as intracellular and intercellular epidermal edema, papillary dermal edema, perivascular infiltrates, pyknotic stratum basale cells, and epidermal-dermal separation. It was concluded that PEG 400 and 70% IPA were superior to the other treatments investigated and equally efficacious in the reduction of phenol-induced skin damage. In addition, phenol absorption was assessed utilizing the two most effective in vivo treatments in the IPPSF. The assessment of percutaneous absorption of phenol found the PEG 400, 70% IPA, and 15-min water treatments significantly (P < 0.05) reduced phenol absorption relative to no treatment.

  19. Bicellar systems for in vitro percutaneous absorption of diclofenac.

    PubMed

    Rubio, L; Alonso, C; Rodríguez, G; Barbosa-Barros, L; Coderch, L; De la Maza, A; Parra, J L; López, O

    2010-02-15

    This work evaluates the effect of different bicellar systems on the percutaneous absorption of diclofenac diethylamine (DDEA) using two different approaches. In the first case, the drug was included in bicellar systems, which were applied on the skin and, in the second case, the skin was treated by applying bicellar systems without drug before to the application of a DDEA aqueous solution. The characterization of bicellar systems showed that the particle size decreased when DDEA was encapsulated. Percutaneous absorption studies demonstrated a lower penetration of DDEA when the drug was included in bicellar systems than when the drug was applied in an aqueous solution. This effect was possibly due to a certain rigidity of the bicellar systems caused by the incorporation of DDEA. The absorption of DDEA on skin pretreated with bicelles increased compared to the absorption of DDEA on intact skin. Bicelles without DDEA could cause certain disorganization of the SC barrier function, thereby facilitating the percutaneous penetration of DDEA subsequently applied. Thus, depending on their physicochemical parameters and on the application conditions, these systems have potential enhancement or retardant effects on percutaneous absorption that result in an interesting strategy, which may be used in future drug delivery applications. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  1. Comparison of International Guidelines of Dermal Absorption Tests Used in Pesticides Exposure Assessment for Operators

    PubMed Central

    So, Jaehwan; Ahn, Junyoung; Lee, Tae-Hee; Park, Kyung-Hun; Paik, Min-Kyoung; Jeong, Mihye; Cho, Myung-Haing

    2014-01-01

    The number of farmers who have suffered from non-fatal acute pesticide poisoning has been reported to vary from 5.7% to 86.7% in South Korea since 1975. Absorption through the skin is the main route of exposure to pesticides for farmers who operate with them. Several in vitro tests using the skins of humans or animal and in vivo tests using laboratory animals are introduced for the assessment of human dermal absorption level of pesticides. The objective of this study is to evaluate and compare international guidelines and strategies of dermal absorption assessments and to propose unique approaches for applications into pesticide registration process in our situation. Until present in our situation, pesticide exposure level to operator is determined just using default value of 10 as for skin absorption ratio because of data shortage. Dermal absorption tests are requested to get exposure level of pesticides and to ultimately know the safety of pesticides for operators through the comparison with the value of AOEL. When the exposure level is higher than AOEL, the pesticide cannot be approved. We reviewed the skin absorption test guidelines recommended by OECD, EFSA and EPA. The EPA recommends assessment of skin absorption of pesticides for humans through the TPA which includes all the results of in vitro human and animal and animal in vivo skin absorption studies. OECD and EFSA, employ a tiered approach, which the requirement of further study depends on the results of the former stage study. OECD guidelines accept the analysis of pesticide level absorbed through skin without radioisotope when the recovery using the non-labeled method is within 80~120%. Various factors are reviewed in this study, including the origin of skin (gender, animal species and sites of skin), thickness, temperature and, etc., which can influence the integrity of results. PMID:25584144

  2. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  3. Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs

    PubMed Central

    Lin, Yin-Ku; Yang, Sien-Hung; Chen, Chin-Chuan; Kao, Hsiao-Ching; Fang, Jia-You

    2015-01-01

    Objective Psoriasis is a chronic inflammatory skin disease and topical therapy remains a key role for treatment. The aim of this study is to evaluate the influence of psoriasis-like lesions on the cutaneous permeation of anti-psoriatic drugs. Methods We first set up imiquimod-induced dermatitis in mice that closely resembles human psoriasis lesions. The development of the lesions is based on the IL-23/IL17A axis for phenotypical and histological characteristics. Four drugs, 5-aminolevulinic acid (ALA), tacrolimus, calcipotriol, and retinoic acid, were used to evaluate percutaneous absorption. Results The most hydrophilic molecule, ALA, revealed the greatest enhancement on skin absorption after imiquimod treatment. Imiquimod increased the skin deposition and flux of ALA by 5.6 to 14.4-fold, respectively, compared to normal skin. The follicular accumulation of ALA was also increased 3.8-fold. The extremely lipophilic drug retinoic acid showed a 1.7- and 3.8-fold increase in skin deposition and flux, respectively. Tacrolimus flux was enhanced from 2 to 21 μg/cm2/h by imiquimod intervention. However, imiquimod did not promote skin deposition of this macrolide. The lipophilicity, but not the molecular size, dominated drug permeation enhancement by psoriatic lesions. The in vivo percutaneous absorption of ALA and rhodamine B examined by confocal microscopy confirmed the deficient resistance of epidermal barrier for facilitating cutaneous delivery of drugs via psoriasis-like skin. Conclusion We established the topical delivery profiles of anti-psoriatic drugs via imiquimod-treated psoriasis-like skin. PMID:26355594

  4. The effect of volatility on percutaneous absorption.

    PubMed

    Rouse, Nicole C; Maibach, Howard I

    2016-01-01

    Topically applied chemicals may volatilize, or evaporate, from skin leaving behind a chemical residue with new percutaneous absorptive capabilities. Understanding volatilization of topical medications, such as sunscreens, fragrances, insect repellants, cosmetics and other commonly applied topicals may have implications for their safety and efficacy. A systematic review of English language articles from 1979 to 2014 was performed using key search terms. Articles were evaluated to assess the relationship between volatility and percutaneous absorption. A total of 12 articles were selected and reviewed. Key findings were that absorption is enhanced when coupled with a volatile substance, occlusion prevents evaporation and increases absorption, high ventilation increases volatilization and reduces absorption, and pH of skin has an affect on a chemical's volatility. The articles also brought to light that different methods may have an affect on volatility: different body regions; in vivo vs. in vitro; human vs. Data suggest that volatility is crucial for determining safety and efficacy of cutaneous exposures and therapies. Few articles have been documented reporting evaporation in the context of percutaneous absorption, and of those published, great variability exists in methods. Further investigation of volatility is needed to properly evaluate its role in percutaneous absorption.

  5. Oxygen absorption by skin exposed to oxygen supersaturated water.

    PubMed

    Reading, Stacey A; Yeomans, Maggie

    2012-05-01

    The present study tests the hypothesis that skin on the plantar surface of the foot absorbs oxygen (O(2)) when immersed in water that has a high dissolved O(2) content. Healthy male and female subjects (24.2 ± 1.4 years) soaked each foot in tap water (1.7 ± 0.1 mg O(2)·L(-1); 30.7 ± 0.3 °C) or O(2)-infused water (50.2 ± 1.7 mg O(2)·L(-1); 32.1 ± 0.5 °C) for up to 30 min in 50 different experiments. Transcutaneous oximetry and near infrared spectroscopy were used to evaluate changes in skin PO(2), oxygenated haemoglobin, and cytochrome oxidase aa(3) that resulted from treatment. Compared with the tap water condition, tissue oxygenation index was 3.5% ± 1.3% higher in feet treated for 30 min with O(2)-infused water. This effect persisted after treatment, as skin PO(2) was higher in feet treated with O(2)-infused water at 2 min (237 ± 9 vs. 112 ± 5 mm HG) and 15 min (131 ± 1 vs. 87 ± 4 mm HG) post-treatment. When blood flow to the foot was occluded for 5 min, feet resting in O(2)-infused water maintained a 3-fold higher O(2) consumption rate than feet treated with tap water (9.1 ± 1.4 vs. 3.0 ± 1.0 µL·100 g(-1)·min(-1)). We estimate that skin absorbs 4.5 mL of O(2)·m(-2)·min(-1) from O(2)-infused water. Thus, skin absorbs appreciable amounts of O(2) from O(2)-infused water. This finding may prove useful and assist development of treatments targeting skin diseases with ischemic origin.

  6. Use of a human skin in vitro model to investigate the influence of 'every-day' clothing and skin surface decontamination on the percutaneous penetration of organophosphates.

    PubMed

    Moore, C A; Wilkinson, S C; Blain, P G; Dunn, M; Aust, G A; Williams, F M

    2014-08-17

    Organophosphates (OPs) are widely used in agriculture. Many studies have investigated the capability of personal protective equipment (PPE) to reduce chemical exposure; however, investigations into the protective effect of 'every-day' clothing are rare. The purpose of this study was to investigate the protective effect of 'every-day' clothing against dermal exposure and to measure early decontamination of skin following exposure to chlorpyrifos and dichlorvos. Using human skin in vitro, absorption of (14)C-labelled chlorpyrifos (500 ng/cm(2)), was shown to be significantly reduced when applied to clothed skin (cotton shirt), regardless of application vehicle (isopropanol (IPA) or propylene glycol (PG)). The majority of applied dose was retained within the clothing after 4 h exposure. Significant reduction in absorption of chlorpyrifos (in PG) was seen through clothed skin when supplemented with skin decontamination at 4 h, compared with clothed skin decontaminated after 24 h, however, this was not observed with IPA. Absorption of dichlorvos (5 μg/cm(2)) was greater through unclothed skin than chlorpyrifos for all vehicles (IPA, isopropyl myristate (IPM) and PG). Significant reduction in absorption was observed when decontaminating clothed skin at 30 min, compared with decontamination at 24 h (post-exposure) for all vehicles. indicate that 'every-day' clothing is effective at reducing exposure to chemicals in contact with skin. Washing the skin surface immediately following removal of exposed clothing can further reduce exposure, depending on the properties of the chemical and vehicle applied. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Skin exposure: Assessing the hazard in the workplace

    NASA Technical Reports Server (NTRS)

    Cummins, Kevin

    1994-01-01

    An outline of the Occupational Safety and Health Agency's concerns of skin exposure to hazardous chemicals is presented, followed by the corresponding slide narrations. Specifically, dermatitis and skin absorption as compared to lung absorption are addressed. Lung versus skin exposure is examined for glycol ethers and acrylamide. Examples of skin exposure include PBC's in transformers, toluene and xylene from autobody work, polynuclear aromatics (PNA's) among Coke oven workers, toluene diisocyanate (TDI), and occupational chemical exposures in an academic medical center. Permeation through gloves in the semiconductor industry is addressed as evidence for the need to assess the effectiveness of PPE (Personal Protective Equipment). This leads to the revisions of the PPE standard and the Safety and Health Program standard.

  8. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.

    PubMed

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-11-01

    Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. New formulation of chemical peeling agent: 30% salicylic acid in polyethylene glycol. Absorption and distribution of 14C-salicylic acid in polyethylene glycol applied topically to skin of hairless mice.

    PubMed

    Ueda, Setsuko; Mitsugi, Koichi; Ichige, Kazumi; Yoshida, Kenji; Sakuma, Tomoko; Ninomiya, Shin-ichi; Sudou, Tetsuji

    2002-04-01

    Salicylic acid is used in chemical peeling procedures. However, they have caused many side effects, even salicylism. To achieve a salicylic acid peeling that would be safer for topical use, we recently developed a new formulation consisting of 30% salicylic acid in polyethylene glycol (PEG) vehicle. In an extension of our previous research, we studied the absorption of 30% salicylic acid labeled with 14C in PEG vehicle applied topically to the intact and damaged skin of male hairless mice. An ointment containing 3 mg salicylic acid in 10 mg vehicle was applied to both groups. In animals with intact skin, 1 h after application the plasma concentration of radioactivity was 1665.1 ng eq/ml, significantly lower than the 21437.6 ng eq/ml observed in mice with damaged skin. Microautoradiograms of intact skin showed that the level of radioactivity in the cornified cell layer was similar at 6 h after application. However, in damaged skin, the overall level of radioactivity showed a decrease by 3 h after application. In the carcasses remaining after the treated intact and damaged skin had been removed, 0.09 and 11.38% of the applied radioactivity remained, respectively. These findings confirm that 30% salicylic acid in PEG vehicle is little absorbed through the intact skin of hairless mice, and suggest that salicylism related to absorption through the skin of quantities of topically applied salicylic acid is not likely to occur in humans with intact skin during chemical peeling with this preparation. This new preparation of 30% salicylic acid in PEG vehicle is believed to be safe for application as a chemical peeling agent.

  10. Impact of order of application of moisturizers on percutaneous absorption kinetics: evaluation of sequential application of moisturizer lotions and azelaic acid gel 15% using a human skin model.

    PubMed

    Del Rosso, James Q; Lehman, Paul A; Raney, Sam G

    2009-03-01

    The medical management of rosacea increasingly has involved not only the appropriate selection of topical medication but also patient education and specific recommendations regarding appropriate skin care. The recognition that epidermal barrier dysfunction and transepidermal water loss (TEWL) play a pathophysiologic role in rosacea and that skin moisturization may help to mitigate signs and symptoms of the disease has led to a deeper appreciation of the importance of proper skin care in the treatment of rosacea. Data from a percutaneous penetration study performed using human skin suggest that any of the tested moisturizer lotions may be applied either before or after azelaic acid gel 15% without a major change in the percutaneous absorption profile of azelaic acid.

  11. Influence of metabolism in skin on dosimetry after topical exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronaugh, R.L.; Collier, S.W.; Macpherson, S.E.

    1994-12-01

    Metabolism of chemicals occurs in skin and therefore should be taken into account when one determines topical exposure dose. Skin metabolism is difficult to measure in vivo because biological specimens may also contain metabolites from other tissues. Metabolism in skin during percutaneous absorption can be studied with viable skin in flow-through diffusion cells. Several compounds metabolized by microsomal enzymes in skin (benzo[a]pyrene and 7-ethoxycoumarin) penetrated human and hairless guinea pig skin predominantly unmetabolized. However, compounds containing a primary amino group (p-aminobenzoic acid, benzocaine, and azo color reduction products) were substrates for acetyltransferase activity in skin and were substantially metabolized duringmore » absorption. A physiologically based pharmacokinetic model has been developed with an input equation, allowing modeling after topical exposure. 14 refs., 3 figs., 4 tabs.« less

  12. Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings

    NASA Technical Reports Server (NTRS)

    Chandrasekhar, Prasanna

    2011-01-01

    One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (< 20 kg) and nano (< 5 kg) spacecraft. Novel coatings lower the solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.

  13. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: Characterisation by in vitro percutaneous absorption studies and Time-of-Flight Secondary Ion Mass Spectrometry.

    PubMed

    Holmes, Amy M; Scurr, David J; Heylings, Jon R; Wan, Ka-Wai; Moss, Gary P

    2017-06-15

    Skin penetration and localisation of chlorhexidine digluconate (CHG) within the skin have been investigated in order to better understand and optimise the delivery using a nano polymeric delivery system of this topically-applied antimicrobial drug. Franz-type diffusion cell studies using in vitro porcine skin and tape stripping procedures were coupled with Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise the skin during various treatments with CHG and polyamidoamine dendrimers (PAMAM). Pre-treatment of the skin with PAMAM dendrimers significantly increased the amount and depth of permeation of CHG into the skin in vitro. The effect observed was not concentration dependant in the range 0.5-10mM PAMAM. This could be important in terms of the efficiency of treatment of bacterial infection in the skin. It appears that the mechanism of enhancement is due to the PAMAM dendrimer disrupting skin barrier lipid conformation or by occluding the skin surface. Franz-type diffusion cell experiments are complimented by the detailed visualisation offered by the semi-quantitative ToF-SIMS method which provides excellent benefits in terms of sensitivity and fragment ion specificity. This allows a more accurate depth profile of chlorhexidine permeation within the skin to be obtained and potentially affords the opportunity to map the co-localisation of permeants with skin structures, thus providing a greater ability to characterise skin absorption and to understand the mechanism of permeation, providing opportunities for new and more effective therapies. Copyright © 2017. Published by Elsevier B.V.

  14. Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy

    PubMed Central

    Wróbel, Maciej S.; Jędrzejewska-Szczerska, Malgorzata; Galla, Stanislaw; Piechowski, Leszek; Sawczak, Miroslaw; Popov, Alexey P.; Bykov, Alexander V.; Tuchin, Valery V.; Cenian, Adam

    2015-01-01

    Abstract. Skin lesions are commonly treated using laser heating. However, the introduction of new devices into clinical practice requires evaluation of their performance. This study presents the application of optical phantoms for assessment of a newly developed 975-nm pulsed diode laser system for dermatological purposes. Such phantoms closely mimic the absorption and scattering of real human skin (although not precisely in relation to thermal conductivity and capacitance); thus, they can be used as substitutes for human skin for approximate evaluation of laser heating efficiency in an almost real environment. Thermographic imaging was applied to measure the spatial and temporal temperature distributions on the surface of laser-irradiated phantoms. The study yielded results of heating with regard to phantom thickness and absorption, as well as laser settings. The methodology developed can be used in practice for preclinical evaluations of laser treatment for dermatology. PMID:26263414

  15. Dietary Cerebroside from Sea Cucumber (Stichopus japonicus): Absorption and Effects on Skin Barrier and Cecal Short-Chain Fatty Acids.

    PubMed

    Duan, Jingjing; Ishida, Marina; Aida, Kazuhiko; Tsuduki, Tsuyoshi; Zhang, Jin; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya

    2016-09-21

    Sphingolipids from marine sources have attracted more attention recently because of their distinctive structures and expected functions. In this study, the content and components of cerebroside from sea cucumber Stichopus japonicus were analyzed. The absorption of cerebroside from S. japonicus was investigated with an in vivo lipid absorption assay. The result revealed that S. japonicus is a rich source of cerebroside that contained considerable amounts of odd carbon chain sphingoid bases. The cumulative recoveries of d17:1- and d19:2-containing cerebrosides were 0.31 ± 0.16 and 0.32 ± 0.10%, respectively, for 24 h after administration. To the best of the authors' knowledge, this is the first work that shows sphingolipids from a marine source could be absorbed in vivo and incorporated into ceramides. In addition, dietary supplementation with sea cucumber cerebroside to hairless mouse improved the skin barrier function and increased short-chain fatty acids in cecal contents, which have shown beneficial effects on the host.

  16. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats.

    PubMed

    Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P

    2001-10-01

    We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.

  17. The influence of water mixtures on the dermal absorption of glycol ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a correspondingmore » increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.« less

  18. Effect of in vivo jet fuel exposure on subsequent in vitro dermal absorption of individual aromatic and aliphatic hydrocarbon fuel constituents.

    PubMed

    Muhammad, F; Monteiro-Riviere, N A; Baynes, R E; Riviere, J E

    2005-05-14

    The percutaneous absorption of topically applied jet fuel hydrocarbons (HC) through skin previously exposed to jet fuel has not been investigated, although this exposure scenario is the occupational norm. Pigs were exposed to JP-8 jet fuel-soaked cotton fabrics for 1 and 4 d with repeated daily exposures. Preexposed and unexposed skin was then dermatomed and placed in flow-through in vitro diffusion cells. Five cells with exposed skin and four cells with unexposed skin were dosed with a mixture of 14 different HC consisting of nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, ethyl benzene, o-xylene, trimethyl benzene (TMB), cyclohexyl benzene (CHB), naphthalene, and dimethyl naphthalene (DMN) in water + ethanol (50:50) as diluent. Another five cells containing only JP-8-exposed skin were dosed solely with diluent in order to determine the skin retention of jet fuel HC. The absorption parameters of flux, diffusivity, and permeability were calculated for the studied HC. The data indicated that there was a two-fold and four-fold increase in absorption of specific aromatic HC like ethyl benzene, o-xylene, and TMB through 1- and 4-dJP-8 preexposed skin, respectively. Similarly, dodecane and tridecane were absorbed more in 4-d than 1-dJP-8 preexposed skin experiments. The absorption of naphthalene and DMN was 1.5 times greater than the controls in both 1- and 4-d preexposures. CHB, naphthalene, and DMN had significant persistent skin retention in 4-d preexposures as compared to 1-d exposures that might leave skin capable of further absorption several days postexposure. The possible mechanism of an increase in HC absorption in fuel preexposed skin may be via lipid extraction from the stratum corneum as indicated by Fourier transform infrared (FTIR) spectroscopy. This study suggests that the preexposure of skin to jet fuel enhances the subsequent in vitro percutaneous absorption of HC, so single-dose absorption data for jet fuel HC from

  19. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manwaring, John, E-mail: manwaring.jd@pg.com; Rothe, Helga; Obringer, Cindy

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passagemore » through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in

  20. In vitro human skin penetration of geraniol and citronellol.

    PubMed

    Gilpin, Sarah; Hui, Xiaoying; Maibach, Howard

    2010-01-01

    Geraniol and citronellol are commonly used fragrance components in consumer products. Both are listed as alleged fragrance allergens that should be declared in the European Union when used in cosmetics and consumer products. Such allergenic potential is determined largely by effects on the skin once these materials penetrate and elicit an immune response. Few data demonstrate their penetration abilities or their effects on percutaneous absorption. We wanted to determine the effects of these materials on skin absorption. Skin penetration characterization via flow-through diffusion study serves as a reasonable model for determining dermal dosing for fragrance materials. Such characterization can be used for more accurate safety exposure calculations and regulatory determinations. Extensive comparisons to in vivo data in humans or closely related animals will be required before accepting flow-through diffusion methods as in vivo alternatives by industry and regulatory bodies. To evaluate the penetration abilities of geraniol and citronellol when they are used in a typical vehicle in consumer products. In vitro skin penetration of radiolabeled geraniol and citronellol was studied under occlusion in human cadaver skin, using flow-through diffusion cells for scintillation counting to determine the percentage of dose absorbed. For comparison, two doses of each material were used: 2% and 5% in 3:1 diethyl phthalate/ethanol. After 24 hours, geraniol and citronellol had relatively low skin absorption rates; 3.8% +/- 2.1% of 2% citronellol, 4.7% +/- 1.9% of 5% citronellol, 3.5% +/- 1.9% of 2% geraniol, and 7.3% +/- 1.1% of 5% geraniol were recovered from skin and receptor fluid compartments. These materials showed good mass-balance recovery. The majority of the dose was recovered in the skin washes (a minimum of 64.7% +/- 4.6% recovered for 2% citronellol and a maximum of 79.3% +/- 3.9% recovered for 5% geraniol). Receptor fluid collection points over time showed a linear

  1. Physicochemical and functional properties of gelatin extracted from Yak skin.

    PubMed

    Xu, Mengqi; Wei, Lixin; Xiao, Yuancan; Bi, Hongtao; Yang, Hongxia; Du, Yuzhi

    2017-02-01

    Different molecular weight distribution (MWD) gelatin was extracted from Yak skin after enzymatic pretreatments and their physicochemical and functional properties (SDS-PAGE, UV-vis absorption spectra, DSC, FT-IR, Amino acid analysis, AFM, emulsibility and foamability) were analyzed. The gelatin was extracted by pepsin and got different MWD of Yak skin gelatin by controlling the enzymolysis time. The SDS-PAGE showed the MWD of the Yak skin gelatin. The UV-vis absorption turned out that the broad MWD of Yak skin gelatin had a higher maximum absorption peaks. The FT-IR and AFM indicated that the gelatin structures and microstructures changed with the change of the MWD. The broad MWD of the Yak skin gelatin had a higher denaturation temperature (T D ), and it was higher than most of the other mammals and marine biological gelatin. The broad MWD gelatin also had higher imino acids (proline and hydroxyproline) contents and lower foamability and emulsibility compared to the narrow MWD gelatin. These findings, obtained for the first time for Yak skin gelatin, showed that it has great potential for application as an alternative to commercial gelatin due to its good thermotolerance, particularly in the applications of the biological materials, stabilizer of thermo-tolerant and so on. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL).

    PubMed

    Cao, Yachao; Hui, Xiaoying; Zhu, Hanjiang; Elmahdy, Akram; Maibach, Howard

    2018-07-01

    This study compared the efficiency for in vitro human skin decontamination using DDGel and RSDL. Experiments were performed using in vitro human skin models, in which skin was mounted onto Flow-Through diffusion cells. The mass of 14 -C CEES removed from skin surface after decontamination was quantitated by measuring radioactivity with a liquid scintillation spectrometer. Both decontaminants removed more than 82% of CEES from skin. DDGel skin decontamination significantly reduced toxicant amount when compared to RSDL. Mean CEES remaining in stratum corneum (SC), viable epidermis, dermis, and systemic absorption of DDGel and RSDL were, 0.12 and 0.55% (P < 0.01), 0.31 and 0.95% (p < 0.01), 1.08 and 2.92% (p < 0.05), 3.13 and 6.34% (p < 0.05), respectively. DDGel showed higher decontamination efficiency (twice decontamination efficacy factor, DEF) than RSDL and efficiently removed chemicals from the skin surface, importantly back-extracted from the SC, and significantly reduced both chemical penetration into skin and systemic absorption. Thus, DDGel can offer a potential as a next generation skin decontamination platform technology for military and civilian applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.

    2016-02-01

    Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.

  4. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.

  5. Ingested hyaluronan moisturizes dry skin.

    PubMed

    Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Matsuoka, Ryosuke; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu

    2014-07-11

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body's HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action.

  6. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita

    2007-12-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases inmore » paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig.« less

  7. The relationship between skin function, barrier properties, and body-dependent factors.

    PubMed

    Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M

    2018-05-01

    Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Efficacy of mineral cationic carrier against sulphur mustard in skin decontamination.

    PubMed

    Vucemilović, Ante; Hadzija, Mirko; Jukić, Ivan

    2008-12-01

    The aim of this study was to evaluate decontamination (absorption) efficacy of a preparation called Mineral Cationic Carrier (MCC) against skin contamination with sulphur mustard in vivo. MCC is a synthetic preparation with known ion exchange, absorption efficiency, and bioactive potential. CBA mice were applied increasing doses of sulphur mustard on their skin and MCC was administered immediately after skin contamination. The results have confirmed the decontamination efficacy of MCC preparation, corresponding to 8.4 times the LD50 of percutaneous sulphur mustard, and call for further investigation.

  9. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  10. Two-photon absorption and transient photothermal imaging of pigments in tissues

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Fu, Dan; Matthews, Thomas E.; Hong, Lian; Simon, John D.; Warren, Warren S.

    2008-02-01

    As a main pigment in skin tissues, melanin plays an important role in photo-protecting skin from UV radiation. However, melanogenesis may be altered due to disease or environmental factors; for example, sun exposure may cause damage and mutation of melanocytes and induce melanoma. Imaging pigmentation changes may provide invaluable information to catch the malignant transformation in its early stage and in turn improve the prognosis of patients. We have demonstrated previously that transmission mode, two-photon, one- or two-color absorption microscopy could provide remarkable contrast in imaging melanin in skin. In this report we demonstrate significantly improved sensitivity, so that we are now able to image in epi-mode (or back reflection) in two-photon absorption. This improvement makes possible for us to characterize the different types of pigmentation on the skin in vivo at virtually any location. Another finding is that we can also image transient photothermal dynamics due to the light absorption of melanin. By carefully choosing excitation and probe wavelengths, we might be able to image melanin in different structures under different micro-environments in skin, which could provide useful photochemical and photophysical insights in understanding how pigments are involved in photoprotection and photodamage of cells.

  11. Environment and the skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suskind, R.R.

    The effects of the environment on skin are surveyed. Specific patterns of adverse skin response can be characterized by morphological, physiological, and biochemical features. Cutaneous defenses and adaptations of the skin are discussed. Dermal resiliency, epidermal and pigment components, neural components, immunobiological processes, and the epidermal barrier are examined. Percutaneous absorption is reviewed. Environmental factors that cause adverse skin reactions include water, salts of heavy metals, hydrocarbons, solvents, lipids, aromatics, esters, ultraviolet light, and various modalities of ionizing radiation. Pathologic patterns and reaction sites are discussed in terms of inflammatory, allergic, benign epidermal, eccrine sweat gland, and pilosebaceous reactions, pigmentarymore » disturbances, cancer, and blood vessel changes. Although critical epidemiologic data are limited, cutaneous illnesses constitute a significant segment of occupational disease. Recommendations for further research are summarized. 42 references.« less

  12. Skin permeation and distribution of two sunscreens: a comparison between reconstituted human skin and hairless rat skin.

    PubMed

    Monti, D; Brini, I; Tampucci, S; Chetoni, P; Burgalassi, S; Paganuzzi, D; Ghirardini, A

    2008-01-01

    The aims of this work were (a) to develop a simple and reproducible procedure for percutaneous absorption and distribution tests of sunscreens using one human skin culture model (Epiderm 606; reconstructed epidermis, RE), (b) to compare the said model with rat skin (RS) in vitro and (c) to evaluate the effect of different formulations. The cutaneous permeation and distribution of two UV filters, ethylhexylmethoxycinnamate (MC80) and ethylhexyltriazone (T150), using 3 different vehicles were investigated. The permeation studies demonstrated that neither MC80 nor T150 permeated through both RS and RE in spite of different thicknesses of the 2 substrates. Distribution studies demonstrated that sectioning by cryomicrotome to obtain horizontal skin layers was suitable for both RS and RE (apart from its small thickness) with a good reproducibility of data. The amounts of sunscreens retained in the 2 substrates were in the same order of magnitude for all formulations with a greater depot in RS. Different distribution profiles of the tested formulations could be ascribed to the different lipid compositions of RE and RS. Since the physicochemical characteristics of RE are closer to those of human skin, the results obtained with reconstructed human skin models could be suitable to replace human skin in 'in vitro testing'. Copyright 2008 S. Karger AG, Basel.

  13. Ingested hyaluronan moisturizes dry skin

    PubMed Central

    2014-01-01

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

  14. The Tritiated Water Skin Barrier Integrity Test: Considerations for Acceptance Criteria with and Without 14C-Octanol.

    PubMed

    Lehman, Paul A; Beatch, Kacie; Raney, Sam G; Franz, Thomas J

    2017-01-01

    A study was designed to assess barrier integrity simultaneously using separate compounds (probes) for polar and non-polar pathways through the skin, 3 H 2 O and 14 C-octanol, respectively; and to determine whether the two probe approach could better define barrier integrity. A 5-min dose of water containing 3 H 2 O and 14 C -octanol was applied to ex vivo human skin mounted in Franz diffusion cells. The receptor solution was sampled at 30 min, analyzed for 3 H and 14 C content, and the correlation between water and octanol absorption was determined by statistical tests suitable for non-normally distributed data. This study was conducted on skin from 37 donors with from 3 to 30 replicate skin sections per donor (a total of 426 sections). The correlation between 3 H 2 O and 14 C-octanol absorption was low (Pearson correlation coefficient = 0.3485). The 3 H 2 O absorption cutoff used in this study to select for a normal skin barrier rejected some sections in which 14 C-octanol absorption was within normal limits and accepted others in which 14 C-octanol absorption was abnormally high. The converse was true for 3 H 2 O absorption when the 14 C-octanol-based cutoff was used. The results of the 3 H 2 O test or of similar tests that primarily assess the permeability of polar pathways through the skin may not necessarily provide information relevant to the absorption of highly lipophilic compounds. Octanol, or another molecule that more closely matches the physicochemical attributes of the test compound, may characterize properties of the skin barrier that are more relevant to compounds of low water solubility.

  15. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou-Elwafa Abdallah, Mohamed, E-mail: mae_abdallah@yahoo.co.uk; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut; Pawar, Gopal

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm{sup 2}, finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPPmore » and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P > 0.05). Estimated permeability constants (K{sub p}, cm/h) showed a significant negative correlation with log K{sub ow} for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/kg bw day) than adults (median ΣPFRs = 4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure. - Highlights: • Human dermal absorption of PFRs was studied using human ex vivo skin and EPISKIN™. • Absorbed fractions of TCEP, TCIPP and TDCIPP were 28%, 25% and 13% of applied dose. • Permeability constants showed significant negative correlation to log K{sub ow} of PFRs. • Skin washing reduced the overall dermal

  16. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans: a summary.

    PubMed

    Wester, R C; Hui, X; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  17. Appearance benefits of skin moisturization.

    PubMed

    Jiang, Z-X; DeLaCruz, J

    2011-02-01

    Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.

  18. INVESTIGATION OF REDUCTION OF ABSORPTION OF RADIOACTIVE MATERIAL BY MEANS OF ASTRINGENTS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehrnbecher, W.

    1963-02-01

    An attempt was made to use the astringent properties of two substances, adrenalin and tannin, for reducing skin absorption of radioactive substances on female Wistar rats. The effect of 1/2% adrenalin emulsion and of a 2% tannin solution on the absorption of a BETA -emitting substance (Sr/sup 89/Cl/sub 2/ solution) was observed over three periods of 30, 60, and 90 min. A reduction of absorption was found after using adrenalin and tanning. The effect of adrenalin was small, particularly over prolonged periods of observation, and there was a marked reduction of absorption resulting from the use of tannin during allmore » periods of observation-. A method is described that permits an estimate of the reduction in skin absorption of BETA rays. (P.C.H.)« less

  19. Transdermal nicotine absorption handling e-cigarette refill liquids.

    PubMed

    Maina, Giovanni; Castagnoli, Carlotta; Passini, Valter; Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Filon, Francesca Larese

    2016-02-01

    The concentrated nicotine in e-cigarette refill liquids can be toxic if inadvertently ingested or absorbed through the skin. Reports of poisonings due to accidental ingestion of nicotine on refill liquids are rapidly increasing, while the evaluation of nicotine dermally absorbed still lacks. For that reason we studied transdermal nicotine absorption after the skin contamination with e-liquid. Donor chambers of eight Franz diffusion cells were filled with 1 mL of 0.8 mg/mL nicotine e-liquid for 24 h. The concentration of nicotine in the receiving phase was determined by high-performance liquid chromatography (LOD:0.1 μg/mL). Nicotine was detectable in receiving solution 2 h after the start of exposure and increased progressively. The medium flux calculated was 4.82 ± 1.05 μg/cm(2)/h with a lag time of 3.9 ± 0.1 h. After 24 h, the nicotine concentration in the receiving compartment was 101.02 ± 22.35 μg/cm(2) corresponding to 3.04 mg of absorbed nicotine after contamination of a skin surface of 100 cm(2). Skin contamination with e-liquid can cause nicotine skin absorption: caution must be paid when handling refill e-liquids. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Annette Bunge: developing the principles in percutaneous absorption using chemical engineering principles.

    PubMed

    Stinchcomb, A L

    2013-01-01

    Annette Bunge and her research group have had the central theme of mathematically modeling the dermal absorption process. Most of the research focus has been on estimating dermal absorption for the purpose of risk assessment, for exposure scenarios in the environment and in the occupational setting. Her work is the basis for the United States Environmental Protection Agency's estimations for dermal absorption from contaminated water. It is also the basis of the dermal absorption estimates used in determining if chemicals should be assigned a 'skin notation' for potential systemic toxicity following occupational skin exposure. The work is truly translational in that it started with mathematical theory, is validated with preclinical and human experiments, and then is used in guidelines to protect human health. Her valued research has also extended into the topical drug bioavailability and bioequivalence assessment field.

  1. Aconite poisoning following the percutaneous absorption of Aconitum alkaloids.

    PubMed

    Chan, Thomas Y K

    2012-11-30

    In vitro experiment using the modified Franz-type diffusion cell has demonstrated that the human skin is permeable to aconitine and mesaconitine. To characterise the risk of systemic toxicity following the topical applications of aconite tincture and raw aconite roots, relevant reports of percutaneous absorption of Aconitum alkaloids and aconite poisoning are reviewed. Published reports indicate that aconite tincture and raw aconite roots can be absorbed through the skin into systemic circulation to cause fatal and non-fatal aconite poisoning. Both aconite tincture and raw aconite roots contain very high concentrations of Aconitum alkaloids, which allow penetration of the stratum corneum along the diffusion gradient. The risk of systemic toxicity is even higher if Aconitum alkaloids are held in occlusive contact with the skin and the epidermis (stratum corneum) is already damaged. The public should be warned of the danger in using these topical aconite preparations and the risk of systemic toxicity following percutaneous absorption of Aconitum alkaloids. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Sulphate absorption across biological membranes.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2016-01-01

    1. Sulphonation is unusual amongst the common Phase II (condensation; synthetic) reactions experienced by xenobiotics, in that the availability of the conjugating agent, sulphate, may become a rate-limiting factor. This sulphate is derived within the body via the oxygenation of sulphur moieties liberated from numerous ingested compounds including the sulphur-containing amino acids. Preformed inorganic sulphate also makes a considerable contribution to this pool. 2. There has been a divergence of opinion as to whether or not inorganic sulphate may be readily absorbed from the gastrointestinal tract and this controversy still continues in some quarters. Even more so, is the vexing question of potential absorption of inorganic sulphate via the lungs and through the skin. 3. This review examines the relevant diverse literature and concludes that sulphate ions may move across biological membranes by means of specific transporters and, although the gastrointestinal tract is by far the major portal of entry, some absorption across the lungs and the skin may take place under appropriate circumstances.

  3. Noninvasive detection of skin cancers by measuring optical properties of tissues

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.; Jacques, Steven L.

    1995-05-01

    Skin cancer is the most frequently occurring cancer of all cancers. Each yea rover 500,000 new cases of skin cancer will be detected. A high percentage of skin cancers are diseases in which fatalities can be all but eliminated and morbidity reduced if detected early and treated properly. These skin lesions are distinguished generally by subjective visual inspection and their definitive diagnosis requires time-consuming expensive histopathological evaluation of excisional or incisional biopsies. In vivo experimental evidence published in the literature has shown that cancerous skin lesions have different total diffuse reflectance spectra than non- cancerous lesions or normal skin. Therefore, cancerous skin lesions may be differentiated from non-cancerous skin lesions by comparing the optical properties of the skin lesions with those of the surrounding normal skin sites, where the optical properties of the normal skin sites are used to account for different types of skin or different areas of skin. We have demonstrated that the effect of melanin concentration on the diffuse reflectance may be removed by extrapolating the reflectance at different wavelengths to an apparent pivot point. Because the concentration of melanin does not indicate malignancy, the removal of its effect is important to avoid false detection. The total diffuse reflectance depends on the albedo and anisotropy of tissues. Therefore, the total diffuse reflectance will remain the same as long as the anisotropy and the ratio between the absorption coefficient and the reduced scattering coefficient remain the same. Separating the absorption and scattering effects should enhance the detection sensitivity of skin cancers.

  4. Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Tran, N. A.; Hayashida, K.; Blajan, M.

    2016-08-01

    Atmospheric plasma is attracting interest for medical applications such as sterilization, treatment of cancer cells and blood coagulation. Application of atmospheric plasma in dermatology has potential as a novel tool for wound healing, skin rejuvenation and treatment of wrinkles. In this study, we investigated the enhancement of percutaneous absorption of dye as alternative agents of transdermal drugs. Hypodermic needles are often the only way to deliver large-molecule drugs into the dermis, although a safe transdermal drug delivery method that does not require needles would be desirable. We therefore explored the feasibility of using atmospheric microplasma irradiation to enhance percutaneous absorption of drugs, as an alternative delivery method to conventional hypodermic needles. Pig skin was used as a biological sample, exposed to atmospheric microplasma, and analyzed by attenuated total reflection-Fourier transform infrared spectroscopy. A tape stripping test, a representative method for evaluating skin barrier performance, was also conducted for comparison. Transepidermal water loss (TEWL) was measured and compared with and without atmospheric microplasma irradiation, to quantify water evaporation from the inner body through the skin barrier. The results show that the stratum corneum, the outermost skin layer, could be chemically and physically modified by atmospheric microplasma irradiation. Physical damage to the skin by microplasma irradiation and an atmospheric plasma jet was also assessed by observing the skin surface. The results suggest that atmospheric microplasma has the potential to enhance percutaneous absorption.

  5. [Effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong and penetration mechanism of skin blood flow].

    PubMed

    Zhu, Xiao-Fang; Luo, Jing; Guan, Yong-Mei; Yu, Ya-Ting; Jin, Chen; Zhu, Wei-Feng; Liu, Hong-Ning

    2017-02-01

    The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption in vitro of Chuanxiong, and to investigate the possible penetration mechanism of their essential oil from the perspective of skin blood perfusion changes. Transdermal tests were performed in vitro with excised mice skin by improved Franz diffusion cells. The cumulative penetration amounts of ferulic acid in Chuanxiong were determined by HPLC to investigate the effects of Frankincense and Myrrh essential oil on transdermal permeation properties of Chuanxiong. Simultaneously, the skin blood flows were determined by laser flow doppler. The results showed that the cumulative penetration amount of ferulic acid in Chuanxiong was (8.13±0.76) μg•cm⁻² in 24 h, and was (48.91±4.87), (57.80±2.86), (63.34±4.56), (54.17±4.40), (62.52±7.79) μg•cm⁻² respectively in Azone group, Frankincense essential oil group, Myrrh essential oil, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group. The enhancement ratios of each essential oil groups were 7.68, 8.26, 7.26, 8.28, which were slightly greater than 6.55 in Azone group. In addition, as compared with the conditions before treatment, there were significant differences and obvious increasing trend in blood flow of rats in Frankincense essential oil group, Myrrh essential oil group, frankincense and myrrh singly extracted essential oil mixture group, and frankincense and myrrh mixed extraction essential oil group when were dosed at 10, 20, 30, 10 min respectively, indicating that the skin blood flows were increased under the effects of Frankincense and Myrrh essential oil to a certain extent. Thus, Frankincense and Myrrh essential oil had certain effect on promoting permeability of Chuanxiong both before and after drug combination, and may promote the elimination of drugs from epidermis to dermal capillaries through increase of

  6. The application of skin metabolomics in the context of transdermal drug delivery.

    PubMed

    Li, Jinling; Xu, Weitong; Liang, Yibiao; Wang, Hui

    2017-04-01

    Metabolomics is a powerful emerging tool for the identification of biomarkers and the exploration of metabolic pathways in a high-throughput manner. As an administration site for percutaneous absorption, the skin has a variety of metabolic enzymes, except other than hepar. However, technologies to fully detect dermal metabolites remain lacking. Skin metabolomics studies have mainly focused on the regulation of dermal metabolites by drugs or on the metabolism of drugs themselves. Skin metabolomics techniques include collection and preparation of skin samples, data collection, data processing and analysis. Furthermore, studying dermal metabolic effects via metabolomics can provide novel explanations for the pathogenesis of some dermatoses and unique insights for designing targeted prodrugs, promoting drug absorption and controlling drug concentration. This paper reviews current progress in the field of skin metabolomics, with a specific focus on dermal drug delivery systems and dermatosis. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  7. Laser skin welding using water absorption and heat management

    NASA Astrophysics Data System (ADS)

    Halder, Rabindra K.; Katz, Alvin; Savage, Howard E.; Kartazayev, Vladimir; McCormick, Steven A.; Budansky, Yury; Paul, Misu; Rosen, Richard B.; Alfano, Robert R.

    2005-04-01

    Laser skin welding (LSW) is being pursued for scarless wound healing. We present a new LSW approach using a contact glass slide over the sample and rapid scanning of the laser beam around the area to be welded. This led to dramatic improvement in welding efficacy. A 400 mW beam at 1455 nm with a focused spot diameter of 80 μm in air was scanned at a rate of 5mm/second over a 5mm line of incision in 5 mm x 20 mm human skin samples. Histological analysis of the welded samples using hematoxyline and eosin under unpolarized light showed full-thickness full-length weld, and that with picrosirius red F3BA stain under polarized light revealed that there was no appreciable damage. Measured tensile strength of 2.1 kg/cm2 is markedly greater than our previous LSW results of 1.05 +/- 0.19 kg/cm2, which is greater than the typical values of 0.4 kg/cm2 obtained using sutures.

  8. Volumetric Visualization of Human Skin

    NASA Astrophysics Data System (ADS)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  9. Lasers as an approach for promoting drug delivery via skin.

    PubMed

    Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2014-04-01

    Using lasers can be an effective drug permeation-enhancement approach for facilitating drug delivery into or across the skin. The controlled disruption and ablation of the stratum corneum (SC), the predominant barrier for drug delivery, is achieved by the use of lasers. The possible mechanisms of laser-assisted drug permeation are the direct ablation of the skin barrier, optical breakdown by a photomechanical wave and a photothermal effect. It has been demonstrated that ablative approaches for enhancing drug transport provide some advantages, including increased bioavailability, fast treatment time, quick recovery of SC integrity and the fact that skin surface contact is not needed. In recent years, the concept of using laser techniques to treat the skin has attracted increasing attention. This review describes recent developments in using nonablative and ablative lasers for drug absorption enhancement. This review systematically introduces the concepts and enhancement mechanisms of lasers, highlighting the potential of this technique for greatly increasing drug absorption via the skin. Lasers with different wavelengths and types are employed to increase drug permeation. These include the ruby laser, the erbium:yttrium-gallium-garnet laser, the neodymium-doped yttrium-aluminum-garnet laser and the CO2 laser. Fractional modality is a novel concept for promoting topical/transdermal drug delivery. The laser is useful in enhancing the permeation of a wide variety of permeants, such as small-molecule drugs, macromolecules and nanoparticles. This potential use of the laser affords a new treatment for topical/transdermal application with significant efficacy. Further studies using a large group of humans or patients are needed to confirm and clarify the findings in animal studies. Although the laser fluence or output energy used for enhancing drug absorption is much lower than for treatment of skin disorders and rejuvenation, the safety of using lasers is still an issue

  10. Skin contamination as pathway for nicotine intoxication in vapers.

    PubMed

    Maina, Giovanni; Castagnoli, Carlotta; Ghione, Giordana; Passini, Valter; Adami, Gianpiero; Larese Filon, Francesca; Crosera, Matteo

    2017-06-01

    Growing warnings on health effects related to electronic cigarettes have met inconclusive findings at present. This study analyzed the in vitro percutaneous absorption of nicotine resulting by skin contamination with two e-liquids (refill 1 and 2) containing nicotine at 1.8%. Donor chambers of 6 Franz cells for each refill liquid were filled with 1mL of nicotine e-liquid for 24h; at selected intervals, 1.5mL of the receptor solutions were collected for nicotine concentration analysis by mean gas chromatography-mass spectrometry (LOD: 0.01μg/mL). The experiment was repeated removing the nicotine donor solution after 10min from the application and rinsing the skin surface three times with 3.0mL of milliQ water. A total of 12 cells with 24h exposure and 12 cells washed were studied. The mean concentration of nicotine in the receiving phase at the end of the experiment was 54.9±29.5 and 30.2±18.4μg/cm 2 for refill 1 and 2 respectively and significantly lower in washed cells (4.7±2.4 and 3.5±1.3μg/cm 2 ). The skin absorption of nicotine can lead to minor health illness in vapers, while caution must be paid to dermal contamination by e liquids in children. The skin cleaning significantly reduced the transdermal absorption kinetic and intradermal deposition of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. On-chip skin color detection using a triple-well CMOS process

    NASA Astrophysics Data System (ADS)

    Boussaid, Farid; Chai, Douglas; Bouzerdoum, Abdesselam

    2004-03-01

    In this paper, a current-mode VLSI architecture enabling on read-out skin detection without the need for any on-chip memory elements is proposed. An important feature of the proposed architecture is that it removes the need for demosaicing. Color separation is achieved using the strong wavelength dependence of the absorption coefficient in silicon. This wavelength dependence causes a very shallow absorption of blue light and enables red light to penetrate deeply in silicon. A triple-well process, allowing a P-well to be placed inside an N-well, is chosen to fabricate three vertically integrated photodiodes acting as the RGB color detector for each pixel. Pixels of an input RGB image are classified as skin or non-skin pixels using a statistical skin color model, chosen to offer an acceptable trade-off between skin detection performance and implementation complexity. A single processing unit is used to classify all pixels of the input RGB image. This results in reduced mismatch and also in an increased pixel fill-factor. Furthermore, the proposed current-mode architecture is programmable, allowing external control of all classifier parameters to compensate for mismatch and changing lighting conditions.

  12. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata.

    PubMed

    Lin, Yin-Ku; Al-Suwayeh, Saleh A; Leu, Yann-Lii; Shen, Feng-Ming; Fang, Jia-You

    2013-02-01

    Diphencyprone (DPCP) is a therapeutic agent for treating alopecia areata. To improve skin absorption and follicular targeting nanostructured lipid carriers (NLCs) were developed. Nanoparticles were characterized by size, zeta potential, molecular environment, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). In vitro and in vivo skin absorption experiments were performed. Fluorescence and confocal microscopes for imaging skin distribution were used. NLCs with different designs were 208 ~ 265 nm with  > 77% DPCP encapsulation. NLCs incorporating a cationic surfactant or more soybean phosphatidylcholine (SPC) showed higher lipophilicity compared to typical NLCs by Nile red emission. All NLCs tested revealed controlled DPCP release; burst release was observed for control. The formulation with more SPC provided 275 μg/g DPCP skin retention, which was greater than control and other NLCs. Intersubject deviation was reduced after DPCP loading into NLCs. Cyanoacrylate skin biopsy demonstrated greater follicular deposition for NLCs with more SPC compared to control. Cationic NLCs but not typical or SPC-containing carriers were largely internalized into keratinocytes. In vivo skin retention of NLCs with more SPC was higher than free control. Confocal imaging confirmed localization of NLCs in follicles and intercellular lipids of stratum corneum. This work encourages further investigation of DPCP absorption using NLCs with a specific formulation design.

  13. Time-domain terahertz spectroscopy of artificial skin

    NASA Astrophysics Data System (ADS)

    Corridon, Peter M.; Ascázubi, Ricardo; Krest, Courtney; Wilke, Ingrid

    2006-02-01

    Time-domain Terahertz (THz) spectroscopy and imaging is currently evaluated as a novel tool for medical imaging and diagnostics. The application of THz-pulse imaging of human skin tissues and related cancers has been demonstrated recently in-vitro and in-vivo. With this in mind, we present a time-domain THz-transmission study of artificial skin. The skin samples consist of a monolayer of porous matrix of fibers of cross-linked bovine tendon collagen and a glycosaminoglycan (chondroitin-6-sulfate) that is manufactured with a controlled porosity and defined degradation rate. Another set of samples consists of the collagen monolayer covered with a silicone layer. We have measured the THz-transmission and determined the index of refraction and absorption of our samples between 0.1 and 3 THz for various states of hydration in distilled water and saline solutions. The transmission of the THz-radiation through the artificial skin samples is modeled by electromagnetic wave theory. Moreover, the THz-optical properties of the artificial skin layers are compared to the THz-optical properties of freshly excised human skin samples. Based on this comparison the potential use of artificial skin samples as photo-medical phantoms for human skin is discussed.

  14. Skin integrated with perfusable vascular channels on a chip.

    PubMed

    Mori, Nobuhito; Morimoto, Yuya; Takeuchi, Shoji

    2017-02-01

    This paper describes a method for fabricating perfusable vascular channels coated with endothelial cells within a cultured skin-equivalent by fixing it to a culture device connected to an external pump and tubes. A histological analysis showed that vascular channels were constructed in the skin-equivalent, which showed a conventional dermal/epidermal morphology, and the endothelial cells formed tight junctions on the vascular channel wall. The barrier function of the skin-equivalent was also confirmed. Cell distribution analysis indicated that the vascular channels supplied nutrition to the skin-equivalent. Moreover, the feasibility of a skin-equivalent containing vascular channels as a model for studying vascular absorption was demonstrated by measuring test molecule permeation from the epidermal layer into the vascular channels. The results suggested that this skin-equivalent can be used for skin-on-a-chip applications including drug development, cosmetics testing, and studying skin biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  16. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    NASA Astrophysics Data System (ADS)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  17. A quantitative method for estimating dermal benzene absorption from benzene-containing hydrocarbon liquids.

    PubMed

    Petty, Stephen E; Nicas, Mark; Boiarski, Anthony A

    2011-01-01

    This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.

  18. Iron deposition in skin of patients with haemochromatosis

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Silva, J. N.; Alves, L. C.; Filipe, P.

    2003-09-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix.

  19. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties.

    PubMed

    Smalls, Lola K; Randall Wickett, R; Visscher, Marty O

    2006-02-01

    Quantitative measurement of skin biomechanical properties has been used effectively in the investigation of physiological changes in tissue structure and function and to determine treatment efficacy. As the methods are applied to new questions, tissue characteristics that may influence the resultant biomechanical properties are important considerations in the research design. For certain applications, variables such as dermal thickness and subdermal tissue composition, as well as age and/or solar exposure, may influence the skin biomechanics. We determined the influence of dermal thickness, tissue composition, and age on the skin biomechanical properties at the shoulder, thigh, and calf among 30 healthy females. We compared two devices, the Biomechanical Tissue Characterization System and the Cutometer SEM 575 Skin Elasticity Meter , to determine the effect of tissue sampling size. Dermal thickness was measured with 20 MHz ultrasound (Dermascan C) and tissue composition was inferred from anthropomorphic data. Skin thickness was significantly correlated with stiffness, energy absorption, and U(r)/U(f) for the shoulder. Body mass index (BMI) was significantly correlated with stiffness (negative correlation), energy absorption (positive), and skin thickness (negative) for the shoulder. Significant differences across body sites were observed. The calf was significantly different from the thigh and shoulders for all parameters (P<0.05, one-way anova). The calf had significantly lower laxity, laxity%, elastic deformation, energy absorption, elasticity, elasticity %, U(r), U(f), and U(r)/U(f) and significantly higher stiffness compared with the thighs and shoulders. sites. The thigh and shoulder sites were significantly different for all parameters except U(r)/U(f), elasticity %, laxity%, and stiffness. The dominant and non-dominant sides were significantly different. The dominant side (right for 90% of the subjects) had increased stiffness and decreased energy absorption

  20. Skin acceptability of a cosmetic moisturizer formulation in female subjects with sensitive skin.

    PubMed

    Nisbet, Stephanie J

    2018-01-01

    This 3-week, open-label, noncomparative clinical study evaluated the skin acceptability of a cosmetic moisturizer in subjects with sensitive skin, by monitoring adverse events (AEs) and cutaneous discomfort related to normal usage. Female subjects aged between 18-60 years, with Fitzpatrick phototype classification I-IV and sensitive skin, verified by a positive reaction on the stinging test at screening, were included. Subjects applied the moisturizer to their face and body twice daily for 21±2 days at home and recorded study product usage and feelings of cutaneous discomfort (eg, dryness, prickling, stinging, and itching) in a diary; any AEs were reported to the clinic. At study end, skin acceptability of the moisturizer was investigator-assessed based on the nature of AEs and subjects' self-reported feelings of discomfort, and by clinical evaluation of skin reactions in the area of moisturizer application (appearance of erythema, formation of edema, and skin desquamation; scored according to an adapted Draize and Kligman scale). Only subjects with a treatment compliance of ≥80% were included in the final analysis. In total, 35 subjects initiated and completed the study; all were compliant to the minimum study product usage. Per investigator clinical dermatological assessment at study end, none of the 35 subjects had skin reactions in the area of moisturizer application and there were no reported AEs. One subject reported sensations of mild prickling and itching immediately after applying the moisturizer (not classified as AEs), which spontaneously remitted after complete absorption of the product and were noted only in exposed areas. These events were considered by the investigator as being possibly/probably related to the use of study product; however, no clinical signs of skin reaction were observed in the exposed areas. This cosmetic moisturizer appears generally well tolerated and suitable for topical use in subjects with sensitive skin.

  1. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  2. Evaluation of the intake of radon through skin from thermal water

    PubMed Central

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-01-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980

  3. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    NASA Astrophysics Data System (ADS)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (< 3%) is depolarized at 90° with respect to the laser polarization set at 0°. Based on these findings, we propose that the predominant part of the backscattered light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  4. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  5. Comparison of adverse events of laser and light-assisted hair removal systems in skin types IV-VI.

    PubMed

    Breadon, Jonith Y; Barnes, Chad A

    2007-01-01

    Photoepilation, utilizing lasers and noncoherent light sources, is designed to irradiate as much of the follicular unit as possible, with melanin as the target chromophore. Wavelength absorption should generate energy sufficient to heat and destroy the hair follicle, while preserving the surrounding tissue. When performing photoepilation on African-American skin (Fitzpatrick skin types IV-VI) a greater risk of potential epidermal adverse events, such as dyspigmentation, blistering, crusting, edema, and subsequent scarring, is possible. To reduce epidermal melanin absorption of energy longer wavelengths are considered safer for use on Fitzpatrick skin types IV to VI. This article reviews and compares the reported incidences of adverse events in African-American skin, utilizing lasers and noncoherent light sources for assisted hair removal.

  6. Assessing the Impact of Mechanical Damage on Full-Thickness Porcine and Human Skin Using an In Vitro Approach

    PubMed Central

    Builles, Nicolas; Frouin, Éric; Scott, Dan; Ramos, Jeanne; Marti-Mestres, Gilberte

    2015-01-01

    For most xenobiotics, the rates of percutaneous absorption are limited by diffusion through the horny layer of skin. However, percutaneous absorption of chemicals may seriously increase when the skin is damaged. The aim of this work was to develop an in vitro representative model of mechanically damaged skins. The epidermal barrier was examined following exposure to a razor, a rotating brush, and a microneedle system in comparison to tape-stripping which acted as a reference. Excised full-thickness skins were mounted on a diffusion chamber in order to evaluate the effect of injuries and to mimic physiological conditions. The transepidermal water loss (TEWL) was greatly increased when the barrier function was compromised. Measurements were made for all the damaged biopsies and observed histologically by microscopy. On human and porcine skins, the tape-stripping application (0 to 40 times) showed a proportional increase in TEWL which highlights the destruction of the stratum corneum. Similar results were obtained for all cosmetic instruments. This is reflected in our study by the nonsignificant difference of the mean TEWL scores between 30 strips and mechanical damage. For a specific appreciation, damaged skins were then selected to qualitatively evaluate the absorption of a chlorogenic acid solution using fluorescence microscopy. PMID:26247021

  7. Artificial skin in perspective: concepts and applications.

    PubMed

    Brohem, Carla A; Cardeal, Laura B da Silva; Tiago, Manoela; Soengas, María S; Barros, Silvia B de Moraes; Maria-Engler, Silvya S

    2011-02-01

    Skin, the largest organ of the human body, is organized into an elaborate layered structure consisting mainly of the outermost epidermis and the underlying dermis. A subcutaneous adipose-storing hypodermis layer and various appendages such as hair follicles, sweat glands, sebaceous glands, nerves, lymphatics, and blood vessels are also present in the skin. These multiple components of the skin ensure survival by carrying out critical functions such as protection, thermoregulation, excretion, absorption, metabolic functions, sensation, evaporation management, and aesthetics. The study of how these biological functions are performed is critical to our understanding of basic skin biology such as regulation of pigmentation and wound repair. Impairment of any of these functions may lead to pathogenic alterations, including skin cancers. Therefore, the development of genetically controlled and well characterized skin models can have important implications, not only for scientists and physicians, but also for manufacturers, consumers, governing regulatory boards and animal welfare organizations. As cells making up human skin tissue grow within an organized three-dimensional (3D) matrix surrounded by neighboring cells, standard monolayer (2D) cell cultures do not recapitulate the physiological architecture of the skin. Several types of human skin recombinants, also called artificial skin, that provide this critical 3D structure have now been reconstructed in vitro. This review contemplates the use of these organotypic skin models in different applications, including substitutes to animal testing. © 2010 John Wiley & Sons A/S.

  8. Inorganic mercury poisoning associated with skin-lightening cosmetic products.

    PubMed

    Chan, Thomas Y K

    2011-12-01

    Mercury and mercury salts, including mercurous chloride and mercurous oxide, are prohibited for use in cosmetic products as skin-lightening agents because of their high toxicity. Yet, the public continue to have access to these products. Reports of skin-lightening cosmetic products containing mercury and cases of mercury poisoning following the use of such products were identified using Medline (1950 - 28 March 2011) with mercury, mercury compounds, mercury poisoning, cosmetics and skin absorption as the subject headings. These searches identified 118 citations of which 31 were relevant. The rate of dermal absorption increases with the concentration of mercury and prior hydration of the skin. The degree of dermal absorption varies with the skin integrity and lipid solubility of the vehicle in the cosmetic products. Ingestion may occur after topical application around the mouth and hand-to-mouth contact. After absorption, inorganic mercury is distributed widely and elimination occurs primarily through the urine and feces. With long-term exposure, urinary excretion is the major route of elimination. The half-life is approximately 1-2 months. The kidneys are the major site of inorganic mercury deposition; renal damage includes reversible proteinuria, acute tubular necrosis and nephrotic syndrome. Gastrointestinal symptoms include a metallic taste, gingivostomatitis, nausea and hypersalivation. Although penetration of the blood-brain barrier by inorganic mercury is poor, prolonged exposure can result in central nervous system (CNS) accumulation and neurotoxicity. Inorganic mercury poisoning following the use of skin-lightening creams has been reported from Africa, Europe, USA, Mexico, Australia and Hong Kong. Nephrotic syndrome (mainly due to minimal change or membranous nephropathy) and neurotoxicity were the most common presenting features. As mercury-containing cosmetic products can contaminate the home, some close household contacts were also reported to have

  9. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    PubMed

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Skin hydration analysis by experiment and computer simulations and its implications for diapered skin.

    PubMed

    Saadatmand, M; Stone, K J; Vega, V N; Felter, S; Ventura, S; Kasting, G; Jaworska, J

    2017-11-01

    Experimental work on skin hydration is technologically challenging, and mostly limited to observations where environmental conditions are constant. In some cases, like diapered baby skin, such work is practically unfeasible, yet it is important to understand potential effects of diapering on skin condition. To overcome this challenge, in part, we developed a computer simulation model of reversible transient skin hydration effects. Skin hydration model by Li et al. (Chem Eng Sci, 138, 2015, 164) was further developed to simulate transient exposure conditions where relative humidity (RH), wind velocity, air, and skin temperature can be any function of time. Computer simulations of evaporative water loss (EWL) decay after different occlusion times were compared with experimental data to calibrate the model. Next, we used the model to investigate EWL and SC thickness in different diapering scenarios. Key results from the experimental work were: (1) For occlusions by RH=100% and free water longer than 30 minutes the absorbed amount of water is almost the same; (2) Longer occlusion times result in higher water absorption by the SC. The EWL decay and skin water content predictions were in agreement with experimental data. Simulations also revealed that skin under occlusion hydrates mainly because the outflux is blocked, not because it absorbs water from the environment. Further, simulations demonstrated that hydration level is sensitive to time, RH and/or free water on skin. In simulated diapering scenarios, skin maintained hydration content very close to the baseline conditions without a diaper for the entire duration of a 24 hours period. Different diapers/diaper technologies are known to have different profiles in terms of their ability to provide wetness protection, which can result in consumer-noticeable differences in wetness. Simulation results based on published literature using data from a number of different diapers suggest that diapered skin hydrates within

  11. NDELA and nickel modulation of triazine disposition in skin.

    PubMed

    Baynes, Ronald E; Brooks, James D; Barlow, Beth M; Riviere, Jim E

    2005-10-01

    Cutting fluids can become contaminated with metals (e.g., nickel, Ni) and nitrosamines (e.g., N-nitrosodiethanolamine, NDELA) and there is concern that these classes of contaminants can modulate dermal disposition and ultimately the toxicity of cutting fluid additives, such as irritant biocides (e.g., triazine). Biocides are added to these formulations to prevent bacterial degradation of commercial cutting fluids. The purpose of this study was to assess the dermal absorption and skin deposition of 14C-triazine when topically applied to porcine skin in an in vitro flow-through diffusion cell system as aqueous soluble oil (mineral oil, MO) or aqueous synthetic (polyethylene glycol, PEG) mixtures. 14C-Triazine mixtures were formulated with NDELA and/or Ni, or with a combination of three additional cutting fluid additives; namely, 5% linear alkylbenzene sulfonate (LAS), 5% triethanolamine (TEA) and 5% sulfurized ricinoleic acid. Neither Ni nor NDELA was absorbed during these 8-h studies. However, 14C-triazine absorption ranged from 2.72 to 3.29% dose in MO and 2.29-2.88% dose in PEG with significantly greater triazine absorption in MO than PEG when all additives and contaminates were present. The difference between these two diluents was most pronounced when NDELA and/or Ni were present in cutting fluids. These contaminants also enhanced triazine deposition on the skin surface and skin tissues especially with PEG-based mixtures. In essence, the dermal disposition of irritant biocides could be dependent on whether the worker is exposed to a soluble oil or synthetic fluid when these contaminants are present. Workers should therefore not only be concerned about dermatotoxicity of these contaminants, but also the modulated dermal disposition of cutting fluid additives when these contaminants are present in cutting fluid formulations.

  12. Evaluation of the intake of radon through skin from thermal water.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-07-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. The role of hair follicles in the percutaneous absorption of caffeine.

    PubMed

    Otberg, Nina; Patzelt, Alexa; Rasulev, Utkur; Hagemeister, Timo; Linscheid, Michael; Sinkgraven, Ronald; Sterry, Wolfram; Lademann, Jürgen

    2008-04-01

    * In recent years, it has been suggested that hair follicles represent important shunt routes into the skin for drugs and chemicals [1-3]. * In vitro studies have shown the importance of skin appendages for skin penetration by hydrophilic compounds [4]. Investigation of follicular penetration in vivo has been difficult due to the absence of appropriate analytical methods or suitable animal model systems. * Recently, a new method was described that quantifies follicular penetration in vivo by using selective closure of hair follicles [5]. * Caffeine is frequently used in skin penetration experiments as a model for highly water-soluble compounds. Occlusion [6] and skin thickness [7] seem to have little influence on the penetration of caffeine. However, percutaneous absorption rates for caffeine exhibit regional skin differences in humans in vivo[1]. * The results of the present study demonstrate that a fast drug delivery of caffeine occurs through shunt routes. Therefore, hair follicles are considerable weak spots in our protective sheath against penetration into the body by hydrophilic substances. * We showed that there is a quantitative distinction between follicular penetration and interfollicular diffusion of caffeine in vivo. * These findings are of importance for the development and optimization of topically applied drugs and cosmetics. In addition, such properties must be considered in the development of skin protection measures. The skin and its appendages are our protective shield against the environment and are necessary for the maintenance of homeostasis. Hypotheses concerning the penetration of substances into the skin have assumed diffusion through the lipid domains of the stratum corneum. It is believed that while hair follicles represent a weakness in the shield, they play a subordinate role in the percutaneous penetration processes. Previous investigation of follicular penetration has mostly addressed methodical and technical problems. Our study

  14. A quantitative study of nanoparticle skin penetration with interactive segmentation.

    PubMed

    Lee, Onseok; Lee, See Hyun; Jeong, Sang Hoon; Kim, Jaeyoung; Ryu, Hwa Jung; Oh, Chilhwan; Son, Sang Wook

    2016-10-01

    In the last decade, the application of nanotechnology techniques has expanded within diverse areas such as pharmacology, medicine, and optical science. Despite such wide-ranging possibilities for implementation into practice, the mechanisms behind nanoparticle skin absorption remain unknown. Moreover, the main mode of investigation has been qualitative analysis. Using interactive segmentation, this study suggests a method of objectively and quantitatively analyzing the mechanisms underlying the skin absorption of nanoparticles. Silica nanoparticles (SNPs) were assessed using transmission electron microscopy and applied to the human skin equivalent model. Captured fluorescence images of this model were used to evaluate degrees of skin penetration. These images underwent interactive segmentation and image processing in addition to statistical quantitative analyses of calculated image parameters including the mean, integrated density, skewness, kurtosis, and area fraction. In images from both groups, the distribution area and intensity of fluorescent silica gradually increased in proportion to time. Since statistical significance was achieved after 2 days in the negative charge group and after 4 days in the positive charge group, there is a periodic difference. Furthermore, the quantity of silica per unit area showed a dramatic change after 6 days in the negative charge group. Although this quantitative result is identical to results obtained by qualitative assessment, it is meaningful in that it was proven by statistical analysis with quantitation by using image processing. The present study suggests that the surface charge of SNPs could play an important role in the percutaneous absorption of NPs. These findings can help achieve a better understanding of the percutaneous transport of NPs. In addition, these results provide important guidance for the design of NPs for biomedical applications.

  15. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality?

    PubMed

    Baroli, Biancamaria

    2010-01-01

    The advent of nanotechnological products in the market, while holding great promise, is raising concerns in consumers. Therefore, this contribution will attempt to compare different particulate formulations and to answer whether their passive penetration into, and potential permeation through the skin may be possible or not. To this end, skin structure, composition, and penetration paths will be concisely reviewed. Parameters generally cited to affect skin absorption will be resumed and commented on from the perspective of potentially penetrating nanosized agents. These sections will provide the basis to understand what is fiction and what is reality.

  16. Skin decontamination with mineral cationic carrier against sarin determined in vivo.

    PubMed

    Vucemilović, Ante; Hadzija, Mirko; Jukić, Ivan

    2009-06-01

    Our Institute's nuclear, biological, and chemical defense research team continuously investigates and develops preparations for skin decontamination against nerve agents. In this in vivo study, we evaluated skin decontamination efficacy against sarin by a synthetic preparation called Mineral Cationic Carrier (MCC) with known ion exchange, absorption efficacy and bioactive potential. Mice were treated with increasing doses of sarin applied on their skin, and MCC was administered immediately after contamination. The results showed that decontamination with MCC could achieve therapeutic efficacy corresponding to 3 x LD(50) of percutaneous sarin and call for further research.

  17. Novel Biodegradable Porous Scaffold Applied to Skin Regeneration

    PubMed Central

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments. PMID:23762223

  18. Transdermal absorption of natural progesterone from alcoholic gel formulations with hydrophilic surfactant.

    PubMed

    Matsui, Rakan; Ueda, Osamu; Uchida, Shinya; Namiki, Noriyuki

    2015-06-01

    The aim of this study was to evaluate the in vitro skin permeation and in vivo transdermal absorption of natural progesterone (Prog) from alcoholic gel-based transdermal formulations containing Prog dissolved stably at a concentration of 3%. 3% Prog dissolved gel formulations were prepared containing with water, ethanol, 1,3-butylene glycol, carboxyvinylpolymer, diisopropanolamine, polyoxyethylene (2) oleylether and benzyl alcohol. The gel formulations added different hydrophilic surfactants and isopropyl myristate or propylene glycol dicaprylate (PGDC) as oily solvents were applied in vitro permeation study through excised rat skin on unocclusive condition. The gel formulations added polyoxyethylene (20) oleylether (Oleth-20) as hydrophilic surfactant and PGDC were applied in vivo single- and repeated-dose transdermal absorption study of rat on unocclusive condition. The results of evaluation of the gel formulations by an in vitro skin permeation study revealed a high flux of Prog from the formulation containing Oleth-20 and Oleth-20 with PGDC. The results of single and repeated in vivo transdermal absorption studies confirmed that good plasma levels of Prog were achieved and maintained by Oleth-20 and PGDC containing gel formulation. The Oleth-20 and PGDC containing ethanolic gel formulation seemed to have the ability to maintain a high activity of Prog and high diffusivity or solubility of Prog in the epidermis on the practical formulation application.

  19. An analytical solution for percutaneous drug absorption: application and removal of the vehicle.

    PubMed

    Simon, L; Loney, N W

    2005-10-01

    The methods of Laplace transform were used to solve a mathematical model developed for percutaneous drug absorption. This model includes application and removal of the vehicle from the skin. A system of two linear partial differential equations was solved for the application period. The concentration of the medicinal agent in the skin at the end of the application period was used as the initial condition to determine the distribution of the drug in the skin following instantaneous removal of the vehicle. The influences of the diffusion and partition coefficients, clearance factor and vehicle layer thickness on the amount of drug in the vehicle and the skin were discussed.

  20. Skin acceptability of a cosmetic moisturizer formulation in female subjects with sensitive skin

    PubMed Central

    Nisbet, Stephanie J

    2018-01-01

    Purpose This 3-week, open-label, noncomparative clinical study evaluated the skin acceptability of a cosmetic moisturizer in subjects with sensitive skin, by monitoring adverse events (AEs) and cutaneous discomfort related to normal usage. Materials and methods Female subjects aged between 18–60 years, with Fitzpatrick phototype classification I–IV and sensitive skin, verified by a positive reaction on the stinging test at screening, were included. Subjects applied the moisturizer to their face and body twice daily for 21±2 days at home and recorded study product usage and feelings of cutaneous discomfort (eg, dryness, prickling, stinging, and itching) in a diary; any AEs were reported to the clinic. At study end, skin acceptability of the moisturizer was investigator-assessed based on the nature of AEs and subjects’ self-reported feelings of discomfort, and by clinical evaluation of skin reactions in the area of moisturizer application (appearance of erythema, formation of edema, and skin desquamation; scored according to an adapted Draize and Kligman scale). Only subjects with a treatment compliance of ≥80% were included in the final analysis. Results In total, 35 subjects initiated and completed the study; all were compliant to the minimum study product usage. Per investigator clinical dermatological assessment at study end, none of the 35 subjects had skin reactions in the area of moisturizer application and there were no reported AEs. One subject reported sensations of mild prickling and itching immediately after applying the moisturizer (not classified as AEs), which spontaneously remitted after complete absorption of the product and were noted only in exposed areas. These events were considered by the investigator as being possibly/probably related to the use of study product; however, no clinical signs of skin reaction were observed in the exposed areas. Conclusion This cosmetic moisturizer appears generally well tolerated and suitable for topical

  1. Impact of synthetic canine cerumen on in vitro penetration of auricular skin of dogs by florfenicol, terbinafine, and betamethasone acetate.

    PubMed

    Ehling, Sarah; Baynes, Ronald E; Bäumer, Wolfgang

    2018-03-01

    OBJECTIVE To determine the pharmacokinetics of florfenicol, terbinafine, and betamethasone acetate after topical application to canine auricular skin and the influence of synthetic canine cerumen on pharmacokinetics. SAMPLE Auricular skin from 6 euthanized shelter dogs (3 females and 3 neutered males with no visible signs of otitis externa). PROCEDURES Skin adjacent to the external opening of the ear canal was collected and prepared for use in a 2-compartment flow-through diffusion cell system to evaluate penetration of an otic gel containing florfenicol, terbinafine, and betamethasone acetate over a 24-hour period. Radiolabeled 14 C-terbinafine hydrochloride and 3 H-betamethasone acetate were added to the gel to determine dermal penetration and distribution. Florfenicol absorption was determined by use of high-performance liquid chromatography-UV detection. Additionally, the effect of synthetic canine cerumen on the pharmacokinetics of all compounds was evaluated. RESULTS During the 24-hour experiment, mean ± SD percentage absorption without the presence of synthetic canine cerumen was 0.28 ± 0.09% for 3H-betamethasone acetate, 0.06 ± 0.06% for florfenicol, and 0.06 ± 0.02% for 14C-terbinafine hydrochloride. Absorption profiles revealed no impact of synthetic canine cerumen on skin absorption for all 3 active compounds in the gel or on skin distribution of 3 H-betamethasone acetate and 14 C-terbinafine hydrochloride. CONCLUSIONS AND CLINICAL RELEVANCE 3 H-betamethasone acetate, 14 C-terbinafine hydrochloride, and florfenicol were all absorbed in vitro through healthy auricular skin specimens within the first 24 hours after topical application. Synthetic canine cerumen had no impact on dermal absorption in vitro, but it may serve as a temporary reservoir that prolongs the release of topical drugs.

  2. Gravimetric method for in vitro calibration of skin hydration measurements.

    PubMed

    Martinsen, Ørjan G; Grimnes, Sverre; Nilsen, Jon K; Tronstad, Christian; Jang, Wooyoung; Kim, Hongsig; Shin, Kunsoo; Naderi, Majid; Thielmann, Frank

    2008-02-01

    A novel method for in vitro calibration of skin hydration measurements is presented. The method combines gravimetric and electrical measurements and reveals an exponential dependency of measured electrical susceptance to absolute water content in the epidermal stratum corneum. The results also show that absorption of water into the stratum corneum exhibits three different phases with significant differences in absorption time constant. These phases probably correspond to bound, loosely bound, and bulk water.

  3. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    PubMed

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Principles of skin care in the elderly.

    PubMed

    Surber, C; Brandt, S; Cozzio, A; Kottner, J

    2015-12-01

    With aging, skin undergoes progressive structural and functional degeneration that leaves it prone to a wide variety of bothersome and even serious conditions and diseases. As skin conditions and diseases may affect all ages from cradle to grave, a disproportionate burden will clearly fall on the elderly and may significantly impact on quality of life (QoL). With a reduced ability of the skin to regenerate, the elderly are at an increased risk of skin breakdowns from even the simplest insults. It is therefore vital that skin care in the late adulthood is seen as a priority among both clinicians and caregivers. The scientific literature on diagnosing and assessing age-related skin conditions and diseases is vast; however, when it comes to preventive care and treatment, the scientific data available is less profound, and the recommendations are often based on personal experience, opinions or at best on consensus documents rather than on scientific data retrieved from controlled clinical trials. In addition to the absence of the scientific data, the imprecise terminology to describe the topical products, as well as the lack of understanding the essence of the vehicle, contributes to vague and often unhelpfully product recommendations. This paper aims to elucidate some basic principles of skincare, the choice of skincare products and their regulatory status. The paper discusses adherence to topical therapies, percutaneous absorption in the elderly, and skin surface pH and skin care. Lastly, it also discusses skin care principles in selected age related skin conditions and diseases.

  5. Standardization of an in vitro Model for Evaluating the Bioavailability of Topically Applied Compounds on Damaged Skin: Application to Sunscreen Analysis.

    PubMed

    Jacques-Jamin, Carine; Jeanjean-Miquel, Corinne; Domergue, Anaïs; Bessou-Touya, Sandrine; Duplan, Hélène

    2017-01-01

    Information is lacking on the dermal penetration of topically applied formulations on in vitro skin models, under conditions where the stratum corneum (SC) is damaged. Therefore, we have developed a standardized in vitro barrier-disrupted skin model using tape stripping. Different tape stripping conditions were evaluated using histology, transepidermal water loss, infrared densitometry, and caffeine absorption. The effects of tape stripping were comparable using pig and human skin. Optimized conditions were used to test the effect of SC damage and UV irradiation on the absorption of an UV filter combination present in a sunscreen. The bioavailability of the filters was extremely low regardless of the extent of skin damage, suggesting bioavailability would not be increased if the consumer applied the sunscreen to sun-damaged skin. This standardized in vitro methodology using pig or human skin for damaged skin will add valuable information for the safety assessment of topically applied products. © 2017 S. Karger AG, Basel.

  6. Laser-induced enhancement of transdermal drug delivery for lidocaine through hairless mouse skin

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio

    2006-02-01

    Transdermal drug delivery system (TDDS), which is one of drug delivery system (DDS) for increasing the effectiveness of drugs, is enhanced absorption of drugs by laser irradiation. The purpose of this study is to investigate the optimum laser parameter for enhancing TDD and to examine the mechanism of TDD enhancement. In this study, hairless mouse skins (in vitro) were irradiated with Er:YAG laser, Nd:YAG laser and free electron laser (FEL), which were set up energy density of 0.5 J/cm2/pulse and exposure time of 5 second. We examined the flux (μg/cm2/h) of lidocaine (C 14H 22N IIO, FW: 234.38) through the skins using high pressure liquid chromatography (HPLC), observed cross section of the irradiated samples using light microscope, and measured electrical resistance of the surface of skins. The HPLC results demonstrated that the TDD of the irradiated samples was enhanced 200-350 times faster than it of the non-irradiated samples. It of Nd:YAG laser, however, had no enhancement. The observation of cross section and the electrical resistance of skins were found to not remove the stratum corneum (SC), completely. These results show that laser irradiations, which has the strong absorption to skins, enhance TDD dramatically with low invasive.

  7. Skin notation in the context of workplace exposure standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scansetti, G.; Piolatto, G.; Rubino, G.F.

    1988-01-01

    In the establishment of workplace exposure standards, the potential for cutaneous absorption is taken into consideration through the addition of skin notation to the relevant substance. In the TLVs Documentation (ACGIH, 1986) dermal lethal dose to 50% (LD50) or human data are the bases for the assignment of skin notation to 91 of 168 substances. For the other substances, the skin attribution seems to be based on undocumented statements in 24 (14.5%), skin effects in 13 (8%), and analogy in 7 (4%), while in the remaining 33 (20%) any reference is lacking as to the basis for notation of themore » cutaneous route of entry. Furthermore, since the established cut-off value of 2 g/kg is sometimes bypassed when a notation is added or omitted, the use of dermal LD50 is perplexing. Given the relevance of the skin notation for the validation of threshold limit values (TLVs) in the workplace, a full examination and citation of all available scientific data are recommended when establishing the TLV of substances absorbable through the skin.« less

  8. Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability.

    PubMed

    Glynn, Kelly M; Anderson, Penny; Fast, David J; Koedam, James; Rebhun, John F; Velliquette, Rodney A

    2018-06-15

    Glycation and advanced glycation endproducts (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine if GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses, and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) activation. Inflammatory targets, nuclear factor kappa light chain enhancer of activated B cells (NFκB) and tumor necrosis factor alpha (TNFα), were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation, and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive

  10. Effect of different penetration enhancers on diclofenac permeation across horse skin.

    PubMed

    Ferrante, M; Andreeta, A; Landoni, M F

    2010-12-01

    Diclofenac is a hydrophilic non-steroidal anti-inflammatory drug widely used in humans and animals. Previous reports have shown that this compound has low percutaneous absorption in horses. The effect of five penetration enhancers (10% urea, 15% and 20% oleic acid and 5% and 10% d-limonene) on the percutaneous absorption of diclofenac diethylamine through horse skin was evaluated in vitro using Franz-type diffusion cells. All tested penetration enhancers induced a significant increase in diclofenac diethylamine permeation, with limonene showing the highest enhancing effect at the lowest concentration (5%) applied. The presence of the permeation enhancers did not affect lag-time. This is the first in vitro study of the effects of penetration enhancers on transdermal permeation of diclofenac diethylamine across horse skin. The results suggested that urea, limonene and 5% oleic acid were useful for enhancing the transdermal absorption of diclofenac diethylamine and may assist in the development of a transdermal formulation of diclofenac diethylamine for use in horses. Copyright © 2009. Published by Elsevier Ltd.

  11. Percutaneous absorption of sunscreen agents from liquid paraffin: self-association of octyl salicylate and effects on skin flux.

    PubMed

    Jiang, R; Roberts, M S; Prankerd, R J; Benson, H A

    1997-07-01

    This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (Kp') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and Kp' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.

  12. Skin Physiology of the Neonate and Infant: Clinical Implications

    PubMed Central

    Oranges, Teresa; Dini, Valentina; Romanelli, Marco

    2015-01-01

    Significance: The skin is a complex and dynamic organ that performs several vital functions. The maturation process of the skin starts at birth with the adaption of the skin to the comparatively dry environment compared to the in utero milieu. This adaptive flexibility results in the unique properties of infant skin. To deliver appropriate care to infant skin, it is necessary to understand that it is evolving with unique characteristics. Recent Advances: The role of biophysical noninvasive techniques in the assessment of skin development underlines the importance of an objective evaluation of skin physiology parameters. Skin hydration, transepidermal water loss, and pH values are measurable with specific instruments that give us an accurate and reproducible assessment during infant skin maturation. The recording of these values, following standard measurement procedures, allows us to evaluate the integrity of the skin barrier and to monitor the functionality of the maturing skin over time. Critical Issues: During the barrier development, impaired skin function makes the skin vulnerable to chemical damage, microbial infections, and skin diseases, possibly compromising the general health of the infant. Preterm newborns, during the first weeks of life, have an even less developed skin barrier and, therefore, are even more at risk. Thus, it is extremely important to evaluate the risk of infection, skin breakdown, topical agent absorption, and the risk of thermoregulation failure. Future Directions: Detailed and objective evaluations of infant skin maturation are necessary to improve infant skin care. The results of these evaluations should be formed into general protocols that will allow doctors and caregivers to give more personalized care to full-term newborns, preterm newborns, and infants. PMID:26487977

  13. Evidence for percutaneous absorption of isotretinoin from the photo-isomerization of topical tretinoin.

    PubMed

    Lehman, P A; Malany, A M

    1989-11-01

    Tretinoin (0.1% Retin-A cream) was topically applied to human cadaver skin in vitro using Franz diffusion chambers. The photo-isomerization of tretinoin and retinoic acid percutaneous absorption in the absence of metabolic activity were assessed with and without ambient light exposure to the skin. Using HPLC, UV, and GC/MSD, a retinoid exhibiting identical chromatographic and spectral characteristics of isotretinoin was observed in the samples from the skin exposed to light, but was virtually absent in the skin samples maintained in the dark. From a single topical application of tretinoin, isotretinoin was as abundant as tretinoin in the chamber receiver solution, dermis, epidermis, and on the skin surface at 24 h after topical application. The data suggest the possibility that isotretinoin may have an important role in the pharmacology of topically applied tretinoin.

  14. The Transient Dermal Exposure II: Post-Exposure Absorption and Evaporation of Volatile Compounds

    PubMed Central

    FRASCH, H. FREDERICK; BUNGE, ANNETTE L.

    2016-01-01

    The transient dermal exposure is one where the skin is exposed to chemical for a finite duration, after which the chemical is removed and no residue remains on the skin’s surface. Chemical within the skin at the end of the exposure period can still enter the systemic circulation. If it has some volatility, a portion of it will evaporate from the surface before it has a chance to be absorbed by the body. The fate of this post-exposure “skin depot” is the focus of this theoretical study. Laplace domain solutions for concentration distribution, flux, and cumulative mass absorption and evaporation are presented, and time domain results are obtained through numerical inversion. The Final Value Theorem is applied to obtain the analytical solutions for the total fractional absorption by the body and evaporation from skin at infinite time following a transient exposure. The solutions depend on two dimensionless variables: χ, the ratio of evaporation rate to steady-state dermal permeation rate; and the ratio of exposure time to membrane lag time. Simple closed form algebraic equations are presented that closely approximate the complete analytical solutions. Applications of the theory to the dermal risk assessment of pharmaceutical, occupational, and environmental exposures are presented for four example chemicals. PMID:25611182

  15. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    NASA Astrophysics Data System (ADS)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  16. Development of In Vitro Isolated Perfused Porcine Skin Flaps for Study of Percutaneous Absorption of Xenobiotics

    DTIC Science & Technology

    1985-11-01

    selected because their skin is functionally and structurally similar to that of man (2,3,4,5,6,7,8). Earlier studies utilized flat skin flaps in dogs (9,10...level above the muscle and fascia. Direct cutaneous arteries supply much greater areas of skin. Unlike man and pig, the dog and other loose-skiiined...each female pig was premedicated with atropine sulfate (.04 mg/kg i.m.) and xylazine hydrochloride (0.2 mg/kg i.m.) and maintained with halothane

  17. Experimental studies of methemoglobinemia due to percutaneous absorption of sodium nitrite.

    PubMed

    Saito, T; Takeichi, S; Nakajima, Y; Yukawa, N; Osawa, M

    1997-01-01

    Methemoglobin formation caused by a liniment solution containing sodium nitrite (30 g/L and 140 g/L) was studied in rats with normal or abraded skin, by measuring the methemoglobin concentration before and after application of liniment solutions with differing nitrite concentration. Each liniment solution (120 microL) was applied. Methemoglobin was measured for 180 minutes using a hemoximeter. Simultaneously, arterial blood pressure and cutaneous blood flow was measured by laser Doppler flowmetry and a pressure transducer. After the application of each liniment solution to normal skin, the methemoglobin concentration was not significantly modified depending on the time after application. Application of liniment solution to abraded skin (140 g/L) resulted in a marked increase in methemoglobin concentration. A remarkable decrease in arterial blood pressure and subcutaneous blood flow were observed after application of liniment solution to abraded skin (140 g/L). Each of these findings are characteristic of nitrite and they imply the percutaneous absorption of nitrite. Regardless of the nitrite concentration, the methemoglobin concentration was consistently higher in abraded skin than in normal skin.

  18. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  19. Atrazine increases the sodium absorption in frog (Rana esculenta) skin.

    PubMed

    Cassano, Giuseppe; Bellantuono, Vito; Ardizzone, Concetta; Lippe, Claudio

    2006-02-01

    The presence of atrazine in agricultural sites has been linked to the decline in amphibian populations. The efforts of the scientific community generally are directed toward investigating the long-term effect of atrazine on complex functions (reproduction or respiration), but in the present study, we investigated the short-term effect on the short-circuit current (I(sc)), a quantitative measure of the ion transport operated by frog (Rana esculenta) skin. Treatment with 5 microM atrazine (1.08 mg/L) does not affect the transepithelial outfluxes of [14C]mannitol or [14C]urea; therefore, atrazine does not damage the barrier properties of frog skin. Atrazine causes a dose-dependent increase in the short-circuit current, with a minimum of 4.64 +/- 0.76 microA/cm2 (11.05% +/- 1.22%) and a maximum of 12.7 +/- 0.7 microA/cm2 (35% +/- 2.4%) measured at 10 nM and 5 microM, respectively. An increase in Isc also is caused by 5 microM ametryne, prometryn, simazine, terbuthylazine, or terbutryn (other atrazine derivatives). In particular, atrazine increases the transepithelial 22Na+ influx without affecting the outflux. Finally, stimulation of Isc by atrazine is suppressed by SQ 22536, H89, U73122, 2-aminoethoxydiphenyl borate, and W7 (blockers of adenylate cyclase, protein kinase A, phospholipase C, intracellular Ca2+ increase, and calmodulin, respectively), whereas indomethacin and calphostin C (inhibitors of cyclooxygenase and protein kinase C, respectively) have no effect.

  20. A physiologically based mathematical model of dermal absorption in man.

    PubMed

    Auton, T R; Westhead, D R; Woollen, B H; Scott, R C; Wilks, M F

    1994-01-01

    A sound understanding of the mechanisms determining percutaneous absorption is necessary for toxicological risk assessment of chemicals contacting the skin. As part of a programme investigating these mechanisms we have developed a physiologically based mathematical model. The structure of the model parallels the multi-layer structure of the skin, with separate surface, stratum corneum and viable tissue layers. It simulates the effects of partitioning and diffusive transport between the sub-layers, and metabolism in the viable epidermis. In addition the model describes removal processes on the surface of the skin, including the effects of washing and desquamation, and rubbing off onto clothing. This model is applied to data on the penetration of the herbicide fluazifop-butyl through human skin in vivo and in vitro. Part of this dataset is used to estimate unknown model parameter values and the remainder is used to provide a partial validation of the model. Only a small fraction of the applied dose was absorbed through the skin; most of it was removed by washing or onto clothing. The model provides a quantitative description of these loss processes on the skin surface.

  1. Ultraviolet A irradiation increases the permeation of fullerenes into human and porcine skin from C₆₀-poly(vinylpyrrolidone) aggregate dispersions.

    PubMed

    Souto, Gabriele Dadalt; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski

    2015-01-01

    The purpose of this study was to characterise C₆₀-poly(vinylpyrrolidone) (PVP) dispersions, to analyse the cutaneous absorption of fullerenes as well as to evaluate whether UVA radiation (UVA-R) could modify its permeation profile. Dispersions were characterised according to their pH, particle size, zeta potential, and morphology. Skin absorption studies were performed using porcine or human skin under UVA or sham irradiation. The C₆₀ aggregate size was 129 ± 54 nm (as determined by nanoparticle tracking analysis) and the zeta potential was -4.93 ± 1.72 mV. The C₆₀ aggregates presented an irregular shape (as measured by transmission electron microscopy) and permeated through human and porcine skin. C₆₀-PVP aggregates were adequately characterised. Human skin was less permeable than porcine skin, and the presence of UVA-R increased the C₆₀ content up to the dermis. © 2014 S. Karger AG, Basel.

  2. The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin.

    PubMed

    Hsieh, Pei-Wen; Al-Suwayeh, Saleh A; Fang, Chia-Lang; Lin, Chwan-Fwu; Chen, Chun-Che; Fang, Jia-You

    2012-06-01

    A co-drug of hydroquinone (HQ) and azelaic acid (AA), bis(4-hydroxyphenyl)nonanedioate (BHN), was synthesized and investigated as a topical prodrug with the aim of improving the dermal delivery of the parent drugs. Physicochemical parameters were ascertained, and the enzymatic hydrolysis was examined. Skin permeation of HQ, AA, and BHN was studied by determining the skin deposition and flux across nude mouse skin under equivalent doses with the same thermodynamic activity. The partition coefficient (log P) of the co-drug increased by up to 5.0 with HQ and AA conjugation, which had respective log P values of 0.5 and 1.4. In the skin absorption experiment, BHN in ethanol/pH 7 buffer resulted in a 2-fold enhancement of skin deposition compared to both HQ and AA. With permeation using polyethylene glycol 400/pH 7 buffer as the vehicle, the co-drug, respectively, exhibited 8.1- and 1.4-fold enhancements of skin uptake compared to HQ and AA alone. The transdermal flux from BHN was negligible compared to those with HQ and AA treatments. The results of a preliminary safety evaluation showed no signs of stratum corneum disruption or erythema by BHN application within 24h. The co-drug approach provides a viable option for the treatment of skin hyperpigmentation of HQ and AA. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. In vitro permeation and disposition of niacinamide in silicone and porcine skin of skin barrier-mimetic formulations.

    PubMed

    Haque, Tasnuva; Lane, Majella E; Sil, Bruno C; Crowther, Jonathan M; Moore, David J

    2017-03-30

    Niacinamide (NIA) is an amide form of vitamin B3 which is used in cosmetic formulations to improve various skin conditions and it has also been shown to increase stratum corneum thickness following repeated application. In this study, three doses (5, 20 and 50μL per cm 2 ) of two NIA containing oil-in-water skin barrier-mimetic formulations were evaluated in silicone membrane and porcine ear skin and compared with a commercial control formulation. Permeation studies were conducted over 24h in Franz cells and at the end of the experiment membranes were washed and niacinamide was extracted. For the three doses, retention or deposition of NIA was generally higher in porcine skin compared with silicone membrane, consistent with the hydrophilic nature of the active. Despite the control containing a higher amount of active, comparable amounts of NIA were deposited in skin for all formulations for all doses; total skin absorption values (permeation and retention) of NIA were also comparable across all formulations. For infinite (50μL) and finite (5μL) doses the absolute permeation of NIA from the control formulation was significantly higher in porcine skin compared with both test formulations. This likely reflects differences in formulation components and/or presence of skin penetration enhancers in the formulations. Higher permeation for the 50 and 20μL dose was also evident in porcine skin compared with silicone membrane but the opposite is the case for the finite dose. The findings point to the critical importance of dose and occlusion when evaluating topical formulations in vitro and also the likelihood of exaggerated effects of excipients on permeation at infinite and pseudo-finite dose applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent.

    PubMed

    Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun

    2018-09-01

    Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Tseng, Sheng-Hao; Hsu, Chao-Kai; Yu-Yun Lee, Julia; Tzeng, Shih-Yu; Chen, Wan-Rung; Liaw, Yu-Kai

    2012-07-01

    Collagen is a rich component in skin that provides skin structure integrity; however, its contribution to the absorption and scattering properties of various types of skin has not been extensively studied. We considered the contribution of the collagen to the absorption spectrum of in vivo normal skin and keloids of 12 subjects derived from our diffuse reflectance spectroscopy (DRS) system in the wavelength range from 550 to 860 nm. It was found that the collagen concentration, the hemoglobin oxygen saturation, and the reduced scattering coefficient of keloids were remarkably different from that of normal skin. Our results suggest that our DRS system could assist clinicians in understanding the functional and structural condition of keloid scars. In the future, we will evaluate the accuracy of our system in the keloid diagnosis and investigate the applicability of our system for other skin-collagen-related studies.

  7. Investigation into the absorptivity change in metals with increased laser power

    NASA Astrophysics Data System (ADS)

    Blidegn, M. Sc. K.; Olsen, Flemming O.

    1997-04-01

    At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.

  8. Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid.

    PubMed

    Hsieh, Pei-Wen; Chen, Wei-Yu; Aljuffali, Ibrahim A; Chen, Chun-Che; Fang, Jia-You

    2013-01-01

    Hydroquinone and tranexamic acids (TXA) are skin-lightening agents with a hydrophilic nature and low skin absorption. A high dose is needed for clinical use, resulting in a high incidence of skin irritation. Co-drugs formed by conjugating hydroquinone and TXA were synthesized and their in vitro and in vivo skin absorption characteristics were evaluated. The two synthesized co-drugs were 4-hydroxyphenyl 4-(aminomethyl)cyclohexanecarboxylate (HAC) and 1,4- phenylene bis(aminomethyl)cyclohexanecarboxylate (BAC). The co-drugs were chemically stable in aqueous solution, but rapidly degraded to the respective parent drug in esterases and skin homogenates. Compared to hydroquinone application, 7.2- and 2.4-fold increments in the hydroquinone skin deposition were obtained with the in vitro application of HAC and BAC. HAC and BAC led to 3- and 2-fold enhancements of equivalent TXA deposition compared to TXA administration. The in vivo experiment showed a further enhancement of co-drugs compared to the in vitro setup. The transdermal penetration of co-drugs, especially BAC, was much lower than that of hydroquinone and TXA. This indicated high-level skin targeting by the co-drugs. HAC and BAC revealed strong affinities for the viable epidermis/dermis. Hair follicles are important reservoirs for co-drug delivery. Daily administration of co-drugs to the skin did not generate irritation for up to 7 days. Both co-drugs are superior candidates for treating skin hyperpigmentation.

  9. Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions.

    PubMed

    Chatterjee, I; Hagmann, M J; Gandhi, O P

    1980-01-01

    The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.

  10. Bicellar systems as vehicle for the treatment of impaired skin.

    PubMed

    Rubio, L; Alonso, C; Rodríguez, G; Cócera, M; Barbosa-Barros, L; Coderch, L; de la Maza, A; Parra, J L; López, O

    2014-02-01

    This study assesses the potential usefulness of bicellar systems to retard the penetration of drugs into damaged skin. The active compound used in this study was diclofenac diethylamine (DDEA). Initially, physicochemical characterisation of the DDEA bicellar systems was performed at different temperatures by small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Subsequently, in vitro percutaneous absorption of bicellar systems into in vitro damaged skin was studied. SAXS results indicated a slight decrease in the width of their bilayers with increasing temperature, with no apparent stacking in those systems. WAXS patterns were compatible with an orthorhombic lateral packing of the nanoaggregates. The thermogram obtained by DSC indicated a decrease in gel-to-liquid crystalline transition temperature (Tm) when the drug was included into bicellar systems. A retardation effect for DDEA was detected by in vitro percutaneous absorption studies when DDEA was vehiculised in the bicellar systems with respect to an aqueous solution of the drug. It seems that the use of bicellar systems as a vehicle for topical application of DDEA on skin with an impaired barrier function may inhibit the penetration of DDEA to the systemic level. Such systems may consequently repair stratum corneum barrier function to some extent. The use of these systems could be considered a new alternative strategy to treat topically pathological skin with different drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol.

    PubMed

    Alonso, Cristina; Lucas, Ricardo; Barba, Clara; Marti, Meritxell; Rubio, Laia; Comelles, Francesc; Morales, Juan Carlos; Coderch, Luisa; Parra, José Luís

    2015-07-01

    The aim of this study has been to investigate the dermal absorption profile of the antioxidant compounds gallic acid and hydroxytyrosol as well as their derivatives, hexanoate (hexyl gallate and hydroxytyrosol hexanoate) and octanoate (octyl gallate and octanoate derivative) alkyl esters (antioxidant surfactants). Previously, the scavenging capacity of these compounds, expressed as efficient dose ED50, has also determined. The percutaneous absorption of these compounds was obtained by an in vitro methodology using porcine skin biopsies on Franz static diffusion cells. The antiradical activity of compounds was determined using the 1,1-diphenyl-2-picrylhydrazyl free radical method. The percutaneous penetration results show the presence of antioxidants in all layers of the skin. The content of the cutaneously absorbed compound is higher for the antioxidant surfactants (ester derivatives). This particular behaviour could be due to the higher hydrophobicity of these compounds and the presence of surface activity in the antioxidant surfactants. These new antioxidant surfactants display optimum properties, which may be useful in the preparation of emulsified systems in cosmetic and pharmaceutical formulations because of their suitable surface activity and because they can protect the skin from oxidative damage. © 2015 Royal Pharmaceutical Society.

  12. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasichayanula, Sreeneeranj; House, James D.; Wang Tao

    The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancementmore » effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUC{sub P}/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.« less

  13. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application.

    PubMed

    Kasichayanula, Sreeneeranj; House, James D; Wang, Tao; Gu, Xiaochen

    2007-09-01

    The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancement effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUCP/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.

  14. The effect of repeated laser stimuli to ink-marked skin on skin temperature-recommendations for a safe experimental protocol in humans.

    PubMed

    Madden, Victoria J; Catley, Mark J; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad; Moseley, G Lorimer

    2016-01-01

    Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it.

  15. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  16. Percutaneous absorption of several chemicals, some pesticides included, in the red-winged blackbird

    USGS Publications Warehouse

    Rogers, J.G.; Cagan, R.H.; Kare, M.R.

    1974-01-01

    Percutaneous absorption in vivo through the skin of the feet of the red-winged blackbird (Agelaius phoeniceus) has been investigated. Absorption after 18-24 hours exposure to 0.01 M solutions of salicylic acid, caffeine, urea, 2,4-D, dieldrin, diethylstilbesterol, and DDT was measured. Of these, only DDT and diethylstilbesterol were not absorbed to a measurable degree. The solvents ethanol, dimethylsulfoxide (DMSO), and vegetable oil were compared with water in their effects on the absorption ofcaffeine, urea, and salicylic acid. Ethanol, DMSO,and oil each decreased percutaneous absorption of salicylic acid. DMSO increased absorption of caffeine, and ethanol had no effect on it. Neither DMSO nor ethanol affected penetration of urea. Partition coefficients (K) (epidermis/water) were determined for all seven penetrants. Compounds with higher values of K showed lower percutaneous absorption. These findings suggest that K may be useful to predict percutaneous absorption in vivo. It appears unlikely that percutaneous absorption contributes greatly to the body burden of 2,4-D and dieldrin in A. phoeniceus.

  17. The skin reservoir of sulphur mustard.

    PubMed

    Hattersley, I J; Jenner, J; Dalton, C; Chilcott, R P; Graham, J S

    2008-09-01

    Studies of the percutaneous reservoir of sulphur mustard (HD) formed during absorption carried out during WWI and WWII are inconclusive. More recent studies have indicated that a significant amount of unreacted HD remains in human epidermal membranes during percutaneous penetration studies in vitro. The present study investigated the nature and persistence of the HD reservoir formed during in vitro penetration studies using dermatomed slices of human and pig skin (0.5mm thick). Amounts of (14)C-HD that (a) penetrated, (b) remained on the surface, (c) were extractable from and (d) remained in the skin after extraction were estimated by liquid scintillation counting (confirmed using GC-MS analysis). The results demonstrated that there is a reservoir of HD in human and pig skin for up to 24 h after contamination of the skin surface in vitro with liquid agent. At least some of this reservoir could be extracted with acetonitrile, and the amounts of extracted and unextracted HD exceed the amount required to produce injury in vivo by at least 20 fold. The study demonstrated the presence of a reservoir whether the skin was covered (occluded) or left open to the air (unoccluded). The study concluded that the extractable reservoir was significant in terms of the amount of HD required to induce a vesicant response in human skin. The extractable reservoir was at least 20 times the amount required per cm(2) estimated to cause a response in all of the human population, as defined by studies carried out in human volunteers during the 1940s.

  18. Insulin absorption from lipodystrophic areas: a (neglected) source of trouble for insulin therapy?

    PubMed

    Heinemann, Lutz

    2010-05-01

    The experienced clinical diabetologist first checks the skin at the area where the patient usually injects his insulin when he sees widely fluctuating blood glucose levels in the diary of the patient. He knows that insulin absorption from skin with lipodystrophic changes is irregular. However, our scientific knowledge about why this is the case is very limited. Most probably, the number of blood vessels near the insulin depot in the subcutaneous tissue varies depending on the nature of the lipodystrophic changes, or the structural changes in this tissue hamper the diffusion of insulin. Not only is our knowledge about the number of patients who exhibit such changes very limited, but also our understanding why such changes show up in certain patients and not in others is minimal. More practically important, we also have few quantitative studies investigating the impact of this diabetes-related complication on insulin absorption/insulin action; however, it is not difficult to run such studies in practice. Nevertheless, it is impressive to see how often metabolic control improves considerably once the patients apply the insulin into other skin areas. (c) 2010 Diabetes Technology Society.

  19. Thermal effects of X-band microwaves on skin tissues

    NASA Astrophysics Data System (ADS)

    Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik; Kim, Jaehwan; Choi, Sang H.

    2012-04-01

    Microwave can be used as a power carrier to implanted medical devices wirelessly, which is regarded as one of the attractive features for medical applications. The loss mechanism of microwave transmission through lossy media often appears as a thermal effect due to the absorption of microwave. Such a thermal effect on human tissue has not rigorously studied yet. The thermal effect on living tissues was experimentally tested with animal skins to understand the absorption characteristics of microwave. In this paper, the frequency range of microwave used for the tests was from 6 GHz to 13 GHz.

  20. FT-IR Spectroscopy Study in Early Diagnosis of Skin Cancer.

    PubMed

    Kyriakidou, Maria; Anastassopoulou, Jane; Tsakiris, Aristeidis; Koui, Maria; Theophanides, Theophile

    2017-01-01

    Mid-infrared spectroscopy (4000-500 cm -1 ) was used to analyze the spectral changes and differences of the characteristic absorption bands of the skin components due to cancer development for early clinical diagnosis. Human biopsies from basal cell carcinoma, malignant melanoma, and nevus were used, while normal skin tissue served as a control. The high quality of Fourier-transform infrared (FT-IR) spectra showed that upon cancer development the intensity of the absorption band at approximately 3062 cm -1 was increased, indicating that most of the proteins had the configuration of amide B and the β-sheet protein structure predominated. The stretching vibration bands of vCH 2 in the region 2950-2850 cm -1 were increased in melanoma and nevus, while were less pronounced in basal cell carcinoma due to the increased lipophilic environment. In addition, the intensity of a new band at 1744 cm -1 , which is assigned to aldehyde, was increased in melanoma and nevus and appeared as a shoulder in the spectra of normal skin. The absorption band of amide I at 1650 cm -1 was split into two bands, at 1650 cm -1 and 1633 cm -1 , due to the presence of both α-helix and random coil protein conformations for melanoma and nevus. This was confirmed from the amide II band at 1550 cm -1 , which shifted to lower frequencies at 1536 cm -1 and 1540 cm -1 for basal cell carcinoma and melanoma, respectively, indicating a damage of the native structure of proteins. The bands at 841 and 815 cm -1 , which are assigned to B-DNA and Z-DNA, respectively, indicated that only the bands of the cancerous Z-DNA form are pronounced in melanoma, while in BCC both the characteristic bands of B-DNA and Z-DNA forms are found. It is proposed that the bands described above could be used as "diagnostic marker" bands for DNA forms, in the diagnosis of skin cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Near-infrared optical properties of ex-vivo human skin and subcutaneous tissues using reflectance and transmittance measurements

    NASA Astrophysics Data System (ADS)

    Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark

    1997-08-01

    The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.

  2. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  3. Assessment of dermal absorption of DEET-containing insect repellent and oxybenzone-containing sunscreen using human urinary metabolites.

    PubMed

    Yiin, Lih-Ming; Tian, Jia-Ni; Hung, Chien-Che

    2015-05-01

    Mutual enhancement of dermal absorption of N,N-diethyl-m-toluamide (DEET) and oxybenzone (OBZ) has been reported recently with DEET and OBZ being active ingredients of insect repellent and sunscreen, respectively. To assess the reported enhancing effect directly, we used human urinary metabolites as biomarkers; besides, we also sought to determine the best way for concurrent use of these two products without extra absorption of either. Four dermal application methods were used: DEET only (S1), OBZ only (S2), DEET on top of OBZ (S3), and OBZ on top of DEET (S4). Among the study methods, there was a significant difference (p = 0.013), which was attributed to the difference between S1 and S4, suggesting that applying OBZ over DEET on the skin lead to significantly higher absorption of DEET. Using both products in reverse order, (S3) did not result in extra DEET absorption significantly. As for OBZ permeation, no significant difference was observed among the methods. In summary, the enhancement of DEET absorption is confirmed for OBZ being applied over DEET on the skin; should concurrent use of both be necessary, applying sunscreen (OBZ) first and then insect repellent (DEET) with a 15-min interval is recommended.

  4. Skin Graft Fixation Using Hydrofiber (Aquacel® Extra).

    PubMed

    Yen, Ya-Hui; Lin, Chih-Ming; Hsu, Honda; Chen, Ying-Chen; Chen, Yi-Wen; Li, Wan-Yu; Hsieh, Chia-Nan; Huang, Chieh-Chi

    2018-06-01

    The traditional method of skin graft fixation is with tie-over bollus dressing. The use of splints in the extremities for skin graft fixation is a common practice. However, these splints are heavy and uncomfortable and contribute considerably to our overall medical waste. Hydrofiber (Aquacel Extra) has a strong fluid absorption property and fixates well to the underlying wound once applied. In this study, we used hydrofiber for fixation, avoiding the use of splints after skin grafting. A total of 56 patients reconstructed with split-thickness skin graft that was fixated only with hydrofiber between March 2015 and March 2016 were included in this retrospective study. There were 44 men and 12 women with a mean age of 61 ± 18 years. The defect size ranged from 1 × 1 cm for fingertips to 30 × 12 cm for lower limb defects. The average defect size was 61 ± 78 cm. The mean skin graft take was 96% ± 6%. Because splints were not required, we saved around 48 kg of medical waste over the space of 1 year. The use of hydrofiber for skin graft fixation was effective and technically very simple. Splints were not required with this method, decreasing the medical waste created and increasing patient comfort. We suggest that this is an excellent alternative for skin graft fixation while at the same time decreasing our carbon footprint as surgeons.

  5. Quantitative and simultaneous non-invasive measurement of skin hydration and sebum levels

    PubMed Central

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. Paul; Verhagen, Rieko; Varghese, Babu

    2016-01-01

    We report a method on quantitative and simultaneous non-contact in-vivo hydration and sebum measurements of the skin using an infrared optical spectroscopic set-up. The method utilizes differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lay “in between” the prominent water absorption bands. We have used an emulsifier containing hydro- and lipophilic components to mix water and sebum in various volume fractions which was applied to the skin to mimic different oily-dry skin conditions. We also measured the skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli. Good agreement was found between our experimental results and reference values measured using conventional biophysical methods such as Corneometer and Sebumeter. PMID:27375946

  6. Concepts of skin protection: considerations for the evaluation and terminology of the performance of skin protective equipment.

    PubMed

    Brouwer, Derk H; Aitken, Robert J; Oppl, Reinhard; Cherrie, John W

    2005-09-01

    This article proposes a common language for better understanding processes involved in dermal exposure and skin protection. A conceptual model has been developed that systematically describes the transport of agent mass from sources, eventually resulting in "loading" of the skin surface or the skin contaminant layer. In view of a harmonized glossary of exposure terminology this is considered the exposure surface. Loading is defined as agent mass present in this layer divided by the exposure surface area. Skin protective equipment (SPE) is meant to reduce uptake, that is, an agent crosses the absorption barrier of the skin, by intervening in the processes of loading the exposure surface; however, the design of the equipment may fail to cover skin surface entirely. In addition, part of the mass intercepted by the SPE may reach the skin surface either by permeation, penetration, or by transfer when touching the contaminated exterior of the SPE. Evaluation of SPE performance has earlier focused on chemical resistance performance testing for permeation, penetration, or degradation of SPE-materials. In use-scenario practice, however, all processes will occur concurrently. Thus, SPE field performance evaluation including user-SPE interaction complementary to material testing is warranted. Results of laboratory testing for SPE-materials are reported as substance-specific breakthrough times and permeation rates. SPE field performance should be evaluated for reduction of either uptake or parameters that reflect the outcome of dermal exposure. Ideally, this should be based on the results of intervention-type workplace studies, for (e.g., assessment of exposure loading). The level of reduction can be expressed as a protection factor (ratio without/with SPE) for different parameters of dermal exposure or uptake. It is concluded that for evaluation of SPE-type performance, generic protection factors can be derived for substance-independent processes (e.g., reduction of exposure

  7. Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate.

    PubMed

    Sapino, Simona; Oliaro-Bosso, Simonetta; Zonari, Daniele; Zattoni, Andrea; Ugazio, Elena

    2017-09-15

    The systemic administration of methotrexate (MTX), a commonly used, antineoplastic drug which is also used in cutaneous disorders, is primarily associated with prolonged retention in the body and consequently with side effects. Innovative drug delivery techniques and alternative administration routes would therefore contribute to its safe and effective use. The general objective of this study is thus the development of MTX-based preparations for the topical treatment of skin disorders. MCM-41-like nanoparticles (MSN), are herein proposed as carriers which can improve the cutaneous absorption and hence the bioavailability and efficacy of MTX. The MTX/MSN complex, prepared via the impregnation procedure, has been physico-chemically characterized, while its cell cultures have had their biocompatibility and bioactivity tested. Furthermore, a series of stable MTX-based dermal formulations has been developed, some containing shea butter, a natural fat. Ex-vivo porcine skin absorption and the transepidermal permeation of MTX have also been monitored in a variety of media using Franz diffusion cells. Interestingly, the epidermal accumulation of the active molecule was increased by its inclusion into MSN, regardless of the surrounding medium. Furthermore, the presence of shea butter enhanced the skin uptake of the drug both in the free and in the loaded form. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dependence of light transmission through human skin on incident beam diameter at different wavelengths

    NASA Astrophysics Data System (ADS)

    Zhao, ZhongQuan; Fairchild, Paul W.

    1998-05-01

    For many skin treatments with light, it is important to have deep photon penetration into the skin. Because of absorption and scattering of photons by skin tissue, both the color and the diameter of the incident beam affect the penetration depth of photons. In this study, the dependence of light transmission through human skin tissues (ear lobs and between the fingers) has been measured in-vivo at six wavelengths (532 nm, 632 nm, 675 nm, 810 nm, 911 nm, and 1064 nm). The same measurement was also made on pig skin in-vitro for comparison. It was observed that (1) the photons at 1064 nm penetrate deeper than the other colors studied for a given incident beam diameter; and (2) the transmittance at a particular wavelength increases asymptotically with incident beam diameter. For some skin tissues, the transmittance flattens at about 8 mm for 532 nm photons and approaches saturation at about 12 mm for all other colors. The results on pig skin is similar.

  9. Interpretation of the human skin biotribological behaviour after tape stripping.

    PubMed

    Pailler-Mattei, C; Guerret-Piécourt, C; Zahouani, H; Nicoli, S

    2011-07-06

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ(0), and the second term depending on the electric shear strength, τ(elec). The experimental results allowed to estimate a numerical value of the electric shear strength τ(elec). Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption.

  10. Interpretation of the human skin biotribological behaviour after tape stripping

    PubMed Central

    Pailler-Mattei, C.; Guerret-Piécourt, C.; Zahouani, H.; Nicoli, S.

    2011-01-01

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ0, and the second term depending on the electric shear strength, τelec. The experimental results allowed to estimate a numerical value of the electric shear strength τelec. Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption. PMID:21227961

  11. Point-spread imaging for measurement of skin translucency and scattering.

    PubMed

    Jiang, Zhi-xing; Kaplan, Peter D

    2008-08-01

    The translucency of skin has long been identified as an important cue for healthy and youthful looking skin. There is currently no universal definition for skin translucency let alone a measurement method. We propose that skin translucency is the light scattering beneath skin surface. We demonstrate the use of polarization gated point spreading imaging for non-invasive, in vivo measurement of the translucency and the reduced scattering coefficient m's of skin. We developed a polarization-gated point-spread imaging system to measure the spread of the incident pencil-thin laser beam on the skin. Skin translucency was calculated as the spread of the laser beam. From the measurement of the shift of the light diffuse center from the light injection point, the reduced scattering coefficient m's of the skin was calculated. We validated the measurement technique with milk as an in vitro model for skin. The measured m's of milk solution was found to be linearly proportional to the milk concentration, in agreement with Beer's law. The calculated translucency decreased as the milk concentration increased or as the reduced scattering coefficient m's increased. It was also found that the translucency decreased as the absorption coefficient of the milk solution increased. The measured translucency of a set of custom made clay tiles correlated well with the consumer perception of the incremental ranking of the translucency. In vivo measurement of skin translucency and the reduced scattering coefficient m's were carried out on several volunteers. The measured reduced scattering coefficient m's was in agreement with those in the literature. The measured skin translucency for different skin ethnicities of Caucasian, North Asian, South Asian and African American were in line with the expectation that skin translucency decreases as the skin color gets darker.

  12. Infrared spectroscopic measurement of skin hydration and sebum levels and comparison to corneometer and sebumeter

    NASA Astrophysics Data System (ADS)

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. P.; Varghese, Babu

    2016-05-01

    Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simultaneous and quantitative measurement of skin hydration and sebum levels utilizing differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lie "in between" the prominent water absorption bands. The skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli were measured using our experimental set-up. The experimental results obtained with the optical set-up show good correlation with the results obtained with the commercially available instruments Corneometer and Sebumeter.

  13. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  14. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies.

    PubMed

    Gulson, Brian; McCall, Maxine J; Bowman, Diana M; Pinheiro, Teresa

    2015-11-01

    Metal oxide nanoparticles in sunscreens provide broad-spectrum ultraviolet protection to skin. All studies to assess dermal penetration of nanoparticles have unanimously concluded that the overwhelming majority of nanoparticles remain on the outer surface of the skin. However, possibly due to many different experimental protocols in use, conclusions over the potential penetration to viable skin are mixed. Here, we review several factors that may influence experimental results for dermal penetration including the species studied (human, or animal model), size and coating of the metal oxide nanoparticles, composition of the sunscreen formulation, site of sunscreen application, dose and number of applications, duration of the study, types of biological samples analysed, methods for analysing samples, exposure to UV and skin flexing. Based on this information, we suggest an appropriate research agenda involving international collaboration that maximises the potential for dermal absorption of nanoparticles, and their detection, under normal conditions of sunscreen use by humans. If results from this research agenda indicate no absorption is observed, then concerns over adverse health effects from the dermal absorption of nanoparticles in sunscreens may be allayed.

  15. Microwave thermal radiation effects on skin tissues

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Song, Kyo D.; Lee, Uhn; Choi, Sang H.

    2012-10-01

    Microwave/RF energy has been used for wireless power transmission including many therapeutic applications, such as transurethral microwave therapy (TUMT). For safe uses of RF power, it is important to know how to deliver microwave energy on focused area and control the temperature changes not to drastically increase on adjacent areas. Graphical analysis of thermal loading factor is important to understand how to achieve effective transmission of microwave through the tissue. The loss mechanism while transmission often appears as thermal effects due to absorption of microwave, especially for materials such as human skin, muscles, and other organic parts including brain. In this paper, microwave thermal effects are investigated to measure temperatures, penetration depth through animal skins in terms of input power and various frequencies. This result will be compare with the case of human applications.

  16. Plasmonic light-sensitive skins of nanocrystal monolayers

    NASA Astrophysics Data System (ADS)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  17. Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko

    2016-03-01

    Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.

  18. Bicellar systems as a new colloidal delivery strategy for skin.

    PubMed

    Rubio, L; Rodríguez, G; Barbosa-Barros, L; Alonso, C; Cócera, M; de la Maza, A; Parra, J L; López, O

    2012-04-01

    The presented work evaluates the use of bicellar systems as new delivery vectors for controlled release of compounds through the skin. Two different active principles were introduced into the bicellar systems: diclofenac diethylamine (DDEA) and flufenamic acid (Ffa). Bicellar systems are discoidal aggregates formed by long and short alkyl chain phospholipids. Characterization of the bicellar systems by dynamic light scattering (DLS) and cryogenic transmission electron microscopy (Cryo-TEM) showed that particle size decreased when DDEA was encapsulated and increased when Ffa was included in the bicellar systems. Percutaneous absorption studies demonstrated a lower penetration of DDEA and Ffa through the skin when the drugs were included in the bicellar systems than when the drugs were applied in an aqueous solution (DDEA) and in an ethanolic solution (Ffa); the reduction in penetration was more pronounced with Ffa. These bicellar systems may have retardant effects on percutaneous absorption, which result in a promising strategy for future drug or cosmetic delivery applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  20. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  1. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander

    2017-09-01

    Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448-532-659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer's law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.

  2. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination.

    PubMed

    Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander

    2017-09-01

    Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448–532–659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer’s law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.

  3. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonsson, Carl, E-mail: carl.simonsson@chem.gu.se; Stenfeldt, Anna-Lena; Karlberg, Ann-Therese

    2012-10-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we havemore » explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.« less

  4. Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.

    PubMed

    Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür

    2014-09-01

    The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.

  5. Modelling the effect of mixture components on permeation through skin.

    PubMed

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    NASA Astrophysics Data System (ADS)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

  7. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    PubMed

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    RSDL-lotion, containing both absorption and degrading properties, allowed to act on skin for 30 min was superior in preventing VX from penetrating human skin. Adding water during decontamination resulted in increased penetration of neat VX, however, water in the decontaminant removal process did not influence the decontamination efficacy. From our study on commercially available decontaminants, it is recommended that future product developments should include both strong absorbents and efficient nerve agent degrading components. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering.

    PubMed

    Adekogbe, Iyabo; Ghanem, Amyl

    2005-12-01

    Chitosan, the deacetylated derivative of chitin, is a promising scaffold material for skin tissue engineering applications. It is biocompatible and biodegradable, and the degradation products are resorbable. However, the rapid degradation of chitosan and its low mechanical strength are concerns that may limit its use. In this study, chitosan with 80%, 90% and 100% degree of deacetylation (DDA) was crosslinked with dimethyl 3-3, dithio bis' propionimidate (DTBP) and compared to uncrosslinked scaffolds. The scaffolds were characterized with respect to important tissue engineering properties. The tensile strength of scaffolds made from 100% DDA chitosan was significantly higher than for scaffolds made from 80% and 90% DDA chitosan. Crosslinking of scaffolds with DTBP increased the tensile strength. Crosslinking with DTBP had no significant effect on water vapour transmission rate (WVTR) or water absorption but had significant effect on the pore size and porosity of the samples. All samples showed a WVTR and pore size distribution suitable for skin tissue engineering; however, the water absorption and porosity were lower than the optimal values for skin tissue engineering. The biodegradation rate of scaffolds crosslinked with DTBP and glutaraldehyde (GTA) were reduced while no significant effect was observed in biodegradation of the samples made from 100% DDA chitosan whether crosslinked or uncrosslinked after 24 days of degradation.

  9. Protective effect of maghemite nanoparticles on ultraviolet-induced photo-damage in human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Jai; An, Jeung-Hee; Shin, Jae-Soo; Kim, Dong-Hee; Kim, Changman; Ozaki, Hajime; Koh, Jae-Gui

    2007-11-01

    This study examined the optical properties of an oxidized form of maghemite (γ-Fe2O3) nanoparticles and their protective effects against the photoaging of human skin fibroblasts irradiated with ultraviolet (UV) light. Nanoparticles with diameters ranging from 8.7 to 12 nm were prepared using a chemical co-precipitation method. The nanoparticles were coated with two surfactants to obtain a water-based product. The onset of the absorption of the γ-Fe2O3 nanoparticles in the UV-visible absorption spectra increased with increasing particle size. The γ-Fe2O3 nanoparticles significantly inhibited the production of matrix metalloproteinase-1 in human skin fibroblast HS 68 cells by 60% compared with the UV-irradiated control. These results suggest that γ-Fe2O3 nanoparticles have photoprotective properties, and have potential use as an agent against photoaging.

  10. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    PubMed

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Seasonal skin colour changes in a sample teenage population measured by reflection spectrophotometry

    NASA Astrophysics Data System (ADS)

    Stringer, M. R.; Cruse-Sawyer, J. E.

    2007-11-01

    As part of a classroom-based research project, reflectance spectra from the skin of a group of teenage school students were recorded over a four-month period, from early spring to mid-summer. The relative changes in skin colour during the course of the study were quantified by integrating over the full wavelength range of the normalized reflectance spectra. Measurements made upon the inner forearm and the back of the hand produce results which indicate a decrease in total reflectance (increase in absorption) corresponding to different levels of tanning for limited and extended exposure to ambient sunlight, respectively. The rate of change of skin colour qualitatively matches that of the solar illuminance.

  12. Drug Delivery and Transport into the Central Circulation: An Example of Zero-Order In vivo Absorption of Rotigotine from a Transdermal Patch Formulation.

    PubMed

    Cawello, Willi; Braun, Marina; Andreas, Jens-Otto

    2018-01-13

    Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.

  13. Physicochemical determinants of linear alkylbenzene sulfonate (LAS) disposition in skin exposed to aqueous cutting fluid mixtures.

    PubMed

    Baynes, Ronald E; Brooks, James D; Barlow, Beth M; Riviere, Jim E

    2002-06-01

    Linear alkylbenzene sulfonate (LAS) is added to cutting fluid formulations to enhance the performance of metal machining operations, but this surfactant can cause contact dermatitis in workers involved in these operations. The purpose of this study was to determine how cutting fluid additives influence dermal disposition of 14C-LAS in mineral oil- or polyethylene glycol 200 (PEG)-based mixtures when topically applied to silastic membranes and porcine skin in an in vitro flow-through diffusion cell system. 14C-LAS mixtures were formulated with three commonly used cutting fluid additives; 0 or 2% triazine (TRI), 0 or 5% triethanolamine (TEA), and 0 or 5% sulfurized ricinoleic acid (SRA). LAS absorption was limited to less than a 0.5% dose and the additives in various combinations influenced the physicochemical characteristics of the dosing mixture. LAS was more likely to partition into the stratum corneum (SC) in mineral oil mixtures, and LAS absorption was significantly greater in the complete mixture. TRI enhanced LAS transport, and the presence of SRA decreased LAS critical micelle concentration (CMC) which reduced LAS monomers available for transport. TEA increased mixture viscosity, and this may have negated the apparent enhancing properties of TRI in several mixtures. In summary, physicochemical interactions in these mixtures influenced availability of LAS for absorption and distribution in skin, and could ultimately influence toxicological responses in skin.

  14. Temperature Control in a Franz Diffusion Cell Skin Sonoporation Setup

    NASA Astrophysics Data System (ADS)

    Robertson, Jeremy; Becker, Sid

    2017-11-01

    In vitro experimental studies that investigate ultrasound enhanced transdermal drug delivery employ Franz diffusion cells. Because of absorption, the temperature of the coupling fluid often increases drastically during the ultrasound application. The current methodologies for controlling the coupling fluid temperature require either replacement of the coupling fluid during the experiment or the application of a time consuming duty cycle. This paper introduces a novel method for temperature control that allows for a wide variety of coupling fluid temperatures to be maintained. This method employs a peristaltic pump to circulate the coupling fluid through a thermoelectric cooling device. This temperature control method allowed for an investigation into the role of coupling fluid temperature on the inertial cavitation that impacts the skin aperture (inertial cavitation is thought to be the main cause of ultrasound induced skin permeability increase). Both foil pitting and passive cavitation detection experiments indicated that effective inertial cavitation activity decreases with increasing coupling fluid temperature. This finding suggests that greater skin permeability enhancement can be achieved if a lower coupling fluid temperature is maintained during skin insonation.

  15. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    PubMed Central

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294

  16. Ex-Vivo percutaneous absorption of enrofloxacin: Comparison of LMOG organogel vs. pentravan cream.

    PubMed

    Kirilov, Plamen; Tran, Van Hung; Ducrotté-Tassel, Alban; Salvi, Jean-Paul; Perrot, Sébastien; Haftek, Marek; Boulieu, Roselyne; Pirot, Fabrice

    2016-02-10

    The objective of this study was to investigate the percutaneous absorption of enrofloxacin from two base formulations, Pentravan cream and LMOG organogel. Ex-vivo experiments were carried out on pig ear skin. The percutaneous permeation through pig skin of two formulations containing 5 wt% of enrofloxacin was measured and compared using Franz diffusion cells. At appropriate intervals up to 120 h, diffusion samples were taken and analyzed using HPLC assays. Permeation profiles were established and the parameters Tlag and flux values were calculated. In this ex-vivo study, the flux values were 0.35 μgcm(-2)h(-1) for Pentravan and 1.22 μgcm(-2)h(-1) for LMOG organogel, corresponding respectively to 7.9 % and 29.3 % of enrofloxacin absorbed after 120 h by these formulations. The lag time (T lag) of Pentravan and organogel were 6.32 and 0.015 h respectively. The absorption time to reach the antibiotic concentration of enrofloxacin (2 μgmL(-1)) in the receptor was 60 h with Pentravan and 30 h with the organogel, suggesting more effective treatment by the latter. Enrofloxacin contained in organogel could be absorbed through pig ear skin 3.7 times greater than that in Pentravan (commercial formulation). This study demonstrates the perspective of organogel formulations as potential drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Estimating skin blood saturation by selecting a subset of hyperspectral imaging data

    NASA Astrophysics Data System (ADS)

    Ewerlöf, Maria; Salerud, E. Göran; Strömberg, Tomas; Larsson, Marcus

    2015-03-01

    Skin blood haemoglobin saturation (?b) can be estimated with hyperspectral imaging using the wavelength (λ) range of 450-700 nm where haemoglobin absorption displays distinct spectral characteristics. Depending on the image size and photon transport algorithm, computations may be demanding. Therefore, this work aims to evaluate subsets with a reduced number of wavelengths for ?b estimation. White Monte Carlo simulations are performed using a two-layered tissue model with discrete values for epidermal thickness (?epi) and the reduced scattering coefficient (μ's ), mimicking an imaging setup. A detected intensity look-up table is calculated for a range of model parameter values relevant to human skin, adding absorption effects in the post-processing. Skin model parameters, including absorbers, are; μ's (λ), ?epi, haemoglobin saturation (?b), tissue fraction blood (?b) and tissue fraction melanin (?mel). The skin model paired with the look-up table allow spectra to be calculated swiftly. Three inverse models with varying number of free parameters are evaluated: A(?b, ?b), B(?b, ?b, ?mel) and C(all parameters free). Fourteen wavelength candidates are selected by analysing the maximal spectral sensitivity to ?b and minimizing the sensitivity to ?b. All possible combinations of these candidates with three, four and 14 wavelengths, as well as the full spectral range, are evaluated for estimating ?b for 1000 randomly generated evaluation spectra. The results show that the simplified models A and B estimated ?b accurately using four wavelengths (mean error 2.2% for model B). If the number of wavelengths increased, the model complexity needed to be increased to avoid poor estimations.

  18. Dye-enhanced laser welding for skin closure.

    PubMed

    DeCoste, S D; Farinelli, W; Flotte, T; Anderson, R R

    1992-01-01

    The use of a laser to weld tissue in combination with a topical photosensitizing dye permits selective delivery of energy to the target tissue. A combination of indocyanine green (IG), absorption peak 780 nm, and the near-infrared (IR) alexandrite laser was studied with albino guinea pig skin. IG was shown to bind to the outer 25 microns of guinea pig dermis and appeared to be bound to collagen. The optical transmittance of full-thickness guinea pig skin in the near IR was 40% indicating that the alexandrite laser should provide adequate tissue penetration. Laser "welding" of skin in vivo was achieved at various concentrations of IG from 0.03 to 3 mg/cc using the alexandrite at 780 nm, 250-microseconds pulse duration, 8 Hz, and a 4-mm spot size. A spectrum of welds was obtained from 1- to 20-W/cm2 average irradiance. Weak welds occurred with no thermal damage obtained at lower irradiances: stronger welds with thermal damage confined to the weld site occurred at higher irradiances. At still higher irradiances, local vaporization occurred with failure to "weld." Thus, there was an optimal range of irradiances for "welding," which varied inversely with dye concentration. Histology confirmed the thermal damage results that were evident clinically. IG dye-enhanced laser welding is possible in skin and with further optimization may have practical application.

  19. Percutaneous absorption of selenium sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do notmore » indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.« less

  20. Uncovering of melanin fluorescence in human skin tissue

    NASA Astrophysics Data System (ADS)

    Scholz, Matthias; Stankovic, Goran; Seewald, Gunter; Leupold, Dieter

    2007-07-01

    Due to its extremely low fluorescence quantum yield, in the conventionally (one-photon) excited autofluorescence of skin tissue, melanin fluorescence is masked by several other endogenous and possibly also exogenous fluorophores (e.g. NADH, FAD, Porphyrins). A first step to enhance the melanin contribution had been realized by two-photon fs-pulse excitation in the red/near IR, based on the fact that melanin can be excited by stepwise two-photon absorption, whereas all other fluorophores in this spectral region allow only simultaneous two-photon excitation. Now, the next and decisive step has been realized: Using an extremely sensitive detection system, for the first time twophoton fluorescence of skin tissue excited with pulses in the ns-range could be measured. The motivation for this step was based on the fact that the population density of the fluorescent level resulting from a stepwise excitation has a different dependence of the pulse duration than that from a simultaneous excitation (Δt2 vs. Δt). Due to this strong discrimination between the fluorophores, practically pure melanin fluorescence can be obtained. Examples for in-vivo, ex-vivo as well as paraffin embedded skin tissue will be shown. The content of information with respect to early diagnosis of skin deseases will be discussed.

  1. Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.

  2. Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Taiurskii, A. A.; Gavrikov, M. B.

    2016-10-01

    We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.

  3. Comparison of the transdermal absorption of nimesulide from three commercially available gel formulations.

    PubMed

    Dayal, Pankaj; Kanikkannan, Narayanasamy; Singh, Amarjit; Sing, Mandip

    2002-03-01

    Nimesulide is a non-steroidal anti-inflammatory drug (NSAID) applied topically for a variety of conditions characterized by pain and inflammation. One of the aims of this study was to compare the permeation profile of nimesulide from the commercially available transdermal gel formulations across dermatomed porcine and human skin. The in vitro transdermal absorption of nimesulide formulations across porcine skin and human skin was studiedfor 24 hr using a continuous flow-through diffusion cell. The three commercial gels used in this study were Nimulid, Nise Gel, and Orthobid. All gels contained 1% (w/w) nimesulide. An infinite dose of nimesulide gel (about 300mg) was applied on the skin over 0.636 cm2 surface area. The rank order for the drug permeation from these formulations using porcine skin was: Nimulid > Orthobid > Nise Gel. The rank order of the permeation across human skin was: Nimulid> Nise Gel> Orthobid. The permeation profiles followed zero-order kinetics without any significant lag time. The steady-state flux of nimesulide from Nimulid was significantly higher than that of Nise Gel and Orthobid in both porcine and human skin (p <.05). However, there were no significant differences in the delivery of nimesulide (24 hr) from Nise Gel and Orthobid across both human and porcine skins. The results suggest that the Nimulid gel may have a greater bioavailability of nimesulide compared to the other gels. In addition, permeation profiles of the various gels across porcine skin did show a positive profile behavior to human skin. However, the in vitro drug release of nimesulide gels across a synthetic membrane did not correlate with skin permeation profiles.

  4. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics.

    PubMed

    Souza-Barros, Leanna; Dhaidan, Ghaith; Maunula, Mikko; Solomon, Vaeda; Gabison, Sharon; Lilge, Lothar; Nussbaum, Ethne L

    2018-04-01

    To examine the role of skin color and tissue thickness on transmittance, reflectance, and skin heating using red and infrared laser light. Forty volunteers were measured for skin color and skin-fold thickness at a standardized site near the elbow. Transmittance, reflectance and skin temperature were recorded for energy doses of 2, 6, 9, and 12 Joules using 635 nm (36 mW) and 808 nm (40 mW) wavelength laser diodes with irradiances within American National Standards Institute safety guidelines (4.88 mm diameter, 0.192 W/cm 2 and 4.88 mm diameter, 0.214 W/cm 2 , respectively). The key factors affecting reflectance to an important degree were skin color and wavelength. However, the skin color effects were different for the two wavelengths: reflectance decreased for darker skin with a greater decrease for red light than near infrared light. Transmittance was greater using 808 nm compared with 635 nm. However, the effect was partly lost when the skin was dark rather than light, and was increasingly lost as tissue thickness increased. Dose had an increasing effect on temperature (0.7-1.6°C across the 6, 9, and 12 J doses); any effects of wavelength, skin color, and tissue thickness were insignificant compared to dose effects. Subjects themselves were not aware of the increased skin temperature. Transmittance and reflectance changes as a function of energy were very small and likely of no clinical significance. Absorption did not change with higher energy doses and increasing temperature. Skin color and skin thickness affect transmittance and reflectance of laser light and must be accounted for when selecting energy dose to ensure therapeutic effectiveness at the target tissue. Skin heating appears not to be a concern when using 635 and 808 nm lasers at energy doses of up to 12 J and irradiance within American National Standards Institute standards. Photobiomodulation therapy should never exceed the American National Standards Institute

  5. The effect of Beta-cyclodextrin on percutaneous absorption of commonly used Eusolex® sunscreens.

    PubMed

    Shokri, J; Hasanzadeh, D; Ghanbarzadeh, S; Dizadji-Ilkhchi, M; Adibkia, K

    2013-11-01

    There is a serious concern about the topical and systemic absorption of organic ultraviolet filters in sunscreen formulations and subsequent phototoxic and photo allergic reactions. Ideally, a sunscreen should localize in the surface of stratum corneum and create a barrier against UV radiation, but not penetrate into the underlying viable tissues and systemic circulation. The objective of the present study was to determine the effects of β-cyclodextrin (β-CDX) complexation on the transdermal penetration of 3 commonly used sun blocking agents, Eusolex ® 4360 (avobenzone), Eusolex ® 9020 (Oxybenzone) and Eusolex ® 232 (Ensulizole). The complexation of the sunscreen agents with β-CDX was performed by 3 methods and confirmed by differential scanning calorimetry (DSC). Sunscreens, and their physical mixtures and complexes with β-CDX were introduced into a model cream base (o/w emulsion). To find out the influence of β-CDX, sunscreen creams were applied to the rat skin in vitro in standard Franz diffusion cells and the amount of sunscreen permeated after 6 h was assessed by HPLC. The skin penetration flux of the UV filters was significantly reduced (4–15 fold) by complexation with β-CDX. Complexation also could prolong absorption lag time of sun blocking agents to more than 150 min. Considering the ability of β-CDX complexation in the reduction of flux and enhancement ratio as well as prolongation of absorption lag time, this technique could be very helpful for reducing systemic absorption of the UV filters and subsequent toxicity and allergic reaction.

  6. Effect of 1,4-cyclohexanediol on percutaneous absorption and penetration of azelaic acid.

    PubMed

    Li, Nan; Su, Qian; Tan, Fengping; Zhang, Jerry

    2010-03-15

    The objective of this study is to investigate the effect of 1,4-cyclohexanediol as a retardant on the percutaneous absorption and penetration of azelaic acid. Hairless rat skin was mounted on Franz diffusion cells and treated with topical formulations containing solubilized azelaic acid with and without 1,4-cyclohexanediol. The skin was separated into stratum corneum and the deeper skin layers. The azelaic acid collected in receptor medium and each layer at the end of each time point was extracted and quantified. A significant decrease in flux across the skin suggests a penetration retardation effect of 1,4-cyclohexanediol (42.50 microg/cm(2)/h in the presence of vs. 76.25 microg/cm(2)/h in the absence of) at active loading level of 1.13 mg/cm(2). The penetration retardation effect was also observed at higher active loading level (2.82 mg/cm(2)). Furthermore, presence of 1,4-cyclohexanediol in the topical formulation did not reduce the skin and epidermal retention of azelaic acid, suggesting its potential use in the development of superior topical formation for reducing potential systematic side effect while maintaining therapeutic efficiency. 2009 Elsevier B.V. All rights reserved.

  7. The evolution of human skin coloration.

    PubMed

    Jablonski, N G; Chaplin, G

    2000-07-01

    Skin color is one of the most conspicuous ways in which humans vary and has been widely used to define human races. Here we present new evidence indicating that variations in skin color are adaptive, and are related to the regulation of ultraviolet (UV) radiation penetration in the integument and its direct and indirect effects on fitness. Using remotely sensed data on UV radiation levels, hypotheses concerning the distribution of the skin colors of indigenous peoples relative to UV levels were tested quantitatively in this study for the first time. The major results of this study are: (1) skin reflectance is strongly correlated with absolute latitude and UV radiation levels. The highest correlation between skin reflectance and UV levels was observed at 545 nm, near the absorption maximum for oxyhemoglobin, suggesting that the main role of melanin pigmentation in humans is regulation of the effects of UV radiation on the contents of cutaneous blood vessels located in the dermis. (2) Predicted skin reflectances deviated little from observed values. (3) In all populations for which skin reflectance data were available for males and females, females were found to be lighter skinned than males. (4) The clinal gradation of skin coloration observed among indigenous peoples is correlated with UV radiation levels and represents a compromise solution to the conflicting physiological requirements of photoprotection and vitamin D synthesis. The earliest members of the hominid lineage probably had a mostly unpigmented or lightly pigmented integument covered with dark black hair, similar to that of the modern chimpanzee. The evolution of a naked, darkly pigmented integument occurred early in the evolution of the genus Homo. A dark epidermis protected sweat glands from UV-induced injury, thus insuring the integrity of somatic thermoregulation. Of greater significance to individual reproductive success was that highly melanized skin protected against UV-induced photolysis of

  8. Comparison of in-vivo skin models for near-infrared laser exposure

    NASA Astrophysics Data System (ADS)

    Eggleston, Thomas A.; Mitchell, Michael A.; Johnson, Thomas E.; Becker, Robert L., Jr.; Roach, William P.

    1999-06-01

    Current safety standards for lasers operating in the 1400 to 10,000 nm wavelength region are based on few observations at specific wavelengths using in vivo models that may not represent an accurate correlation to human integument. Based on experimental results conducted with Yorkshire pigs, these standards may not accurately reflect the potential for laser injury when humans are exposed to these wavelengths. It is our belief that one of the primary damage mechanisms involved in these laser injuries is due to energy absorption by skin pigmentation, or melanin. Qualitatively, Yorkshire pigs lack melanin in their skin when compared to a more highly pigmented animal, such as the Yucatan minipig. It is hypothesized that the Yucatan minipig is a more appropriate model for pigmented human skin. By comparing histologic samples taken from various locations on Yucatan minipigs and Yorkshire pigs, and comparing these to potential locations of skin exposure on humans, we present a discussion for the establishment of more appropriate locations for in vivo laser exposure studies.

  9. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it

  10. Human axillary skin condition is improved following incorporation of glycerol into the stratum corneum from an antiperspirant formulation.

    PubMed

    Evans, Richard L; Turner, Graham A; Bates, Susan; Robinson, Teresa; Arnold, David; Marriott, Robert E; Pudney, Paul D A; Bonnist, Eleanor Y M; Green, Darren

    2017-11-01

    The study objectives were to demonstrate that glycerol, when topically applied from a roll-on antiperspirant formulation, can be delivered directly to human skin ex vivo and the axillary stratum corneum (SC) in vivo, and to assess whether it improves the quality of the axillary skin barrier. Ex vivo human skin absorption of glycerol was measured following application of a roll-on antiperspirant formulation containing 4% 13 C 3 -glycerol. Skin distribution of 13 C 3 -glycerol over 24 h was assessed using gas chromatography-mass spectrometry. In vivo axillary SC penetration was measured by confocal Raman spectroscopy and multivariate curve-resolution software 1 h after topical application of a roll-on antiperspirant formulation containing 8% deuterated glycerol (d 5 -glycerol). A clinical study was conducted to determine the efficacy of a roll-on antiperspirant formulation containing 4% glycerol in reducing shaving-induced visual irritation and in increasing axillary-skin hydration. Ex vivo skin absorption studies indicated that the formulation delivered 13 C 3 -glycerol into the SC at all timepoints over the 24-h period. In vivo Raman measurements (1 h after application) demonstrated that d 5 -glycerol was detectable to a depth of at least 10 μm in the axillary SC. Application of 4% glycerol from a roll-on antiperspirant formulation to the axilla was associated with significantly less visible irritation and greater skin hydration than observed with the control (glycerol-free) product. These studies demonstrate that glycerol, incorporated in a roll-on antiperspirant formulation, is delivered directly and rapidly to all depths of the axillary SC, and results in improvements in visible irritation and hydration in the axilla.

  11. Probabilistic modeling of percutaneous absorption for risk-based exposure assessments and transdermal drug delivery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford Kuofei

    Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skinmore » that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.« less

  12. Design of the algorithm of photons migration in the multilayer skin structure

    NASA Astrophysics Data System (ADS)

    Bulykina, Anastasiia B.; Ryzhova, Victoria A.; Korotaev, Valery V.; Samokhin, Nikita Y.

    2017-06-01

    Design of approaches and methods of the oncological diseases diagnostics has special significance. It allows determining any kind of tumors at early stages. The development of optical and laser technologies provided increase of a number of methods allowing making diagnostic studies of oncological diseases. A promising area of biomedical diagnostics is the development of automated nondestructive testing systems for the study of the skin polarizing properties based on backscattered radiation detection. Specification of the examined tissue polarizing properties allows studying of structural properties change influenced by various pathologies. Consequently, measurement and analysis of the polarizing properties of the scattered optical radiation for the development of methods for diagnosis and imaging of skin in vivo appear relevant. The purpose of this research is to design the algorithm of photons migration in the multilayer skin structure. In this research, the algorithm of photons migration in the multilayer skin structure was designed. It is based on the use of the Monte Carlo method. Implemented Monte Carlo method appears as a tracking the paths of photons experiencing random discrete direction changes before they are released from the analyzed area or decrease their intensity to negligible levels. Modeling algorithm consists of the medium and the source characteristics generation, a photon generating considering spatial coordinates of the polar and azimuthal angles, the photon weight reduction calculating due to specular and diffuse reflection, the photon mean free path definition, the photon motion direction angle definition as a result of random scattering with a Henyey-Greenstein phase function, the medium's absorption calculation. Biological tissue is modeled as a homogeneous scattering sheet characterized by absorption, a scattering and anisotropy coefficients.

  13. Skin Cancer in Skin of Color

    PubMed Central

    Bradford, Porcia T.

    2009-01-01

    Skin cancers in skin of color often present atypically or with advanced stage in comparison to Caucasian patients. Health care providers must maintain a high index of suspicion when examining skin lesions in skin of color. PMID:19691228

  14. Parametric study of power absorption from electromagnetic waves by small ferrite spheres

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1989-01-01

    Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.

  15. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    PubMed

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  16. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  17. In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue.

    PubMed

    Drakaki, E; Makropoulou, M; Serafetinides, A A

    2008-07-01

    In dermatology, the in vivo spectral fluorescence measurements of human skin can serve as a valuable supplement to standard non-invasive techniques for diagnosing various skin diseases. However, quantitative analysis of the fluorescence spectra is complicated by the fact that skin is a complex multi-layered and inhomogeneous organ, with varied optical properties and biophysical characteristics. In this work, we recorded, in vitro, the laser-induced fluorescence emission signals of healthy porcine skin, one of the animals, which is considered as one of the most common models for investigations related to medical diagnostics of human cutaneous tissues. Differences were observed in the form and intensity of the fluorescence signal of the porcine skin, which can be attributed to the different concentrations of the native fluorophores and the variable physical and biological conditions of the skin tissue. As the light transport in the tissue target is directly influencing the absorption and the fluorescence emission signals, we performed Monte Carlo simulation of the light distribution in a five-layer model of human skin tissue, with a pulsed ultraviolet laser beam.

  18. The physicochemical parameters of marker compounds and vehicles for use in in vitro percutaneous absorption studies.

    PubMed

    Kaca, Monika; Bock, Udo; Tawfik Jalal, Mohamed; Harms, Meike; Hoffmann, Christine; Müller-Goymann, Christel; Netzlaff, Frank; Schäfer, Ulrich; Lehr, Claus-Michael; Haltner-Ukomadu, Eleonore

    2008-05-01

    In order to prepare for a validation study to compare percutaneous absorption through reconstructed human epidermis with ex vivo skin absorption through human and animal skin, nine test compounds, covering a wide range of physicochemical properties were selected, namely: benzoic acid; caffeine; clotrimazole; digoxin; flufenamic acid; ivermectin; mannitol; nicotine; and testosterone. The donor and receptor media for the test substances, the addition of a solubiliser for the lipophilic compounds, as well as the stability and solubility of the test substances in the vehicles, were systematically analysed. Hydrophilic molecules, being freely soluble in water, were applied in buffered saline solutions. In order to overcome solubility restrictions for lipophilic compounds, the non-ionic surfactant, Igepal CA-630, was added to the donor vehicle, and, in the case of clotrimazole and ivermectin, also to the receptor fluid. The model molecules showed a suitable solubility and stability in the selected donor and receptor media throughout the whole duration of the test.

  19. Sample preparation and data interpretation procedures for the examination of xenobiotic compounds in skin by indirect imaging MALDI-MS

    NASA Astrophysics Data System (ADS)

    Prideaux, Brendan; Atkinson, Sally J.; Carolan, Vikki A.; Morton, Jacqueline; Clench, Malcolm R.

    2007-02-01

    Aspects of the indirect examination of xenobiotic distribution on the surface of and within skin sections by imaging matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) have been examined. A solvent assisted blotting technique previously developed for the examination of the absorption of agrochemicals into leaves has been examined for the analysis of the distribution of hydrocortisone on the surface of skin. It was found that by careful control of the extraction and blotting procedure an 80-fold sensitivity improvement could by obtained over dry blotting with only 10% lateral diffusion of the image. However, in contrast it was found that the use of a hydrophobic blotting membrane was more suitable for the examination of the transdermal absorption of the pesticide chlorpyrifos. The potential of incorporating a derivatisation step into the solvent assisted blotting procedure was investigated by blotting isocyanate treated skin onto a methanol soaked blotting membrane. This served the dual purpose of derivatising the isocyanate to a stable substituted urea derivative and extracting it from the skin. Preliminary data indicate that this approach may have some merit for field sampling for such compound and clearly derivatisation also offers the potential for sensitivity enhancements. Finally, the use of principal components analysis with an ion species specific normalisation procedure is proposed to identify regions of drug treated skin where the ion abundance of the compound of interest is low.

  20. Fluorescence detection and photodynamic activity of endogenous protoporphyrin in human skin

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Rueck, Angelika C.; Schneckenburger, Herbert

    1992-07-01

    Human skin shows a strong autofluorescence in the red spectral region with main peaks around 600, 620, and 640 nm caused by the porphyrin production of the gram positive lipophile skin bacterium Propionibacterium acnes. Irradiation of these bacteria reduces the integral fluorescence intensity and induces the formation of photoproducts with fluorescence bands around 670 nm and decay times of about 1 and 5 ns. The photoproduct formation is connected with an increased absorption in the red spectral region. The endogenous fluorescent porphyrins act as photosensitizers. Photodestruction of Propionibacteria acnes by visible light appears therefore to be a promising therapy. The photodynamic activity of the photoproducts was lower than that of protoporphyrin IX.

  1. Newborn Skin: Common Skin Problems.

    PubMed

    Kutlubay, Zekayi; Tanakol, Ali; Engýn, Burhan; Onel, Cristina; Sýmsek, Ersin; Serdaroglu, Server; Tuzun, Yalçýn; Yilmaz, Erkan; Eren, Bülent

    2017-01-01

    The newborn skin can be separated from adult's skin in several ways. In dermatologic examination it can be easily observed that it is thinner, less hairy and has less sweat and sebaceous gland secretions. These differentiations present especially in preterm newborns. Their skin is exposed to mechanical trauma, bacteria and weather, heat alterations. At birth, newborn skin is protected by the coverage of vernix caseosa, which has lubricating and antibacterial features and its pH ranges from 6.7 to 7.4. Beneath the vernix caseosa the skin has a pH of 5.5-6.0. In newborn dermatologic examination it is very important to distinguish transient benign dermatoses and severe diseases, make early diagnosis and treat congenital skin disorders. Although the benign cases are common in this life period, clinical presentations can be much more exaggerated, dramatic and cause a great deal of anxiety to parents. Therefore, as a doctor, knowing the dermatological, pathological and non-pathological common skin rashes guides the family in the right direction, offers advice to reduce uncertainty and time for the treatment of severe conditions and builds a confidential doctor-patient relationship. In this review, our aim is to provide a general overview to common skin rashes in newborn period.

  2. Simulation of fluorescent measurements in the human skin

    NASA Astrophysics Data System (ADS)

    Meglinski, Igor V.; Sinichkin, Yurii P.; Utz, Sergei R.; Pilipenko, Helena A.

    1995-05-01

    Reflectance and fluorescence spectroscopy are successfully used for skin disease diagnostics. Human skin optical parameters are defined by its turbid, scattering properties with nonuniform absorption and fluorescence chromophores distribution, its multilayered structure, and variability under different physiological and pathological conditions. Theoretical modeling of light propagation in skin could improve the understanding of these condition and may be useful in the interpretation of in vivo reflectance and autofluorescence (AF) spectra. Laser application in medical optical tomography, tissue spectroscopy, and phototherapy stimulates the development of optical and mathematical light-tissue interaction models allowing to account the specific features of laser beam and tissue inhomogeneities. This paper presents the version of a Monte Carlo method for simulating of optical radiation propagation in biotissue and highly scattering media, allowing for 3D geometry of a medium. The simulation is based on use of Green's function of medium response to single external pulse. The process of radiation propagation is studied in the area with given boundary conditions, taking into account the processes of reflection and refraction at the boundaries of layers inside the medium under study. Results of Monte Carlo simulation were compared with experimental investigations and demonstrated good agreement.

  3. Effect of Size, Surface Charge, and Hydrophobicity of Poly(amidoamine) Dendrimers on Their Skin Penetration

    PubMed Central

    Yang, Yang; Sunoqrot, Suhair; Stowell, Chelsea; Ji, Jingli; Lee, Chan-Woo; Kim, Jin Woong; Khan, Seema A.; Hong, Seungpyo

    2012-01-01

    The barrier functions of the stratum corneum (SC) and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this paper, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid (OA) to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector. PMID:22621160

  4. Investigating the effect of various extracting solvents on the potential use of red-apple skin (Malus domestica) as natural sensitizer for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Saputro, Aldhi; Mizan, Adlan; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-03-01

    In the current investigation, the natural dye extracted from red-apple (Malus domestica) skin was used as natural sensitizer for dye sensitized solar cell (DSSC) application. The present study was specifically aimed at observing the effect of different solvents, i.e. deionized water, ethanol, and acidified ethanol, on the performance of the natural dye and thus the DSSC. For synthesis purposes, red-apple skin was peeled off, dried, crushed and furthermore extracted with ratio red-apple skin powder to solvent 1:20 w/v for 2 hours at 50°C under mechanical stirring. Subsequently, the resulting natural dyes with different solvents were examined by Fourier transform infrared (FTIR) to analyze their functional groups, UV-Vis spectroscopy to observe their absorption spectra for a wide range of wavelength, while TiO2 nanoparticle used as the semiconductor oxide layer in the device was characterized by field emission scanning electron microscope (FESEM). The FTIR results showed that the red-apple skin has anthocyanin group which functions as the sensitizer agent for photon energy absorption from the sunlight. The UV-Vis spectroscopy results showed that ethanol solvent has higher absorption of sunlight wavelength as compared to those of deionized water and acidified ethanol solvents. The performance test of the fabricated DSSC showed the prototype made of the red apple skin dye extracted by ethanol solvent can provide the highest open circuit voltage (Voc) up to 324 mV and efficiency around 0.046%. On the basis of investigation, it has been found that ethanol was the best solvent to extract anthocyanin from the red-apple skin.

  5. [Toxicological aspects and health risks associated with hydroquinone in skin bleaching formula].

    PubMed

    Kooyers, T J; Westerhof, W

    2004-04-17

    The use of hydroquinone as a cosmetic skin-bleaching agent has been forbidden since January 2001. It is now available only on prescription. The ban has been introduced because of medium-term effects such as white patches on the skin, particularly on the face (leukoderma with confetti-like depigmentation), and subcutaneous dark collections of pigment (exogenous ochonosis). Long-term effects are a possibility; cancer being the most likely. Renal adenomas and leukaemia occurred in animal experiments indicating the nephrotoxicity and carcinogenic properties of the substance. It is now known how hydroquinone and its metabolites can cause damage to DNA and inhibit apoptosis of mutated cells. The carcinogenic action of benzene is difficult to attribute to its hydroquinone metabolite. Daily use of hydroquinone causes it to accumulate in the body as absorption into the skin is faster than excretion in the urine. The use of hydroquinone as a skin-bleaching agent is accordingly unsafe and should be completely banned. Alternatives such as azaleic acid and thioctic acid (alpha-lipoic acid) are available.

  6. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, wemore » found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between

  7. Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.

    PubMed

    Rajaram, Narasimhan; Reichenberg, Jason S; Migden, Michael R; Nguyen, Tri H; Tunnell, James W

    2010-12-01

    Several research groups have demonstrated the non-invasive diagnostic potential of diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques for early cancer detection. By combining both modalities, one can simultaneously measure quantitative parameters related to the morphology, function and biochemical composition of tissue and use them to diagnose malignancy. The objective of this study was to use a quantitative reflectance/fluorescence spectroscopic technique to determine the optical properties of normal skin and non-melanoma skin cancers and the ability to accurately classify them. An additional goal was to determine the ability of the technique to differentiate non-melanoma skin cancers from normal skin. The study comprised 48 lesions measured from 40 patients scheduled for a biopsy of suspected non-melanoma skin cancers. White light reflectance and laser-induced fluorescence spectra (wavelength range = 350-700 nm) were collected from each suspected lesion and adjacent clinically normal skin using a custom-built, optical fiber-based clinical instrument. After measurement, the skin sites were biopsied and categorized according to histopathology. Using a quantitative model, we extracted various optical parameters from the measured spectra that could be correlated to the physiological state of tissue. Scattering from cancerous lesions was significantly lower than normal skin for every lesion group, whereas absorption parameters were significantly higher. Using numerical cut-offs for our optical parameters, our clinical instrument could classify basal cell carcinomas with a sensitivity and specificity of 94% and 89%, respectively. Similarly, the instrument classified actinic keratoses and squamous cell carcinomas with a sensitivity of 100% and specificity of 50%. The measured optical properties and fluorophore contributions of normal skin and non-melanoma skin cancers are significantly different from each other and correlate well

  8. The percutaneous permeation of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept®) through skin of different species in vitro

    PubMed Central

    2011-01-01

    Background A water based combination of 0.1% octenidine dihydrochloride and 2% 2 - phenoxyethanol is registered in many European countries as an antiseptic solution (octenisept®) for topical treatment with high antimicrobial activity for human use, but octenidine based products have not been registered for veterinary use yet. The aim of the present study was to investigate whether octenidine dihydrochloride or 2 -phenoxyethanol, the two main components of this disinfectant, permeate through animal skin in vitro. Therefore, permeation studies were conducted using Franz-type diffusion cells. 2 ml of the test compound were applied onto 1.77 cm2 split skin of cats, dogs, cows and horses. To simulate wounded skin, cattle skin was treated with adhesive tapes 100 times, as well. Up to an incubation time of 28 hours samples of the acceptor chamber were taken and were analysed by UV-HPLC. Using the method of the external standard, the apparent permeability coefficient, the flux Jmax, and the recovery were calculated. Furthermore, the residues of both components in the skin samples were determined after completion of the diffusion experiment. Results After 28 hours no octenidine dihydrochloride was found in the receptor chamber of intact skin samples, while 2.7% of the topical applied octenidine dihydrochloride permeated through barrier disrupted cattle skin. 2 - phenoxyethanol permeated through all skin samples with the highest permeability in equine, followed by bovine, canine to feline skin. Furthermore, both components were found in the stratum corneum and the dermis of all split skin samples with different amounts in the examined species. Conclusion For 2-phenoxyethanol the systemic impact of the high absorption rate and a potential toxicological risk have to be investigated in further studies. Due to its low absorption rates through the skin, octenidine dihydrochloride is suitable for superficial skin treatment in the examined species. PMID:21835019

  9. The percutaneous permeation of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept®) through skin of different species in vitro.

    PubMed

    Stahl, Jessica; Braun, Michael; Siebert, Joerg; Kietzmann, Manfred

    2011-08-11

    A water based combination of 0.1% octenidine dihydrochloride and 2% 2 - phenoxyethanol is registered in many European countries as an antiseptic solution (octenisept®) for topical treatment with high antimicrobial activity for human use, but octenidine based products have not been registered for veterinary use yet. The aim of the present study was to investigate whether octenidine dihydrochloride or 2 -phenoxyethanol, the two main components of this disinfectant, permeate through animal skin in vitro. Therefore, permeation studies were conducted using Franz-type diffusion cells. 2 ml of the test compound were applied onto 1.77 cm2 split skin of cats, dogs, cows and horses. To simulate wounded skin, cattle skin was treated with adhesive tapes 100 times, as well. Up to an incubation time of 28 hours samples of the acceptor chamber were taken and were analysed by UV-HPLC. Using the method of the external standard, the apparent permeability coefficient, the flux Jmax, and the recovery were calculated. Furthermore, the residues of both components in the skin samples were determined after completion of the diffusion experiment. After 28 hours no octenidine dihydrochloride was found in the receptor chamber of intact skin samples, while 2.7% of the topical applied octenidine dihydrochloride permeated through barrier disrupted cattle skin. 2 - phenoxyethanol permeated through all skin samples with the highest permeability in equine, followed by bovine, canine to feline skin. Furthermore, both components were found in the stratum corneum and the dermis of all split skin samples with different amounts in the examined species. For 2-phenoxyethanol the systemic impact of the high absorption rate and a potential toxicological risk have to be investigated in further studies. Due to its low absorption rates through the skin, octenidine dihydrochloride is suitable for superficial skin treatment in the examined species.

  10. Study and Optimization of Helicopter Subfloor Energy Absorption Structure with Foldcore Sandwich Structures

    NASA Astrophysics Data System (ADS)

    HuaZhi, Zhou; ZhiJin, Wang

    2017-11-01

    The intersection element is an important part of the helicopter subfloor structure. In order to improve the crashworthiness properties, the floor and the skin of the intersection element are replaced with foldcore sandwich structures. Foldcore is a kind of high-energy absorption structure. Compared with original structure, the new intersection element shows better buffering capacity and energy-absorption capacity. To reduce structure’s mass while maintaining the crashworthiness requirements satisfied, optimization of the intersection element geometric parameters is conducted. An optimization method using NSGA-II and Anisotropic Kriging is used. A significant CPU time saving can be obtained by replacing numerical model with Anisotropic Kriging surrogate model. The operation allows 17.15% reduce of the intersection element mass.

  11. [Efficacy of Topical Agents for Symptomatic Treatment of Rotigotine Patch-Induced Skin Disorders].

    PubMed

    Yasutaka, Yuki; Fujioka, Shinsuke; Shibaguchi, Hirotomo; Kiyomi, Fumiaki; Hara, Koyomi; Ogata, Kentaro; Tsuboi, Yoshio; Kamimura, Hidetoshi

    2017-09-01

    Since the effect of a percutaneous absorption-type dopamine agonist (DA) preparation, rotigotine patch, stably persists by once-a-day application, this dosage form is appropriate for Parkinson's disease patients showing levodopa induced wearing off phenomenon. On the other hand, skin disorders, mainly application site reaction, are characteristic problems associated with use of the patch. In this study, to clarify the influence of a topical agent used to prevent or treat rotigotine patch-induced skin disorder on continuation of the patch application, patients who started rotigotine patch application at our hospital were retrospectively surveyed. The one-year continuation rate of rotigotine patch application was 37.3% (53 of 142 cases). It was insufficient to prevent skin disorders, only by the pre-treatment of a moisturizing agent alone. Regarding the effective rate of topical agents used to treat skin disorders, that of very strong-class steroids was 89.5%, being significantly higher than those of weak steroids, moisturizing agents, and antihistamines. It was suggested that for countermeasures against rotigotine patch-induced skin disorders, treatment with very strong-class steroids for external use early after development of skin disorders is more effective than preventive treatment with topical agents regardless of the type. (Received March 30, 2017; Accepted May 16, 2017; Published September 1, 2017).

  12. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  13. MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation.

    PubMed

    de Macedo, Cristiana Santos; Anderson, David M; Schey, Kevin L

    2017-11-01

    MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of anatomical site and topical formulation on skin penetration of sunscreens

    PubMed Central

    Benson, Heather AE; Sarveiya, Vikram; Risk, Stacey; Roberts, Michael S

    2005-01-01

    Sunscreen products are widely used to protect the skin from sun-related damage. Previous studies have shown that some sunscreen chemicals are absorbed across the skin to the systemic circulation. The current study shows that absorption into the skin of sunscreen chemicals applied to the face is up to four times greater than that of the same product applied to the back. This has implications for the way sunscreen products are formulated and may allow the use of less potent products on the face compared with the rest of the body. The effect of formulation vehicles on the release and skin penetration of the common sunscreen agent benzophenone-3 (common name oxybenzone) was also assessed. Penetration of benzophenone-3 across excised human epidermis and high-density polyethylene (HDPE) membrane was measured using in vitro Franz-type diffusion cells. Penetration and epidermal retention was measured following application of infinite and finite (epidermis only) doses of benzophenone-3 in five vehicles: liquid paraffin, coconut oil, 50:50 ethanol:coconut oil, aqueous cream BP, and oily cream BP. Highest benzophenone-3 skin retention was observed for the ethanol:coconut oil combination. Maximal and minimal benzophenone-3 fluxes were observed from liquid paraffin and coconut oil, respectively. The alcohol-based vehicle exhibited low benzophenone-3 release from the vehicle but high skin penetration and retention. PMID:18360561

  15. Skin Diseases: Cross-section of human skin

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  16. The effects of heat on skin barrier function and in vivo dermal absorption.

    PubMed

    Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E

    2014-04-10

    Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Infrared absorptivities of transition metals at room and liquid-helium temperatures.

    NASA Technical Reports Server (NTRS)

    Jones, M. C.; Palmer, D. C.; Tien, C. L.

    1972-01-01

    Evaluation of experimental data concerning the normal spectral absorptivities of the transition metals, nickel, iron, platinum, and chromium, at both room and liquid-helium temperatures in the wavelength range from 2.5 to 50 microns. The absorptivities were derived from reflectivity measurements made relative to a room-temperature vapor-deposited gold reference mirror. The absorptivity of the gold reference mirror was measured calorimetrically, by use of infrared laser sources. Investigation of various methods of sample-surface preparation resulted in the choice of a vacuum-annealing process as the final stage. The experimental results are discussed on the basis of the anomalous-skin-effect theory modified for multiple conduction bands. As predicted, the results approach a single-band model toward the longer wavelengths. Agreement between theory and experiment is considerably improved by taking into account the modification of the relaxation time due to the photon-electron-phonon interaction proposed by Holstein (1954) and Gurzhi (1958); but, particularly at helium temperatures, the calculated curve is consistently below the experimental results.

  18. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  19. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    PubMed Central

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  20. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle

  1. The effect of additives on release and in vitro skin retention of flavonoids from emulsion and gel semisolid formulations.

    PubMed

    Dyja, R; Jankowski, A

    2017-08-01

    To assess the effect of two different additives (propylene glycol (PG) and polyethylene glycol 400 (PEG 400)) on release and in vitro skin retention of quercetin and chrysin from semisolid bases (amphiphilic creams and acidic carbomer gels). For obtaining semisolid formulations, flavonoids were pre-dissolved in the liquid (PG or PEG 400) or directly suspended in the semisolid base. Three chrysin formulations ('cream 0', 'PG-cream' and 'PEG 400-cream') and five quercetin formulations ('cream 0', 'PG cream', 'PEG 400 cream', 'gel 0' and 'PG gel') were prepared. The release studies were carried out in Franz diffusion cells by means of a cellulose membrane. The porcine ear skin was used in in vitro skin retention studies. The dissolution was a prerequisite to increase the release rates of tested flavonoids from obtained semisolid formulations. The cumulative amount of chrysin released after 6 h from 'PEG 400 cream' containing partly dissolved form of that flavonoid was higher than that from 'cream 0' or 'PG cream' containing its suspended form. The formulations containing quercetin dissolved in PG ('PG cream', 'PG gel') or PEG 400 ('PEG 400 cream') exhibited higher release rates of that flavonoid than corresponding semisolid suspensions ('cream 0' or 'gel 0'). The effects of both liquid additives (PG and PEG 400) on the cumulative amount of quercetin released after 6 h were comparable. However, there was no correlation between the release rate and the skin retention. The amounts of the flavonoids found in the skin were strongly affected by the type of the used solvent. While PG increased the skin retention of both flavonoids, PEG 400 had no effect on chrysin skin retention and delayed quercetin skin absorption. The proper choice of the solvent added to the semisolid base is crucial for enhanced skin delivery of the tested flavonoids. PG is more efficient absorption promoter than PEG 400 of both chrysin and quercetin. © 2017 Society of Cosmetic Scientists and the Soci

  2. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study.

    PubMed

    Hakam, Mohammad Sadjad; Imani, Rana; Abolfathi, Nabiollah; Fakhrzadeh, Hossein; Sharifi, Ali Mohammad

    2016-01-01

    Recent advances in tissue engineering have led to the development of the concept of bioprinting as an interesting alternative to traditional tissue engineering approaches. Biopaper, a biomimetic hydrogel, is an essential component of the bioprinting process. The aim of this work was to synthesize a biopaper made of fibrin-gelatin hybrid hydrogel for application in skin bioprinting. Different composition percentages of the two biopolymer hydrogels, fibrin-gelatin, have been studied for the construction of the biopaper and were examined in terms of water absorption, biodegradability, glucose absorption, mechanical properties and water vapor transmission. Subsequently, tissue fusion study was performed on prepared 3T3 fibroblast cell line pellets embedded into the hydrogel. Based on the obtained results, fibrin-gelatin blend hydrogel with the same proportion of two components provides a natural scaffold for fibroblast-based bioink embedding and culture. The suggested optimized hydrogel was a suitable candidate as a biopaper for skin bioprinting technology.

  3. The design of naproxen solid lipid nanoparticles to target skin layers.

    PubMed

    Akbari, Jafar; Saeedi, Majid; Morteza-Semnani, Katayoun; Rostamkalaei, Seyyed Sohrab; Asadi, Masoumeh; Asare-Addo, Kofi; Nokhodchi, Ali

    2016-09-01

    The aim of the current investigation was to produce naproxen solid lipid nanoparticles (Nap-SLNs) by the ultrasonication method to improve its skin permeation and also to investigate the influence of Hydrophilic-lipophilic balance (HLB) changes on nanoparticles properties. The properties of obtained SLNs loaded with naproxen were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). FT-IR was also used to investigate any interaction between naproxen and the excipients used at the molecular level during the preparation of the SLNs. The performance of the formulations was investigated in terms of skin permeation and also the retention of the drug by the skin. It was found that generally, with increasing the lipid concentration, the average particle size and polydispersity index (PDI) of SLNs increased from 94.257±4.852nm to 143.90±2.685nm and from 0.293±0.037 to 0.525±0.038 respectively. The results also showed that a reduction in the HLB resulted in an increase in the PDI, particle size, zeta potential and entrapment efficiency (EE%). DSC showed that the naproxen encapsulated in the SLNs was in its amorphous form. The peaks of prominent functional groups of naproxen were found in the FT-IR spectra of naproxen-SLN, which confirmed the entrapment of naproxen in the lipid matrix. FT-IR results also ruled out any chemical interaction between drug and the chemicals used in the preparation of SLNs. The amount of naproxen detected in the receptor chamber at all the sampling times for the reference formulation (naproxen solution containing all surfactants at pH 7.4) was higher than that of the Nap-SLN8 formulation. Nap-SLN8 showed an increase in the concentration of naproxen in the skin layer with less systemic absorption. This indicates that most of the drug in Nap-SLN8 remains in the skin which can reduce the side effect of systemic absorption of the drug and increases the

  4. Spiritual and religious aspects of skin and skin disorders

    PubMed Central

    Shenefelt, Philip D; Shenefelt, Debrah A

    2014-01-01

    Skin and skin disorders have had spiritual aspects since ancient times. Skin, hair, and nails are visible to self and others, and touchable by self and others. The skin is a major sensory organ. Skin also expresses emotions detectable by others through pallor, coldness, “goose bumps”, redness, warmth, or sweating. Spiritual and religious significances of skin are revealed through how much of the skin has been and continues to be covered with what types of coverings, scalp and beard hair cutting, shaving and styling, skin, nail, and hair coloring and decorating, tattooing, and intentional scarring of skin. Persons with visible skin disorders have often been stigmatized or even treated as outcasts. Shamans and other spiritual and religious healers have brought about healing of skin disorders through spiritual means. Spiritual and religious interactions with various skin disorders such as psoriasis, leprosy, and vitiligo are discussed. Religious aspects of skin and skin diseases are evaluated for several major religions, with a special focus on Judaism, both conventional and kabbalistic. PMID:25120377

  5. Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin

    NASA Astrophysics Data System (ADS)

    Echchgadda, Ibtissam; Grundt, Jessica A.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.

    2013-12-01

    Terahertz (THz) time-domain spectroscopy systems permit the measurement of a tissue's hydration level. This feature makes THz spectrometers excellent tools for the noninvasive assessment of skin; however, current systems are large, heavy and not ideal for clinical settings. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to measure the absorption coefficient (μa) and index of refraction (n) of human subjects in vivo. Spectra were collected from 0.1 to 2 THz, and measurements were made from skin at three sites: the palm, ventral and dorsal forearm. Additionally, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal water loss, and melanin concentration. Our results suggest that the measured optical properties varied considerably for skin tissues that exhibited dissimilar hydration levels. These data provide a framework for using compact THz spectrometers for clinical applications.

  6. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    NASA Astrophysics Data System (ADS)

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  7. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Andery; Kumara, N. T. R. N.; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R. L. N.; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G. K. R.; Ekanayake, Piyasiri

    2015-03-01

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids.

  8. Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams

    PubMed Central

    Peregrino, Claudia P.; Moreno, Myriam V.; Miranda, Silvia V.; Rubio, Alma D.; Leal, Luz O.

    2011-01-01

    Mercury is considered one of the most toxic elements for plants and animals. Nevertheless, in the Middle East, Asia and Latin America, whitening creams containing mercury are being manufactured and purchased, despite their obvious health risks. Due to the mass distribution of these products, this can be considered a global public health issue. In Mexico, these products are widely available in pharmacies, beauty aid and health stores. They are used for their skin lightening effects. The aim of this work was to analyze the mercury content in some cosmetic whitening creams using the cold vapor technique coupled with atomic absorption spectrometry (CV-AAS). A total of 16 skin-lightening creams from the local market were investigated. No warning information was noted on the packaging. In 10 of the samples, no mercury was detected. The mercury content in six of the samples varied between 878 and 36,000 ppm, despite the fact that the U.S. Food and Drug Administration (FDA) has determined that the limit for mercury in creams should be less than 1 ppm. Skin creams containing mercury are still available and commonly used in Mexico and many developing countries, and their contents are poorly controlled. PMID:21776243

  9. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    NASA Astrophysics Data System (ADS)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  10. Improved penetration of wild ginseng extracts into the skin using low-temperature atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Nam, Seoul Hee; Hae Choi, Jeong; Song, Yeon Suk; Lee, Hae-June; Hong, Jin-Woo; Kim, Gyoo Cheon

    2018-04-01

    Wild ginseng (WG) is a well-known traditional medicinal plant that grows in natural environments in deep mountains. WG has been thought to exert potent physiological and medicinal effects, and, recently, its use in skin care has attracted much interest. This study investigated the efficient penetration of WG extracts into the skin by means of low-temperature atmospheric pressure plasma (LTAPP), and its effects on the skin at the cellular and tissue levels. NIH3T3 mouse embryonic fibroblasts and HRM-2 hairless mice were used to confirm the improved absorption of WG extracts into the skin using LTAPP. The gene expression levels in NIH3T3 cells and morphological changes in skin tissues after WG treatment were monitored using both in vitro and in vivo experiments. Although WG extracts did not show any significant effects on proliferative activity and cytotoxicity, at a concentration of 1:800, it significantly increased the expression of fibronectin and vascular endothelial growth factor. In the in vivo study, the combinational treatment of LTAPP and WG markedly induced the expression of fibronectin and integrin α6, and it thickened. Our results showed that LTAPP treatment safely and effectively accelerated the penetration of the WG extracts into the skin, thereby increasing the effects of WG on the skin.

  11. Non-invasive method for quantitative evaluation of exogenous compound deposition on skin.

    PubMed

    Stamatas, Georgios N; Wu, Jeff; Kollias, Nikiforos

    2002-02-01

    Topical application of active compounds on skin is common to both pharmaceutical and cosmetic industries. Quantification of the concentration of a compound deposited on the skin is important in determining the optimum formulation to deliver the pharmaceutical or cosmetic benefit. The most commonly used techniques to date are either invasive or not easily reproducible. In this study, we have developed a noninvasive alternative to these techniques based on spectrofluorimetry. A mathematical model based on diffusion approximation theory is utilized to correct fluorescence measurements for the attenuation caused by endogenous skin chromophore absorption. The limitation is that the compound of interest has to be either fluorescent itself or fluorescently labeled. We used the method to detect topically applied salicylic acid. Based on the mathematical model a calibration curve was constructed that is independent of endogenous chromophore concentration. We utilized the method to localize salicylic acid in epidermis and to follow its dynamics over a period of 3 d.

  12. New closed-form approximation for skin chromophore mapping.

    PubMed

    Välisuo, Petri; Kaartinen, Ilkka; Tuchin, Valery; Alander, Jarmo

    2011-04-01

    The concentrations of blood and melanin in skin can be estimated based on the reflectance of light. Many models for this estimation have been built, such as Monte Carlo simulation, diffusion models, and the differential modified Beer-Lambert law. The optimization-based methods are too slow for chromophore mapping of high-resolution spectral images, and the differential modified Beer-Lambert is not often accurate enough. Optimal coefficients for the differential Beer-Lambert model are calculated by differentiating the diffusion model, optimized to the normal skin spectrum. The derivatives are then used in predicting the difference in chromophore concentrations from the difference in absorption spectra. The accuracy of the method is tested both computationally and experimentally using a Monte Carlo multilayer simulation model, and the data are measured from the palm of a hand during an Allen's test, which modulates the blood content of skin. The correlations of the given and predicted blood, melanin, and oxygen saturation levels are correspondingly r = 0.94, r = 0.99, and r = 0.73. The prediction of the concentrations for all pixels in a 1-megapixel image would take ∼ 20 min, which is orders of magnitude faster than the methods based on optimization during the prediction.

  13. Photoacoustic evaluation of the penetration of piroxicam gel applied with phonophoresis into human skin

    NASA Astrophysics Data System (ADS)

    Silveira, F. L. F. D.; Barja, P. R.; Acosta-Avalos, D.

    2010-03-01

    The photoacoustic (PA) technique has been increasingly employed in biomedical studies, allowing in vivo skin measurements not easily performed with other techniques. It is possible to use PA measurements to evaluate transdermal delivery of products topically applied through manual massage or phonophoresis, that is the utilization of ultrasound waves to enhance drug absorption. The aim of this study was to analyze the influence of the period of phonophoresis application in the transdermal penetration of piroxicam gel. In vivo PA measurements employed a tungsten lamp as light source and a thin aluminum foil closing the PA chamber. The PA signals of the arm (i) clean; and (ii) after phonophoresis were utilized to estimate the concentration of piroxicam into skin. For all (4) volunteers, drug concentration in skin after phonophoresis application was the same for the different application times employed; in this way, phonophoresis for one minute seemed to be sufficient to enhance piroxicam penetration into skin. The actual amount of drug delivered into tissue depends on the person, suggesting a dependency with the skin type, which affects the PA signal level [2]. We conclude that drug delivery depends not only on the application method, but also on the specific skin type.

  14. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    PubMed

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products.

  15. Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.

    PubMed

    Montenegro, L; Carbone, C; Giannone, I; Puglisi, G

    2007-05-01

    The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.

  16. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion

    PubMed Central

    Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh

    2008-01-01

    Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981

  17. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin.

    PubMed

    Do, Nhung; Weindl, Günther; Grohmann, Lisa; Salwiczek, Mario; Koksch, Beate; Korting, Hans Christian; Schäfer-Korting, Monika

    2014-05-01

    Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Skin tightening.

    PubMed

    Woolery-Lloyd, Heather; Kammer, Jenna N

    2011-01-01

    Skin tightening describes the treatment of skin laxity via radiofrequency (RF), ultrasound, or light-based devices. Skin laxity on the face is manifested by progressive loss of skin elasticity, loosening of the connective tissue framework, and deepening of skin folds. This results in prominence of submandibular and submental tissues. Genetic factors (chronological aging) and extrinsic factors (ultraviolet radiation) both contribute to skin laxity. There are many RF, ultrasound, and light-based devices directed at treating skin laxity. All of these devices target and heat the dermis to induce collagen contraction. Heating of the dermis causes collagen denaturation and immediate collagen contraction in addition to long-term collagen remodeling. Via RF, light, or ultrasound, these skin tightening devices deliver heat to the dermis to create new collagen and induce skin tightening. This chapter will provide an overview of the various skin tightening devices. Copyright © 2011 S. Karger AG, Basel.

  19. Assessment of an extended dataset of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    PubMed

    Aggarwal, M; Fisher, P; Hüser, A; Kluxen, F M; Parr-Dobrzanski, R; Soufi, M; Strupp, C; Wiemann, C; Billington, R

    2015-06-01

    Dermal absorption is a key parameter in non-dietary human safety assessments for agrochemicals. Conservative default values and other criteria in the EFSA guidance have substantially increased generation of product-specific in vitro data and in some cases, in vivo data. Therefore, data from 190 GLP- and OECD guideline-compliant human in vitro dermal absorption studies were published, suggesting EFSA defaults and criteria should be revised (Aggarwal et al., 2014). This follow-up article presents data from an additional 171 studies and also the combined dataset. Collectively, the data provide consistent and compelling evidence for revision of EFSA's guidance. This assessment covers 152 agrochemicals, 19 formulation types and representative ranges of spray concentrations. The analysis used EFSA's worst-case dermal absorption definition (i.e., an entire skin residue, except for surface layers of stratum corneum, is absorbed). It confirmed previously proposed default values of 6% for liquid and 2% for solid concentrates, irrespective of active substance loading, and 30% for all spray dilutions, irrespective of formulation type. For concentrates, absorption from solvent-based formulations provided reliable read-across for other formulation types, as did water-based products for solid concentrates. The combined dataset confirmed that absorption does not increase linearly beyond a 5-fold increase in dilution. Finally, despite using EFSA's worst-case definition for absorption, a rationale for routinely excluding the entire stratum corneum residue, and ideally the entire epidermal residue in in vitro studies, is presented. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Interactions of skin thickness and physicochemical properties of test compounds in percutaneous penetration studies.

    PubMed

    Wilkinson, Simon C; Maas, Wilfred J M; Nielsen, Jesper Bo; Greaves, Laura C; van de Sandt, Johannes J M; Williams, Faith M

    2006-05-01

    To determine the effect of skin thickness on the percutaneous penetration and distribution of test compounds with varying physicochemical properties using in vitro systems. Studies were carried out in accordance with OECD guidelines on skin absorption tests. Percutaneous penetration of caffeine (log P -0.01), testosterone (log P 3.32), propoxur (log P 1.52) (finite dose in ethanol to water vehicle ratio) and butoxyethanol (log P 0.83) (undiluted finite dose or as an infinite dose 50% [v/v] aqueous solution) through skin of varying thicknesses under occluded conditions was measured using flow through cells for 8-24 h. Saline (adjusted to pH 7.4) was used as receptor fluid, with BSA added for studies with testosterone and propoxur. Following exposure, the remaining surface dose was removed by swabbing and the skin digested prior to scintillation counting. The maximum flux of caffeine was increased with decreasing skin thickness, although these differences were found to be non-significant. The presence of caffeine in the skin membrane was not altered by skin thickness. Maximum flux and cumulative dose absorbed of testosterone and butoxyethanol (in both finite and infinite doses) were markedly reduced with full thickness (about 1 mm thick) skin compared with split thickness skin (about 0.5 mm). Maximum flux of propoxur (dissolved in 60% ethanol) was clearly higher through skin of 0.71 mm than through skin of 1.36 mm, but no difference was found between 0.56 and 0.71 mm. The proportion of propoxur present in the membrane after 24 h increased significantly over the complete range of thicknesses tested (0.56-1.36 mm). A complex relationship exists between skin thickness, lipophilicity and percutaneous penetration and distribution. This has implications for risk assessment studies and for the validation of models with data from different sources.

  1. Skin permeation and retention of topical bead formulation containing tranexamic acid.

    PubMed

    Vijayakumar, Ajay; Baskaran, Rengarajan; Yoo, Bong Kyu

    2017-02-01

    The objective of this study is to develop a topical bead formulation of tranexamic acid (TA) which can be used concomitantly with laser treatment. The bead formulation of TA (TAB) was successfully prepared by fluidized bed drying method. Physicochemical properties of the TAB were evaluated in terms of chemical stability of TA and differential scanning calorimetry. TA in the bead was stable up to six months at 25°C and existed as amorphous state. In vitro skin permeation and in vivo skin retention of TA in the beads were significantly higher compared to a commercial product. When the bead was dissolved into distilled water and applied concomitantly with laser treatment, the amount of TA retained in the skin in the in vivo study was inversely proportional to the energy levels of laser treatment, indicating absorption into subcutaneous tissue and drainage to systemic circulation. Therefore, when laser treatment is used concomitantly with TAB, energy level should be very carefully monitored to avoid possible adverse events associated with systemic side effects of TA.

  2. Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan

    2011-09-01

    Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ~1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.

  3. De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells.

    PubMed

    Pontiggia, Luca; Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Oliveira, Carol; Braziulis, Erik; Klar, Agnieszka S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2014-06-01

    In our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations. We demonstrate the superiority of secretory over absorptive cells in forming a new epidermis on two levels: first, the proliferative and colony-forming efficiencies in vitro are significantly higher for secretory cells (SCs), and second, SCs show a higher frequency of successful epidermis formation as well as an increase in the thickness of the formed epidermis in the in vitro and in vivo functional analyses using a 3D dermo-epidermal skin model. However, the ability of forming functional skin substitutes is not limited to SCs, which supports the hypothesis that multiple subtypes of sweat gland epithelial cells hold regenerative properties, while the existence and exact localization of a keratinocyte stem cell population in the human eccrine sweat gland remain elusive.

  4. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  5. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  6. Determination of the optical properties of melanin-pigmented human skin equivalents using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lipscomb, Dawn; Echchgadda, Ibtissam; Peralta, Xomalin G.; Wilmink, Gerald J.

    2013-02-01

    Terahertz time-domain spectroscopy (THz-TDS) methods have been utilized in previous studies in order to characterize the optical properties of skin and its primary constituents (i.e., water, collagen, and keratin). However, similar experiments have not yet been performed to investigate whether melanocytes and the melanin pigment that they synthesize contribute to skin's optical properties. In this study, we used THz-TDS methods operating in transmission geometry to measure the optical properties of in vitro human skin equivalents with or without normal human melanocytes. Skin equivalents were cultured for three weeks to promote gradual melanogenesis, and THz time domain data were collected at various time intervals. Frequency-domain analysis techniques were performed to determine the index of refraction (n) and absorption coefficient (μa) for each skin sample over the frequency range of 0.1-2.0 THz. We found that for all samples as frequency increased, n decreased exponentially and the μa increased linearly. Additionally, we observed that skin samples with higher levels of melanin exhibited greater n and μa values than the non-pigmented samples. Our results indicate that melanocytes and the degree of melanin pigmentation contribute in an appreciable manner to the skin's optical properties. Future studies will be performed to examine whether these contributions are observed in human skin in vivo.

  7. Skin Color and Pigmentation in Ethnic Skin.

    PubMed

    Visscher, Marty O

    2017-02-01

    Skin coloration is highly diverse, partly due to the presence of pigmentation. Color variation is related to the extent of ultraviolet radiation exposure, as well as other factors. Inherent skin coloration arises from differences in basal epidermal melanin amount and type. Skin color is influenced by both the quantity and distribution of melanocytes. The effectiveness of inherent pigmentation for protecting living cells also varies. This article discusses skin color, pigmentation, and ethnicity in relation to clinical practice. Color perception, skin typing/classification, and quantitation of pigmentation are reviewed in relation to ethnicity, environmental stresses/irritants, and potential treatment effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy.

    PubMed

    Sun, Q; Tran, M; Smith, B; Winefordner, J D

    2000-11-01

    Laser-induced breakdown spectroscopy (LIBS) was used to evaluate the effect of barrier creams (skin protective creams) on human skin. A Nd: YAG laser at 1,064 nm was used with a pulse energy of 100 mJ. A method was developed to measure the effectiveness of barrier creams against zinc ion absorption from aqueous zinc chloride solution and oil paste zinc oxide, which represent model hydrophilic and lipophilic metal compounds, respectively. Zinc was chosen since it posed no risk to human skin. 3 representative commercial barrier creams advertised as being effective against lipophilic and hydrophilic substances were evaluated by measuring zinc absorbed through the stratum corneum. 4 consecutive skin surface biopsies (SSB) were taken from biceps of the forearms of 6 volunteers at time periods of 0.5 h and 3 h after application of the protective cream. Results were compared with control skin where no barrier cream was used. The zinc atomic emission line at 213.9 nm was selected. Gate delay and gate width time was optimized to obtain the best signal-to-noise ratio (SNR) and precision. This method provided a facile and rapid screening of the effectiveness of skin barrier creams against zinc ion penetration. The barrier creams were shown to provide appreciable protection against the penetration of both ZnCl2 and ZnO into the skin.

  9. Dermal absorption of kerosene components in rats and the influence of its amount and area of exposure.

    PubMed

    Tsujino, Yoshio; Hieda, Yoko; Kimura, Kojiro; Dekio, Satoshi

    2003-04-23

    The influences of amount and area of dermal exposure to kerosene upon the levels of kerosene components in biological samples were examined in vivo and in vitro. Thirty-two rats were randomly divided into four groups and exposed to kerosene through the abdominal skin for 2h. The amounts (soaked in cotton) and area of kerosene exposed were 1 ml/4 cm(2) in Group I, 4 ml/4 cm(2) in Group II, 4 ml/16 cm(2) in Group III and 16 ml/64 cm(2) in Group IV. Before, then 5, 10, 20, 30, 45, 60, 90 and 120 min after exposure, 0.5 ml of blood was collected. Solid tissue samples, including the exposed skin area, were harvested at 120 min. Kerosene components were analyzed by gas chromatography/mass spectrometry. Trimethylbenzens (TMBs) that are easily absorbed kerosene components, appeared at 5-20 min. The time course changes in TMB levels in blood were significantly different between Groups I and II or Groups I and III, and almost identical between Groups II and III. Similar trends were observed in tissue samples at 120 min. High concentrations of aliphatic hydrocarbons (AHCs) were detected in the exposed skin and the AHC levels were dependent on the amount of kerosene exposed per unit area. These results suggest that (1) dermal absorption of kerosene occurs soon after dermal exposure started, (2) absorption of TMBs is influenced by the total amount of kerosene rather than area of exposure, and (3) AHCs remaining in the skin at significant levels are influenced by the amount of kerosene per unit area exposed.

  10. Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.

    PubMed

    Tuchin, V V; Altshuler, G B; Gavrilova, A A; Pravdin, A B; Tabatadze, D; Childs, J; Yaroslavsky, I V

    2006-10-01

    transmitted light intensity has been obtained with glucose solution as a clearing agent. Noteworthy is the difference in the trend of spectral curves: relative transmittance spectrum for glycerol reveals, on the whole, a greater slope which may be indicative of higher extent of index matching between the scattering centers and base material for this index-matching agent. Under the transillumination of the skin sample by the wide flat beam the more effective clearing (the increase of transmitted intensity) is attained within the hemoglobin absorption bands; with the narrow quasi-collimated beam the higher relative transmittance was observed over the intervals of minimum absorption. The use of specially designed island mask combined with non-laser intensive pulse irradiation produces a lattice of islands of limited thermal damage in SC that substantially enhances the penetration rate of topically applied index-matching agents. The suggested technique gave comparable magnitudes of clearing dynamics enhancement for glucose solution, glycerol solution, and propylene glycol solution applied to mammalian skin.

  11. Skin graft

    MedlinePlus

    ... that need skin grafts to heal Venous ulcers, pressure ulcers , or diabetic ulcers that do not heal Very ... graft; Full thickness skin graft Patient Instructions Preventing pressure ulcers Surgical wound care - open Images Skin graft Skin ...

  12. Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin

    NASA Astrophysics Data System (ADS)

    Echchgadda, Ibtissam; Grundt, Jessica E.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.

    2013-02-01

    Terahertz time-domain spectroscopy (THz-TDS) systems are capable of detecting small differences in water concentration levels in biological tissues. This feature makes THz devices excellent tools for the noninvasive assessment of skin; however, most conventional systems prove too cumbersome for limited-space environments. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to collect the optical properties, specifically the absorption coefficient (μa) and index of refraction (n), of human subjects in vivo. Spectra were collected from 0.1-2 THz, and measurements were made on the palm, ventral (inner) and dorsal (outer) forearm. Prior to each THz measurement, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal waterloss (TEWL), skin color, and degree of melanin pigmentation. Our results suggest that the measured optical properties were wide-ranging, and varied considerably for skin tissues with different hydration and melanin levels. These data provide a novel framework for accurate human tissue measurements using THz spectrometers in limited-space environments.

  13. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  14. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells.

    PubMed

    Lim, Andery; Kumara, N T R N; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R L N; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G K R; Ekanayake, Piyasiri

    2015-03-05

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Skin blotting: a noninvasive technique for evaluating physiological skin status.

    PubMed

    Minematsu, Takeo; Horii, Motoko; Oe, Makoto; Sugama, Junko; Mugita, Yuko; Huang, Lijuan; Nakagami, Gojiro; Sanada, Hiromi

    2014-06-01

    The skin performs important structural and physiological functions, and skin assessment represents an important step in identifying skin problems. Although noninvasive techniques for assessing skin status exist, no such techniques for monitoring its physiological status are available. This study aimed to develop a novel skin-assessment technique known as skin blotting, based on the leakage of secreted proteins from inside the skin following overhydration in mice. The applicability of this technique was further investigated in a clinical setting. Skin blotting involves 2 steps: collecting proteins by attaching a damp nitrocellulose membrane to the surface of the skin, and immunostaining the collected proteins. The authors implanted fluorescein-conjugated dextran (F-DEX)-containing agarose gels into mice and detected the tissue distribution of F-DEX under different blotting conditions. They also analyzed the correlations between inflammatory cytokine secretion and leakage following ultraviolet irradiation in mice and in relation to body mass index in humans. The F-DEX in mice was distributed in the deeper and shallower layers of skin and leaked through the transfollicular and transepidermal routes, respectively. Ultraviolet irradiation induced tumor necrosis factor secretion in the epidermis in mice, which was detected by skin blotting, whereas follicular tumor necrosis factor was associated with body mass index in obese human subjects. These results support the applicability of skin blotting for skin assessment. Skin blotting represents a noninvasive technique for assessing skin physiology and has potential as a predictive and diagnostic tool for skin disorders.

  16. Dietary Hyaluronic Acid Migrates into the Skin of Rats

    PubMed Central

    Mitsugi, Koichi; Odanaka, Wataru; Seino, Satoshi; Masuda, Yasunobu

    2014-01-01

    Hyaluronic acid is a constituent of the skin and helps to maintain hydration. The oral intake of hyaluronic acid increases water in the horny layer as demonstrated by human trials, but in vivo kinetics has not been shown. This study confirmed the absorption, migration, and excretion of 14C-labeled hyaluronic acid (14C-hyaluronic acid). 14C-hyaluronic acid was orally or intravenously administered to male SD rats aged 7 to 8 weeks. Plasma radioactivity after oral administration showed the highest level 8 hours after administration, and orally administered 14C-hyaluronic acid was found in the blood. Approximately 90% of 14C-hyaluronic acid was absorbed from the digestive tract and used as an energy source or a structural constituent of tissues based on tests of the urine, feces, expired air, and cadaver up to 168 hours (one week) after administration. The autoradiographic results suggested that radioactivity was distributed systematically and then reduced over time. The radioactivity was higher in the skin than in the blood at 24 and 96 hours after administration. The results show the possibility that orally administered hyaluronic acid migrated into the skin. No excessive accumulation was observed and more than 90% of the hyaluronic acid was excreted in expired air or urine. PMID:25383371

  17. Dietary hyaluronic acid migrates into the skin of rats.

    PubMed

    Oe, Mariko; Mitsugi, Koichi; Odanaka, Wataru; Yoshida, Hideto; Matsuoka, Ryosuke; Seino, Satoshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu

    2014-01-01

    Hyaluronic acid is a constituent of the skin and helps to maintain hydration. The oral intake of hyaluronic acid increases water in the horny layer as demonstrated by human trials, but in vivo kinetics has not been shown. This study confirmed the absorption, migration, and excretion of (14)C-labeled hyaluronic acid ((14)C-hyaluronic acid). (14)C-hyaluronic acid was orally or intravenously administered to male SD rats aged 7 to 8 weeks. Plasma radioactivity after oral administration showed the highest level 8 hours after administration, and orally administered (14)C-hyaluronic acid was found in the blood. Approximately 90% of (14)C-hyaluronic acid was absorbed from the digestive tract and used as an energy source or a structural constituent of tissues based on tests of the urine, feces, expired air, and cadaver up to 168 hours (one week) after administration. The autoradiographic results suggested that radioactivity was distributed systematically and then reduced over time. The radioactivity was higher in the skin than in the blood at 24 and 96 hours after administration. The results show the possibility that orally administered hyaluronic acid migrated into the skin. No excessive accumulation was observed and more than 90% of the hyaluronic acid was excreted in expired air or urine.

  18. The effects of sulfur mustard exposure and freezing on transdermal penetration of tritiated water through ex vivo pig skin.

    PubMed

    Payne, O J; Graham, S J; Dalton, C H; Spencer, P M; Mansson, R; Jenner, J; Azeke, J; Braue, E

    2013-02-01

    The percutaneous absorption of tritiated water ((3)H(2)O) through sulfur mustard (SM) exposed abdominal pig skin was measured using in vitro Franz-type static diffusion cells. The barrier function to water permeation following exposure to liquid SM for 8 min and excision 3h later did not change significantly. A small, but statistically significant difference (P<0.05) in steady state penetration (Jss), permeability coefficient (Kp) and lag time (t(L)) of (3)H(2)O was observed between fresh skin and skin stored frozen (-20 °C) for up to two weeks. Steady-state penetration and Kp values were significantly higher (P < 0.05) in skin stored frozen compared with fresh skin. Fresh naïve skin had an average Kp of 1.65 × 10(-3) cm h(-1), whereas frozen naïve skin was 2.04 × 10(-3) cm h(-1). Fresh SM exposed skin had a mean Kp of 1.72 × 10(-3) cm h(-1), whereas frozen SM exposed skin was 2.31 × 10(-3) cm h(-1). Lag times were also shorter (P<0.05) in skin that had been stored frozen. Frozen, SM-exposed porcine abdominal skin may be used for in vitro penetration studies, but effects of treatment and storage on the barrier layer should be taken into account. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Photoacoustic study of the penetration kinetics of nimesulid into human skin

    NASA Astrophysics Data System (ADS)

    Barja, P. R.; Veloso, D. J. D. V.

    2010-03-01

    The photoacoustic (PA) effect is observed when modulated (or pulsed) light is absorbed by a sample inside a closed chamber and converted in heat, generating acoustic waves; PA measurements have been employed to evaluate transdermal penetration of topically applied drugs. Phonophoresis is the utilization of ultrasonic (US) energy to enhance absorption of drugs across the epidermal barrier, and its usefulness has been shown by PA measurements. The aim of the present work was to determine the characteristic absorption times of the anti-inflammatory Nimesulid (gel) in human skin, with and without help of therapeutic phonophoresis. After local cleaning, measurements were performed in the forearm of each volunteer before Nimesulid application and for different times after application through massage with the US equipment head; the protocol was repeated for the opposite forearm, but without US emission. Curves of the PA signal level as a function of time were adjusted by a Boltzmann equation, leading to the determination of the characteristic absorption time (about 12 minutes). No significant gain was observed in Nimesulid absorption with the utilization of US radiation, indicating that topic application of Nimesulid does not require the use of phonophoresis, due to the natural fast penetration of the Nimesulid gel.

  20. The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence

    NASA Astrophysics Data System (ADS)

    Zherebtsov, E. A.; Kandurova, K. Y.; Seryogina, E. S.; Kozlov, I. O.; Dremin, V. V.; Zherebtsova, A. I.; Dunaev, A. V.; Meglinski, I.

    2017-03-01

    This article presents the results of the study of the pressure applied on optical diagnostic probes as a significant factor affecting the results of measurements. During stepwise increasing and decreasing of local pressure on skin we conducted measurements using the methods of laser Doppler flowmetry and fluorescence spectroscopy. It was found out that pressure on optical probe has sufficient impact on skin microcirculation to affect registered fluorescence intensity. Data obtained in this study are of interest for design and development of diagnostic technologies for wearable devices. This data will also inform further investigation into issues of compensation of blood absorption influence on fluorescence spectrum, allowing increased accuracy and reproducibility of measurements by fluorescence spectroscopy methods in optical diagnosis.

  1. Exposure of amateur gardeners to pesticides via the non-gloved skin per day.

    PubMed

    Beránková, Martina; Hojerová, Jarmila; Melegová, Linda

    2017-10-01

    To predict a risk to gardeners not wearing protective gloves, the dermal absorption of three active insecticides was assessed in vitro using porcine ear-skin simulating 1-h handling of diluted plant protection products. Acetamiprid and Pirimicarb were found in the receptor fluid immediately after 1-h skin exposure, whereas Chlorpyrifos-methyl absorbed in the skin was not released into the receptor fluid even after 23 hours. The Estimated Gardener Exposure Level (EGEL) at 23 hours after 1-h exposure for two worst-case scenarios (i) non-gloved hands; (ii) non-gloved hands/uncovered forearms, was (i) 0.002, 0.042, and 0.057; (ii) 0.006, 0.101, and 0.135 mg/kg bw/day for Acetamiprid, Pirimicarb, and Chlorpyrifos-methyl, respectively, although the systemically available Chlorpyrifos-methyl amount, due to retention in the skin, is probably lower than determined. The Gardener Exposure Risk (GER), as a ratio of Acceptable Operator Exposure Level (databased values) to EGEL, for Acetamiprid was (i) 35 and 12-fold higher than the limit 1, so the risk via the skin is assumed to be low. Based on the GER values of (i) 0.83 and 0.18; (ii) 0.34 and 0.07 (i.e.<1) for Pirimicarb and Chlorpyrifos-methyl, respectively there is a level of concern regarding the health risk to gardeners handling pesticide products without skin protection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products

    PubMed Central

    Myers, Sharon L.; Yang, Chun Z.; Bittner, George D.; Witt, Kristine L.; Tice, Raymond R.; Baird, Donna D.

    2014-01-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products. PMID:24849798

  3. Characterization of oily mature skin by biophysical and skin imaging techniques.

    PubMed

    de Melo, M O; Maia Campos, P M B G

    2018-02-13

    The skin is a complex biological system and may suffer change according to the environmental factors, as higher temperatures can increase sebum excretion, presenting oiliness and acne. These alterations can persist during the aging and provoke more changes in aged skin. In this study we evaluated the mature oily skin characteristics using biophysical and skin imaging techniques. Sixty healthy female subjects, aged between 39 and 55 years old were recruited and separated into 2 groups according to their skin type: normal/dry and oily skin. The skin was evaluated in terms of stratum corneum water content, transepidermal water loss (TEWL) sebum content, dermis thickness and echogenicity, skin microrelief, and pores content. The mature oily skin presented no significant differences when compared to the normal/dry skin on the stratum corneum water content and TEWL parameters. The sebum content was significantly higher on the oily skin group. The microrelief analysis showed an increase of skin roughness values in the oily skin and increase of scaliness in the normal/dry skin. The oily skin showed lower dermis echogenicity mainly in the frontal region and higher dermis thickness when compared to normal/dry skin. The mature oily skin showed different characteristics from normal/dry skin in terms of sebum content, microrelief parameters, and dermis thickness. This way, the characterization of mature oily skin in an objective way is very important to development of dermocosmetic products for more effective treatments focused specially on this type of skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  5. Study of the effect of temperature on the optical properties of Latin skins

    NASA Astrophysics Data System (ADS)

    Quistián-Vázquez, Brenda; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G.

    2017-02-01

    Photodynamic therapy (PDT) is a very effective technique for treatment of certain types of cancer, among the most common, skin cancer. PDT requires the presence of three elements: the photosensitizer, light and oxygen. Penetration depth of light into the tumor depends on both the characteristics of the tissue to be treated and the wavelength. As the light dose to be delivered in each lesion depends on the optical properties of the tissue, all the effects that change these properties should be considered in order to choose suitable doses. There are some studies that have determined the maximum dose of radiation tolerated for certain types of skin, but the influence of the temperature on the optical properties, especially for darker skin types, remains unknown. In this study, we analyzed the optical properties of skin in vivo of different Latin volunteers in order to study the influence of the temperature on the optical properties and thereby to define more precisely the dose of light to be received by each patient in a personalized way. The optical properties of skin in vivo were investigated using an optical system that included an integrating sphere, a tungsten lamp and a spectrophotometer. Such experimental set up-allowed to obtain spectra reflectance of various volunteers and from this measurement, the absorption coefficient was recovered by Inverse Adding Doubling (IAD) program.

  6. Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging

    PubMed Central

    Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas

    2014-01-01

    Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339

  7. 19 CFR 12.63 - Seal-skin or sea-otter-skin waste.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Seal-skin or sea-otter-skin waste. 12.63 Section... OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Fur-Seal Or Sea-Otter Skins § 12.63 Seal-skin or sea-otter-skin waste. Seal-skin or sea-otter-skin waste composed of small pieces not large enough to be...

  8. 19 CFR 12.63 - Seal-skin or sea-otter-skin waste.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Seal-skin or sea-otter-skin waste. 12.63 Section... OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Fur-Seal Or Sea-Otter Skins § 12.63 Seal-skin or sea-otter-skin waste. Seal-skin or sea-otter-skin waste composed of small pieces not large enough to be...

  9. 19 CFR 12.63 - Seal-skin or sea-otter-skin waste.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Seal-skin or sea-otter-skin waste. 12.63 Section... OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Fur-Seal Or Sea-Otter Skins § 12.63 Seal-skin or sea-otter-skin waste. Seal-skin or sea-otter-skin waste composed of small pieces not large enough to be...

  10. 19 CFR 12.63 - Seal-skin or sea-otter-skin waste.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Seal-skin or sea-otter-skin waste. 12.63 Section... OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Fur-Seal Or Sea-Otter Skins § 12.63 Seal-skin or sea-otter-skin waste. Seal-skin or sea-otter-skin waste composed of small pieces not large enough to be...

  11. 19 CFR 12.63 - Seal-skin or sea-otter-skin waste.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Seal-skin or sea-otter-skin waste. 12.63 Section... OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Fur-Seal Or Sea-Otter Skins § 12.63 Seal-skin or sea-otter-skin waste. Seal-skin or sea-otter-skin waste composed of small pieces not large enough to be...

  12. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  13. Simulation of the effect of photoprotective titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles on the thermal response and optical characteristics of skin

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Popov, A. P.

    2015-04-01

    The thermal response of skin covered with a mixture of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles of optimal sizes and irradiated by sunlight has been calculated. The nanoparticles were rubbed into the skin for maximum protection against the incident radiation. The dependences of the temperature dynamics in different skin layers (corneal layer, epidermis, dermis) have been obtained and analyzed upon skin irradiation with light at a wavelength of 310-800 nm. It has been found that increasing light scattering and absorption due to the nanoparticles introduced into the corneal layer resulted in a decrease in the thermal load and penetration depth of the incident radiation.

  14. Matching the skin barrier to the skin type.

    PubMed

    Thompson, Hyacinth; North, Jacqui; Davenport, Rebecca; Williams, Julia

    Peristomal skin problems are thought to be common (Herlufsson et al, 2006; Williams et al, 2010), and can interfere with the security of stoma products. Stoma patients are reliant on the integrity of their peristomal skin to maintain a normal lifestyle. Bekkers et al (1996) highlighted that, if the peristomal skin becomes damaged, it not only affects the person physically, but also psychologically, ultimately prolonging rehabilitation and adaptation to the stoma. Therefore, it can be concluded that maintaining skin integrity is a basic and essential skill in ensuring good stoma management. This article explores the assessment of four stoma patients, highlighting the importance of matching their skin type with their skin barrier for optimum skin protection. The patients have kindly agreed for their case studies to be published as a means of informing others. All names have been changed in line with Nursing and Midwifery Council (2010) guidelines to maintain patient confidentiality. This article was originally presented at the World Council of Enterostomal Therapists' (WCET) annual conference in 2010, receiving first prize at poster presentations.

  15. Skin sensitivity and skin microbiota: Is there a link?

    PubMed

    Seite, Sophie; Misery, Laurent

    2018-05-21

    Sensitive skin is defined by the occurrence of unpleasant sensations, accompanied or not by erythema, in response to stimuli which normally should not provoke such sensations and that cannot be linked to skin disease. Even if its pathophysiology is not completely known, hyper-reactivity of the cutaneous nervous system associated with an abnormal skin barrier has been hypothesized as a primary culprit including more recently a role of the cutaneous microbiota. The objective of this short review is to discuss the relationship between the skin microbiota, skin sensitivity and the skin barrier function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Scutellaria radix Extract as a Natural UV Protectant for Human Skin.

    PubMed

    Seok, Jin Kyung; Kwak, Jun Yup; Choi, Go Woon; An, Sang Mi; Kwak, Jae-Hoon; Seo, Hyeong-Ho; Suh, Hwa-Jin; Boo, Yong Chool

    2016-03-01

    Ultraviolet (UV) radiation induces oxidative injury and inflammation in human skin. Scutellaria radix (SR, the root of Scutellaria baicalensis Georgi) contains flavonoids with high UV absorptivity and antioxidant properties. The purpose of this study was to examine the potential use of SR extract as an additive in cosmetic products for UV protection. SR extract and its butanol (BuOH) fraction strongly absorbed UV radiation and displayed free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radials and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals. They also attenuated the UV-induced death of HaCaT cells. Sunscreen creams, with or without supplementation of SR extract BuOH fraction, were tested in vivo in human trials to evaluate potential skin irritation and determine the sun protection factor (SPF). Both sunscreen creams induced no skin irritation. A sunscreen cream containing 24% ZnO showed an SPF value of 17.8, and it increased to 22.7 when supplemented with 5% SR extract BuOH fraction. This study suggests that SR-derived materials are useful as safe cosmetic additives that provide UV protection. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    PubMed Central

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-01-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240

  18. Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance.

    PubMed

    Todosijević, Marija N; Savić, Miroslav M; Batinić, Bojan B; Marković, Bojan D; Gašperlin, Mirjana; Ranđelović, Danijela V; Lukić, Milica Ž; Savić, Snežana D

    2015-12-30

    To elaborate the decisive role of surfactants in promotion of aceclofenac' skin absorption, potentially avoiding irritation, we developed non-ionic microemulsions varying natural or synthetic surfactants: sucrose esters (laurate or myristate) vs. polysorbate 80. A comprehensive physicochemical characterization indicated no significant influence of the solubilized nonsteroidal anti-inflammatory drug on the bicontinuous structure of blank formulations. To evaluate skin tolerability of isopropyl alcohol, a sucrose ester-based microemulsion containing transcutol P as a cosurfactant was also developed. The measured skin parameters strongly depended on the (co)surfactant type, showing higher compatibility of the microemulsions containing sucrose ester and isopropyl alcohol. In vitro release results, in vivo tape stripping and pharmacokinetics in rats confirmed superiority of the sucrose ester- over polysorbate-based microemulsions (total amounts of aceclofenac penetrated 60.81±5.97 and 60.86±3.67 vs. 27.00±5.09μg/cm(2), and its maximum plasma concentrations 275.57±109.49 and 281.31±76.76 vs. 150.23±69.74ng/ml for sucrose laurate- and myristate- vs. polysorbate 80-based microemulsions, respectively). Hence, sugar-based excipients increased delivery of aceclofenac through stratum corneum by increasing its fluidity, showing overall more satisfying safety profiles. In conclusion, sucrose ester-based microemulsions proved to be promising carriers for dermal/transdermal aceclofenac delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Propagation Effects in the Assessment of Laser Damage Thresholds to the Eye and Skin

    DTIC Science & Technology

    2007-01-01

    Conference on Optical Interactions with Tissue and Cells [18th] Held in San Jose, California on January 22-24, 2007 To order the complete compilation report...evaluation of the role of propagation with regard to laser damage to tissues. Regions of the optical spectrum, where linear and non-linear propagation...photo-chemical toxicity. Exposure limits commonly address skin and eye hazards through separate definitions. Differing optical absorption and scattering

  20. [Study on objectively evaluating skin aging according to areas of skin texture].

    PubMed

    Shan, Gaixin; Gan, Ping; He, Ling; Sun, Lu; Li, Qiannan; Jiang, Zheng; He, Xiangqian

    2015-02-01

    Skin aging principles play important roles in skin disease diagnosis, the evaluation of skin cosmetic effect, forensic identification and age identification in sports competition, etc. This paper proposes a new method to evaluate the skin aging objectively and quantitatively by skin texture area. Firstly, the enlarged skin image was acquired. Then, the skin texture image was segmented by using the iterative threshold method, and the skin ridge image was extracted according to the watershed algorithm. Finally, the skin ridge areas of the skin texture were extracted. The experiment data showed that the average areas of skin ridges, of both men and women, had a good correlation with age (the correlation coefficient r of male was 0.938, and the correlation coefficient r of female was 0.922), and skin texture area and age regression curve showed that the skin texture area increased with age. Therefore, it is effective to evaluate skin aging objectively by the new method presented in this paper.

  1. Laser speckle and skin cancer: skin roughness assessment

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Zeng, Haishan; McLean, David I.; Lui, Harvey

    2009-10-01

    Incidence of skin cancer has been increasing rapidly since the last few decades. Non-invasive optical diagnostic tools may improve the diagnostic accuracy. In this paper, skin structure, skin cancer statistics and subtypes of skin cancer are briefly reviewed. Among the subtypes, malignant melanoma is the most aggressive and dangerous; early detection dramatically improves the prognosis. Therefore, a non-invasive diagnostic tool for malignant melanoma is especially needed. In addition, in order for the diagnostic tool to be useful, it must be able to differentiate melanoma from common skin conditions such as seborrheic keratosis, a benign skin disease that resembles melanoma according to the well known clinical-assessment ABCD rule. The key diagnostic feature between these two diseases is surface roughness. Based on laser speckle contrast, our research team has recently developed a portable, optical, non-invasive, in-vivo diagnostic device for quantifying skin surface roughness. The methodology of our technique is described in details. Examining the preliminary data collected in a pilot clinical study for the prototype, we found that there was a difference in roughness between melanoma and seborrheic keratosis. In fact, there was a perfect cutoff value for the two diseases based on our initial data.

  2. Preliminary demonstration using localized skin temperature elevation as observed with thermal imaging as an indicator of fat-specific absorption during focused-field radiofrequency therapy.

    PubMed

    Key, Douglas J

    2014-07-01

    This study incorporates concurrent thermal camera imaging as a means of both safely extending the length of each treatment session within skin surface temperature tolerances and to demonstrate not only the homogeneous nature of skin surface temperature heating but the distribution of that heating pattern as a reflection of localization of subcutaneous fat distribution. Five subjects were selected because of a desire to reduce abdomen and flank fullness. Full treatment field thermal camera imaging was captured at 15 minute intervals, specifically at 15, 30, and 45 minutes into active treatment with the purpose of monitoring skin temperature and avoiding any patterns of skin temperature excess. Peak areas of heating corresponded anatomically to the patients' areas of greatest fat excess ie, visible "pinchable" fat. Preliminary observation of high-resolution thermal camera imaging used concurrently with focused field RF therapy show peak skin heating patterns overlying the areas of greatest fat excess.

  3. Image analysis of skin color heterogeneity focusing on skin chromophores and the age-related changes in facial skin.

    PubMed

    Kikuchi, Kumiko; Masuda, Yuji; Yamashita, Toyonobu; Kawai, Eriko; Hirao, Tetsuji

    2015-05-01

    Heterogeneity with respect to skin color tone is one of the key factors in visual perception of facial attractiveness and age. However, there have been few studies on quantitative analyses of the color heterogeneity of facial skin. The purpose of this study was to develop image evaluation methods for skin color heterogeneity focusing on skin chromophores and then characterize ethnic differences and age-related changes. A facial imaging system equipped with an illumination unit and a high-resolution digital camera was used to develop image evaluation methods for skin color heterogeneity. First, melanin and/or hemoglobin images were obtained using pigment-specific image-processing techniques, which involved conversion from Commission Internationale de l'Eclairage XYZ color values to melanin and/or hemoglobin indexes as measures of their contents. Second, a spatial frequency analysis with threshold settings was applied to the individual images. Cheek skin images of 194 healthy Asian and Caucasian female subjects were acquired using the imaging system. Applying this methodology, the skin color heterogeneity of Asian and Caucasian faces was characterized. The proposed pigment-specific image-processing techniques allowed visual discrimination of skin redness from skin pigmentation. In the heterogeneity analyses of cheek skin color, age-related changes in melanin were clearly detected in Asian and Caucasian skin. Furthermore, it was found that the heterogeneity indexes of hemoglobin were significantly higher in Caucasian skin than in Asian skin. We have developed evaluation methods for skin color heterogeneity by image analyses based on the major chromophores, melanin and hemoglobin, with special reference to their size. This methodology focusing on skin color heterogeneity should be useful for better understanding of aging and ethnic differences. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients.

    PubMed

    Togsverd-Bo, Katrine; Philipsen, Peter Alshede; Hædersdal, Merete; Wulf, Hans Christian Olsen

    2018-01-01

    Ultraviolet radiation (UVR)-induced skin cancers varies among organ transplant recipients (OTRs). To improve individual risk assessment of skin cancer, objectively quantified skin photodamage is needed. We measured personal UVR-exposure dose in OTRs and assessed the relation between individual UVR exposure, skin cancer and objectively measured photodamage in terms of skin autofluorescence, pigmentation, and black light-evaluated solar lentigines. Danish OTRs with (n=15) and without a history of skin cancer (n=15) kept sun diaries from May to September and wore personal dosimeters recording time-stamped UVR doses in standard erythema doses (SED). Photodamage was quantified as skin autofluorescence with excitation at 370nm (F370) and 430nm (F430), skin pigmentation (pigment protection factor, PPF), and black light-evaluated solar lentigines. OTRs with skin cancer received a higher UVR dose than OTRs without skin cancer (median 116 SED vs. 67 SED, p=0.07) and UVR exposure doses were correlated with increased PPF (p=0.052) and F370 on the shoulder (F370 shoulder ) (p=0.04). We found that skin cancer was associated with F370 shoulder (OR 10.53, CI 3.3-31,938; p=0.018) and time since transplantation (OR 1.34, CI 0.95-1.91, p=0.097). A cut-off at 7.2 arbitrary units, 89% of OTRs with skin cancer had F370 shoulder values above 7.2 arbitrary units and F370 shoulder was additionally related to patient age (p=0.09) and black light-evaluated solar lentigines (p=0.04). F370 autofluorescence indicates objectively measured photodamage and may be used for individual risk assessment of skin cancer development in OTRs. Copyright © 2017. Published by Elsevier B.V.

  5. A portable system for noninvasive assessment of advanced glycation end-products using skin fluorescence and reflectance spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Y. K.; Zhu, L.; Zhang, L.; Zhang, G.; Liu, Y.; Wang, A.

    2012-07-01

    An optical system has been developed for noninvasive assessment of skin advanced glycation end-products (AGEs). The system comprises mainly a high-power ultraviolet light emitting diode (LED) as an excitation source, an LED array for the reflectance measurement, a trifurcated fiber-optic probe for light transmitting and receiving, and a compact spectrometer for light detecting. Both skin fluorescence of a subject and the reflectance spectrum of the same site can be obtained in a single measurement with the system. Demonstrative measurements with the system have been conducted. Results indicate that the measured reflectance spectrum can be used to compensate for the distortion of AGEs fluorescence, which is caused by skin absorption and scattering. The system is noninvasive, portable, easy to operate, and has potential applications for clinical diagnosis of AGE-related diseases, especially diabetes mellitus.

  6. Silica- and perfluoro-based nanoparticular polymeric network for the skin protection against organophosphates

    NASA Astrophysics Data System (ADS)

    Bignon, Cécile; Amigoni, Sonia; Guittard, Frédéric

    2016-06-01

    Due to their small size, nanoparticles possess unique properties such as high absorption or pollutant degradation, making them useful for skin protection against chemicals. By covalently grafting to a hydrophobically modified alkali-soluble emulsion (HASE), a thickening polymer, nanoparticles can be dispersed as gels in water at neutral pH. With this modification the potential aggregation and toxicity typical of nanoparticles are avoided. Once integrated into a cosmetic formula, these gels can be spread onto skin to afford protective barriers. This paper reports (1) the benefit of SiO2 nanoparticles grafted to a perfluorocarbon HASE polymer (HASE-F/SiO2) which is then integrated into a new formula and it is influence on the efficacy against the penetration of paraoxone, as well as (2) the stability of the barrier cream (BC) and (3) how the homogenous dispersion of nanoparticles maintains a high active surface area of SiO2 nanoparticles. The efficiency of the new active topical skin protectant was proved at different doses (5-27 mg cm-2), under occlusive conditions and validated on human skin. Therefore, the combination of the HASE-F polymer, nanoparticle grafting, and polyvinylpyrrolidone and glycerol formulation led to a very effective active BC.

  7. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System.

    PubMed

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben Sasson, Shmuel; Bitton, Ronit; Bianco-Peled, Havazelet; Kohen, Ron

    2017-01-01

    Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf 2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases.

  8. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System

    PubMed Central

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben Sasson, Shmuel; Bitton, Ronit; Bianco-Peled, Havazelet

    2017-01-01

    Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases. PMID:28757910

  9. Transdermal absorption of memantin--effect of chemical enhancers, iontophoresis, and role of enhancer lipophilicity.

    PubMed

    del Rio-Sancho, S; Serna-Jiménez, C E; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Merino, V; López-Castellano, A

    2012-09-01

    The transdermal administration of memantine may have advantages with respect to oral therapy when treating advanced stages of Alzheimer's disease. With the ultimate objective of administrating memantine through a transdermal patch, the absorption of the drug across skin was evaluated by means of in vitro permeation studies. The effect of several chemical enhancers was studied in order to enhance percutaneous absorption of the memantine. The iontophoretic transdermal transport of memantine hydrochloride using a current density of 0.5 mA/cm(2) was also investigated. Results demonstrated that pre-treatment of the skin with R-(+)-limonene, laurocapram, decenoic acid, or oleic acid produced a statistically significant increment in the transdermal flux of memantine hydrochloride with respect to the control. Iontophoresis exhibited the greatest ability to enhance the flux of drug with respect to the control; nevertheless, the results obtained with R-(+)-limonene indicate that this compound could be of great use as a percutaneous enhancer in a memantine transdermal delivery system. In this study, the relationship between enhancement activity and lipophilicity was also studied. Satisfactory correlations have been obtained between the optimum lipophilicity of the enhancer and n-octanol/water partition coefficients of drugs. This relationship is a very useful tool that could allow to reduce time and to optimize the selection of appropriate enhancers for transdermal formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Ionic skin.

    PubMed

    Sun, Jeong-Yun; Keplinger, Christoph; Whitesides, George M; Suo, Zhigang

    2014-12-03

    Electronic skins (i.e., stretchable sheets of distributed sensors) report signals using electrons, whereas natural skins report signals using ions. Here, ionic conductors are used to create a new type of sensory sheet, called "ionic skin". Ionic skins are highly stretchable, transparent, and biocompatible. They readily measure strains from 1% to 500%, and pressures as low as 1 kPa. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Subjective and objective observation of skin graft recovery on Indonesian local cat with different periods of transplantation time.

    PubMed

    Erwin; Gunanti; Handharyani, Ekowati; Noviana, Deni

    2016-05-01

    The success of a skin graft in a cat is highly dependent on the granulation formed by the base of recipient bed. Granulation by the base of recipient bed will form after several days after injury. This research aimed to observe subjective and objective profile of skin graft recovery on forelimb of cats with different periods of donor skin placement. Nine male Indonesian local cats aged 1-2 years old, weighing 3-4 kg were divided into three groups. The first surgery for creating defect wound of 2 cm×2 cm in size was performed in the whole group. The wound was left for several days with the respective interval for each group, respectively: Group I (for 2 days), Group II (for 4 days), and Group III (for 6 days). In the whole group, the second surgery was done by the harvesting skin of thoracic area which then applied on recipient bed of respective groups. The donor skin on Group II was accepted faster compared to Group I and Group III. The donor skin did not show color differences compared to surrounding skin, painless, bright red in bleeding test had faster both hair growth and drug absorption. Test toward the size of donor skin and the effect of drugs did not show a significant difference between each group. The observe subjective and objective profile of skin graft recovery on forelimb of cats on Group II were accepted faster compared to Group I and III.

  12. Is skin penetration a determining factor in skin sensitization ...

    EPA Pesticide Factsheets

    Summary:Background. It is widely accepted that substances that cannot penetrate through the skin will not be sensitisers. Thresholds based on relevant physicochemical parameters such as a LogKow > 1 and a MW 1 is a true requirement for sensitisation.Methods. A large dataset of substances that had been evaluated for their skin sensitisation potential, together with measured LogKow values was compiled from the REACH database. The incidence of skin sensitisers relative to non-skin sensitisers below and above the LogKow = 1 threshold was evaluated. Results. 1482 substances with associated skin sensitisation outcomes and measured LogKow values were identified. 305 substances had a measured LogKow < 0 and of those, 38 were sensitisers.Conclusions. There was no significant difference in the incidence of skin sensitisation above and below the LogKow = 1 threshold. Reaction chemistry considerations could explain the skin sensitisation observed for the 38 sensitisers with a LogKow < 0. The LogKow threshold is a self-evident truth borne out from the widespread misconception that the ability to efficiently penetrate the stratum corneum is a key determinant of skin sensitisation potential and potency. Using the REACH data extracted to test out the validity of common assumptions in the skin sensitization AOP. Builds on trying to develop a proof of concept IATA

  13. Saving Your Students' Skin. Undergraduate Experiments that Probe UV Protection by Sunscreens and Sunglasses

    NASA Astrophysics Data System (ADS)

    Abney, James R.; Scalettar, Bethe A.

    1998-06-01

    Recent scientific evidence suggests that chlorofluorocarbons have substantially depleted the ozone layer, the earth's primary filter for ultraviolet radiation. At the same time, medical evidence has accumulated which suggests that exposure to ultraviolet radiation is a major cause of prevalent human health disorders, including skin cancer and cataracts. For these reasons, consumer purchases of sunscreens and sunglasses, which provide protection from ultraviolet radiation, have soared, and manufacturer interest in improving these products has intensified. This article describes absorption spectroscopy experiments that illustrate the mechanism of action of sunscreens and sunglasses and that highlight the differences between different products. The experiments are well suited to incorporation into an undergraduate science laboratory and will expose students to absorption phenomena in a familiar context with substantial environmental and medical relevance.

  14. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    PubMed

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  15. Skin Biopsy

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Skin Biopsy KidsHealth / For Teens / Skin Biopsy What's in ... en español Biopsia de piel What Is a Skin Biopsy and Who Would Need One? In a ...

  16. Skin Diseases: Skin and Sun—Not a good mix

    MedlinePlus

    ... Current Issue Past Issues Skin Diseases Skin and Sun —Not a good mix Past Issues / Fall 2008 ... turn Javascript on. Good skin care begins with sun safety. Whether it is something as simple as ...

  17. Skin lesion biopsy

    MedlinePlus

    ... biopsy - skin; Skin cancer - biopsy; Melanoma - biopsy; Squamous cell cancer - biopsy; Basal cell cancer - biopsy; Mohs microsurgery ... dermatitis Infection from bacteria or fungus Melanoma Basal cell skin cancer Squamous cell skin cancer

  18. The investigation of the skin characteristics of males focusing on gender differences, skin perception, and skin care habits.

    PubMed

    Mizukoshi, Koji; Akamatsu, Hisashi

    2013-05-01

    Various studies have examined the properties of male skin. However, because these studies mostly involved simple measurement with non-invasive devices, a lack of understanding of the properties of male skin remains. In this study, we focused and investigated not only on simple instrumental measurements but also on gender differences and men's subjective perceptions of skin and daily skin care habits. Barrier function depends on corneocyte maturation level as well as sebum amount. Irrespective of the skin type, a high percentage of male subjects perceived a 'tacky feeling'. However, the percentage of men perceiving a 'shiny feeling' differed by skin type. Furthermore, there was a relationship between skin care habits and skin function. Men who did not perform a daily skincare regimen demonstrated a significantly higher sebum amount and transepidermal water loss value than those who did perform a daily skincare regimen. The results of this study indicate that male skin has two specific characteristics: impaired barrier function because of the excess amount of sebum and a lack of an appropriate skin care regimen because of the 'tacky feeling' caused by excess sebum. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration.

    PubMed

    Yang, Mei; Liang, Yimin; Sheng, Lingling; Shen, Guoxiong; Liu, Kai; Gu, Bin; Meng, Fanjun; Li, Qingfeng

    2011-03-01

    In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.

  20. Fractional Skin Harvesting: Autologous Skin Grafting without Donor-site Morbidity

    PubMed Central

    Wang, Ying; Farinelli, William A.; Jiménez-Lozano, Joel; Franco, Walfre; Sakamoto, Fernanda H.; Cheung, Evelyn J.; Purschke, Martin; Doukas, Apostolos G.; Anderson, R. Rox

    2013-01-01

    Background: Conventional autologous skin grafts are associated with significant donor-site morbidity. This study was conducted to determine feasibility, safety, and efficacy of a new strategy for skin grafting based on harvesting small columns of full-thickness skin with minimal donor-site morbidity. Methods: The swine model was used for this study. Hundreds of full-thickness columns of skin tissue (~700 µm diameter) were harvested using a custom-made harvesting device, and then applied directly to excisional skin wounds. Healing in donor and graft sites was evaluated over 3 months by digital photographic measurement of wound size and blinded, computer-aided evaluation of histological features and compared with control wounds that healed by secondary intention or with conventional split-thickness skin grafts (STSG). Results: After harvesting hundreds of skin columns, the donor sites healed rapidly without scarring. These sites reepithelialized within days and were grossly and histologically indistinguishable from normal skin within 7 weeks. By contrast, STSG donor sites required 2 weeks for reepithelialization and retained scar-like characteristics in epidermal and dermal architecture throughout the experiment. Wounds grafted with skin columns resulted in accelerated reepithelialization compared with ungrafted wounds while avoiding the “fish-net” patterning caused by STSG. Conclusion: Full-thickness columns of skin can be harvested in large quantities with negligible long-term donor-site morbidity, and these columns can be applied directly to skin wounds to enhance wound healing. PMID:25289241

  1. Skin Conditions

    MedlinePlus

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  2. The effect of concentration of tackifying agent on adhesive and skin-protective properties of ceramide 2-containing hydrocolloid dressings.

    PubMed

    Kohta, M; Iwasaki, T

    2015-01-01

    In the treatment of pressure ulcers and leg ulcers it is necessary to achieve an effective balance between adhesive and skin-protective properties. We speculated that addition of a tackifying agent (TA) to ceramide 2-containing hydrocolloid dressings would increase their adhesiveness under dry conditions and reduce their adhesiveness under wet conditions because dry tack converts to wet tack after water absorption. We prepared ceramide 2-containing hydrocolloid dressings with varying amounts of TA. Basic characteristics of the test ceraminde dressings, such as initial tack force and peeling force, were evaluated using standard methods. Peeling force and stratum corneum (SC) removal on healthy human skin were also evaluated at 20 minutes, 7 hours, and 72 hours. In addition, the effect of 10 repeated applications on transepidermal water loss (TEWL) was investigated on the skin of hairless mice under dry and wet conditions. Statistical analyses were performed using one-way analysis of variance followed by Dunnett's multiple comparison test. A p-value of <0.05 was considered statistically significant. On a stainless steel substrate, initial tack force and 180° peeling force increased as TA content increased. Twenty minutes after application on human skin, peeling force and SC removal increased with increasing TA content. When TA contents were over 10%, significant differences in peeling force and SC removal were obtained compared with ceramide 2-containing hydrocolloid dressings without TA (p<0.05). However, a TA content-dependent increase in peeling force was not evident 7 hours and 72 hours after application. Under dry conditions, TEWL increased with repeated application and peeling. Conversely, no significant increases in TEWL were evident under wet conditions after 10 repeated applications and peelings. Our data demonstrate that the initial attachment of ceramide 2-containing hydrocolloid dressings to the skin increases with addition of TA. Skin damage can be

  3. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin.

    PubMed

    Edwards, N P; Barden, H E; van Dongen, B E; Manning, P L; Larson, P L; Bergmann, U; Sellers, W I; Wogelius, R A

    2011-11-07

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms.

  4. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin

    PubMed Central

    Edwards, N. P.; Barden, H. E.; van Dongen, B. E.; Manning, P. L.; Larson, P. L.; Bergmann, U.; Sellers, W. I.; Wogelius, R. A.

    2011-01-01

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms. PMID:21429928

  5. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  6. Skin Pigmentation Disorders

    MedlinePlus

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  7. [A case of skin autograft for skin ulcers in ichthyosis].

    PubMed

    Li, Shiwei; Yang, Xiaodong; Liu, Lijun; Tang, Xueyang

    2017-10-28

    Ichthyosis refers to a group of skin diseases characterized by abnormal keratinization of the epidermis, resulting in dryness, roughness and scale of the skin. A girl with ichthyosis, who presented with skin ulcers and infection of the right dorsal foot, was admitted to our department. An autologous razor-thin skin grafting procedure was performed to repair the skin ulcers after debridement and vacuum sealing drain. After 8 months of follow-up, both the donor and recipient site healed well and there were no newly formed ulcers or infections. Although the skin quality of ichthyosis is poor, the lesion area can still be used as donor or recipient cite.

  8. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  9. Depth distributions of light action spectra for skin chromophores

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  10. Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration.

    PubMed

    Lee, Ae-Ri Cho; Moon, Hee Kyung

    2007-11-01

    A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).

  11. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation.

    PubMed

    Chen, Yang; Quan, Peng; Liu, Xiaochang; Guo, Wenjia; Song, Wenting; Cun, Dongmei; Wang, Zhongyan; Fang, Liang

    2015-09-01

    The study aimed to prepare a transdermal patch for flurbiprofen using isopulegol decanoate (ISO-C10) as a permeation enhancer, and to evaluate the in-vitro and in-vivo percutaneous permeation of the drug, as well as the pharmacodynamic efficacy of the formulation. The permeation experiments were conducted on rabbit skin, and the pharmacokinetic profiles and synovial fluid drug concentration were measured after in-vivo transdermal administration. A deconvolution approach was employed to analyse the correlation between the in-vitro and in-vivo drug permeation. The anti-inflammatory and analgesic effects were, respectively, assessed using the adjuvant arthritis model and the acetic acid induced pain model. ISO-C10 could increase the in-vitro permeation of flurbiprofen from 46.22 ± 5.65 μg/cm(2) to 101.07 ± 10.85 μg/cm(2) . The in-vivo absorption of the drug was also improved by the enhancer, and a good linear correlation was observed between the in-vitro and in-vivo drug permeation. Meanwhile, the ISO-C10 contained patches increased the drug disposition in synovial fluid and enhanced the pharmacodynamic efficacy of the formulation. ISO-C10 would be a promising permeation enhancer for improving the in-vitro and in-vivo delivery of flurbiprofen from its transdermal patches. © 2015 Royal Pharmaceutical Society.

  12. On skin expansion.

    PubMed

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin.

    PubMed

    Herbig, Michael E; Houdek, Pia; Gorissen, Sascha; Zorn-Kruppa, Michaela; Wladykowski, Ewa; Volksdorf, Thomas; Grzybowski, Stephan; Kolios, Georgios; Willers, Christoph; Mallwitz, Henning; Moll, Ingrid; Brandner, Johanna M

    2015-09-01

    Reliable models for the determination of skin penetration and permeation are important for the development of new drugs and formulations. The intention of our study was to develop a skin penetration model which (1) is viable and well supplied with nutrients during the period of the experiment (2) is mimicking human skin as far as possible, but still is independent from the problems of supply and heterogeneity, (3) can give information about the penetration into different compartments of the skin and (4) considers specific inter-individual differences in skin thickness. In addition, it should be quick and inexpensive (5) and without ethical implications (6). Using a chemically divers set of four topically approved active pharmaceutical ingredients (APIs), namely diclofenac, metronidazole, tazarotene, and terbinafine, we demonstrated that the model allows reliable determination of drug concentrations in different layers of the viable epidermis and dermis. For APIs susceptible for skin metabolism, the extent of metabolic transformation in epidermis and dermis can be monitored. Furthermore, a high degree of accordance in the ability for discrimination of skin concentrations of the substances in different layers was found in models derived from porcine and human skin. Viability, proliferation, differentiation and markers for skin barrier function were surveyed in the model. This model, which we call 'Hamburg model of skin penetration' is particularly suited to support a rational ranking and selection of dermatological formulations within drug development projects. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Skin decontamination of mustards and organophosphates: comparative efficiency of RSDL and Fuller's earth in domestic swine.

    PubMed

    Taysse, L; Daulon, S; Delamanche, S; Bellier, B; Breton, P

    2007-02-01

    Research in skin decontamination and therapy of chemical warfare agents has been a difficult problem due to the simultaneous requirement of rapid action and non-aggressive behaviour. The aim of this study was to compare the performance of two decontaminating systems: the Canadian Reactive Skin Decontaminant Lotion (RSDL) and the Fuller's Earth (FE). The experiment was conducted with domestic swine, as a good model for extrapolation to human skin. RSDL and FE were tested against sulphur mustard (SM), a powerful vesicant, and VX, a potent and persistent cholinesterase inhibitor. When used 5 min after contamination, the results clearly showed that both systems were active against SM (10.1 mg/cm(2)) and VX (0.06 mg/cm(2)). The potency of the RSDL/sponge was statistically better than FE against skin injury induced by SM, observed 3 days post-exposure. RSDL was rather more efficient than FE in reducing the formation of perinuclear vacuoles and inflammation processes in the epidermis and dermis. Against a severe inhibition (67%) of plasmatic cholinesterases induced by VX poisoning, the potencies of the RSDL/sponge and FE were similar. Both systems completely prevented cholinesterase inhibition, which indirectly indicates a prevention of toxic absorption through the skin.

  15. Self-reported skin colour and erythemal sensitivity vs. objectively measured constitutive skin colour in an African population with predominantly dark skin.

    PubMed

    Wright, Caradee Y; Wilkes, Marcus; du Plessis, Johan L; Reeder, Anthony I

    2015-11-01

    Skin colour is an important factor in skin-related diseases. Accurate determination of skin colour is important for disease prevention and supporting healthy sun behaviour, yet such data are lacking for dark skin types. Self-perceived, natural skin colour and sun-skin reaction were compared with objectively measured skin colour among an African population with predominantly dark skin. Unexposed skin of 556 adults (70.1% Black) was measured with a reflectance spectrophotometer to calculate an individual typology angle (°ITA). Participants reported self-perceived skin colour and erythemal sensitivity. There was a strong, positive monotonic correlation between self-reported and measured skin colour (Spearman ρ = 0.6438, P < 0.001), but only a weak correlation between self-reported erythemal sensitivity and measured skin colour (Spearman ρ = 0.2713, P < 0.001). Self-report biases in underestimation and overestimation of skin colour were evident. Many participants with 'dark brown' and 'black' skin had difficulty in classifying erythemal sensitivity. In Africa, self-reported skin colour could potentially be used in lieu of spectrophotometer measurements, but options for questions on sunburn and tanning require suitable adjustment. Our study provides evidence of range in °ITA values among residents in Africa and reinforces previous results that self-report may be reliable for determining skin colour, but not erythemal sensitivity, for dark skin individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effect of menthone and related compounds on skin permeation of drugs with different lipophilicity and molecular organization of stratum corneum lipids.

    PubMed

    Lan, Yi; Wang, Jingyan; Li, Hui; Zhang, Yewen; Chen, Yanyan; Zhao, Bochen; Wu, Qing

    2016-01-01

    The objective of this article was to investigate the enhancing effect of menthone, menthol and pulegone on the transdermal absorption of drugs with different lipophilicity and probe their mechanisms of action at molecular level. Five model drugs, namely osthole, tetramethylpyrazine, ferulic acid, puerarin and geniposide, which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which Franz diffusion cells and rat skin were employed. Infrared spectroscopy and molecular dynamic simulation were used to investigate the effect of these enhancers on the stratum corneum (SC) lipids, respectively. Three compounds could effectively promote the transdermal absorption of drugs with different lipophilicity, and the overall promoting capacities were in the following increasing order: pulegone < menthol < menthone. The penetration enhancement ratio was roughly in parabolic curve relationships with the drug lipophilicity after treatment with menthol or menthone, while the penetration enhancement effect of pulegone hardly changed with the alteration of the drug lipophilicity. The molecular mechanism studies suggested that menthone and menthol enhanced the skin permeability by disordering the ordered organization of SC lipids and extracted part of SC lipids, while pulegone appeared to promote drug transport across the skin only by extracting part of SC lipids.

  17. Acetyl aspartic acid, a novel active ingredient, demonstrates potential to improve signs of skin ageing: from consumer need to clinical proof.

    PubMed

    Mavon, A

    2015-10-01

    The megatrend of population ageing is leading to a growing demand for "anti-ageing" treatments, especially to prevent or treat skin ageing. Facing an increasing offer, consumers are choosing more and more skin care products supported by a scientific rationale, active ingredients and clinical proof of efficacy. Considering consumer expectations, this research led to the discovery of acetyl aspartic acid (A-A-A), a novel active ingredient to improve sagging skin and loss of skin firmness. This supplement is featuring seven manuscripts aiming at presenting the research and investigations from consumer insights, discovery of A-A-A, its in vitro activity confirmation, safety assessment, formulation and its dermal absorption to the clinical proof of efficacy, investigated through two pilots' double bind randomized and placebo controlled studies on photo-aged skin. This extensive research enabled us to discover A-A-A, as an active ingredient with potential to repair sign of skin ageing and supported by clinical proof of efficacy. This active ingredient will be soon launched in a commercial innovative skin care range, delivering desirable anti-wrinkle and skin lifting benefits. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants.

    PubMed

    Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F; Franz, Axel R

    2014-01-01

    Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs') measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs' at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs'. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.

  19. Assessment of Quantum Dot Penetration into Skin in Different Species Under Different Mechanical Actions

    NASA Astrophysics Data System (ADS)

    Monteiro-Riviere, N. A.; Zhang, L. W.

    Skin penetration is one of the major routes of exposure for nanoparticles to gain access to a biological system. QD nanoparticles have received a great deal of attention due to their fluorescent characteristics and potential use in medical applications. However, little is known about their permeability in skin. This study focuses on three types of quantum dots (QD) with different surface coatings and concentrations on their ability to penetrate skin. QD621 (polyethylene glycol coated, PEG) was studied for 24 h in porcine skin flow-through diffusion cells. QD565 and QD655 coated with carboxylic acid were studied for 8 and 24 h in flow-through diffusion cells with flexed, tape stripped and abraded rat skin to determine if these mechanical actions could perturb the barrier and affect penetration. Confocal microscopy depicted QD621 penetration through the uppermost layers of the stratum corneum (SC) and fluorescence was found in the SC and near hair follicles. QD621 were found in the intercellular lipid layers of the SC by transmission electron microscopy (TEM). QD565 and 655 with flexed and tape-stripped skin did not show penetration; only abraded skin showed penetration in the viable dermal layers. In all QD studies, inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD did not detect Cd or fluorescence signal in the perfusate at any time point, concentration or type of QD. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, while QD565 and 655 penetrated into the dermis of abraded skin. The anatomical complexity of skin and species differences should be taken into consideration when selecting an animal model to study nanoparticle absorption/penetration. These findings are of importance to risk assessment for nanoscale materials because it indicates that if skin barrier is altered such as in wounds, scrapes, or dermatitis conditions could

  20. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  1. Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro

    2014-03-01

    Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.

  2. About Skin-to-Skin Care (Kangaroo Care)

    MedlinePlus

    ... Size Email Print Share About Skin-to-Skin Care Page Content Article Body You may be able ... care, also called kangaroo care. What is Kangaroo Care? Kangaroo care was developed in South America as ...

  3. Effects of compression on human skin optical properties

    NASA Astrophysics Data System (ADS)

    Chan, Eric K.; Sorg, Brian S.; Protsenko, Dmitry E.; O'Neil, Michael P.; Motamedi, Massoud; Welch, Ashley J.

    1997-08-01

    Tissue optical properties are necessary parameters for prescribing light dosimetry in photomedicine. In many diagnostic or therapeutic applications where optical fiber probes are used, pressure is often applied to the tissue to reduce index mismatch and increase light transmittance. In this study, we have measured in vitro optical properties as a function of pressure with a visible-IR spectrophotometer. A spectral range of 400 - 1800 nm with a spectral resolution of 5 nm was used for all measurements. Skin specimens of two Hispanic donors and three caucasian donors were obtained from the tissue bank. Each specimen, sandwiched between microscope slides, was compressed by a spring-loaded apparatus. Then diffuse reflectance and transmittance of each sample were measured at no load and at approximately 0.1 and 1 kgf/cm2. Under compression, tissue thicknesses were reduced up to 78%. Generally, reflectance decreased while the overall transmittance increased under compression. The absorption and reduced scattering coefficients were calculated using the inverse adding doubling method. Compared with the no-load controls, there was an increase in the absorption and scattering coefficients among most of the compressed specimens.

  4. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles.

    PubMed

    An, Jae Jin; Eum, Won Sik; Kwon, Hyuck Se; Koh, Jae Sook; Lee, Soo Yun; Baek, Ji Hwoon; Cho, Yong-Jun; Kim, Dae Won; Han, Kyu Huyng; Park, Jinseu; Jang, Sang Ho; Choi, Soo Young

    2013-12-01

    Epidermal and fibroblast growth factor (EGF and FGF1) proteins play an important role in the regeneration and proliferation of skin cells. EGF and FGF1 have considerable potential as possible therapeutic or cosmetic agents for the treatment of skin damage including wrinkles. Using protein transduction domains (PTD), we investigated whether PTD-EGF and FGF1 transduced into skin cells and tissue. Transduced proteins showed protective effects in a UV-induced skin damage model as well as against skin wrinkles. Transduced PTD-EGF and FGF1 proteins were detected by immunofluorescence and immunohistochemistry. The effects of PTD-EGF and FGF1 were examined by WST assay, Western blotting, immunohistochemistry, and skin wrinkle parameters. The PTD-EGF and FGF1 increased cell proliferation and collagen type 1 alpha 1 protein accumulation in skin tissue. Also, PTD-EGF and FGF1 inhibited UV-induced skin damage. Furthermore, topical application of PTD-EGF and FGF1 contained ampoules which were considered to improve the wrinkle parameters of human skin. These results show that PTD-EGF and FGF1 can be a potential therapeutic or cosmetic agent for skin damaged and injury including wrinkles and aging. © 2013 Wiley Periodicals, Inc.

  5. Sensitive skin in Europe.

    PubMed

    Misery, L; Boussetta, S; Nocera, T; Perez-Cullell, N; Taieb, C

    2009-04-01

    Sensitive skin appears as a very frequent condition, but there is no comparative data between countries. To perform an epidemiological approach to skin sensitivity in different European countries. An opinion poll was conducted in eight European countries: Belgium, France, Germany, Greece, Italy, Portugal, Spain and Switzerland. This sample (4506 persons) was drawn from a representative sample of each population aged 15 years or older. Sensitive or very sensitive skin was declared by 38.4% and slightly or not sensitive skin by 61.6%. Women declared more sensitive skin than men. A dermatological disease was declared by 31.2% of people with very sensitive skin, 17.6% of those with sensitive skin, 8.7% of those with slightly sensitive skin and 3.7% of those who do not have sensitive skin. A history of childhood atopic dermatitis was more frequent in patients with sensitive or very sensitive skin. The interviewees who declared that they had dry or oily skin also reported significantly more frequently sensitive or very sensitive skin than those with normal skin. Sensitive and very sensitive skins were clearly more frequent in Italy and France. This study is the first study that compares skin sensitivity in European countries. Prevalence is high, but significant differences are noted between these countries. Dermatological antecedents (or treatments?) could be involved in the occurrence of skin sensitivity.

  6. Isolation and structural characterisation of acid- and pepsin-soluble collagen from the skin of squid Sepioteuthis lessoniana (Lesson, 1830).

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2014-01-01

    Acid-solubilised collagen (ASC) and pepsin-solubilised collagen (PSC) were effectively isolated from squid skin with good yield and total protein content. ASC and PSC consist of two α-chains with an imino acid content of 182.6 and 184 imino acid residues/1000 residues. The molecular weight was determined to be between 73 and 107 kDa by using SDS-PAGE. For peptide mapping, collagens were digested with achromo endopeptidase, and all components, including α, β-chains, were markedly hydrolysed. Degradation peptides with molecular weights between 106.9 and 15.47 kDa were obtained. UV-vis absorption spectrum revealed distinct absorption at 220-240 nm. FT-IR spectra of collagens were almost similar when compared with standard. In differential scanning calorimetry profile, ASC and PSC exhibited a To of 59.10, 62.18°C and TP of 104.91, 98.10 °C, respectively. This investigation indicates that the collagen isolated from the squid skin, which is thrown as waste in the seafood-processing plant, might supplement the vertebrate collagen in industrial applications.

  7. Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin.

    PubMed

    Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P

    2017-08-01

    Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Noninvasive imaging of absolute PpIX concentration distribution in nonmelanoma skin tumors at pre-PDT

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    Photodynamic Therapy (PDT) has proven to be an effective treatment option for nonmelanoma skin cancers. The ability to quantify the concentration of drug in the treated area is crucial for effective treatment planning as well as predicting outcomes. We utilized spatial frequency domain imaging for quantifying the accurate concentration of protoporphyrin IX (PpIX) in phantoms and in vivo. We correct fluorescence against the effects of native tissue absorption and scattering parameters. First we quantified the absorption and scattering of the tissue non-invasively. Then, we corrected raw fluorescence signal by compensating for optical properties to get the absolute drug concentration. After phantom experiments, we used basal cell carcinoma (BCC) model in Gli mice to determine optical properties and drug concentration in vivo at pre-PDT.

  9. Plasma concentrations of lidocaine in dogs following lidocaine patch application over an incision compared to intact skin.

    PubMed

    Joudrey, S D; Robinson, D A; Kearney, M T; Papich, M G; da Cunha, A F

    2015-12-01

    The objective was to compare plasma lidocaine concentrations when a commercially available 5% lidocaine patch was placed on intact skin vs. an incision. Our hypothesis was that greater absorption of lidocaine would occur from the incision site compared to intact skin. Ten dogs were used in a crossover design. A patch was placed over an incision, and then after a washout period, a patch was placed over intact skin. Plasma lidocaine concentrations were measured at patch placement; 20, 40 and 60 min; and 2, 4, 6, 12, 24, 36, 48, 72 and 96 h after patch placement. After patch removal, the skin was graded using a subjective skin reaction system. No dogs required rescue analgesia, and no toxicity or skin reaction was noted. Mean ± SD AUC and CMAX were 3054.29 ± 1095.93 ng·h/mL and 54.1 ± 15.84 ng/mL in the Incision Group, and 2269.9 ± 1037.08 ng·h/mL and 44.5 ± 16.34 ng/mL in the No-Incision Group, respectively. The AUC was significantly higher in the Incision Group. The results of the study demonstrate that the actual body exposure to lidocaine was significantly higher when an incision was present compared to intact skin. No adverse effects were observed from either treatment. Efficacy was not evaluated. © 2015 John Wiley & Sons Ltd.

  10. Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: focus on percutaneous absorption.

    PubMed

    Pariser, David

    2009-01-01

    The 2 primary classes of drugs used to treat atopic dermatitis (AD) are topical corticosteroids (TCSs) and topical calcineurin inhibitors (TCIs). For maximum efficacy, topical agents must efficiently penetrate the skin but, for optimal safety, should not be absorbed into the bloodstream. TCSs, a mainstay in AD treatment for more than 50 years, can potentially be absorbed into the systemic circulation, particularly when used on young children, for prolonged periods, or on areas of thin and sensitive skin, such as the eyelids, face, and flexures. There is a risk of cutaneous and systemic adverse events, including suppression of the hypothalamic-pituitary-adrenal axis and related sequelae, especially when potent or superpotent TCSs are used for extended periods. Ideally, TCSs should be used for short periods (2-4 weeks), but clinical reality often necessitates longer use. TCIs also effectively and safely treat AD, with the most commonly observed local adverse events being skin irritation and burning. These agents have demonstrated good penetration of the skin with minimal systemic absorption, as evidenced by low blood concentrations, and can be used safely on thin and sensitive skin. The use of mid-potency TCSs to treat acute flares involving skin of normal thickness, followed by the introduction of TCIs for maintenance therapy, constitutes an appropriate application of both drug classes. Pharmacists with a clear understanding of how both types of agents affect the systemic circulation have the opportunity to inform patients and caregivers about benefits and limitations of different therapeutic agents, address patient concerns about adverse events, and help patients understand how to use medical therapies appropriately.

  11. Nutrition and skin.

    PubMed

    Pappas, Apostolos; Liakou, Aikaterini; Zouboulis, Christos C

    2016-09-01

    Nutrition has long been associated with skin health, including all of its possible aspects from beauty to its integrity and even the aging process. Multiple pathways within skin biology are associated with the onset and clinical course of various common skin diseases, such as acne, atopic dermatitis, aging, or even photoprotection. These conditions have been shown to be critically affected by nutritional patterns and dietary interventions where well-documented studies have demonstrated beneficial effects of essential nutrients on impaired skin structural and functional integrity and have restored skin appearance and health. Although the subject could be vast, the intention of this review is to provide the most relevant and the most well-documented information on the role of nutrition in common skin conditions and its impact on skin biology.

  12. Healthy Skin Matters

    MedlinePlus

    ... the risk of skin cancer and premature skin aging just like too much sun. In fact, most tanning beds emit mainly UVA rays, which may increase the risk of melanoma, the deadliest form of skin cancer. Physical activity Being physically active is good for your skin! It increases the ...

  13. Skin hydration, microrelief and greasiness of normal skin in Antarctica.

    PubMed

    Tsankov, N; Mateev, D; Darlenski, R

    2018-03-01

    The skin is the primary defence of the human body against external factors from physical, chemical, mechanical and biologic origin. Climatic factors together with low temperature and sun radiation affect the skin. The effect of climatic conditions in Antarctica on healthy skin has not been previously addressed. The aim of this study was to evaluate the changes in the skin hydration, greasiness and microrelief due to the extreme climatic environmental factors during the stay of the members of the Bulgarian Antarctic expedition. Fifty-nine Caucasian healthy subjects, 42 men and 17 women with mean age 50.9 years (27-68), were enrolled. The study was performed in five consecutive years from 2011 to 2016 at the Bulgarian Antarctic base camp at Livingston Island. The study protocol consisted of two parts: study A: duration of 15 days with measurement of skin physiology parameters on a daily basis, and study B: five measurements at baseline and at days 14, 30, 45 and 50 upon arrival in Antarctica. We measured three biophysical parameters related to skin physiology at cheek skin by an impedance measuring device. No statistically significant difference between parameters at the different measurement points. There is a variation in skin hydration reaching its lower point at day 11 and then returning to values similar to baseline. Initially, an increase in skin greasiness was witnessed with a sharp depression at day 11 and final values at day 15 resembling the ones at baseline. An increase, although not statistically significant, in skin roughness was observed in the first 15 days of the study. Study B showed no statistically significant variances between values of the three parameters. Our studies show the pioneer results of the effect of Antarctic climate on human skin physiology. © 2017 European Academy of Dermatology and Venereology.

  14. Safety of long-term subcutaneous free flap skin banking after skin-sparing mastectomy.

    PubMed

    Verstappen, Ralph; Djedovic, Gabriel; Morandi, Evi Maria; Heiser, Dietmar; Rieger, Ulrich Michael; Bauer, Thomas

    2018-03-01

    A persistent problem in autologous breast reconstruction in skin-sparing mastectomies is skin restoration after skin necrosis or secondary oncological resection. As a solution to facilitate reconstruction, skin banking of free-flap skin has been proposed in cases where the overlying skin envelope must be resected, as this technique spares the patient an additional donor site. Herein, we present the largest series to date in which this method was used. We investigated its safety and the possibility of skin banking for prolonged periods of time. All skin-sparing mastectomies and immediate autologous breast reconstructions from December 2009 until June 2013 at our institution were analysed. We identified 31 patients who underwent 33 free flap reconstructions in which skin banking was performed. Our median skin banking period was 7 days, with a maximum duration of 171 days. In 22.5% of cases, the banked skin was used to reconstruct overlying skin defects, and in 9.6% of cases to reconstruct the nipple-areolar complex. Microbiological and histological investigations of the banked skin revealed neither clinical infections nor malignancies. In situ skin banking, even for prolonged periods of time, is a safe and cost-effective method to ensure that skin defects due to necrosis or secondary oncological resection can be easily reconstructed.

  15. Recognition of skin cancer and sun protective behaviors in skin of color.

    PubMed

    Wheat, Chikoti M; Wesley, Naissan O; Jackson, Brooke A

    2013-09-01

    Sun protective behaviors are not as frequently practiced in skin of color as they are amongst Caucasians.1 Thus providing a reasonable assumption this behavior, or lack thereof, increases the risk of skin cancer in this skin of color populations. The aim of this study was two-fold-- the first was to understand whether patients with skin of color, when categorized by ethnicity or skin type, are able to recognize skin cancer lesions. The second was to examine the correlation between ethnicity and/or skin type and practice of sun protective behaviors. We surveyed 105 respondents presenting for various skin problems in a dermatology office in Chicago, IL. Topics covered in the survey included recognition of skin cancer appearance and choice of sun protective behaviors. We show that there is a tendency for patients to potentially recognize atypical pigmented lesions when they are "dark moles with irregular borders" or "new moles". In contrast, there is a reduced ability among darkly pigmented skin types IV to VI, to recognize non-melanoma skin cancers. We also show that in addition to ethnicity, skin type within ethnic groups may also play an influential role on the decision to protect or not protect oneself from the sun.

  16. HSP27 as a biomarker for predicting skin irritation in human skin and reconstructed organotypic skin model.

    PubMed

    Chen, Hongxia; Li, Shuhua; Meng, Tian; Zhang, Lei; Dai, Taoli; Xiang, Qi; Su, Zhijian; Zhang, Qihao; Huang, Yadong

    2014-04-21

    In vitro alternative tests aiming at replacing the traditional animal test for predicting the irritant potential of chemicals have been developed, but the assessing parameters or endpoints are still not sufficient. To discover novel endpoints for skin irritation responses, 2DE-based proteomics was used to analyze the protein expression in human skin exposed to sodium lauryl sulfate (SLS) following the test protocol of the European Centre for the Validation of Alternative Methods (ECVAM) in the present study. HSP27 was up-regulated most significantly among the eight identified proteins, consistent with our previous reports. Acid and basic chemicals were applied on human skin for further validation and results showed that the up-regulated expression of HSP27 was induced in 24h after the exposure. Skin-equivalent constructed with fibroblasts, basement membrane and keratinocytes was used to investigate the potential of HSP27 as a biomarker or additional endpoint for the hazard assessment of skin irritation. Our skin-equivalent (Reconstructed Organotypic Skin Model, ROSM) had excellent epidermal differentiation and was suitable for the skin irritation test. HSP27 also displayed an up-regulated expression in the ROSM in 24h after the irritants exposure for 15min. All these results suggest that HSP27 may represent a potential marker or additional endpoint for the hazard assessment of skin irritation caused by chemical products. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating

    NASA Astrophysics Data System (ADS)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar

    2017-08-01

    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  18. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  19. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  20. Tactile perception of skin and skin cream by friction induced vibrations.

    PubMed

    Ding, Shuyang; Bhushan, Bharat

    2016-11-01

    Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A review of patient and skin characteristics associated with skin tears.

    PubMed

    Rayner, R; Carville, K; Leslie, G; Roberts, P

    2015-09-01

    Skin tears are the most common wound among the elderly and have the potential to cause infection, form chronic wounds, reduce quality of life and increase health-care costs. Our aim was to identify studies that reviewed patient and skin characteristics associated with skin tears. A review of skin tear studies reported in the English literature between 1980 and 2013 was undertaken using the following electronic databases: PubMed, Medline, CINAHL, Embase, Scopus, Evidence Based and Medicine Reviews (EBM). Search terms included aged, skin, tears or lacerations, skin tearing, geri tear, epidermal tear and prevalence. There were 343 articles found with using the search terms. After abstract review nine were found to be relevant to the search. The principle findings from these eight published articles and one unpublished study revealed that the most common patient characteristics were a history of skin tears, impaired mobility and impaired cognition. Skin characteristics associated with skin tears included senile purpura, ecchymosis and oedema. This review provides an overview of identified patient and skin characteristics that predispose the elderly to skin tears and exposes the lack of research within this domain. R. Rayner is a recipient of a 2013 Australian Postgraduate Award, Curtin University Postgraduate Scholarship and a Wound Management Cooperative Research Centre (CRC) PhD stipend. The School of Nursing, Midwifery and Paramedicine, Curtin University and the Silver Chain Group, Western Australia are participants in the Wound Management Innovation CRC. No conflict of interest exists among the authors.

  2. Oil Body-Bound Oleosin-rhFGF-10: A Novel Drug Delivery System that Improves Skin Penetration to Accelerate Wound Healing and Hair Growth in Mice.

    PubMed

    Li, Wenqing; Yang, Jing; Cai, Jingbo; Wang, Hongyu; Tian, Haishan; Huang, Jian; Qiang, Weidong; Zhang, Linbo; Li, Haiyan; Li, Xiaokun; Jiang, Chao

    2017-10-18

    Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth.

  3. Skin toxicology of lead species evaluated by their permeability and proteomic profiles: a comparison of organic and inorganic lead.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Al-Suwayeh, Saleh A; Chen, Chih-Chieh; Fang, Jia-You

    2010-08-01

    Lead compounds are known to cause cytotoxicity and genotoxicity. Lead absorption by the skin is an important route through which this metal enters the body. The purpose of this work was to evaluate the skin permeability and toxicological profiles of two lead species, lead acetate and lead nitrate. This study assessed lead-induced toxicity mechanisms by focusing on the histopathology, proteomics, cell growth, and cellular ATP. In vitro skin permeation assays showed that there was no significant difference of lead accumulation within and across the skin between the two lead species. The presence of simulated sweat reduced the skin uptake of lead. The skin deposition of lead acetate was greater than that of lead nitrate with in vivo topical application. On the other hand, lead nitrate produced greater changes in the skin's histology and proteomic profiles compared to lead acetate. Four protein spots which showed significant changes were identified and are discussed in this study. These included glucose-related protein precursor (GRP) 78, K14, alpha-actin, and Rho GDP-dissociation inhibitor 2 (RhoGDI2). These proteins are respectively associated with oxidative stress, apoptosis, wound healing, and proliferation. Lead presented a biphasic pattern on cell growth and intracellular ATP content, with a stimulating effect at low concentrations and an inhibitory effect on cell proliferation at higher concentrations. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Safety of long-term subcutaneous free flap skin banking after skin-sparing mastectomy

    PubMed Central

    Verstappen, Ralph; Djedovic, Gabriel; Morandi, Evi Maria; Heiser, Dietmar; Rieger, Ulrich Michael; Bauer, Thomas

    2018-01-01

    Background A persistent problem in autologous breast reconstruction in skin-sparing mastectomies is skin restoration after skin necrosis or secondary oncological resection. As a solution to facilitate reconstruction, skin banking of free-flap skin has been proposed in cases where the overlying skin envelope must be resected, as this technique spares the patient an additional donor site. Herein, we present the largest series to date in which this method was used. We investigated its safety and the possibility of skin banking for prolonged periods of time. Methods All skin-sparing mastectomies and immediate autologous breast reconstructions from December 2009 until June 2013 at our institution were analysed. Results We identified 31 patients who underwent 33 free flap reconstructions in which skin banking was performed. Our median skin banking period was 7 days, with a maximum duration of 171 days. In 22.5% of cases, the banked skin was used to reconstruct overlying skin defects, and in 9.6% of cases to reconstruct the nipple-areolar complex. Microbiological and histological investigations of the banked skin revealed neither clinical infections nor malignancies. Conclusions In situ skin banking, even for prolonged periods of time, is a safe and cost-effective method to ensure that skin defects due to necrosis or secondary oncological resection can be easily reconstructed. PMID:29506331

  5. How UV Light Touches the Brain and Endocrine System Through Skin, and Why.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Plonka, Przemyslaw M; Szaflarski, Jerzy P; Paus, Ralf

    2018-05-01

    The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.

  6. Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh

    PubMed Central

    Rahman, Mahfuzar; Vahter, Marie; Wahed, Mohammad Abdul; Sohel, Nazmul; Yunus, Mohammad; Streatfield, Peter Kim; Arifeen, Shams El; Bhuiya, Abbas; Zaman, Khalequz; Chowdhury, A Mushtaq R; Ekström, Eva‐Charlotte

    2006-01-01

    Study objective To assess prevalence of arsenic exposure through drinking water and skin lesions, and their variation by geographical area, age, sex, and socioeconomic conditions. Design, setting, and participants Skin lesion cases were identified by screening the entire population above 4 years of age (n = 166 934) living in Matlab, a rural area in Bangladesh, during January 2002 and August 2003. The process of case identification involved initial skin examinations in the field, followed by verification by physicians in a clinic, and final confirmation by two independent experts reviewing photographs. The tubewell water arsenic concentrations (n = 13 286) were analysed by atomic absorption spectrometry. Drinking water history since 1970 was obtained for each person. Exposure information was constructed using drinking water histories and data on water arsenic concentrations. Main results The arsenic concentrations ranged from <1 to 3644 μg/l, and more than 70% of functioning tubewells exceeded the World Health Organisation guideline of 10 μg/l. Arsenic exposure had increased steadily from 1970s to the late 1990s, afterwards a decrease could be noted. In total, 504 skin lesions cases were identified, and the overall crude prevalence was 3/1000. Women had significantly higher cumulative exposure to arsenic, while men had significantly higher prevalence of skin lesions (SMR 158, 95% CI 133 to 188). The highest prevalence occurred in 35–44 age groups for both sexes. Arsenic exposure and skin lesions had a positive association with socioeconomic groups and achieved educational level. Conclusions The result showed sex, age, and socioeconomic differentials in both exposure and skin lesions. Findings clearly showed the urgency of effective arsenic mitigation activities. PMID:16476755

  7. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    PubMed

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  8. Study of the vitamins A, E and C esters penetration into the skin by confocal Raman spectroscopy in vivo

    NASA Astrophysics Data System (ADS)

    Mogilevych, Borys; Isensee, Debora; Rangel, Joao L.; Dal Pizzol, Carine; Martinello, Valeska C. A.; Dieamant, Gustavo C.; Martin, Airton A.

    2015-06-01

    Vitamins A, E and C play important role in skin homeostasis and protection. Hence, they are extensively used in many cosmetic and cosmeceutic products. However, their molecules are unstable, and do not easily penetrate into the skin, which drastically decreases its efficiency in topical formulations. Liposoluble derivative of the vitamin A - retinyl palmitate, vitamin E - tocopheryl acetate, and vitamin C - tetraisopalmitoyl ascorbic acid, are more stable, and are frequently used as an active ingredient in cosmetic products. Moreover, increased hydrophobicity of these molecules could lead to a higher skin penetration. The aim of this work is to track and compare the absorption of the liposoluble derivatives of the vitamins and their encapsulated form, into the healthy human skin in vivo. We used Confocal Raman Spectroscopy (CRS) that is proven to be helpful in label-free non-destructive investigation of the biochemical composition and molecular conformational analysis of the biological samples. The measurements were performed in the volar forearm of the 10 healthy volunteers. Skin was treated with both products, and Raman spectra were obtained after 15 min, 3 hours, and 6 hours after applying the formulation. 3510 Skin Composition Analyzer (River Diagnostics, The Netherlands) with 785 nm laser excitation was used to acquire information in the fingerprint region. Significant difference in permeation of the products was observed. Whereas only free form of retinyl palmitate penetrate the skin within first 15 minutes, all three vitamin derivatives were present under the skin surface in case of nanoparticulated form.

  9. Evaluation of percutaneous absorption of the repellent diethyltoluamide and the sunscreen ethylhexyl p-methoxycinnamate-loaded solid lipid nanoparticles: an in-vitro study.

    PubMed

    Puglia, Carmelo; Bonina, Francesco; Castelli, Francesco; Micieli, Dorotea; Sarpietro, Maria Grazia

    2009-08-01

    Diethyltoluamide and ethylhexyl p-methoxycinnamate (OMC) are two active ingredients in insect repellent and sunscreen products, respectively. The concurrent application of these two substances often increases their systemic absorption, compromising the safety and efficiency of the cosmetic product. In this study, diethyltoluamide and OMC were incorporated into solid lipid nanoparticles, a colloidal drug delivery system, to reduce percutaneous absorption and avoid toxic effects and also maintain the efficacy of the two active compounds on the skin surface for a long duration. Solid lipid nanoparticles were prepared based on an ultrasonication technique and characterized by differential scanning calorimetry (DSC) analyses. In-vitro studies determined the percutaneous absorption of diethyltoluamide and OMC. DSC data carried out on unloaded and diethyltoluamide- and/or OMC-loaded solid lipid nanoparticles highlighted that diethyltoluamide and OMC modified the temperature and the enthalpy change associated to the calorimetric peak of solid lipid nanoparticles. The concurrent presence of the two compounds in the solid lipid nanoparticles caused a synergic effect, indicating that the lipid matrix of nanoparticles guaranteed a high encapsulation of both diethyltoluamide and OMC. Results from the in-vitro study demonstrated that the particles were able to reduce the skin permeation of the two cosmetic ingredients in comparison with an oil-in-water emulsion. This study has provided supplementary evidence as to the potential of lipid nanoparticles as carriers for topical administration of cosmetic active compounds.

  10. Non-ablative skin tightening with radiofrequency in Asian skin.

    PubMed

    Kushikata, Nobuharu; Negishi, Kei; Tezuka, Yukiko; Takeuchi, Kaori; Wakamatsu, Shingo

    2005-02-01

    The recent successful application of radiofrequency (RF) in non-ablative skin tightening for skin laxity has attracted attention worldwide. The efficacy and clinical effect of RF were assessed in Asian skin, with additional study on the duration of the effect and any complications. Eighty-five Japanese females were enrolled in the study for treatment of nasolabial folds, marionette lines, and sagging jowls with 6-month follow-up. RF treatment was effective for nasolabial folds, marionette lines, and jowls. Objective physician evaluation found relatively good improvement at 3 months post-treatment, and even better improvement at the 6-month evaluation. RF treatment was very satisfactory for skin tightening in Asian facial skin. When compared with published literature from the United States, the results suggested that there might be race-related differences in the treatment parameters. (c) 2005 Wiley-Liss, Inc.

  11. [Problems of using a thermocouple for measurements of skin temperature rise during the exposure to millimeter waves].

    PubMed

    Alekseev, S I; Ziskin, M S; Fesenko, E E

    2011-01-01

    The possibility of using thermocouples for the artifact-free measurements of skin temperature during millimeter wave exposure was studied. The distributions of the specific absorption rate (SAR) in the human skin were calculated for different orientations of the thermocouple relative to the E-field of exposure. It was shown that, at the parallel orientation of a thermocouple relative to the E-field, SAR significantly increased at the tip of the thermocouple. This can result in an overheating of the thermocouple. At the perpendicular orientation of a thermocouple, the distortions of the SAR were insignificant. The data obtained confirm that the skin temperature can be measured with a thermocouple during exposure under the condition that the thermocouple is located perpendicular to the E-vector of the electromagnetic field. For the accurate determination of SAR from the rate of the initial temperature rise, it is necessary to fit the temperature kinetics measured with the thermocouple to the solution of the bio-heat transfer equation.

  12. Detection of capecitabine (Xeloda®) on the skin surface after oral administration

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Dong; Fuss, Harald; Lademann, Jürgen; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora

    2016-04-01

    Palmoplantar erythrodysesthesia (PPE), or hand-foot syndrome, is a cutaneous toxicity under various chemotherapeutics contributing to the most frequent side effects in patients treated with capecitabine (Xeloda®). The pathomechanism of PPE has been unclear. Here, the topical detection of capecitabine in the skin after oral application was shown in 10 patients receiving 2500 mg/m2/day capecitabine. Sweat samples were taken prior to and one week after oral administration of capecitabine. Using high-resolution continuum source absorption spectrometry, the changes in concentrations of fluorine, which is an ingredient of capecitabine, were quantified and statistically analyzed. Here, we show an increase in fluorine concentrations from 40±10 ppb (2±0.5 pM) before capecitabine administration to 27.7±11.8 ppm (14.6±6.5 nM) after application, p<0.001. The results show the secretion of capecitabine on the skin surface after oral administration, indicating a local toxic effect as a possible pathomechanism of PPE.

  13. Effects of skin pressure by clothing on digestion and orocecal transit time of food.

    PubMed

    Sone, Y; Kato, N; Kojima, Y; Takasu, N; Tokura, H

    2000-05-01

    In order to reveal the influence of clothing skin pressure on digestion of food through the gastrointestinal tract, we examined the absorption of dietary carbohydrate and orocecal transit time of a test meal by means of a breath hydrogen test on 7 healthy young women. In this experiment, we collected breath samples from the participants wearing loose-fitting experimental garment on the second day of the experiment and from the same participants but wearing an additional tight-fitting girdle on the following day for 16 hours and 9 hours, respectively. Skin pressure applied by a girdle on participant's waist, abdomen and hip region was 15.5 +/- 0.4 mmHg (mean +/- SE), 11.0 +/- 0.2 mmHg, and 13.6 +/- 0.6 mmHg, respectively, and the values were 2-3 times larger than those of the experimental garment. The hydrogen concentration vs. time curve showed that breath hydrogen levels at its peaks (15:00, 15:30, 16:00, 16:30, and 17:00 hr) on the third day of the experiment were significantly higher than those of the corresponding time on the second day (p < 0.05 at 17:00 and 15:00, p < 0.01 at 15:00, 16:00 and 16:30). Consequently, significantly pronounced breath hydrogen excretion was observed under the "pressure" clothing condition (p < 0.01). On the other hand, the transit time of the test meal for the subjects wearing a girdle did not differ significantly from that for the subjects wearing the garment of less pressure (270 +/- 18 minutes and 263 +/- 21 minutes, respectively). These results indicate that the clothing skin pressure has an inhibitory effect on the absorption of dietary carbohydrate in the small intestine, but no effect on the orocecal transit time of a meal.

  14. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  15. Determination of chromophore distribution in skin by spectral imaging

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Lange, Marta; Jakovels, Dainis; Spigulis, Janis

    2012-10-01

    Possibilities to determine chromophore distribution in skin by spectral imaging were explored. Simple RGB sensor devices were used for image acquisition. Totally 200 images of 40 different bruises of 20 people were obtained in order to map chromophores bilirubin and haemoglobin. Possibilities to detect water in vitro and in vivo were estimated by using silicon photodetectors and narrow band LEDs. The results show that it is possible to obtain bilirubin and haemoglobin distribution maps and observe changes of chromophore parameter values over time by using a simple RGB imaging device. Water in vitro was detected by using differences in absorption at 450 nm and 950 nm, and 650 nm and 950 nm.

  16. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design.

    PubMed

    Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana

    2016-01-01

    We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances.

  17. Histoplasma skin test

    MedlinePlus

    Histoplasmosis skin test ... health care provider cleans an area of your skin, usually the forearm. An allergen is injected just below the cleaned skin surface. An allergen is a substance that causes ...

  18. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  19. Enhancement of skin radical scavenging activity and stratum corneum lipids after the application of a hyperforin-rich cream.

    PubMed

    Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C

    2014-02-01

    Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Dynamics of glycerine and water transport across human skin from binary mixtures.

    PubMed

    Ventura, S A; Kasting, G B

    2017-04-01

    Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water

  1. Skin color - patchy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  2. Fungal Skin Infections

    MedlinePlus

    ... Skin Infections Overview of Fungal Skin Infections Candidiasis (Yeast Infection) Dermatophytid Reaction Intertrigo Tinea Versicolor Overview of ... breasts. Common fungal skin infections are caused by yeasts (such as Candida or Malassezia furfur ) or dermatophytes , ...

  3. Skin Cancer Foundation

    MedlinePlus

    ... You at Risk? UVA & UVB Skin of Color Tanning Teacher Resources Related: What Is Skin Cancer? | Window ... Tribute Page | Share Your Story | Skin Cancer Information | Tanning | Get Involved Healthy Lifestyle Go With Your Own ...

  4. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    PubMed Central

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225

  5. Evaluation of the Percutaneous Absorption of Ketamine HCl, Gabapentin, Clonidine HCl, and Baclofen, in Compounded Transdermal Pain Formulations, Using the Franz Finite Dose Model.

    PubMed

    Bassani, August S; Banov, Daniel

    2016-02-01

    This study evaluates the ability of four commonly used analgesics (ketamine HCl, gabapentin, clonidine HCl, and baclofen), when incorporated into two transdermal compounding bases, Lipoderm and Lipoderm ActiveMax, to penetrate human cadaver trunk skin in vitro, using the Franz finite dose model. In vitro experimental study. Methods. Ketamine HCl 5% w/w, gabapentin 10% w/w, clonidine HCl 0.2% w/w, and baclofen 2% w/w were compounded into two transdermal bases, Lipoderm and Lipoderm ActiveMax. Each compounded drug formulation was tested on skin from three different donors and three replicate skin sections per donor. The Franz finite dose model was used in this study to evaluate the percutaneous absorption and distribution of drugs within each formulation. Rapid penetration to peak flux was detected for gabapentin and baclofen at approximately 1 hour after application. Clonidine HCl also had a rapid penetration to peak flux occurring approximately 1 hour after application and had a secondary peak at approximately 40 hours. Ketamine HCl exhibited higher overall absorption rates than the other drugs, and peaked at 6–10 hours. Similar patterns of drug distribution within the skin were also observed using both transdermal bases. This study suggests that the combination of these 4 analgesic drugs can be successfully delivered transdermally, using either Lipoderm or Lipoderm ActiveMax. Compounded transdermal drug preparations may then provide physicians with an alternative to traditional oral pain management regimens that can be personalized to the specific patient with the potential for enhanced pain control.

  6. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Skin disease prevalence study in schoolchildren in rural Côte d'Ivoire: Implications for integration of neglected skin diseases (skin NTDs).

    PubMed

    Yotsu, Rie Roselyne; Kouadio, Kouamé; Vagamon, Bamba; N'guessan, Konan; Akpa, Amari Jules; Yao, Aubin; Aké, Julien; Abbet Abbet, Rigobert; Tchamba Agbor Agbor, Barbine; Bedimo, Roger; Ishii, Norihisa; Fuller, L Claire; Hay, Roderick; Mitjà, Oriol; Drechsler, Henning; Asiedu, Kingsley

    2018-05-01

    Early detection of several skin-related neglected tropical diseases (skin NTDs)-including leprosy, Buruli ulcer, yaws, and scabies- may be achieved through school surveys, but such an approach has seldom been tested systematically on a large scale in endemic countries. Additionally, a better understanding of the spectrum of skin diseases and the at-risk populations to be encountered during such surveys is necessary to facilitate the process. We performed a school skin survey for selected NTDs and the spectrum of skin diseases, among primary schoolchildren aged 5 to 15 in Côte d'Ivoire, West Africa. This 2-phase survey took place in 49 schools from 16 villages in the Adzopé health district from November 2015 to January 2016. The first phase involved a rapid visual examination of the skin by local community healthcare workers (village nurses) to identify any skin abnormality. In a second phase, a specialized medical team including dermatologists performed a total skin examination of all screened students with any skin lesion and provided treatment where necessary. Of a total of 13,019 children, 3,504 screened positive for skin lesions and were listed for the next stage examination. The medical team examined 1,138 of these children. The overall prevalence of skin diseases was 25.6% (95% CI: 24.3-26.9%). The predominant diagnoses were fungal infections (n = 858, prevalence: 22.3%), followed by inflammatory skin diseases (n = 265, prevalence: 6.9%). Skin diseases were more common in boys and in children living along the main road with heavy traffic. One case of multi-bacillary type leprosy was detected early, along with 36 cases of scabies. Our survey was met with very good community acceptance. We carried out the first large-scale integrated, two-phase pediatric multi-skin NTD survey in rural Côte d'Ivoire, effectively reaching a large population. We found a high prevalence of skin diseases in children, but only limited number of skin NTDs. With the lessons learned

  8. Estrogens and aging skin.

    PubMed

    Thornton, M Julie

    2013-04-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies.

  9. Xenobiotic metabolism in human skin and 3D human skin reconstructs: a review.

    PubMed

    Gibbs, Sue; van de Sandt, Johannes J M; Merk, Hans F; Lockley, David J; Pendlington, Ruth U; Pease, Camilla K

    2007-12-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental chemical exposure, it is also a potential target organ for adverse health effects. Occupational, accidental or intended-use exposure to toxic chemicals could result in acute or delayed injury to the skin (e.g. inflammation, allergy, cancer). Skin metabolism may play a role in the manifestation or amelioration of adverse effects via the topical route. Today, we have robust testing strategies to assess the potential for local skin toxicity of chemical exposure. Such methods (e.g. the local lymph node assay for assessing skin sensitisation; skin painting carcinogenicity studies) incorporate skin metabolism implicitly in the in vivo model system used. In light of recent European legislation (i.e. 7(th) Amendment to the Cosmetics Directive and Registration Evaluation and Authorisation of existing Chemicals (REACH)), non-animal approaches will be required to reduce and replace animal experiments for chemical risk assessment. It is expected that new models and approaches will need to account for skin metabolism explicitly, as the mechanisms of adverse effects in the skin are deconvoluted. 3D skin models have been proposed as a tool to use in new in vitro alternative approaches. In order to be able to use 3D skin models in this context, we need to understand their metabolic competency in relation to xenobiotic biotransformation and whether functional activity is representative of that seen in human skin.

  10. Effects of a Skin Barrier Cream on Management of Incontinence-Associated Dermatitis in Older Women: A Cluster Randomized Controlled Trial.

    PubMed

    Kon, Yuka; Ichikawa-Shigeta, Yoshie; Iuchi, Terumi; Nakajima, Yukari; Nakagami, Gojiro; Tabata, Keiko; Sanada, Hiromi; Sugama, Junko

    The purpose of this study was to examine the effects of a skin barrier cream with moisturization and skin-protectant characteristics for improving the severity of incontinence-associated dermatitis (IAD) pertaining to the skin physiology and appearance. We measured the following outcomes: (1) skin physiological characteristics indicating skin protection and enhancement of the skin's moisture barrier (stratum corneum hydration, dermis hydration level, transepidermal water loss, and skin pH); and (2) changes in skin appearance (the degree of erythema and pigmentation, and the sulcus cutis condition). Single-blind, cluster randomized controlled trial. The study was conducted in a long-term care facility in Japan between November 7, 2011, and May 6, 2012. We used block randomization to obtain a random sample of 6 (4 experimental and 2 control) out of 10 available wards. All subjects were elderly women with IAD of the buttock or inner thigh. We assessed 295 patients, but only 33 met inclusion criteria; 18 were allocated to the experimental group and 15 were allocated to the control group. All participants were managed with cleansing with a skin cleanser and application of a moisturizer daily. In addition, a skin barrier cream designed to enhance the skin's moisture barrier and act as a protective barrier was applied to the skin of patients in the experimental group 3 times a day when absorptive briefs were changed. Skin physiological and appearance characteristics were scored only at the buttock or thigh area. All data were collected on days 1 and 14 of the study. Univariate analysis found that the erythema index was lower in the intervention group than in the control group at day 14 (P = .004). Multivariate analysis found significant associations between use of the skin barrier cream and increased stratum corneum hydration (β= .443, P = .031), decreased skin pH (β=-.439, P = .020), and magnitude of erythema (β=-.451, P = .018). Study findings suggest that a barrier

  11. Injury thresholds for topical-cream-coated skin of hairless guinea pigs (cavia porcellus) in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2006-02-01

    The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.

  12. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this

  13. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation.

    PubMed

    Gimblet, Ciara; Meisel, Jacquelyn S; Loesche, Michael A; Cole, Stephen D; Horwinski, Joseph; Novais, Fernanda O; Misic, Ana M; Bradley, Charles W; Beiting, Daniel P; Rankin, Shelley C; Carvalho, Lucas P; Carvalho, Edgar M; Scott, Phillip; Grice, Elizabeth A

    2017-07-12

    Skin microbiota can impact allergic and autoimmune responses, wound healing, and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site and to skin from co-housed naive mice. This observation allowed us to test whether a pre-existing dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naive mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Skin and antioxidants.

    PubMed

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  15. Cryotherapy - skin

    MedlinePlus

    ... skin; Warts - freezing; Warts - cryotherapy; Actinic keratosis - cryotherapy; Solar keratosis - cryotherapy ... warts Destroy precancerous skin lesions (actinic keratoses or solar keratoses) In rare cases, cryotherapy is used to ...

  16. Skin abscess

    MedlinePlus

    Abscess - skin; Cutaneous abscess; Subcutaneous abscess; MRSA - abscess; Staph infection - abscess ... Skin abscesses are common and affect people of all ages. They occur when an infection causes pus ...

  17. Ex vivo nonlinear microscopy imaging of Ehlers-Danlos syndrome-affected skin.

    PubMed

    Kiss, Norbert; Haluszka, Dóra; Lőrincz, Kende; Kuroli, Enikő; Hársing, Judit; Mayer, Balázs; Kárpáti, Sarolta; Fekete, György; Szipőcs, Róbert; Wikonkál, Norbert; Medvecz, Márta

    2018-07-01

    Ehlers-Danlos syndrome (EDS) is the name for a heterogenous group of rare genetic connective tissue disorders with an overall incidence of 1 in 5000. The histological characteristics of EDS have been previously described in detail in the late 1970s and early 1980s. Since that time, the classification of EDS has undergone significant changes, yet the description of the histological features of collagen morphology in different EDS subtypes has endured the test of time. Nonlinear microscopy techniques can be utilized for non-invasive in vivo label-free imaging of the skin. Among these techniques, two-photon absorption fluorescence (TPF) microscopy can visualize endogenous fluorophores, such as elastin, while the morphology of collagen fibers can be assessed by second-harmonic generation (SHG) microscopy. In our present work, we performed TPF and SHG microscopy imaging on ex vivo skin samples of one patient with classical EDS and two patients with vascular EDS and two healthy controls. We detected irregular, loosely dispersed collagen fibers in a non-parallel arrangement in the dermis of the EDS patients, while as expected, there was no noticeable impairment in the elastin content. Based on further studies on a larger number of patients, in vivo nonlinear microscopic imaging could be utilized for the assessment of the skin status of EDS patients in the future.

  18. SkinChip, a new tool for investigating the skin surface in vivo.

    PubMed

    Lévêque, Jean Luc; Querleux, Bernard

    2003-11-01

    Non-invasive methods used for characterizing skin micro-relief and skin surface hydration were developed in the 1980s. Although they allowed some progress in the knowledge of skin properties, they are not completely satisfactory in many aspects. Today, new technologies are emerging that may address such issues. We adapted the technology produced by the ST Microelectronics Company for sensing fingerprint for the measurement of skin surface properties. Accordingly, we developed acquisition software for obtaining routinely the distribution of skin surface capacitance along different body sites. Image analysis softwares were also processed for collecting both the main orientations of the micro-relief lines and their density. The average value of skin capacitance is also obtained. The images allow a highly precise observation of the skin topography that can be easily quantified in terms of line density and line orientation. The mean gray levels of the images appear much closely correlated to the Corneometer values. This new device appears to be a very convenient way for characterizing the properties of the skin surface. With regard to hydration, it usefully provides both the average value and the hydration chart of the investigated skin zones.

  19. A three-dimensional skin equivalent reflecting some aspects of in vivo aged skin.

    PubMed

    Diekmann, Johanna; Alili, Lirija; Scholz, Okka; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2016-01-01

    Human skin undergoes morphological, biochemical and functional modifications during the ageing process. This study was designed to produce a 3-dimensional (3D) skin equivalent in vitro reflecting some aspects of in vivo aged skin. Reconstructed skin was generated by co-culturing skin fibroblasts and keratinocytes on a collagen-glycosaminoglycan-chitosan scaffold, and ageing was induced by the exposition of fibroblasts to Mitomycin-C (MMC). Recently published data showed that MMC treatment resulted in a drug-induced accelerated senescence (DIAS) in human dermal fibroblast cultures. Next to established ageing markers, histological changes were analysed in comparison with in vivo aged skin. In aged epidermis, the filaggrin expression is reduced in vivo and in vitro. Furthermore, in dermal tissue, the amount of elastin and collagen is lowered in aged skin in vivo as well as after the treatment of 3D skin equivalents with MMC in vitro. Our results show histological signs and some aspects of ageing in a 3D skin equivalent in vitro, which mimics aged skin in vivo. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Body mass index and prevalence of skin diseases in adults with untreated coeliac disease.

    PubMed

    Zingone, F; Bucci, C; Tortora, R; Santonicola, A; Cappello, C; Franzese, M D; Passananti, V; Ciacci, C

    2009-01-01

    Coeliac disease (CD) is associated with immune-mediated skin diseases such as dermatitis herpetiformis and others. The objective of the study was to investigate the relation of body mass index (BMI), as an index of absorptive status, with the prevalence of skin diseases in adults with untreated CD. Anthropometry, gastro-intestinal symptoms, nutritional indices and immune-mediated skin diseases (dermatitis herpetiformis, psoriasis, aphthosis and alopecia) at diagnosis were analysed. 223 men and 924 women with untreated CD (aged 20-60 years) were included, the commonest skin disease was dermatitis herpetiformis (18.4 and 6.9%, respectively), the rarest one was alopecia (1.8 and 2.1%). The BMI was positively associated with male gender, age at diagnosis and nutritional indices, negatively with diarrhoea and dyspepsia (p < 0.001). A BMI difference of 3.5 (1 standard deviation) was related to an excess prevalence of dermatitis herpetiformis (odds ratio, OR = 1.46, 95% confidence interval, CI = 1.23-1.72) and of psoriasis (OR = 1.40, 95% CI = 1.10-1.79) but not of other immunological disorders. Findings were similar in analyses by gender or age group and controlled for gender and age. The relation of BMI to dermatitis herpetiformis was linear over the whole BMI range, also excluding overweight patients. The relation of BMI to psoriasis was flat for low-to-normal BMI and explained only by overweight patients. In CD at diagnosis, the BMI is positively related to the prevalence of dermatitis herpetiformis and psoriasis, not to that of other immune-mediated skin diseases. Copyright 2009 S. Karger AG, Basel.

  1. Pursuing prosthetic electronic skin

    NASA Astrophysics Data System (ADS)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  2. Cetuximab-induced skin exanthema: prophylactic and reactive skin therapy are equally effective.

    PubMed

    Wehler, Thomas C; Graf, Claudine; Möhler, Markus; Herzog, Jutta; Berger, Martin R; Gockel, Ines; Lang, Hauke; Theobald, Matthias; Galle, Peter R; Schimanski, Carl C

    2013-10-01

    Treatment with cetuximab is accompanied by the development of an acneiform follicular skin exanthema in more than 80 % of patients. Severe exanthema (grade III/IV) develops in about 9-19 % of patients with the necessity of cetuximab dose reduction or cessation. The study presented was a retrospective analysis of 50 gastrointestinal cancer patients treated with cetuximab in combination with either FOLFIRI or FOLFOX. One cohort of 15 patients received an in-house reactive skin protocol upon development of an exanthema. A second cohort of 15 patients received a skin prophylaxis starting with the first dose of cetuximab before clinical signs of toxicity. A third historic group of 20 patients had received no skin prophylaxis or reactive treatment. 19/20 patients of the historic group developed a skin exanthema. Grade III/IV exanthema was observed six times. Forty percent discontinued cetuximab therapy. The average time to exanthema onset was 14.7 days. Applying the reactive skin protocol after the first occurrence of an exanthema, the exanthema was downgraded as follows: No patients developed grade IV° exanthema, and two patients developed a grade II/III exanthema. In the majority of cases, the reactive skin protocol controlled the exanthema (grade 0-I°). No dose reductions in cetuximab were necessary. Applying the prophylactic skin protocol starting at the beginning of cetuximab application was not superior to the reactive skin protocol. Cetuximab-induced skin exanthema can be coped with a reactive protocol equally effective as compared to a prophylactic skin treatment. A prospective study with higher patient numbers is planned.

  3. Skin penetration and kinetics of pristine fullerenes (C{sub 60}) topically exposed in industrial organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xin R., E-mail: xia@ncsu.ed; Monteiro-Riviere, Nancy A.; Riviere, Jim E.

    2010-01-01

    Pristine fullerenes (C{sub 60}) in different solvents will be used in many industrial and pharmaceutical manufacturing and derivatizing processes. This report explores the impact of solvents on skin penetration of C{sub 60} from different types of industrial solvents (toluene, cyclohexane, chloroform and mineral oil). Yorkshire weanling pigs (n = 3) were topically dosed with 500 muL of 200 mug/mL C{sub 60} in a given solvent for 24 h and re-dosed daily for 4 days to simulate the worst scenario in occupational exposures. The dose sites were tape-stripped and skin biopsies were taken after 26 tape-strips for quantitative analysis. When dosedmore » in toluene, cyclohexane or chloroform, pristine fullerenes penetrated deeply into the stratum corneum, the primary barrier of skin. More C{sub 60} was detected in the stratum corneum when dosed in chloroform compared to toluene or cyclohexane. Fullerenes were not detected in the skin when dosed in mineral oil. This is the first direct evidence of solvent effects on the skin penetration of pristine fullerenes. The penetration of C{sub 60} into the stratum corneum was verified using isolated stratum corneum in vitro; the solvent effects on the stratum corneum absorption of C{sub 60} were consistent with those observed in vivo. In vitro flow-through diffusion cell experiments were conducted in pig skin and fullerenes were not detected in the receptor solutions by 24 h. The limit of detection was 0.001 mug/mL of fullerenes in 2 mL of the receptor solutions.« less

  4. Oil Body-Bound Oleosin-rhFGF-10: A Novel Drug Delivery System that Improves Skin Penetration to Accelerate Wound Healing and Hair Growth in Mice

    PubMed Central

    Yang, Jing; Cai, Jingbo; Wang, Hongyu; Tian, Haishan; Huang, Jian; Qiang, Weidong; Zhang, Linbo; Li, Haiyan; Li, Xiaokun; Jiang, Chao

    2017-01-01

    Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth. PMID:29057820

  5. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications.

    PubMed

    Kim, Miri; Jung, Haw Young; Park, Hyun Jeong

    2015-09-25

    Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects.

  6. Peeling skin syndrome.

    PubMed

    Ilknur, Turna; Demirtaşoğlu, Melda; Akarsu, Sevgi; Lebe, Banu; Güneş, Ali Tahsin; Ozkan, Sebnem

    2006-01-01

    Peeling skin syndrome is a rare disease characterized by widespread painless peeling of the skin. To date, several cases have been described with different clinical features called peeling skin syndrome. Previous reports describe two types (type A and type B) of peeling skin syndrome, both of which show generalized desquamation, sparing palms and soles. We report a 23-year old man who has been classified as neither type A nor type B, and whose history, clinical features and histopathological findings led to a diagnosis of peeling skin syndrome. In addition, the desquamation pattern in our patient was different from that of both types because our case's palms and soles were involved too.

  7. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  8. Photoacoustic signal measurement for burned skins in the spectral range of 500-650 nm: experiment with rat burn models

    NASA Astrophysics Data System (ADS)

    Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Fujita, Masanori; Okada, Yoshiaki; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-06-01

    This paper reports the burn diagnosis that is based on the measurement of photoacoustic waves from skin, where the acoustic waves originate from the absorption of light by blood. For this purpose, a transducer composed of a ring-shaped piezoelectric film and a quartz fiber was made. An optical parametric oscillator (500 - 650 nm) was used as a light source and its output pulses were coupled to the quartz fiber. To investigate the optimum light wavelength, we conducted experiments using rat burn models. We demonstrated that the superficial dermal burn (SDB), deep dermal burn (DDB), deep burn (DB), and control (healthy skin) could be clearly differentiated based on the photoacoustic signals induced by the light of 532 - 580nm.

  9. Correlation between skin color evaluation by skin color scale chart and narrowband reflectance spectrophotometer.

    PubMed

    Treesirichod, Arucha; Chansakulporn, Somboon; Wattanapan, Pattra

    2014-07-01

    Various methods are available for the evaluation of skin color. A skin color scale chart is a convenient and inexpensive tool. However, the correlation between a skin color scale chart and objective measurement has not been evaluated. To assess the correlation between skin color evaluation done by a skin color scale chart (Felix von Luschan skin color chart) and a narrowband reflectance spectrophotometer (Mexameter MX18). The participants were evaluated for skin color by using the Felix von Luschan skin color chart (range 1-36) and a narrowband reflectance spectrophotometer (Mexameter MX18) in which the results of the measurements were expressed as Erythema (E) and Melanin (M) indices. Skin color was measured on four different anatomical skin sites from each participant on the medial aspect of the volar and the dorsal regions of both forearms. A total of 208 records from 52 participants were established. The majority of participants (19.2%) were rated with the skin color scale at the number 16 (range 14-33). The mean M plus E, M, and E indices were 498.9 ± 143.9, 230.4 ± 74.4, and 268.5 ± 73.2, respectively. The correlation coefficient between the number on the skin color scale and each index: M plus E, M, and E indices were 0.90, 0.90, and 0.86, respectively, with a statistical significance of P < 0.001. Skin color evaluation using a skin color scale chart has shown a high correlation with skin color evaluation done by the narrowband reflectance spectrophotometer.

  10. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    PubMed

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of the effects of East Indian sandalwood oil and alpha-santalol on humans after transdermal absorption.

    PubMed

    Hongratanaworakit, T; Heuberger, E; Buchbauer, G

    2004-01-01

    The aim of the study was to investigate the effects of East Indian sandalwood oil ( Santalum album, Santalaceae) and alpha-santalol on physiological parameters as well as on mental and emotional conditions in healthy human subjects after transdermal absorption. In order to exclude any olfactory stimulation, the inhalation of the fragrances was prevented by breathing masks. Eight physiological parameters, i. e., blood oxygen saturation, blood pressure, breathing rate, eye-blink rate, pulse rate, skin conductance, skin temperature, and surface electromyogram were recorded. Subjective mental and emotional condition was assessed by means of rating scales. While alpha-santalol caused significant physiological changes which are interpreted in terms of a relaxing/sedative effect, sandalwood oil provoked physiological deactivation but behavioral activation. These findings are likely to represent an uncoupling of physiological and behavioral arousal processes by sandalwood oil.

  12. Evaluation of sex-related changes in skin topography and structure using innovative skin testing equipment.

    PubMed

    Dąbrowska, M; Mielcarek, A; Nowak, I

    2018-04-29

    Evaluation of skin condition on the basis of parametrization and objective measurements of the parameters has become obligatory. The aim of this study was to assess sex-related changes in skin topography and structure using the skin testing equipment. The study was carried out on the group of 40 volunteers (20 females and 20 males) of the mean age 24 ± 3 years. The skin parameters were measured using 3 devices: Visioscan ®  VC 98 (skin topography), Visioline ® VL 650 (skin macro relief) and Ultrascan UC22 (ultrasound imaging of the skin). All measurements were performed on the inner part of the left forearm. The skin parameters measured revealed significant differences in skin surface and structure between females and males. The skin of all women subjects was more homogenous in its structure with the presence of more abundant superficial skin lines and wrinkles in comparison to male skin. The higher number of skin furrows in the skin of women is in agreement with literature reports claiming that men's skin has lower number of wrinkles which are deeper and more pronounced. Ultrasound imaging of the skin indicated greater thickness and lower density of the dermis of men subjects compared to those of females. Non-invasive methods of skin testing using new and advanced equipment have provided a possibility of objective parametrization and evaluation of sex-related changes in skin topography and structure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Sagging Skin

    MedlinePlus

    ... for Varicose Veins Sclerotherapy for Varicose Veins Back Hair Transplants Laser Treatments for Pre-Cancerous ... Skin Sagging skin in the lower face and neck is a natural part of the aging process. Why treat sagging ...

  14. In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations

    PubMed Central

    Parenti, Carmela

    2018-01-01

    The evaluation of UV-filter in vitro percutaneous absorption allows the estimation of the systemic exposure dose (SED) and the margin of safety (MoS) of sunscreen products. As both the vehicle and pattern of application may affect sunscreen safety and efficacy, we evaluated in vitro release and skin permeation of two widely used UV-filters, octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM) from topical formulations with different features (oil in water (O/W) emulsions with different viscosity, water in oil (W/O) emulsion, oils with different lipophilicity). To mimic in-use conditions, we carried out experiments repeating sunscreen application on the skin surface for three consecutive days. BMBM release from all these vehicles was very low, thus leading to poor skin permeation. The vehicle composition significantly affected OMC release and skin permeation, and slight increases of OMC permeation were observed after repeated applications. From skin permeation data, SED and MoS values of BMBM and OMC were calculated for all the investigated formulations after a single application and repeated applications. While MoS values of BMBM were always well beyond the accepted safety limit, the safety of sunscreen formulations containing OMC may depend on the vehicle composition and the application pattern. PMID:29495452

  15. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  16. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy.

    PubMed

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  17. In vitro skin models and tissue engineering protocols for skin graft applications.

    PubMed

    Naves, Lucas B; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram

    2016-11-30

    In this review, we present a brief introduction of the skin structure, a concise compilation of skin-related disorders, and a thorough discussion of different in vitro skin models, artificial skin substitutes, skin grafts, and dermal tissue engineering protocols. The advantages of the development of in vitro skin disorder models, such as UV radiation and the prototype model, melanoma model, wound healing model, psoriasis model, and full-thickness model are also discussed. Different types of skin grafts including allografts, autografts, allogeneic, and xenogeneic are described in detail with their associated applications. We also discuss different tissue engineering protocols for the design of various types of skin substitutes and their commercial outcomes. Brief highlights are given of the new generation three-dimensional printed scaffolds for tissue regeneration applications. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. Relation between skin micro-topography, roughness, and skin age.

    PubMed

    Trojahn, C; Dobos, G; Schario, M; Ludriksone, L; Blume-Peytavi, U; Kottner, J

    2015-02-01

    The topography of the skin surface consists of lines, wrinkles, and scales. Primary and secondary lines form a network like structure that may be identified as polygons. Skin surface roughness measurements are widely applied in dermatological research and practice but the relation between roughness parameters and their anatomical equivalents are unclear. This study aimed to investigate whether the number of closed polygons (NCP) per measurement field can be used as a reliable parameter to measure skin surface topography. For this purpose, we analysed the relation between skin surface roughness parameters and NCP in different age groups. Images of the volar forearm skin of 38 subjects (14 children, 12 younger, and 12 older adults) were obtained with the VisioScan VC98. The NCP was counted by three independent researchers and selected roughness parameters were measured. Interrater reliability of counting the number of closed polygons and correlations between NCP, roughness parameters, and age were calculated. The mean NCP/mm² in children was 3.1 (SD 1.1), in younger adults 1.0 (SD 0.7), and in older adults 1.0 (SD 0.9). The interrater reliability was 0.9. A negative correlation of NCP/mm² with age was observed, whereas measured roughness parameters were positively associated with age. NCP/mm² was weakly related to skin roughness. The NCP/mm² is a reproducible parameter for characterizing the skin surface topography. It is proposed as an additional parameter in dermatological research and practice because it represents distinct aspects of the cutaneous profile not covered by established roughness parameters. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Correlation Between Skin Color Evaluation by Skin Color Scale Chart and Narrowband Reflectance Spectrophotometer

    PubMed Central

    Treesirichod, Arucha; Chansakulporn, Somboon; Wattanapan, Pattra

    2014-01-01

    Context: Various methods are available for the evaluation of skin color. A skin color scale chart is a convenient and inexpensive tool. However, the correlation between a skin color scale chart and objective measurement has not been evaluated. Aims: To assess the correlation between skin color evaluation done by a skin color scale chart (Felix von Luschan skin color chart) and a narrowband reflectance spectrophotometer (Mexameter MX18). Materials and Methods: The participants were evaluated for skin color by using the Felix von Luschan skin color chart (range 1-36) and a narrowband reflectance spectrophotometer (Mexameter MX18) in which the results of the measurements were expressed as Erythema (E) and Melanin (M) indices. Skin color was measured on four different anatomical skin sites from each participant on the medial aspect of the volar and the dorsal regions of both forearms. Results: A total of 208 records from 52 participants were established. The majority of participants (19.2%) were rated with the skin color scale at the number 16 (range 14-33). The mean M plus E, M, and E indices were 498.9 ± 143.9, 230.4 ± 74.4, and 268.5 ± 73.2, respectively. The correlation coefficient between the number on the skin color scale and each index: M plus E, M, and E indices were 0.90, 0.90, and 0.86, respectively, with a statistical significance of P < 0.001. Conclusions: Skin color evaluation using a skin color scale chart has shown a high correlation with skin color evaluation done by the narrowband reflectance spectrophotometer. PMID:25071249

  20. Modeling MHD Stagnation Point Flow of Thixotropic Fluid with Non-uniform Heat Absorption/Generation

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed; Yasmeen, Tabassum

    2017-12-01

    Here magnetohydrodynamic (MHD) stagnation point flow by nonlinear stretching sheet is discussed. Variable thickness of sheet is accounted. In addition non-uniform heat generation/absorption concept is retained. Numerical treatment to arising nonlinear system is presented. Shooting procedure is adopted for numerical treatment. Graphs and tables lead to physical description of results. It is observed that skin friction enhances for ( H a) and it decays for different rising values of ( K 1), ( K 2) and ( n). Further temperature gradient increases for higher estimation of (Pr) and decreases for larger ( H a). Major findings of present analysis are presented.

  1. Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin.

    PubMed

    Yeh, Shu-Jen; Khalil, Omar S; Hanna, Charles F; Kantor, Stanislaw

    2003-07-01

    We observed a difference in the thermal response of localized reflectance signal of human skin between type 2 diabetics and nondiabetics. We investigated the use of this thermo-optical behavior as the basis for a noninvasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin. Each of these areas is subjected to a different thermal perturbation. The response of localized reflectance to temperature perturbation was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetic or nondiabetic. In a prediction set of twenty-four noninvasive tests collected from six diabetic and six nondiabetic subjects, the sensitivity ranged between 73 and 100%, and the specificity ranged between 75 and 100%, depending on the thermal conditions and the probe-skin contact time. The difference in the thermo-optical response of the skin of the two groups is explained in terms of a difference in the response of cutaneous microcirculation, which is manifested as a difference in the near-infrared light absorption. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by nonenzymatic glycation of skin protein fibers, and possibly by the difference in blood cell aggregation. (c) 2003 Society of Photo-Optical Instrumentation Engineers.

  2. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatmi, Zafar, E-mail: zafar.fatmi@aku.edu; Azam, Iqbal; Ahmed, Faiza

    2009-07-15

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons {>=}15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographicalmore » distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among {>=}15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m{sup 2}. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan

  3. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  4. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    PubMed

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  5. UV treatments on the physicochemical properties of tilapia skin and pig skin gelatin.

    PubMed

    Wu, C K; Tsai, J S; Chen, Z Y; Sung, W C

    2015-06-01

    Tilapia skin gelatin, pig skin gelatin, and their mousse premixes were exposed to UV irradiation for 103, 206, and 309 kJ/cm(2). All samples after 309 kJ/cm(2) exposure exhibited a significant increase in gel strength, gel forming ability as well as viscosity of solutions. It was shown that UV treatment could also improve the pig skin gelatin foam stability and foam formation ability compared to those of tilapia skin gelatin. Nevertheless, the panelists gave the lowest scores to mousse made with 309 kJ/cm(2) UV-irradiated premix mousse pig skin gelatin. Tilapia skin gelatin could be used as a substitute ingredient for premix mousse made from pig skin gelatin. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. [Skin cancer screening and treatment costs : Utilisation of the skin cancer screening and skin cancer treatment costs in organ transplant recipients].

    PubMed

    Jäckel, D; Schlothauer, N I; Zeeb, H; Wagner, G; Sachse, M M

    2018-04-12

    Organ transplant recipients have an up to 250-times higher risk to develop skin cancer. This article evaluated the utilisation of skin cancer screening and the treatment costs for skin cancer in organ transplant recipients. Patients of the health insurance AOK Bremen/Bremerhaven had been identified and the need for skin cancer prevention trainings was derived. The number of organ transplant recipients (ICD code Z94.0-4) with and without any history of skin cancer (ICD code C43/C44), the utilisation of dermatologic health care services, and the costs for treatments with the diagnosis Z94.0-4 with and without C43/C44 were evaluated. The analyses were carried out for the period from 2009-2014 by using the accounting systems of the AOK. Between 2009 and 2014, 231 organ transplant recipients had been recorded. By mid-2014, 20% of these insured persons developed skin cancer and the mean incidence was 2.76% per year. On average, 43% of these patients were seen by a dermatologist at least once a year, whereby only 15% of the organ transplant recipients participated in the annual skin cancer screening. In 29% of the patients without any history of skin cancer, a skin examination was never performed by a dermatologist or a general practitioner. In all, 17 inpatient cases of organ transplant recipients with the primary diagnosis C43/C44 were analyzed. This resulted in total costs of 54,707 € (on average about 3200 € per case). The increased incidence of skin cancer and the associated treatment costs indicate the need for skin cancer prevention training.

  7. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin e for treatment of mild to moderately photodamaged skin.

    PubMed

    Farris, Patricia; Yatskayer, Margarita; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2014-12-01

    Resveratrol is an effective anti-aging molecule with diverse biologic activity. It functions as a dual antioxidant that can neutralize free radicals and increase intrinsic antioxidant capacity. Additionally resveratrol increases mitochondrial biogenesis and has anti-inflammatory, anti-diabetic, and anti-cancer activity. In this paper we will focus on the use of topically applied resveratrol using a proprietary blend containing 1% resveratrol, 0.5% baicalin, and 1% vitamin E. This stabilized high concentration formulation demonstrates percutaneous absorption and alterations in gene expression such as hemoxygenase-1 (HO-1), vascular endothelial growth factor (VEGFA), and collagen 3 (COL3A1). Clinical assessment showed a statistically significant improvement in fine lines and wrinkles, skin firmness, skin elasticity, skin laxity, hyperpigmentation, radiance, and skin roughness over baseline in 12 weeks. Ultrasound measurements in the periorbital area showed an average improvement of 18.9% in dermal thickness suggesting significant dermal remodeling. These studies confirm that topical resveratrol, baicalin, and vitamin E are valuable ingredient that can be used for skin rejuvenation.

  8. Skin texture parameters of the dorsal hand in evaluating skin aging in China.

    PubMed

    Gao, Qian; Hu, Li-Wen; Wang, Yang; Xu, Wen-Ying; Ouyang, Nan-Ning; Dong, Guo-Qing; Shi, Song-Tian; Liu, Yang

    2011-11-01

    There are various non-invasive methods in skin morphology for assessing skin aging. The use of digital photography will make it easier and more convenient. In this study, we explored some skin texture parameters for evaluating skin aging using digital image processing. Two hundred and twenty-eight subjects who lived in Sanya, China, were involved. Individual sun exposure history and other factors influencing skin aging were collected by a questionnaire. Meanwhile, we took photos of their dorsal hands. Skin images were graded according to the Beagley-Gibson system. These skin images were also processed using image analysis software. Five skin texture parameters, Angle Num., Angle Max., Angle Diff., Distance and Grids, were produced in reference to the Beagley-Gibson system. All texture parameters were significantly associated with the Beagley-Gibson score. Among the parameters, the distance between primary lines (Distance) and the value of angle formed by intersection textures (Angle Max., Angle Diff.) were positively associated with the Beagley-Gibson score. However, there was a negative correlation between the number of grids (Grids), the number of angle (Angle Num.) and the Beagley-Gibson score. These texture parameters were also correlated with factors influencing skin aging such as sun exposure, age, smoking, drinking and body mass index. In multivariate analysis, Grids and Distance were mainly affected by age. But Angle Max. and Angle Diff. were mainly affected by sun exposure. It seemed that the skin surface morphologic parameters presented in our study reflect skin aging changes to some extent and could be used to describe skin aging using digital image processing. © 2011 John Wiley & Sons A/S.

  9. Main approaches for delivering antioxidant vitamins through the skin to prevent skin ageing.

    PubMed

    Gašperlin, Mirjana; Gosenca, Mirjam

    2011-07-01

    One of the major contributions to skin photoageing and diseases is oxidative stress, caused by UV radiation inducing reactive oxygen and nitrogen species. Successful prophylaxis and therapy would necessitate control of the oxidant/antioxidant balance at the affected site, which can be achieved through the external supply of endogenous antioxidants. This review discusses possible strategies for dermal delivery of the antioxidant vitamins E and C, as oral supplementation has proved insufficient. These antioxidants have low skin bioavailability, owing to their poor solubility, inefficient skin permeability, or instability during storage. These drawbacks can be overcome by various approaches, such as chemical modification of the vitamins and the use of new colloidal drug delivery systems. New knowledge is included about the importance of: enhancing the endogenous skin antioxidant defense through external supply; the balance between various skin antioxidants; factors that can improve the skin bioavailability of antioxidants; and new delivery systems, such as microemulsions, used to deliver vitamins C and E into the skin simultaneously. A promising strategy for enhancing skin protection from oxidative stress is to support the endogenous antioxidant system, with antioxidants containing products that are normally present in the skin.

  10. Identification of Differentially Expressed Genes in Breast Muscle and Skin Fat of Postnatal Pekin Duck

    PubMed Central

    Schachtschneider, Kyle Michael; Liu, Xiaolin; Huang, Wei; Xie, Ming; Hou, Shuisheng

    2014-01-01

    Lean-type Pekin duck is a commercial breed that has been obtained through long-term selection. Investigation of the differentially expressed genes in breast muscle and skin fat at different developmental stages will contribute to a comprehensive understanding of the potential mechanisms underlying the lean-type Pekin duck phenotype. In the present study, RNA-seq was performed on breast muscle and skin fat at 2-, 4- and 6-weeks of age. More than 89% of the annotated duck genes were covered by our RNA-seq dataset. Thousands of differentially expressed genes, including many important genes involved in the regulation of muscle development and fat deposition, were detected through comparison of the expression levels in the muscle and skin fat of the same time point, or the same tissue at different time points. KEGG pathway analysis showed that the differentially expressed genes clustered significantly in many muscle development and fat deposition related pathways such as MAPK signaling pathway, PPAR signaling pathway, Calcium signaling pathway, Fat digestion and absorption, and TGF-beta signaling pathway. The results presented here could provide a basis for further investigation of the mechanisms involved in muscle development and fat deposition in Pekin duck. PMID:25264787

  11. Skin Diseases: Skin Health and Skin Diseases

    MedlinePlus

    ... The two most common types are basal cell cancer and squamous cell cancer. Melanoma, a more serious type of skin ... The two most common types are basal cell cancer and squamous cell cancer. They usually form on the head, face, ...

  12. Optical properties of mice skin for optical therapy relevant wavelengths: influence of gender and pigmentation

    NASA Astrophysics Data System (ADS)

    Sabino, C. P.; Deana, A. M.; Silva, D. F. T.; França, C. M.; Yoshimura, T. M.; Ribeiro, M. S.

    2015-03-01

    Red and near-infrared light have been widely employed in optical therapies. Skin is the most common optical barrier in non-invasive techniques and in many cases it is the target tissue itself. Consequently, to optimize the outcomes brought by lightbased therapies, the optical properties of skin tissue must be very well elucidated. In the present study, we evaluated the dorsal skin optical properties of albino (BALB/c) and pigmented (C57BL/6) mice using the Kubelka-Munk photon transport model. We evaluated samples from male and female young mice of both strains. Analysis was performed for wavelengths at 630, 660, 780, 810 and 905 nm due to their prevalent use in optical therapies, such as low-level light (or laser) and photodynamic therapies. Spectrophotometric measurements of diffuse transmittance and reflectance were performed using a single integrating sphere coupled to a proper spectrophotometer. Statistic analysis was made by two-way ANOVA, with Tukey as post-test and Levenne and Shapiro-Wilks as pre-tests. Statistical significance was considered when p<0.05. Our results show only a slight transmittance increment (<10 %) as wavelengths are increased from 630 to 905 nm, and no statistical significance was observed. Albino male mice present reduced transmittance levels for all wavelengths. The organization and abundance of skin composing tissues significantly influence its scattering optical properties although absorption remains constant. We conclude that factors such as subcutaneous adiposity and connective tissue structure can have statistically significant influence on mice skin optical properties and these factors have relevant variations among different gender and strains.

  13. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    PubMed

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human

  14. Development of optical near-infrared spectroscopy instruments for human skin sebum measurement

    NASA Astrophysics Data System (ADS)

    Msabbri, A. R.; Mohamad, M.; MatJafri, M. Z.; Omar, A. F.

    2014-05-01

    There are many techniques and instruments that are currently available to give better results for measuring the quality of human skin. In this study, two non-invasive spectroscopy instruments have been used namely NIRQuest spectrometer and ASD FieldSpec® 3 Spectroradiometer. Both of these spectroscopy instruments were used to find the correlation technique with the commercial instruments (DermaLab® USB Sebum Module). Initially an experiment was conducted to find intensities peak of the absorption of oleic acid as a part of sebum composition. From the spectra peak of the absorbance, the wavelength will be determined. Next step was to measure the reflectance of human skin sebum by using two spectroscopic instruments. The analysis will carry on at the wavelength that have been chosen from the previous study and also from the wavelength of the fatty acid to find the best wavelength that contribute in sebum composition. From several analyses, the wavelengths that contribute in sebum were 1208, 1414, 1726, and 1758 nm that obtained the value of R2 0.8444 for NIRQuest Spectrometer and 0.8532 for ASD FieldSpec® 3 Spectroradiometer. For future research this non- invasive techniques can be used in dermatology field for the use of various skin analysis. Besides that, the less wavelength used is an advantage to develop instruments with less amount of wavelength sensor. It can reduce the cost of development.

  15. Enhancement of Skin Permeation and Skin Immunization of Ovalbumin Antigen via Microneedles.

    PubMed

    Pamornpathomkul, Boonnada; Rojanarata, Theerasak; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2017-10-01

    The purpose of this study was to evaluate the use of different types of microneedles and doses of ovalbumin antigen for in vitro skin permeation and in vivo immunization. In vitro skin permeation experiments and confocal laser scanning microscopy revealed that hollow microneedles had a superior enhancing effect on skin permeation compared with a solid microneedle patch and untreated skin by efficiently delivering ovalbumin-fluorescein conjugate into the deep skin layers. The flux and cumulative amount of ovalbumin-fluorescein conjugate at 8 h after administering with various conditions could be ranked as follows: hollow MN; high dose > medium dose > low dose > MN patch; high dose > medium dose > low dose > untreated skin; high dose > medium dose > low dose > without ovalbumin-fluorescein conjugate. As the dose of ovalbumin-fluorescein conjugate was increased to 500 μg, the antigen accumulated in the skin to a greater extent, as evidenced by the increasing green fluorescence intensity. When the hollow microneedle was used for the delivery of ovalbumin into the skin of mice, it was capable of inducing a stronger immunoglobulin G immune response than conventional subcutaneous injection at the same antigen dose. Immunoglobulin G levels in the hollow MN group were 5.7, 11.6, and 13.3 times higher than those of the subcutaneous injection group for low, medium, and high doses, respectively. Furthermore, the mice immunized using the hollow microneedle showed no signs of skin infection or pinpoint bleeding. The results suggest that the hollow MN is an efficient device for delivering the optimal dose of antigen via the skin for successful immunization.

  16. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  17. Skin (image)

    MedlinePlus

    ... of the body. The skin and its derivatives (hair, nails, sweat and oil glands) make up the integumentary system. One of the main functions of the skin is protection. It protects the body from external factors such as bacteria, chemicals, and temperature.

  18. Bodies in skin: a philosophical and theological approach to genetic skin diseases.

    PubMed

    Walser, Angelika

    2010-03-01

    This contribution evolved from my work in a European network and is dedicated to the rare genetic skin diseases. To gain a deeper knowledge about the question, what it means to suffer from a genetic skin disease, I have discussed the concepts of skin in philosophical and theological anthropology. Presuming that ancient interpretations of skin diseases (moral and cultical impurity) are still relevant today, feminist Christian theology shows the ways of deconstructing stigmatizing paradigma by using the body as a hermeneutic category. Skin becomes the "open borderline" of the human being, pointing out both the social vulnerability and the transcendent capacity of the human person.

  19. Skin aging by glycation: lessons from the reconstructed skin model.

    PubMed

    Pageon, Hervé; Zucchi, Hélène; Rousset, Françoise; Monnier, Vincent M; Asselineau, Daniel

    2014-01-01

    Aging is the result of several mechanisms which operate simultaneously. Among them, glycation is of particular interest because it is a reaction which affects slowly renewing tissues and macromolecules with elevated half-life, like the dermis, a skin compartment highly affected by aging. Glycation produces crosslinks between macromolecules thereby providing an explanation for the increased age-related stiffness of the skin. Glycation products, also called AGEs (advanced glycation end products), accumulate primarily in extracellular matrix molecules like collagen or elastin. In order to reproduce this phenomenon in vitro we have created a model of reconstructed skin modified by glycation of the collagen used to fabricate the dermal compartment. This system allowed us to uncover biological modifications of dermal markers, and more surprisingly epidermal markers, as well as an increase of metalloproteinases responsible for degradation of the dermal matrix. Consequently, the imbalance between synthesis and degradation that results from glycation, may contribute to skin aging, as shown in this model. Moreover these modifications were shown to be prevented by the addition of aminoguanidine, a well-known inhibitor of glycation. Using this experimental approach our results taken together stress the importance and possibly central role of glycation in skin aging and the usefulness of the reconstructed skin as a model of physiological aging.

  20. Skin cancer in skin of color: an update on current facts, trends, and misconceptions.

    PubMed

    Battie, Claire; Gohara, Mona; Verschoore, Michèle; Roberts, Wendy

    2013-02-01

    For many fair-skinned individuals around the world, skin cancer is the leading malignancy. Although skin cancer comprises only 1% to 2% of all malignancies in those with darker complexions, the mortality rates in this subgroup are substantially higher when compared with their Caucasian counterparts. This discrepancy is largely as a result of delayed detection/treatment, and a false perception among patient and physician that brown skin confers complete protection against skin cancer. Recent studies show that 65% of surveyed African Americans never wore sunscreen, despite living in sunny climates, and that more than 60% of minority respondents erroneously believed that they were not at risk for skin cancer. Dark skin offers some protection from ultraviolet (UV) light. However, there is considerable heterogeneity in skin of color, a phenomenon that is accentuated by mixed heritage. Ethnicity does not confer skin type anymore. People of color do experience sunburn, and from a biological point of view, all skin types appear to be sensitive to UV-induced DNA damage, with an inverse relationship between skin color and sensitivity to UV light. Our population is changing rapidly, and within the next few decades minority populations will become the majority. It is therefore imperative to educate both physicians and patients on the perceived immunity against cutaneous malignancies, the need for sun protection, and the clinical signs of skin cancer in non-Caucasian people, so that future unnecessary mortality can be avoided.

  1. A New Skin Tensiometer Device: Computational Analyses To Understand Biodynamic Excisional Skin Tension Lines.

    PubMed

    Paul, Sharad P; Matulich, Justin; Charlton, Nick

    2016-07-25

    One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines.

  2. A New Skin Tensiometer Device: Computational Analyses To Understand Biodynamic Excisional Skin Tension Lines

    PubMed Central

    Paul, Sharad P.; Matulich, Justin; Charlton, Nick

    2016-01-01

    One of the problems in planning cutaneous surgery is that human skin is anisotropic, or directionally dependent. Indeed, skin tension varies between individuals and at different body sites. Many a surgeon has tried to design different devices to measure skin tension to help plan excisional surgery, or to understand wound healing. However, many of the devices have been beset with problems due to many confounding variables - differences in technical ability, material (sutures) used and variability between different users. We describe the development of a new skin tensiometer that overcomes many historical technical issues. A new skin tension measuring device is presented here. It was designed to be less user-dependent, more reliable and usable on different bodily sites. The design and computational optimizations are discussed. Our skin tensiometer has helped understand the differences between incisional and excisional skin lines. Langer, who pioneered the concept of skin tension lines, created incisional lines that differ from lines caused by forces that need to be overcome when large wounds are closed surgically (excisional tension). The use of this innovative device has led to understanding of skin biomechanics and best excisional skin tension (BEST) lines. PMID:27453542

  3. Wound healing and skin regeneration.

    PubMed

    Takeo, Makoto; Lee, Wendy; Ito, Mayumi

    2015-01-05

    The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. An objective assessment of melanin in vitiligo skin treated with Balneo PUVA therapy.

    PubMed

    Hegyi, V; Petrovajová, M; Novotný, M

    2014-02-01

    Visual clinical methods of skin color evaluation for diagnostic purposes are so far mostly subjective and thus inaccurate. We present a modified method of melanin amount measurement based on diffuse reflectance spectroscopy (DRS). This method is non-invasive and objective, and allows easy quantification and comparison of melanin levels. Skin pigmentation was measured by DRS method in 0-18 year old patients at the Department of Pediatric Dermatovenerology, School of Medicine Comenius University Bratislava. Patients were treated for their vitiligo by Balneo PUVA treatment twice weekly. Each patient had measured his remittance spectra from the treated vitiliginous skin before the treatment was started, after 10 irradiations of Balneo PUVA and at the end of the treatment after 25 irradiations of Balneo PUVA. In our study as a reference skin for spectroscopic assessment of melanin in vivo was used the averaged remittance spectra (measured on the inner arm) from the sample of 10 albino patients. The remittance spectra obtained from the vitiligo patients were ratioed against the newly described remittance reference albino skin. We exploited the linear behavior of the spectral curve in the 620-720 nm interval (significant for melanin absorption) and used the slope of the regression line to compute the quantification index α. By clinical examination before the Balneo PUVA therapy, after the 10th dose of Balneo PUVA therapy as well as at the end of the complete course of Balneo PUVA therapy (after 25 irradiations) we recorded a marked increase of pigmentation in all treated patients for their vitiligo. In each patient the values of melanin quantification angle α were calculated. Statistically we found a significant difference between the melanin quantification angle α in vitiliginous skin before, during the 10th dose of treatment and after the treatment. Similar significant difference was also observed between treated and non-involved skin. We could confirm a clear

  5. Skin Pigment

    MedlinePlus

    ... a Concussion in Past Year AHA: Take Your Dog to Work -- And Reap the Health Benefits Could ... drugs, procedures, news and more, written in everyday language. Tap to switch to the Professional ... a Skin Cancer Body Check (Video) Pubic Lice (Video) Skin Cancer Additional ...

  6. Polyamines and Nonmelanoma Skin Cancer

    PubMed Central

    Gilmour, Susan K.

    2007-01-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer. PMID:17234230

  7. 75 FR 52755 - Draft Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...] Draft Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for... ``Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment.'' The purpose of... antimicrobial drugs for the treatment of acute bacterial skin and skin structure infections (ABSSSI), impetigo...

  8. Physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption.

    PubMed

    Noda, Yasuhiro; Watanabe, Kazuya; Sanagawa, Akimasa; Sobajima, Yu; Fujii, Satoshi

    2011-10-31

    Pressure ulcers can form with excess pressure and shearing stress on skin tissue. Because pressure ulcer is often accompanies by exudates, selection of appropriate topical emulsion ointment is difficult. Blended ointments consisting of emulsion base and water-soluble base are clinically used for adjustment of wound moist environment. Because regulating the amount of wound exudates can enhance treatment efficacy, two new blended ointments were developed. LY-SL blended ointment consisted of lysozyme hydrochloride water-in-oil (w/o) emulsion (LY-cream) and sulfadiazine macrogol (polyethylene glycol) ointment (SL-pasta). TR-SL blended ointment consisted of tretinoin tocoferil oil-in-water (o/w) emulsion (TR-cream) and SL-pasta (TR-SL). LY-SL and TR-SL were applied to Franz diffusion cell with cellulose membranes for the evaluation of water absorption characteristics at 32 °C. Water absorption rate constants (mg/cm(2)/min(0.5)) were 12.5, 16.3 and 34.6 for LY-cream, TR-cream and SL-pasta, respectively. Water absorption rate constants for LY-SL and TR-SL (SL-pasta 70%) exhibited intermediate values of 21.2 and 27.2, as compared to each ointment alone, respectively. Because amount of water absorbed was linearly related to square root of time, it was suggested that water-absorbable macrogol was surrounded by oily ingredients forming matrix structure. This diffusion-limited structure may regulate water absorption capacity. This is the first report of physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption. The blended ointment can properly regulate amount of exudates in wounds and may be useful for treatment of pressure ulcers. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Controlling reactive oxygen species in skin at their source to reduce skin aging.

    PubMed

    Kern, Dale G; Draelos, Zoe D; Meadows, Christiaan; James Morré, D; Morré, Dorothy M

    2010-01-01

    Activity of an age-related, superoxide-forming, cell-surface oxidase (arNOX) comparing dermis, epidermis, serum, and saliva from female and male subjects ages 28-72 years measured spectrophotometrically using reduction of ferricytochrome c correlated with oxidative skin damage as estimated from autofluoresence of skin using an Advanced Glycation End products Reader (AGE-Reader; DiagnOptics B.V., Netherlands). By reducing arNOX activity in skin with arNOX-inhibitory ingredients (NuSkin's ageLOC technology), skin appearance was improved through decreased protein cross-linking and an accelerated increase in collagen.

  10. Foam-PVDF smart skin for active control of sound

    NASA Astrophysics Data System (ADS)

    Fuller, Chris R.; Guigou, Cathy; Gentry, C. A.

    1996-05-01

    This work is concerned with the development and testing of a foam-PVDF smart skin designed for active noise control. The smart skin is designed to reduce sound by the action of the passive absorption of the foam (which is effective at higher frequencies) and the active input of an embedded PVDF element driven by an oscillating electrical input (which is effective at lower frequencies). It is primarily developed to be used in an aircraft fuselage in order to reduce interior noise associated with turbulent boundary layer excitation. The device consists of cylindrically curved sections of PVDF piezoelectric film embedded in partially reticulated polyurethane acoustic foam. The active PVDF layer was configured to behave in a linear sense as well as to couple the predominantly in-plane strain due to the piezoelectric effect and the vertical motion that is needed to accelerate fluid particles and hence radiate sound away from the foam surface. For performance testing, the foam-PVDF element was mounted near the surface of an oscillating rigid piston mounted in a baffle in an anechoic chamber. A far-field and a near-field microphone were considered as an error sensor and compared in terms of their efficiency to control the far-field sound radiation. A feedforward LMS controller was used to minimize the error sensor signal under broadband excitation (0 - 1.6 kHz). The potential of the smart foam-PVDF skin for globally reducing sound radiation is demonstrated as more than 20 dB attenuation is obtained over the studied frequency band. The device thus has the potential of simultaneously controlling low and high frequency sound in a very thin compact arrangement.

  11. [Extraction and antioxidant activity of collagen from elephant skin, pig skin and fish scales].

    PubMed

    Li, Chunnan; Sun, Jiaming; Zhang, Hui

    2011-08-01

    To study collagen structure of the traditional Chinese medicine elephant skin and the proposed alternatives such as pig skin, fish scale, and antioxidant activity. Orthogonal experimental design method was employed to determine the optimal extraction condition of collagen from the elephant skin, and the structure and content of collagen of proposed alternatives were compared, their scavenging ability were determined by salicylic acid. Collagen extracted from elephant skin with the optimal conditions was the structural integrity and good quality first time, and collagen structure of the elephant skin was similar to the proposed alternatives. Free radical scavenging capacity of collagen, values of IC50, were 0.51 g x L(-1) of elephant skin, 0.60 g x L(-1) of pig skin and 0.42 g x L(-1) of fish scale. By comparing and identification of proteins that the collagen of elephant skin is type I collagen, with a strong antioxidant capacity, is the active ingredients of elephant skin. It provides a further study of alternatives as an important reference.

  12. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  13. Hydrocortisone Diffusion Through Synthetic Membrane, Mouse Skin, and Epiderm™ Cultured Skin

    PubMed Central

    Christensen, John Mark; Chuong, Monica Chang; Le, Hang; Pham, Loan; Bendas, Ehab

    2011-01-01

    Objectives The penetration of hydrocortisone (HC) from six topical over-the-counter products along with one prescription cream through cultured normal human-derived epidermal keratinocytes (Epiderm™), mouse skin and synthetic nylon membrane was performed as well as the effect hydrating the skin by pre-washing was explored using the Upright Franz Cell. Method and Results Permeation of HC through EpiDerm™, mouse skin and synthetic membrane was highest with the topical HC gel formulation with prewash treatment of the membranes among seven products evaluated, 198 ± 32 µg/cm2, 746.32 ± 12.43 µg/cm2, and 1882 ± 395.18 µg/cm2, respectively. Pre-washing to hydrate the skin enhanced HC penetration through EpiDerm™ and mouse skin. The 24-hour HC released from topical gel with prewash treatment was 198.495 ± 32 µg/cm2 and 746.32 ± 12.43 µg/cm2 while without prewash, the 24-h HC released from topical gel was 67.2 ± 7.41 µg/cm2 and 653.43 ± 85.62 µg/cm2 though EpiDerm™ and mouse skin, respectively. HC penetration through synthetic membrane was ten times greater than through mouse skin and EpiDerm™. Generally, the shape, pattern, and rank order of HC diffusion from each commercial product was similar through each membrane. PMID:21572515

  14. Skin care and incontinence

    MedlinePlus

    ... skin problems such as redness, peeling, irritation, and yeast infections likely. Bedsores ( pressure sores ) may also develop ... drying the skin. Incontinence problems can cause a yeast infection on the skin. This is an itchy, ...

  15. Skin Complications of IBD

    MedlinePlus

    ... Home > Resources > Skin Complications of IBD Go Back Skin Complications of IBD Email Print + Share After arthritis, ... about 5% of people with inflammatory bowel disease. SKIN DISORDERS COMMONLY SEEN IN IBD ERHTHEMA NODOSUM The ...

  16. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  17. Study of efficacy of esthetic High-Intensity Focused Ultrasound system on Iranian skin for reducing the laxity and wrinkles of aging.

    PubMed

    Saket, Parvaneh; Shobeihi, Shobeir; Mehrdadi, Soroush

    2017-09-01

    Ultrasound is a mechanical wave that transmitted in a straight line and it can be focused at frequencies of 1-7 MHz with a high degree of precision. An important aspect of HIFU is that damaging focal point is located several millimeters below the surface of the skin and tissue above and below the focal point remains unaffected. Due to absorption of this energy, temperature of tissue rises to more than 60°C and this stimulates the cells for collagen production and tissue rejuvenation. To evaluate the clinical efficacy and safety of High-Intensity Focused Ultrasound on Skin Laxity and wrinkles. The study involved 22 women aged 35-62 with skin type II-IV. HIFU device with three transducers was employed. Various focal depths with different energies were used in accordance with skin thickness. Improvement for seven regions of face and whole face were evaluated by two dermatologists and patients 3 months after treatment. All of the patients completed the study. Three months after treatment, there was a highly statistical improvement in skin laxity for all of the patients. Also, the average percentage of improvement by doctor's opinion and patients was 58% and 60%, respectively. The experimental data obtained from dermatologists and patients showed that HIFU appears to be a safe and effective modality for skin laxity treatment. © 2017 Wiley Periodicals, Inc.

  18. An ex vivo human skin model for studying skin barrier repair.

    PubMed

    Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A

    2015-01-01

    In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Automatic measurement of skin textures of the dorsal hand in evaluating skin aging.

    PubMed

    Gao, Qian; Yu, Jiaming; Wang, Fang; Ge, Tiantian; Hu, Liwen; Liu, Yang

    2013-05-01

    Changes in skin textures have been used to evaluate skin aging in many studies. In our previous study, we built some skin texture parameters, which can be used to evaluate skin aging of human dorsal hand. However, it will take too much time and need to work arduously to get the information from digital skin image by manual work. So, we want to build a simple and effective method to automatically count some of those skin texture parameters by using digital image-processing technology. A total of 100 subjects aged 30 years and above were involved. Sun exposure history and demographic information were collected by using a questionnaire. The skin image of subjects' dorsal hand was obtained by using a portable skin detector. The number of grids, which is one of skin texture parameters built in our previous study, was measured manually and automatically. Automated image analysis program was developed by using Matlab 7.1 software. The number of grids counted automatically (NGA) was significantly correlated with the number of grids counted manually (NGM) (r = 0.9287, P < 0.0001). And in each age group, there were no significant differences between NGA and NGM. The NGA was negatively correlated with age and lifetime sun exposure, and decreased with increasing Beagley-Gibson score from 3 to 6. In addition, even after adjusting for NGA, the standard deviation of grid areas for each image was positively correlated with age, sun exposure, and Bealey-Gibson score. The method introduced in present study can be used to measure some skin aging parameters automatically and objectively. And it will save much time, reduce labor, and avoid measurement errors of deferent investigators when evaluating a great deal of skin images in a short time. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  20. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  1. Correction for tissue optical properties enables quantitative skin fluorescence measurements using multi-diameter single fiber reflectance spectroscopy.

    PubMed

    Middelburg, T A; Hoy, C L; Neumann, H A M; Amelink, A; Robinson, D J

    2015-07-01

    Fluorescence measurements in the skin are very much affected by absorption and scattering but existing methods to correct for this are not applicable to superficial skin measurements. The first use of multiple-diameter single fiber reflectance (MDSFR) and single fiber fluorescence (SFF) spectroscopy in human skin was investigated. MDSFR spectroscopy allows a quantification of the full optical properties in superficial skin (μa, μs' and γ), which can next be used to retrieve the corrected - intrinsic - fluorescence of a fluorophore Qμa,x(f). Our goal was to investigate the importance of such correction for individual patients. We studied this in 22 patients undergoing photodynamic therapy (PDT) for actinic keratosis. The magnitude of correction of fluorescence was around 4 (for both autofluorescence and protoporphyrin IX). Moreover, it was variable between patients, but also within patients over the course of fractionated aminolevulinic acid PDT (range 2.7-7.5). Patients also varied in the amount of protoporphyrin IX synthesis, photobleaching percentages and resynthesis (>100× difference between the lowest and highest PpIX synthesis). The autofluorescence was lower in actinic keratosis than contralateral normal skin (0.0032 versus 0.0052; P<0.0005). Our results clearly demonstrate the importance of correcting the measured fluorescence for optical properties, because these vary considerably between individual patients and also during PDT. Protoporphyrin IX synthesis and photobleaching kinetics allow monitoring clinical PDT which facilitates individual-based PDT dosing and improvement of clinical treatment protocols. Furthermore, the skin autofluorescence can be relevant for diagnostic use in the skin, but it may also be interesting because of its association with several internal diseases. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Automated skin segmentation in ultrasonic evaluation of skin toxicity in breast cancer radiotherapy.

    PubMed

    Gao, Yi; Tannenbaum, Allen; Chen, Hao; Torres, Mylin; Yoshida, Emi; Yang, Xiaofeng; Wang, Yuefeng; Curran, Walter; Liu, Tian

    2013-11-01

    Skin toxicity is the most common side effect of breast cancer radiotherapy and impairs the quality of life of many breast cancer survivors. We, along with other researchers, have recently found quantitative ultrasound to be effective as a skin toxicity assessment tool. Although more reliable than standard clinical evaluations (visual observation and palpation), the current procedure for ultrasound-based skin toxicity measurements requires manual delineation of the skin layers (i.e., epidermis-dermis and dermis-hypodermis interfaces) on each ultrasound B-mode image. Manual skin segmentation is time consuming and subjective. Moreover, radiation-induced skin injury may decrease image contrast between the dermis and hypodermis, which increases the difficulty of delineation. Therefore, we have developed an automatic skin segmentation tool (ASST) based on the active contour model with two significant modifications: (i) The proposed algorithm introduces a novel dual-curve scheme for the double skin layer extraction, as opposed to the original single active contour method. (ii) The proposed algorithm is based on a geometric contour framework as opposed to the previous parametric algorithm. This ASST algorithm was tested on a breast cancer image database of 730 ultrasound breast images (73 ultrasound studies of 23 patients). We compared skin segmentation results obtained with the ASST with manual contours performed by two physicians. The average percentage differences in skin thickness between the ASST measurement and that of each physician were less than 5% (4.8 ± 17.8% and -3.8 ± 21.1%, respectively). In summary, we have developed an automatic skin segmentation method that ensures objective assessment of radiation-induced changes in skin thickness. Our ultrasound technology offers a unique opportunity to quantify tissue injury in a more meaningful and reproducible manner than the subjective assessments currently employed in the clinic. Copyright © 2013 World

  3. Differentiation of involved and uninvolved psoriatic skin from healthy skin using noninvasive visual, colorimeter and evaporimeter methods.

    PubMed

    Pershing, L K; Bakhtian, S; Wright, E D; Rallis, T M

    1995-08-01

    Uninvolved skin of psoriasis may not be entirely normal. The object was to characterize healthy, uninvolved psoriatic skin and lesional skin by biophysical methods. Involved and uninvolved psoriatic and age-gender matched healthy skin was measured objectively with a colorimeter and evaporimeter and subjectively with visual assessment in 14 subjects. Visual assessment of erythema (E), scaling (S) and induration (I) as well as the target lesion score at the involved psoriatic skin sites were significantly elevated (p<0.05) above uninvolved psoriatic or healthy skin sites. No difference between uninvolved psoriatic and healthy skin was measured visually. Transepidermal water loss at involved psoriatic skin >uninvolved psoriatic skin >healthy skin (p<0.05). Objective assessment of skin color in 3 color scales, L*, a*, and b*, differentiated involved and uninvolved psoriatic skin from healthy skin sites. Involved psoriatic skin demonstrated higher (p<0.01) a-scale values and lower (p<0.01) L* and b* scale values than uninvolved psoriatic skin. Further, colorimeter L* and a* scale values at uninvolved psoriatic skin sites were lower and higher (p<0.05), respectively, than healthy skin. The individual chromameter parameters (L*, a*, b*) correlated well with the visual parameters (E, S and I). Composite colorimeter description (L*× b*)/a* significantly differentiated healthy skin from both involved and uninvolved psoriatic skin. These collective data highlight that even visually appearing uninvolved psoriatic skin is compromised compared with healthy skin. These objective, noninvasive but differential capabilities of the colorimeter and evaporimeter will aid in the mechanistic quantification of new psoriatic drug therapies and in conjuction with biochemical studies, add to understanding of the multifactorial pathogenesis of psoriasis.

  4. Archaea on Human Skin

    PubMed Central

    Probst, Alexander J.; Auerbach, Anna K.; Moissl-Eichinger, Christine

    2013-01-01

    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin. PMID:23776475

  5. Antioxidant capacity of 3D human skin EpiDerm model: effects of skin moisturizers.

    PubMed

    Grazul-Bilska, A T; Bilski, J J; Redmer, D A; Reynolds, L P; Abdullah, K M; Abdullah, A

    2009-06-01

    The objective of this study was to determine the effects of skin moisturizers on total antioxidant capacity (TAC) of human skin using EpiDerm model. Three different skin moisturizers containing antioxidant ingredients (samples 1-3) or aloe vera extract were topically applied to EpiDerm units and incubated for 2 and 24 h to determine acute and longer-term effects of applied samples on TAC and glutathione peroxidase activity in medium and/or homogenized skin tissues. Total antioxidant capacity in medium and skin homogenates was enhanced (P < 0.0001) by gel containing antioxidant ingredients (sample 2) after 2 and 24 h of incubation. Total antioxidant capacity in medium was also enhanced (P < 0.001) by cream containing antioxidant ingredients (sample 3) after 24 h of incubation. Overall, TAC in medium was greater (P < 0.02) after 24 h than 2 h of incubation. Skin moisturizer cream with high antioxidant levels determined by using oxygen radical absorbance capacity testing (sample 1) and aloe vera extract did not affect TAC. Glutathione peroxidase activity was enhanced (P < 0.0001) in medium and skin homogenates by sample 2 but not by any other sample. These data demonstrate high potential of gel and cream (samples 2 and 3) containing antioxidant ingredients in enhancing antioxidant capacity of EpiDerm which will likely contribute to overall skin health. Results of this experiment will help to better understand mechanisms of effects of skin moisturizers containing antioxidant ingredients on skin function at the tissue level and to establish effective strategies for skin protection and clinical treatments of skin disorders and possibly healing wounds.

  6. Germacrone and sesquiterpene-enriched extracts from Curcuma aeruginosa Roxb. increase skin penetration of minoxidil, a hair growth promoter.

    PubMed

    Srivilai, Jukkarin; Waranuch, Neti; Tangsumranjit, Anothai; Khorana, Nantaka; Ingkaninan, Kornkanok

    2018-02-01

    Minoxidil is approved for topical treatment of androgenic alopecia but hampered by poor cutaneous absorption. Recently, the randomized control trial showed that hair loss treatment of minoxidil was improved by co-application of the anti-androgen, Curcuma aeruginosa Roxb. extract. Here, we aimed to show that the apparent synergism arises from improved cutaneous penetration of minoxidil by bioactive compound, germacrone or C. aeruginosa (as an n-hexane extract, or essential oil). The partition coefficient of germacrone was determined by HPLC. Skin penetration was measured ex vivo on Franz diffusion cells using full thickness human foreskin as membranes. The receiver solution was sampled hourly for 8 h after which the skin was removed, the stratum corneum separated, and minoxidil assayed in this and in the remaining viable skin layer by HPLC. Skin penetration of minoxidil with 0.2 and 2% extract was increased ~ 4-fold (accumulated amount in receiver + skin viable layer after 8 h). Furthermore, germacrone enhanced minoxidil flux by ~ 10-fold and C. aeruginosa essential oil by ~ 20-fold. This work suggests three clinical consequences: (i) minoxidil efficacy is promoted, (ii) lower doses of minoxidil suffice, and (iii) C. aeruginosa extract/essential oil or germacrone can supplement treatment outcomes by acting as anti-androgen, thereby introducing a more effective topical treatment strategy for androgenic alopecia.

  7. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin.

    PubMed

    Camouse, Melissa M; Domingo, Diana Santo; Swain, Freddie R; Conrad, Edward P; Matsui, Mary S; Maes, Daniel; Declercq, Lieve; Cooper, Kevin D; Stevens, Seth R; Baron, Elma D

    2009-06-01

    Tea polyphenols have been found to exert beneficial effects on the skin via their antioxidant properties. We sought to determine whether topical application of green tea or white tea extracts would prevent simulated solar radiation-induced oxidative damages to DNA and Langerhans cells that may lead to immune suppression and carcinogenesis. Skin samples were analysed from volunteers or skin explants treated with white tea or green tea after UV irradiation. In another group of patients, the in vivo immune protective effects of green and white tea were evaluated using contact hypersensitivity to dinitrochlorobenzene. Topical application of green and white tea offered protection against detrimental effects of UV on cutaneous immunity. Such protection is not because of direct UV absorption or sunscreen effects as both products showed a sun protection factor of 1. There was no significant difference in the levels of protection afforded by the two agents. Hence, both green tea and white tea are potential photoprotective agents that may be used in conjunction with established methods of sun protection.

  8. An implementation algorithm to improve skin-to-skin practice in the first hour after birth.

    PubMed

    Brimdyr, Kajsa; Cadwell, Karin; Stevens, Jeni; Takahashi, Yuki

    2018-04-01

    Evidence supporting the practice of skin-to-skin contact and breastfeeding soon after birth points to physiologic, social, and psychological benefits for both mother and baby. The 2009 revision of Step 4 of the WHO/UNICEF "Ten Steps to Successful Breastfeeding" elaborated on the practice of skin-to-skin contact between the mother and her newly born baby indicating that the practice should be "immediate" and "without separation" unless documented medically justifiable reasons for delayed contact or interruption exist. While in immediate, continuous, uninterrupted skin-to-skin contact with mother in the first hour after birth, babies progress through 9 instinctive, complex, distinct, and observable stages including self-attachment and suckling. However, the most recent Cochrane review of early skin-to-skin contact cites inconsistencies in the practice; the authors found "inadequate evidence with respect to details … such as timing of initiation and dose." This paper introduces a novel algorithm to analyse the practice of skin to skin in the first hour using two data sets and suggests opportunities for practice improvement. The algorithm considers the mother's Robson criteria, skin-to-skin experience, and Widström's 9 Stages. Using data from vaginal births in Japan and caesarean births in Australia, the algorithm utilizes data in a new way to highlight challenges to best practice. The use of a tool to analyse the implementation of skin-to-skin care in the first hour after birth illuminates the successes, barriers, and opportunities for improvement to achieving the standard of care for babies. Future application should involve more diverse facilities and Robson's classifications. © 2017 The Authors. Maternal and Child Nutrition Published by John Wiley & Sons, Ltd.

  9. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash.

    PubMed

    Sharma, Amy M; Novalen, Maria; Tanino, Tadatoshi; Uetrecht, Jack P

    2013-05-20

    Nevirapine (NVP) treatment is associated with a significant incidence of skin rash in humans, and it also causes a similar immune-mediated skin rash in Brown Norway (BN) rats. We have shown that the sulfate of a major oxidative metabolite, 12-OH-NVP, covalently binds in the skin. The fact that the sulfate metabolite is responsible for covalent binding in the skin does not prove that it is responsible for the rash. We used various inhibitors of sulfation to test whether this reactive sulfate is responsible for the skin rash. Salicylamide (SA), which depletes 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in the liver, significantly decreased 12-OH-NVP sulfate in the blood, but it did not prevent covalent binding in the skin or the rash. Topical application of 1-phenyl-1-hexanol, a sulfotransferase inhibitor, prevented covalent binding in the skin as well as the rash, but only where it was applied. In vitro incubations of 12-OH-NVP with PAPS and cytosolic fractions from the skin of rats or from human skin also led to covalent binding that was inhibited by 1-phenyl-1-hexanol. Incubation of 12-OH-NVP with PAPS and sulfotransferase 1A1*1, a human isoform that is present in the skin, also led to covalent binding, and this binding was also inhibited by 1-phenyl-1-hexanol. We conclude that salicylamide did not deplete PAPS in the skin and was unable to prevent covalent binding or the rash, while topical 1-phenyl-1-hexanol inhibited sulfation of 12-OH-NVP in the skin and did prevent covalent binding and the rash. These results provide definitive evidence that 12-OH-NVP sulfate formed in skin is responsible for NVP-induced skin rashes. Sulfotransferase is one of the few metabolic enzymes with significant activity in the skin, and it may be responsible for the bioactivation of other drugs that cause skin rashes.

  10. CMS MDS 3.0 Section M Skin Conditions in Long-term Care: Pressure Ulcers, Skin Tears, and Moisture-Associated Skin Damage Data Update.

    PubMed

    Ayello, Elizabeth A

    2017-09-01

    The purpose of this learning activity is to provide information about the updates to the Centers for Medicare & Medicaid Services (CMS) MDS 3.0 Section M, Skin Conditions documentation in long-term care. This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Explain the use of the CMS MDS 3.0 tool for documenting skin problems in long-term care.2. Demonstrate examples of proper documentation for specific skin problems. This manuscript reviews some of the key parts of the October 2016 revised Long-term Care Resident Assessment Instrument manual for Minimum Data Set (MDS) 3.0 Section M Skin Conditions. It also reports the Centers for Medicare & Medicaid's publicly reported frequency data in long-term care for selected items on the MDS 3.0 Section M Skin Conditions. Percentages and trends of pressure ulcers/injuries, skin tears, and moisture-associated skin damage are assessed.

  11. Optical diffusion property of cerumen from ear canal and correlation to metal content measured by synchrotron x-ray absorption

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.

    2012-03-01

    Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.

  12. The feline skin microbiota: The bacteria inhabiting the skin of healthy and allergic cats

    PubMed Central

    Diesel, Alison; Patterson, Adam P.; Meason-Smith, Courtney; Johnson, Timothy J.; Mansell, Joanne; Suchodolski, Jan S.; Rodrigues Hoffmann, Aline

    2017-01-01

    Background The skin is inhabited by a multitude of microorganisms. An imbalance of these microorganisms is associated with disease, however, the causal relationship between skin microbiota and disease remains unknown. To describe the cutaneous bacterial microbiota of cats and determine whether bacterial dysbiosis occurs on the skin of allergic cats, the skin surfaces on various regions of 11 healthy cats and 10 allergic cats were sampled. Methodology/Principal findings Genomic DNA was extracted from skin swabs and sequenced using primers that target the V4 region of the bacterial 16S rRNA. The bacterial sequences from healthy cats revealed that there are differences in species diversity and richness between body sites and different epithelial surfaces. Bacterial communities preferred body site niches in the healthy cats, however, the bacterial communities on allergic cat skin tended to be more unique to the individual cat. Overall, the number of bacterial species was not significantly different between the two health status groups, however, the abundances of these bacterial species were different between healthy and allergic skin. Staphylococcus, in addition to other taxa, was more abundant on allergic skin. Conclusions/Significance This study reveals that there are more bacterial species inhabiting the skin of cats than previously thought and provide some evidence of an association between dysbiosis and skin disease. PMID:28575016

  13. Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound.

    PubMed

    Han, Tong; Wang, Hao; Zhang, Ya Qin

    2012-03-01

    The objective of the study was to observe the effects of tissue-engineered skin in combination with platelet-rich plasma (PRP) and other preparations on the repair of large skin wound on nude mice.We first prepared PRP from venous blood by density-gradient centrifugation. Large skin wounds were created surgically on the dorsal part of nude mice. The wounds were then treated with either artificial skin, tissue-engineered skin, tissue-engineered skin combined with basic fibroblast growth factor, tissue-engineered skin combined with epidermal growth factor, or tissue-engineered skin combined with PRP. Tissue specimens were collected at different time intervals after surgery. Hematoxylin-eosin and periodic acid-Schiff staining and immunohistochemistry were performed to assess the rate of wound healing.Macroscopic observations, hematoxylin-eosin/periodic acid-Schiff staining, and immunohistochemistry revealed that the wounds treated with tissue-engineered skin in combination with PRP showed the most satisfactory wound recovery, among the 5 groups.

  14. Anyone Can Get Skin Cancer

    Cancer.gov

    No matter if your skin is light, dark, or somewhere in between, everyone is at risk for skin cancer. Learn what skin cancer looks like, how to find it early, and how to lower the chance of skin cancer.

  15. Structure-skin permeability relationship of dendrimers.

    PubMed

    Venuganti, Venkata Vamsi; Sahdev, Preety; Hildreth, Michael; Guan, Xiangming; Perumal, Omathanu

    2011-09-01

    To investigate skin penetration of poly (amidoamine) (PAMAM) dendrimers as a function of surface charge and molecular weight in presence and absence of iontophoresis. Dendrimers were labeled with fluoroisothiocynate (FITC); skin penetration of dendrimers was studied using excised porcine skin in-vitro. Skin penetration of FITC-labeled dendrimers was quantified using confocal laser scanning microscope (CLSM). G2-G6 NH(2), G3.5-COOH and G4-OH dendrimers were used. Cationic dendrimers showed higher skin penetration than neutral and anionic dendrimers. Skin penetration of cationic dendrimer increased linearly with increase in treatment time. Iontophoresis enhanced skin penetration of cationic and neutral dendrimers. Increase in current strength and current duration increased skin transport of dendrimers. Passive and iontophoretic skin penetration of cationic dendrimers was inversely related to their molecular weight. Dendrimer penetrated the skin through intercellular lipids and hair follicles. With iontophoresis, dendrimer was also found in localized skin regions. The study demonstrates that the physicochemical properties of dendrimers influence their skin transport. Findings can be used to design dendrimer-based nanocarriers for drug delivery to skin.

  16. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  17. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE PAGES

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni; ...

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  18. Aging changes in skin

    MedlinePlus

    ... can cause rashes, skin lesions , and other skin changes, even if you have no other symptoms. Keep skin moist with lotions and other moisturizers. DO NOT use soaps that are heavily perfumed. Bath oils are not recommended because they can cause you ...

  19. Biology of Skin Color.

    ERIC Educational Resources Information Center

    Corcos, Alain

    1983-01-01

    Information from scientific journals on the biology of skin color is discussed. Major areas addressed include: (1) biology of melanin, melanocytes, and melanosomes; (2) melanosome and human diversity; (3) genetics of skin color; and (4) skin color, geography, and natural selection. (JN)

  20. Exposure to 4100K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin.

    PubMed

    Boswell, William T; Boswell, Mikki; Walter, Dylan J; Navarro, Kaela L; Chang, Jordan; Lu, Yuan; Savage, Markita G; Shen, Jianjun; Walter, Ronald B

    2018-06-01

    It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. "cool white") rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNA-Seq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.