Sample records for absorption spectrophotometric analysis

  1. Spectrophotometric Analysis of Caffeine

    PubMed Central

    Ahmad Bhawani, Showkat; Fong, Sim Siong; Mohamad Ibrahim, Mohamad Nasir

    2015-01-01

    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine. PMID:26604926

  2. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations

  3. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical

  4. Spectrophotometric determination of ketoprofen and its application in pharmaceutical analysis.

    PubMed

    Kormosh, Zholt; Hunka, Iryna; Basel, Yaroslav

    2009-01-01

    A new simple rapid and sensitive spectrophotometric method has been developed for the determination of ketoprofen in pharmaceutical preparations. The method is based on the reaction of ketoprofen with an analytical reagent--Astra Phloxin FF--at pH 8.0-10.8 and followed by the extraction of formed ion associate in toluene with spectrophotometric detection (it has an absorption maximum at 563 nm, epsilon = 7.6 x 10(4) L x mol(-1) x cm(-1)). The calibration plot was linear from 0.8-16.0 microg x mL(-1) of ketoprofen, and the detection limit was 0.037 microg x mL(-1).

  5. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  6. From thermometric to spectrophotometric kinetic-catalytic methods of analysis. A review.

    PubMed

    Cerdà, Víctor; González, Alba; Danchana, Kaewta

    2017-05-15

    Kinetic-catalytic analytical methods have proved to be very easy and highly sensitive strategies for chemical analysis, that rely on simple instrumentation [1,2]. Molecular absorption spectrophotometry is commonly used as the detection technique. However, other detection systems, like electrochemical or thermometric ones, offer some interesting possibilities since they are not affected by the color or turbidity of the samples. In this review some initial experience with thermometric kinetic-catalytic methods is described, up to our current experience exploiting spectrophotometric flow techniques to automate this kind of reactions, including the use of integrated chips. Procedures for determination of inorganic and organic species in organic and inorganic matrices are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation and Spectrophotometric Analysis of Hexaamminenickel(II) Chloride.

    ERIC Educational Resources Information Center

    Wieder, Grace M.

    1986-01-01

    Describes an experiment developed at Brooklyn College (New York) in which the preparation and ammonia analysis of an amminenickel(II) chloride is extended to include a spectrophotometric analysis for nickel. Discusses the materials needed and the procedure for the experiment which takes nine hours of laboratory work. (TW)

  8. Spectrophotometric determination of 4-acetamidophenyl N'-(sulphanilamide) acetate in biological fluids.

    PubMed

    Shah, Bhavna; Patil, Pravin; Shah, Hirva

    2014-01-01

    A simple, accurate and low cost spectrophotometric method is proposed for the determination of the synthesized paracetamol derivative; 4-acetamidophenyl N'-(sulphanilamide) acetate (APSA) in biological fluids. The spectrophotometric method is based on a condensation reaction between the alcoholic solution of APSA and acidic solution of p-dimethylaminobenzaldeyde (DPMK) to generate a yellow colored product. The linear range for the determination of APSA was 1-10 µg mL(-1) with molar absorptivity of 3.6877 × 10(4) L mol(-1) cm(-1) and Sandell's sensitivity of 0.001 µg cm-2/0.001 absorbance unit. During the inter-day and intra-day analysis, the relative standard deviation for replicated determination of APSA was found to be less than 2.0% and accuracy was 99.20-101.60% and 99.10-101.30% in blood and urine samples, respectively. There was no interference with commonly used blood and urine sample. The developed spectrophotometric method was successfully applied to assess APSA in biological fluids.

  9. [Spectrophotometric determination of prodigiozan in ampule solutions].

    PubMed

    Shchedrina, L E; Brutko, L I; Rastunova, G A; Shcherbakova, E G

    1984-06-01

    Based on a study of the absorption properties of prodigiosan it has been shown that its UV absorption spectrum is characterized by an arm at 250-260 nm with an inflection point at 260 nm. The concentration ranges within which the optical density of prodigiosan solution obeyed the Bouguer-Lambert-Beer law were measured. This allowed the development of a quantitative spectrophotometric method for determination of prodigiosan in ampouled solutions.

  10. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: application to pharmacokinetic studies.

    PubMed

    Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  11. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-05

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Spectrophotometric Analysis and Modeling of Sunscreens

    NASA Astrophysics Data System (ADS)

    Walters, Christina; Keeney, Allen; Wigal, Carl T.; Johnston, Cynthia R.; Cornelius, Richard D.

    1997-01-01

    Sunscreens and their SPF (Sun Protection Factor) values are the focus of this experiment that includes spectrophotometric measurements and molecular modeling. Students suspend weighed amounts of sunscreen lotions graded SPF 4, 6, 8, 15, 30, and 45 in water and dissolve aliquots of the aqueous suspensions in propanol. The expected relationship of absorbance proportional to log10(SPF) applies at 312 nm where a maximum in absorbance occurs for the sunscreen solutions. Results at 330 nm give similar results and are more accessible using spectrometers routinely available in the introductory laboratory. Sunscreens constitute a suitable class of compounds to use for modeling electronic spectra, and using the computer for the active ingredients ethylhexyl para-methoxycinnamate, oxybenzone, 2-ethylhexyl salicylate, and octocrylene found in commercially available formulations typically predicts the absorption maxima within 10 nm. This experiment lets students explore which compounds have the potential to function as sunscreen agents and thereby see the importance of a knowledge of chemistry to the formulation of household items.

  13. [Determination of aluminum in sediments by atomic absorption spectrophotometer without FIA spectrophotometric analysis].

    PubMed

    Zhao, Zhen-yi; Han, Guang-xi; Song, Xi-ming; Luo, Zhi-xiong

    2008-06-01

    To search for a new method of determining, we developed a new flow injection analyzer, applied to the atomic absorption spectrophotometer, relying on it without flame in place of visible spectrophotometer, and studied the appropriate condition for the determination of aluminum in sediments, thus built up a kind of new analytical test technique. Three peak and two valley absorption values (A1, A2, A3, A4 and A5) can be continuously obtained simultaneously that all can be used for quantitative analysis, then we discussed its theory and experiment technique. Based on the additivity of absorbance (A = A1+A2+A3+A4+ A5), the sensitivity of FIA is enhanced, and its precision and linear relation are also good, raising the efficiency of AAS. The simple method has been applied to determining Al in sediments, and the results are satisfactory.

  14. Novel Atomic Absorption Spectrometric and Rapid Spectrophotometric Methods for the Quantitation of Paracetamol in Saliva: Application to Pharmacokinetic Studies

    PubMed Central

    Issa, M. M.; Nejem, R. M.; El-Abadla, N. S.; Al-Kholy, M.; Saleh, Akila. A.

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 μg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 μg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 μg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%. PMID:20046743

  15. Validated spectrophotometric method for the determination, spectroscopic characterization and thermal structural analysis of duloxetine with 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar; Elmali, Fikriye Tuncel

    2012-03-01

    A novel, selective, sensitive and simple spectrophotometric method was developed and validated for the determination of the antidepressant duloxetine hydrochloride in pharmaceutical preparation. The method was based on the reaction of duloxetine hydrochloride with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline media to yield orange colored product. The formation of this complex was also confirmed by UV-visible, FTIR, 1H NMR, Mass spectra techniques and thermal analysis. This method was validated for various parameters according to ICH guidelines. Beer's law is obeyed in a range of 5.0-60 μg/mL at the maximum absorption wavelength of 480 nm. The detection limit is 0.99 μg/mL and the recovery rate is in a range of 98.10-99.57%. The proposed methods was validated and applied to the determination of duloxetine hydrochloride in pharmaceutical preparation. The results were statistically analyzed and compared to those of a reference UV spectrophotometric method.

  16. A fully battery-powered inexpensive spectrophotometric system for high-sensitivity point-of-care analysis on a microfluidic chip

    PubMed Central

    Dou, Maowei; Lopez, Juan; Rios, Misael; Garcia, Oscar; Xiao, Chuan; Eastman, Michael

    2016-01-01

    A cost-effective battery-powered spectrophotometric system (BASS) was developed for quantitative point-of-care (POC) analysis on a microfluidic chip. By using methylene blue as a model analyte, we first compared the performance of the BASS with a commercial spectrophotometric system, and further applied the BASS for loop-mediated isothermal amplification (LAMP) detection and subsequent quantitative nucleic acid analysis which exhibited a comparable limit of detection to that of Nanodrop. Compared to the commercial spectrophotometric system, our spectrophotometric system is lower-cost, consumes less reagents, and has a higher detection sensitivity. Most importantly, it does not rely on external power supplies. All these features make our spectrophotometric system highly suitable for a variety of POC analyses, such as field detection. PMID:27143408

  17. Direct spectrophotometric method for analysis of food supplements containing synthetic polyhydroquinones

    NASA Astrophysics Data System (ADS)

    Vasilevsky, A. M.; Konoplev, G. A.; Stepanova, O. S.; Toropov, D. K.; Zagorsky, A. L.

    2016-04-01

    A novel direct spectrophotometric method for quantitative determination of Oxiphore® drug substance (synthetic polyhydroquinone complex) in food supplements is developed. Absorption spectra of Oxiphore® water solutions in the ultraviolet region are presented. Samples preparation procedures and mathematical methods of spectra post-analytical procession are discussed. Basic characteristics of the automatic CCD-based UV spectrophotometer and special software implementing the developed method are described. The results of the trials of the developed method and software are analyzed: the error of determination for Oxiphore® concentration in water solutions of the isolated substance and singlecomponent food supplements did not exceed 15% (average error was 7…10%).

  18. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A

    NASA Astrophysics Data System (ADS)

    Zhuang, Yafeng; Zhou, Meng; Gu, Jia; Li, Xiangmei

    2014-03-01

    A new spectrophotometric method for the determination of trace amounts of bisphenol A based on a diazotization-coupling reaction was developed. In acidic solution, clenbuterol was first diazotized with sodium nitrite, then coupled with bisphenol A to from an azo-compound [I] in NH3-NH4Cl buffer, which shows a maximum absorption at 410 nm. The effects of the amount of sodium nitrite, diazo reaction time, the amount of clenbuterol, coupling reaction time and coupling reaction temperature have been examined. Under the optional conditions, the determination of the linear range of bisphenol A is 0.24-8.4 μg/mL, correlation coefficient is 0.9905 and detection limit of this method is 0.15 μg/mL. The spectrophotometric method is simple, rapid, high sensitivity with better accuracy. High performance liquid chromatography (HPLC) technique combined with this new spectrophotometric method has been also developed for the measurement of bisphenol A. The analysis was achieved on a C18 column using water and methanol as a mobile phase and the detection was done spectrophotometrically at 410 nm. These reported methods were applied to the determination of bisphenol A in hot water in contact with commercially available table-water bottle samples.

  19. Successive spectrophotometric resolution as a novel technique for the analysis of ternary mixtures of pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Tawakkol, Shereen M.; Fahmy, Nesma M.; Shehata, Mostafa A.

    2014-03-01

    A novel spectrophotometric technique was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This technique was called successive spectrophotometric resolution technique. The technique was based on either the successive ratio subtraction or successive derivative subtraction. The mathematical explanation of the procedure was illustrated. In order to evaluate the applicability of the methods a model data as well as an experimental data were tested. The results from experimental data related to the simultaneous spectrophotometric determination of lidocaine hydrochloride (LH), calcium dobesilate (CD) and dexamethasone acetate (DA); in the presence of hydroquinone (HQ), the degradation product of calcium dobesilate were discussed. The proposed drugs were determined at their maxima 202 nm, 305 nm, 239 nm and 225 nm for LH, CD, DA and HQ respectively; by successive ratio subtraction coupled with constant multiplication method to obtain the zero order absorption spectra, while by applying successive derivative subtraction they were determined at their first derivative spectra at 210 nm for LH, 320 nm or P292-320 for CD, 256 nm or P225-252 for DA and P220-233 for HQ respectively. The calibration curves were linear over the concentration range of 2-20 μg/mL for both LH and DA, 6-50 μg/mL for CD, and 3-40 μg/mL for HQ. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs with no interference from other dosage form additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with those of the official BP methods for LH, DA, and CD, and with the official USP method for HQ; using student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  20. Spectrophotometric Attachment for the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Axelrod, Norman N.

    1961-01-01

    An absorption spectrophotometric attachment to a vacuum ultraviolet monochromator has been built and tested. With an empty sample chamber, the ratio of the radiant flux through the sample chamber to the radiant flux through the reference chamber was measured. By optimizing conditions at the entrance slit, the ratio was constant within experimental error over the region 1000-1600 A. The transmittance of thin celluloid films was measured with the attachment.

  1. Validated spectrophotometric methods for determination of some oral hypoglycemic drugs.

    PubMed

    Farouk, M; Abdel-Satar, O; Abdel-Aziz, O; Shaaban, M

    2011-02-01

    Four accurate, precise, rapid, reproducible, and simple spectrophotometric methods were validated for determination of repaglinide (RPG), pioglitazone hydrochloride (PGL) and rosiglitazone maleate (RGL). The first two methods were based on the formation of a charge-transfer purple-colored complex of chloranilic acid with RPG and RGL with a molar absorptivity 1.23 × 103 and 8.67 × 102 l•mol-1•cm-1 and a Sandell's sensitivity of 0.367 and 0.412 μg•cm-2, respectively, and an ion-pair yellow-colored complex of bromophenol blue with RPG, PGL and RGL with molar absorptivity 8.86 × 103, 6.95 × 103, and 7.06 × 103 l•mol-1•cm-1, respectively, and a Sandell's sensitivity of 0.051 μg•cm-2 for all ion-pair complexes. The influence of different parameters on color formation was studied to determine optimum conditions for the visible spectrophotometric methods. The other spectrophotometric methods were adopted for demtermination of the studied drugs in the presence of their acid-, alkaline- and oxidative-degradates by computing derivative and pH-induced difference spectrophotometry, as stability-indicating techniques. All the proposed methods were validated according to the International Conference on Harmonization guidelines and successfully applied for determination of the studied drugs in pure form and in pharmaceutical preparations with good extraction recovery ranges between 98.7-101.4%, 98.2-101.3%, and 99.9-101.4% for RPG, PGL, and RGL, respectively. Results of relative standard deviations did not exceed 1.6%, indicating that the proposed methods having good repeatability and reproducibility. All the obtained results were statistically compared to the official method used for RPG analysis and the manufacturers methods used for PGL and RGL analysis, respectively, where no significant differences were found.

  2. How Much Cranberry Juice Is in Cranberry-Apple Juice? A General Chemistry Spectrophotometric Experiment

    ERIC Educational Resources Information Center

    Edionwe, Etinosa; Villarreal, John R.; Smith, K. Christopher

    2011-01-01

    A laboratory experiment that spectrophotometrically determines the percent of cranberry juice in cranberry-apple juice is described. The experiment involves recording an absorption spectrum of cranberry juice to determine the wavelength of maximum absorption, generating a calibration curve, and measuring the absorbance of cranberry-apple juice.…

  3. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    PubMed

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  5. In-situ spectrophotometric probe

    DOEpatents

    Prather, W.S.

    1992-12-15

    A spectrophotometric probe is described for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and co-terminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focusing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid. 5 figs.

  6. In-situ spectrophotometric probe

    DOEpatents

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  7. Analysis of Closely Related Antioxidant Nutraceuticals Using the Green Analytical Methodology of ANN and Smart Spectrophotometric Methods.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2017-01-01

    Two new, simple, and specific green analytical methods are proposed: zero-crossing first-derivative and chemometric-based spectrophotometric artificial neural network (ANN). The proposed methods were used for the simultaneous estimation of two closely related antioxidant nutraceuticals, coenzyme Q10 (Q10) and vitamin E, in their mixtures and pharmaceutical preparations. The first method is based on the handling of spectrophotometric data with the first-derivative technique, in which both nutraceuticals were determined in ethanol, each at the zero crossing of the other. The amplitudes of the first-derivative spectra for Q10 and vitamin E were recorded at 285 and 235 nm respectively, and correlated with their concentrations. The linearity ranges of Q10 and vitamin E were 10-60 and 5.6-70 μg⋅mL-1, respectively. The second method, ANN, is a multivariate calibration method and it was developed and applied for the simultaneous determination of both analytes. A training set of 90 different synthetic mixtures containing Q10 and vitamin E in the ranges of 0-100 and 0-556 μg⋅mL-1, respectively, was prepared in ethanol. The absorption spectra of the training set were recorded in the spectral region of 230-300 nm. By relating the concentration sets (x-block) with their corresponding absorption data (y-block), gradient-descent back-propagation ANN calibration could be computed. To validate the proposed network, a set of 45 synthetic mixtures of the two drugs was used. Both proposed methods were successfully applied for the assay of Q10 and vitamin E in their laboratory-prepared mixtures and in their pharmaceutical tablets with excellent recovery. These methods offer advantages over other methods because of low-cost equipment, time-saving measures, and environmentally friendly materials. In addition, no chemical separation prior to analysis was needed. The ANN method was superior to the derivative technique because ANN can determine both drugs under nonlinear experimental

  8. Quantitative Analysis of Clopidogrel Bisulphate and Aspirin by First Derivative Spectrophotometric Method in Tablets

    PubMed Central

    Game, Madhuri D.; Gabhane, K. B.; Sakarkar, D. M.

    2010-01-01

    A simple, accurate and precise spectrophotometric method has been developed for simultaneous estimation of clopidogrel bisulphate and aspirin by employing first order derivative zero crossing method. The first order derivative absorption at 232.5 nm (zero cross point of aspirin) was used for clopidogrel bisulphate and 211.3 nm (zero cross point of clopidogrel bisulphate) for aspirin.Both the drugs obeyed linearity in the concentration range of 5.0 μg/ml to 25.0 μg/ml (correlation coefficient r2<1). No interference was found between both determined constituents and those of matrix. The method was validated statistically and recovery studies were carried out to confirm the accuracy of the method. PMID:21969765

  9. REVIEW ARTICLE: Spectrophotometric applications of digital signal processing

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.

    2006-09-01

    Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.

  10. Modeling systematic errors: polychromatic sources of Beer-Lambert deviations in HPLC/UV and nonchromatographic spectrophotometric assays.

    PubMed

    Galli, C

    2001-07-01

    It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods.

  11. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  12. Spectrophotometric determination of flucloxacillin in pharmaceutical preparations using some nitrophenols as a complexing agent

    NASA Astrophysics Data System (ADS)

    El-Mammli, Magda Y.

    2003-03-01

    Some nitrophenols are proposed as chromogenic reagents for the spectrophotometric determination of flucloxacillin. The reagent forms a greenish yellow 1:1 complex with flucloxacillin at pH 9.0. This complex is stable for at least 3.0 h after its formation. The greenish yellow charge transfer complex species has an absorption maximum at 446, 435, 442, 473 and 439 nm for p-nitrophenol (I), 2,4-dinitrophenol (II), 3,5-dinitrosalycilic acid (III), picramic acid (IV) and picric acid (V), respectively, with a molar absorptivity between 1.43×10 4 and 2.59×10 4 l mol -1 cm -1. Beer's low is valid over the concentration range 2.0-40 μg ml -1 of flucloxacillin. The detection and quantitation limits as well as relative standard deviation were also calculated. The reagents have been successfully used for the spectrophotometric determination of flucloxacillin in pure form and in pharmaceutical preparations.

  13. Spectrophotometric characterization of hemozoin as a malaria biomarker

    NASA Astrophysics Data System (ADS)

    Silva, Ivo; Lima, Rui; Minas, Graça.; Catarino, Susana O.

    2017-08-01

    Malaria is a parasitic disease with more than a billion people worldwide at risk of contraction. The disease is predominantly widespread in regions with precarious healthcare conditions and resources. Despite the several available malaria diagnostic methods, only two are predominantly used in the field in malaria-endemic countries: microscopy and rapid diagnostic tests. In this work, an alternative diagnostic system is proposed, based on optical absorption spectrophotometry. The main objective of this paper is the spectrophotometric study of hemozoin as a malaria biomarker, since it is a sub-product of the malaria infection. The optical absorbance of hemoglobin and hemozoin solutions in purified water was measured in the visible spectrum range using a spectrophotometric setup. The results showed main absorbance peaks at 540 nm and 574 nm for hemoglobin, and at 672 nm for hemozoin. The tests performed in aqueous solutions have shown that both hemoglobin and synthetic hemozoin, when alone in solution, were detected by absorbance, with sensitivity of 0.05 g/L, and with a high linearity (R2> 0.92 for all wavelength peaks). Furthermore, it was found that the whole blood and the hemoglobin spectra have similar absorption peaks. By combining whole blood and synthetic hemozoin solutions, it was proved that both the hemozoin and the hemoglobin absorbance peaks could still be detected by spectrophotometry. For instance, in polydimethylsiloxane wells, the proposed method was able to detect hemozoin in whole blood samples for optical paths as low as 3 mm in cylindrical wells, thus proving the capability for this method's miniaturization. With this work, it is possible to conclude that hemozoin is a viable candidate as a biomarker for malaria detection by optical absorption spectrophotometry and also, that an autonomous, fully integrated and low cost miniaturized system, based on such a principle, could provide an efficient diagnosis of malaria.

  14. Structural study of aggregated β-carotene by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  15. Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Abdellatef, Hisham E.; El-Henawee, Magda M.; El-Sayed, Heba M.; Ayad, Magda M.

    2006-12-01

    Sensitive spectrophotometric and spectrofluorimetric methods are described for the determination of tramadol, acebutolol and dothiepin (dosulepin) hydrochlorides. The two methods are based on the condensation of the cited drugs with the mixed anhydrides of malonic and acetic acids at 60 °C for 25-40 min. The coloured condensation products are suitable for the spectrophotometric and spectrofluorimetric determination at 329-333 and 431-434 nm (excitation at 389 nm), respectively. For the spectrophotometric method, Beer's law was obeyed from 0.5 to 2.5 μg ml -1 for tramadol, dothiepin and 5-25 μg ml -1 for acebutolol. Using the spectrofluorimetric method linearity ranged from 0.25 to 1.25 μg ml -1 for tramadol, dothiepin and 1-5 μg ml -1 for acebutolol. Mean percentage recoveries for the spectrophotometric method were 99.68 ± 1.00, 99.95 ± 1.11 and 99.72 ± 1.01 for tramadol, acebutolol and dothiepin, respectively and for the spectrofluorimetric method, recoveries were 99.5 ± 0.844, 100.32 ± 0.969 and 99.82 ± 1.15 for the three drugs, respectively. The optimum experimental parameters for the reaction has been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drugs in their pharmaceutical preparations with good recoveries. The procedures were accurate, simple and suitable for quality control application.

  16. Interaction of diazepam with surfactants. Spectrophotometric and spectrofluorometric study

    NASA Astrophysics Data System (ADS)

    De La Guardia, M.; Rodilla, F.

    1986-03-01

    The interaction of diazepam with non-ionic, anionic and cationic surfactants has been studied spectrophotometrically and fluorometrically. It has been verified that the absorption spectrum of diazepam is not modified in micellar medium. However, a dramatic five-fold increase in fluorescence sensitivity is observed in the presence of sodium lauryl sulphate (SDS). The experimental conditions, temperature, pH and surfactant concentration have been optimized to improve the fluorometric determination of diazepam and a detection limit of 0,04 ppmhas been obtained.

  17. Validated chromatographic and spectrophotometric methods for analysis of some amoebicide drugs in their combined pharmaceutical preparation.

    PubMed

    Abdelaleem, Eglal Adelhamid; Abdelwahab, Nada Sayed

    2013-01-01

    This work is concerned with development and validation of chromatographic and spectrophotometric methods for analysis of mebeverine HCl (MEH), diloxanide furoate (DF) and metronidazole (MET) in Dimetrol® tablets - spectrophotometric and RP-HPLC methods using UV detection. The developed spectrophotometric methods depend on determination of MEH and DF in the combined dosage form using the successive derivative ratio spectra method which depends on derivatization of the obtained ratio spectra in two steps using methanol as a solvent and measuring MEH at 226.4-232.2 nm (peak to peak) and DF at 260.6-264.8 nm (peak to peak). While MET concentrations were determined using first derivative (1D) at λ = 327 nm using the same solvent. The chromatographic method depends on HPLC separation on ODS column and elution with a mobile phase consisting water: methanol: triethylamine (25: 75: 0.5, by volume, orthophosphoric acid to pH =4). Pumping the mobile phase at 0.7 ml min-1 with UV at 230 nm. Factors affecting the developed methods were studied and optimized, moreover, they have been validated as per ICH guideline and the results demonstrated that the suggested methods are reproducible, reliable and can be applied for routine use with short time of analysis. Statistical analysis of the two developed methods with each other using F and student's-t tests showed no significant difference.

  18. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  19. Two spectrophotometric methods for simultaneous determination of some antihyperlipidemic drugs

    PubMed Central

    Abdelwahab, Nada S.; El-Zeiny, Badr A.; Tohamy, Salwa I.

    2012-01-01

    Two simple, accurate, precise and economic spectrophotometric methods have been developed for simultaneous determination of Atorvastatin calcium (ATR) and Ezetimibe (EZ) in their bulk powder and pharmaceutical dosage form. Method (I) is based on dual wavelength analysis while method (II) is the mean centering of ratio spectra spectrophotometric (MCR) method. In method (I), two wavelengths were selected for each drug in such a way that the difference in absorbance was zero for the second drug. At wavelengths 226.6 and 244 nm EZ had equal absorbance values; therefore, these two wavelengths have been used to determine ATR; on a similar basis 228.6 and 262.8 nm were selected to determine EZ in their binary mixtures. In method II, the absorption spectra of both ATR and EZ with different concentrations were recorded over the range 200–350, divided by the spectrum of suitable divisor of both ATR and EZ and then the obtained ratio spectra were mean centered. The concentrations of active components were then determined from the calibration graphs obtained by measuring the amplitudes at 215–260 nm (peak to peak) for both ATR and EZ. Accuracy and precision of the developed methods have been tested; in addition recovery studies have been carried out in order to confirm their accuracy. On the other hand, selectivities of the methods were tested by application for determination of different synthetic mixtures containing different ratios of the studied drugs. The developed methods have been successfully used for determination of ATR and EZ in their combined dosage form and statistical comparison of the developed methods with the reported spectrophotometric one using F and Student's t-tests showed no significant difference regarding both accuracy and precision. PMID:29403754

  20. Two spectrophotometric methods for simultaneous determination of some antihyperlipidemic drugs.

    PubMed

    Abdelwahab, Nada S; El-Zeiny, Badr A; Tohamy, Salwa I

    2012-08-01

    Two simple, accurate, precise and economic spectrophotometric methods have been developed for simultaneous determination of Atorvastatin calcium (ATR) and Ezetimibe (EZ) in their bulk powder and pharmaceutical dosage form. Method (I) is based on dual wavelength analysis while method (II) is the mean centering of ratio spectra spectrophotometric (MCR) method. In method (I), two wavelengths were selected for each drug in such a way that the difference in absorbance was zero for the second drug. At wavelengths 226.6 and 244 nm EZ had equal absorbance values; therefore, these two wavelengths have been used to determine ATR; on a similar basis 228.6 and 262.8 nm were selected to determine EZ in their binary mixtures. In method II, the absorption spectra of both ATR and EZ with different concentrations were recorded over the range 200-350, divided by the spectrum of suitable divisor of both ATR and EZ and then the obtained ratio spectra were mean centered. The concentrations of active components were then determined from the calibration graphs obtained by measuring the amplitudes at 215-260 nm (peak to peak) for both ATR and EZ. Accuracy and precision of the developed methods have been tested; in addition recovery studies have been carried out in order to confirm their accuracy. On the other hand, selectivities of the methods were tested by application for determination of different synthetic mixtures containing different ratios of the studied drugs. The developed methods have been successfully used for determination of ATR and EZ in their combined dosage form and statistical comparison of the developed methods with the reported spectrophotometric one using F and Student's t -tests showed no significant difference regarding both accuracy and precision.

  1. Spectrophotometric method development and validation for determination of chlorpheniramine maleate in bulk and controlled release tablets.

    PubMed

    Ashfaq, Maria; Sial, Ali Akber; Bushra, Rabia; Rehman, Atta-Ur; Baig, Mirza Tasawur; Huma, Ambreen; Ahmed, Maryam

    2018-01-01

    Spectrophotometric technique is considered to be the simplest and operator friendly among other available analytical methods for pharmaceutical analysis. The objective of the study was to develop a precise, accurate and rapid UV-spectrophotometric method for the estimation of chlorpheniramine maleate (CPM) in pure and solid pharmaceutical formulation. Drug absorption was measured in various solvent systems including 0.1N HCl (pH 1.2), acetate buffer (pH 4.5), phosphate buffer (pH 6.8) and distil water (pH 7.0). Method validation was performed as per official guidelines of ICH, 2005. High drug absorption was observed in 0.1N HCl medium with λ max of 261nm. The drug showed the good linearity from 20 to 60μg/mL solution concentration with the correlation coefficient linear regression equation Y= 0.1853 X + 0.1098 presenting R 2 value of 0.9998. The method accuracy was evaluated by the percent drug recovery, presents more than 99% drug recovery at three different levels assessed. The % RSD value <1 was computed for inter and intraday analysis indicating the high accuracy and precision of the developed technique. The developed method is robust because it shows no any significant variation in with minute changes. The LOD and LOQ values were assessed to be 2.2μg/mL and 6.6μg/mL respectively. The investigated method proved its sensitivity, precision and accuracy hence could be successfully used to estimate the CPM content in bulk and pharmaceutical matrix tablets.

  2. Spectrophotometric Investigations of Macrolide Antibiotics: A Brief Review

    PubMed Central

    Keskar, Mrudul R; Jugade, Ravin M

    2015-01-01

    Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxy sugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics. PMID:26609215

  3. Automated spectrophotometric bicarbonate analysis in duodenal juice compared to the back titration method.

    PubMed

    Erchinger, Friedemann; Engjom, Trond; Gudbrandsen, Oddrun Anita; Tjora, Erling; Gilja, Odd H; Dimcevski, Georg

    2016-01-01

    We have recently evaluated a short endoscopic secretin test for exocrine pancreatic function. Bicarbonate concentration in duodenal juice is an important parameter in this test. Measurement of bicarbonate by back titration as the gold standard method is time consuming, expensive and technically difficult, thus a simplified method is warranted. We aimed to evaluate an automated spectrophotometric method in samples spanning the effective range of bicarbonate concentrations in duodenal juice. We also evaluated if freezing of samples before analyses would affect its results. Patients routinely examined with short endoscopic secretin test suspected to have decreased pancreatic function of various reasons were included. Bicarbonate in duodenal juice was quantified by back titration and automatic spectrophotometry. Both fresh and thawed samples were analysed spectrophotometrically. 177 samples from 71 patients were analysed. Correlation coefficient of all measurements was r = 0.98 (p < 0.001). Correlation coefficient of fresh versus frozen samples conducted with automatic spectrophotometry (n = 25): r = 0.96 (p < 0.001) CONCLUSIONS: The measurement of bicarbonate in fresh and thawed samples by automatic spectrophotometrical analysis correlates excellent with the back titration gold standard. This is a major simplification of direct pancreas function testing, and allows a wider distribution of bicarbonate testing in duodenal juice. Extreme values for Bicarbonate concentration achieved by the autoanalyser method have to be interpreted with caution. Copyright © 2016 IAP and EPC. Published by Elsevier India Pvt Ltd. All rights reserved.

  4. Synthesis and Characterization of Potassium Tris(oxalato)ferrate(III) Trihydrate: A Spectrophotometric Method of Iron Analysis

    NASA Astrophysics Data System (ADS)

    Dallinger, Richard F.

    1995-10-01

    A previous Journal article [J. Chem. Educ. 1984, 61, 1098--1099] described a potassium tris(oxalato)ferrate(III) trihydrate empirical formula experiment that offered an excellent integrative experience in synthesis and characterization for general chemistry laboratory students. However, we have introduced a fast and accurate spectrophotometric method for the determination of iron in the product that takes the place of the photochemical-gravimetric procedure described in the article. Besides the pedagogic interest of bringing three different types of chemical analysis (titrimetric, gravimetric, and spectrophotometric) to bear on one compound, the new iron determination allows students to complete the experiment in 2, 3-hr laboratory periods rather than the 5 periods allotted in the original experiment.

  5. Development of an underwater in-situ spectrophotometric sensor for seawater pH

    NASA Astrophysics Data System (ADS)

    Waterbury, Robert D.; Byrne, Robert H.; Kelly, John; Leader, Bram; McElligott, Sean; Russell, Randy

    1996-12-01

    A pH sensor based upon spectrophotometric techniques has been developed for in-situ analysis of surface seawater. This sensor utilizes a spectrophotometric pH indicator (Thymol Blue) which has been calibrated for use in seawater as a function of temperature and salinity. Shipboard spectrophotometric pH analyses routinely demonstrate a precision on the order of plus or minus 0.0004 pH units. In- situ analysis of seawater pH has demonstrated a precision on the order of plus or minus 0.001 and an accuracy, using shipboard measurements as a standard, on the order of plus or minus 0.01. The sensor is a self-contained system which pumps seawater, meters in indicator, spectrophotometrically determines indicator absorbance and stores data with a 1 Hz acquisition frequency. The sensor employs two absorbance cells, each with three wavelength channels, to obtain the spectrophotometric absorbance. The sensor system, rated for depths up to 500 m, provides pH, conductivity, temperature and can be operated via computer or in a standalone mode with internal data storage. The sensor utilizes less than 12 watts of power and is packaged in a 29' long by 4.5' diameter aluminum housing.

  6. Methods of automatic nucleotide-sequence analysis. Multicomponent spectrophotometric analysis of mixtures of nucleic acid components by a least-squares procedure

    PubMed Central

    Lee, Sheila; McMullen, D.; Brown, G. L.; Stokes, A. R.

    1965-01-01

    1. A theoretical analysis of the errors in multicomponent spectrophotometric analysis of nucleoside mixtures, by a least-squares procedure, has been made to obtain an expression for the error coefficient, relating the error in calculated concentration to the error in extinction measurements. 2. The error coefficients, which depend only on the `library' of spectra used to fit the experimental curves, have been computed for a number of `libraries' containing the following nucleosides found in s-RNA: adenosine, guanosine, cytidine, uridine, 5-ribosyluracil, 7-methylguanosine, 6-dimethylaminopurine riboside, 6-methylaminopurine riboside and thymine riboside. 3. The error coefficients have been used to determine the best conditions for maximum accuracy in the determination of the compositions of nucleoside mixtures. 4. Experimental determinations of the compositions of nucleoside mixtures have been made and the errors found to be consistent with those predicted by the theoretical analysis. 5. It has been demonstrated that, with certain precautions, the multicomponent spectrophotometric method described is suitable as a basis for automatic nucleotide-composition analysis of oligonucleotides containing nine nucleotides. Used in conjunction with continuous chromatography and flow chemical techniques, this method can be applied to the study of the sequence of s-RNA. PMID:14346087

  7. Sensitized spectrophotometric determination of Cr(III) ion for speciation of chromium ion in surfactant media using alpha-benzoin oxime.

    PubMed

    Ghaedi, Mehrorang; Asadpour, Enayat; Vafaie, Azam

    2006-01-01

    A simple and accurate micellanized spectrophotometric method for determination of trace amounts of Cr(III) ion in tab and top water and a synthetic mixture has been described. The micellar method is based on effect of organized molecular assemblies such as micelles in spectrophotometric measurement due to their effect on the systems of interest. The ability of micellar system in solubilizing of sparingly soluble ligand or complexes has been used for increasing figures of merit of an analytical method. Due to solubility increasing in aqueous media requirement for a primary extraction can be eliminated. Using the alpha-benzoin oxime (alpha-BO) spectrophotometric determination of Cr(III) ion has been performed and results are compared. The spectrophotometric determination of Cr(III) ion using alpha-BO in the presence of non-ionic surfactant Triton X-100 has been performed. The influence of type and amount of surfactant, pH, complexation time and amount of ligand were examined. Finally, the repeatability, accuracy and the effect of interfering ions on the determination of Cr(III) ion was evaluated. The proposed methods successfully with recovery yield of almost 100% have been applied to the rapid and simple determination of Cr(III) ion in the real samples. There is a good agreement between methods and atomic absorption spectrometry. The Beers law is obeyed over the concentration range of 0.1-13.7 microg mL(-1) for micellar media. The detection limit is 0.8 ng mL(-1). The molar absorptivity of complex is 5350 L mol(-1) cm(-1).

  8. Sensitized spectrophotometric determination of Cr(III) ion for speciation of chromium ion in surfactant media using α-benzoin oxime

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Asadpour, Enayat; Vafaie, Azam

    2006-01-01

    A simple and accurate micellanized spectrophotometric method for determination of trace amounts of Cr(III) ion in tab and top water and a synthetic mixture has been described. The micellar method is based on effect of organized molecular assemblies such as micelles in spectrophotometric measurement due to their effect on the systems of interest. The ability of micellar system in solubilizing of sparingly soluble ligand or complexes has been used for increasing figures of merit of an analytical method. Due to solubility increasing in aqueous media requirement for a primary extraction can be eliminated. Using the α-benzoin oxime (α-BO) spectrophotometric determination of Cr(III) ion has been performed and results are compared. The spectrophotometric determination of Cr(III) ion using α-BO in the presence of non-ionic surfactant Triton X-100 has been performed. The influence of type and amount of surfactant, pH, complexation time and amount of ligand were examined. Finally, the repeatability, accuracy and the effect of interfering ions on the determination of Cr(III) ion was evaluated. The proposed methods successfully with recovery yield of almost 100% have been applied to the rapid and simple determination of Cr(III) ion in the real samples. There is a good agreement between methods and atomic absorption spectrometry. The Beers law is obeyed over the concentration range of 0.1-13.7 μg mL-1 for micellar media. The detection limit is 0.8 ng mL-1. The molar absorptivity of complex is 5350 L mol-1 cm-1.

  9. Innovative spectrophotometric methods for simultaneous estimation of the novel two-drug combination: Sacubitril/Valsartan through two manipulation approaches and a comparative statistical study

    NASA Astrophysics Data System (ADS)

    Eissa, Maya S.; Abou Al Alamein, Amal M.

    2018-03-01

    Different innovative spectrophotometric methods were introduced for the first time for simultaneous quantification of sacubitril/valsartan in their binary mixture and in their combined dosage form without prior separation through two manipulation approaches. These approaches were developed and based either on two wavelength selection in zero-order absorption spectra namely; dual wavelength method (DWL) at 226 nm and 275 nm for valsartan, induced dual wavelength method (IDW) at 226 nm and 254 nm for sacubitril and advanced absorbance subtraction (AAS) based on their iso-absorptive point at 246 nm (λiso) and 261 nm (sacubitril shows equal absorbance values at the two selected wavelengths) or on ratio spectra using their normalized spectra namely; ratio difference spectrophotometric method (RD) at 225 nm and 264 nm for both of them in their ratio spectra, first derivative of ratio spectra (DR1) at 232 nm for valsartan and 239 nm for sacubitril and mean centering of ratio spectra (MCR) at 260 nm for both of them. Both sacubitril and valsartan showed linearity upon application of these methods in the range of 2.5-25.0 μg/mL. The developed spectrophotmetric methods were successfully applied to the analysis of their combined tablet dosage form ENTRESTO™. The adopted spectrophotometric methods were also validated according to ICH guidelines. The results obtained from the proposed methods were statistically compared to a reported HPLC method using Student t-test, F-test and a comparative study was also developed with one-way ANOVA, showing no statistical difference in accordance to precision and accuracy.

  10. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods.

    PubMed

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-05

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form. Copyright © 2016. Published by Elsevier B.V.

  11. Spectrophotometric determination of triclosan based on diazotization reaction: response surface optimization using Box-Behnken design.

    PubMed

    Kaur, Inderpreet; Gaba, Sonal; Kaur, Sukhraj; Kumar, Rajeev; Chawla, Jyoti

    2018-05-01

    A spectrophotometric method based on diazotization of aniline with triclosan has been developed for the determination of triclosan in water samples. The diazotization process involves two steps: (1) reaction of aniline with sodium nitrite in an acidic medium to form diazonium ion and (2) reaction of diazonium ion with triclosan to form a yellowish-orange azo compound in an alkaline medium. The resulting yellowish-orange product has a maximum absorption at 352 nm which allows the determination of triclosan in aqueous solution in the linear concentration range of 0.1-3.0 μM with R 2 = 0.998. The concentration of hydrochloric acid, sodium nitrite, and aniline was optimized for diazotization reaction to achieve good spectrophotometric determination of triclosan. The optimization of experimental conditions for spectrophotometric determination of triclosan in terms of concentration of sodium nitrite, hydrogen chloride and aniline was also carried out by using Box-Behnken design of response surface methodology and results obtained were in agreement with the experimentally optimized values. The proposed method was then successfully applied for analyses of triclosan content in water samples.

  12. Spectrophotometric determination of gold(III) in forensic and pharmaceutical samples and results complemented with ICP AES and EDXRF analysis

    NASA Astrophysics Data System (ADS)

    Nagaraja, Vani; Kumar, M. Kiran; Giddappa, Nagendrappa

    2017-02-01

    Spectrophotometric method with three systems were developed here for the determination of gold(III) using o-dianisidine, aniline sulphate and catechol. Gold(III),in the system 1 it oxidizes o-dianisidine, in the system 2 it oxidizes catechol followed by its coupling with o-dianisidine, in the system 3 it oxidizes catechol followed by its coupling with aniline sulphate forming dye products with respective λmax 446 nm, 540 nm, and 505 nm. All the three systems were optimized and analytical parameters were calculated. The molar absorptivity values were 9.27 × 104, 1.97 × 104 and 1.62 × 104 respectively for the systems 1, 2 and 3 with the corresponding Sandell sensitivity values (μg cm- 2), 0.0021, 0.0096 and 0.011. The optimized systems were used for the determination of gold present in some forensic jewellery and pharmaceutical samples and the results obtained were compared with the results of all samples determined by Inductively Coupled Plasma - Atomic Emission Spectrometric method and a few of them were also complemented by Energy Dispersive X-Ray Fluorescent spectral analysis.

  13. Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R

    NASA Astrophysics Data System (ADS)

    Bevziuk, Kateryna; Chebotarev, Alexander; Snigur, Denys; Bazel, Yaroslav; Fizer, Maksym; Sidey, Vasyl

    2017-09-01

    The acid-base properties of Allura Red AC and Ponceau 4R azo dyes were investigated by spectrophotometric, potentiometric and tristimulus colourimetry methods. Ionization constants of the functional groups were also found in aqueous solutions of the dyes. It was discovered that the wavelength of the maximum light absorption of Allura Red AC and Ponceau 4R solutions does not change significantly over a wide pH range. As a result, spectrophotometric methods yield little information for assessing the acid-base properties of the dyes. It was shown with a help of the tristimulus colourimetry method that it is possible to determine the ionization constants of the functional groups of the dyes even when there is significant overlap of the absorption bands of the acid-base forms. The basic spectrophotometric characteristics of the main forms of Allura Red AC and Ponceau 4R in water and organic solvents were calculated. The molar absorbance coefficients of azo forms were shown to increase as the dielectric permittivity of the solvent increases. It was determined that in aqueous solution the dyes exist in the azo form over a wide range of acidity - pH 2-12 for Allura Red AC (λmax = 505 nm; ελ = 3.1·104 dm3 mol-1 cm-1) and 1-13 for Ponceau 4R (λmax = 510 nm; ελ = 1.7·10-4 dm3 mol-1 cm-1). The most probable protonation/deprotonation schemes were theoretically determined for Allura Red AC and Ponceau 4R using DFT calculations.

  14. Time-temperature dependent variations in beta-carotene contents in carrot using different spectrophotometric techniques

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad

    2018-05-01

    The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.

  15. Simultaneous determination of some cholesterol-lowering drugs in their binary mixture by novel spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha Abdel Monem

    2013-09-01

    Four simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of simvastatin (SM) and ezetimibe (EZ) namely; extended ratio subtraction (EXRSM), simultaneous ratio subtraction (SRSM), ratio difference (RDSM) and absorption factor (AFM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated and the specificity was assessed by analyzing synthetic mixtures containing the cited drugs. The four methods were applied for the determination of the cited drugs in tablets and the obtained results were statistically compared with each other and with those of a reported HPLC method. The comparison showed that there is no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  16. Spectrophotometric methods as a novel screening approach for analysis of dihydropyrimidine dehydrogenase activity before treatment with 5-fluorouracil chemotherapy.

    PubMed

    Dolegowska, B; Ostapowicz, A; Stanczyk-Dunaj, M; Blogowski, W

    2012-08-01

    5-Fluorouracil (5-FU) is one of the most commonly used chemotherapeutics in the treatment of malignancies originating from breast, prostate, ovarian, skin and gastrointestinal tissues. Around 80% of administered dose of 5-FU is catabolized by dihydropirymidine dehydrogenase (DPD). Patients, in whom a deficiency or insufficient activity of this enzyme is observed, are at great risk of development of severe, even lethal, 5-FU toxicity. According to recent studies, so far over 30 mutations of DPYD gene, which are associated with DPD deficiency/insufficiency, have already been discovered. Currently, there are several analytical methods used for measurements of DPD activity. However, in this paper we report a novel, simple, economical and more accessible spectrophotometric method for measurements of DPD activity in the peripheral blood mononuclear cells (PBMCs) that was developed and validated on analysis of 200 generally healthy volunteers aged 22-63. We present two spectrophotometric protocols in this study, and as a reference method we used already described reverse phase high-performance liquid chromatography (RP HPLC) analysis. Basing on our findings, we conclude that spectrophotometric methods may be used as a screening protocol preceding 5-FU-based chemotherapy. Nevertheless, before introduction into clinical reality, our results should be confirmed in further larger studies.

  17. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus.

    PubMed

    Meletiadis, J; Leth Mortensen, K; Verweij, P E; Mouton, J W; Arendrup, M C

    2017-02-01

    Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on visual reading. Spectrophotometric reading was not adopted because of concern that non-uniform filamentous growth might lead to unreliable and non-reproducible results. We therefore evaluated spectrophotometric reading for the determination of MICs of antifungal azoles against Aspergillus fumigatus. Eighty-eight clinical isolates of A. fumigatus were tested against four medical azoles (posaconazole, voriconazole, itraconazole, isavuconazole) and one agricultural azole (tebuconazole) with EUCAST E.Def 9.3. The visually determined MICs (complete inhibition of growth) were compared with spectrophotometrically determined MICs and essential (±1 twofold dilution) and categorical (susceptible/intermediate/resistant or wild-type/non-wild-type) agreement was calculated. Spectrophotometric data were analysed with regression analysis using the E max model, and the effective concentration corresponding to 5% (EC 5 ) was estimated. Using the 5% cut-off, high essential (92%-97%) and categorical (93%-99%) agreement (<6% errors) was found between spectrophotometric and visual MICs. The EC 5 also correlated with the visually determined MICs with an essential agreement of 83%-96% and a categorical agreement of 90%-100% (<5% errors). Spectrophotometric determination of MICs of antifungal drugs may increase objectivity, and allow automation and high-throughput of EUCAST E.Def 9.3 antifungal susceptibility testing of Aspergillus species. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Innovative spectrophotometric methods for simultaneous estimation of the novel two-drug combination: Sacubitril/Valsartan through two manipulation approaches and a comparative statistical study.

    PubMed

    Eissa, Maya S; Abou Al Alamein, Amal M

    2018-03-15

    Different innovative spectrophotometric methods were introduced for the first time for simultaneous quantification of sacubitril/valsartan in their binary mixture and in their combined dosage form without prior separation through two manipulation approaches. These approaches were developed and based either on two wavelength selection in zero-order absorption spectra namely; dual wavelength method (DWL) at 226nm and 275nm for valsartan, induced dual wavelength method (IDW) at 226nm and 254nm for sacubitril and advanced absorbance subtraction (AAS) based on their iso-absorptive point at 246nm (λ iso ) and 261nm (sacubitril shows equal absorbance values at the two selected wavelengths) or on ratio spectra using their normalized spectra namely; ratio difference spectrophotometric method (RD) at 225nm and 264nm for both of them in their ratio spectra, first derivative of ratio spectra (DR 1 ) at 232nm for valsartan and 239nm for sacubitril and mean centering of ratio spectra (MCR) at 260nm for both of them. Both sacubitril and valsartan showed linearity upon application of these methods in the range of 2.5-25.0μg/mL. The developed spectrophotmetric methods were successfully applied to the analysis of their combined tablet dosage form ENTRESTO™. The adopted spectrophotometric methods were also validated according to ICH guidelines. The results obtained from the proposed methods were statistically compared to a reported HPLC method using Student t-test, F-test and a comparative study was also developed with one-way ANOVA, showing no statistical difference in accordance to precision and accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Validation of different spectrophotometric methods for determination of vildagliptin and metformin in binary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    New, simple, specific, accurate, precise and reproducible spectrophotometric methods have been developed and subsequently validated for determination of vildagliptin (VLG) and metformin (MET) in binary mixture. Zero order spectrophotometric method was the first method used for determination of MET in the range of 2-12 μg mL-1 by measuring the absorbance at 237.6 nm. The second method was derivative spectrophotometric technique; utilized for determination of MET at 247.4 nm, in the range of 1-12 μg mL-1. Derivative ratio spectrophotometric method was the third technique; used for determination of VLG in the range of 4-24 μg mL-1 at 265.8 nm. Fourth and fifth methods adopted for determination of VLG in the range of 4-24 μg mL-1; were ratio subtraction and mean centering spectrophotometric methods, respectively. All the results were statistically compared with the reported methods, using one-way analysis of variance (ANOVA). The developed methods were satisfactorily applied to analysis of the investigated drugs and proved to be specific and accurate for quality control of them in pharmaceutical dosage forms.

  20. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  1. Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

    PubMed Central

    Devi, V. S. Anusuya; Reddy, V. Krishna

    2012-01-01

    Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) reacts with iron(II) and cobalt(II) to form reddish-brown and yellow-coloured [Fe(II)-HNAHBH] and [Co(II)-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II)-HNAHBH], Beer's law is obeyed over the concentration range of 0.055–1.373 μg mL−1 with a detection limit of 0.095 μg mL−1 and molar absorptivity ɛ, 5.6 × 104 L mol−1 cm−1. [Co(II)-HNAHBH] complex obeys Beer's law in 0.118–3.534 μg mL−1 range with a detection limit of 0.04 μg mL−1 and molar absorptivity, ɛ of 2.3 × 104 L mol−1 cm−1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content. PMID:22505925

  2. Sensitive inexpensive spectrophotometric and spectrofluorimetric analysis of ezogabine, levetiracetam and topiramate in tablet formulations using Hantzsch condensation reaction

    NASA Astrophysics Data System (ADS)

    Ibrahim, F. A.; El-Yazbi, A. F.; Wagih, M. M.; Barary, M. A.

    2017-09-01

    Two highly sensitive, simple and selective spectrophotometric and spectrofluorimetric assays have been investigated for the analysis of ezogabine, levetiracetam and topiramate in their pure and in pharmaceutical dosage forms. The suggested methods depend on the condensation of the primary amino-groups in the three drugs with acetylacetone and formaldehyde according to Hantzsch reaction yielding highly fluorescent yellow colored dihydropyridine derivatives. The reaction products of ezogabine, levetiracetam and topiramate were measured spectrophotometrically at 418, 390 and 380 nm or spectrofluorimetrically at λem/ex of 495/425 nm, 490/415 nm and 488/410 nm, respectively. Various experimental conditions have been carefully studied to maximize the reaction yield. At the optimum reaction conditions, the calibration curves were rectilinear over the concentration ranges of 8-25, 60-180 and 80-200 μg/mL spectrophotometrically and 0.02-0.2, 0.2-1.2 and 0.2-1.5 μg/mL spectrofluorimetrically for ezogabine, levetiracetam and topiramate, respectively with good correlation coefficients. The suggested methods were applied successfully for the analysis of ezogabine, levetiracetam and topiramate in their commercial tablets with high percentage recoveries and negligible interference from various excipients in pharmaceutical dosage forms. The results were statistically analyzed and showed the absence of any significant difference between both developed and published methods. The procedures were validated and evaluated by the ICH guidelines revealing good reproducibility and accuracy. Therefore, the two proposed methods may be considered of high interest for practical and reliable analysis of ezogabine, levetiracetam and topiramate in pharmaceutical dosage forms.

  3. Application of inorganic oxidants to the spectrophotometric determination of ribavirin in bulk and capsules.

    PubMed

    Darwish, Ibrahim A; Khedr, Alaa S; Askal, Hassan F; Mohamed, Ramadan M

    2006-01-01

    Eight spectrophotometric methods for determination of ribavirin have been developed and validated. These methods were based on the oxidation of the drug by different inorganic oxidants: ceric ammonium sulfate, potassium permanganate, ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate. The oxidation reactions were performed in perchloric acid medium for ceric ammonium sulfate and in sulfuric acid medium for the other reagents. With ceric ammonium sulfate and potassium permanganate, the concentration of ribavirin in its samples was determined by measuring the decrease in the absorption intensity of the colored reagents at 315 and 525 nm, respectively. With the other reagents, the concentration of ribavirin was determined by measuring the intensity of the developed colored reaction products at the wavelengths of maximum absorbance: 675, 780, 595, 595, 475, and 475 nm for reactions with ammonium molybdate, ammonium metavanidate, chromium trioxide, potassium dichromate, potassium iodate, and potassium periodate, respectively. Different variables affecting the reaction conditions were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9984-0.9998) were found between the absorbance readings and the concentrations of ribavirin in the range of 4-1400 microg/mL. The molar absorptivities were correlated with the oxidation potential of the oxidants used. The precision of the methods were satisfactory; the values of relative standard deviation did not exceed 1.64%. The proposed methods were successfully applied to the analysis of ribavirin in pure drug material and capsules with good accuracy and precision; the recovery values were 99.2-101.2 +/- 0.48-1.30%. The results obtained using the proposed spectrophotometric methods were comparable with those obtained with the official method stated in the United States Pharmacopeia.

  4. Spectrophotometric determination of gold(III) in forensic and pharmaceutical samples and results complemented with ICP AES and EDXRF analysis.

    PubMed

    Nagaraja, Vani; Kumar, M Kiran; Giddappa, Nagendrappa

    2017-02-15

    Spectrophotometric method with three systems were developed here for the determination of gold(III) using o-dianisidine, aniline sulphate and catechol. Gold(III),in the system 1 it oxidizes o-dianisidine, in the system 2 it oxidizes catechol followed by its coupling with o-dianisidine, in the system 3 it oxidizes catechol followed by its coupling with aniline sulphate forming dye products with respective λ max 446nm, 540nm, and 505nm. All the three systems were optimized and analytical parameters were calculated. The molar absorptivity values were 9.27×10 4 , 1.97×10 4 and 1.62×10 4 respectively for the systems 1, 2 and 3 with the corresponding Sandell sensitivity values (μgcm -2 ), 0.0021, 0.0096 and 0.011. The optimized systems were used for the determination of gold present in some forensic jewellery and pharmaceutical samples and the results obtained were compared with the results of all samples determined by Inductively Coupled Plasma - Atomic Emission Spectrometric method and a few of them were also complemented by Energy Dispersive X-Ray Fluorescent spectral analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spectrophotometric evaluation of optical performances of polarizing technologies for smart window applications

    NASA Astrophysics Data System (ADS)

    Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.

    2014-11-01

    In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.

  6. A simple spectrophotometric determination of meptyldinocap by its hydrolysis.

    PubMed

    Kurup, Sunita; Pillai, Ajai Kumar

    2013-01-01

    A simple spectrophotometric method is proposed for the determination of meptyldinocap (2,4-dinitro-6-octylphenyl crotonate). The method is based on the hydrolysis of meptyldinocap by hydroxylamine solution in alkaline medium to give 2,4-dinitro-6-octylphenol (2,4-DNOP), having maximum absorption at 380 nm. The reaction is found to be instantaneous in presence of ethanol. Beer's law is valid over the concentration range of 1.2-13 microg mL(-1) with molar absorptivity and Sandell's sensitivity of 3.22 x 10(6) L mol(-1) cm(-1) and 0.0001 microg cm(-2) respectively. The limit of detection and quantification were 0.0892 and 0.2703 microg mL(-1), respectively. The tolerance limits of interfering ions are discussed. All variables were studied in order to optimize the reaction conditions. The validity of the method was checked by its simultaneous determination in fruits and water samples and the results were statistically compared with those of a reference method by applying the Student's t-test and F-test.

  7. Titrimetric and Spectrophotometric Methods for the Assay of Ketotifen Using Cerium(IV) and Two Reagents

    PubMed Central

    Raghu, Madihalli Srinivas; Basavaiah, Kanakapura; Prashanth, Kudige Nagaraj; Vinay, Kanakapura Basavaiah

    2013-01-01

    One titrimetric and two spectrophotometric methods are described for the determination of ketotifen fumarate (KTF) in bulk drug and in tablets using cerium(IV) as the oxidimetric agent. In titrimetry (method A), the drug was treated with a measured excess of cerium(IV) in H2SO4 medium and after a standing time of 10 min, the surplus oxidant was determined by back titration with iron(II). The spectrophotometric procedures involve addition of a known excess of cerium(IV) to KTF in acid medium followed by the determination of unreacted oxidant by reacting with either p-dimethyl amino benzaldehyde and measuring the resulting colour at 460 nm (method B) or o-dianisidine and subsequent measurement of the absorbance of coloured product at 470 nm (method C). Titrimetric assay is based on a 1 : 2 reaction stoichiometry between KTF and cerium(IV) and the method is applicable over 2–18 mg range. In spectrophotometry, regression analysis of Beer's law plots showed a good correlation in 0.4–8.0 and 0.4–10.0 g mL−1 KTF ranges for method B and method C, respectively, and the corresponding molar absorptivity coefficients are calculated to be 4.0 × 104 and 3.7 × 104 L mol−1 cm−1. PMID:24324496

  8. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  9. Development and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of Eperisone and Paracetamol in Solid Dosage Form.

    PubMed

    Khanage, Shantaram Gajanan; Mohite, Popat Baban; Jadhav, Sandeep

    2013-01-01

    Eperisone Hydrochloride (EPE) is a potent new generation antispasmodic drug which is used in the treatment of moderate to severe pain in combination with Paracetamol (PAR). Both drugs are available in tablet dosage form in combination with a dose of 50 mg for EPE and 325 mg PAR respectively. The method is based upon Q-absorption ratio method for the simultaneous determination of the EPE and PAR. Absorption ratio method is used for the ratio of the absorption at two selected wavelength one of which is the iso-absorptive point and other being the λmax of one of the two components. EPE and PAR shows their iso-absorptive point at 260 nm in methanol, the second wavelength used is 249 nm which is the λmax of PAR in methanol. The linearity was obtained in the concentration range of 5-25 μg/mL for EPE and 2-10 μg/mL for PAR. The proposed method was effectively applied to tablet dosage form for estimation of both drugs. The accuracy and reproducibility results are close to 100% with 2% RSD. RESULTS of the analysis were validated statistically and found to be satisfactory. The results of proposed method have been validated as per ICH guidelines. A simple, precise and economical spectrophotometric method has been developed for the estimation of EPE and PAR in pharmaceutical formulation.

  10. New Spectrophotometric Assay of Pyrantel Pamoate in Pharmaceuticals and Spiked Human Urine Using Three Complexing Agents

    NASA Astrophysics Data System (ADS)

    Swamy, N.; Prashanth, K. N.; Basavaiah, K.

    2015-07-01

    Three simple, rapid, inexpensive, and highly sensitive spectrophotometric methods are described for the quantifi cation of pyrantel pamoate (PYP) in pure drug and formulations. The methods are based on the molecular charge-transfer (CT) complexation reaction involving pyrantel base (PYL) as n-donor and iodine as σ-acceptor (I 2 , method A), and 2,4-dinitrophenol (DNP, method B) or picric acid (PA, method C) as π-acceptors. Spectrophotometrically, the CT complexes showed absorption maxima at 380, 420, and 430 nm, for methods A, B, and C, respectively. Under optimum conditions, Beer's law was obeyed over the concentration ranges 0.12-2.9, 0.12-3.75, and 0.12-2.9 μg/ml for methods A, B, and C, respectively. The apparent molar absorptivity of the CT complexes at the respective λmax are calculated to be 2.63 × 10 5 , 6.91 × 10 4 , and 1.73 × 10 5 l/mol· cm respectively and the corresponding Sandell sensitivity values are 0.0009, 0.003, and 0.0012. The limits of detection (LOD) and quantification (LOQ) are calculated to be (0.02 and 0.07), (0.05 and 0.15), and (0.02 and 0.07) μg/ml with methods A, B, and C, respectively. The intra-day and inter-day accuracy expressed as %RE and precision expressed as %RSD are less than 3%. The methods have been applied to the determination of PYP in tablets, suspensions, and spiked human urine. Parallel assay by a reference method and statistical analysis of the results obtained show no significant difference between the proposed methods and the reference method with respect to accuracy and precision, as evident from the Student's t and variation ratio tests. The accuracy of the methods has been further ascertained by recovery tests via the standard addition technique.

  11. Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis †.

    PubMed

    Dafonte, Carlos; Garabato, Daniel; Álvarez, Marco A; Manteiga, Minia

    2018-05-03

    Analyzing huge amounts of data becomes essential in the era of Big Data, where databases are populated with hundreds of Gigabytes that must be processed to extract knowledge. Hence, classical algorithms must be adapted towards distributed computing methodologies that leverage the underlying computational power of these platforms. Here, a parallel, scalable, and optimized design for self-organized maps (SOM) is proposed in order to analyze massive data gathered by the spectrophotometric sensor of the European Space Agency (ESA) Gaia spacecraft, although it could be extrapolated to other domains. The performance comparison between the sequential implementation and the distributed ones based on Apache Hadoop and Apache Spark is an important part of the work, as well as the detailed analysis of the proposed optimizations. Finally, a domain-specific visualization tool to explore astronomical SOMs is presented.

  12. Spectrophotometric study for the reaction between fluvoxamine and 1,2-naphthoquinone-4-sulphonate: Kinetic, mechanism and use for determination of fluvoxamine in its dosage forms

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Abdine, Heba H.; Amer, Sawsan M.; Al-Rayes, Lama I.

    2009-05-01

    Spectrophotometric study was carried out, for the first time, to investigate the reaction between the antidepressant fluvoxamine (FXM) and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 9), an orange-colored product exhibiting maximum absorption peak ( λmax) at 470 nm was produced. The kinetics of the reaction was investigated and its activation energy was found to be 2.65 kcal mol -1. Because of this low activation energy, the reaction proceeded easily. The stoichiometry of the reaction was determined and the reaction mechanism was postulated. This color-developing reaction was successfully employed in the development of simple and rapid spectrophotometric method for determination of FXM in its pharmaceutical dosage forms. Under the optimized reaction conditions, Beer's law correlating the absorbance ( A) with FXM concentration ( C) was obeyed in the range of 0.6-8 μg ml -1. The regression equation for the calibration data was A = 0.0086 + 0.1348 C, with good correlation coefficient (0.9996). The molar absorptivity ( ɛ) was 5.9 × 10 4 l mol -1 cm -1. The limits of detection and quantification were 0.2 and 0.6 μg ml -1, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of FXM in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.47 ± 0.96%. The results obtained by the proposed method were comparable with those obtained by the official method. The proposed method is superior to all the previously reported spectrophotometric methods for determination of FXM in terms of its simplicity and sensitivity. The method is practical and valuable for its routine application in quality control laboratories for analysis of FXM.

  13. SHARDS: a spectro-photometric analysis of distant red and dead massive galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.; The Shards Team

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey carried out with GTC/OSIRIS and designed to select and study massive passively evolving galaxies at z= 1.0--2.5 in the GOODS-N field. The survey uses a set of 24 medium band filters (FWHM ˜15 nm) covering the 500--950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ˜280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) construct for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Δ z/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  14. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  15. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  16. Spectrophotometric determination of triclosan in personal care products

    NASA Astrophysics Data System (ADS)

    Lu, Huihui; Ma, Hongbing; Tao, Guanhong

    2009-09-01

    A spectrophotometric method for the determination of triclosan in personal care products was proposed. It was based on the reaction of sodium nitrite with p-sulfanilic acid in an acidic medium to form diazonium ion, with which triclosan further formed an azo compound in an alkaline medium. The resulting yellow colored product has a maximum absorption at 452 nm. A good linear relationship ( r = 0.9999) was obtained in the range of 0-30 mg L -1 triclosan. A detection limit of 0.079 g L -1 was achieved and the relative standard deviation was 0.24% ( n = 11) at 14 mg L -1 triclosan. The proposed method has been applied to the analyses of triclosan in several personal care products and the results were in good agreement with those obtained by high-performance liquid chromatography.

  17. Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants

    NASA Astrophysics Data System (ADS)

    Hashem, E. Y.; Youssef, A. K.

    2013-05-01

    A spectrophotometric method is proposed for the determination of norepinephrine (NE) and its bitartrate salts. The method was based on the development of a red color (λmax = 495 nm) with sodium iodate in aqueous alcoholic medium at pH 5. The color was stable for at least 4 hrs. The molar reacting ratio of NE to sodium iodate was 1:4. A linear relationship was obtained between the absorption intensity and NE concentration in the range of 3.384-37.224 μg/ml with detection limit of 0.067 μg/ml and correlation coefficient of 0.9972. The present work facilitated the determination of the three acidity constants, 7.564 ± 0.02, 9.036 ± 0.034, and 10.761 ± 0.023. The reaction mechanism was also described. The proposed method was successfully applied for the determination of NE in pharmaceutical formulations. Results for analysis of bulk drugs and injections agree with those of official methods.

  18. Atomic absorption spectrophotometric determination of tin in canned foods, using nitric acid-hydrochloric acid digestion and nitrous oxide-acetylene flame: collaborative study.

    PubMed

    Dabeka, R W; McKenzie, A D; Albert, R H

    1985-01-01

    Twenty-six collaborators participated in a study to evaluate an atomic absorption spectrophotometric (AAS) method for the determination of tin in canned foods. The 5 foods evaluated were meat, pineapple juice, tomato paste, evaporated milk, and green beans, each spiked at 2 levels. The concentration range of tin in the samples was 10-450 micrograms/g, and each level was sent as a blind duplicate. Statistical treatment of results revealed no laboratory outliers and 6 individual or replicate-total outliers, accounting for 3.3% of the data. Repeatability (within-laboratory) coefficient of variation (CVo) ranged from 2.2 to 48%, depending on the tin level and food evaluated. For samples containing greater than or equal to 80 micrograms/g of tin, repeatability CV averaged 5.6% including outliers and 3.7% after their rejection. Overall among-laboratories coefficient of variation (CVx) varied from 3.3 to 58%; at levels greater than or equal to 80 micrograms/g, it averaged 7.3% with outliers and 5.3% after their rejection. Recovery of tin, based on spiking levels, ranged from 100.0 to 112.8% and averaged 105.4%. Detection limit range is 2-10 micrograms/g, and lower quantitation limit is 40 micrograms/g. This method has been adopted official first action.

  19. Spectrophotometric determination of isopropamide iodide and trifluoperazine hydrochloride in presence of trifluoperazine oxidative degradate.

    PubMed

    Abbas, Samah S; Zaazaa, Hala E; Abdelkawy, M; Abdelrahman, Maha M

    2010-04-01

    Four sensitive, selective and precise stability indicating methods for the determination of isopropamide iodide (ISO) and trifluoperazine hydrochloride (TPZ) in their binary mixture and in presence of trifluoperazine oxidative degradate (OXD). Method A is a derivative spectrophotometric one, where ISO was determined by first derivative (D(1)) at 226.4 nm while TPZ was determined by second derivative (D(2)) at 270.2 nm. Method B is the first derivative of the ratio spectra (DD(1)) spectrophotometric method, ISO can be determined by measuring the peak amplitude at 227.4 nm using 5 microg mL(-1) of OXD as a divisor, while TPZ can be determined by measuring the peak amplitude at 249.2 and 261.4 nm using 15 microg mL(-1) of ISO as a divisor. Method C is the isoabsorptive spectrophotometric method. This method allows determination of ISO and TPZ in their binary mixture by measuring total concentration of ISO and TPZ at their isoabsorptive point at lambda(229.8) nm (Aiso1) while TPZ concentration alone can be determined at lambda(max) 311.2 nm, then ISO concentration can be determined by subtraction. On the same basis TPZ can be determined in presence of ISO and OXD, where OXD concentration alone was determined by measuring the peak amplitude at lambda(281.6) and lambda(309.4) nm while total concentration of TPZ and OXD was determined at their isoabsorptive points at (Aiso2 = 270.2 nm), (Aiso3 = 310.6 nm) and (Aiso4 = 331.8 nm) then TPZ concentration was determined by subtraction. Method D is the multivariate calibration techniques [the classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS)], using the information contained in the absorption spectra of ISO, TPZ and OXD mixtures. The selectivity of the proposed methods was checked using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of ISO and TPZ in pharmaceutical dosage form without interference from other dosage form

  20. ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Doressoundiram, A.; Tozzi, G. P.; Barucci, M. A.; Boehnhardt, H.; de Bergh, C.; Delsanti, A.; Davies, J.; Dotto, E.

    2004-07-01

    The Large Program on physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on April 2001, has recently been concluded. This project was devoted to the investigation of the surface properties of these icy bodies through photometric and spectroscopic observations. In this paper we present the latest results on these pristine bodies obtained from the spectrophotometric investigation in the visible range. The newly obtained spectrophotometric data on 3 Centaurs and 5 TNOs, coming from 2 observing runs at the Very Large Telescope (VLT), show a large variety of spectral characteristics, comprising both gray and red objects in the two different populations. A very broad and weak absorption feature, centered around 7000 Å , has been revealed in the spectrum of the gray TNO 2003 AZ84. This absorption is very similar to a feature observed on low albedo main belt asteroids and attributed to the action of the aqueous alteration process on minerals. This process was previously also claimed as the most plausible explanation for some peculiar visible absorption bands observed on 2000 EB173 and 2000 GN171 in the framework of the Large Program (Lazzarin et al. \\cite{Lazzarin03}; de Bergh et al. \\cite{Bergh04}). This detection seems to reinforce the hypothesis that aqueous alteration might have taken place also at such large heliocentric distances. We also report the results of a spectroscopic investigation performed outside the Large Program on the very interesting TNO 2000 GN171 during part of its rotational period. This object, previously observed twice in the framework of the Large Program, had shown during the early observations a very peculiar absorption band tentatively attributed to aqueous alteration processes. As this feature was not confirmed in a successive spectrum, we recently repeated the investigations of 2000 GN171, finding out that it has an heterogeneous composition. Finally an analysis of the visible spectral slopes is reported for all the data

  1. Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically

    NASA Astrophysics Data System (ADS)

    Li, Yeguang; Miao, Fengping; Geng, Yahong; Lu, Dayan; Zhang, Chengwu; Zeng, Mingtao

    2012-07-01

    The influence of alkali on astaxanthin and the optimal working wave length for measurement of astaxanthin from Haematococcus crude extract were investigated, and a spectrophotometric method for precise quantification of the astaxanthin based on the method of Boussiba et al. was established. According to Boussiba's method, alkali treatment destroys chlorophyll. However, we found that: 1) carotenoid content declined for about 25% in Haematococcus fresh cysts and up to 30% in dry powder of Haematococcus broken cysts after alkali treatment; and 2) dimethyl sulfoxide (DMSO)-extracted chlorophyll of green Haematococcus bares little absorption at 520-550 nm. Interestingly, a good linear relationship existed between absorbance at 530 nm and astaxanthin content, while an unknown interference at 540-550 nm was detected in our study. Therefore, with 530 nm as working wavelength, the alkali treatment to destroy chlorophyll was not necessary and the influence of chlorophyll, other carotenoids, and the unknown interference could be avoided. The astaxanthin contents of two samples were measured at 492 nm and 530 nm; the measured values at 530 nm were 2.617 g/100 g and 1.811 g/100 g. When compared with the measured values at 492 nm, the measured values at 530 nm decreased by 6.93% and 11.96%, respectively. The measured values at 530 nm are closer to the true astaxanthin contents in the samples. The data show that 530 nm is the most suitable wave length for spectrophotometric determination to the astaxanthin in Haematococcus crude extract.

  2. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.

  3. Selective flotation-spectrophotometric determination of trace copper(II) in natural waters, human blood and drug samples using phenanthraquinone monophenylthiosemicarbazone.

    PubMed

    Khalifa, M E; Akl, M A; Ghazy, S E

    2001-06-01

    Copper(II) forms 1:1 and 1:2 intense red complexes with phenanthraquinone monophenylthiosemicarbazone (PPT) at pH 3-3.5 and > or =6.5, respectively. These complexes exhibit maximal absorbance at 545 and 517 nm, the molar absorptivity being 2.3 x 10(4) and 4.8 x 10(4) l mol(-1) cm(-1), respectively. However, the 1:1 complex was quantitatively floated with oleic acid (HOL) surfactant in the pH range 4.5-5.5, providing a highly selective and sensitive procedure for the spectrophotometric determination of CuII. The molar absorptivity of the floated Cu-PPT complex was 1.5 x 10(5) l mol)(-1) cm(-1). Beer's law was obeyed over the range 3-400 ppb at 545 nm. The analytical parameters affecting the flotation process and hence the determination of copper traces were reported. Also, the structure of the isolated solid complex and the mechanism of flotation were suggested. Moreover, the procedure was successfully applied to the analysis of CuII in natural waters, serum blood and some drug samples.

  4. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition.

    PubMed

    Wu, Daishe; Deng, Haiwen; Wang, Wuyi; Xiao, Huayun

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 microg g(-1) and 0.29 microg g(-1), respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis.

  5. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  6. Challenges and solutions for the analysis of in situ , in crystallo micro-spectrophotometric data

    DOE PAGES

    Dworkowski, Florian S. N.; Hough, Michael A.; Pompidor, Guillaume; ...

    2015-01-01

    Combining macromolecular crystallography with in crystallo micro-spectrophotometry yields valuable complementary information on the sample, including the redox states of metal cofactors, the identification of bound ligands and the onset and strength of undesired photochemistry, also known as radiation damage. However, the analysis and processing of the resulting data differs significantly from the approaches used for solution spectrophotometric data. The varying size and shape of the sample, together with the suboptimal sample environment, the lack of proper reference signals and the general influence of the X-ray beam on the sample have to be considered and carefully corrected for. In the presentmore » article, we discuss how to characterize and treat these sample-dependent artefacts in a reproducible manner and we demonstrate the SLS-APE in situ, in crystallo optical spectroscopy data-analysis toolbox.« less

  7. Spectrophotometric and HPLC determinations of anti-diabetic drugs, rosiglitazone maleate and metformin hydrochloride, in pure form and in pharmaceutical preparations.

    PubMed

    Onal, Armağan

    2009-12-01

    In this study, three spectrophotometric methods and one HPLC method were developed for analysis of anti-diabetic drugs in tablets. The two spectrophotometric methods were based on the reaction of rosiglitazone (RSG) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and bromocresol green (BCG). Linear relationship between the absorbance at lambda(max) and the drug concentration was found to be in the ranges 6.0-50.0 and 1.5-12 microg ml(-1) for DDQ and BCG methods, respectively. The third spectrophotometric method consists of a zero-crossing first-derivative spectrophotometric method for simultaneous analysis of RSG and metformin (MTF) in tablets. The calibration curves were linear within the concentration ranges of 5.0-50 microg ml(-1) for RSG and 1.0-10.0 microg ml(-1) for MTF. The fourth method is a rapid stability-indicating HPLC method developed for the determination of RSG. A linear response was observed within the concentration range of 0.25-2.5 microg ml(-1). The proposed methods have been successfully applied to the tablet analysis.

  8. Different spectrophotometric methods applied for the analysis of binary mixture of flucloxacillin and amoxicillin: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-05-15

    Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sensitive spectrophotometric determination of aceclofenac following azo dye formation with 4-carboxyl-2,6-dinitrobenzene diazonium ion.

    PubMed

    Aderibigbe, Segun A; Adegoke, Olajire A; Idowu, Olakunle S; Olaleye, Sefiu O

    2012-01-01

    The study is a description of a sensitive spectrophotometric determination of aceclofenac following azo dye formation with 4-carboxyl-2,6-dinitrobenzenediazonium ion (CDNBD). Spot test and thin layer chromatography revealed the formation of a new compound distinct from CDNBD and aceclofenac. Optimization studies established a reaction time of 5 min at 30 degrees C after vortex mixing the drug/CDNBD for 10 s. An absorption maximum of 430 nm was selected as analytical wavelength. A linear response was observed over 1.2-4.8 μg/mL of aceclofenac with a correlation coefficient of 0.9983 and the drug combined with CDNBD at stoichiometric ratio of 2 : 1. The method has a limit of detection of 0.403 μg/mL, limit of quantitation of 1.22 μg/mL and is reproducible over a three day assessment. The method gave Sandell's sensitivity of 3.279 ng/cm2. Intra- and inter-day accuracies (in terms of errors) were less than 6% while precisions were of the order of 0.03-1.89% (RSD). The developed spectrophotometric method is of equivalent accuracy (p > 0.05) with British Pharmacopoeia, 2010 potentiometric method. It has the advantages of speed, simplicity, sensitivity and more affordable instrumentation and could found application as a rapid and sensitive analytical method of aceclofenac. It is the first described method by azo dye derivatization for the analysis of aceclofenac in bulk samples and dosage forms.

  10. Individual and simultaneous spectrophotometric determination of dapsone and metoclopramide HCl in pharmaceutical dosage forms and synthetic binary mixtures.

    PubMed

    Omran, Ahmed Ahmed

    2005-11-01

    A rapid, sensitive and selective spectrophotometric method has been developed for the quantitative determination of dapsone (DAP) and metoclopramide hydrochloride (MCP) in both pure and dosage forms. Individual and simultaneous methods are based on the diazo coupling reaction of these drugs with benzoylacetone (BAC) in alkaline medium. The resulting azo dyes exhibit maximum absorption at 437 and 411 nm with a molar absorptivity of 4.14x10(4) and 2.97x10(4) l mol-1 cm-1 for DAP and MCP, respectively. Simultaneous determination of DAP and MCP was developed utilizing first-order digital derivative spectrophotometry. All variables have been optimized. No interferences were observed from drug excipients and the validity of the methods was tested against reference methods.

  11. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  12. New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent.

    PubMed

    Maheshwari, R K; Rathore, Amit; Agrawal, Archana; Gupta, Megha A

    2011-07-01

    Hydrotropic solubilization process involves cooperative intermolecular interaction with several balancing molecular forces, rather than either a specific complexation event or a process dominated by a medium effect, such as co-solvency or salting-in. In the present investigation, hydrotropic solution of 2 M niacinamide was employed as the solubilizing agent to solubilize the poorly water-soluble drug, indomethacin, from the capsule dosage form for spectrophotometric determination in ultraviolet region. Hydrotropic agent used did not interfere in the spectrophotometric analysis. In preliminary solubility studies, it was found that there was more than fivefold enhancement in the aqueous solubility of indomethacin (poorly water-soluble drug) in 2 M niacinamide solution as compared to its aqueous solubility at 28 ± 1°C. The proposed method is new, simple, safe, environmentally friendly, economic, accurate and cost-effective and can be successfully employed in routine analysis.

  13. Novel spectrophotometric methods for simultaneous determination of Amlodipine, Valsartan and Hydrochlorothiazide in their ternary mixture

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany

    2015-04-01

    This work represents a comparative study of two smart spectrophotometric techniques namely; successive resolution and progressive resolution for the simultaneous determination of ternary mixtures of Amlodipine (AML), Hydrochlorothiazide (HCT) and Valsartan (VAL) without prior separation steps. These techniques consist of several consecutive steps utilizing zero and/or ratio and/or derivative spectra. By applying successive spectrum subtraction coupled with constant multiplication method, the proposed drugs were obtained in their zero order absorption spectra and determined at their maxima 237.6 nm, 270.5 nm and 250 nm for AML, HCT and VAL, respectively; while by applying successive derivative subtraction they were obtained in their first derivative spectra and determined at P230.8-246, P261.4-278.2, P233.7-246.8 for AML, HCT and VAL respectively. While in the progressive resolution, the concentrations of the components were determined progressively from the same zero order absorption spectrum using absorbance subtraction coupled with absorptivity factor methods or from the same ratio spectrum using only one divisor via amplitude modulation method can be used for the determination of ternary mixtures using only one divisor where the concentrations of the components are determined progressively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. Moreover comparative study between spectrum addition technique as a novel enrichment technique and a well established one namely spiking technique was adopted for the analysis of pharmaceutical formulations containing low concentration of AML. The methods were validated as per ICH guidelines where accuracy, precision and specificity were found to be within their acceptable limits. The results obtained from the proposed methods were statistically compared with the reported one where no significant

  14. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  15. Proceedings of the Workshop on the Spectrophotometric Dating of Stars and Galaxies

    NASA Technical Reports Server (NTRS)

    Hubeny, Ivan; Heap, Sara; Cornett, Robert

    1999-01-01

    In the past decade, we have seen an avalanche of new observational results from space observatories and ground-based observatories. These observations have revealed young globular clusters in the cores of merger galaxies, elliptical galaxies at redshifts up to z=1.5, and starburst galaxies at high redshift. Analyses of the detailed spectra or color- magnitude diagrams of these systems promise to give a new understanding of evolutionary processes and to provide a check on cosmological ages. At the same time, these new spectro-photometric data present new challenges to current methods of spectral analysis and modeling.At the Workshop, we will discuss these new opportunities and challenges on spectro-photometric dating of stars and galaxies.

  16. Spectrophotometric determination of [2-(2,6-dichloro-phenylamino)-phenyl]-acetic acid in pure form and in pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Bazel, Yaroslav; Hunka, Iryna; Kormosh, Zholt; Andruch, Vasil

    2009-12-01

    A new sensitive and selective spectrophotometric method has been developed for the determination of [2-(2,6-dichloro-phenylamino)-phenyl]-acetic acid in pharmaceuticals in the presence of nicotinic acid. The method is based on the reaction of [2-(2,6-dichloro-phenylamino)-phenyl]-acetic acid with 1,3,3-trimethyl-5-phenyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-propenyl]-3 H-indolium chloride (PIC) followed by the extraction of the formed ion associate into toluene and spectrophotometric detection at 581 nm. Appropriate experimental conditions were found to be pH 7.8-9.8 and 3.6 × 10 -4 mol L -1 of PIC. The molar absorptivity is 5.0 × 10 -4 L mol -1 cm -1. The absorbance obeys Beer's law in the range 0.61-12.60 μg mL -1 of [2-(2,6-dichloro-phenylamino)-phenyl]-acetic acid, and the detection limit calculated from a blank test was 0.20 μg mL -1.

  17. A Microscale Spectrophotometric Determination of Water Hardness

    NASA Astrophysics Data System (ADS)

    Gordon, James S.

    2001-08-01

    A spectrophotometric titration was performed to determine water hardness. The titration incorporated the traditional titration method employing EDTA as the titrant and calmagite as the indicator. The microscale experiment was carried out in a spectrometer cuvette and made use of a Texas Instruments (TI-83) calculator interfaced through a TI Calculator-Based Laboratory system to a Vernier colorimeter as the detector. Monitoring at 635 nm, one of the colorimeter's fixed wavelengths, was well suited for this analysis. Agreement was found with results from traditional titrations.

  18. Multi-wavelength spectrophotometric analysis for detection of xanthochromia in cerebrospinal fluid and accuracy for the diagnosis of subarachnoid hemorrhage.

    PubMed

    Smith, Andrew; Wu, Alan H B; Lynch, Kara L; Ko, Nerissa; Grenache, David G

    2013-09-23

    Cerebrospinal fluid (CSF) was examined for bilirubin, an important indicator for diagnosis of subarachnoid hemorrhage (SAH). A multi-wavelength (340, 415, and 460 nm) spectrophotometric assay was developed for the quantitative measurement of bilirubin in CSF, enabling the mathematical correction for absorbance of hemoglobin and proteins. Bilirubin and hemoglobin results were correlated to HPLC and a standard colorimetric assay, respectively. A subset of samples was sent for an absorbance reading at 450 nm following baseline correction. The multi-wavelength bilirubin assay was validated on 70 patients with confirmed SAH and 70 patients with neurologic symptoms who ruled out for SAH. The multi-wavelength spectrophometric assay demonstrated no interferences due to proteins (albumin) up to 30 g/l or oxyhemoglobin up to 260 mg/l. The assay limit of detection was 0.2 mg/l, linear to 20 mg/l, and CVs ranged from 1 to 6% at bilirubin concentrations of 0.84 and 2.1mg/l. The spectrophotometric assay correlated to HPLC and the colorimetric assay for bilirubin and hemoglobin, respectively. Results also correlated to the absorbance method (with removal of samples with high hemoglobin and proteins). The area under the ROC curve for diagnosis of SAH was 0.971 and 0.954 for the HPLC and spectrophotometric assay, respectively. At a cutoff of 0.2mg/l, the clinical specificity was 100% for both assays, and the clinical sensitivity was 94.3% and 88.6% for SAH for the HPLC and spectrophotometric asays, respectively. The multi-wavelength spectrophotometric assay is an objective alternative to visual inspection, HPLC, and absorbance for CSF bilirubin. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  20. Sensitive flow-injection spectrophotometric analysis of bromopride

    NASA Astrophysics Data System (ADS)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  1. Sensitive flow-injection spectrophotometric analysis of bromopride.

    PubMed

    Lima, Liliane Spazzapam; Los Weinert, Patrícia; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-10

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax=565nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63×10(-7) to 2.90×10(-5)molL(-1), with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07×10(-7) and 3.57×10(-7)molL(-1), respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparative study on the selectivity of various spectrophotometric techniques for the determination of binary mixture of fenbendazole and rafoxanide.

    PubMed

    Saad, Ahmed S; Attia, Ali K; Alaraki, Manal S; Elzanfaly, Eman S

    2015-11-05

    Five different spectrophotometric methods were applied for simultaneous determination of fenbendazole and rafoxanide in their binary mixture; namely first derivative, derivative ratio, ratio difference, dual wavelength and H-point standard addition spectrophotometric methods. Different factors affecting each of the applied spectrophotometric methods were studied and the selectivity of the applied methods was compared. The applied methods were validated as per the ICH guidelines and good accuracy; specificity and precision were proven within the concentration range of 5-50 μg/mL for both drugs. Statistical analysis using one-way ANOVA proved no significant differences among the proposed methods for the determination of the two drugs. The proposed methods successfully determined both drugs in laboratory prepared and commercially available binary mixtures, and were found applicable for the routine analysis in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development and Validation of an Extractive Spectrophotometric Method for Miconazole Nitrate Assay in Pharmaceutical Formulations.

    PubMed

    Eticha, Tadele; Kahsay, Getu; Hailu, Teklebrhan; Gebretsadikan, Tesfamichael; Asefa, Fitsum; Gebretsadik, Hailekiros; Thangabalan, Boovizhikannan

    2018-01-01

    A simple extractive spectrophotometric technique has been developed and validated for the determination of miconazole nitrate in pure and pharmaceutical formulations. The method is based on the formation of a chloroform-soluble ion-pair complex between the drug and bromocresol green (BCG) dye in an acidic medium. The complex showed absorption maxima at 422 nm, and the system obeys Beer's law in the concentration range of 1-30  µ g/mL with molar absorptivity of 2.285 × 10 4  L/mol/cm. The composition of the complex was studied by Job's method of continuous variation, and the results revealed that the mole ratio of drug : BCG is 1 : 1. Full factorial design was used to optimize the effect of variable factors, and the method was validated based on the ICH guidelines. The method was applied for the determination of miconazole nitrate in real samples.

  4. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.

    PubMed

    Aleixandre-Tudo, Jose Luis; Buica, Astrid; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2017-05-24

    Phenolic compounds are of crucial importance for red wine color and mouthfeel attributes. A large number of enzymatic and chemical reactions involving phenolic compounds take place during winemaking and aging. Despite the large number of published analytical methods for phenolic analyses, the values obtained may vary considerably. In addition, the existing scientific knowledge needs to be updated, but also critically evaluated and simplified for newcomers and wine industry partners. The most used and widely cited spectrophotometric methods for grape and wine phenolic analysis were identified through a bibliometric search using the Science Citation Index-Expanded (SCIE) database accessed through the Web of Science (WOS) platform from Thompson Reuters. The selection of spectrophotometry was based on its ease of use as a routine analytical technique. On the basis of the number of citations, as well as the advantages and disadvantages reported, the modified Somers assay appears as a multistep, simple, and robust procedure that provides a good estimation of the state of the anthocyanins equilibria. Precipitation methods for total tannin levels have also been identified as preferred protocols for these types of compounds. Good reported correlations between methods (methylcellulose precipitable vs bovine serum albumin) and between these and perceived red wine astringency, in combination with the adaptation to high-throughput format, make them suitable for routine analysis. The bovine serum albumin tannin assay also allows for the estimation of the anthocyanins content with the measurement of small and large polymeric pigments. Finally, the measurement of wine color using the CIELab space approach is also suggested as the protocol of choice as it provides good insight into the wine's color properties.

  5. Spectrophotometric Characterisation of the Trojan Asteroids (624) Hektor et (911) Agamemnon

    NASA Astrophysics Data System (ADS)

    Doressoundiram, A.; Bott, N.; Perna, D.

    2016-12-01

    We obtained spectrophotometric observations of (624) Hektor and (911) Agamemnon, two large Trojan asteroids in order to (1) better understand the composition of their surface by means of their visible and infrared spectra, and (2) eventually detect a possible weak cometary activity by means of their images in the visible. We had data at different rotational phases to probe surface variegations. We found that the visible and infrared spectra are very similar to each other. That indicates a relatively homogenous surface for the asteroids, but it does not exclude the presence of localized inhomogeneities. Computation of a high spectral slope confirmed their D-type asteroids classification. No aqueous alteration absorption band was found in the visible spectra of both studied Trojan asteroids. This can be interpreted in two differents ways: either no liquid water flowed on their surface, or the surface is covered with a crust that mask the presence of hydrated minerals. We use a radiative transfer model to investigate the surface composition of these icy and primitive outer solar system bodies. We suggest models composed of mixtures of organic compounds, minerals and lower limits for water ice. Lastly, the analysis of the images of both Trojan asteroids did not reveal any cometary activity.

  6. Enhancing prediction power of chemometric models through manipulation of the fed spectrophotometric data: A comparative study

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.; Hamdy, Abdallah M.; Salama, Fathy M.; Abdelkawy, Mohamed

    2016-10-01

    Effect of data manipulation in preprocessing step proceeding construction of chemometric models was assessed. The same set of UV spectral data was used for construction of PLS and PCR models directly and after mathematically manipulation as per well known first and second derivatives of the absorption spectra, ratio spectra and first and second derivatives of the ratio spectra spectrophotometric methods, meanwhile the optimal working wavelength ranges were carefully selected for each model and the models were constructed. Unexpectedly, number of latent variables used for models' construction varied among the different methods. The prediction power of the different models was compared using a validation set of 8 mixtures prepared as per the multilevel multifactor design and results were statistically compared using two-way ANOVA test. Root mean squares error of prediction (RMSEP) was used for further comparison of the predictability among different constructed models. Although no significant difference was found between results obtained using Partial Least Squares (PLS) and Principal Component Regression (PCR) models, however, discrepancies among results was found to be attributed to the variation in the discrimination power of adopted spectrophotometric methods on spectral data.

  7. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures

    NASA Astrophysics Data System (ADS)

    Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham

    2014-11-01

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.

  8. Spectrophotometric determination of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride by flow injection analysis.

    PubMed

    Seno, Kunihiko; Matumura, Kazuki; Oshima, Mitsuko; Motomizu, Shoji

    2008-04-01

    1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl) is a very useful agent to form amide bonds (peptide bonds) in an aqueous medium. A simple and fast detection system was developed using the reaction with pyridine and ethylenediamine in acidic aqueous solution and spectrophotometric flow injection analysis. The absorbances were measured at 400 nm and the reaction was accelerated at 40 degrees C. The calibration graph showed good linearity from 0 to 10% of EDC.HCl solutions: the regression equation was y=3.15x10(4)x (y, peak area; x, % concentration of EDC.HCl). The RSD was under 1.0%. Sample throughput was 15 h(-1). This method was applied to monitoring the EDC.HCl concentration that remained after the anhydration of phthalic acid in water, esterification of acetic acid in methanol or dehydration condensation of malonic acid and ethylenediamine in water.

  9. A continuous spectrophotometric assay method for peptidylarginine deiminase type 4 activity.

    PubMed

    Liao, Ya-Fan; Hsieh, Hui-Chieh; Liu, Guang-Yaw; Hung, Hui-Chih

    2005-12-15

    A simple, continuous spectrophotometric assay for peptidylarginine deiminase (PAD) is described. Deimination of peptidylarginine results in the formation of peptidylcitrulline and ammonia. The ammonia released during peptidylarginine hydrolysis is coupled to the glutamate-dehydrogenase-catalyzed reductive amination of alpha-ketoglutarate to glutamate and reduced nicotinamide adenine dinucleotide (NADH) oxidation. The disappearance of absorbance at 340nm due to NADH oxidation is continuously measured. The specific activity obtained by this new protocol for highly purified human PAD is comparable to that obtained by a commonly used colorimetric procedure, which measures the ureido group of peptidylcitrulline by coupling with diacetyl monoxime. The present continuous spectrophotometric method is highly sensitive and accurate and is thus suitable for enzyme kinetic analysis of PAD. The Ca(2+) concentration for half-maximal activity of PAD obtained by this method is comparable to that previously obtained by the colorimetric procedure.

  10. A mathematical approach for the simultaneous in vitro spectrophotometric analysis of rifampicin and isoniazid from modified-release anti-TB drug delivery systems.

    PubMed

    du Toit, Lisa; Pillay, Viness; Choonara, Yahya

    2010-01-01

    Dissolution testing with subsequent analysis is considered as an imperative tool for quality evaluation of the combination rifampicin-isoniazid (RIF-INH) combination. Partial least squares (PLS) regression has been successfully undertaken to select suitable predictor variables and to identify outliers for the generation of equations for RIF and INH determination in fixed-dose combinations (FDCs). The aim of this investigation was to ascertain the applicability of the described technique in testing a novel oral FDC anti-TB drug delivery system and currently available two-drug FDCs, in comparison to the United States Pharmacopeial method for analysis of RIF and INH Capsules with chromatographic determination of INH and colorimetric RIF determination. Regression equations generated employing the statistical coefficients satisfactorily predicted RIF release at each sampling point (R(2)>or=0.9350). There was an acceptable degree of correlation between the drug release data, as predicted by regressional analysis of UV spectrophotometric data, and chromatographic and colorimetric determination of INH (R(2)=0.9793 and R(2)=0.9739) and RIF (R(2)= 0.9976 and R(2)=0.9996) for the two-drug FDC and the novel oral anti-TB drug delivery system, respectively. Regressional analysis of UV spectrophotometric data for simultaneous RIF and INH prediction thus provides a simplified methodology for use in diverse research settings for the assurance of RIF bioavailability from FDC formulations, specifically modified-release forms.

  11. Comparison of Spectrophotometric Methods for the Determination of Copper in Sugar Cane Spirit.

    PubMed

    Soares, Sarah Adriana R; Costa, Silvânio Silvério L; Araujo, Rennan Geovanny O; Teixeira, Leonardo Sena Gomes; Dantas, Alailson Falcão

    2018-05-01

    Three spectrophotometric methods were developed for the determination of copper (Cu) in sugar cane spirit using the chromogenic reagents neocuproine, cuprizone, and bathocuproine. Experimental conditions, such as reagent concentration, reducer concentration, pH, buffer concentration, the order of addition of reagents, and the stability of the complexes, were optimized. The work range was established from 1.0 to 10.0 µg/mL, with correlation coefficients of >0.999 for all three optimized methods. The methods were evaluated regarding accuracy by addition and recovery tests at five concentration levels, and the obtained recoveries ranged from 91 to 105% (n = 3). Precision was expressed as RSD (relative standard deviation), with values ranging from 0.01 to 0.17% (n = 10). The method using the chromogenic reagent cuprizone presented the greatest molar absorptivity, followed by bathocuproine and neocuproine. The methods were applied for the determination of Cu in sugar cane spirit, and the results were compared with a reference method by flame atomic absorption spectrometry (FAAS). Calibration curve solutions for FAAS analysis were prepared in a 40% (v/v) alcohol medium in a range of concentrations from 0.5 up to 5 µg/mL. Measurements for Cu determination were carried out at a wavelength of 324.7 nm. The concentrations obtained for Cu in sugar cane spirit samples from Brazil were between 1.99 and 12.63 µg/mL, and about 75% of the samples presented Cu concentrations above the limit established by Brazilian legislation (5.0 µg/mL or 5.0 mg/L).

  12. Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: Crystallographic, UV-visible spectrophotometric and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Zulkarnain; Khan, Ishaat M.; Ahmad, Afaq; Miyan, Lal; Ahmad, Musheer; Azizc, Nafe

    2017-08-01

    The charge transfer interaction between p-nitroaniline (PNA) and chloranilic (CAA) acid was studied spectrophotometrically in methanol at different temperatures within the range 298-328 K. This experimental work explores the nature of charge-transfer interactions that play a significant role in chemistry and biology. Structure of synthesized charge transfer (CT) complex was investigated by different technique such as X-ray crystallography, FTIR, 1HNMR, UV-visible spectroscopy, XRD and TGA-DTA, which indicates the presence of N+sbnd Hrbd2bd O- bond between donor and acceptor moieties. Spectrophotometric studies of CT complexes were carried out in methanol at different temperatures to estimate thermodynamic parameters such as formation constant (KCT), molar absorptivity (εCT), free energy change (ΔG), enthalpy change (ΔH), resonance energy (RN), oscillator strength (f), transition dipole moment (μEN) and interaction energy (ECT) were also calculated. The effect of temperatures on all the parameters was studied in methanol. 1:1 stoichiometric of CT-complex was ascertained by Benesi-Hildebrand plots giving straight line, which are good agreement with other analysis. Synthesized CT complex was screened for its antimicrobial activity such as antibacterial activity against two gram-positive bacteria, Staphylococcus aureus and bacillus subtilis and two gram negative bacteria Escherichia coli and pseudomonas aeruginosa, and antifungal activity against fungi Fusarium oxysporum, and Aspergillus flavus.

  13. Detection of glucose-6-phosphate dehydrogenase deficiency in erythrocytes: a spectrophotometric assay and a fluorescent spot test compared with a cytochemical method.

    PubMed

    Wolf, B H; Weening, R S; Schutgens, R B; van Noorden, C J; Vogels, I M; Nagelkerke, N J

    1987-09-30

    The results of a quantitative spectrophotometric enzyme assay, a fluorescent spot test and a cytochemical assay for glucose-6-phosphate dehydrogenase deficiency were compared systematically. The high sensitivity of the spectrophotometric assay and the fluorescent spot test in the detection of severely deficient individuals was confirmed. For the detection of heterozygote females, however both tests were unreliable; the sensitivities of the fluorescent spot test and the spectrophotometric assay being 32% and 11% respectively. Specificities for both tests were high (99%). Introduction of the ratio of glucose-6-phosphate dehydrogenase and pyruvate kinase (G-6-PD/PK ratio) activities increased the sensitivity of the spectrophotometric assay to nearly 100%. It is concluded that the fluorescent spot test should be used for the diagnosis of G-6-PD deficiency in developing countries; whereas if spectrophotometric enzyme assays are available, the G-6-PD/PK ratio should always be performed. In cases where the ratio is less than 0.70, cytochemical analysis is indicated.

  14. Transmission and Absorption Coefficients for Ocular Media of the Rhesus Monkey

    DTIC Science & Technology

    1978-12-01

    Report SAM-TR.78-32 @LEVtt ^ \\ TRANSMISSION AND ABSORPTION COEFFICIENTS FOR OGVLAR MEDIA OF THE RHESUS MONKEY 30 JO \\ Edward F. Maher... MONKEY 5. I il | ||| MhlHWr W PI liriTl i I III I 5" . Final Report ""■"’ 15 Sep 74 - 15 Sep 76 6 «HFORMtMO OHG REPORT KUMBE...for these calculations were performed spectrophotometrically using freshly enucleated rhesus monkey eyes and narrow-bandwidth radiation. Much of the

  15. Spectrophotometric determination of fluoxetine hydrochloride in bulk and in pharmaceutical formulations.

    PubMed

    Prabhakar, A H; Patel, V B; Giridhar, R

    1999-07-01

    Two new rapid, sensitive and economical spectrophotometric methods are described for the determination of fluoxetine hydrochloride in bulk and in pharmaceutical formulations. Both methods are based on the formation of a yellow ion-pair complex due to the action of methyl orange (MO) and thymol blue (TM) on fluoxetine in acidic (pH 4.0) and basic (pH 8.0) medium, respectively. Under optimised conditions they show an absorption maxima at 433 nm (MO) and 410 nm (TB), with molar absorptivities of 2.12 x 10(-4) and 4.207 x 10(-3) l mol(-1) cm(-1) and Sandell's Sensitivities of 1.64 x 10(-2) and 0.082 microg cm(-2) per 0.001 absorbance unit for MO and TB, respectively. The colour is stable for 5 min after extraction. In both cases Beer's Law is obeyed at 1-20 microg mol(-1) with MO and 4-24 microg mol(-1) with TB. The proposal method was successfully extended to pharmaceutical preparations capsules. The results obtained by both the agreement and E.P. (3rd edition) were in good agreement and statistical comparison by Student's t-test and variance ratio F-test showed no significant difference in the three methods.

  16. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples.

    PubMed

    Fukushima, Romualdo S; Hatfield, Ronald D

    2004-06-16

    Present analytical methods to quantify lignin in herbaceous plants are not totally satisfactory. A spectrophotometric method, acetyl bromide soluble lignin (ABSL), has been employed to determine lignin concentration in a range of plant materials. In this work, lignin extracted with acidic dioxane was used to develop standard curves and to calculate the derived linear regression equation (slope equals absorptivity value or extinction coefficient) for determining the lignin concentration of respective cell wall samples. This procedure yielded lignin values that were different from those obtained with Klason lignin, acid detergent acid insoluble lignin, or permanganate lignin procedures. Correlations with in vitro dry matter or cell wall digestibility of samples were highest with data from the spectrophotometric technique. The ABSL method employing as standard lignin extracted with acidic dioxane has the potential to be employed as an analytical method to determine lignin concentration in a range of forage materials. It may be useful in developing a quick and easy method to predict in vitro digestibility on the basis of the total lignin content of a sample.

  17. Spectrophotometric method for quantitative measuring essential oil in aromatic water and distillate with rose smell

    NASA Astrophysics Data System (ADS)

    Semenova, E.; Presnyakova, V.; Goncharov, D.; Goncharov, M.; Presnyakova, E.; Presnyakov, S.; Moiseeva, I.; Kolesnikova, S.

    2017-01-01

    In this connection, we improved the express methods of determining the mixture of volatile aromatic substances by the spectrophotometry of aromatic water and steam distillate of essential oil raw materials (traditional or biotechnological with rose smell). Direct spectrophotometry of distillation water is impossible because it is a colloid of liquid oil and law is not observed. Therefore, it is necessary to dissolve 1 ml of distillate in ethanol in the ratio 1:4, in this case we take real solution with no lipophilic fall-out on the walls of cuvette, also the light absorption law is observed. There are stable maximums in spectrums of studied oils. Optical density of these maximums is a result of summary absorption of terpenoid components (aromatic and monoterpene alcohols, its ethers). Optical density of tested and standard solutions is measured in appropriate wavelengths. Spectrophotometric method of determination of essential oil quantity in aromatic water with rose smell differs with high sensitivity (10-5-10-6 gmol/l) and allows to determine oil concentration from 0,900 to 0,008 mg with an error less than 1%. At that, 1 ml is enough for analysis. It’s expedient to apply this method while operating with small quantity of water distillate in biochemical and biotechnological researches and also as express control for extraction and hydrodistillation of essential oil raw material (rose petals and flowers from different origin, eremothecium cultural liquid etc.).

  18. Development of a Low-Cost Spectrophotometric Sensor for ClO2 Gas

    NASA Astrophysics Data System (ADS)

    Conry, Jessica; Scott, Dane; Apblett, Allen; Materer, Nicholas

    2006-04-01

    ClO2 is of interest because of it's capability to kill biological hazards such as E. coli and mold. However, ClO2 is a toxic, reactive gas that must be generated at the point-of-use. Gas storage is not possible due to the possibility of an explosion. The need to detect the amount of ClO2 at the point-of-use necessitates a low cost sensor. A low-cost spectrophotometric sensor based on a broad-band light source, a photodiode detector and a band-pass filter is proposed. To verify the design, precise determinations of the gas-phase cross-section and characterization of the optical components are necessary. Known concentrations of ClO2(g) are prepared using the equilibrium relationship between an aqueous solution and the gas phase. The aqueous solutions are obtained by generating the gas via a chemical reaction and passing it through water. The concentrations of the aqueous solutions are then determined by chemical titration and UV-visible absorption measurements. For the solutions, a maximum absorption is observed at 359 nm, and the cross section at this wavelength is determined to be 4.79x10-18cm^2, in agreement with previous observations. Using a broad-band source, the absorption of ClO2 gas is successfully analyzed and concentrations are determined as low as 100 ppm. A more recent prototype based on an UV LED can measure down to concentrations as low as one ppm.

  19. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures.

    PubMed

    Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Salem, Hesham

    2014-11-11

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Realistic absorption coefficient of each individual film in a multilayer architecture

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2015-02-01

    A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures.

  1. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    PubMed

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.

  2. Structural and spectrophotometric characterization of 2-[4-(dimethylamino)styryl]-1-ethylquinolinium iodide as a reagent for sequential injection determination of tungsten

    NASA Astrophysics Data System (ADS)

    Bazel, Yaroslav; Lešková, Martina; Rečlo, Michal; Šandrejová, Jana; Simon, András; Fizer, Maksym; Sidey, Vasyl

    2018-05-01

    Structure, spectrophotometric and protolytic properties of the styryl dye 2-[4-(dimethylamino)styryl]-1-ethylquinolinium iodide (R) as well as its complex with tungsten were studied. The selective protonation of dimethylamino group was confirmed by density functional theory investigation through the computation of Fukui function, NPA partial atomic charges, and NICS(0) aromaticity indexes. The TD-DFT study explains the experimental change of color by excluding the dimethylamino group from HOMO orbital upon protonation. The acid dissociation constant, the optimum wavelength and the molar absorptivity of R were found to be: 3.02, 501 nm and 4.0 × 104 L mol-1 cm-1, respectively. The protolytic properties of the reagent were found to change significantly in the presence of tungsten(VI). Analysis of bond critical points between the anions and Quinaldine Red cation gives the selectivity raw HWO4- > MoO4-> H2VO4- > ReO4- > ClO4-, that perfectly match with the experimental data. Based on this observation, a non-extractive sequential-injection spectrophotometric method for the determination of tungsten was developed. The absorbance of the colored extracts obeys Beer's law up to 55.2 mg L-1 of W at 520 nm wavelength. The limit of detection calculated from a blank test (n = 10) based on 3 s was 0.96 mg L-1. The developed method was applied for the determination of tungsten in model samples.

  3. Novel spectrophotometric method for determination of cinacalcet hydrochloride in its tablets via derivatization with 1,2-naphthoquinone-4-sulphonate

    PubMed Central

    2012-01-01

    This study represents the first report on the development of a novel spectrophotometric method for determination of cinacalcet hydrochloride (CIN) in its tablet dosage forms. Studies were carried out to investigate the reaction between CIN and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 8.5), an orange red-colored product exhibiting maximum absorption peak (λmax) at 490 nm was produced. The stoichiometry and kinetic of the reaction were investigated and the reaction mechanism was postulated. This color-developing reaction was employed in the development of a simple and rapid visible-spectrophotometric method for determination of CIN in its tablets. Under the optimized reaction conditions, Beer's law correlating the absorbance with CIN concentration was obeyed in the range of 3 - 100 μg/ml with good correlation coefficient (0.9993). The molar absorptivity (ε) was 4.2 × 105 l/mol/cm. The limits of detection and quantification were 1.9 and 5.7 μg/ml, respectively. The precision of the method was satisfactory; the values of relative standard deviations (RSD) did not exceed 2%. No interference was observed from the excipients that are present in the tablets. The proposed method was applied successfully for the determination of CIN in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.80 - 102.23 ± 1.27 - 1.62%. The results were compared favorably with those of a reference pre-validated method. The method is practical and valuable in terms of its routine application in quality control laboratories. PMID:22305461

  4. Spectrophotometric Determination of Nitrogen Oxides in the Air with 2-N-Ethyl-5-Naphthol-7-Sulfonic Acid

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Shi, W.; Zhang, C.; Wen, H.

    2017-09-01

    For the determination of nitrogen oxides in the air, the structure of diazo and coupling compounds was studied and tested by experiments. The conditions and methods of diazo and coupling reactions were investigated. Furthermore, a spectrophotometric method using sulfanilamide as a diazo compound and 2-N-ethyl-5-naphthol-7-sulfonic acid (N-ethyl J acid) as a coupling compound was proposed. The maximum absorption wavelength of sulfanilamide-Nethyl J acid azo compound was at 478 nm. The molar absorptivity was 4.31 × 104 L/(mol × cm) with a recovery of 98.7-100.9% and RSD of 1.85%. For nitrogen oxides, the determinate limit of this measurement was 0.015 mg/m3 and the determinate range 0.024-2.0 mg/m3. Moreover, a high degree of correlation was observed between the results obtained by the proposed method and the standard methods. The proposed method can be easily applied to determine nitrogen oxides in the air.

  5. Four Derivative Spectrophotometric Methods for the Simultaneous Determination of Carmoisine and Ponceau 4R in Drinks and Comparison with High Performance Liquid Chromatography

    PubMed Central

    Turak, Fatma; Dinç, Mithat; Dülger, Öznur; Özgür, Mahmure Ustun

    2014-01-01

    Four simple, rapid, and accurate spectrophotometric methods were developed for the simultaneous determination of two food colorants, Carmoisine (E122) and Ponceau 4R (E124), in their binary mixtures and soft drinks. The first method is based on recording the first derivative curves and determining each component using the zero-crossing technique. The second method uses the first derivative of ratio spectra. The ratio spectra are obtained by dividing the absorption spectra of the binary mixture by that of one of the components. The third method, derivative differential procedure, is based on the measurement of difference absorptivities derivatized in first order of solution of drink samples in 0,1 N NaOH relative to that of an equimolar solution in 0,1 N HCl at wavelengths of 366 and 451 nm for Carmoisine and Ponceau 4R, respectively. The last method, based on the compensation method is presented for derivative spectrophotometric determination of E122 and E124 mixtures with overlapping spectra. By using ratios of the derivative maxima, the exact compensation of either component in the mixture can be achieved, followed by its determination. These proposed methods have been successfully applied to the binary mixtures and soft drinks and the results were statistically compared with the reference HPLC method (NMKL 130). PMID:24672549

  6. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  7. Simple, fast and reliable liquid chromatographic and spectrophotometric methods for the determination of theophylline in urine, saliva and plasma samples.

    PubMed

    Charehsaz, Mohammad; Gürbay, Aylin; Aydin, Ahmet; Sahin, Gönül

    2014-01-01

    In this study, a high-performance liquid chromatographic method (HPLC) and UV spectrophotometric method were developed, validated and applied for the determination of theophylline in biological fluids. Liquid- liquid extraction is performed for isolation of the drug and elimination of plasma and saliva interferences. Urine samples were applied without any extraction. The chromatographic separation was achieved on a C18 column by using 60:40 methanol:water as mobile phase under isocratic conditions at a flow rate of 0.75 mL/min with UV detection at 280 nm in HPLC method. UV spectrophotometric analysis was performed at 275 nm. the limit of quantification: 1.1 µg/mL for urine, 1.9 µg/mL for saliva, 3.1 µg/mL for plasma; recovery: 94.85% for plasma, 100.45% for saliva, 101.39% for urine; intra-day precision: 0.22-2.33%, inter-day precision: 3.17-13.12%. Spectrophotometric analysis results were as follows: the limit of quantitation: 5.23 µg/mL for plasma, 8.7 µg/mL for urine; recovery: 98.27% for plasma, 95.25% for urine; intra-day precision: 2.37 - 3.00%, inter-day precision: 5.43-7.91%. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of theophylline in biological samples. Also spectrophotometric analysis can be used where it can be applicable.

  8. Computation of geometric representation of novel spectrophotometric methods used for the analysis of minor components in pharmaceutical preparations.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-01-01

    Novel spectrophotometric methods were applied for the determination of the minor component tetryzoline HCl (TZH) in its ternary mixture with ofloxacin (OFX) and prednisolone acetate (PA) in the ratio of (1:5:7.5), and in its binary mixture with sodium cromoglicate (SCG) in the ratio of (1:80). The novel spectrophotometric methods determined the minor component (TZH) successfully in the two selected mixtures by computing the geometrical relationship of either standard addition or subtraction. The novel spectrophotometric methods are: geometrical amplitude modulation (GAM), geometrical induced amplitude modulation (GIAM), ratio H-point standard addition method (RHPSAM) and compensated area under the curve (CAUC). The proposed methods were successfully applied for the determination of the minor component TZH below its concentration range. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spectrophotometric determination of uric acid and some redeterminations of its solubility

    USGS Publications Warehouse

    Norton, D.R.; Plunkett, M.A.; Richards, F.A.

    1954-01-01

    The present study was initiated in order to develop a rapid and accurate method for the determination of uric acid in fresh, brackish, and sea water. It was found that the spectrophotometric determination of uric acid based upon its reaction with arsenophosphotungstic acid reagent in the presence of cyanide ion meets this objective. The absorbancy of the blue complex was measured at 890 m??. Slight variations from Beer's law were generally found. The results show the effects of pH, reaction time, concentration of reagents, and temperature upon color development and precipitate formation. Disodium dihydrogen ethylenediamine tetraacetate (Versene) was used as a buffering and complexirig agent. The results are significant in that they give the absorption spectrum of the blue complex and the effects of variables upon its absorbancy. Studies were made with the method to determine the stability of reagents and standard solutions and to determine the rate of bacterial decomposition of uric acid. Measurements of the solubility of uric acid are reported.

  10. Fully automated analytical procedure for propofol determination by sequential injection technique with spectrophotometric and fluorimetric detections.

    PubMed

    Šrámková, Ivana; Amorim, Célia G; Sklenářová, Hana; Montenegro, Maria C B M; Horstkotte, Burkhard; Araújo, Alberto N; Solich, Petr

    2014-01-01

    In this work, an application of an enzymatic reaction for the determination of the highly hydrophobic drug propofol in emulsion dosage form is presented. Emulsions represent a complex and therefore challenging matrix for analysis. Ethanol was used for breakage of a lipid emulsion, which enabled optical detection. A fully automated method based on Sequential Injection Analysis was developed, allowing propofol determination without the requirement of tedious sample pre-treatment. The method was based on spectrophotometric detection after the enzymatic oxidation catalysed by horseradish peroxidase and subsequent coupling with 4-aminoantipyrine leading to a coloured product with an absorbance maximum at 485 nm. This procedure was compared with a simple fluorimetric method, which was based on the direct selective fluorescence emission of propofol in ethanol at 347 nm. Both methods provide comparable validation parameters with linear working ranges of 0.005-0.100 mg mL(-1) and 0.004-0.243 mg mL(-1) for the spectrophotometric and fluorimetric methods, respectively. The detection and quantitation limits achieved with the spectrophotometric method were 0.0016 and 0.0053 mg mL(-1), respectively. The fluorimetric method provided the detection limit of 0.0013 mg mL(-1) and limit of quantitation of 0.0043 mg mL(-1). The RSD did not exceed 5% and 2% (n=10), correspondingly. A sample throughput of approx. 14 h(-1) for the spectrophotometric and 68 h(-1) for the fluorimetric detection was achieved. Both methods proved to be suitable for the determination of propofol in pharmaceutical formulation with average recovery values of 98.1 and 98.5%. © 2013 Elsevier B.V. All rights reserved.

  11. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    NASA Astrophysics Data System (ADS)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  12. Sensitive flotation-spectrophotometric determination of gold, based on the gold(I)-iodide-methylene blue system.

    PubMed

    Marczenko, Z; Jankowski, K

    1985-04-01

    The gold(I)-iodide-Methylene Blue (MB) system is suitable for flotation separation and spectrophotometric determination of gold. Under the optimum conditions [(MB(+))(AuI(2)(-))].3[(MB(+))(I(3)(-))] is formed, and floated with cyclohexane. The product is dissolved in methanol and its absorbance measured. The molar absorptivity is 3.4 x 10(5)1.mole(-1).cm(-1) at 655 nm. The proposed method is more than three times as sensitive as the Rhodamine B method. Pt, Pd, Ag and Hg interfere seriously, and Ir, Rh, Bi and Cd to a smaller extent. Preliminary separation of gold by precipitation with tellurium as a collector is recommended. The method has been applied to determination of gold traces (about 1 x 10(-4)%) in a copper sample.

  13. Spectrophotometric and Spectrofluorimetric Studies on Azilsartan Medoxomil and Chlorthalidone to Be Utilized in Their Determination in Pharmaceuticals

    PubMed Central

    Ebeid, Walid M; Elkady, Ehab F; El-Zaher, Asmaa A; El-Bagary, Ramzia I; Patonay, Gabor

    2014-01-01

    The recently approved angiotensin II receptor blocker, azilsartan medoxomil (AZL), was determined spectrophotometrically and spectrofluorimetrically in its combination with chlorthalidone (CLT) in their combined dosage form. The UV-spectrophotometric technique depends on simultaneous measurement of the first derivative spectra for AZL and CLT at 286 and 257 nm, respectively, in methanol. The spectrofluorimetric technique depends on measurement of the fourth derivative of the synchronous spectra intensities of AZL in presence of CLT at 298 nm in methanol. The effects of different solvents on spectrophotometric and spectrofluorimetric responses were studied. For, the spectrofluorimetric study, the effect of pH and micelle-assisted fluorescence enhancement were also studied. Linearity, accuracy, and precision were found to be satisfactory over the concentration ranges of 8–50 μg mL−1 and 2–20 μg mL−1 for AZL and CLT, respectively, in the spectrophotometric method as well as 0.01–0.08 μg mL−1 for AZL in the spectrofluorimetric method. The methods were successfully applied for the determination of the studied drugs in their co-formulated tablets. The developed methods are inexpensive and simple for the quality control and routine analysis of the cited drugs in bulk and in pharmaceuticals. PMID:24855334

  14. Application of spectrophotometric, densitometric, and HPLC techniques as stability indicating methods for determination of Zaleplon in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Metwally, Fadia H.; Abdelkawy, M.; Abdelwahab, Nada S.

    2007-12-01

    Spectrophotometric, spectrodensitometric and HPLC are stability indicating methods described for determination of Zaleplon in pure and dosage forms. As Zaleplon is easily degradable, the proposed techniques in this manuscript are adopted for its determination in presence of its alkaline degradation product, namely N-[4-(3-cyano-pyrazolo[1,5a]pyridin-7-yl)-phenyl]- N-ethyl-acetamide. These approaches are successfully applied to quantify Zaleplon using the information included in the absorption spectra of appropriate solutions. The second derivative (D 2) spectrophotometric method, allows determination of Zaleplon without interference of its degradate at 235.2 nm using 0.01N HCl as a solvent with obedience to Beer's law over a concentration range of 1-10 μg ml -1 with mean percentage recovery 100.24 ± 0.86%. The first derivative of the ratio spectra ( 1DD) based on the simultaneous use of ( 1DD) and measurement at 241.8 nm using the same solvent and over the same concentration range as (D 2) spectrophotometric method, with mean percentage recovery 99.9 ± 1.07%. The spectrodensitometric analysis allows the separation and quantitation of Zaleplon from its degradate on silica gel plates using chloroform:acetone:ammonia solution (9:1:0.2 by volume) as a mobile phase. This method depends on quantitave densitometric evaluation of thin layer chromatogram of Zaleplon at 338 nm over a concentration range of 0.2-1 μg band -1, with mean percentage recovery 99.73 ± 1.35. Also a reversed-phase liquid chromatographic method using 5-C8 (22 cm × 4.6 mm i.d. 5 μm particle size) column was described and validated for quantitation of Zaleplon using acetonitrile:deionised water (35:65, v/v) as a mobile phase using Paracetamol as internal standard and a flow rate of 1.5 ml min -1 with UV detection of the effluent at 232 nm at ambient temperature over a concentration range of 2-20 μg ml -1 with mean percentage recovery 100.19 ± 1.15%. The insignificance difference of the proposed

  15. Mean centering of double divisor ratio spectra, a novel spectrophotometric method for analysis of ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-01-01

    A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.

  16. [Derivative spectrophotometric and NMR spectroscopic study in pharmaceutical science].

    PubMed

    Kitamura, Keisuke

    2007-10-01

    This review starts with an introduction of derivative spectrophotometry followed by a description on the construction of a personal computer-assisted derivative spectrophotometric (DS) system. An acquisition system for inputting digitalized absorption spectra into personal computers and a BASIC program for calculating derivative spectra were developed. Then, applications of the system to drug analyses that are difficult with traditional absorption methods are described. Following this, studies on the interactions of drugs with biological macromolecules by the DS and NMR methods were discussed. An (1)H NMR study elucidated that the small unilamellar vesicle (SUV) has a single membrane made of a phosphatidylcholine bilayer, and that chlorpromazine interacts with both the outer and inner layers. (13)C NMR revealed a reduction of the dissociation constants of phenothiazine drugs due to their interaction with SUV. The partition coefficients of phenothiazine, benzodiazepine and steroid drugs in an SUV-water system and the effects of cholesterol or amino lipids content on these partition coefficients were examined by the DS method. The binding constants of phenothiazine drugs to bovine serum albumin (BSA) and the influence of Na(+), K(+), Cl(-), Br(-), and I(-) on these binding constants were determined by DS. It was found that I(-), Br(-), Cl(-) reduce the binding constants in this order, and that Na(+) and K(+) have no effect. A (19)F NMR study revealed that triflupromazine binds to BSA and human serum albumin in two regions including Site II with different populations, and that a nonsteroidal anti-inflammatory drug, niflumic acid, binds Sites Ia and Ib.

  17. Spectrophotometric analyses of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in water.

    PubMed

    Shi, Cong; Xu, Zhonghou; Smolinski, Benjamin L; Arienti, Per M; O'Connor, Gregory; Meng, Xiaoguang

    2015-07-01

    A simple and accurate spectrophotometric method for on-site analysis of royal demolition explosive (RDX) in water samples was developed based on the Berthelot reaction. The sensitivity and accuracy of an existing spectrophotometric method was improved by: replacing toxic chemicals with more stable and safer reagents; optimizing the reagent dose and reaction time; improving color stability; and eliminating the interference from inorganic nitrogen compounds in water samples. Cation and anion exchange resin cartridges were developed and used for sample pretreatment to eliminate the effect of ammonia and nitrate on RDX analyses. The detection limit of the method was determined to be 100 μg/L. The method was used successfully for analysis of RDX in untreated industrial wastewater samples. It can be used for on-site monitoring of RDX in wastewater for early detection of chemical spills and failure of wastewater treatment systems. Copyright © 2015. Published by Elsevier B.V.

  18. Complexation equilibria and spectrophotometric determination of iron(III) with 1-amino-4-hydroxyanthraquinone.

    PubMed

    Abu-Bakr, M S; Sedaira, H; Hashem, E Y

    1994-10-01

    The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.

  19. Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.

    PubMed

    Albendín, Gemma; López-López, José A; Pinto, Juan J

    2016-03-15

    Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Quantitative determination of ambroxol in tablets by derivative UV spectrophotometric method and HPLC.

    PubMed

    Dinçer, Zafer; Basan, Hasan; Göger, Nilgün Günden

    2003-04-01

    A derivative UV spectrophotometric method for the determination of ambroxol in tablets was developed. Determination of ambroxol in tablets was conducted by using first-order derivative UV spectrophotometric method at 255 nm (n = 5). Standards for the calibration graph ranging from 5.0 to 35.0 microg/ml were prepared from stock solution. The proposed method was accurate with 98.6+/-0.4% recovery value and precise with coefficient of variation (CV) of 1.22. These results were compared with those obtained by reference methods, zero-order UV spectrophotometric method and reversed-phase high-performance liquid chromatography (HPLC) method. A reversed-phase C(18) column with aqueous phosphate (0.01 M)-acetonitrile-glacial acetic acid (59:40:1, v/v/v) (pH 3.12) mobile phase was used and UV detector was set to 252 nm. Calibration solutions used in HPLC were ranging from 5.0 to 20.0 microg/ml. Results obtained by derivative UV spectrophotometric method was comparable to those obtained by reference methods, zero-order UV spectrophotometric method and HPLC, as far as ANOVA test, F(calculated) = 0.762 and F(theoretical) = 3.89, was concerned. Copyright 2003 Elsevier Science B.V.

  1. Highly Sensitive and Validated Spectrophotometric Technique for the Assay of Some Antidepressant Drugs

    NASA Astrophysics Data System (ADS)

    Deepakumari, H. N.; Prashanth, M. K.; Kumar, B. C. Vasantha; Revanasiddappa, H. D.

    2015-01-01

    The present paper describes a simple, rapid, reproducible, and highly sensitive spectrophotometric method for the determination of the tricyclic antidepressant drugs: amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMH), clomipramine hydrochloride (CPH) and desipramine hydrochloride (DPH) in pure and in pharmaceutical preparations. The method is based on the bromination of the above drugs with known excess of bromine. The unreacted bromine is determined based on its ability to bleach the dye methyl red quantitatively at 520 nm. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration range 0.0-2.5, 0-1.4, 0-1.4, and 0-1.0 μg/ml for AMT, IMH, CPH, and DPH, respectively. The molar absorptivity values were found to be 0.65 × 105, 1.41 × 105, 1.93 × 105, and 2.96 × 105l/mol/cm, with the corresponding Sandell's sensitivity values were 0.0048, 0.0022, 0.0018, and 0.0010 μg/cm2 for AMT, IMH, CPH, and DPH, respectively. The limits of detection (LOD) and quantification (LOQ) are also reported for the developed method. Intra- and inter-day accuracy and precision was established according to the current ICH guidelines. Application of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the proposed method was confirmed by applying the standard addition technique, and the results obtained are in good agreement with those obtained by the official method.

  2. Spectrofluorimetric and spectrophotometric stability-indicating methods for determination of some oxicams using 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl).

    PubMed

    Taha, Elham Anwer; Salama, Nahla Nour; Fattah, Laila El-Sayed Abdel

    2006-05-01

    Two sensitive and selective spectrofluorimetric and spectrophotometric stability-indicating methods have been developed for the determination of some non-steroidal anti-inflammatory oxicam derivatives namely lornoxicam (Lx), tenoxicam (Tx) and meloxicam (Mx) after their complete alkaline hydrolysis. The methods are based on derivatization of alkaline hydrolytic products with 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). The products showed an absorption maximum at 460 nm for the three studied drugs and fluorescence emission peak at 535 nm in methanol. The color was stable for at least 48 h. The optimum conditions of the reaction were investigated and it was found that the reaction proceeds quantitatively at pH 8, after heating in a boiling water bath for 30 min. The methods were found to be linear in the ranges of 1-10 microg ml(-1) for Lx and Tx and 0.5-4.0 microg ml(-1) for Mx for spectrophotometric method, while 0.05-1.0 microg ml(-1) for Lx and Tx and 0.025-0.4 microg ml(-1) for Mx for the spectrofluorimetric method. The validity of the methods was assessed according to USP guidelines. Statistical analysis of the results revealed high accuracy and good precision. The suggested procedures could be used for the determination of the above mentioned drugs in pure and dosage forms as well as in the presence of their degradation products.

  3. Spectrophotometric and HPLC Methods for Simultaneous Estimation of Amlodipine Besilate, Losartan Potassium and Hydrochlorothiazide in Tablets

    PubMed Central

    Wankhede, S. B.; Raka, K. C.; Wadkar, S. B.; Chitlange, S. S.

    2010-01-01

    Two UV-spectrophotometric and one reverse phase high performance liquid chromatography methods have been developed for the simultaneous estimation of amlodipine besilate, losartan potassium and hydrochlorothiazide in tablet dosage form. The first UV spectrophotometric method was a determination using the simultaneous equation method at 236.5, 254 and 271 nm over the concentration range 5-25, 10-50 and 5-25 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. The second UV method was a determination using the area under curve method at 231.5-241.5, 249-259 and 266-276 nm over the concentration range of 5-25, 5-25 and 10-50 μg/ml for amlodipine besilate, hydrochlorothiazide and losartan potassium, respectively. In reverse phase high performance liquid chromatography analysis is carried out using 0.025 M phosphate buffer (pH 3.7):acetonitrile (57:43 v/v) as the mobile phase and Kromasil C18 (4.6 mm i.d×250 mm) column as stationery phase with detection wavelength of 232 nm linearity was obtained in the concentration range of 2-14, 20-140 and 5-40 μg/ml for amlodipine besilate, losartan potassium and hydrochlorothiazide, respectively. Both UV-spectrophotometric and reverse phase high performance liquid chromatography methods were statistically validated and can be used for analysis of combined dose tablet formulation containing amlodipine besilate, losartan potassium and hydrochlorothiazide. PMID:20582208

  4. Spectroflourometric and spectrophotometric methods for the determination of sitagliptin in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product.

    PubMed

    El-Bagary, Ramzia I; Elkady, Ehab F; Ayoub, Bassam M

    2011-03-01

    Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL(-1). The first derivative spectrophotometric method was used for the determination of MET in the range of 2-12 μg mL(-1) and STG in the range of 50-300 μg mL(-1) by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2-12 μg mL(-1). The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL(-1). The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.

  5. Spectroflourometric and Spectrophotometric Methods for the Determination of Sitagliptin in Binary Mixture with Metformin and Ternary Mixture with Metformin and Sitagliptin Alkaline Degradation Product

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2011-01-01

    Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL-1. The first derivative spectrophotometric method was used for the determination of MET in the range of 2–12 μg mL-1 and STG in the range of 50-300 μg mL-1 by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2–12 μg mL-1. The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL-1. The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms. PMID:23675222

  6. Pyrocatechol violet in pharmaceutical analysis. Part I. A spectrophotometric method for the determination of some beta-lactam antibiotics in pure and in pharmaceutical dosage forms.

    PubMed

    Amin, A S

    2001-03-01

    A fairly sensitive, simple and rapid spectrophotometric method for the determination of some beta-lactam antibiotics, namely ampicillin (Amp), amoxycillin (Amox), 6-aminopenicillanic acid (6APA), cloxacillin (Clox), dicloxacillin (Diclox) and flucloxacillin sodium (Fluclox) in bulk samples and in pharmaceutical dosage forms is described. The proposed method involves the use of pyrocatechol violet as a chromogenic reagent. These drugs produce a reddish brown coloured ion pair with absorption maximum at 604, 641, 645, 604, 649 and 641 nm for Amp, Amox, 6APA, Clox, Diclox and Flucolx, respectively. The colours produced obey Beer's law and are suitable for the quantitative determination of the named compounds. The optimization of different experimental conditions is described. The molar ratio of the ion pairs was established and a proposal for the reaction pathway is given. The procedure described was applied successfully to determine the examined drugs in dosage forms and the results obtained were comparable to those obtained with the official methods.

  7. Spectrophotometric Determination of Distigmine Bromide, Cyclopentolate HCl, Diaveridine HCl and Tetrahydrozoline HCl via Charge Transfer Complex Formation with TCNQ and TCNE Reagents.

    PubMed

    Mohamed, Gehad Genidy; Rizk, Mahmoud Sabry; Zaky Frag, Eman Yousry

    2015-01-01

    The purpose of this investigation was directed to propose sensitive, accurate and reproducible methods of analysis that can be applied to determine distigmine bromide (DTB), cyclopentolate hydrochloride (CPHC), diaveridine hydrochloride (DVHC) and tetrahydrozoline hydrochloride (THHC) drugs in pure form and pharmaceutical preparations via charge-transfer complex formation with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) reagents. Spectrophotometric method involve the addition a known excess of TCNQ or TCNE reagents to DTB, CPHC, DVHC and THHC drugs in acetonitrile, followed by the measurement of the absorbance of the CT complexes at the selected wavelength. The reaction stoichiometry is found to be 1:1 [drug]: [TCNQ or TCNE]. The absorbance is found to increase linearly with concentration of the drugs under investigation which is corroborated by the correlation coefficients of 0.9954-0.9981. The system obeys Beer's law for 6-400, 20-500, 1-180 and 60-560 µg mL(-1) and 80-600, 10-300, 1-60 and 80-640 µg mL(-1) for DTB, CPHC, DVHC and THHC drugs using TCNQ and TCNE reagents, respectively. The apparent molar absorptivity, sandell sensitivity, the limits of detection and quantification are also reported for the spectrophotometric method. Intra- and inter-day precision and accuracy of the method were evaluated as per ICH guidelines. The method was successfully applied to the assay of DTB, CPHC, DVHC and THHC drugs in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients.

  8. Spectrophotometric Determination of Distigmine Bromide, Cyclopentolate HCl, Diaveridine HCl and Tetrahydrozoline HCl via Charge Transfer Complex Formation with TCNQ and TCNE Reagents

    PubMed Central

    Mohamed, Gehad Genidy; Rizk, Mahmoud Sabry; Zaky Frag, Eman Yousry

    2015-01-01

    The purpose of this investigation was directed to propose sensitive, accurate and reproducible methods of analysis that can be applied to determine distigmine bromide (DTB), cyclopentolate hydrochloride (CPHC), diaveridine hydrochloride (DVHC) and tetrahydrozoline hydrochloride (THHC) drugs in pure form and pharmaceutical preparations via charge-transfer complex formation with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) reagents. Spectrophotometric method involve the addition a known excess of TCNQ or TCNE reagents to DTB, CPHC, DVHC and THHC drugs in acetonitrile, followed by the measurement of the absorbance of the CT complexes at the selected wavelength. The reaction stoichiometry is found to be 1:1 [drug]: [TCNQ or TCNE]. The absorbance is found to increase linearly with concentration of the drugs under investigation which is corroborated by the correlation coefficients of 0.9954-0.9981. The system obeys Beer’s law for 6-400, 20-500, 1-180 and 60-560 µg mL-1 and 80-600, 10-300, 1-60 and 80-640 µg mL-1 for DTB, CPHC, DVHC and THHC drugs using TCNQ and TCNE reagents, respectively. The apparent molar absorptivity, sandell sensitivity, the limits of detection and quantification are also reported for the spectrophotometric method. Intra- and inter-day precision and accuracy of the method were evaluated as per ICH guidelines. The method was successfully applied to the assay of DTB, CPHC, DVHC and THHC drugs in formulations and the results were compared with those of a reference method by applying Student’s t and F-tests. No interference was observed from common pharmaceutical excipients. PMID:26330858

  9. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors.

    PubMed

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt's method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts.

  10. Spectrophotometric and visual evaluation of peri-implant soft tissue color.

    PubMed

    Benic, Goran I; Scherrer, Daniela; Sancho-Puchades, Manuel; Thoma, Daniel S; Hämmerle, Christoph H F

    2017-02-01

    To spectrophotometrically and visually test whether the peri-implant mucosal color differs from the color of the natural gingiva. Forty single implants in the incisor and premolar region of 40 patients were assessed 3-7 years after implant placement. The differences of the color components lightness, chroma along red-green axis, chroma along yellow-blue axis, and the total color difference ΔE between peri-implant mucosa and natural gingiva were measured with a spectrophotometer. The color difference between peri-implant mucosa and natural gingiva was visually evaluated by clinicians and rated as "clinically visible" or "clinically invisible" from speaking distance. The dimensions of peri-implant mucosa and gingiva at the mid-buccal aspect were evaluated by using cone-beam CT. Spearman analysis was performed to detect correlations between different variables. Two-sided t-test, ANOVA, Mann-Whitney, and Kruskal-Wallis tests were applied to detect differences between the groups. The spectrophotometrically assessed color difference ΔE between peri-implant mucosa and natural gingiva amounted to 7.0 ± 3.9. The peri-implant mucosa presented a significant dark, greenish and bluish discoloration in comparison with gingiva at control teeth. Clinical investigation revealed that in 60% of sites the color difference between peri-implant mucosa and natural gingiva was clinically visible from speaking distance. The threshold value ΔE for the extraoral clinical distinction of mucosal color differences measured 7.5. When comparing the groups with visible and invisible color differences with respect to the three color components, a significant difference was found only for chroma along yellow-blue axis. In the group with visible color difference, mucosa presented a bluish discoloration. Correlation analysis indicated that with an increase in mucosal thickness, a trend for smaller ΔE was found. The spectrophotometrically assessed color of the peri-implant mucosa revealed more

  11. Synergistic liquid-liquid extractive spectrophotometric determination of gold(III) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol.

    PubMed

    Kamble, Ganesh S; Kolekar, Sanjay S; Han, Sung H; Anuse, Mansing A

    2010-05-15

    Synergistic liquid-liquid extractive spectrophotometric determination of gold(III) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydro pyrimidine-2-thiol [2',4'-dinitro APTPT] has been described. Equal volumes (5cm(3)) of the 2',4'-dinitro APTPT (0.02molL(-1)) in the presence of pyridine (0.5molL(-1)) form an orange-red coloured ternary complex with gold(III) of molar ratio 1:1:1 at pH 1.8-2.4 with 5min of shaking. The absorbance of coloured organic layer in 1,2-dichloroethane is measured spectrophotometrically at 445nm against reagent blank. A pronounced synergism has been observed by the binary mixture of 2',4'-dinitro APTPT and pyridine, which shows that the enhancement in the absorbance is observed in the presence of pyridine by the adduct formation in the organic phase. Beer's law was obeyed in the concentration range 2.5-20.0microgmL(-1), with molar absorptivity and Sandell's sensitivity values of 8.7x10(3)dm(3)mol(-1)cm(-1) and 0.023microgcm(-2) respectively. A repetition of the method was checked by finding relative standard deviation (R.S.D.) (n=10) which was 0.17%. The composition of the gold(III)-2',4'-dinitro APTPT-pyridine adduct was established by slope analysis, molar ratio and Job's method. The ternary complex was stable for more than 48h. The influence of various factors such as pH, 2',4'-dinitro APTPT concentration, solvent and pyridine on the degree of complexation has been established. A number of foreign ions tested for their interferences and use of suitable masking agents wherever necessary are tabulated, which show that selectivity of the method has been enhanced. The method is successfully employed for the determination of gold(III) in binary, synthetic mixtures and ayurvedic samples. The reliability of the method is assured by inter-comparison of experimental values, using an atomic absorption spectrometer.

  12. Spectrophotometric determination of β-adrenergic antagonists drugs via ion-pair complex formation using MO and EBT

    NASA Astrophysics Data System (ADS)

    El-Didamony, A. M.; Shehata, A. M.

    2014-09-01

    Two simple, rapid and sensitive spectrophotometric methods have been proposed for the assay of bisoprolol fumarate (BSF), propranolol hydrochloride (PRH), and timolol maleate (TIM) either in bulk or in pharmaceutical formulations. The methods are based on the reaction of the selected drugs with methyl orange (MO) and eriochrome black T in acidic buffers, after extracting in dichloromethane and measured quantitatively with maximum absorption at 428 and 518 nm for MO and EBT, respectively. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 0.8-6.4, 0.4-3.6, 0.8-5.6 μg/mL for BSF, PRH, and TIM, respectively, with MO and 0.8-6.4, 0.4-3.2, and 0.8-8.0 μg/mL for BSF, PRH, and TIM, respectively, with EBT. The stoichiometry of the complexes was found to be 1 : 1 in all cases. The proposed methods were successfully extended to pharmaceutical preparations. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed methods can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance.

  13. Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2015-04-01

    New, accurate, sensitive and reliable kinetic spectrophotometric method for the assay of moxifloxacin hydrochloride (MOXF) in pure form and pharmaceutical formulations has been developed. The method involves the oxidative coupling reaction of MOXF with 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) in the presence of Ce(IV) in an acidic medium to form colored product with lambda max at 623 and 660 nm. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 623 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1.89-40.0 μg mL-1 for initial rate and fixed time methods. The limit of detection for initial rate and fixed time methods is 0.644 and 0.043 μg mL-1, respectively. Molar absorptivity for the method was found to be 0.89 × 104 L mol-1 cm-1. Statistical treatment of the experimental results indicates that the methods are precise and accurate. The proposed method has been applied successfully for the estimation of moxifloxacin hydrochloride in tablet dosage form with no interference from the excipients. The results are compared with the official method.

  14. Spectrophotometric calibration procedures to enable calibration-free measurements of seawater calcium carbonate saturation states.

    PubMed

    Cuyler, Erin E; Byrne, Robert H

    2018-08-22

    A simple protocol was developed to measure seawater calcium carbonate saturation states (Ω spec ) spectrophotometrically. Saturation states are typically derived from the separate measurement of two other carbon system parameters, with each requiring unique instrumentation and often complex measurement protocols. Using the new protocol, the only required equipment is a thermostatted laboratory spectrophotometer. For each seawater sample, spectrophotometric measurements of pH (visible absorbance) are made in paired optical cells, one with and one without added nitric acid. Ultraviolet absorbance is measured to determine the amount of added acid based on the direct proportionality between nitrate concentration and UV absorbance. Coupled measurements of pH and the alkalinity change that accompanies the nitric acid addition allow calculation of a seawater sample's original carbonate ion concentration and saturation state. These paired absorbance measurements yield Ω spec (and other carbonate system parameters), with each sample requiring about 12 min processing time. Initially, an instrument-specific nitrate molar absorptivity coefficient must be determined (due to small but significant discrepancies in instrumental wavelength calibrations), but thereafter no further calibration is needed. In this work, the 1σ precision of replicate measurements of aragonite saturation state was found to be 0.020, and the average difference between Ω spec and Ω calculated conventionally from measured total alkalinity and pH (Ω calc ) was -0.11% ± 0.96% (a level of accuracy comparable to that obtained from spectrophotometric measurements of carbonate ion concentration). Over the entire range of experimental conditions, 0.97 < Ω < 3.17 (n = 125), all measurements attained the Global Ocean Acidification Observing Network's "weather level" goal for accuracy and 90% attained the more stringent "climate level" goal. When Ω spec was calculated from averages of duplicate

  15. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  16. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  17. Verification of spectrophotometric method for nitrate analysis in water samples

    NASA Astrophysics Data System (ADS)

    Kurniawati, Puji; Gusrianti, Reny; Dwisiwi, Bledug Bernanti; Purbaningtias, Tri Esti; Wiyantoko, Bayu

    2017-12-01

    The aim of this research was to verify the spectrophotometric method to analyze nitrate in water samples using APHA 2012 Section 4500 NO3-B method. The verification parameters used were: linearity, method detection limit, level of quantitation, level of linearity, accuracy and precision. Linearity was obtained by using 0 to 50 mg/L nitrate standard solution and the correlation coefficient of standard calibration linear regression equation was 0.9981. The method detection limit (MDL) was defined as 0,1294 mg/L and limit of quantitation (LOQ) was 0,4117 mg/L. The result of a level of linearity (LOL) was 50 mg/L and nitrate concentration 10 to 50 mg/L was linear with a level of confidence was 99%. The accuracy was determined through recovery value was 109.1907%. The precision value was observed using % relative standard deviation (%RSD) from repeatability and its result was 1.0886%. The tested performance criteria showed that the methodology was verified under the laboratory conditions.

  18. Peroxydisulfate Oxidation of L-Ascorbic Acid for Its Direct Spectrophotometric Determination in Dietary Supplements

    NASA Astrophysics Data System (ADS)

    Salkić, M.; Selimović, A.; Pašalić, H.; Keran, H.

    2014-03-01

    A selective and accurate direct spectrophotometric method was developed for the determination of L-as cor bic acid in dietary supplements. Background correction was based on the oxidation of L-ascorbic acid by potassi um peroxydisulfate in an acidic medium. The molar absorptivity of the proposed method was 1.41 · 104 l/(mol · cm) at 265 nm. The method response was linear up to an L-ascorbic acid concentration of 12.00 μg/ml. The detection limit was 0.11 μg/ml, and the relative standard deviation was 0.9 % (n = 7) for 8.00 μg/ml L-ascorbic acid. Other compounds commonly found in the dietary supplements did not interfere with the detection of L-ascorbic acid. The proposed procedure was successfully applied to the determination of L-ascorbic acid in these supplements, and the results obtained agreed with those obtained by iodine titration.

  19. [Ultraviolet spectrophotometric determination of tenoxicam using iodine solution as reagent].

    PubMed

    Mândrescu, Mariana; Spac, A F; Dorneanu, V

    2009-01-01

    For the tenoxicam determination (Nonsteroidal Antiinflammatory Drug - NSAID) it was developed a spectrophotometric method, after the coupling reaction of tenoxicam with iodine, in methanolic medium, with maximum of absorbance at 289 nm. The practical working conditions were established. In the 0.5 divided by 5.0 microg/mL range of tenoxicam concentration, were used 5 x 10(-3) M iodine solution and 0.5 N hydrocloric acid. The stability of product were evaluated for 30 minutes. The developed method was validated. The method showed a good linearity in the range of 0.5 divided 5.0 microg/mL (the correlation coefficient r = 0.9995). The detection limit (LD) was 0.14 microg/mL and the quantification limit (LQ) was 0.49 microg/mL. There were established the precison (RSD = 1.90%) and the accuracy-recovery in the range 97.27 divided by 102.56% with a mean recovery of 99.49%. The experimental results demonstrated a good sensibility. The specific absorptivity for this method is A1%(1 cm,289 nm) = 1770 much higher than tenoxicam in methanol (A1%(1 cm,360 nm) = 323).

  20. Kinetic spectrophotometric method for determination of amlodipine besylate in its pharmaceutical tablets

    PubMed Central

    Mahmoud, Ashraf M.; Abdel-Wadood, Hanaa M.; Mohamed, Niveen A.

    2012-01-01

    A simple and sensitive kinetic spectrophotometric method has been developed and validated for determination of amlodipine besylate (AML). The method was based on the condensation reaction of AML with 7-chloro-4-nitro-2,1,3-benzoxadiazole in an alkaline buffer (pH 8.6) producing a highly colored product. The color development was monitored spectrophometrically at the maximum absorption λmax 470 nm. The factors affecting the reaction were studied and the conditions were optimized. The stoichiometry of the reaction was determined, and the reaction pathway was postulated. Moreover, both the activation energy and the specific rate constant (at 70 °C) of the reaction were found to be 6.74 kcal mole−1 and 3.58 s−1, respectively. The initial rate and fixed time methods were utilized for constructing the calibration graphs for the determination of AML concentration. Under the optimum reaction conditions, the limits of detection and quantification were 0.35 and 1.05 μg/mL, respectively. The precision of the method was satisfactory; the relative standard deviations were 0.85–1.76%. The proposed method was successfully applied to the analysis of AML in its pure form and tablets with good accuracy; the recovery percentages ranged from 99.55±1.69% to 100.65±1.48%. The results were compared with that of the reported method. PMID:29403763

  1. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry

    PubMed Central

    Attimarad, Mahesh

    2010-01-01

    The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003

  2. SHARDS: An Optical Spectro-photometric Survey of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Alonso-Herrero, Almudena; Balcells, Marc; Cenarro, Javier; Cepa, Jordi; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Donley, Jennifer; Elbaz, David; Espino, Néstor; Gallego, Jesús; Gobat, R.; González-Martín, Omaira; Guzmán, Rafael; Hernán-Caballero, Antonio; Muñoz-Tuñón, Casiana; Renzini, Alvio; Rodríguez-Zaurín, Javier; Tresse, Laurence; Trujillo, Ignacio; Zamorano, Jaime

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ~ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z <~ 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well described by

  3. Novel spectrophotometric determination of flumethasone pivalate and clioquinol in their binary mixture and pharmaceutical formulation.

    PubMed

    Abdel-Aleem, Eglal A; Hegazy, Maha A; Sayed, Nour W; Abdelkawy, M; Abdelfatah, Rehab M

    2015-02-05

    This work is concerned with development and validation of three simple, specific, accurate and precise spectrophotometric methods for determination of flumethasone pivalate (FP) and clioquinol (CL) in their binary mixture and ear drops. Method A is a ratio subtraction spectrophotometric one (RSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is a mean center spectrophotometric one (MCR). The calibration curves are linear over the concentration range of 3-45 μg/mL for FP, and 2-25 μg/mL for CL. The specificity of the developed methods was assessed by analyzing different laboratory prepared mixtures of the FP and CL. The three methods were validated as per ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

    PubMed Central

    Zhi, Kangkang; Yang, Zhongduo; Sheng, Jie; Shu, Zongmei; Shi, Yin

    2016-01-01

    To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an excellent substrate for peroxidase-linked spectrophotometric assay. Therefore, a new peroxidase-linked spectrophotometric assay was set up. The principle of the method is that the MAO converts 11 into aldehyde, ammonia and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide will oxidize 4-aminoantipyrine into oxidised 4-aminoantipyrine which can condense with vanillic acid to give a red quinoneimine dye. The production of the quinoneimine dye was detected at 490 nm by a microplate reader. The ⊿OD value between the blank group and blank negative control group in this new method is twice as much as that in Holt’s method, which enables the procedure to be more accurate and avoids the produce of false positive results. The new method will be helpful for researchers to screening monoamine oxidase inhibitors from deep-color plant extracts. PMID:27610153

  5. Energy and Exergy Analysis of Vapour Absorption Refrigeration Cycle—A Review

    NASA Astrophysics Data System (ADS)

    Kanabar, Bhaveshkumar Kantilal; Ramani, Bharatkumar Maganbhai

    2016-07-01

    In recent years, an energy crisis and the energy consumption have become global problems which restrict the sustainable growth. In these scenarios the scientific energy recovery and the utilization of various kinds of waste heat become very important. The waste heat can be utilized in many ways and one of the best practices is to use it for vapour absorption refrigeration system. To ensure efficient working of absorption cycle and utilization of optimum heat, exergy is the best tool for analysis. This paper provides the comprehensive picture of research and development of absorption refrigeration technology, practical and theoretical analysis with different arrangements of the cycle.

  6. Spectrophotometric determination of ofloxacin in pharmaceuticals by redox reaction

    NASA Astrophysics Data System (ADS)

    Ramesh, P. J.; Basavaiah, K.; Rajendraprasad, N.; Devi, O. Zenita; Vinay, K. B.

    2011-07-01

    Two simple spectrophotometric methods have been developed to analyze ofloxacin (OFX) in pharmaceuticals. The methods are based on the oxidation of OFX by a measured excess of cerium(IV) sulfate in H2SO4 medium. This was followed by the determination of the unreacted oxidant by reacting it with either p-toluidine ( p-TD) and measuring the absorbance at 525 nm (method A) or o-dianisidine ( o-DA) and measuring the absorbance at 470 nm (method B). In both methods, the amount of cerium(IV) sulfate reacted corresponds to the amount of OFX. Calibration graphs were linear over the ranges of 0-120 and 0-4 g/ml OFX for methods A and B, respectively. The calculated molar absorptivity (2.34ṡ103 and 5.99ṡ104), Sandell sensitivity, and limit of quantification for the methods are reported. The intra-day precision (%RSD) and accuracy (%RE) were < 8.0 and ≤ 4.0%, respectively, and the inter-day RSD and RE values were within 5 and 4.0%, respectively. The applicability of the methods was demonstrated by determining OFX in tablets with an accuracy (%RE) of < 3% and precision (%RSD) of ≤2.65%. The accuracy of the methods was further ascertained by recovery experiments via a standard-addition procedure.

  7. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-09-05

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sensitive and Selective Spectrophotometric Determination of Gabapentin in Capsules Using Two Nitrophenols as Chromogenic Agents

    PubMed Central

    Abdulrahman, Sameer A. M.; Basavaiah, Kanakapura

    2011-01-01

    Two simple and selective spectrophotometric methods have been proposed for the determination of gabapentin (GBP) in pure form and in capsules. Both methods are based on the proton transfer from the Lewis acid such as 2,4,6-trinitrophenol (picric acid; PA) or 2,4-dinitrophenol (2,4-DNP) to the primary amino group of GBP which works as Lewis base and formation of yellow ion-pair complexes. The ion-pair complexes formed show absorption maximum at 415 and 420 nm for PA and 2,4-DNP, respectively. Under the optimized experimental conditions, Beer's law is obeyed over the concentration ranges of 1.25–15.0 and 2.0–18.0 μg mL−1 GBP for PA and 2,4-DNP methods, respectively. The molar absorptivity, Sandell's sensitivity, detection and, quantification limits for both methods are also reported. The proposed methods were applied successfully to the determination of GBP in pure form and commercial capsules. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level, and there was no significant difference between the reference and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique. PMID:21760787

  9. Quantitative determination of zopiclone and its impurity by four different spectrophotometric methods.

    PubMed

    Abdelrahman, Maha M; Naguib, Ibrahim A; El Ghobashy, Mohamed R; Ali, Nesma A

    2015-02-25

    Four simple, sensitive and selective spectrophotometric methods are presented for determination of Zopiclone (ZPC) and its impurity, one of its degradation products, namely; 2-amino-5-chloropyridine (ACP). Method A is a dual wavelength spectrophotometry; where two wavelengths (252 and 301 nm for ZPC, and 238 and 261 nm for ACP) were selected for each component in such a way that difference in absorbance is zero for the second one. Method B is isoabsorptive ratio method by combining the isoabsorptive point (259.8 nm) in the ratio spectrum using ACP as a divisor and the ratio difference for a single step determination of both components. Method C is third derivative (D(3)) spectrophotometric method which allows determination of both ZPC at 283.6 nm and ACP at 251.6 nm without interference of each other. Method D is based on measuring the peak amplitude of the first derivative of the ratio spectra (DD(1)) at 263.2 nm for ZPC and 252 nm for ACP. The suggested methods were validated according to ICH guidelines and can be applied for routine analysis in quality control laboratories. Statistical analysis of the results obtained from the proposed methods and those obtained from the reported method has been carried out revealing high accuracy and good precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A fast and direct spectrophotometric method for the simultaneous determination of methyl paraben and hydroquinone in cosmetic products using successive projections algorithm.

    PubMed

    Esteki, M; Nouroozi, S; Shahsavari, Z

    2016-02-01

    To develop a simple and efficient spectrophotometric technique combined with chemometrics for the simultaneous determination of methyl paraben (MP) and hydroquinone (HQ) in cosmetic products, and specifically, to: (i) evaluate the potential use of successive projections algorithm (SPA) to derivative spectrophotometric data in order to provide sufficient accuracy and model robustness and (ii) determine MP and HQ concentration in cosmetics without tedious pre-treatments such as derivatization or extraction techniques which are time-consuming and require hazardous solvents. The absorption spectra were measured in the wavelength range of 200-350 nm. Prior to performing chemometric models, the original and first-derivative absorption spectra of binary mixtures were used as calibration matrices. Variable selected by successive projections algorithm was used to obtain multiple linear regression (MLR) models based on a small subset of wavelengths. The number of wavelengths and the starting vector were optimized, and the comparison of the root mean square error of calibration (RMSEC) and cross-validation (RMSECV) was applied to select effective wavelengths with the least collinearity and redundancy. Principal component regression (PCR) and partial least squares (PLS) were also developed for comparison. The concentrations of the calibration matrix ranged from 0.1 to 20 μg mL(-1) for MP, and from 0.1 to 25 μg mL(-1) for HQ. The constructed models were tested on an external validation data set and finally cosmetic samples. The results indicated that successive projections algorithm-multiple linear regression (SPA-MLR), applied on the first-derivative spectra, achieved the optimal performance for two compounds when compared with the full-spectrum PCR and PLS. The root mean square error of prediction (RMSEP) was 0.083, 0.314 for MP and HQ, respectively. To verify the accuracy of the proposed method, a recovery study on real cosmetic samples was carried out with satisfactory

  11. A newly validated and characterized spectrophotometric method for determination of a three water pollutants metal ions

    NASA Astrophysics Data System (ADS)

    Mohamed, Marwa E.; Frag, Eman Y. Z.; Mohamed, Mona A.

    2018-01-01

    A simple, fast and accurate spectrophotometric method had been developed to determine lead (II), chromium (III) and barium (II) ions in pure forms and in spiked water samples using thoron (THO) as a reagent forming colored complexes. It was found that the formed complexes absorbed maximally at 539, 540 and 538 nm for Pb(II)-THO, Cr(III)-THO and Ba(II)-THO complexes, respectively. The optimum experimental conditions for these complexes had been studied carefully. Beer's law was obeyed in the range 1-35, 1-70, and 1-45 μg mL- 1 for Pb (II), Cr(III) and Ba(II) ions with THO reagent, respectively. Different parameters such as linearity, selectivity, recovery, limits of quantification and detection, precision and accuracy were also evaluated in order to validate the proposed method. The results showed that, THO was effective in simultaneous determination of Pb(II), Cr(III) and Ba(III) ions in pure forms and in spiked water samples. Also, the results of the proposed method were compared with that obtained from atomic absorption spectrometry. The isolated solid complexes had been characterized using elemental analysis, X-ray powder diffraction (XRD), IR, mass spectrometry and TD-DFT calculations. Their biological activities were investigated against different types of bacteria and fungi organisms.

  12. Different spectrophotometric methods applied for the analysis of simeprevir in the presence of its oxidative degradation product: Acomparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; El-Abasawi, Nasr M.; El-Olemy, Ahmed; Serag, Ahmed

    2018-02-01

    Five simple spectrophotometric methods were developed for the determination of simeprevir in the presence of its oxidative degradation product namely, ratio difference, mean centering, derivative ratio using the Savitsky-Golay filters, second derivative and continuous wavelet transform. These methods are linear in the range of 2.5-40 μg/mL and validated according to the ICH guidelines. The obtained results of accuracy, repeatability and precision were found to be within the acceptable limits. The specificity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. Furthermore, these methods were statistically comparable to RP-HPLC method and good results were obtained. So, they can be used for the routine analysis of simeprevir in quality-control laboratories.

  13. Absorption rates and free radical scavenging values of vitamin C-lipid metabolites in human lymphoblastic cells.

    PubMed

    Weeks, Benjamin S; Perez, Pedro P

    2007-10-01

    In this study we investigated the cellular absorption rates, antioxidant and free radical scavenging activity of vitamin C-lipid metabolites. The absorption was measured in a human lymphoblastic cell line using a spectrophotometric technique. Cellular vitamin C levels in the human lymphoblastic H9 cell line were measured using the 2,4-dinitrophenylhydrazine spectrophotometric technique. Free radical scavenging activity of vitamin C-lipid metabolites was measured by the reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH) to 1,1-diphenyl-2-picryl hydrazine. Vitamin C-lipid metabolite scavenging of peroxyl radical oxygen reactive species (ORAC) was determined by fluorescence spectrophotometry. Compared to ascorbic acid (AA), calcium ascorbate (CaA), and calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C), vitamin C-lipid metabolites (PureWay-C) were more rapidly absorbed by the H9 human T-lymphocytes. The vitamin C-lipid metabolites (PureWay-C) also reduced pesticide-induced T-lymphocyte aggregation by 84%, while calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C) reduced aggregation by only 34%. The vitamin C-lipid metabolites (PureWay-C) demonstrated free radical scavenging activity of nearly 100% reduction of DPPH at 20 microg/ml and oxygen radical scavenging of over 1200 micro Trolox equivalents per gram. These data demonstrate that the vitamin C-lipid metabolites (PureWay-C) are more rapidly taken-up and absorbed by cells than other forms of vitamin C, including Ester-C. This increased rate of absorption correlates with an increased protection of the T-lymphocytes from pesticide toxicities. Further, vitamin C-lipid metabolites (PureWay-C) are a potent antioxidant and have significant free radical scavenging capabilities.

  14. Novel spectrophotometric methods for simultaneous determination of timolol and dorzolamide in their binary mixture.

    PubMed

    Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2014-05-21

    Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  16. Spectrophotometric and spectroscopic studies of charge transfer complexes of p-toluidine as an electron donor with picric acid as an electron acceptor in different solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Khan, Ishaat M.; Ahmad, Afaq

    2010-04-01

    The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment ( μEN), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.

  17. New Spectrophotometric and Fluorimetric Methods for Determination of Fluoxetine in Pharmaceutical Formulations

    PubMed Central

    Darwish, Ibrahim A.; Amer, Sawsan M.; Abdine, Heba H.; Al-Rayes, Lama I.

    2009-01-01

    New simple and sensitive spectrophotometric and fluorimetric methods have been developed and validated for the determination of fluoxetine hydrochloride (FLX) in its pharmaceutical formulations. The spectrophotometric method was based on the reaction of FLX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium (pH 11) to form an orange-colored product that was measured at 490 nm. The fluorimetric method was based on the reaction of FLX with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in an alkaline medium (pH 8) to form a highly fluorescent product that was measured at 545 nm after excitation at 490 nm. The variables affecting the reactions of FLX with both NQS and NBD-Cl were carefully studied and optimized. The kinetics of the reactions were investigated, and the reaction mechanisms were presented. Under the optimum reaction conditions, good linear relationships were found between the readings and the concentrations of FLX in the ranges of 0.3–6 and 0.035–0.5 μg mL−1 for the spectrophotometric and fluorimetric methods, respectively. The limits of detection were 0.1 and 0.01 μg mL−1 for the spectrophotometric and fluorimetric methods, respectively. Both methods were successfully applied to the determination of FLX in its pharmaceutical formulations. PMID:20107560

  18. Spectrophotometric determination of phenylephrine HCl and orphenadrine citrate in pure and in dosage forms.

    PubMed

    Shama, S A

    2002-11-07

    A simple and rapid spectrophotometric methods have been estimated for the microdetermination of phenylephrine HCl (I) and orphenadrine citrate (II). The proposed methods are based on the formation of ion-pair complexes between the examined drugs with alizarine (Aliz), alizarine red S (ARS), alizarine yellow G (AYG) or quinalizarine (Qaliz), which can be measured at the optimum lambda(max). The optimization of the reaction conditions is investigated. Beer's law is obeyed in the concentration ranges 2-36 microgram ml(-1), whereas optimum concentration as adopted from Ringbom plots was 3.5-33 microgram ml(-1). The molar absorptivity, Sandell sensitivity, and detection limit are also calculated. The correlation coefficient was >/=0.9988 (n=6) with a relative standard deviation of

  19. Comparison of HPLC & spectrophotometric methods for estimation of antiretroviral drug content in pharmaceutical products.

    PubMed

    Hemanth Kumar, A K; Sudha, V; Swaminathan, Soumya; Ramachandran, Geetha

    2010-10-01

    Simple and reliable methods to estimate drugs in pharmaceutical products are needed. In most cases, antiretroviral drug estimations are performed using a HPLC method, requiring expensive equipment and trained technicians. A relatively simple and accurate method to estimate antiretroviral drugs in pharmaceutical preparations is by spectrophotometric method, which is cheap and simple to use as compared to HPLC. We undertook this study to standardise methods for estimation of nevirapine (NVP), lamivudine (3TC) and stavudine (d4T) in single tablets/capsules by HPLC and spectrophotometry and to compare the content of these drugs determined by both these methods. Twenty tablets/capsules of NVP, 3TC and d4T each were analysed for their drug content by HPLC and spectrophotometric methods. Suitably diluted drug solutions were run on HPLC fitted with a C18 column using UV detection at ambient temperature. The absorbance of the diluted drug solutions were read in a spectrophotometer at 300, 285 and 270 nm for NVP, 3TC and d4T respectively. Pure powders of the drugs were used to prepare calibration standards of known drug concentrations, which was set up with each assay. The inter-day variation (%) of standards for NVP, 3TC and d4T ranged from 2.5 to 6.7, 2.1 to 7.7 and 6.2 to 7.7, respectively by HPLC. The corresponding values by spectrophotometric method were 2.7 to 4.7, 4.2 to 7.2 and 3.8 to 6.0. The per cent variation between the HPLC and spectrophotometric methods ranged from 0.45 to 4.49 per cent, 0 to 4.98 per cent and 0.35 to 8.73 per cent for NVP, 3TC and d4T,respectively. The contents of NVP, 3TC and d4T in the tablets estimated by HPLC and spectrophotometric methods were similar, and the variation in the amount of these drugs estimated by HPLC and spectrophotometric methods was below 10 per cent. This suggests that the spectrophotometric method is as accurate as the HPLC method for estimation of NVP, 3TC and d4T in tablet/capsule. Hence laboratories that do not have

  20. Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; El-Sheikh, Ragaa; Zahran, Faten; Gouda, Ayman Abou El-fetouh

    2007-07-01

    A simple, accurate and highly sensitive spectrophotometric method is proposed for the rapid determination of pipazethate hydrochloride, dextromethorphan hydrobromide and drotaverine hydrochloride using chromotrope 2B (C2B) and chromotrope 2R (C2R). The method consists of extracting the formed ion-associates into chloroform in the case of pipazethate HCl and dextromethorphan HBr or into methylene chloride in the case of drotaverine HCl. The ion-associates exhibit absorption maxima at 528, 540 and 532 nm with C2B and at 526, 517 and 522 nm with C2R for pipazethate HCl, dextromethorphan HBr and drotaverine HCl, respectively. The calibration curves resulting from the measurements of absorbance-concentration relations (at the optimum reaction conditions) of the extracted ion-pairs are linear over the concentration range 4.36-52.32 μg mL -1 for pipazethate, 3.7-48.15 μg mL -1 for dextromethorphan and 4.34-60.76 μg mL -1 for drotaverine, respectively. The effect of acidity, reagent concentration, time, solvent and stoichiometric ratio of the ion-associates were estimated. The molar absorptivity and Sandell sensitivity of the reaction products were calculated. Statistical treatment of the results reflects that the procedure is precise, accurate and easily applied for the determination of the drugs under investigation in pure form and in their pharmaceutical preparations.

  1. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  2. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  3. Quantitative HPLC Analysis of Rosmarinic Acid in Extracts of "Melissa officinalis" and Spectrophotometric Measurement of Their Antioxidant Activities

    ERIC Educational Resources Information Center

    Canelas, Vera; da Costa, Cristina Teixeira

    2007-01-01

    The students prepare tea samples using different quantities of lemon balm leaves ("Melissa officinalis") and measure the rosmarinic acid contents by an HPLC-DAD method. The antioxidant properties of the tea samples are evaluated by a spectrophotometric method using a radical-scavenging assay with DPPH. (2,2-diphenyl-1-picrylhydrazyl). Finally the…

  4. Numerical indicators of absorption spectra of green leaf extract obtained from plants of different life forms.

    PubMed

    Koldaev, Vladimir M; Manyakhin, Artem Yu

    2018-06-05

    The study was carried out using 58 species of terrestrial plants of different life forms at the start of their fruiting stage. Photoreceptive systems of the leaves were assessed by means of unconventional numerical indicators of absorption spectra, relative photoabsorption coefficient, photosynthetic pigments' integral absorption intensity and relative absorption intensity coefficient. As the study showed, the leaves of all trees and light-demanding grasses favoring open spaces, which were subjected to the study were featured by the lowest values of numerical indicators of absorption spectra (NIAS). Shade-demanding grasses, which grow beneath the canopy, by contrast, were featured by the highest NIAS values. These values of the shrub leaves were in between those of light-demanding plants and shade-demanding ones. The results obtained are consistent with modern visions concerning the biochemistry and the physiology of plants' photoreceptive system. It is appropriate to apply the NIAS, which were used in this study and reflect a leaf's photoreceptive properties, as spectrophotometric criteria for monitoring and environmental management of natural plant resources and agricultural plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A convenient spectrophotometric assay for the determination of l-ergothioneine in blood

    PubMed Central

    Carlsson, Jan; Kierstan, Marek P. J.; Brocklehurst, Keith

    1974-01-01

    1. A convenient spectrophotometric assay for the determination of l-ergothioneine in solution including deproteinized blood haemolysate was developed. 2. The method consists of deproteinization by heat precipitation and Cu2+-catalysed oxidation of thiols such as glutathione and of l-ascorbic acid, both in alkaline media, and titration of l-ergothioneine (which is not oxidized under these conditions) by its virtually instantaneous reaction with 2,2′-dipyridyl disulphide at pH1. 3. This method and the results obtained with it for the analysis of human, horse, sheep and pig blood are compared with existing methods of l-ergothioneine analysis and the results obtained thereby. PMID:4463946

  6. Extraction-spectrophotometric determination of traces of gold in copper in silver, lead, blister copper, copper concentrate and anode slime with 4,4'-bis(dimethylamino)-thiobenzophenone.

    PubMed

    Tsukahara, I

    1977-10-01

    A sensitive spectrophotometric method has been developed for the determination of gold in copper, silver, lead, blister copper, copper concentrate and anode slime. Optimal conditions have been established for the extraction and determination of gold. Gold is extracted as its bromo complex with tri-n-octylamine and determined photometrically with 4,4'-bis(dimethylamino)thiobenzophenone; the absorbance of the organic phase is measured at 540 nm and the apparent molar absorptivity is about 1.2 x 10(5) 1.mole(-1). cm(-1). As little as 0.1 or 0.2 ppm of gold in these materials can be determined.

  7. Simultaneous determination of the brand new two-drug combination for the treatment of hepatitis C: Sofosbuvir/ledipasvir using smart spectrophotometric methods manipulating ratio spectra

    NASA Astrophysics Data System (ADS)

    Eissa, Maya S.

    2017-08-01

    In this work, various sensitive and selective spectrophotometric methods were first introduced for the simultaneous determination of sofosbuvir and ledipasvir in their binary mixture without preliminary separation. Ledipasvir was determined simply by zero-order spectrophotometric method at its λmax = 333.0 nm in a linear range of 2.5-30.0 μg/ml without any interference of sofosbuvir even in low or high concentrations and with mean percentage recovery of 100.05 ± 0.632. Sofosbuvir can be quantitatively estimated by one of the following smart spectrophotometric methods based on ratio spectra developed for the resolution of the overlapped spectra of their binary mixture; ratio difference spectrophotometric method (RD) by computing the difference between the amplitudes of sofosbuvir ratio spectra at 228 nm and 270 nm, first derivative (DD1) of ratio spectra by measuring the sum of amplitude of trough and peak at 265 nm and 277 nm, respectively, ratio subtraction (RS) spectrophotometric method in which sofosbuvir can be successfully determined at its λmax = 261.0 nm and mean centering (MC) of ratio spectra by measuring the mean centering values at 270 nm. All of the above mentioned spectrophotometric methods can estimate sofosbuvir in a linear range of 7.5-90.0 μg/ml with mean percentage recoveries of 100.57 ± 0.810, 99.92 ± 0.759, 99.51 ± 0.475 and 100.75 ± 0.672, respectively. These methods were successfully applied to the analysis of their combined dosage form and bulk powder. The adopted methods were also validated as per ICH guidelines and statistically compared to an in-house HPLC method.

  8. Forced-flow chromatographic determination of calcium and magnesium with continuous spectrophotometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, M.D.

    1977-12-01

    Modifications to the forced-flow chromatograph include a flow-through pH monitor to continuously monitor the pH of the final effluent and an active low-pass filter to eliminate noise in the spectrophotometric detector. All separations are performed using partially sulfonated XAD-2 as the ion exchanger. Elution of calcium and magnesium is accomplished using ammonium chloride and ethylenediammonium chloride solutions. Calcium and magnesium are detected by means of Arsenazo I and PAR-ZnEDTA color-forming reagents. Other metal ions are detected by means of PAR and Chromazurol S color-forming reagents. Calcium and magnesium distribution coefficients on partially sulfonated XAD-2 as functions of ammonium chloride andmore » ethylenediammonium chloride concentration are given together with distribution coefficients of other metal ions. Methods for the selective elution of interfering metal ions prior to the elution of calcium and magnesium are described. Beryllium and aluminum are selectively eluted with sulfosalicylic acid. Those elements forming anionic chloride complexes are selectively eluted with HCl-acetone. Nickel is selectively eluted with HCl-acetone-dimethylglyoxime. Synthetic samples containing calcium and magnesium, both alone and in combination with alkali metals, strontium, barium, beryllium, aluminum, transition metals, and rare earths, are analyzed. Hard water samples are analyzed for calcium and magnesium and the results compared to those obtained by EDTA titration, atomic absorption spectroscopy, and plasma emission spectroscopy. Several clinical serum samples are analyzed for calcium and magnesium and the results compared to those obtained by atomic absorption spectroscopy.« less

  9. Spectrophotometric and computerized evaluation of tooth bleaching employing 10 different home-bleaching procedures: In-vitro study

    PubMed Central

    Peskersoy, Cem; Tetik, Ayhan; Ozturk, Veli Ozgen; Gokay, Necmi

    2014-01-01

    Objective: The aim of this in-vitro study was to evaluate the efficacy of bleaching products, determine the applicability and validation of the measurement methods. Materials and Methods: Freshly extracted 110 human incisor teeth were stained with whole blood and hemolysate solution prior to the application of 10 different home-bleaching products. Spectrophotometric measurements of the tooth shades were performed for each specimen before and after bleaching at the 1st, 3rd, 7th, and 14 days. Differences in lightness (Δl), chroma (Δc), hue (Δh) values and shade changes were measured to evaluate process. Computerized digital imaging analyses to determine the color changes were performed with Photoshop CS4 software (Adobe, San Jose, CA, USA). Statistical analyses were performed with analysis of variance, Scheffe and Tukey tests. Results: In all of the test groups regardless of the material used, a significant increase in lightness and hue, and decrease of chroma were observed, as compared to the control group. After recommended bleaching applications, Δl and Δh values respectively increased in group Zaris White and Brite (ZWB) and group Pola Night and Δc values showed significant decrease in groups ZWB and Rembrandt REM3 (P < 0.05). At the end of the procedure both spectrophotometric and digital imaging analysis showed ZWB was the most effective product among the others while Yotuel and Happy Smile were the least (P < 0.05). Conclusions: Home-bleaching systems showed slower but almost permanent bleaching effect likewise office-based methods. Both software and spectrophotometric analyses have advantages such as evaluating the results objectively and numerically, also treatment outcomes could be preserved. PMID:25512738

  10. [Spectrophotometric determination of piroxicam using ferric ferricyanide as reagent].

    PubMed

    Mândrescu, Mariana; Spac, A F; Dorneanu, V

    2009-01-01

    For the piroxicam determination (nonsteroidal antiinflammatory drug-NSAID) it was developed a spectrophotometric method, based on the reduction of ferric ferricyanide into ferro-ferricyanide (Prussian Blue), with maximum of absorbance at 760 nm. The practical working conditions were established. In the 0.2 divided by 2.0 microg/mL range of piroxicam concentration, were used the 2 mL of ferric ferricyanide 1 mL of 2N hydrocloric acid. To delay the flocculation of Prussian Blue it was to add a 1 mL solution of sodium lauryl sulfate 1%. After 15 minutes read the absorbance at 760 nm. The developed method was validated. The method showed a good linearity in the range of 0.2 divided by 2.0 microg/mL (the correlation coefficient r = 0.9995). The detection limit (LD) was 0.056 microg/mL and the quantification limit (LQ) was 0.18 microg/mL. There were established the system precision (RSD = 0.25%), the precison (RSD = 1.91%) and the accuracy-recovery in the range 98.21 divided by 104.92% with a mean recovery of 100.91%. The experimental results demonstrated a good sensibility. The specific absorptivity for this method is A(1 cm, 760 nm)(1%) = 4374 much higher than piroxicam in UV (A(1 cm, 330 nm)(1%) = 296)

  11. Synergistic extraction and spectrophotometric determination of copper(II) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: Analysis of alloys, pharmaceuticals and biological samples

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Kolekar, Sanjay S.; Anuse, Mansing A.

    2011-05-01

    A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L -1 pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL -1 of copper(II) and optimum range of 20-70 μg mL -1 the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87 × 10 3 L mol -1 cm -1 and 0.072 μg cm -2, respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.

  12. SPECTROPHOTOMETRIC DETERMINATION OF CALCIUM WITH GLYOXAL BIS (2-HYDROXY- ANIL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, T.M.; Morgan, J.

    1961-03-01

    A selective method is described for the spectrophotometric determination of calcium using glyoxal bis(2hydroxy-anil) as the chromogenic agent. A comprehensive study of interferences and reagent variables was made. (auth)

  13. Sensitive Indirect Spectrophotometric Method for Determination of H2-Receptor Antagonists in Pharmaceutical Formulations

    PubMed Central

    Darwish, Ibrahim A.; Hussein, Samiha A.; Mahmoud, Ashraf M.; Hassan, Ahmed I.

    2007-01-01

    A simple, accurate and sensitive spectrophotometric method has been developed and validated for determination of H2-receptor antagonists: cimetidine, famotidine, nizatidine, and ranitidine hydrochloride. The method was based on the oxidation of these drugs with cerium (IV) in presence of perchloric acid and subsequent measurement of the excess Ce (IV) by its reaction with p-dimethylaminocinnamaldehyde to give a red colored product (λmax at 464 nm). The decrease in the absorption intensity (ΔA) of the colored product, due to the presence of the drug was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9985-0.9994) were found between ΔA values and the concentrations of the drugs in a concentration range of 1-16 µg ml-1. The assay limits of detection and quantitation were 0.12-0.44 and 0.37-1.33 µg ml-1, respectively. The method was validated, in terms of accuracy, precision, ruggedness, and robustness; the results were satisfactory. The proposed method was successfully applied to the analysis of the investigated drugs in their pure and pharmaceutical dosage forms (recovery was 98.8-102.5 ± 0.79-1.72%) without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods. PMID:23675034

  14. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  15. Development of a Low Cost, Compact, Spectrophotometric pH Sensor

    NASA Astrophysics Data System (ADS)

    Spaulding, R. S.; Darlington, R. C.; Beck, J. C.; DeGrandpre, M. D.

    2016-02-01

    Understanding the ecological impacts of oceanic CO2 uptake in the post-industrial world requires high spatial and temporal resolution measurements of inorganic carbon. Most researchers aim for measuring two of the four inorganic carbon parameters (partial pressure of CO2, total alkalinity, total dissolve inorganic carbon, and pH), in order to fully characterize the carbonate system. While this is desirable in many circumstances, in some cases it may be possible to fully characterize the system using pH and salinity, or even to use pH alone as a proxy to the health of calcifying marine organisms. The development of relatively inexpensive spectrophotometric pH sensors compatible with Lagrangian drifters would greatly improve the ability of researchers to characterize the changing oceanic carbonate system. We have designed and tested a novel, miniaturized, submersible, autonomous opto-fluidic device that can be manufactured at a relatively low cost. The flexible design can be deployed independent of or in tandem with GDP style drifters and will enable spectrophotometric pH technology on a host of drifting platforms and buoys. This device uses a dual wavelength light emitting diode (LED) light source, low volume mixer, and an optical flow-cell mounted to the electronic controller board. Laboratory testing shows that this device measures pH with similar accuracy and precision to other spectrophotometric methods such as the SAMI-pH.

  16. [Spectrophotometric and HPLC evaluation of ceftazidime stability].

    PubMed

    Palade, B; Cioroiu, B; Lazăr, Doina; Corciovă, Andreia; Lazăr, M I

    2010-01-01

    In this paper we followed up the stability of ceftazidime, raw material used in drug industry. Matherials and methods: We used three spectrophotometric methods based on ceftazidime property to form complexes with p-chloranilic acid (ac. p-CA), 3-methylbenzothiazolin-2-on hydrazone (MBTH) and N-(1-naphtil) etilendiamine (NEDA) and a chromatographic method (HPLC). Our results revealed that the substances analyzed maintained minimum content allowable.

  17. Spectrophotometric determination of fluorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.; Smith, V.C.

    1964-01-01

    The rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate, the sinter-cake leached with water and the resulting solution filtered. Fluorine is separated from the acidified filtrate by steam distillation and determined spectrophotometrically by means of a zirconium-SPADNS reagent. If a multiple-unit distillation apparatus is used, 12 determinations can be completed per man-day. ?? 1964.

  18. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    NASA Astrophysics Data System (ADS)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  19. Simultaneous determination of the brand new two-drug combination for the treatment of hepatitis C: Sofosbuvir/ledipasvir using smart spectrophotometric methods manipulating ratio spectra.

    PubMed

    Eissa, Maya S

    2017-08-05

    In this work, various sensitive and selective spectrophotometric methods were first introduced for the simultaneous determination of sofosbuvir and ledipasvir in their binary mixture without preliminary separation. Ledipasvir was determined simply by zero-order spectrophotometric method at its λ max =333.0nm in a linear range of 2.5-30.0μg/ml without any interference of sofosbuvir even in low or high concentrations and with mean percentage recovery of 100.05±0.632. Sofosbuvir can be quantitatively estimated by one of the following smart spectrophotometric methods based on ratio spectra developed for the resolution of the overlapped spectra of their binary mixture; ratio difference spectrophotometric method (RD) by computing the difference between the amplitudes of sofosbuvir ratio spectra at 228nm and 270nm, first derivative (DD 1 ) of ratio spectra by measuring the sum of amplitude of trough and peak at 265nm and 277nm, respectively, ratio subtraction (RS) spectrophotometric method in which sofosbuvir can be successfully determined at its λ max =261.0nm and mean centering (MC) of ratio spectra by measuring the mean centering values at 270nm. All of the above mentioned spectrophotometric methods can estimate sofosbuvir in a linear range of 7.5-90.0μg/ml with mean percentage recoveries of 100.57±0.810, 99.92±0.759, 99.51±0.475 and 100.75±0.672, respectively. These methods were successfully applied to the analysis of their combined dosage form and bulk powder. The adopted methods were also validated as per ICH guidelines and statistically compared to an in-house HPLC method. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spectrophotometric Titration of a Mixture of Calcium and Magnesium.

    ERIC Educational Resources Information Center

    Fulton, Robert; And Others

    1986-01-01

    Describes a spectrophotometric titration experiment which uses a manual titration spectrophotometer and manually operated buret, rather than special instrumentation. Identifies the equipment, materials, and procedures needed for the completion of the experiment. Recommends the use of this experiment in introductory quantitative analysis…

  1. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to themore » second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.« less

  2. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    NASA Astrophysics Data System (ADS)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  3. Development and validation of spectrophotometric methods for estimating amisulpride in pharmaceutical preparations.

    PubMed

    Sharma, Sangita; Neog, Madhurjya; Prajapati, Vipul; Patel, Hiren; Dabhi, Dipti

    2010-01-01

    Five simple, sensitive, accurate and rapid visible spectrophotometric methods (A, B, C, D and E) have been developed for estimating Amisulpride in pharmaceutical preparations. These are based on the diazotization of Amisulpride with sodium nitrite and hydrochloric acid, followed by coupling with N-(1-naphthyl)ethylenediamine dihydrochloride (Method A), diphenylamine (Method B), beta-naphthol in an alkaline medium (Method C), resorcinol in an alkaline medium (Method D) and chromotropic acid in an alkaline medium (Method E) to form a colored chromogen. The absorption maxima, lambda(max), are at 523 nm for Method A, 382 and 490 nm for Method B, 527 nm for Method C, 521 nm for Method D and 486 nm for Method E. Beer's law was obeyed in the concentration range of 2.5-12.5 microg mL(-1) in Method A, 5-25 and 10-50 microg mL(-1) in Method B, 4-20 microg mL(-1) in Method C, 2.5-12.5 microg mL(-1) in Method D and 5-15 microg mL(-1) in Method E. The results obtained for the proposed methods are in good agreement with labeled amounts, when marketed pharmaceutical preparations were analyzed.

  4. Spectrophotometric Determination of Rifampicin in Bulk Drug and Pharmaceutical Formulations Based on Redox and Complexation Reactions

    NASA Astrophysics Data System (ADS)

    Swamy, N.; Basavaiah, K.

    2017-09-01

    Two spectrophotometric methods were developed and validated for the determination of rifampicin (RIF) in bulk form, formulations, and spiked human urine. The first method is based on the reduction of the Folin-Ciocalteu (FC) reagent by RIF to form a blue colored chromogen with λmax at 760 nm (the FCR method). In the second method, iron(III) is reduced by RIF in a neutral medium, and the resulting iron(II) is complexed with ferricyanide to form a Prussian blue peaking at 750 nm (the FFC method). Under optimum conditions, Beer's law enabled the determination of the drug in the concentration ranges 1-35 and 2.5-50 μg/mL with apparent molar absorptivities of 2.72 × 104 and 1.63×104 L/(mol × cm) for the FCR and FFC methods, respectively. The Sandell sensitivity, limits of detection (LOD), and quantification (LOQ) values were also reported for both methods. The precision of the methods, with % RSD of < 2%, was satisfactory, and the accuracy was higher than 2% (RE). The proposed methods were successfully applied to the determination of drug in capsules without interference from common additives and spiked human urine without interference from endogenous substances. A statistical analysis indicated that there was no significant difference between the results obtained by the developed methods and the official method.

  5. Spectrophotometric determination of cyclotrimethylenetrinitramine (RDX) in explosive mixtures and residues with the Berthelot reaction.

    PubMed

    Uzer, A; Erçağ, E; Apak, R

    2008-03-31

    On-site colorimetric methods are a valuable, cost-effective tool to assess the nature and extent of contamination in remediated sites and to enable on-site screening for police criminology laboratories. The existing colorimetric method for cyclotrimethylenetrinitramine (RDX) based on a Griess reaction suffers from the non-quantitative reduction to nitrite and from the unstable character of HNO2 in acidic medium. Thus we propose a novel spectrophotometric RDX assay in explosive mixtures and residues, based on (Zn+HCl) reduction of RDX in a microwave oven, followed by neutralization of the reduction products to ammonia and low molecular-weight amines, and Berthelot reaction of these amine-compounds with phenol and hypochlorite in alkaline medium to give an intensely blue indophenol dye absorbing at 631nm. The molar absorptivity and limit of detection (LOD) for RDX were (1.08+/-0.04)x10(4) L mol(-1) cm(-1) and 0.18 mg L(-1), respectively. Application of the method to synthetic mixture solutions of RDX and trinitrotoluene (TNT) at varying proportions showed that there was minimal interference from TNT (which could be compensated for by dicyclohexylamine colorimetry), since the Berthelot reaction was essentially non-responsive to m-substituted anilines derived from TNT upon (Zn+HCl) reduction. The proposed method was successfully applied to military-purpose explosive mixtures of (RDX+inert matter) such as Comp A5, Comp C4, and Hexal P30, and to (RDX+TNT) mixtures such as Comp B. The molar absorptivity of RDX was much higher than that of either ammonium or nitrate; RDX could be effectively separated from ammonium and nitrate in soil mixtures, based on solubility differences. The Berthelot method for RDX was statistically validated using Comp B mixtures against standard HPLC equipped with a Hypersil C-18 column with (40% MeOH-60% H2O) mobile phase, and against gas chromatography-thermal energy analysis (GC-TEA) system.

  6. Spectrophotometric estimation of ambroxol and cetirizine hydrochloride from tablet dosage form.

    PubMed

    Gowekar, N M; Pande, V V; Kasture, A V; Tekade, A R; Chandorkar, J G

    2007-07-01

    Fixed dose combination tablets containing ambroxol HCl and cetirizine HCl are clinically used as mucolytic and antiallergic. Several spectrophotometric and HPLC methods have been reported for simultaneous estimation of these drugs with other drugs. The drugs individually and in mixture obeys Beer's law over conc. range 1.2-4.4 microg/mL for cetirizine HCL and for ambroxol HCL 15-52 microg/mL at all five sampling wavelengths (correlation coeff. well above 0.995). The mean recoveries from tablet by standard addition method were 100.18% (+/-2.4) and 100.66 % (+/-2.31). The present work reports simple, accurate and precise spectrophotometric methods for their simultaneous estimation from tablet dosage form.

  7. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that amore » complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.« less

  8. Novel Spectrophotometric Method for the Assay of Captopril in Dosage Forms using 2,6-Dichloroquinone-4-Chlorimide

    PubMed Central

    El-Enany, Nahed; Belal, Fathalla; Rizk, Mohamed

    2008-01-01

    A simple spectrophotometric method was developed for the determination of captopril (CPL) in pharmaceutical preparations. The method is based on coupling captopril with 2,6-dichloroquinone-4-chlorimide (DCQ) in dimethylsulphoxide. The yellow reaction product was measured at 443 nm. The absorbance–concentration plot was rectilinear over the range of 10-50 μg/mL with minimum detection limit (LOD) of 0.66 μg/mL and a quantification limit (LOQ) of 2.0 μg/mL. The different experimental parameters affecting the development and stability of the color were carefully studied and optimized. The proposed method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained using official and reference spectrophotometric methods. Hydrochlorothiazide which is frequently co-formulated with CPL did not interfere with the assay. A proposal of the reaction pathway was presented. PMID:23675082

  9. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  10. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  11. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Al Okab, Riyad Ahmed

    2013-02-01

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  12. Spectrophotometric and spectroscopic studies of charge transfer complexes of p-toluidine as an electron donor with picric acid as an electron acceptor in different solvents.

    PubMed

    Singh, Neeti; Khan, Ishaat M; Ahmad, Afaq

    2010-04-01

    The charge transfer complexes of the donor p-toluidine with pi-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K(CT)), molar extinction coefficient (epsilon(CT)), standard free energy (DeltaG(o)), oscillator strength (f), transition dipole moment (mu(EN)), resonance energy (R(N)) and ionization potential (I(D)). The results indicate that the formation constant (K(CT)) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form: comparison with previously published spectrophotometric methods.

    PubMed

    Zaazaa, Hala E; Elzanfaly, Eman S; Soudi, Aya T; Salem, Maissa Y

    2015-05-15

    Ratio difference spectrophotometric method was developed for the determination of ibuprofen and famotidine in their mixture form. Ibuprofen and famotidine were determined in the presence of each other by the ratio difference spectrophotometric (RD) method where linearity was obtained from 50 to 600μg/mL and 2.5 to 25μg/mL for ibuprofen and famotidine, respectively. The suggested method was validated according to ICH guidelines and successfully applied for the analysis of ibuprofen and famotidine in their pharmaceutical dosage forms without interference from any additives or excipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optimized and Validated Spectrophotometric Methods for the Determination of Enalapril Maleate in Commercial Dosage Forms

    PubMed Central

    Rahman, Nafisur; Haque, Sk Manirul

    2008-01-01

    Four simple, rapid and sensitive spectrophotometric methods have been proposed for the determination of enalapril maleate in pharmaceutical formulations. The first method is based on the reaction of carboxylic acid group of enalapril maleate with a mixture of potassium iodate (KIO3) and iodide (KI) to form yellow colored product in aqueous medium at 25 ± 1°C. The reaction is followed spectrophotometrically by measuring the absorbance at 352 nm. The second, third and fourth methods are based on the charge transfer complexation reaction of the drug with p-chloranilic acid (pCA) in 1, 4-dioxan-methanol medium, 2, 3-dichloro 5, 6-dicyano 1, 4-benzoquinone (DDQ) in acetonitrile-1,4 dioxane medium and iodine in acetonitrile-dichloromethane medium. Under optimized experimental conditions, Beer’s law is obeyed in the concentration ranges of 2.5–50, 20–560, 5–75 and 10–200 μg mL−1, respectively. All the methods have been applied to the determination of enalapril maleate in pharmaceutical dosage forms. Results of analysis are validated statistically. PMID:19609388

  15. Spectrophotometric and chromatographic determination of insensitive energetic materials: HNS and NTO, in the presence of sensitive nitro-explosives.

    PubMed

    Can, Ziya; Uzer, Ayşem; Tekdemir, Yasemin; Erçağ, Erol; Türker, Lemi; Apak, Reşat

    2012-02-15

    As there are no molecular spectroscopic determination methods for the most widely used insensitive energetic materials, 2,2',4,4',6,6'-hexanitrostilbene (HNS) and 3-nitro-1,2,4-triazole-5-one (NTO), in the presence of sensitive nitro-explosives, two novel spectrophotometric methods were developed. For HNS and TNT mixtures, both analytes react with dicyclohexylamine (DCHA) forming different colored charge-transfer complexes, which can be resolved by derivative spectroscopy. The spectrophotometric method for NTO measures the 416-nm absorbance of its yellow-colored Na(+)NTO(-) salt formed with NaOH. TNT, if present, is pre-extracted into IBMK as its Meisenheimer anion forming an ion-pair with the cationic surfactant cetyl pyridinium (CP(+)) in alkaline medium, whereas the unextracted NTO is determined in the aqueous phase. The molar absorptivity (ε, L mol(-1)cm(-1)) and limit of quantification (LOQ, mg L(-1)) are as follows: for HNS, ε=2.75 × 10(4) and LOQ=0.48 (in admixture with TNT); for NTO, ε=6.83 × 10(3) and LOQ=0.73. These methods were not affected from nitramines and nitrate esters in synthetic mixtures or composite explosives. The developed methods were statistically validated against HPLC, and the existing chromatographic method was modified so as to enable NTO determination in the presence of TNT. These simple, low-cost, and versatile methods can be used in criminology, remediation/monitoring of contaminated sites, and kinetic stability modeling of munitions containing desensitized energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Enhanced spectrophotometric determination of two antihyperlipidemic mixtures containing ezetimibe in pharmaceutical preparations.

    PubMed

    Maher, Hadir M; Youssef, Rasha M; Hassan, Ekram M; El-Kimary, Eman I; Barary, Magda A

    2011-02-01

    Two spectrophotometric methods are presented for the simultaneous determination of ezetimibe/simvastatin and ezetimibe/atorvastatin binary mixtures in combined pharmaceutical dosage forms without prior separation. The first is the derivative ratio method where the amplitudes of the first derivative of the ratio spectra ((1) DD) at 299.5 and 242.5 nm were found to be linear with ezetimibe and simvastatin concentrations in the ranges 0.5-20 µgml(-1) and 1-40 µgml(-1) , respectively, whereas the amplitudes of the first derivative of the ratio spectra ((1) DD) at 289.5 and 288 nm were selected to determine ezetimibe and atorvastatin in the concentration ranges 5-50 µgml(-1) and 1-40 µgml(-1) , respectively. The second is the H-point standard additions method; absorbances at the two pairs of wavelengths, 228 and 242 nm or 238 and 248 nm, were monitored while adding standard solutions of ezetimibe or simvastatin, respectively. For the analysis of ezetimibe/atorvastatin mixture, absorbance values at 226 and 248 nm or 212 and 272 nm were monitored while adding standard solutions of ezetimibe or atorvastatin, respectively. Moreover, differential spectrophotometry was applied for the determination of ezetimibe in the two mixtures without any interference from the co-existing drug. This was performed by measurement of the difference absorptivities (ΔA) of ezetimibe in 0.07 M 30% methanolic NaOH relative to that of an equimolar solution in 0.07 M 30% methanolic HCl at 246 nm. The described methods are simple, rapid, precise and accurate for the determination of these combinations in synthetic mixtures and dosage forms. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Novel spectrophotometric method for determination of some macrolide antibiotics in pharmaceutical formulations using 1,2-naphthoquinone-4-sulphonate

    NASA Astrophysics Data System (ADS)

    Ashour, Safwan; Bayram, Roula

    2012-12-01

    New, simple and rapid spectrophotometric method has been developed and validated for the assay of two macrolide drugs, azithromycin (AZT) and erythromycin (ERY) in pure and pharmaceutical formulations. The proposed method was based on the reaction of AZT and ERY with sodium 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline medium at 25 °C to form an orange-colored product of maximum absorption peak at 452 nm. All variables were studied to optimize the reaction conditions and the reaction mechanism was postulated. Beer's law was obeyed in the concentration range 1.5-33.0 and 0.92-8.0 μg mL-1 with limit of detection values of 0.026 and 0.063 μg mL-1 for AZT and ERY, respectively. The calculated molar absorptivity values are 4.3 × 104 and 12.3 × 104 L mol-1 cm-1 for AZT and ERY, respectively. The proposed methods were successfully applied to the determination of AZT and ERY in formulations and the results tallied well with the label claim. The results were statistically compared with those of an official method by applying the Student's t-test and F-test. No interference was observed from the concomitant substances normally added to preparations.

  18. AAS and spectrophotometric methods for the determination metoprolol tartrate in tablets

    NASA Astrophysics Data System (ADS)

    Alpdoğan, Güzin; Sungur, Sidika

    1999-11-01

    Sensitive and specific atomic adsorption spectroscopy (AAS) and spectrophotometric methods have been developed for the determination of beta adrenergic blocking drug, metoprolol tartrate.The method is based on the formation of Cu(II) dithiocarbamate complex by derivatization of the secondary amino group of metoprolol with CS 2 and CuCl 2 in the presence of ammonia.The copper-bis(dithiocarbamate) complex was extracted into chloroform and the concentration of metoprolol tartrate was determined directly by spectrophotometric and indirectly by AAS measurement of copper.The two methods developed were applied to the assay of metoprolol tartrate in commercial tablet formulations.The methods were compared statistically with each other and with the high performance liquid chromatography (HPLC) method of USPXXII using t- and F-tests.

  19. Chromium speciation in environmental samples using a solid phase spectrophotometric method

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.

  20. Chromium speciation in environmental samples using a solid phase spectrophotometric method.

    PubMed

    Amin, Alaa S; Kassem, Mohammed A

    2012-10-01

    A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H(2)SO(4) and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11×10(7) and 3.90×10(7) L mol(-1)cm(-1) for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L(-1) with RSD of <1.85% (n=8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L(-1) for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L(-1), respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A spectrophotometric screening method for avermectin oxidizing microorganisms.

    PubMed

    Wang, Yuan-Shan; Hu, Qi-Wei; Zheng, Xing-Chang; Zhang, Jian-Fen; Zheng, Yu-Guo

    2017-04-01

    A spectrophotometric screening method for avermectin oxidizing microbes by determination of 4″-oxo-avermectin was established based on the reaction between 4″-oxo-avermectin and 2,4-dinitrophenylhydrazine. Combined with a gradient HPLC assay, microorganisms capable of regioselectively oxidizing avermectin to 4″-oxo-avermectin were successfully obtained by this method. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. New spectrofluorimetric and spectrophotometric methods for the determination of the analgesic drug, nalbuphine in pharmaceutical and biological fluids.

    PubMed

    El-Didamony, Akram M; Ali, Ismail I

    2013-01-01

    We describe the first studies of a simple and sensitive spectrofluorimetric and spectrophotometric methods for the analysis of nalbuphine (NLB) in dosage form and biological fluids. The spectrofluorimetric method was based on the oxidation of NLB with Ce(IV) to produce Ce(III) and its fluorescence was monitored at 352 nm after excitation at 250 nm. The spectrophotometric method involves addition of a known excess of Ce(IV) to NLB in acid medium, followed by determination of residual Ce(IV) by reacting with a fixed amount of methyl orange and measuring absorbance at 510 nm. In both methods, the amount of Ce(IV) reacted corresponds to the amount of NLB and measured fluorescence or absorbance were found to increase linearly with the concentration of NLB, which are corroborated by correlation coefficients of 0.9997 and 0.9999 for spectrofluorimetric and spectrophotometric methods, respectively. Different variables affecting the reaction conditions such as concentrations of Ce(IV), type and concentration of acid medium, reaction time, temperature, and diluting solvents were carefully studied and optimized. The accuracy and precision of the methods were evaluated on intra-day and inter-day basis. The proposed methods were successfully applied for the determination of NLB in pharmaceutical formulation and biological samples with good recoveries. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Improved spectrophotometric cell for hydrothermal solutions

    USGS Publications Warehouse

    Susak, N.J.; Crerar, D.A.; Forseman, T.C.; Haas, J.L.

    1981-01-01

    A simple, inexpensive spectrophotometric cell was designed for use with aqueous solutions for which temperature is a maximum of 325??C and pressure, 28 MPa. The cell has an internal volume of 5 ml and a path length of 1.31 cm. Each furnace assembly is 120 mm in diameter ?? 150 mm high and will fit into most commercial spectrophotometers. Temperature is controlled by a standard set-point controller and a balancing circuit that is used to maintain the temperature of the sample and reference cell within 1??C of each other at any temperature.

  4. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  5. Determination of yeast assimilable nitrogen content in wine fermentations by sequential injection analysis with spectrophotometric detetection.

    PubMed

    Muik, Barbara; Edelmann, Andrea; Lendl, Bernhard; Ayora-Cañada, María José

    2002-09-01

    An automated method for measuring the primary amino acid concentration in wine fermentations by sequential injection analysis with spectrophotometric detection was developed. Isoindole-derivatives from the primary amino acid were formed by reaction with o-phthaldialdehyde and N-acetyl- L-cysteine and measured at 334 nm with respect to a baseline point at 700 nm to compensate the observed Schlieren effect. As the reaction kinetic was strongly matrix dependent the analytical readout at the final reaction equilibrium has been evaluated. Therefore four parallel reaction coils were included in the flow system to be capable of processing four samples simultaneously. Using isoleucine as the representative primary amino acid in wine fermentations a linear calibration curve from 2 to 10 mM isoleucine, corresponding to 28 to 140 mg nitrogen/L (N/L) was obtained. The coefficient of variation of the method was 1.5% at a throughput of 12 samples per hour. The developed method was successfully used to monitor two wine fermentations during alcoholic fermentation. The results were in agreement with an external reference method based on high performance liquid chromatography. A mean-t-test showed no significant differences between the two methods at a confidence level of 95%.

  6. Supernova Ia Spectra and Spectrophotometric Time Series: Recognizing Twins and the Consequences for Cosmological Distance Measurements

    NASA Astrophysics Data System (ADS)

    Fakhouri, Hannah Kathleen

    In Part I we introduce the method and results of the Twin Supernova analysis. This novel approach to Type Ia supernova standardization is currently only possible with spectrophotometric timeseries observations from the Nearby Supernova Factory. As Chapters 1 through 4 will explore, we select an ideal subset of supernovae, find pairs whose features match well in flux at all wavelengths and times, and test their dispersion in brightness. The analysis is completed in a blinded fashion, ensuring that we are not tuning our results. What we find is that twin supernovae do indeed have a small brightness dispersion. Part II shows two additional analyses related to the standardization of Type Ia supernovae. In Chapter 5 we present a check on the results of Bailey et al. [2009]. Literature supernovae with spectra near maximum light were tested to see how well their magnitudes could be standardized using the flux ratio method of Bailey et al [2009]. Chapter 6 shows a study with data from the Nearby Supernova Factory. Using only the spectrophotometric observations near maximum light, we calculate monochromatic Hubble Diagram residuals for each supernova. Those residuals are then corrected using a flux ratio, similar to Bailey et al. [2009] to test the standardization possibilities using only near-maximum observations.

  7. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, William S.

    1993-01-01

    A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.

  8. A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline

    NASA Astrophysics Data System (ADS)

    Palamy, Sysay; Ruengsitagoon, Wirat

    2017-01-01

    A novel flow injection spectrophotometric method was developed for the determination of doxycycline in pharmaceutical preparations using iron(III) contained in extracts from plants. The assay was based on the complex formed between doxycycline and iron(III) characterized by an absorption maximum at 435 nm. The calibration graphs obtained over the doxycycline concentration range 5-250 μg mL- 1 gave correlation coefficients of 0.9979, 0.9987 and 0.9987 with the three green reagents prepared from Senna alata (L.) Roxb. (S. alata), Polygonum hydropiper L. (P. hydropiper) or Diplazium esculentum (Retz.) Sw. (D. esculentum), respectively. The relative standard deviations of the repeatability was < 2.00%. The percentage recoveries were in the range of 98.27-101.03%. Doxycycline contents obtained by this new method and by the reference methods reported in literature were in agreement at 95% confidence level with the paired t-test. The sample throughput was 36 h- 1 for each green reagent.

  9. Effect of temperature on the complexation of NpO 2 + with benzoic acid: Spectrophotometric and calorimetric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yanqiu; Zhang, Zhicheng; Liu, Guokui

    The equilibrium constants of the 1:1 NpO2+/benzoate complex were determined by spectrophotometric titrations at variable temperatures (T = 283 to 343 K) and the ionic strength of 1.05 mol · kg-1. The enthalpy of complexation at T = 298 K was determined by microcalorimetric titrations. Similar to other monocarboxylates, benzoate forms a weak complex with NpO2+ and the complexation is strengthened as the temperature is increased. The complexation is endothermic and is entropy-driven. The enhancement of the complexation at elevated temperatures is primarily attributed to the increasingly larger entropy gain when the water molecules are released from the highly-ordered solvationmore » spheres of NpO2+ and benzoate to the bulk solvent where the degree of disorder is higher at higher temperatures. The spectroscopic features of the Np(V)/benzoate system, including the effect of temperature on the absorption bands, are discussed in terms of ligand field splitting and a thermal expansion mechanism.« less

  10. Application of sulphanilamides disazo dyes with Tropaeolin O for simple, rapid and sensitive spectrophotometric assay of medicines.

    PubMed

    Boiko, Maria; Vrublevska, Teodoziya; Korkuna, Olha; Teslyar, Grigory

    2011-07-01

    A rapid, simple and sensitive spectrophotometric method for the determination of some sulphanilamides is described. The method is based on the formation of blue coloured disazo dyes by the diazotization of sulphonamides viz. sulphanilamide (SA), sulphamerazine (SMR), sulphamethazine (SMZ), sulphadimethoxine (SDM), sulphamethoxazole (SMX), sulphadiazine (SDA), sulfathiazole (STZ), sulphaguanidine (SGN), sulphamonomethoxine (SMM), sulphamethoxypyridazine (SMP) in 0.5M hydrochloric acid media at ice bath followed by the azocoupling reaction with acid monoazo dye Tropaeolin O (TrO) at pH=10.5. Formed products are stable for 10h at room temperature. Effective molar absorptivities at absorbance maxima 595nm for disazo dyes were ∼10(4)M(-1)cm(-1). Stoichiometric ratios of the components of disazo dyes were determined by means of mole ratio and continuous variations methods. Linear ranges for sulphanilamides determination were 0.4-14.0μgml(-1). The methods were successfully approved at suphanilamides determination in model solutions and commercial pharmaceutical preparations. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Net analyte signal standard addition method (NASSAM) as a novel spectrofluorimetric and spectrophotometric technique for simultaneous determination, application to assay of melatonin and pyridoxine

    NASA Astrophysics Data System (ADS)

    Asadpour-Zeynali, Karim; Bastami, Mohammad

    2010-02-01

    In this work a new modification of the standard addition method called "net analyte signal standard addition method (NASSAM)" is presented for the simultaneous spectrofluorimetric and spectrophotometric analysis. The proposed method combines the advantages of standard addition method with those of net analyte signal concept. The method can be applied for the determination of analyte in the presence of known interferents. The accuracy of the predictions against H-point standard addition method is not dependent on the shape of the analyte and interferent spectra. The method was successfully applied to simultaneous spectrofluorimetric and spectrophotometric determination of pyridoxine (PY) and melatonin (MT) in synthetic mixtures and in a pharmaceutical formulation.

  12. VizieR Online Data Catalog: Spectrophotometric Standards near the Pole (Tereshchenko, 1994)

    NASA Astrophysics Data System (ADS)

    Tereshchenko, V. M.

    1997-01-01

    Absolute energy distributions for 13 circumpolar (δ>+85deg) stars forming a spectrophotometric version of the North Polar Spectrophotometric Sequence (NPSS) are presented. A-type stars of 5-9mag brightness were studied in the range 3100 to 7750A with resolution of 50A. Observations were made with 0.5-m and 1-m telescopes using Seya-Namioka spectrometers. The relative rms error of results in the region 4000-7000A is 2 to 3%, while at the ends of the studied range it is 3-5%. The primary standard was the circumpolar star HD 221525 (V=5.58, A7IV), and its spectral energy distribution had been determined earlier. (1 data file).

  13. Process monitored spectrophotometric titration coupled with chemometrics for simultaneous determination of mixtures of weak acids.

    PubMed

    Liao, Lifu; Yang, Jing; Yuan, Jintao

    2007-05-15

    A new spectrophotometric titration method coupled with chemometrics for the simultaneous determination of mixtures of weak acids has been developed. In this method, the titrant is a mixture of sodium hydroxide and an acid-base indicator, and the indicator is used to monitor the titration process. In a process of titration, both the added volume of titrant and the solution acidity at each titration point can be obtained simultaneously from an absorption spectrum by least square algorithm, and then the concentration of each component in the mixture can be obtained from the titration curves by principal component regression. The method only needs the information of absorbance spectra to obtain the analytical results, and is free of volumetric measurements. The analyses are independent of titration end point and do not need the accurate values of dissociation constants of the indicator and the acids. The method has been applied to the simultaneous determination of the mixtures of benzoic acid and salicylic acid, and the mixtures of phenol, o-chlorophenol and p-chlorophenol with satisfactory results.

  14. Determination of tramadol hydrochloride in ampoule dosage forms by using UV spectrophotometric and HPLC-DAD methods in methanol and water media.

    PubMed

    Küçük, Aysel; Kadioğlu, Yücel

    2005-02-01

    Two newly developed simple and sensitive methods for determination of tramadol hydrochloride in ampoule dosage forms were described and validated. Measurements for spectrophotometric method were performed using UV-Vis Spectrophotometer in ranges of 200-400 nm. The solutions of standard and the samples were prepared in methanol and water media and the UV absorption spectrums of tramadol were monitored with maximum absorptions at 275 and 271 nm for both mediums, respectively. The standard calibration curves of tramadol were constructed by plotting absorbance vs. concentration in the concentration range with the final dilution of 10-100 microg ml-1. Reversed phase chromatography for HPLC method was conducted using a Phenomenex Bondclone C18 column with an isocratic mobile phase consisting of 25% acetonitrile in 75% 0.01 M phosphate buffer (pH 3). The effluent was monitored on a DAD detector at 218 nm. Linear response (r>0.99) was observed over the range of 0.5-40 microg ml-1 for methanol and water and run on six different occasions. The methods were applied successfully to pharmaceutical ampoule forms, but also for comparison in two different solvent media. Besides, it was completely validated and proven to be rugged.

  15. Validation of a spectrophotometric assay method for bisoprolol using picric acid.

    PubMed

    Panainte, Alina-Diana; Bibire, Nela; Tântaru, Gladiola; Apostu, M; Vieriu, Mădălina

    2013-01-01

    Bisoprolol is a drug belonging to beta blockers drugs used primarily for the treatment of cardiovascular diseases. A spectrophotometric method for quantitative determination of bisoprolol was developed based on the formation of a complex combination between bisoprolol and picric acid. The complex combination of bisoprolol and picric acid has a maximum absorbance peak at 420 nm. Optimum working conditions were established and the method was validated. The method presented a good linearity in the concentration range 5-120 microg/ml (regression coefficient r2 = 0.9992). The RSD for the precision of the method was 1.74 and for the intermediate precision 1.43, and recovery values ranged between 98.25-101.48%. The proposed and validated spectrophotometric method for the determination of bisoprolol is simple and cost effective.

  16. Validation of HPLC and UV spectrophotometric methods for the determination of meropenem in pharmaceutical dosage form.

    PubMed

    Mendez, Andreas S L; Steppe, Martin; Schapoval, Elfrides E S

    2003-12-04

    A high-performance liquid chromatographic method and a UV spectrophotometric method for the quantitative determination of meropenem, a highly active carbapenem antibiotic, in powder for injection were developed in present work. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by reversed-phase technique on an RP-18 column with a mobile phase composed of 30 mM monobasic phosphate buffer and acetonitrile (90:10; v/v), adjusted to pH 3.0 with orthophosphoric acid. The UV spectrophotometric method was performed at 298 nm. The samples were prepared in water and the stability of meropenem in aqueous solution at 4 and 25 degrees C was studied. The results were satisfactory with good stability after 24 h at 4 degrees C. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and can be used for the reliable quantitation of meropenem in pharmaceutical dosage form.

  17. HPTLC and Spectrophotometric Estimation of Febuxostat and Diclofenac Potassium in Their Combined Tablets.

    PubMed

    El-Yazbi, Fawzi A; Amin, Omayma A; El-Kimary, Eman I; Khamis, Essam F; Younis, Sameh E

    2016-08-01

    An accurate, precise, rapid, specific and economic high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous quantitative determination of febuxostat (FEB) and diclofenac potassium (DIC). The chromatographic separation was performed on precoated silica gel 60 GF254 plates with chloroform-methanol 7:3 (v/v) as the mobile phase. The developed plates were scanned and quantified at 289 nm. Experimental conditions including band size, mobile phase composition and chamber-saturation time were critically studied, and the optimum conditions were selected. A satisfactory resolution (Rs = 2.67) with RF 0.48 and 0.69 and high sensitivity with limits of detection of 4 and 7 ng/band for FEB and DIC, respectively, were obtained. In addition, derivative ratio and ratio difference spectrophotometric methods were established for the analysis of such a mixture. All methods were validated as per the ICH guidelines. In the HPTLC method, the calibration plots were linear between 0.01-0.55 and 0.02-0.60 µg/band, for FEB and DIC, respectively. For the spectrophotometric methods, the calibration graphs were linear between 2-14 and 4-18 µg/mL for FEB and DIC, respectively. The simplicity and specificity of the proposed methods suggest their application in quality control analysis of FEB and DIC in their raw materials and tablets. A comparison of the proposed methods with the existing methods is presented. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Spectrophotometric Determination of Poorly Water Soluble Drug Rosiglitazone Using Hydrotropic Solubilization technique.

    PubMed

    Sherje, A P; Desai, K J

    2011-09-01

    In the present investigation, hydrotropic solution of urea was employed as a solubilizing agent for spectrophotometric determination of poorly water-soluble drug rosiglitazone maleate. In solubility determination study, it was found that there was more than 14-folds enhancement in solubility of rosiglitazone maleate in a 6M solution of urea. Rosiglitazone maleate obeys Beer's law in concentration range of 5-300 μg/ml. Linearity of rosiglitazone maleate was found in the range of 80-120% of the label claim. The proposed method has been applied successfully to the analysis of the cited drug in pharmaceutical formulations with good accuracy and precision. The method herein described is new, simple, eco-friendly, economic, and accurate and can be utilized in routine analysis of rosiglitazone maleate in bulk drug and tablet dosage form.

  19. Spectrophotometric Determination of Poorly Water Soluble Drug Rosiglitazone Using Hydrotropic Solubilization technique

    PubMed Central

    Sherje, A. P.; Desai, K. J.

    2011-01-01

    In the present investigation, hydrotropic solution of urea was employed as a solubilizing agent for spectrophotometric determination of poorly water-soluble drug rosiglitazone maleate. In solubility determination study, it was found that there was more than 14-folds enhancement in solubility of rosiglitazone maleate in a 6M solution of urea. Rosiglitazone maleate obeys Beer's law in concentration range of 5-300 μg/ml. Linearity of rosiglitazone maleate was found in the range of 80-120% of the label claim. The proposed method has been applied successfully to the analysis of the cited drug in pharmaceutical formulations with good accuracy and precision. The method herein described is new, simple, eco-friendly, economic, and accurate and can be utilized in routine analysis of rosiglitazone maleate in bulk drug and tablet dosage form. PMID:22923874

  20. Application of potassium permanganate to spectrophotometric assay of metoclopramide hydrochloride in pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Devi, O. Zenita; Basavaiah, K.; Vinay, K. B.

    2012-01-01

    Two simple, sensitive, and cost-effective spectrophotometric methods are described for the determination of metoclopramide hydrochloride (MCP) in pharmaceutical dosage forms. The methods are based on a redox reaction between MCP and KMnO4 in alkaline and acid media. Direct spectrophotometry (method A) involves treating MCP with permanganate in an NaOH medium and measuring a bluish green product at 610 nm. In indirect spectrophotometry (method B), MCP is treated with a fixed concentration of KMnO4 in an H2SO4 medium, and after a specified time, the unreacted KMnO4 is measured at 545 nm. Under optimum assay conditions, Beer's law is obeyed over the ranges of 0.75-12.0 and 2.5-30.0 g/ml for methods A and B, respectively. Molar absorptivity values are calculated to be 2.33•104 and 2.66•104 l/mol cm for methods A and B, respectively, and corresponding Sandell's sensitivity values are 0.015 and 0.013 g/cm2. Limits of detection (LOD) and quantification (LOQ) are also reported. The applicability of the developed methods was demonstrated by the determination of MCP in tablet and injection forms. The accuracy and reliability of the proposed methods were further ascertained by recovery studies via standard addition technique.

  1. Development of an reliable analytical method for synergistic extractive spectrophotometric determination of cobalt(II) from alloys and nano composite samples by using chromogenic chelating ligand

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Ghare, Anita A.; Kolekar, Sanjay S.; Han, Sung H.; Anuse, Mansing A.

    2011-12-01

    A synergistic simple and selective spectrophotometric method was developed for the determination of cobalt(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The proposed method has been described on the basis of synergistic effective extraction of cobalt(II) in presence of pyridine at pH range 9.5-10.2, showed orange-red coloured ternary complex having molar ratio 1:2:2 (M:L:Py). The equilibrium time is 10 min for extraction of cobalt(III) from organic phase. The absorbance of coloured organic layer in chloroform is measured spectrophotometrically at 490 nm against reagent blank. The Beer's law was obeyed in the concentration range 2.5-15 μg mL -1 of cobalt(II) and optimum concentration range was 5-12.5 μg mL -1 of cobalt(II) and it was evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 1.109 × 10 3 L mol -1 cm -1 and 0.053 μg cm -2, respectively while molar absorptivity and Sandell's sensitivity of cobalt(II)-2',4'-dinitro APTPT complex in chloroform are 6.22 × 10 2 L mol -1 cm -1 and 0.096 μg cm -2, respectively. The composition of cobalt(II)-2',4'-dinitro APTPT-pyridine complex (1:2:2) was established by slope ratio method, mole ratio method and Job's method of continuous variation. The ternary complex was stable for more than 48 h. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The method is successfully applied for the determination of cobalt(II) in binary, synthetic mixtures and real samples. A repetition of the method was checked by finding relative standard deviation (R.S.D.) for n = 5 which was 0.15%. The reliability of the method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.

  2. INVESTIGATION AND OPTIMIZATION OF TITRIMETRIC AND SPECTROPHOTOMETRIC METHODS FOR THE ASSAY OF FLUNARIZINE DIHYDROCHLORIDE USING IN SITU BROMINE.

    PubMed

    Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura

    2016-01-01

    Three indirect methods for the assay of flunarizine dihydrochloride (FNH) in bulk drug and commercial formulation based on titrimetric and spectrophotometric techniques using bromate-bromide mixture are described. In titrimetry, a measured excess of bromate-bromide mixture is added to an acidified solution of FNH and the unreacted bromine is determined iodometrically (method A). Spectrophotometry involves the addition of a known excess of bromate-bromide mixture to FNH in acid medium followed by estimation of unreacted bromine by its reaction with excess iodide and the liberated iodine (I₃⁻) is either measured at 370 nm (method B) or liberated iodine reacted with starch followed by the measurement of the blue colored starch-iodide complex at 575 run (method C). Titrimetric method is applicable over the range 4.5-30.0 mg FNH (method A), and the reaction stoichiometry is found to be 1:2 (FNH:KBrO₃). The spectrophotometric methods are applicable over the concentration ranges 0.8-16.0 µg/mL and 0.4-8.0 µg/mL FNH for method B and method C, respectively. The molar absorptivities are calculated to be 2.83 x 10⁴ and 4.96 x 10⁴ L mol⁻¹cm⁻¹ for method B and method C, respectively, and the corresponding Sandell sensitivity values are 0.0168 and 0.0096 µg cm⁻². The proposed methods have been applied successfully for the determination of FNH in pure form and in its dosage form and the results were compared with those of a literature method by applying the Student's t-test and F-test.

  3. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, W.S.

    1993-12-07

    A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.

  4. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectropscopy using IFEFFIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravel, B.; Newville, M.; UC)

    2010-07-20

    A software package for the analysis of X-ray absorption spectroscopy (XAS) data is presented. This package is based on the IFEFFIT library of numerical and XAS algorithms and is written in the Perl programming language using the Perl/Tk graphics toolkit. The programs described here are: (i) ATHENA, a program for XAS data processing, (ii) ARTEMIS, a program for EXAFS data analysis using theoretical standards from FEFF and (iii) HEPHAESTUS, a collection of beamline utilities based on tables of atomic absorption data. These programs enable high-quality data analysis that is accessible to novices while still powerful enough to meet the demandsmore » of an expert practitioner. The programs run on all major computer platforms and are freely available under the terms of a free software license.« less

  5. SPECTROPHOTOMETRIC DETERMINATION OF TRACES OF BORON IN THORIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, H.; Ishiwatari, N.; Nagai, H.

    1960-12-01

    A procedure is described for the spectrophotometric determination of a few tenths of a pant per million of boron ia thorium oxide or thorium. The sample is dissolved in strong phosphoric acid. After diluting the solution with water, boron is separated by distillation as methyl borate and finally determined by the curcumin method. The error is not likely to exceed plus or minus O.l ppm for 0.2 to 1 ppm of boron. (auth)

  6. A spectrophotometric method for detecting substellar companions to late-type M stars

    NASA Astrophysics Data System (ADS)

    Oetiker, Brian Glen

    The most common stars in the Galaxy are the main-sequence M stars, yet current techniques are not optimized for detecting companions around the lowest mass stars; those with spectral designations ranging from M6 to M10. Described in this study is a search for companions around such stars using two methods: a unique implementation of the transit method, and a newly designed differential spectrophotometric method. The TEP project focusses on the detection of transits of terrestrial sized and larger companions in the eclipsing binary system CM Draconis. The newly designed spectrophotometric technique combines the strengths of the spectroscopic and photometric methods, while minimizing their inherent weaknesses. This unique method relies on the placement of three narrow band optical filters on and around the Titanium Oxide (TiO) bandhead near 8420 Å, a feature commonly seen in the atmospheres of late M stars. One filter is placed on the slope of the bandhead feature, while the remaining two are located on the adjacent continuum portions of the star's spectrum. The companion-induced motion of the star results in a doppler shifting of the bandhead feature, which in turn causes a change in flux passing through the filter located on the slope of the TiO bandhead. The spectrophotometric method is optimized for detecting compact systems containing brown dwarfs and giant planets. Because of its low dispersion-high photon efficiency design, this method is well suited for surveying large numbers of faint M stars. A small scale survey has been implemented, producing a candidate brown dwarf class companion of the star WX UMa. Applying the spectrophotometric method to a larger scale survey for brown dwarf and giant planet companions, coupled with a photometric transit study addresses two key astronomical issues. By detecting or placing limits on compact late type M star systems, a discrimination among competing theories of planetary formation may be gained. Furthermore, searching

  7. A Spectrophotometric Study of the Permanganate-Oxalate Reaction: An Analytical Laboratory Experiment

    ERIC Educational Resources Information Center

    Kalbus, Gene E.; Lieu, Van T.; Kalbus, Lee H.

    2004-01-01

    The spectrophotometric method assists in the study of potassium permanganate-oxalate reaction. Basic analytical techniques and rules are implemented in the experiment, which can also include the examination of other compounds oxidized by permanganate.

  8. Comparison between layers stacks of 67P/CG comet and spectrophotometric variability obtained from OSIRIS data

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Barucci, M. A.; Lucchetti, A.; Pajola, M.; Frattin, E.; Bertini, I.; Ferri, F.; Cremonese, G.

    2017-09-01

    The Rosetta/OSIRIS cameras unveiled the layered nature of comet 67P/Churyumov-Gerasimenko, suggesting that the comet bilobate shape results from the low-velocity merging of two independent onion-like objects. Several physiographical regions of the southern-hemisphere big lobe show stacks of layers forming high scarps, terraces and mesas. A spectrophotometric analysis of OSIRIS images based on multispectral data classifications was conducted in order to identify possible morphological, textural and/or compositional characters that allow to distinguish regional stacks of layers.

  9. Spectrophotometric Determination of Chromium (III) with the Disodium Salt of (Ethylenediamine) tetraacetic Acid (Complexon III); DETERMINACION ESPECTROFOTOMETRICA DE CROMO (III) CON LA SAL DISODICA DEL ACIDO ETILEN-DIAMINO-TETRA-ACETICO (COMPLEXONA III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellini, R.F.; Valiente, E.A.

    1956-01-01

    A spectrophotometric method for Cr (III) determination is established: hot and weak acid solutions are treated by disodium (ethylenediamine)tetraacetic acid (complexoneIII) yielding a very stable violet chelate, which follows Beer's law between 1 and 7 gamma Cr(III)/ml. These concentrations are employed in the experiences of this work. The absorption spectrum of Cr(III)-complexone-III has two maximums at 396 and 538 m mu . The maximum at 538 mu m is utilized in this method. Time, temperature, pH, and complexone-III concentration are studied and the best experimental conditions are fixed. (auth)

  10. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments.

    PubMed

    Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M

    2015-04-05

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml(-1). The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml(-1). The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml(-1). All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms. Copyright © 2015. Published by Elsevier B.V.

  11. Compatible validated spectrofluorimetric and spectrophotometric methods for determination of vildagliptin and saxagliptin by factorial design experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.

    2015-04-01

    Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.

  12. Rapid spectrophotometric method for determining surface free energy of microalgal cells.

    PubMed

    Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y

    2014-09-02

    Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.

  13. Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin

    PubMed Central

    2011-01-01

    Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 μg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 μg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 μg/mL and 0.11 μg/mL and the quantitation limits were 0.13 μg/mL and 0.34 μg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 μg/mL and the quantitation limit was 0.18 μg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement. PMID:22152156

  14. Spectrophotometric analysis of discoloration and internal bleaching after use of different antibiotic pastes.

    PubMed

    Fundaoğlu Küçükekenci, Funda; Çakici, Fatih; Küçükekenci, Ahmet Serkan

    2018-04-14

    To investigate teeth's antibiotic-induced color differences after bleaching using two different techniques. One hundred twenty extracted maxillar human incisors were examined. The specimens were randomly divided into six groups, each receiving one of six antibiotic paste fillings: (1) triple antibiotic paste (TAP) with minocycline, (2) double antibiotic paste (DAP), (3) TAP with amoxicillin, (4) TAP with cefaclor, (5) TAP with doxycycline, and (6) no filling (control group). Spectrophotometric measurements were obtained at baseline and then during the first, second, and third weeks after paste placement. The specimens discolored by antibiotics pastes were randomly divided into two subgroups: (1) internal bleaching with hydrogen peroxide (H 2 O 2) and (2) internal bleaching with H 2 O 2 plus Nd-YAG laser irradiation. The ∆E value was calculated and analyzed using a two-way analysis of variance and post-hoc Tukey's test (α = 0.05). The ∆E for all groups showed color differences exceeding the perceptibility threshold (∆E ˃ 3.7) at all time points except in the control and DAP groups. Minocycline-induced TAP showed the most severe coronal discoloration (32.42). When the ∆E was examined, thermo/photo bleaching (22.01 ± 8.23) caused more bleaching than walking bleaching (19.73 ± 5.73) at every time point (P = 0.19). No group returned to the original color after bleaching (P < 0.05). Except for DAP, all antibiotic pastes caused discoloration. Internal bleaching with Nd-YAG laser can be useful for bleaching/removing this discoloration. For clinically successful final appearances, understanding the effects of bleaching procedures on antibiotic paste discoloration is important.

  15. Micellar modified spectrophotometric determination of nitrobenzenes based upon reduction with tin(II), diazotisation and coupling with the Bratton-Marshall reagent.

    PubMed

    Escrig-Tena, I; Alvarez Rodríguez, L; Esteve-Romero, J; García-Alvarez-Coque, M C

    1998-09-01

    Nitrobenzenes, such as the antibiotic chloramphenicol, the vasodilator nicardipine, and the herbicides dinitramin, dinobuton, fenitrothion, methylparathion, oxyfluorfen, parathion, pendimethalin, quintozene, and trifluralin, were determined by using a spectrophotometric method in the visible region (540 nm). The method was based on the reduction of the nitrobenzenes to arylamines with tin(II) chloride, diazotisation of the arylamines and coupling of the diazonium ions with the Bratton-Marshall reagent. The two latter reactions were performed in a micellar medium of sodium dodecyl sulphate. The linear calibration range was 2x10(-6) to 7x10(-5) M (r>0.999), with limits of detection in the 10(-7) M level, which is 2-6 fold lower with respect to the corresponding spectrophotometric procedure in non-micellar medium. The procedure was applied to the analysis of the compounds in commercial preparations (pharmaceuticals and herbicide formulations) and in water samples, with good recoveries.

  16. Spectrophotometric Standards for Cross-Observatory Calibration

    NASA Astrophysics Data System (ADS)

    Diaz-Miller, Rosa

    2005-07-01

    This program will obtain NICMOS spectrophotometry of four main sequence A stars and four K giants, each selected from the Spitzer IRAC photometric calibration target and/or candidate calibration target lists {Reach et al 2005, PASP,117,978}. These observations will supplement existing HST observations of DA white dwarfs and solar analogs, and will provide a broad base of stellar types for spectrophotometric cross calibration of HST, Spitzer, and eventually JWST. The targets are chosen to be faint enough for unsaturated observations with JWST NIRSPEC, yet still bright enough for high signal to noise in relatively short observations with HST+NICMOS and with Spitzer+IRAC.ANALYSIS OF THE FIRST OBS OF 1812095 & KF06T2These data demonstated heavy saturation in the longer exposures. For example, 1812095 {A3V, V=11.8, Ks=11.6} shows a peak rate of 250DN/s in G096, while KF06T2 {K1.5III V=13.8, Ks=11.3} reaches 250DN/s in G206, including the 100DN/s of background. Thus, full saturation of some charge wells occurred after integrating for 100s. Adopting a 2x safety factor, the integration times should be limited to 50s. The brightest stars are Ks=11, or 32% brighter.

  17. Spectrophotometric and cytochemical analyses of phosphatase activity in Beta vulgaris L.

    PubMed

    Pesacreta, T C; Bennett, A B; Lucas, W J

    1986-03-01

    Spectrophotometric and cytochemical methods were used to investigate the localization and/or the sensitivity of phosphatase activities in aldehyde-fixed beet leaves and membrane fractions. The nonspecific acid phosphatase substrates, p-nitrophenyl phosphate and beta-glycerol phosphate, each exhibited unique spectrophotometric patterns of hydrolysis as a function of pH. Additionally, beta-glycerol phosphatase activity was primarily present on the tonoplast, whereas p-nitrophenyl phosphatase was present on the plasma membrane. Because of the unique pH response of each enzyme and their different localization, we conclude that they cannot be entirely "nonspecific." The spectrophotometric pattern of ATP hydrolysis differed from that of p-nitrophenol phosphate in that it decreased at pH 5.0-5.5 and was greatly inhibited by 10 mM sodium fluoride; however, both activities were on the plasma membrane. Therefore, we conclude that these activities represent either two enzymes or only one enzyme that differs in its ability to hydrolyze these two substrates. Generally, enzymatically produced lead deposits on the plasma membrane of non-vascular cells were as frequent and large as those on phloem cells; frequently, deposits on sieve element plasma membranes were relatively small. We therefore conclude that there is no evidence for the presence of relatively intense ATPase activity on the plasma membrane of phloem cells in beet leaf, in contrast to other species. Studies with membrane fractions indicated that formaldehyde could completely inhibit the inhibitor-sensitive phosphatase activities in mitochondrial and vacuolar fractions while preserving significant activity in the plasma membrane fraction.

  18. Extractive Spectrophotometric Determination of Nortriptyline Hydrochloride Using Sudan II, IV and Black B.

    PubMed

    Amin, A S; Saleh, H M

    2017-08-17

    A simple spectrophotometric methods has been developed for the determination of nortriptyline hydrochloride in pure and in pharmaceuticalformulations based on the formation of ion-pair complexes with sudun II (S II ), sudan (IV) (S IV ) and sudan black B (S BB ). The selectivity of the method was improved through extraction with chloroform. The optimum conditions for complete extracted colour development were assessed. The absorbance measurements were made at 534, 596 and 649 nm for S II , S IV and S BB complexes, respectively. The calibration graph was linear in the ranges 0.5- 280. 0.5- 37.5 and 0.5 - 31.0 μg ml -1 of the drug usiny the same reagents, respectively. The precision of the procedure was checked by calculating the relative standard deviation of ten replicate determinations on 15 μg ml -1 of nortriptyline HCI and was found to be 1.7, 1.3 and 1.55% using S II , S IV , and S BB complexes, respectively. The molar absorptivity and Sandell sensitivity for each ion-pair were calculated. The proposed methods were successfully applied to the deterniination of pure nortriptyline HCI and in pharmaceutical formulations, and the results demonstrated that the method is equally accurate, precise and reproducible as the official method.

  19. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    NASA Astrophysics Data System (ADS)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  20. Selective and sensitized spectrophotometric determination of trace amounts of Ni(II) ion using α-benzyl dioxime in surfactant media

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang

    2007-02-01

    Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 μg mL -1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 μg mL -1 and a detection limit of 0.12 ng mL -1 and molar absorption coefficient of 68,600 L mol -1 cm -1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.

  1. Validation of UV spectrophotometric methods for the determination of dothiepin hydrochloride in pharmaceutical dosage form and stress degradation studies

    NASA Astrophysics Data System (ADS)

    Abdulrahman, Sameer A. M.; Basavaiah, K.; Cijo, M. X.; Vinay, K. B.

    2012-11-01

    Spectrophotometric methods have been developed for the determination of dothiepin hydrochloride (DOTH) in both pure and tablet dosage form and their limits of detection and quantification have been evaluated. The methods are based on the measurement of the absorbance of a DOTH solution either in 0.1 N HCl at 229 nm (method A) or in methanol at 231 nm (method B). Beer's law is obeyed over a concentration range of 1-16 μg/ml DOTH for both methods. Molar absorptivity values are calculated to be 2.48 × 104 and 2.42 × 104 l/(mol × cm) with Sandell sensitivity values of 0.0134 and 0.0137 μg/cm2 for methods A and B, respectively. The degradation behavior of DOTH was investigated under different stress conditions such as acid hydrolysis, alkaline hydrolysis, water hydrolysis, oxidation, dry heat treatment, and UV-degradation. The drug undergoes significant degradation under oxidative conditions only.

  2. The significance of spectrophotometric image analysis for diagnosis of the melanocytic skin tumours in association with their thickness.

    PubMed

    Sakalauskienė, K; Valiukevičienė, S; Raišutis, R; Linkevičiūtė, G

    2018-05-23

    Cutaneous melanoma is a melanocytic skin tumour, which has very poor prognosis while it is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the analysis of spectrophotometric (SIAscope) images can provide the information about skin tumour thickness. The intensity of blood displacement, "erythematous blush", collagen holes, intensity of collagen, dermal and epidermal melanin were estimated in SIAgraphs. Tumour thicknesses were evaluated non-invasively in ultrasound images before excision. The diagnosis and Breslow index of each tumour were evaluated during routine histological examination. The logistic regression analysis of two thicknesses groups of melanocytic tumours (≤1 mm, n = 72 and >1 mm, n = 30), using six SIAscopic features lead to achieve the areas under the ROC curves of 0.9 and 0.96 respectively. Overall the sensitivity and specificity of SIAscopy observed in this study is 81.4% and 86.4% respectively. The features of SIAgraphs individually are not enough specific for melanoma diagnosis with different thickness. Promising results were observed for differentiation of melanocytic skin tumour, using all 6 SIAscopic features, which correspond to the distribution, location and concentration of skin chromophores. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. A simple spectrophotometric method for the determination of arsenic in industrial and environmental samples using 2,4-Dihydroxy benzophenone-2-amino thiophenol.

    PubMed

    Deepa, K; Lingappa, Y

    2014-04-24

    2,4-Dihydroxy benzophenone-2-amino thiophenol (BPBT) has been proposed as new analytical reagent for the direct non-extractive spectrophotometric determination of arsenic. The reagent reacts with arsenic in acidic medium (pH=6.0, sodium acetate-acetic acid buffer) to form light greenish yellow colored 1:1 (M:L) complex. Maximum absorbance was obtained at 343 nm and remains constant for over 24 h. The molar absorptivity and Sandell's sensitivity of BPBT are found to be 6.01×10(4) L mol(-1)cm(-1) and 0.0016 μg cm(-2) respectively. The system obeys Beer's law in the range of 0.125-2.637 μg/ml of As (III). Since BPBT method is more sensitive, it was applied for the determination of arsenic in some environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  5. Development and Validation of New Spectrophotometric Methods to Determine Enrofloxacin in Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.

    2015-07-01

    Four spectrophotometric methods, based on oxidation with cerium(IV), are investigated and developed to determine EFX in pure form and in dosage forms. The frst and second methods (Method A and method B) are direct, in which after the oxidation of EFX with cerium(IV) in acid medium, the absorbance of reduced and unreacted oxidant is measured at 275 and 320 nm, respectively. In the third (C) and fourth (D) methods after the reaction between EFX and oxidant is ensured to be completed the surplus oxidant is treated with either N-phenylanthranilic acid (NPA) or Alizarin Red S (ARS) dye and the absorbance of the oxidized NPA or ARS is measured at 440 or 420 nm. The methods showed good linearity over the concentration ranges of 0.5-5.0, 1.25-12.5, 10.0-100.0, and 6.0-60.0 μg/ml, for method A, B, C and D, respectively, with apparent molar absorptivity values of 4.42 × 10 4 , 8.7 × 10 3 , 9.31 × 10 2 , and 2.28 × 10 3 l/(mol· cm). The limits of detection (LOD), quantification (LOQ), and Sandell's sensitivity values and other validation results have also been reported. The proposed methods are successfully applied to determine EFX in pure form and in dosage forms.

  6. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  7. Determination of cyanide by a highly sensitive indirect spectrophotometric method.

    PubMed

    Blanco, M; Maspoch, S

    1984-01-01

    Complexation of Pd(2+) with cyanide inhibits the extraction of the palladium complex of 5-phenylazo-8-aminoquinoline. This effect is used for the indirect spectrophotometric determination of cyanide at the mug level. Cyanide in industrial waste water and in sea-water is determined after distillation as HCN from the sample and collection in sodium hydroxide solution.

  8. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  9. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  10. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb²⁺ and Cu²⁺ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5'-oxazolidine]-2',3,4'-trione using continuous wavelet transformation and partial least squares - calculation of pKf of complexes with rank annihilation factor analysis.

    PubMed

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-15

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2011-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10–8 To 8.20 × 10–7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10–9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10–7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.

  12. Determination of Trace Amounts of Lead Using the Flotation-spectrophotometric method

    PubMed Central

    Shiri, Sabah; Delpisheh, Ali; Haeri, Ali; Poornajaf, Abdolhossein; Golzadeh, Babak; Shiri, Sina

    2010-01-01

    The present study describes a simple and highly selective method for separation, preconcentration and spectrophotometric determination of extremely low concentrations of lead. It is based on flotation of a complex of Pb2+ ions and Alizarin yellow between aqueous and n-hexane interface at pH = 6. The proposed procedure is also applied for determination of lead in both tap water and prepared sea water samples. Beer’s Law was obeyed over the concentration range of 3.86 × 10−8 To 8.20 × 10−7 molL−1 (8–170 ngmL−1) with an apparent molar absorptivity of 1.33 × 106 molL−1 cm−1 for a 100 mL aliquot of the water sample. The detection limit (n = 10) was 8.7 × 10−9 molL−1 (1.0 ngmL−1) and the Relative standard deviation (R.S.D), (n = 10) for 7.2 × 10−7 molL−1 (150 ngmL−1) of Pb (II) was 4.36%. A notable advantage of the method is that the determination of Pb (II) is free from the interference of almost all cations and ions found in the environment and waste water samples. The determination of Pb (II) in tap and synthetic seawater samples was also carried out by the present method. The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples. PMID:21234287

  13. Spectrophotometric Calibration of pH Electrodes in Seawater Using Purified m-Cresol Purple

    PubMed Central

    2012-01-01

    This work examines the use of purified meta-cresol purple (mCP) for direct spectrophotometric calibration of glass pH electrodes in seawater. The procedures used in this investigation allow for simple, inexpensive electrode calibrations over salinities of 20–40 and temperatures of 278.15–308.15 K without preparation of synthetic Tris seawater buffers. The optimal pH range is ∼7.0–8.1. Spectrophotometric calibrations enable straightforward, quantitative distinctions between Nernstian and non-Nernstian electrode behavior. For the electrodes examined in this study, both types of behavior were observed. Furthermore, calibrations performed in natural seawater allow direct determination of the influence of salinity on electrode performance. The procedures developed in this study account for salinity-induced variations in liquid junction potentials that, if not taken into account, would create pH inconsistencies of 0.028 over a 10-unit change in salinity. Spectrophotometric calibration can also be used to expeditiously determine the intercept potential (i.e., the potential corresponding to pH 0) of an electrode that has reliably demonstrated Nernstian behavior. Titrations to ascertain Nernstian behavior and salinity effects can be undertaken relatively infrequently (∼weekly to monthly). One-point determinations of intercept potential should be undertaken frequently (∼daily) to monitor for stable electrode behavior and ensure accurate potentiometric pH determinations. PMID:22463815

  14. Novel PDD-PDT system based on spectrophotometric real-time fluorescence monitoring and MALDI-TOF-MS analysis of tumors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takato O.; Kohno, Eiji; Dodeller, Marc; Sakurai, Takashi; Yamamoto, Seiji; Terakawa, Susumu

    2009-06-01

    In the PDT practice for tumor patients, the dose and irradiation time for the treatment are chosen by experience and not by real need. To establish advanced PDD-PDT model system for patients, we developed a method for monitoring the cell-death based on a spectrophotometric real-time change in fluorescence in HeLa-tumors during Photofrin®-PDT and ALA-PDT. Here, we describe the results of application of the new PDD-PDT system to human tumors. The fluorescence spectra obtained from human tumors were analyzed by the differential spectral analysis. The mass-spectral changes of tumor tissues during PDD-PDT were also examined by MALDI-TOF-MS/MS. The first author's seborrheic keratosis was monitored with this system during the PDD-PDT with a topically applied ALA-ointment. The changes in fluorescence spectrum were successfully detected, and the tumor regressed completely within 5 months. The differential spectral analysis of PDD-PDT-fluorescence monitoring spectra of tumors and isolated mitochondria showed a marked decrease of three peaks in the red region indicative of the PDD (600 - 720 nm), and a transient rise followed by a decline of peaks in the green region indicative of the PDT (450 - 580 nm). The MALDI-TOF-MS analysis of PDD-PDT HeLa-tumors showed a consumption of Photofrin-deuteroporphyrin and ALA-PpIX, and decreases in protein mass in the range of 4,000 - 16,000 Da, m/z 4929, 8564, 10089, 15000, and an increase in m/z 7002 in a Photofrin® PDD-PDT monitoring tumor.

  15. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity.

    PubMed

    Samburova, Vera; Connolly, Jessica; Gyawali, Madhu; Yatavelli, Reddy L N; Watts, Adam C; Chakrabarty, Rajan K; Zielinska, Barbara; Moosmüller, Hans; Khlystov, Andrey

    2016-10-15

    In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated. Copyright

  16. Spectrophotometric determination of molybdenum in rocks with thiocyanate

    USGS Publications Warehouse

    Lillie, E.G.; Greenland, L.P.

    1974-01-01

    A rapid procedure for the determination of microgram amounts of molybdenum in rocks is described. After acid decomposition, molybdenum is extracted from a hydrochloric acid solution into xylene with tributyl phosphate. After back-extraction with water, molybdenum is extracted as the ??-benzoinoximate into chloroform, stripped into hydrochloric acid extracted as the thiocyanate into amyl alcohol, and determined spectrophotometrically. The molybdenum thiocyanate color produced is stable, sensitive, and reproducible. Results of analyses of several of the U.S. Geological Survey standard rocks are given. ?? 1974.

  17. Optimization and validation of spectrophotometric methods for determination of finasteride in dosage and biological forms

    PubMed Central

    Amin, Alaa S.; Kassem, Mohammed A.

    2012-01-01

    Aim and Background: Three simple, accurate and sensitive spectrophotometric methods for the determination of finasteride in pure, dosage and biological forms, and in the presence of its oxidative degradates were developed. Materials and Methods: These methods are indirect, involve the addition of excess oxidant potassium permanganate for method A; cerric sulfate [Ce(SO4)2] for methods B; and N-bromosuccinimide (NBS) for method C of known concentration in acid medium to finasteride, and the determination of the unreacted oxidant by measurement of the decrease in absorbance of methylene blue for method A, chromotrope 2R for method B, and amaranth for method C at a suitable maximum wavelength, λmax: 663, 528, and 520 nm, for the three methods, respectively. The reaction conditions for each method were optimized. Results: Regression analysis of the Beer plots showed good correlation in the concentration ranges of 0.12–3.84 μg mL–1 for method A, and 0.12–3.28 μg mL–1 for method B and 0.14 – 3.56 μg mL–1 for method C. The apparent molar absorptivity, Sandell sensitivity, detection and quantification limits were evaluated. The stoichiometric ratio between the finasteride and the oxidant was estimated. The validity of the proposed methods was tested by analyzing dosage forms and biological samples containing finasteride with relative standard deviation ≤ 0.95. Conclusion: The proposed methods could successfully determine the studied drug with varying excess of its oxidative degradation products, with recovery between 99.0 and 101.4, 99.2 and 101.6, and 99.6 and 101.0% for methods A, B, and C, respectively. PMID:23781478

  18. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Fayez, Yasmin M.; Michael, Adel M.; Nessim, Christine K.

    2016-02-01

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD1) or second derivative (D2). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28 μg/mL for mebeverine hydrochloride and 1-12 μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  19. Spectrophotometric determination of dopaminergic drugs used for Parkinson's disease, cabergoline and ropinirole, in pharmaceutical preparations.

    PubMed

    Onal, Armağan; Cağlar, Sena

    2007-04-01

    Simple and reproducible spectrophotometric methods have been developed for determination of dopaminergic drugs used for Parkinson's disease, cabergoline (CAB) and ropinirole hydrochloride (ROP), in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents [methyl orange (MO), bromocresol green (BCG) and bromophenol blue (BPB)] producing yellow colored ion-pair complexes in acidic buffers, after extracting in dichloromethane, which are spectrophotometrically determined at the appropriate wavelength of ion-pair complexes. Beer's law was obeyed within the concentration range from 1.0 to 35 microg ml(-1). The developed methods were applied successfully for the determination of these drugs in tablets.

  20. Development and Validation of Eco-Friendly Liquid Chromatographic and Spectrophotometric Methods for Simultaneous Determination of Coformulated Drugs: Phenylephrine Hydrochloride and Prednisolone Acetate.

    PubMed

    Mostafa, Nadia M; Elsayed, Ghada M; Hassan, Nagiba Y; El Mously, Dina A

    2017-11-01

    Five simple, sensitive, and eco-friendly LC and UV spectrophotometric methods have been developed for the simultaneous determination of phenylephrine hydrochloride (PHE) and prednisolone acetate (PRD) in their combined dosage form. The first method was reversed-phase (RP) LC using methanol-water-heptane-1-sulfonic acid sodium salt (75 + 25 + 0.1, v/v/w) as a mobile phase. Separation was achieved using an XSelect HSS reversed-phase C18 analytical column (250 × 4.6 mm, 5µm). The flow rate was 1.0 mL/min and UV detection was done at 230 nm. Quantification was achieved over the concentration ranges of 5-50 µg/mL for PHE and 2-90 µg/mL for PRD. Four spectrophotometric methods were proposed, namely dual wavelength, first derivative of ratio spectra, ratio difference, and mean-centering of ratio spectra. Linearity was observed in the concentration ranges of 10-120 and 5-35 µg/mL for PHE and PRD, respectively, for the spectrophotometric methods. Green solvents were used in the proposed methods because they play a vital role in the analytical methods' influence on the environment. The suggested methods were validated regarding linearity, accuracy, and precision according to the International Conference on Harmonization guidelines, with satisfactory results. These methods could be used as harmless substitutes for routine analysis of the mentioned drugs, with no interference from excipients.

  1. Development and Validation of Chemometric Spectrophotometric Methods for Simultaneous Determination of Simvastatin and Nicotinic Acid in Binary Combinations.

    PubMed

    Alahmad, Shoeb; Elfatatry, Hamed M; Mabrouk, Mokhtar M; Hammad, Sherin F; Mansour, Fotouh R

    2018-01-01

    The development and introduction of combined therapy represent a challenge for analysis due to severe overlapping of their UV spectra in case of spectroscopy or the requirement of a long tedious and high cost separation technique in case of chromatography. Quality control laboratories have to develop and validate suitable analytical procedures in order to assay such multi component preparations. New spectrophotometric methods for the simultaneous determination of simvastatin (SIM) and nicotinic acid (NIA) in binary combinations were developed. These methods are based on chemometric treatment of data, the applied chemometric techniques are multivariate methods including classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS). In these techniques, the concentration data matrix were prepared by using the synthetic mixtures containing SIM and NIA dissolved in ethanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbance at 12 wavelengths in the range 216 - 240 nm at 2 nm intervals in the zero-order. The spectrophotometric procedures do not require any separation step. The accuracy, precision and the linearity ranges of the methods have been determined and validated by analyzing synthetic mixtures containing the studied drugs. Chemometric spectrophotometric methods have been developed in the present study for the simultaneous determination of simvastatin and nicotinic acid in their synthetic binary mixtures and in their mixtures with possible excipients present in tablet dosage form. The validation was performed successfully. The developed methods have been shown to be accurate, linear, precise, and so simple. The developed methods can be used routinely for the determination dosage form. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Validation of a spectrophotometric procedure for determining nitrate in water samples

    USDA-ARS?s Scientific Manuscript database

    A single-reagent spectrophotometric procedure using vanadium (III) chloride (VCl3) was found to provide accurate and robust measurement of low levels of nitrate (lNO3-N) in agricultural runoff. Results of the VCl3 method produced data that correlated well (r=0.86; p<0.001) with NO3-N concentrations ...

  3. Analysis of ultraviolet spectrophotometric data from Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1979-01-01

    Ultraviolet spectral data from the OAO 3 satellite are being used to study interstellar absorption lines and stellar and circumstellar lines in hot stars. The interstellar data are beneficial in analyzing the depletions of heavy elements from the gas phase and in elucidating how these depletions depend on physical conditions. Abundances in separate velocity components were determined from line profiles. Observations were carried out for interstellar abundances, both atomic and molecular, towards a number of stars. The better quality data are being analyzed for profile information and the lesser data are being used in curve-of-growth analyses. Molecular observations were carried out as well, N2 was sought; interstellar C2 was detected and its rotational excitation utilized to establish limits in interstellar cloud temperatures. An extensive search for H2O resulted in a tentative identification which will produce new information on chemical reaction rates. Interstellar depletions and grain properties in the rho Ophiuchi cloud, stellar wind variability, and circumstellar lines are also under study.

  4. Development of normalized spectra manipulating spectrophotometric methods for simultaneous determination of Dimenhydrinate and Cinnarizine binary mixture.

    PubMed

    Lamie, Nesrine T; Yehia, Ali M

    2015-01-01

    Simultaneous determination of Dimenhydrinate (DIM) and Cinnarizine (CIN) binary mixture with simple procedures were applied. Three ratio manipulating spectrophotometric methods were proposed. Normalized spectrum was utilized as a divisor for simultaneous determination of both drugs with minimum manipulation steps. The proposed methods were simultaneous constant center (SCC), simultaneous derivative ratio spectrophotometry (S(1)DD) and ratio H-point standard addition method (RHPSAM). Peak amplitudes at isoabsorptive point in ratio spectra were measured for determination of total concentrations of DIM and CIN. For subsequent determination of DIM concentration, difference between peak amplitudes at 250 nm and 267 nm were used in SCC. While the peak amplitude at 275 nm of the first derivative ratio spectra were used in S(1)DD; then subtraction of DIM concentration from the total one provided the CIN concentration. The last RHPSAM was a dual wavelength method in which two calibrations were plotted at 220 nm and 230 nm. The coordinates of intersection point between the two calibration lines were corresponding to DIM and CIN concentrations. The proposed methods were successfully applied for combined dosage form analysis, Moreover statistical comparison between the proposed and reported spectrophotometric methods was applied. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A study of selective spectrophotometric methods for simultaneous determination of Itopride hydrochloride and Rabeprazole sodium binary mixture: Resolving sever overlapping spectra

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.

    2015-02-01

    Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110 μg/μL for Itopride hydrochloride and 4-44 μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB.

  6. Manipulating Ratio Spectra for the Spectrophotometric Analysis of Diclofenac Sodium and Pantoprazole Sodium in Laboratory Mixtures and Tablet Formulation

    PubMed Central

    Bhatt, Nejal M.; Chavada, Vijay D.; Sanyal, Mallika; Shrivastav, Pranav S.

    2014-01-01

    Objective. Three sensitive, selective, and precise spectrophotometric methods based on manipulation of ratio spectra, have been developed and validated for the determination of diclofenac sodium and pantoprazole sodium. Materials and Methods. The first method is based on ratio spectra peak to peak measurement using the amplitudes at 251 and 318 nm; the second method involves the first derivative of the ratio spectra (Δλ = 4 nm) using the peak amplitudes at 326.0 nm for diclofenac sodium and 337.0 nm for pantoprazole sodium. The third is the method of mean centering of ratio spectra using the values at 318.0 nm for both the analytes. Results. All the three methods were linear over the concentration range of 2.0–24.0 μg/mL for diclofenac sodium and 2.0–20.0 μg/mL for pantoprazole sodium. The methods were validated according to the ICH guidelines and accuracy, precision, repeatability, and robustness are found to be within the acceptable limit. The results of single factor ANOVA analysis indicated that there is no significant difference among the developed methods. Conclusions. The developed methods provided simple resolution of this binary combination from laboratory mixtures and pharmaceutical preparations and can be conveniently adopted for routine quality control analysis. PMID:24701171

  7. Rapid and on-site analysis of illegal drugs on the nano-microscale using a deep ultraviolet-visible reflected optical fiber sensor.

    PubMed

    Li, Qiang; Qiu, Tian; Hao, Hongxia; Zhou, Hong; Wang, Tongzhou; Zhang, Ye; Li, Xin; Huang, Guoliang; Cheng, Jing

    2012-04-07

    A deep ultraviolet-visible (DUV-Vis) reflected optical fiber sensor was developed for use in a simple spectrophotometric detection system to detect the absorption of various illegal drugs at wavelengths between 180 and 800 nm. Quantitative analyses performed using the sensor revealed a high specificity and sensitivity for drug detection at a wavelength of approximately 200 nm. Using a double-absorption optical path length, extremely small sample volumes were used (32 to 160 nL), which allowed the use of minimal amounts of samples. A portable spectrophotometric system was established based on our optical fiber sensor for the on-site determination and quantitative analysis of common illegal drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), ketamine hydrochloride, cocaine hydrochloride, diazepam, phenobarbital, and barbital. By analyzing the absorbance spectra, six different drugs were quantified at concentrations that ranged from 0.1 to 1000 μg mL(-1) (16 pg-0.16 μg). A novel Matching Algorithm of Spectra Space (MASS) was used to accurately distinguish between each drug in a mixture. As an important supplement to traditional methods, such as mass spectrometry or chromatography, our optical fiber sensor offers rapid and low-cost on-site detection using trace amounts of sample. This rapid and accurate analytical method has wide-ranging applications in forensic science, law enforcement, and medicine.

  8. Different Spectrophotometric and Chromatographic Methods for Determination of Mepivacaine and Its Toxic Impurity.

    PubMed

    Abdelwahab, Nada S; Fared, Nehal F; Elagawany, Mohamed; Abdelmomen, Esraa H

    2017-09-01

    Stability-indicating spectrophotometric, TLC-densitometric, and ultra-performance LC (UPLC) methods were developed for the determination of mepivacaine HCl (MEP) in the presence of its toxic impurity, 2,6-dimethylanaline (DMA). Different spectrophotometric methods were developed for the determination of MEP and DMA. In a dual-wavelength method combined with direct spectrophotometric measurement, the absorbance difference between 221.4 and 240 nm was used for MEP measurements, whereas the absorbance at 283 nm was used for measuring DMA in the binary mixture. In the second-derivative method, amplitudes at 272.2 and 232.6 nm were recorded and used for the determination of MEP and DMA, respectively. The developed TLC-densitometric method depended on chromatographic separation using silica gel 60 F254 TLC plates as a stationary phase and methanol-water-acetic acid (9 + 1 + 0.1, v/v/v) as a developing system, with UV scanning at 230 nm. The developed UPLC method depended on separation using a C18 column (250 × 4.6 mm id, 5 μm particle size) as a stationary phase and acetonitrile-water (40 + 60, v/v; pH 4 with phosphoric acid) as a mobile phase at a flow rate of 0.4 mL/min, with UV detection at 215 nm. The chromatographic run time was approximately 1 min. The proposed methods were validated with respect to International Conference on Harmonization guidelines regarding precision, accuracy, ruggedness, robustness, and specificity.

  9. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches.

    PubMed

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-15

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Catalytic spectrophotometric determination of iodide in pharmaceutical preparations and edible salt.

    PubMed

    El-Ries, M A; Khaled, Elmorsy; Zidane, F I; Ibrahim, S A; Abd-Elmonem, M S

    2012-02-01

    The catalytic effect of iodide on the oxidation of four dyes: viz. variamine blue (VB), methylene blue (MB), rhodamine B (RB), and malachite green (MG) with different oxidizing agents was investigated for the kinetic spectrophotometric determination of iodide. The above catalyzed reactions were monitored spectrophotometrically by following the change in dye absorbances at 544, 558, 660, or 617 nm for the VB, RB, MB, or MG catalyzed reactions, respectively. Under optimum conditions, iodide can be determined within the concentration levels 0.064-1.27 µg mL(-1) for VB method, 3.20-9.54 µg mL(-1) for RB method, 5.00-19.00 µg mL(-1) for the MB method, and 6.4-19.0 µg mL(-1) for the MG one, with detection limit reaching 0.004 µg mL(-1) iodide. The reported methods were highly sensitive, selective, and free from most interference. Applying the proposed procedures, trace amounts of iodide in pharmaceutical and edible salt samples were successfully determined without separation or pretreatment steps. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Indirect spectrophotometric determination of propranolol hydrochloride and piroxicam in pure and pharmaceutical formulations.

    PubMed

    Gowda, Babu G; Seetharamappa, Jaldappa; Melwanki, Mahaveer B

    2002-06-01

    Two simple and sensitive indirect spectrophotometric methods for the assay of propranolol hydrochloride (PPH) and piroxicam (PX) in pure and pharmaceutical formulations have been proposed. The methods are based on the oxidation of PPH by a known excess of standard N-bromosuccinimide (NBS) and PX by ceric ammonium sulfate (CAS) in an acidic medium followed by the reaction of excess oxidant with promethazine hydrochloride (PMH) and methdilazine hydrochloride (MDH) to yield red-colored products. The absorbance values decreased linearly with increasing concentration of the drugs. The systems obeyed Beer's law over the concentration ranges of 0.5 - 12.5 and 0.3 - 16.0 microg/ml for PPH, and 0.4 - 7.5 and 0.2 - 10 microg/ml for PX with PMH and MDH, respectively. Molar absorptivity values, as calculated from Beer's law data, were found to be 1.36 x 10(4) and 2.55 x 10(4) l mol(-1) cm(-1) for PPH, and 2.08 x 10(4) and 2.05 x 10(4) l mol(-1) cm(-1) for PX with PMH and MDH, respectively. The common excipients and additives did not interfere with their determinations. The proposed methods have been successfully applied to the determinations of PPH and PX in various dosage forms. The results obtained by the proposed methods compare favorably with those of official methods.

  12. Liquid chromatographic and ultraviolet spectrophotometric determination of bevantolol and hydrochlorothiazide in feeds.

    PubMed

    Spurlock, C H; Schneider, H G

    1984-01-01

    Separate assay methods have been developed for the 2 components of an 80 + 20 drug blend of bevantolol and hydrochlorothiazide (HCT) in admixtures with animal feed. Drug/diet admixtures are extracted with methanol for reverse phase ion-pair liquid chromatographic (LC) assay of bevantolol, and with acetonitrile for ultraviolet spectrophotometric assay of HCT. Bevantolol, a cardioselective beta blocker, is separated from soluble feed components with an RP-18 column, using methanol-water-acetic acid (60 + 40 + 1) containing 0. 005M octane-sulfonic acid, sodium salt, as ion-pairing reagent. HCT is determined spectrophotometrically in acetonitrile extracts, using a suitable blank extract as reference. Average recovery of HCT from an admixture of 0.5 mg blend/g diet is 94.5% +/- 4.3 RSD and at 2.0 mg/g, 101.5% +/- 3.5 RSD. Bevantolol recovery from the same admixtures is 101.8% +/- 2.7 RSD and 99.0% +/- 3.5 RSD, respectively, using the method as described.

  13. Highly sensitive and selective spectrophotometric method for determination of trace gold in geological samples with 5-(2-hydroxy-5-nitrophenylazo)rhodanine.

    PubMed

    Zaijun, Li; Jiaomai, Pan; Jian, Tang

    2003-02-01

    A excellent sensitive and selective method for spectrophotometric determination of trace gold has been developed, the method is based on the color reaction of gold(III) with new reagent 5-(2-hydroxy-5-nitrophenylazo)rhodanine (HNAR). Under optimal conditions, HNAR reacts with gold(III) to form a 1:5 orange complex, which has an maximum absorption peak at 480 nm. Maximum enhancement of the absorbance of the complex was obtained in the presence of the mixed surfactant of Triton X-100 and CTMAB; the reaction completed rapidly and the absorbance is stable for 5 h at least at 20 degrees C; 0-48 microg L(-1) Au(III) obeyed Beer's law. The apparent molar absorptivity of the complex, Sandell's sensitivity, the limit of quantification, the limit of detection and relative standard deviation were found to be 2.0x10(6) L mol(-1) cm(-1), 0.000,098,483 micro g cm(-2), 1.02 ng mL(-1), 0.35 ng mL(-1) and 1.09%, respectively. The effect of co-existing ions was studied seriously; most metal ions can be tolerated in considerable amounts. Its sensitivity and selectivity are remarkably superior to other reagents in the literature. The proposed method was used successfully to determine trace gold in geological samples. Moreover, the synthesis, characteristics and analytical reaction of HNAR with gold are also described in detail.

  14. Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)(2) immobilized in epoxy resin.

    PubMed

    Silva, Claudineia R; Vieira, Heberth J; Canaes, Larissa S; Nóbrega, Joaquim A; Fatibello-Filho, Orlando

    2005-02-28

    A flow injection (FI) spectrophotometric method was proposed for the determination of chloride ion in natural waters. The determination of chloride was carried out by reaction with Hg(SCN)(2) immobilized in an epoxy resin bead in a solid-phase reactor (SPR) and the thiocyanate ions released were determined spectrophotometrically at 480nm after complexing reaction with Fe(III). The analytical curve for chloride was linear in the concentration range from 5.6 x 10(-5) to 2.2 x 10(-4)moll(-1) with a detection limit of 1.4 x 10(-5)moll(-1). The relative standard deviation (R.S.D.) was 2.2% for a solution containing 2.2 x 10(-4)moll(-1) (n = 10). The simple manifold allows a routine analytical frequency of 100 determinations per hour. The main advantage of the developed method is the 400% reduction of the Hg waste solution generated when compared to conventional methods for chloride determination based on the same spectrophotometric reaction.

  15. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration.

    PubMed

    Goicoechea, H C; Olivieri, A C

    1999-08-01

    The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.

  16. [Crown color match of implant-supported zirconia and porcelain-fused-to-metal restorations: a spectrophotometric comparison].

    PubMed

    Peng, Min; Fei, Wei; Hosseini, Mandana; Gotfredsen, Klaus

    2014-02-01

    This study aimed to compare the crown color match of implant-supported zirconia restorations and porcelain-fused-to-metal (PFM) restorations in the anterior maxillary region through spectrophotometric evaluation. Eighteen patients with 29 implant-supported single crowns in the anterior maxillary area were recruited. Eleven of the implant crowns were zirconia restorations and 18 were PFM restorations. Color matching of the implant crown with contra-lateral/ neighboring tooth at the position of body 1/3 of the crown was assessed using a spectrophotometer (SpectroShade) in CIE L* a* b* coordinates. Subjective crown color match scores were evaluated. Independent sample t test of SPSS 17.0 was used to compare the difference between zirconia restoration and PFM restoration. Spearman correlation was used to analyze the relationship between the spectrophotometric color difference and the subjective crown color match score. Descriptive statistics was used to analyze the distribution of color coordinates of natural anterial teeth. The crown color of the implant-supported zirconia restorations and PFM restorations were both lighter than that of natural teeth (delta L, 4.5 +/- 3.2, 1.0 +/- 2.6). The lightness difference induced by zirconia restorations was significantly larger than that induced by PFM restorations (P=0.004). The spectrophotometric crown color difference (delta E) induced by zirconia restorations (7.0 +/- 2.8) was significantly larger than that induced by PFM restorations (4.0 +/- 1.9) (P=0.002), and both values were beyond the clinical thresholds (3.7). The spectrophotometric crown color difference induced by zirconia restorations was significantly larger than that induced by PFM restorations. However, they were indistinguishable in subjective evaluation.

  17. Development and validation of liquid chromatographic and UV derivative spectrophotometric methods for the determination of famciclovir in pharmaceutical dosage forms.

    PubMed

    Srinubabu, Gedela; Sudharani, Batchu; Sridhar, Lade; Rao, Jvln Seshagiri

    2006-06-01

    A high-performance liquid chromatographic method and a UV derivative spectrophotometric method for the determination of famciclovir, a highly active antiviral agent, in tablets were developed in the present work. The various parameters, such as linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. HPLC was carried out by using the reversed-phase technique on an RP-18 column with a mobile phase composed of 50 mM monobasic phosphate buffer and methanol (50 : 50; v/v), adjusted to pH 3.05 with orthophosphoric acid. The mobile phase was pumped at a flow rate of 1 ml/min and detection was made at 242 nm with UV dual absorbance detector. The first derivative UV spectrophotometric method was performed at 226.5 nm. Statistical analysis was done by Student's t-test and F-test, which showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and therefore can be used for its Intended purpose.

  18. Determination of atomic oxygen fluence using spectrophotometric analysis of infrared transparent witness coupons for long duration exposure tests

    NASA Technical Reports Server (NTRS)

    Podojil, Gregg M.; Jaworske, Donald A.

    1993-01-01

    Atomic oxygen degradation is one of several major threats to the durability of spaceborne systems in low Earth orbit. Ground-based simulations are conducted to learn how to minimize the adverse effects of atomic oxygen exposure. Assessing the fluence of atomic oxygen in test chambers such as a plasma asher over long periods of time is necessary for accurate determination of atomic oxygen exposure. Currently, an atomic oxygen susceptible organic material such as Kapton is placed next to samples as a witness coupon and its mass loss is monitored and used to determine the effective atomic oxygen fluence. However, degradation of the Kapton witness coupons occurs so rapidly in plasma ashers that for any long term test many witness coupons must be used sequentially in order to keep track of the fluence. This necessitates opening vacuum to substitute fresh coupons. A passive dosimetry technique was sought to monitor atomic oxygen exposure over longer periods without the need to open the plasma asher to the atmosphere. This paper investigates the use of spectrophotometric analysis of durable IR transparent witness coupons to measure atomic oxygen exposure for longer duration testing. The method considered would be conductive to making in situ measurements of atomic oxygen fluence.

  19. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis.

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.

  20. A wavelet analysis for the X-ray absorption spectra of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less

  1. Spectrophotometric determination of trace carbaryl in water and grain samples by inhibition of the rhodamine-B oxidation.

    PubMed

    Gupta, Nirja; Pillai, Ajai Kumar; Parmar, Prachi

    2015-03-15

    A novel, sensitive, selective and simple kinetic spectrophotometric method has been developed for determination of trace levels of carbaryl based on its inhibitory effect on the oxidation of rhodamine-B by chlorine and bromine released from reaction of potassium bromate with hydrochloric acid in micellar medium. A linear relationship was observed between the inhibitory effect and the concentration of the compound. The absorbance was monitored at the maximum wavelength of 555 nm. The effect of different parameters such as pH, temperature and concentration of rhodamine-B, potassium bromate and surfactant on the reaction were investigated and optimum conditions were established. Under the selected experimental conditions, carbaryl was determined in the range of 0.04-0.4 μg mL(-1). Sandell's sensitivity and molar absorptivity were found to be 0.00055 μg cm(-2) and 3.658×10(5) L mol(-1) cm(-1) respectively. The proposed method was applied satisfactorily for the determination of carbaryl in water and different grain samples. The results were compared with those obtained by reference method and were found to be in agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane.

    PubMed

    Kara, Derya; Karadaş, Cennet

    2015-08-05

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 10(3)L mol(-1)cm(-1). Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL(-1). The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL(-1) molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L(-1) for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL(-1) Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml(-1) with a standard derivation of 0.002 μg ml(-1) molybdenum(VI). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement

    PubMed Central

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.

    2016-01-01

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. PMID:27520734

  4. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.

    PubMed

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca

    2016-10-28

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Waveguide-based electro-absorption modulator performance: comparative analysis

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Khurgin, Jacob B.; Sorger, Volker J.

    2018-06-01

    Electro-optic modulation is a key function for data communication. Given the vast amount of data handled, understanding the intricate physics and trade-offs of modulators on-chip allows revealing performance regimes not explored yet. Here we show a holistic performance analysis for waveguide-based electro-absorption modulators. Our approach centers around material properties revealing obtainable optical absorption leading to effective modal cross-section, and material broadening effects. Taken together both describe the modulator physical behavior entirely. We consider a plurality of material modulation classes to include two-level absorbers such as quantum dots, free carrier accumulation or depletion such as ITO or Silicon, two-dimensional electron gas in semiconductors such as quantum wells, Pauli blocking in Graphene, and excitons in two-dimensional atomic layered materials such as found in transition metal dichalcogendies. Our results show that reducing the modal area generally improves modulator performance defined by the amount of induced electrical charge, and hence the energy-per-bit function, required switching the signal. We find that broadening increases the amount of switching charge needed. While some material classes allow for reduced broadening such as quantum dots and 2-dimensional materials due to their reduced Coulomb screening leading to increased oscillator strengths, the sharpness of broadening is overshadowed by thermal effects independent of the material class. Further we find that plasmonics allows the switching charge and energy-per-bit function to be reduced by about one order of magnitude compared to bulk photonics. This analysis is aimed as a guide for the community to predict anticipated modulator performance based on both existing and emerging materials.

  6. Development of a rapid, simple assay of plasma total carotenoids

    PubMed Central

    2012-01-01

    Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC) is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions. PMID:23006902

  7. Spectrophotometric studies on the complexation equilibria of Ni and Pb with 2-carboxy-2-hydroxy-5'-sulfo-formazylbenzene. Simultaneous determination of trace amounts of Ni and Pb.

    PubMed

    Hashem, Elham Y; Abu-Bakr, Mohamed S; Hussain, Sawsan M

    2004-01-01

    Spectrophotometric studies have been made to investigate the reaction of Nickel and Lead with 2-carboxy-2'-hydroxy-5'-sulfoformazyl-benzene (zincon) in 50%(v/v) ethanol-water at 25 degrees C and an ionic strength of 0.1 M NaClO4. A complete picture of the complexation equilibria in the pH range (4.2-12.0) for nickel and (1.9-11.5) for lead are presented. Simple, rapid, selective and sensitive methods for the spectro-photometric determination of nickel and lead has been developed based on the color reaction of their complexes with zincon. The methods allow the determination of 4.69 microg mL(-1) of nickel at pH = 6.3 (lambdamax = 665 nm) and 10.3 microg ml(-1) of lead at pH = 5.6 (lambdamax = 610 nm). The apparent molar absorptivities were epsilon = 1.3 x 10(4) L mol(-1) cm(-1) for nickel and epsilon = 0.6 x 10(4) L mol(-1) cm(-1) for lead. The interference of a large number of foreign ions and complexing agents has been studied. Thiosulphate, as masking agent allows the simultaneous determination of nickel and lead in the presence of high concentrations of copper. Ascorbic acid, sodium cyanide and or sodium fluoride provide the elimination of many other interferences. The methods have been applied successfully to the simultaneous determination of nickel and lead in an aluminium and non-ferrous alloy.

  8. Simultaneous determination of mebeverine hydrochloride and chlordiazepoxide in their binary mixture using novel univariate spectrophotometric methods via different manipulation pathways.

    PubMed

    Lotfy, Hayam M; Fayez, Yasmin M; Michael, Adel M; Nessim, Christine K

    2016-02-15

    Smart, sensitive, simple and accurate spectrophotometric methods were developed and validated for the quantitative determination of a binary mixture of mebeverine hydrochloride (MVH) and chlordiazepoxide (CDZ) without prior separation steps via different manipulating pathways. These pathways were applied either on zero order absorption spectra namely, absorbance subtraction (AS) or based on the recovered zero order absorption spectra via a decoding technique namely, derivative transformation (DT) or via ratio spectra namely, ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), spectrum subtraction (SS), constant multiplication (CM) and constant value (CV) methods. The manipulation steps applied on the ratio spectra are namely, ratio difference (RD) and amplitude modulation (AM) methods or applying a derivative to these ratio spectra namely, derivative ratio (DD(1)) or second derivative (D(2)). Finally, the pathway based on the ratio spectra of derivative spectra is namely, derivative subtraction (DS). The specificity of the developed methods was investigated by analyzing the laboratory mixtures and was successfully applied for their combined dosage form. The proposed methods were validated according to ICH guidelines. These methods exhibited linearity in the range of 2-28μg/mL for mebeverine hydrochloride and 1-12μg/mL for chlordiazepoxide. The obtained results were statistically compared with those of the official methods using Student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spectrophotometric Determination of Mycophenolate Mofetil as Its Charge-Transfer Complexes with Two π-Acceptors

    PubMed Central

    Vinay, K. B.; Revanasiddappa, H. D.; Raghu, M. S.; Abdulrahman, Sameer. A. M.; Rajendraprasad, N.

    2012-01-01

    Two simple, selective, and rapid spectrophotometric methods are described for the determination of mycophenolate mofetil (MPM) in pure form and in tablets. Both methods are based on charge-transfer complexation reaction of MPM with p-chloranilic acid (p-CA) or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in dioxane-acetonitrile medium resulting in coloured product measurable at 520 nm (p-CA) or 580 nm (DDQ). Beer's law is obeyed over the concentration ranges of 40–400 and 12–120 μg mL−1 MPM for p-CA and DDQ, respectively, with correlation coefficients (r) of 0.9995 and 0.9947. The apparent molar absorptivity values are calculated to be 1.06 × 103 and 3.87 × 103 L mol−1 cm−1, respectively, and the corresponding Sandell's sensitivities are 0.4106 and 0.1119 μg cm−1. The limits of detection (LOD) and quantification (LOQ) are also reported for both methods. The described methods were successfully applied to the determination of MPM in tablets. Statistical comparison of the results with those of the reference method showed excellent agreement. No interference was observed from the common excipients present in tablets. Both methods were validated statistically for accuracy and precision. The accuracy and reliability of the methods were further ascertained by recovery studies via standard addition procedure. PMID:22567572

  10. Two different spectrophotometric determinations of potential anticancer drug and its toxic metabolite

    NASA Astrophysics Data System (ADS)

    Farid, Nehal F.; Abdelwahab, Nada S.

    2015-06-01

    Flutamide is a hormone therapy used for men with advanced prostate cancer. Flutamide is highly susceptible to hydrolysis with the production of 3-(trifluoromethyl)aniline, which is reported to be one of its toxic metabolites, impurities and related substances according to BP and USP. Flutamide was found to be stable when exposed to oxidation by 30% hydrogen peroxide and direct sunlight for up to 4 h. Two accurate and sensitive spectrophotometric methods were used for determination of flutamide in bulk and in pharmaceutical formulations. Method (I) is the area under curve (AUC) spectrophotometric method that depends on measuring the AUC in the wavelength ranges of 275-305 nm and 350-380 nm and using Cramer's rule. The linearity range was found to be 1-35 μg/mL and 0.5-16 μg/mL for the drug and the degradate, respectively. In method (II), combination of the isoabsorptive and dual wavelength spectrophotometric methods was used for resolving the binary mixture. The absorbance at 249.2 nm (λiso) was used for determination of total mixture concentration, while the difference in absorbance between 232 nm and 341.2 nm was used for measuring the drug concentration. By subtraction, the degradate concentration was obtained. Beer's law was obeyed in the range of 2-35 μg/mL and 0.5-20 μg/mL for the drug and its degradate, respectively. The two methods were validated according to USP guidelines and were applied for determination of the drug in its pharmaceutical dosage form. Moreover AUC method was used for the kinetic study of the hydrolytic degradation of flutamide. The kinetic degradation of flutamide was found to follow pseudo-first order kinetics and is pH and temperature dependent. Activation energy, kinetic rate constants and t1/2 at different temperatures and pH values were calculated.

  11. Determination of cyanide by an indirect spectrophotometric method using 5-Br-PADAP.

    PubMed

    Fu-Sheng, W; Yu-Qin, L; Fang, Y; Nai-Kui, S

    1981-09-01

    Complexation of Ni(2+) with cyanide inhibits its colour reaction with 5-Br-PADAP and this reaction is used in the spectrophotometric determination of cyanide at the ug level. Cyanide in industrial waste waters is determined after an initial transfer as hydrogen cyanide from the sample into sodium hydroxide solution with a stream of air.

  12. A study of selective spectrophotometric methods for simultaneous determination of Itopride hydrochloride and Rabeprazole sodium binary mixture: Resolving sever overlapping spectra.

    PubMed

    Mohamed, Heba M

    2015-02-05

    Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110μg/μL for Itopride hydrochloride and 4-44μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. [Influence of all-ceramic and porcelain-fused-to-metal restorations on peri-implant gingival discoloration:a spectrophotometric comparison].

    PubMed

    Peng, Min; Fei, Wei; Mandana, Hosseini; Klaus, Gotfredsen

    2013-04-01

    To compare the gingival discoloration of implant supported all-ceramic and porcelain-fused-to-metal (PFM) restorations in anterior maxillary region by spectrophotometric evaluation. Eighteen patients with 29 implant-supported single crowns (11 all-ceramic restorations, 9 PFM restorations with titanium abutment and 9 PFM restorations with golden alloy abutment) in anterior maxillary area were recruited. The color difference between peri-implant gingiva and contra-lateral/neighboring mucosa was assessed using a spectrophotometer in CIELab coordinates. Subjective gingival discoloration scores were evaluated by clinician. SPSS17.0 software package was used to analyze the data. There was no significant difference between all-ceramic group (3.4±1.8) and PFM group (4.9±3.4) spectrophotometrically. No significant difference was found between all-ceramic restorations and PFM restorations with titanium abutment (3.5±2.5), and no significant difference was found between PFM restorations with titanium abutment and PFM restorations with gold alloy abutment (6.3±3.8) either. There was, however, significant difference between all-ceramic restorations and PFM restorations with gold alloy abutment (P=0.037). There was no significant difference between all-ceramic group and PFM group regarding the clinical gingival discoloration score (GDS), and this gingival discoloration score was found to have significant correlation with the spectrophotometric evaluation (rs=0.426, P=0.021). There is no significant difference between all-ceramic group and PFM group as regard to both spectrophotometric and clinical evaluation of gingival discoloration, but the PFM restorations with gold alloy abutment induce significantly higher discoloration than all-ceramic restorations.

  14. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies.

    PubMed

    De Luca, Michele; Ragno, Gaetano; Ioele, Giuseppina; Tauler, Romà

    2014-07-21

    An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid-base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    NASA Astrophysics Data System (ADS)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  16. Spectrophotometric methods for the determination of urea in real samples using silver nanoparticles by standard addition and 2nd order derivative methods

    NASA Astrophysics Data System (ADS)

    Ali, Nauman; Ismail, Muhammad; Khan, Adnan; Khan, Hamayun; Haider, Sajjad; Kamal, Tahseen

    2018-01-01

    In this work, we have developed simple, sensitive and inexpensive methods for the spectrophotometric determination of urea in urine samples using silver nanoparticles (AgNPs). The standard addition and 2nd order derivative methods were adopted for this purpose. AgNPs were prepared by chemical reduction of AgNO3 with hydrazine using 1,3-di-(1H-imidazol-1-yl)-2-propanol (DIPO) as a stabilizing agent in aqueous medium. The proposed methods were based on the complexation of AgNPs with urea. Using this concept, urea in the urine samples was successfully determined spectrophotometric methods. The results showed high percent recovery with ± RSD. The recoveries of urea in the three urine samples by spectrophotometric standard addition were 99.2% ± 5.37, 96.3% ± 4.49, 104.88% ± 4.99 and that of spectrophotometric 2nd order derivative method were 115.3% ± 5.2, 103.4% ± 2.6, 105.93% ± 0.76. The results show that these methods can open doors for a potential role of AgNPs in the clinical determination of urea in urine, blood, biological, non-biological fluids.

  17. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    USGS Publications Warehouse

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  18. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater.

    PubMed

    Liu, Xuewu; Byrne, Robert H; Adornato, Lori; Yates, Kimberly K; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-10-01

    Autonomous in situ sensors are needed to document the effects of today's rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator's molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg(-1) and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  19. Extraction-spectrophotometric determination of tris(2-chloroethyl)amine using phthaleins.

    PubMed

    Rozsypal, Tomas; Halamek, Emil

    2017-06-01

    Procedures for the extraction-spectrophotometric determination of tris(2-chloroethyl)amine, an alkylating agent known as a drug as well as a chemical warfare agent (nitrogen mustard HN-3), with 7 acid-base indicators of a triphenylmethane lactone type, phthaleins, were developed. Representatives of phthaleins without an oxygen bridge (thymolphthalein, o-cresolphthalein, naphtholphthalein) and with an oxygen bridge (fluorescein, 2',7'-dichlorofluorescein, eosin B and eosin Y) were used. The methods were based on the formation of ion pair complexes. Chloroform was used as a non-polar solvent for an extraction. The conditions to determine were optimized for the optimal pH of the buffer and the concentration of a phthalein as a reagent. The dependence on the reaction time in a water phase and the stoichiometry of extraction products were studied. The detection limits and the limits of the determination of separate procedures and conditional extraction constants were determined. Comparison with the spectrophotometric method of the group determination of alkyl halides and acyl halides using alkaline ethanol-water solution of thymolphthalein, the so-called T-135 agent, was conducted. While studying the selectivity, the possible interference of bis(2-chloroethyl)sulphide and 3 nitrogen mustards in the proposed procedures were verified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation.

    PubMed

    Alizadeh, Nina; Keyhanian, Fereshteh

    2014-09-15

    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400×10(3), 1.218×10(3) and 1.02×10(4) L mol(-1) cm(-1) for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48h. Beer's law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL(-1) for BCG, BTB complexes and 1-95 μg mL(-1) for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job's method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Application of 3-methylbenzothiazolin-2-one hydrazone for the quantitative spectrophotometric determination of oxcarbazepine in pharmaceuticals with cerium(IV) and periodate

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.; Vinay, K. B.

    2012-09-01

    Two simple, sensitive, selective, accurate, and cost-effective spectrophotometric methods are described for the assay of oxcarbazepine (OXC) in bulk drug and in tablets. The methods are based on an oxidative coupling reaction involving OXC, 3-methylbenzothiazolin-2-one hydrazone (MBTH), and cerium(IV) sulfate at pH 4.28 ± 0.07 (method A) or sodium periodate at pH > 4.0 (method B) to form an orange colored product with an absorption maximum at 450 nm. Under optimized experimental conditions, the calibration graphs are linear over the ranges of 4-80 and 2-32 μg/ml for methods A and B, respectively, with correlation coefficient (r) values of 0.9984 and 0.9976. The apparent molar absorptivity values are 3.13ṡ103 and 9.13ṡ103 l/molṡcm for methods A and B, respectively. The other optical characteristics such as Sandell's sensitivity, limits of detection (LOD) and quantification (LOQ) values are also reported. The accuracy and precision of the methods were evaluated based on intra-day and inter-day variations. The proposed methods were successfully applied to the determination of OXC in tablets: the results were comparable with the published data obtained using the reference method. The reaction stoichiometry of OXC with MBTH (1:1 in method A and 1:2 in method B) was also evaluated using the limiting logarithmic method, and a possible reaction pathway is presented for the both methods.

  2. Quantitative analysis of the effect of supersaturation on in vivo drug absorption.

    PubMed

    Takano, Ryusuke; Takata, Noriyuki; Saito, Ryoichi; Furumoto, Kentaro; Higo, Shoichi; Hayashi, Yoshiki; Machida, Minoru; Aso, Yoshinori; Yamashita, Shinji

    2010-10-04

    The purpose of this study is to clarify the effects of intestinal drug supersaturation on solubility-limited nonlinear absorption. Oral absorption of a novel farnesyltransferase inhibitor (FTI-2600) from its crystalline free base and its HCl salt was determined in dogs. To clarify the contribution of supersaturation on improving drug absorption, in vivo intraluminal concentration of FTI-2600 after oral administration was estimated from the pharmacokinetics data using a physiologically based model. Dissolution and precipitation characteristics of FTI-2600 in a biorelevant media were investigated in vitro using a miniscale dissolution test and powder X-ray diffraction analysis. In the in vitro study, the HCl salt immediately dissolved but precipitated rapidly. The metastable amorphous free base precipitant, which did not convert into the stable crystalline free base in the simulated intestinal fluids for several hours, generated a 5-fold increase in dissolved concentration compared to the equilibrium solubility of the crystalline free base. By computer simulation, the intraluminal drug concentration after administration of the free base was estimated to reach the saturated solubility, indicating solubility-limited absorption. On the other hand, administration of the HCl salt resulted in an increased intraluminal concentration and the plasma concentration was 400% greater than that after administration of the free base. This in vivo/in vitro correlation of the increased drug concentrations in the small intestine provide clear evidence that not only the increase in the dissolution rate, but also the supersaturation phenomenon, improved the solubility-limited absorption of FTI-2600. These results indicate that formulation technologies that can induce supersaturation may be of great assistance to the successful development of poorly water-soluble drugs.

  3. Determination of lead and cadmium in soils, sludges, and fertilizers by an ion-exchange/spectrophotometric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzig, M.; DeYong, G.D.; Anglin, R.J.

    1993-12-01

    The MetalTrace method, which consists of an anion-exchange separation coupled with a spectrophotometric quantification, was used to determine lead and cadmium in sulfuric acid-hydrogen peroxide digests of soils and sludges and hydrobromic acid extracts of soils. Cadmium only was determined in sulfuric acid-hydrogen peroxide digests of fertilizers because no standards were available with certified lead contents. The selectivity provided by the anion-exchange separation allowed the use of a spectrophotometric indicator with an extremely high extinction coefficient so that detection limits in the low parts per million range could be attained. The results obtained using this method compared favorably with thosemore » obtained using much more expensive methods requiring more specialized training and equipment.« less

  4. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  5. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  6. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  7. Advanced spectrophotometric chemometric methods for resolving the binary mixture of doxylamine succinate and pyridoxine hydrochloride.

    PubMed

    Katsarov, Plamen; Gergov, Georgi; Alin, Aylin; Pilicheva, Bissera; Al-Degs, Yahya; Simeonov, Vasil; Kassarova, Margarita

    2018-03-01

    The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.

  8. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  9. Capillary electrophoresis fingerprinting and spectrophotometric determination of antioxidant potential for classification of Mentha products.

    PubMed

    Roblová, Vendula; Bittová, Miroslava; Kubáň, Petr; Kubáň, Vlastimil

    2016-07-01

    In this work aqueous infusions from ten Mentha herbal samples (four different Mentha species and six hybrids of Mentha x piperita) and 20 different peppermint teas were screened by capillary electrophoresis with UV detection. The fingerprint separation was accomplished in a 25 mM borate background electrolyte with 10% methanol at pH 9.3. The total polyphenolic content in the extracts was determined spectrophotometrically at 765 nm by a Folin-Ciocalteu phenol assay. Total antioxidant activity was determined by scavenging of 2,2-diphenyl-1-picrylhydrazyl radical at 515 nm. The peak areas of 12 dominant peaks from CE analysis, present in all samples, and the value of total polyphenolic content and total antioxidant activity obtained by spectrophotometry was combined into a single data matrix and principal component analysis was applied. The obtained principal component analysis model resulted in distinct clusters of Mentha and peppermint tea samples distinguishing the samples according to their potential protective antioxidant effect. Principal component analysis, using a non-targeted approach with no need for compound identification, was found as a new promising tool for the screening of herbal tea products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An analysis of OH excited state absorption lines in DR 21 and K3-50

    NASA Astrophysics Data System (ADS)

    Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.

    1992-10-01

    We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.

  11. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis.

    PubMed

    Shi, Xiaocai; Passe, Dennis H

    2010-10-01

    The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

  12. Spectrophotometric determination of H2O2-generating oxidases using oxyhemoglobin as oxygen donor and indicator.

    PubMed

    Bârzu, O; Dânşoreanu, M

    1980-01-01

    1. Spectrophotometric determination of oxygen uptake using oxyhemoglobin as oxygen donor and indicator was used for assay of H2O2-generating oxidases like monoamine oxidase and glucose oxidase. 2. In order to decompose H2O2 formed during the oxygen uptake, catalase and methanol (or ethanol) was added to the respiratory system. At pH values higher than 7.5 the oxydation of deoxygenated hemoglobin to methemoglobin was less than 3%. 2. Oxidases with low Km for oxygen can be assayed using the spectrophotometric method if suitable correction factors are introduced into the calculation of oxygen uptake. The correction factor represents the ratio of the rate of formation (or disappearance) of one of the reactants and the rate of oxyhemoglobin deoxygenation, measured under identical experimental conditions.

  13. Two different spectrophotometric determinations of potential anticancer drug and its toxic metabolite.

    PubMed

    Farid, Nehal F; Abdelwahab, Nada S

    2015-06-15

    Flutamide is a hormone therapy used for men with advanced prostate cancer. Flutamide is highly susceptible to hydrolysis with the production of 3-(trifluoromethyl)aniline, which is reported to be one of its toxic metabolites, impurities and related substances according to BP and USP. Flutamide was found to be stable when exposed to oxidation by 30% hydrogen peroxide and direct sunlight for up to 4h. Two accurate and sensitive spectrophotometric methods were used for determination of flutamide in bulk and in pharmaceutical formulations. Method (I) is the area under curve (AUC) spectrophotometric method that depends on measuring the AUC in the wavelength ranges of 275-305 nm and 350-380nm and using Cramer's rule. The linearity range was found to be 1-35 μg/mL and 0.5-16 μg/mL for the drug and the degradate, respectively. In method (II), combination of the isoabsorptive and dual wavelength spectrophotometric methods was used for resolving the binary mixture. The absorbance at 249.2 nm (λiso) was used for determination of total mixture concentration, while the difference in absorbance between 232 nm and 341.2 nm was used for measuring the drug concentration. By subtraction, the degradate concentration was obtained. Beer's law was obeyed in the range of 2-35 μg/mL and 0.5-20 μg/mL for the drug and its degradate, respectively. The two methods were validated according to USP guidelines and were applied for determination of the drug in its pharmaceutical dosage form. Moreover AUC method was used for the kinetic study of the hydrolytic degradation of flutamide. The kinetic degradation of flutamide was found to follow pseudo-first order kinetics and is pH and temperature dependent. Activation energy, kinetic rate constants and t1/2 at different temperatures and pH values were calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples

    NASA Astrophysics Data System (ADS)

    Salem, A. A.; Barsoum, B. N.; Izake, E. L.

    2004-03-01

    New spectrophotometric and fluorimetric methods have been developed to determine diazepam, bromazepam and clonazepam (1,4-benzodiazepines) in pure forms, pharmaceutical preparations and biological fluid. The new methods are based on measuring absorption or emission spectra in methanolic potassium hydroxide solution. Fluorimetric methods have proved selective with low detection limits, whereas photometric methods showed relatively high detection limits. Successive applications of developed methods for drugs determination in pharmaceutical preparations and urine samples were performed. Photometric methods gave linear calibration graphs in the ranges of 2.85-28.5, 0.316-3.16, and 0.316-3.16 μg ml -1 with detection limits of 1.27, 0.08 and 0.13 μg ml -1 for diazepam, bromazepam and clonazepam, respectively. Corresponding average errors of 2.60, 5.26 and 3.93 and relative standard deviations (R.S.D.s) of 2.79, 2.12 and 2.83, respectively, were obtained. Fluorimetric methods gave linear calibration graphs in the ranges of 0.03-0.34, 0.03-0.32 and 0.03-0.38 μg ml -1 with detection limits of 7.13, 5.67 and 16.47 ng ml -1 for diazepam, bromazepam and clonazepam, respectively. Corresponding average errors of 0.29, 4.33 and 5.42 and R.S.D.s of 1.27, 1.96 and 1.14 were obtained, respectively. Statistical Students t-test and F-test have been used and satisfactory results were obtained.

  15. A spectrophotometric study of RW Trianguli

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Rutten, R. G. M.; van Paradijs, J.

    2004-04-01

    On the basis of spectrophotometric observations we reconstruct the accretion disk of the eclipsing novalike cataclysmic variable RW Tri in the wavelength region 3600-7000 Å. We find a radial temperature profile that is, on average, consistent with that expected on the basis of the theory of optically thick, steady state accretion disks and infer a mass-accretion rate in RW Tri of ˜10-8 M⊙ yr-1. The line emission is dominated by two areas: one around the hot-spot region and one near the white dwarf. Both emission regions have appreciable vertical extension, and seem to be decoupled from the velocity field in the disk. In our observations RW Tri shows a number of features that are characteristic of the SW Sex sub-class of novalike stars. The appearance of a novalike system as a UX UMa/RW Tri or SW Sex star seems to be mainly governed by the mass-transfer rate from the secondary at the time of observation.

  16. An experimental analysis of a doped lithium fluoride direct absorption solar receiver

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Pollak, Tom; Lacy, Dovie

    1988-01-01

    An experimental analysis of two key elements of a direct absorption solar receiver for use with Brayton solar dynamic systems was conducted. Experimental data are presented on LiF crystals doped with dysprosium, samarium, and cobalt fluorides. In addition, a simulation of the cavity/window environment was performed and a posttest inspection was conducted to evaluate chemical reactivity, transmissivity, and condensation rate.

  17. Red Eccrine Chromhidrosis with Review of Literature

    PubMed Central

    Jaiswal, Ashok Kumar; Ravikiran, Shilpashree P; Roy, Prasoon Kumar

    2017-01-01

    A 22-year-old male presented with reddish discoloration of the vest following perspiration for 6 months. He was a habituated consumer of cranberry juice. The peak absorption on spectrophotometric analysis of the extracted sweat coincided approximately with the peak absorption of diluted distillate of the juice. A diagnosis of eccrine chromhidrosis, probably due to the coloring agents in the juice, was considered. This rare case report emphasizes the possible side effect of the various coloring agents used as food additives. PMID:29263551

  18. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  19. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine

    Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  20. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE PAGES

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine; ...

    2017-07-18

    Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  1. Absorption degree analysis on biogas separation with ionic liquid systems.

    PubMed

    Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping

    2015-01-01

    For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  3. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Ayoub, Bassam M.

    2016-11-01

    New univariate spectrophotometric method and multivariate chemometric approach were developed and compared for simultaneous determination of empagliflozin and metformin manipulating their zero order absorption spectra with application on their pharmaceutical preparation. Sample enrichment technique was used to increase concentration of empagliflozin after extraction from tablets to allow its simultaneous determination with metformin without prior separation. Validation parameters according to ICH guidelines were satisfactory over the concentration range of 2-12 μg mL- 1 for both drugs using simultaneous equation with LOD values equal to 0.20 μg mL- 1 and 0.19 μg mL- 1, LOQ values equal to 0.59 μg mL- 1 and 0.58 μg mL- 1 for empagliflozin and metformin, respectively. While the optimum results for the chemometric approach using partial least squares method (PLS-2) were obtained using concentration range of 2-10 μg mL- 1. The optimized validated methods are suitable for quality control laboratories enable fast and economic determination of the recently approved pharmaceutical combination Synjardy® tablets.

  4. Self-referencing spectrophotometric measurements

    DOEpatents

    O'Rourke, P.E.; Van Hare, D.R.

    1994-03-29

    A method is described for measuring the concentration of a chemical substance by spectrophotometry comprising the steps of placing a sample of a photoreactive substance between the light source and a spectrophotometer, obtaining an absorption spectrum of the substance using a fixed amount of light from the light source, obtaining a second absorption spectrum after a short interval, comparing the two to determine the concentration of the chemical substance from the difference in the spectra. If the chemical substance is not photoreactive, a photoreactive mixture can be made with a photoreactive dye that has photoreactive properties unique to the mixture. Alternatively, an optically transparent substrate can absorb the substance or the dye/substance mixture. 3 figures.

  5. Self-referencing spectrophotometric measurements

    DOEpatents

    O'Rourke, Patrick E.; Van Hare, David R.

    1994-01-01

    A method for measuring the concentration of a chemical substance by spectrophotometry comprising the steps of placing a sample of a photoreactive substance between the light source and a spectrophotometer, obtaining an absorption spectrum of the substance using a fixed amount of light from the light source, obtaining a second absorption spectrum after a short interval, comparing the two to determine the concentration of the chemical substance from the difference in the spectra. If the chemical substance is not photoreactive, a photoreactive mixture can be made with a photoreactive dye that has photoreactive properties unique to the mixture. Alternatively, an optically transparent substrate can absorb the substance or the dye/substance mixture.

  6. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    EPA Science Inventory


    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  7. Spectrophotometric Measurement of Minimal Erythema Dose Sites after Narrowband Ultraviolet B Phototesting: Clinical Implication of Spetrophotometric Values in Phototherapy

    PubMed Central

    Jeon, Su-Young; Lee, Chae-Young; Song, Ki-Hoon

    2014-01-01

    Background The spectrophotometer is well known to be a useful tool for estimating the objective minimal erythema dose (MED) during planning of phototherapy protocol. However, only a few spectrophotometric values are used to evaluate the erythema and pigmentation of the MED site during phototesting. Objective To determinea new meaning of the relationships among spectrophotometric values during phototesting. Methods Twenty-five patients with psoriasis and 23 patients with vitiligo were selected before undergoing narrowband ultraviolet B phototherapy. We interpreted the gross findings of erythema and measured the L*a*b* values using a spectrophotometer at each phototest spot. We compared MEDs, basic spectrophotometric values (L*a*b*), and b*/L* values separately according to skin type, and determined the correlation of each spectrophotometric value and the correlation between a* and b*/L* values. Results Among L*a*b* values, only b* values showed a statistically significant difference between the type III and IV groups (p=0.003). There was a positive correlation only between MEDs and b* values (p<0.05). The average b*/L*value in the type IV group was significantly higher than the type III group (p<0.05). Conclusion The higher b* values in type IV skin indicates that skin tanning develops more prominently than type III. The correlation between MEDs and b* values may signify that the skin pigmentation status is deepened with the higher MEDs. The difference in b*/L*values between type III and IV skin reflects that the b*/L*value is thought to be an index of tanning. The a* value, known as an index of erythema, does not influence the degree of tanning. PMID:24648682

  8. Spectrophotometric Methods for Simultaneous Determination of Oxytetracycline HCl and Flunixin Meglumine in Their Veterinary Pharmaceutical Formulation.

    PubMed

    Merey, Hanan A; Abd-Elmonem, Mahmmoud S; Nazlawy, Hagar N; Zaazaa, Hala E

    2017-01-01

    Four precise, accurate, selective, and sensitive UV-spectrophotometric methods were developed and validated for the simultaneous determination of a binary mixture of Oxytetracycline HCl (OXY) and Flunixin Meglumine (FLU). The first method, dual wavelength (DW), depends on measuring the difference in absorbance (ΔA 273.4-327 nm) for the determination of OXY where FLU is zero while FLU is determined at ΔA 251.7-275.7 nm. The second method, first-derivative spectrophotometric method (1D), depends on measuring the peak amplitude of the first derivative selectively at 377 and 266.7 nm for the determination of OXY and FLU, respectively. The third method, ratio difference method, depends on the difference in amplitudes of the ratio spectra at ΔP 286.5-324.8 nm and ΔP 249.6-286.3 nm for the determination of OXY and FLU, respectively. The fourth method, first derivative of ratio spectra method (1DD), depends on measuring the amplitude peak to peak of the first derivative of ratio spectra at 296.7 to 369 nm and 259.1 to 304.7 nm for the determination of OXY and FLU, respectively. Different factors affecting the applied spectrophotometric methods were studied. The proposed methods were validated according to ICH guidelines. Satisfactory results were obtained for determination of both drugs in laboratory prepared mixture and pharmaceutical dosage form. The developed methods are compared favourably with the official ones.

  9. Spectrophotometric determination of fenoterol hydrobromide in pure form and dosage forms.

    PubMed

    El-Shabrawy, Y; Belal, F; Sharaf El-Din, M; Shalan, Sh

    2003-10-01

    A sensitive and rapid spectrophotometric procedure has been investigated for the determination of fenoterol either per se or in pharmaceutical preparations. The proposed procedure is based on the reaction between the drug and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) at pH 7.2, using borate buffer, to produce a yellow adduct. The latter has maximum absorbance at 400 nm and obeys Beer's law within the concentration range 5-30 microg/ml. Regression analysis of the calibration data showed a good correlation coefficient (r=0.9996) with minimum detection limit of 0.24 microg/ml (6.2 x 10(-8) M). The proposed procedure has been successfully applied to the determination of this drug in its tablets and in syrup, the mean percent recoveries were 97.45+/-0.59 and 98.7+/-0.64%, respectively. The results obtained are in good agreement with those given using a reference method. The pharmaceutical additives other than active ingredient did not interfere. A proposal of the reaction pathway has been postulated.

  10. Nonenzymic spectrophotometric determination of potential poison ivy cross-reactors.

    PubMed

    Quattrone, A J

    1977-03-01

    I describe an inexpensive, nonenzymic analytical system for prescreening substances that might cross-react as Rhus toxing (e.g., poison ivy, poison oak, and sumac allergens) on human skin. By spectrophotometric assay after incubation with an oxidizing mixture of Cu(II)ammine complex and ammonium persulfate, I could accurately and reproducibly determine o-quinoidal products of several potential synthetic cross-reactors and native poison ivy allergen, and could distinguish these from catecholamines, resorcinol, p-hydroquinone, and a closely related phenol. A good correlation was obtained between this nonenzymic technique and an enzymic assay. This Cu(II)ammine/persulfate oxidative assay, however, is inexpensive and obviates any spectral interference from enzymic proteins.

  11. Spectrophotometric estimation of bromide ion in excess chloride media.

    PubMed

    Adimurthy, S; Susarla, V R K S; Reddy, M P; Ramachandraiah, G

    2005-10-31

    The redox reaction between bromate and chloride ions in the presence and the absence of two or less equivalents of bromide ion ascertaining the formation of bromine chloride species of type BrCl and BrCl(2)(-) in subsequent reactions in 4% H(2)SO(4), has been studied by spectrophotometry. Calibration graphs for the bromide ion estimation in 0.1% KBrO(3)-4% H(2)SO(4) medium are determined separately in the presence of known amounts of NaCl. The effect of Cl(-) ion percentage on the determination of Br(-) ion is studied and reported herewith a suitable equation for a precise, reliable and quick spectrophotometric estimation.

  12. Spectrophotometric observations of symbiotic stars and related objects

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Feibelman, W. A.; Michalitsianos, A. G.; Stencel, R. E.

    1983-01-01

    Calibrated optical spectrophotometric observations of 16 symbiotic and symbiotic-like objects are presented. The objects observed include Z And, T CrB, CH Cyg, CI Cyg, V1016 Cyg, V1329 Cyg, AG Dra, YY Her, RS Oph, XX Oph, AG Peg, AX Per, CL Sco, HM Sge, AS 289, and M1-2. Integrated emission-line intensities are tabulated for comparison with ultraviolet and infrared data, as well as with previous optical studies. The reddening to each of the objects is derived by assuming that Balmer lines are emitted in their case B recombination ratios. However, the values so derived are often systematically higher than reddening estimates from the ultraviolet 2200 A feature. Comparisons with the available data from other wavelength ranges are noted.

  13. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  14. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  15. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.

    The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content

  16. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    NASA Astrophysics Data System (ADS)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  17. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods?

    PubMed

    Finete, Virgínia de Lourdes Mendes; Gouvêa, Marcos Martins; Marques, Flávia Ferreira de Carvalho; Netto, Annibal Duarte Pereira

    2013-12-15

    The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A spectrophotometric assay for monoamine oxidase activity with 2, 4-dinitrophenylhydrazine as a derivatized reagent.

    PubMed

    Huang, Guili; Zhu, Fei; Chen, Yuhang; Chen, Shiqiang; Liu, Zhonghong; Li, Xin; Gan, Linlin; Zhang, Li; Yu, Yu

    2016-11-01

    A simple, rapid and reliable spectrophotometry was developed to determine monoamine oxidase (MAO). In this study, 2,4-dinitrophenylhydrazine (DNPH), a classic derivatizing reagent, was used to detect MAO-dependent aldehyde production; and traditional DNPH spectrophotometry was simplified. Benzylamine and serotonin oxidation were catalyzed by MAO-B and MAO-A, respectively, to aldehydes. These were derivatized with DNPH, and the corresponding quinones were further formed by adding NaOH. These DNPH derivatives with large conjugated structures were directly measured spectrophotometrically at 465 nm and 425 nm, without the need for precipitating, washing and suspending procedures. The addition of NaOH caused a red shift of the maximum absorption wavelength of these derivatives, which reduced the interference of free DNPH. MAO-B protein was as low as 47.5 μg in rat liver with correlation coefficients ranging within 0.995-0.999. This method is 2-3 times more sensitive than direct spectrophotometry. The detection of MAO inhibition through this method showed that IC50 values of rasagiline are 8.00 × 10(-9) M for MAO-B and 2.59 × 10(-7) M for MAO-A. These results are similar to the values obtained by direct spectrophotometry. Our study suggests that DNPH spectrophotometry is suitable to detect MAO activity, and has the potential for MAO inhibitor screening in the treatment of MAO-mediated diseases. Copyright © 2016. Published by Elsevier Inc.

  19. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Wang, Yong; Kokot, Serge

    2008-10-01

    A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.

  20. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including Vitamin K 3

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Mukherjee, Asok K.

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.

  1. Spectrophotometric determination of sildenafil citrate in pure form and in pharmaceutical formulation using some chromotropic acid azo dyes

    NASA Astrophysics Data System (ADS)

    Issa, Y. M.; El-Hawary, W. F.; Youssef, A. F. A.; Senosy, A. R.

    2010-04-01

    Two simple and highly sensitive spectrophotometric methods were developed for the quantitative determination of the drug sildenafil citrate (SC), Viagra, in pure form and in pharmaceutical formulations, through ion-associate formation reactions (method A) with mono-chromotropic acid azo dyes, chromotrope 2B (I) and chromotrope 2R (II) and ion-pair reactions (method B) with bi-chromotropic acid azo dyes, 3-phenylazo-6-o-carboxyphenylazo-chromotropic acid (III), bis-3,6-(o-hydroxyphenylazo)-chromotropic acid (IV), bis-3,6-(p-N,N-dimethylphenylazo)-chromotropic acid (V) and 3-phenylazo-6-o-hydroxyphenylazo-chromotorpic acid (VI). The reaction products, extractable in methylene chloride, were quantitatively measured at 540, 520, 540, 570, 600 and 575 nm using reagents, I-VI, respectively. The reaction conditions were studied and optimized. Beer's plots were linear in the concentration ranges 3.3-87.0, 3.3-96.0, 5.0-115.0, 2.5-125.0, 8.3-166.7 and 0.8-15.0 μg mL -1 with corresponding molar absorptivities 1.02 × 10 4, 8.34 × 10 3, 6.86 × 10 3, 5.42 × 10 3, 3.35 × 10 3 and 2.32 × 10 4 L mol -1 cm -1 using reagents I-VI, respectively. The limits of detection and Sandell's sensitivities were calculated. The methods were successfully applied to the analysis of commercial tablets (Vigoran) and the recovery study reveals that there is no interference from the common excipients that are present in tablets. Statistical comparison of the results was performed with regard to accuracy and precision using Student's t- and F-tests at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.

  2. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: models in glyphosate-resistant and -susceptible crops.

    PubMed

    Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D

    2011-03-23

    Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of

  3. Spectrophotometric Methods for Simultaneous Determination of Oxytetracycline HCl and Flunixin Meglumine in Their Veterinary Pharmaceutical Formulation

    PubMed Central

    Abd-Elmonem, Mahmmoud S.; Nazlawy, Hagar N.; Zaazaa, Hala E.

    2017-01-01

    Four precise, accurate, selective, and sensitive UV-spectrophotometric methods were developed and validated for the simultaneous determination of a binary mixture of Oxytetracycline HCl (OXY) and Flunixin Meglumine (FLU). The first method, dual wavelength (DW), depends on measuring the difference in absorbance (ΔA 273.4–327 nm) for the determination of OXY where FLU is zero while FLU is determined at ΔA 251.7–275.7 nm. The second method, first-derivative spectrophotometric method (1D), depends on measuring the peak amplitude of the first derivative selectively at 377 and 266.7 nm for the determination of OXY and FLU, respectively. The third method, ratio difference method, depends on the difference in amplitudes of the ratio spectra at ΔP 286.5–324.8 nm and ΔP 249.6–286.3 nm for the determination of OXY and FLU, respectively. The fourth method, first derivative of ratio spectra method (1DD), depends on measuring the amplitude peak to peak of the first derivative of ratio spectra at 296.7 to 369 nm and 259.1 to 304.7 nm for the determination of OXY and FLU, respectively. Different factors affecting the applied spectrophotometric methods were studied. The proposed methods were validated according to ICH guidelines. Satisfactory results were obtained for determination of both drugs in laboratory prepared mixture and pharmaceutical dosage form. The developed methods are compared favourably with the official ones. PMID:28811956

  4. Spectrophotometric determination of zinc and copper in a multi-syringe flow injection analysis system using a liquid waveguide capillary cell: application to natural waters.

    PubMed

    Páscoa, Ricardo N M J; Tóth, Ildikó V; Rangel, António O S S

    2011-06-15

    This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L(-1), for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L(-1) with a high throughput (43 h(-1)) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  6. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  7. Indirect spectrophotometric determination of traces of bromide in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1963-01-01

    A rapid, accurate, and sensitive indirect spectrophotometric method for the determination of bromide in natural waters is based on the catalytic effect of bromide on the oxidation of iodine to iodate by potassium permanganate in sulfuric acid solution. The method is applicable to concentrations ranging from 1 to 100 ??g. of bromide per liter, but may be modified to extend the concentration range. Most ions commonly occurring in water do not interfere. The standard deviation is 2.9 at bromide concentrations of 100 ??g. per liter and less at lower concentrations. The determination of bromide in samples containing known added amounts gave values ranging from 99 to 105% of the concentration calculated to be present.

  8. Spectrophotometry of stars 9 - 12m north polar spectrophotometric sequence (NPSS) program.

    NASA Astrophysics Data System (ADS)

    Sharipova, L. M.; Prokof'eva, V. V.

    Spectrophotometric observations of stars 9 - 12m of the NPSS program have been made with the use of hgh-sensitivity light-detecting apparatus of the digital television complex of the 0.5-m Maksutov telescope MTM-500 and original slitless spectrograph. Atmospheric extinction was controlled during the night by means of an energetically calibrated brightness standard. Absolute energy distributions of 12 stars, their synthetic magnitudes in the V band, and B-V color indices were obtained.

  9. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    PubMed

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  10. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  11. Investigation of different spectrophotometric and chemometric methods for determination of entacapone, levodopa and carbidopa in ternary mixture

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, Maha F.; Hussein, Lobna A.; Ayad, Miriam F.; Youssef, Menatallah M.

    2017-01-01

    New, simple, accurate and sensitive UV spectrophotometric and chemometric methods have been developed and validated for determination of Entacapone (ENT), Levodopa (LD) and Carbidopa (CD) in ternary mixture. Method A is a derivative ratio spectra zero-crossing spectrophotometric method which allows the determination of ENT in the presence of both LD and CD by measuring the peak amplitude at 249.9 nm in the range of 1-20 μg mL- 1. Method B is a double divisor-first derivative of ratio spectra method, used for determination of ENT, LD and CD at 245, 239 and 293 nm, respectively. Method C is a mean centering of ratio spectra which allows their determination at 241, 241.6 and 257.1 nm, respectively. Methods B and C could successfully determine the studied drugs in concentration ranges of 1-20 μg mL- 1 for ENT and 10-90 μg mL- 1 for both LD and CD. Methods D and E are principal component regression and partial least-squares, respectively, used for the simultaneous determination of the studied drugs by using seventeen mixtures as calibration set and eight mixtures as validation set. The developed methods have the advantage of simultaneous determination of the cited components without any pre-treatment. All the results were statistically compared with the reported methods, where no significant difference was observed. The developed methods were satisfactorily applied to the analysis of the investigated drugs in their pure form and in pharmaceutical dosage forms.

  12. A sensitive and rapid assay for 4-aminophenol in paracetamol drug and tablet formulation, by flow injection analysis with spectrophotometric detection.

    PubMed

    Bloomfield, M S

    2002-12-06

    4-Aminophenol (4AP) is the primary degradation product of paracetamol which is limited at a low level (50 ppm or 0.005% w/w) in the drug substance by the European, United States, British and German Pharmacopoeias, employing a manual colourimetric limit test. The 4AP limit is widened to 1000 ppm or 0.1% w/w for the tablet product monographs, which quote the use of a less sensitive automated HPLC method. The lower drug substance specification limit is applied to our products, (50 ppm, equivalent to 25 mug 4AP in a tablet containing 500-mg paracetamol) and the pharmacopoeial HPLC assay was not suitable at this low level due to matrix interference. For routine analysis a rapid, automated assay was required. This paper presents a highly sensitive, precise and automated method employing the technique of Flow Injection (FI) analysis to quantitatively assay low levels of this degradant. A solution of the drug substance, or an extract of the tablets, containing 4AP and paracetamol is injected into a solvent carrier stream and merged on-line with alkaline sodium nitroprusside reagent, to form a specific blue derivative which is detected spectrophotometrically at 710 nm. Standard HPLC equipment is used throughout. The procedure is fully quantitative and has been optimised for sensitivity and robustness using a multivariate experimental design (multi-level 'Central Composite' response surface) model. The method has been fully validated and is linear down to 0.01 mug ml(-1). The approach should be applicable to a range of paracetamol products.

  13. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-07-01

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virus infection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with P-value > 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  14. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  15. Spectrophotometric Determination of Metoprolol Tartrate in Pharmaceutical Dosage Forms on Complex Formation with Cu(II)

    PubMed Central

    Cesme, Mustafa; Tarinc, Derya; Golcu, Aysegul

    2011-01-01

    A new, simple, sensitive and accurate spectrophotometric method has been developed for the assay of metoprolol tartrate (MPT), which is based on the complexation of drug with copper(II) [Cu(II)] at pH 6.0, using Britton-Robinson buffer solution, to produce a blue adduct. The latter has a maximum absorbance at 675 nm and obeys Beer's law within the concentration range 8.5-70 μg/mL. Regression analysis of the calibration data showed a good correlation coefficient (r = 0.998) with a limit of detection of 5.56 μg/mL. The proposed procedure has been successfully applied to the determination of this drug in its tablets. In addition, the spectral data and stability constant for the binuclear copper(II) complex of MPT (Cu2MPT2Cl2) have been reported.

  16. Application of different spectrophotometric methods for simultaneous determination of elbasvir and grazoprevir in pharmaceutical preparation

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; El-Abasawi, Nasr M.; El-Olemy, Ahmed; Abdelazim, Ahmed H.

    2018-01-01

    The first three UV spectrophotometric methods have been developed of simultaneous determination of two new FDA approved drugs namely; elbasvir and grazoprevir in their combined pharmaceutical dosage form. These methods include simultaneous equation, partial least squares with and without variable selection procedure (genetic algorithm). For simultaneous equation method, the absorbance values at 369 (λmax of elbasvir) and 253 nm (λmax of grazoprevir) have been selected for the formation of two simultaneous equations required for the mathematical processing and quantitative analysis of the studied drugs. Alternatively, the partial least squares with and without variable selection procedure (genetic algorithm) have been applied in the spectra analysis because the synchronous inclusion of many unreal wavelengths rather than by using a single or dual wavelength which greatly increases the precision and predictive ability of the methods. Successfully assay of the drugs in their pharmaceutical formulation has been done by the proposed methods. Statistically comparative analysis for the obtained results with the manufacturing methods has been performed. It is noteworthy to mention that there was no significant difference between the proposed methods and the manufacturing one with respect to the validation parameters.

  17. Ultraviolet spectrophotometric determination of tantalum with pyrogallol

    USGS Publications Warehouse

    Dinnin, J.I.

    1953-01-01

    In a search for a more rapid method for the determination of tantalum in rocks and minerals, an intensive study was made of the tantalum-pyrogallol reaction recommended by Platanov and Krivoshlikov, and a better modified spectrophotometric procedure is given. The improved method consists in measuring the absorbancy of the tantalum-pyrogallol complex at 325 m?? in 4N hydrochloric acid and a fixed concentration (0.0175M) of ammonium oxalate. Beer's law is followed for the concentration range up to 40 ?? per ml. Sensitivity in terms of molar absorbancy index is 4775. Most interferences are additive in character and readily correctable. Separations or major corrections are required in the presence of significant amounts of molybdenum, tungsten, antimony, and uranium. The method has been successfully applied to three ores previously analyzed by gravimetric techniques. The method affords greater speed, sensitivity, and reproducibility in the determination of tantalum in rocks and minerals. A more reliable technique for preparing standard solutions of tantalum has been developed.

  18. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form.

    PubMed

    Salem, Hesham; Mohamed, Dalia

    2015-04-05

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Mohamed, Dalia

    2015-04-01

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  20. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  1. Validated spectrophotometric methods for determination of Alendronate sodium in tablets through nucleophilic aromatic substitution reactions

    PubMed Central

    2012-01-01

    Background Alendronate (ALD) is a member of the bisphosphonate family which is used for the treatment of osteoporosis, bone metastasis, Paget's disease, hypocalcaemia associated with malignancy and other conditions that feature bone fragility. ALD is a non-chromophoric compound so its determination by conventional spectrophotometric methods is not possible. So two derivatization reactions were proposed for determination of ALD through the reaction with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and 2,4-dinitrofluorobenzene (DNFB) as chromogenic derivatizing reagents. Results Three simple and sensitive spectrophotometric methods are described for the determination of ALD. Method I is based on the reaction of ALD with NBD-Cl. Method II involved heat-catalyzed derivatization of ALD with DNFB, while, Method III is based on micellar-catalyzed reaction of the studied drug with DNFB at room temperature. The reactions products were measured at 472, 378 and 374 nm, for methods I, II and III, respectively. Beer's law was obeyed over the concentration ranges of 1.0-20.0, 4.0-40.0 and 1.5-30.0 μg/mL with lower limits of detection of 0.09, 1.06 and 0.06 μg/mL for Methods I, II and III, respectively. The proposed methods were applied for quantitation of the studied drug in its pure form with mean percentage recoveries of 100.47 ± 1.12, 100.17 ± 1.21 and 99.23 ± 1.26 for Methods I, II and III, respectively. Moreover the proposed methods were successfully applied for determination of ALD in different tablets. Proposals of the reactions pathways have been postulated. Conclusion The proposed spectrophotometric methods provided sensitive, specific and inexpensive analytical procedures for determination of the non-chromophoric drug alendronate either per se or in its tablet dosage forms without interference from common excipients. Graphical abstract PMID:22472190

  2. Validated spectrophotometric methods for determination of Alendronate sodium in tablets through nucleophilic aromatic substitution reactions.

    PubMed

    Walash, Mohamed I; Metwally, Mohamed E-S; Eid, Manal; El-Shaheny, Rania N

    2012-04-02

    Alendronate (ALD) is a member of the bisphosphonate family which is used for the treatment of osteoporosis, bone metastasis, Paget's disease, hypocalcaemia associated with malignancy and other conditions that feature bone fragility. ALD is a non-chromophoric compound so its determination by conventional spectrophotometric methods is not possible. So two derivatization reactions were proposed for determination of ALD through the reaction with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and 2,4-dinitrofluorobenzene (DNFB) as chromogenic derivatizing reagents. Three simple and sensitive spectrophotometric methods are described for the determination of ALD. Method I is based on the reaction of ALD with NBD-Cl. Method II involved heat-catalyzed derivatization of ALD with DNFB, while, Method III is based on micellar-catalyzed reaction of the studied drug with DNFB at room temperature. The reactions products were measured at 472, 378 and 374 nm, for methods I, II and III, respectively. Beer's law was obeyed over the concentration ranges of 1.0-20.0, 4.0-40.0 and 1.5-30.0 μg/mL with lower limits of detection of 0.09, 1.06 and 0.06 μg/mL for Methods I, II and III, respectively. The proposed methods were applied for quantitation of the studied drug in its pure form with mean percentage recoveries of 100.47 ± 1.12, 100.17 ± 1.21 and 99.23 ± 1.26 for Methods I, II and III, respectively. Moreover the proposed methods were successfully applied for determination of ALD in different tablets. Proposals of the reactions pathways have been postulated. The proposed spectrophotometric methods provided sensitive, specific and inexpensive analytical procedures for determination of the non-chromophoric drug alendronate either per se or in its tablet dosage forms without interference from common excipients. GRAPHICAL

  3. Spectrophotometric determination of low levels arsenic species in beverages after ion-pairing vortex-assisted cloud-point extraction with acridine red.

    PubMed

    Altunay, Nail; Gürkan, Ramazan; Kır, Ufuk

    2016-01-01

    A new, low-cost, micellar-sensitive and selective spectrophotometric method was developed for the determination of inorganic arsenic (As) species in beverage samples. Vortex-assisted cloud-point extraction (VA-CPE) was used for the efficient pre-concentration of As(V) in the selected samples. The method is based on selective and sensitive ion-pairing of As(V) with acridine red (ARH(+)) in the presence of pyrogallol and sequential extraction into the micellar phase of Triton X-45 at pH 6.0. Under the optimised conditions, the calibration curve was highly linear in the range of 0.8-280 µg l(-1) for As(V). The limits of detection and quantification of the method were 0.25 and 0.83 µg l(-1), respectively. The method was successfully applied to the determination of trace As in the pre-treated and digested samples under microwave and ultrasonic power. As(V) and total As levels in the samples were spectrophotometrically determined after pre-concentration with VA-CPE at 494 nm before and after oxidation with acidic KMnO4. The As(III) levels were calculated from the difference between As(V) and total As levels. The accuracy of the method was demonstrated by analysis of two certified reference materials (CRMs) where the measured values for As were statistically within the 95% confidence limit for the certified values.

  4. Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2

    NASA Astrophysics Data System (ADS)

    Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.

    2003-03-01

    Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.

  5. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  6. Spectrophotometric determination of vanadium and its application to gas-turbine fuel-oils.

    PubMed

    Banerjee, S; Sinha, B P; Dutta, R K

    1975-08-01

    A very sensitive spectrophotometric method for the determination of vanadium in furnace oils is described. The intense indigo-blue colour developed by the reaction of vanadium with tannin and thioglycollic acid is measured at a wavelength of 600 nm at pH 4 and obeys Beer's law between 0.5 and 5 ppm vanadium. The method is applicable to gas-turbine fuel-oil and special navy fuel-oils. The common mineral constituents usually present in such oils do not interfere.

  7. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    NASA Astrophysics Data System (ADS)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  8. Utility of N-Bromosuccinimide for the Titrimetric and Spectrophotometric Determination of Famotidine in Pharmaceutical Formulations

    PubMed Central

    Zenita, O.; Basavaiah, K.

    2011-01-01

    Two titrimetric and two spectrophotometric methods are described for the assay of famotidine (FMT) in tablets using N-bromosuccinimide (NBS). The first titrimetric method is direct in which FMT is titrated directly with NBS in HCl medium using methyl orange as indicator (method A). The remaining three methods are indirect in which the unreacted NBS is determined after the complete reaction between FMT and NBS by iodometric back titration (method B) or by reacting with a fixed amount of either indigo carmine (method C) or neutral red (method D). The method A and method B are applicable over the range of 2–9 mg and 1–7 mg, respectively. In spectrophotometric methods, Beer's law is obeyed over the concentration ranges of 0.75–6.0 μg mL−1 (method C) and 0.3–3.0 μg mL−1 (method D). The applicability of the developed methods was demonstrated by the determination of FMT in pure drug as well as in tablets. PMID:21760785

  9. Spectrophotometric methods for simultaneous determination of betamethasone valerate and fusidic acid in their binary mixture.

    PubMed

    Lotfy, Hayam Mahmoud; Salem, Hesham; Abdelkawy, Mohammad; Samir, Ahmed

    2015-04-05

    Five spectrophotometric methods were successfully developed and validated for the determination of betamethasone valerate and fusidic acid in their binary mixture. Those methods are isoabsorptive point method combined with the first derivative (ISO Point--D1) and the recently developed and well established methods namely ratio difference (RD) and constant center coupled with spectrum subtraction (CC) methods, in addition to derivative ratio (1DD) and mean centering of ratio spectra (MCR). New enrichment technique called spectrum addition technique was used instead of traditional spiking technique. The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of official methods. The statistical comparison showed that there is no significant difference between the proposed methods and the official ones regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. SHARDS: Survey for High-z Absorption Red & Dead Sources

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  11. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  12. RAPID SPECTROPHOTOMETRIC DETERMINATION OF TRIFLUOPERAZINE DIHYDROCHLORIDE AS BASE FORM IN PHARMACEUTICAL FORMULATION THROUGH CHARGE-TRANSFER COMPLEXATION.

    PubMed

    Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura

    2016-01-01

    Two simple and selective spectrophotometric methods are described for the determination of trifluoperazine dihydrochloride (TFH) as base form (TFP) in bulk drug, and in tablets. The methods are based on the molecular charge-transfer complexation of trifluoperazine base (TFP) with either 2,4,6-trinitrophenol (picric acid; PA) or 2,4-dinitrophenol (DNP). The yellow colored radical anions formed are quantified at 410 run (PA method) or 415 nm (DNP method). The assay conditions were optimized for both the methods. Beer's law is obeyed over the concentration ranges of 1.5-24.0 pg/mL in PA method and 5.0-80.0 µg/mL in DNP method, with respective molar absorptivity values of 1.03 x 10(4) and 6.91 x 10(3) L mol-1 cm-1. The reaction stoichiometry in both methods was evaluated by Job's method of continuous variations and was found to be 1 : 2 (TFP : PA, TFP : DNP). The developed methods were successfully applied to the determination of TFP in pure form and commercial tablets with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level and the results showed no significant difference between the reference and proposed methods with regard to accuracy and precision. Further, the accuracy and reliability of the methods were confirmed by recovery studies via standard addition technique.

  13. Spectrophotometric and electrochemical study for metal ion binding of azocalix[4]arene bearing p-ethylester group

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun

    2017-05-01

    The complexation behavior of diazophenylcalix[4]arene bearing para-ethylester group (p-EAC) for alkali, alkaline earth, various heavy and transition metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2 +, Ca2 +, Sr2 +, Ba2 +, Cr3 +, Fe2 +, Co2 +, Ni2 +, Cu2 +, Zn2 +, Pb2 +) was investigated by spectrophotometric and electrochemical methods in CH3CN. p-EAC exhibits decreased absorbance at 353 nm in the presence of Cr3 +, Fe2 +, Pb2 +, and Cu2 +. The spectra of p-EAC showed bathochromic shift in absorption maximum on the addition of Cr3 +, Fe2 +, or Pb2 + with decreasing order of absorbance (Cr3 + > Fe2 + > Pb2 +), and on the other hand, hypsochromic shift on the addition of Cu2 +. This leads to the selective coloration from light green to orange and colorless for Cr3 + and Cu2 + that can be detected by the naked eye, respectively. In electrochemistry experiments, p-EAC also showed two different types of voltammetric changes toward Cr3 +, Fe2 +, or Pb2 +, and toward Cu2 +, whereas no significant changes occurred in the presence of the other metal ions. Nonlinear fitting curve procedure was used to determine a logarithmic value of 5.20, 4.92, 3.54 and 4.80 for the stability constants of the complex of p-EAC with Cr3 +, Fe2 +, Pb2 +, and Cu2 +, respectively.

  14. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Ali, Omnia I. M.; Ismail, Nahla S.; Elgohary, Rasha M.

    2016-01-01

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method (1D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry (2D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL- 1 for LCD and 4.0-20.0 μg mL- 1 for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form.

  15. Validated derivative and ratio derivative spectrophotometric methods for the simultaneous determination of levocetirizine dihydrochloride and ambroxol hydrochloride in pharmaceutical dosage form.

    PubMed

    Ali, Omnia I M; Ismail, Nahla S; Elgohary, Rasha M

    2016-01-15

    Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method ((1)D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.0 nm for ABH. The second method employs a second derivative spectrophotometry ((2)D) where the measurements were carried out at 242.0 and 224.4 nm for LCD and ABH, respectively. In the third method, the first derivative of the ratio spectra was calculated and the first derivative of the ratio amplitudes at 222.8 and 247.2 nm was selected for the determination of LCD and ABH, respectively. Calibration graphs were established in the ranges of 1.0-20.0 μg mL(-1) for LCD and 4.0-20.0 μg mL(-1) for ABH using derivative and ratio first derivative spectrophotometric methods with good correlation coefficients. The developed methods have been successfully applied to the simultaneous determination of both drugs in commercial tablet dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  17. Sequential injection spectrophotometric determination of oxybenzone in lipsticks.

    PubMed

    Salvador, A; Chisvert, A; Camarasa, A; Pascual-Martí, M C; March, J G

    2001-08-01

    A sequential injection (SI) procedure for the spectrophotometric determination of oxybenzone in lipsticks is reported. The colorimetric reaction between nickel and oxybenzone was used. SI parameters such as sample solution volume, reagent solution volume, propulsion flow rate and reaction coil length were studied. The limit of detection was 3 microg ml(-1). The sensitivity was 0.0108+/-0.0002 ml microg(-1). The relative standard deviations of the results were between 6 and 12%. The real concentrations of samples and the values obtained by HPLC were comparable. Microwave sample pre-treatment allowed the extraction of oxybenzone with ethanol, thus avoiding the use of toxic organic solvents. Ethanol was also used as carrier in the SI system. Seventy-two injections per hour can be performed, which means a sample frequency of 24 h(-1) if three replicates are measured for each sample.

  18. Method Development for Analysis of Aspirin Tablets.

    ERIC Educational Resources Information Center

    Street, Kenneth W., Jr.

    1988-01-01

    Develops a lab experiment for introductory instrumental analysis that requires interference studies and optimizing of conditions. Notes the analysis of the aspirin is by visible spectrophotometric assay. Gives experimental details and discussion. (MVL)

  19. Spectra resolution for simultaneous spectrophotometric determination of lamivudine and zidovudine components in pharmaceutical formulation of human immunodeficiency virus drug based on using continuous wavelet transform and derivative transform techniques.

    PubMed

    Sohrabi, Mahmoud Reza; Tayefeh Zarkesh, Mahshid

    2014-05-01

    In the present paper, two spectrophotometric methods based on signal processing are proposed for the simultaneous determination of two components of an anti-HIV drug called lamivudine (LMV) and zidovudine (ZDV). The proposed methods are applied to synthetic binary mixtures and commercial pharmaceutical tablets without the need for any chemical separation procedures. The developed methods are based on the application of Continuous Wavelet Transform (CWT) and Derivative Spectrophotometry (DS) combined with the zero cross point technique. The Daubechies (db5) wavelet family (242 nm) and Dmey wavelet family (236 nm) were found to give the best results under optimum conditions for simultaneous analysis of lamivudine and zidovudine, respectively. In addition, the first derivative absorption spectra were selected for the determination of lamivudine and zidovudine at 266 nm and 248 nm, respectively. Assaying various synthetic mixtures of the components validated the presented methods. Mean recovery values were found to be between 100.31% and 100.2% for CWT and 99.42% and 97.37% for DS, respectively for determination of LMV and ZDV. The results obtained from analyzing the real samples by the proposed methods were compared to the HPLC reference method. One-way ANOVA test at 95% confidence level was applied to the results. The statistical data from comparing the proposed methods with the reference method showed no significant differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Analysis of ultraviolet spectrophotometric data from Copernicus. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P. Jr

    1979-04-17

    Ultraviolet spectral data from the OAO 3 satellite are being used to study interstellar absorption lines and stellar and circumstellar lines in hot stars. The interstellar data are beneficial in analyzing the depletions of heavy elements from the gas phase and in elucidating how these depletions depend on physical conditions. Abundances in separate velocity components were determined from line profiles. Observations were carried out for interstellar abundances, both atomic and molecular, towards a number of stars. The better quality data are being analyzed for profile information and the lesser data are being used in curve-of-growth analyses. Molecular observations were carriedmore » out as well; N/sup 2/ was sought, interstellar C/sup 2/ was detected and its rotational excitation utilized to establish limits in interstellar cloud temperatures. An extensive search for H/sup 2/O resulted in a tentative identification which will produce new information on chemical reaction rates. Interstellar depletions and grain properties in the rho Ophiuchi cloud, stellar wind variability, and circumstellar lines are also under study.« less

  1. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  2. Indirect spectrophotometric determination of small amounts of selenium(IV) and arsenic(V) by simple extraction using flotation columns.

    PubMed

    Mostafa, G A; Ghazy, S E

    2001-10-01

    A simple, rapid and selective procedure for the indirect spectrophotometric determination of Se(IV) and As(V) has been developed. It is based on the reduction of Se(IV) to Se(0) and As(V) to As(III) with hydroiodic acid (KI + HCl). The liberated iodine, equivalent to each analyte, is quantitatively extracted with oleic acid (HOL) surfactant. The iodine-HOL system exhibits its maximum absorbance at 435 nm. The different analytical parameters affecting the extraction and determination processes have been examined. The calibration graphs were found to be linear over the ranges 5-120 and 0.25-20 ppm of Se(IV) and As(V), with lower detection limits of 2.5 and 0.15 ppm and molar absorptivities of 1 x 10(4) and 0.5 x 10(4) dm3 mol(-1) cm(-1), respectively. Sandell's sensitivity was calculated to be 0.0078 and 0.0149 microg/cm2 in the same order. The relative standard deviation for five replicate analyses of 40 ppm Se(IV) and 4 ppm As(V) were 1.0 and 0.9%, respectively. The proposed procedure in the presence of EDTA as a masking agent for foreign ions has been successfully applied to the determination of Se(IV) in a reference sample and As(V) in copper metal, in addition to their determination in spiked and polluted water samples.

  3. Efficient flow injection and sequential injection methods for spectrophotometric determination of oxybenzone in sunscreens based on reaction with Ni(II).

    PubMed

    Chisvert, A; Salvador, A; Pascual-Martí, M C; March, J G

    2001-04-01

    Spectrophotometric determination of a widely used UV-filter, such as oxybenzone, is proposed. The method is based on the complexation reaction between oxybenzone and Ni(II) in ammoniacal medium. The stoichiometry of the reaction, established by the Job method, was 1:1. Reaction conditions were studied and the experimental parameters were optimized, for both flow injection (FI) and sequential injection (SI) determinations, with comparative purposes. Sunscreen formulations containing oxybenzone were analyzed by the proposed methods and results compared with those obtained by HPLC. Data show that both FI and SI procedures provide accurate and precise results. The ruggedness, sensitivity and LOD are adequate to the analysis requirements. The sample frequency obtained by FI is three-fold higher than that of SI analysis. SI is less reagent-consuming than FI.

  4. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  5. Determination of niobium in rocks by an isotope dilution spectrophotometric method

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1970-01-01

    Rocks and minerals are fused with sodium peroxide in the presence of carrierfree 95Nb. The fusion cake is leached with water and the precipitate dissolved in hydrofluoric-sulfuric acid mixture. Niobium is extracted into methyl isobutyl ketone and further purified by ion exchange. The amount of niobium is determined spectrophotometrically with 4-(2-pyridylazo)-resorcinol, and the chemical yield of the separations determined by counting 95Nb. This procedure is faster and less sensitive to interferences than previously proposed methods for determining niobium in rocks.The high purity of the separated niobium makes the method applicable to nearly all matrices. ?? 1970.

  6. Spectrophotometric determination of substrate-borne polyacrylamide.

    PubMed

    Lu, Jianhang; Wu, Laosheng

    2002-08-28

    Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were <7.5% in all cases. The optimum range of PAM in each sample is 10-80 microg. The technique can serve as an effective tool in improving PAM application and facilitating PAM-related research.

  7. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    PubMed

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  8. Stability indicating spectrophotometric and spectrodensitometric methods for the determination of diatrizoate sodium in presence of its degradation product

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Mohamed K.; Riad, Safaa M.; Abdel Gawad, Sherif A.; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-02-01

    Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95 ± 0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99 ± 1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88 ± 0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  9. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    PubMed Central

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-01-01

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures. PMID:27529232

  10. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins.

    PubMed

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-08-12

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures.

  11. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  12. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  13. DLLME-spectrophotometric determination of glyphosate residue in legumes.

    PubMed

    Çetin, Emine; Şahan, Serkan; Ülgen, Ahmet; Şahin, Uğur

    2017-09-01

    A new separation and pre-concentration method for spectrophotometric determination of glyphosate herbicide was developed. Glyphosate was converted into dithiocarbamic acid with CS 2 , followed by copper in the presence of ammonia to promote complex formation. This complex was collected in a CH 2 Cl 2 organic drop and absorbance measured at 435nm. The analytical parameters, such as the amount of NH 3 , Cu(II) and CS 2 , type of extraction solutions, and the ratio of dispersive and organic liquids were optimized. The calibration curve was linear in the range 0.5-10mgl -1 . The limits of detection and quantification were calculated from 3s to 10s criterions as 0.21mgl -1 and 0.70mgl -1 , respectively. The developed method was applied to legume samples with the satisfactory recovery values of 98±4-102±3%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Convenient UV-spectrophotometric determination of citrates in aqueous solutions with applications in the pharmaceutical analysis of oral electrolyte formulations.

    PubMed

    Krukowski, Sylwester; Karasiewicz, Mateusz; Kolodziejski, Waclaw

    2017-07-01

    Herein, we present a convenient method for quantitative spectrophotometric determination of citrate ions in aqueous solutions in the middle-UV range. It involves measuring the absorbance of citric acid at 209 nm under suppressed dissociation at pH < 1.0 in the presence of hydrochloric acid. Validation of the method was performed according to the guidelines of the International Conference on Harmonization. A very good linear dependence of the absorbance on concentration (r 2  = 0.9999) was obtained in a citrate concentration range of 0.5-5.0 mmol/L. This method is characterized by excellent precision and accuracy; the coefficient of variation in each case is below the maximal permissible value (%RSD < 2). The proposed analytical procedure has been successfully applied to the determination of citrates in oral electrolyte formulations. Copyright © 2017. Published by Elsevier B.V.

  15. Experimental and computational analysis of sound absorption behavior in needled nonwovens

    NASA Astrophysics Data System (ADS)

    Soltani, Parham; Azimian, Mehdi; Wiegmann, Andreas; Zarrebini, Mohammad

    2018-07-01

    In this paper application of X-ray micro-computed tomography (μCT) together with fluid simulation techniques to predict sound absorption characteristics of needled nonwovens is discussed. Melt-spun polypropylene fibers of different fineness were made on an industrial scale compact melt spinning line. A conventional batt forming-needling line was used to prepare the needled samples. The normal incidence sound absorption coefficients were measured using impedance tube method. Realistic 3D images of samples at micron-level spatial resolution were obtained using μCT. Morphology of fabrics was characterized in terms of porosity, fiber diameter distribution, fiber curliness and pore size distribution from high-resolution realistic 3D images using GeoDict software. In order to calculate permeability and flow resistivity of media, fluid flow was simulated by numerically solving incompressible laminar Newtonian flow through the 3D pore space of realistic structures. Based on the flow resistivity, the frequency-dependent acoustic absorption coefficient of the needled nonwovens was predicted using the empirical model of Delany and Bazley (1970) and its associated modified models. The results were compared and validated with the corresponding experimental results. Based on morphological analysis, it was concluded that for a given weight per unit area, finer fibers yield to presence of higher number of fibers in the samples. This results in formation of smaller and more tortuous pores, which in turn leads to increase in flow resistivity of media. It was established that, among the empirical models, Mechel modification to Delany and Bazley model had superior predictive ability when compared to that of the original Delany and Bazley model at frequency range of 100-5000 Hz and is well suited to polypropylene needled nonwovens.

  16. A Simple and Selective Spectrophotometric Method for the Determination of Trace Gold in Real, Environmental, Biological, Geological and Soil Samples Using Bis (Salicylaldehyde) Orthophenylenediamine

    PubMed Central

    Soomro, Rubina; Ahmed, M. Jamaluddin; Memon, Najma; Khan, Humaira

    2008-01-01

    A simple high sensitive, selective, and rapid spectrophotometric method for the determination of trace gold based on the rapid reaction of gold(III) with bis(salicylaldehyde)orthophenylenediamine (BSOPD) in aqueous and micellar media has been developed. BSOPD reacts with gold(III) in slightly acidic solution to form a 1:1 brownish-yellow complex, which has an maximum absorption peak at 490 nm in both aqueous and micellar media. The most remarkable point of this method is that the molar absorptivities of the gold-BSOPD complex form in the presence of the nonionic TritonX-100 surfactant are almost a 10 times higher than the value observed in the aqueous solution, resulting in an increase in the sensitivity and selectivity of the method. The apparent molar absorptivities were found to be 2.3 × 104 L mol−1 cm−1 and 2.5 × 105 L mol−1 cm−1 in aqueous and micellar media, respectively. The reaction is instantaneous and the maximum absorbance was obtained after 10 min at 490 nm and remains constant for over 24 h at room temperature. The linear calibration graphs were obtained for 0.1–30 mg L−1 and 0.01–30 mg L−1 of gold(III) in aqueous and surfactant media, respectively. The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L−1 of Au(III); most metal ions can be tolerated in considerable amounts in aqueous micellar solutions. The Sandell’s sensitivity, the limit of detection and relative standard deviation (n = 9) were found to be 5 ng cm−2, 1 ng mL−1 and 2%, respectively in aqueous micellar solutions. Its sensitivity and selectivity are remarkably higher than that of other reagents in the literature. The proposed method was successfully used in the determination of gold in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), and biological samples (blood and urine), geological, soil and complex synthetic mixtures. The results obtained agree well with

  17. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography.

    PubMed

    Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech

    2018-01-30

    In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  19. Simultaneous Spectrophotometric Estimation of Nitazoxanide and Ofloxacin in Tablets

    PubMed Central

    Game, Madhuri D.; Sakarkar, D. M.

    2011-01-01

    Two simple, accurate and precise spectrophotometric methods have been developed for simultaneous determination of nitazoxanide and ofloxacin in tablets. Method I is Q-absorbance ratio method which involves Q-absorbance at isobestic point (306.25 nm) and max (347.5 nm) of nitazoxanide, while method II is two wavelength method, where 244.6 nm and 273.0 nm were selected as 1 and 2 for determination of nitazoxanide and 294.3 nm and 388.1 nm were selected as 3 and 4 for determination of ofloxacin. Both drugs obeyed the Beer's law in the concentration range 2-30 μg/ml,correlation coefficient (r2<1). Both methods were validated statistically and recovery studies were carried out to confirm the accuracy. Commercial tablet formulation was successfully analyzed using the developed methods. PMID:22131624

  20. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  1. Sampling and analysis of hexavalent chromium during exposure to chromic acid mist and welding fumes.

    PubMed

    Blomquist, G; Nilsson, C A; Nygren, O

    1983-12-01

    Sampling and analysis of hexavalent chromium during exposure to chromic acid mist and welding fumes. Scand j work environ & health 9 (1983) 489-495. In view of the serious health effects of hexavalent chromium, the problems involved in its sampling and analysis in workroom air have been the subject of much concern. In this paper, the stability problems arising from the reduction of hexavalent to trivalent chromium during sampling, sample storage, and analysis are discussed. Replacement of sulfuric acid by a sodium acetate buffer (pH 4) as a leaching solution prior to analysis with the diphenylcarbazide (DPC) method is suggested and is demonstrated to be necessary in order to avoid reduction. Field samples were taken from two different industrial processes-manual metal arc welding on stainless steel without shield gas and chromium plating. A comparison was made of the DPC method, acidic dissolution with atomic absorption spectrophotometric (AAS) analysis, and the carbonate method. For chromic acid mist, the DPC method and AAS analysis were shown to give the same results. In the analysis of welding fumes, the modified DPC method gave the same results as the laborious and less sensitive carbonate method.

  2. Simultaneous estimation of ramipril, acetylsalicylic acid and atorvastatin calcium by chemometrics assisted UV-spectrophotometric method in capsules.

    PubMed

    Sankar, A S Kamatchi; Vetrichelvan, Thangarasu; Venkappaya, Devashya

    2011-09-01

    In the present work, three different spectrophotometric methods for simultaneous estimation of ramipril, aspirin and atorvastatin calcium in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, viz. inverse least squares (ILS), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix. The linearity range was found to be 1-5, 10-50 and 2-10 μg mL-1 for ramipril, aspirin and atorvastatin calcium, respectively. The absorbance matrix was obtained by measuring the zero-order absorbance in the wavelength range between 210 and 320 nm. A training set design of the concentration data corresponding to the ramipril, aspirin and atorvastatin calcium mixtures was organized statistically to maximize the information content from the spectra and to minimize the error of multivariate calibrations. By applying the respective algorithms for PLS 1, PCR and ILS to the measured spectra of the calibration set, a suitable model was obtained. This model was selected on the basis of RMSECV and RMSEP values. The same was applied to the prediction set and capsule formulation. Mean recoveries of the commercial formulation set together with the figures of merit (calibration sensitivity, selectivity, limit of detection, limit of quantification and analytical sensitivity) were estimated. Validity of the proposed approaches was successfully assessed for analyses of drugs in the various prepared physical mixtures and formulations.

  3. Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines.

    PubMed

    Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie

    2007-11-01

    Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.

  4. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.

    2015-04-01

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.

  5. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater.

    PubMed

    Riad, Safaa M; Salem, Hesham; Elbalkiny, Heba T; Khattab, Fatma I

    2015-04-05

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p=0.05. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.

    PubMed

    Arifler, Dogu; Arifler, Dizem

    2017-04-01

    For biomedical applications of nanonetworks, employing molecular communication for information transport is advantageous over nano-electromagnetic communication: molecular communication is potentially biocompatible and inherently energy-efficient. Recently, several studies have modeled receivers in diffusion-based molecular communication systems as "perfectly monitoring" or "perfectly absorbing" spheres based on idealized descriptions of chemoreception. In this paper, we focus on perfectly absorbing receivers and present methods to improve the accuracy of simulation procedures that are used to analyze these receivers. We employ schemes available from the chemical physics and biophysics literature and outline a Monte Carlo simulation algorithm that accounts for the possibility of molecule absorption during discrete time steps, leading to a more accurate analysis of absorption probabilities. Unlike most existing studies that consider a single receiver, this paper analyzes absorption probabilities for multiple receivers deterministically or randomly deployed in a region. For random deployments, the ultimate absorption probabilities as a function of transmitter-receiver distance are shown to fit well to power laws; the exponents derived become more negative as the number of receivers increases up to a limit beyond which no additional receivers can be "packed" in the deployment region. This paper is expected to impact the design of molecular nanonetworks with multiple absorbing receivers.

  7. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.

  8. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  9. Mixed ligand complex formation of 2-aminobenzamide with Cu(II) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Dharmaraja, Jeyaprakash; Esakkidurai, Thirugnanasamy; Subbaraj, Paramasivam; Shobana, Sutha

    2013-10-01

    Mixed ligand Cu(II) complexes of 2-aminobenzamide (2AB) and amino acids viz., glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) have been synthesised and characterized by various physico-chemical and spectral techniques. The calculated g-tensor values for Cu(II) complexes at 77 K and 300 K, show the distorted octahedral geometry which has been confirmed from the absorption studies. Consequently, the thermal studies illustrate that the loss of water and acetate molecules in the initial stage which are followed by the decomposition of organic residues. The powder X-ray diffraction and SEM analysis reflect that all the complexes have well-defined crystallinity nature with homogeneous morphology. The binding activities of CT DNA with CuAB complexes have been examined by absorption studies. Further, the oxidative cleavage interactions of 2-aminobenzamide and CuAB complexes with DNA were studied by gel electrophoresis method in H2O2 medium. Also, the complex formation of Cu(II) involving 2-aminobenzamide and amino acids were carried out by a combined pH-metric and spectrophotometric techniques in 50% (v/v) water-ethanol mixture at 300, 310, 320 and 330 ± 0.1 K with I = 0.15 mol dm-3 (NaClO4). In solution, CuAB and CuAB2 species has been detected and the binding modes of 2-aminobenzamide and amino acids in both binary and mixed ligand complexes are same. The calculated stabilization value of Δ log K, log X and log X' indicates higher stabilities for the mixed ligand complexes rather than their binary species. The thermodynamic parameters like ΔG, ΔH and ΔS have been determined from temperature dependence of the stability constant. In vitro biological activities of 2-aminobenzamide, CuA and CuAB complexes show remarkable activities against some bacterial and fungal strains. The percentage distribution of various binary and mixed ligand species in solution at dissimilar pH intervals were also evaluated.

  10. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  11. Spectrophotometric determination of flucloxacillin and dicloxacillin in pure and dosage forms

    NASA Astrophysics Data System (ADS)

    El-Dien, F. A. Nour; Mohamed, Gehad G.; Farag, Eman Y. Z. A.

    2006-05-01

    A simple, rapid and accurate spectrophotometric method for the determination of antibiotic drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure form and different pharmaceutical preparations has been developed. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) as π-acceptors to give highly coloured complex species have been spectrophotometrically studied. The optimum experimental conditions for these CT reactions have been studied carefully. Beer's law is obeyed over the concentration ranges of 4-180 μg mL -1 and 4-70 μg mL -1 for Fluclox and Diclox drugs using TCNQ and TCNE reagents, respectively. The Sandell sensitivities ( S) are found to be 0.016-0.035 μg cm -2 and 0.011-0.016 μg cm -2 for Fluclox and Diclox, respectively, which indicate the high sensitivity of the proposed method. The relative standard deviations (R.S.D.: 0.08-0.49 and 0.15-0.80) for the determination of Fluclox and (R.S.D.: 0.05-0.75 and 0.13-0.75) for Diclox were obtained for four to six replicates using TCNQ and TCNE reagents, respectively, refer to the high accuracy and precision of the proposed method. These results are also confirmed by the between-day precision and the percent recovery of 99.90-100.1 and 99.60-100.4 for Fluclox and 99.90-100.5 and 99.40-100.1 for Diclox using TNCQ and TCNE reagents, respectively. The results obtained for the two reagents are comparable with those obtained by the official method.

  12. Spectrophotometric determination of flucloxacillin and dicloxacillin in pure and dosage forms.

    PubMed

    El-Dien, F A Nour; Mohamed, Gehad G; Farag, Eman Y Z A

    2006-05-01

    A simple, rapid and accurate spectrophotometric method for the determination of antibiotic drugs, flucloxacillin (Fluclox) and dicloxacillin (Diclox), in pure form and different pharmaceutical preparations has been developed. The charge transfer (CT) reactions between Fluclox and Diclox as electron donors and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE) as pi-acceptors to give highly coloured complex species have been spectrophotometrically studied. The optimum experimental conditions for these CT reactions have been studied carefully. Beer's law is obeyed over the concentration ranges of 4-180 microg mL(-1) and 4-70 microg mL(-1) for Fluclox and Diclox drugs using TCNQ and TCNE reagents, respectively. The Sandell sensitivities (S) are found to be 0.016-0.035 microg cm(-2) and 0.011-0.016 microg cm(-2) for Fluclox and Diclox, respectively, which indicate the high sensitivity of the proposed method. The relative standard deviations (R.S.D.: 0.08-0.49 and 0.15-0.80) for the determination of Fluclox and (R.S.D.: 0.05-0.75 and 0.13-0.75) for Diclox were obtained for four to six replicates using TCNQ and TCNE reagents, respectively, refer to the high accuracy and precision of the proposed method. These results are also confirmed by the between-day precision and the percent recovery of 99.90-100.1 and 99.60-100.4 for Fluclox and 99.90-100.5 and 99.40-100.1 for Diclox using TNCQ and TCNE reagents, respectively. The results obtained for the two reagents are comparable with those obtained by the official method.

  13. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-01-20

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virusinfection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with <em>P</em>-value &#x003E; 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  14. A novel Raman spectrophotometric method for quantitative measurement of nucleoside triphosphate hydrolysis.

    PubMed

    Jenkins, R H; Tuma, R; Juuti, J T; Bamford, D H; Thomas, G J

    1999-01-01

    A novel spectrophotometric method, based upon Raman spectroscopy, has been developed for accurate quantitative determination of nucleoside triphosphate phosphohydrolase (NTPase) activity. The method relies upon simultaneous measurement in real time of the intensities of Raman marker bands diagnostic of the triphosphate (1115 cm(-1)) and diphosphate (1085 cm(-1)) moieties of the NTPase substrate and product, respectively. The reliability of the method is demonstrated for the NTPase-active RNA-packaging enzyme (protein P4) of bacteriophage phi6, for which comparative NTPase activities have been estimated independently by radiolabeling assays. The Raman-determined rate for adenosine triphosphate substrate (8.6 +/- 1.3 micromol x mg(-1) x min(-1) at 40 degrees C) is in good agreement with previous estimates. The versatility of the Raman method is demonstrated by its applicability to a variety of nucleotide substrates of P4, including the natural ribonucleoside triphosphates (ATP, GTP) and dideoxynucleoside triphosphates (ddATP, ddGTP). Advantages of the present protocol include conservative sample requirements (approximately 10(-6) g enzyme/protocol) and relative ease of data collection and analysis. The latter conveniences are particularly advantageous for the measurement of activation energies of phosphohydrolase activity.

  15. Spectrophotometric and spectrofluorimetric methods for determination of certain biologically active phenolic drugs in their bulk powders and different pharmaceutical formulations.

    PubMed

    Omar, Mahmoud A; Badr El-Din, Kalid M; Salem, Hesham; Abdelmageed, Osama H

    2018-03-05

    Two simple and sensitive spectrophotometric and spectrofluorimetric methods for the determination of terbutaline sulfate, fenoterol hydrobromide, etilefrine hydrochloride, isoxsuprine hydrochloride, ethamsylate, doxycycline hyclate have been developed. Both methods were based on the oxidation of the cited drugs with cerium (IV) in acid medium. The spectrophotometric method was based on measurement of the absorbance difference (ΔA), which represents the excess cerium (IV), at 317nm for each drug. On the other hand, the spectrofluorimetric method was based on measurement of the fluorescent of the produced cerium (III) at emission wavelength 354nm (λ excitation =255nm) for the concentrations studied for each drug. For both methods, the variables affecting the reactions were carefully investigated and the conditions were optimized. Linear relationships were found between either ΔA or the fluorescent of the produced cerium (III) values and the concentration of the studied drugs in a general concentration range of 2.0-24.0μgmL -1 , 20.0-24.0ngmL -1 with good correlation coefficients in the following range 0.9990-0.9999, 0.9990-0.9993 for spectrophotometric and spectrofluorimetric methods respectively. The limits of detection and quantitation of spectrophotometric method were found in general concentration range 0.190-0.787 and 0.634-2.624μgmL -1 respectively. For spectrofluorimetric method, the limits of detection and quantitation were found in general concentration range 4.77-9.52 and 15.91-31.74ngmL -1 respectively. The stoichiometry of the reaction was determined, and the reactions pathways were postulated. The analytical performance of the methods, in terms of accuracy and precision, were statistically validated and the results obtained were satisfactory. The methods have been successfully applied to the determination of the cited drugs in their commercial pharmaceutical formulations. Statistical comparison of the results with the reference methods showed

  16. Spectrophotometric and spectrofluorimetric methods for determination of certain biologically active phenolic drugs in their bulk powders and different pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Omar, Mahmoud A.; Badr El-Din, Kalid M.; Salem, Hesham; Abdelmageed, Osama H.

    2018-03-01

    Two simple and sensitive spectrophotometric and spectrofluorimetric methods for the determination of terbutaline sulfate, fenoterol hydrobromide, etilefrine hydrochloride, isoxsuprine hydrochloride, ethamsylate, doxycycline hyclate have been developed. Both methods were based on the oxidation of the cited drugs with cerium (IV) in acid medium. The spectrophotometric method was based on measurement of the absorbance difference (ΔA), which represents the excess cerium (IV), at 317 nm for each drug. On the other hand, the spectrofluorimetric method was based on measurement of the fluorescent of the produced cerium (III) at emission wavelength 354 nm (λexcitation = 255 nm) for the concentrations studied for each drug. For both methods, the variables affecting the reactions were carefully investigated and the conditions were optimized. Linear relationships were found between either ΔA or the fluorescent of the produced cerium (III) values and the concentration of the studied drugs in a general concentration range of 2.0-24.0 μg mL- 1, 20.0-24.0 ng mL- 1 with good correlation coefficients in the following range 0.9990-0.9999, 0.9990-0.9993 for spectrophotometric and spectrofluorimetric methods respectively. The limits of detection and quantitation of spectrophotometric method were found in general concentration range 0.190-0.787 and 0.634-2.624 μg mL- 1respectively. For spectrofluorimetric method, the limits of detection and quantitation were found in general concentration range 4.77-9.52 and 15.91-31.74 ng mL- 1 respectively. The stoichiometry of the reaction was determined, and the reactions pathways were postulated. The analytical performance of the methods, in terms of accuracy and precision, were statistically validated and the results obtained were satisfactory. The methods have been successfully applied to the determination of the cited drugs in their commercial pharmaceutical formulations. Statistical comparison of the results with the reference methods

  17. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  18. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    ERIC Educational Resources Information Center

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  19. Simultaneous Spectrophotometric Determination of Elbasvir and Grazoprevir in a Pharmaceutical Preparation.

    PubMed

    Attia, Khalid A M; El-Abasawi, Nasr M; El-Olemy, Ahmed; Abdelazim, Ahmed H

    2018-03-01

    Three UV spectrophotometric methods have been developed for the simultaneous determination of two new Food and Drug Administration-approved drugs, elbasvir (EBV) and grazoprevir (GRV), in their combined pharmaceutical dosage form. These methods include dual wavelength (DW), classic least-squares (CLS), and principal component regression (PCR). To achieve the DW method, two wavelengths were chosen for each drug in a way to ensure the difference in absorbance was zero from one drug to the other. GRV revealed equal absorbance at 351 and 315 nm, for which the distinctions in absorbance were measured for the determination of EBV. In the same way, distinctions in absorbance at 375 and 334.5 nm were measured for the determination of GRV. Alternatively, the CLS and PCR models were applied to the spectra analysis because the synchronous inclusion of many unreal wavelengths rather than using a single wavelength greatly increased the precision and predictive ability of the methods. The proposed methods were successfully applied to the assay of these drugs in their pharmaceutical formulation. The obtained results were statistically compared with manufacturing methods. The results conclude that there was no significant difference between the proposed methods and the manufacturing method with respect to accuracy and precision.

  20. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  1. Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer

    NASA Astrophysics Data System (ADS)

    Wang, Chunqi; Huang, Lixi

    2008-06-01

    When a segment of a rigid duct is replaced by a plate backed by a hard-walled cavity, grazing incident sound waves induce plate vibration, hence sound reflection. Based on this mechanism, a broadband plate silencer, which works effectively from low-to-medium frequencies have been developed recently. A typical plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. Such a configuration is two-dimensional in nature. In this paper, numerical study is extended to three-dimensional configurations to investigate the potential improvement in sound reflection. Finite element simulation shows that the three-dimensional configurations perform better than the corresponding two-dimensional design, especially in the relatively high frequency region. Further analysis shows that the three-dimensional design gives better plate response at higher axial modes than the simple two-dimensional design. Sound absorption mechanism is also introduced to the plate silencer by adding two dissipative chambers on the two lateral sides of a two-cavity wave reflector, hence a hybrid silencer. Numerical simulation shows that the proposed hybrid silencer is able to achieve a good moderate bandwidth with much reduced total length in comparison with pure absorption design.

  2. Simple and clean determination of tetracyclines by flow injection analysis

    NASA Astrophysics Data System (ADS)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-01

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL- 1, and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL- 1, respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  3. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  4. Development of a highly sensitive and selective method for extractive spectrophotometric determination of aluminum(III) from environmental matrices, synthetic mixtures, and alloys using orthohydroxypropiophenoneisonicotinoylhydrazone.

    PubMed

    Ramachandraiah, C; Rajesh Kumar, J; Adinarayana Reddy, S; Lee, Jin-Young; Varada Reddy, A

    2010-01-01

    Orthohydroxypropiophenoneisonicotinoylhydrazone (OHPINH) is proposed as a new sensitive reagent for the spectrophotometric determination of aluminum(III). OHPINH formed a greenish-yellow colored complex with aluminum(III) in buffer solutions of pH 1 to 3. The color in pH 2 was stable for more than 48 h. The complex solution has given maximum absorbance at 390 nm when the reagent was chosen as blank and the absorbance of the reagent at this wavelength is negligible; the molar absorptivity and Sandell's sensitivity being 0.6371x10(4) L mol(-1) cm(-1) and 4.234x10(-3) microg cm(-2), respectively. The system obeys Beer's law in the range of 0.5-3.5 microg mL(-1) with excellent linearity in terms of the correlation coefficient value of 0.999. Most of the common metal ions generally found associated with aluminum(III) do not interfere. The repeatability of the method was checked by finding the relative standard deviation. The developed method has been successfully employed for the determination of aluminum(III) environmental matrices like medicinal and leafy samples, alloys, and synthetic mixtures.

  5. Application of Certain π-Acceptors for the Spectrophotometric Determination of Alendronate Sodium in Pharmaceutical Bulk and Dosage Forms.

    PubMed

    Raza, Asad; Zia-Ul-Haq, Muhammad

    2011-01-01

    Two simple, fast, and accurate spectrophotometric methods for the determination of alendronate sodium are described. The methods are based on charge-transfer complex formation of the drug with two π-electron acceptors 7,7,7,8-tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile and methanol medium. The methods are followed spectrophotometrically by measuring the maximum absorbance at 840 nm and 465 nm, respectively. Under the optimized experimental conditions, the calibration curves showed a linear relationship over the concentration ranges of 2-10 μg mL(-1) and 2-12 μg mL(-1), respectively. The optimal reactions conditions values such as the reagent concentration, heating time, and stability of reaction product were determined. No significant difference was obtained between the results of newly proposed methods and the B.P. Titrimetric procedures. The charge transfer approach using TCNQ and DDQ procedures described in this paper is simple, fast, accurate, precise, and extraction-free.

  6. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates.

    PubMed

    Mirazizi, Fatemeh; Bahrami, Azita; Haghbeen, Kamahldin; Shahbani Zahiri, Hossein; Bakavoli, Mehdi; Legge, Raymond L

    2016-12-01

    Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax = 390 nm, ɛ = 32 880 M(-1) cm(-1) at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05 nmol mL(-1) was achieved for peroxidase.

  7. IMPROVED SPECTROPHOTOMETRIC CALIBRATION OF THE SDSS-III BOSS QUASAR SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margala, Daniel; Kirkby, David; Dawson, Kyle

    2016-11-10

    We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Ly α forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by ∼19% at 3600 Å and underestimatedmore » by ∼24% at 10,000 Å. Our corrections for the entire BOSS quasar sample are publicly available.« less

  8. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  9. Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R. P.

    2018-05-01

    Power absorption by electrons from the space- and time-dependent electric field represents the basic sustaining mechanism of all radio-frequency driven plasmas. This complex phenomenon has attracted significant attention. However, most theories and models are, so far, only able to account for part of the relevant mechanisms. The aim of this work is to present an in-depth analysis of the power absorption by electrons, via the use of a moment analysis of the Boltzmann equation without any ad-hoc assumptions. This analysis, for which the input quantities are taken from kinetic, particle based simulations, allows the identification of all physical mechanisms involved and an accurate quantification of their contributions. The perfect agreement between the sum of these contributions and the simulation results verifies the completeness of the model. We study the relative importance of these mechanisms as a function of pressure, with high spatial and temporal resolution, in an electropositive argon discharge. In contrast to some widely accepted previous models we find that high space- and time-dependent ambipolar electric fields outside the sheaths play a key role for electron power absorption. This ambipolar field is time-dependent within the RF period and temporally asymmetric, i.e., the sheath expansion is not a ‘mirror image’ of the sheath collapse. We demonstrate that this time-dependence is mainly caused by a time modulation of the electron temperature resulting from the energy transfer to electrons by the ambipolar field itself during sheath expansion. We provide a theoretical proof that this ambipolar electron power absorption would vanish completely, if the electron temperature was constant in time. This mechanism of electron power absorption is based on a time modulated electron temperature, markedly different from the Hard Wall Model, of key importance for energy transfer to electrons on time average and, thus, essential for the generation of capacitively

  10. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  11. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  12. Bivariate versus multivariate smart spectrophotometric calibration methods for the simultaneous determination of a quaternary mixture of mosapride, pantoprazole and their degradation products.

    PubMed

    Hegazy, M A; Yehia, A M; Moustafa, A A

    2013-05-01

    The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.

  13. Steric hindrance effects in the use of heterocyclic azodyestuffs as spectrophotometric reagents.

    PubMed

    Geary, W J; Bottomley, F

    1967-05-01

    The heterocyclic azo dyestuffs 4-(n-methyl-2 -pyridylazo)-resorcinol (where n = 3', 4', 5', 6') have been prepared, and their possible use as spectrophotometric reagents investigated. The dyestuffs are shown to function analogously to the parent ligand 4-(2'-pyridylazo) resorcinol (PAR) in giving red complexes with the ions Co(2+), Ni(2+), Cu(2+), Zn(2+) and UO(2)(2+). Steric effects resulting from the position of the methyl group in the heterocyclic ring are shown to occur in relation both to the spectra of the dyestuffs themselves and to the sensitivity of their reactions with the metal ions.

  14. SPECTROPHOTOMETRIC DETERMINATION OF ULTRA-SMALL QUANTITIES OF NICKEL IN INDIUM (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshkova, V.M.; Bochkova, V.M.; Astakhova, E.K.

    1961-09-01

    alpha -Benzil doxime permits the determination of nickel by measuring optical density in the region of maximum absortption (at 275 m mu ), after the reagent excess is removed by washing the extract with alkali. Conditions were found for the spectrophotometric determination of ultra-small quantities (down to 0.005 gamma ) of nickel with alpha -benzil dioxime in the soultion of its pure salt, in the presence of cobalt and copper. A method was developed for the determination of traces of nickel down to 5 x 10 /sup -7%/ in metallic indium. The reproducibility of method is +25%. (auth)

  15. Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem

    2010-01-01

    The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.

  16. Charge–transfer reaction of 2,3-dichloro-1,4-naphthoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib

    PubMed Central

    Alzoman, Nourah Z.; Alshehri, Jamilah M.; Darwish, Ibrahim A.; Khalil, Nasr Y.; Abdel-Rahman, Hamdy M.

    2014-01-01

    The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge–transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07 × 102 l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4–500 μg/ml. The assay limits of detection and quantitation were 2.06 and 6.23 μg/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:25685046

  17. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  18. New approach for determination of sulfadiazine in pharmaceutical preparations using 4(4-sulphophenylazo)pyrogallol: Kinetic spectrophotometric method.

    PubMed

    Naser, Naser A; Alasedi, Kasim M; Khan, Zainab A

    2018-05-04

    A new trend describes the development and validation of a simple, sensitive and selective kinetic spectrophotometric methods for the determination of sulfadiazine in pharmaceutical formulations has been conducted. In this paper, sulfadiazine was derivatized as a new organic compound 4(4-sulphophenylazo) pyrogallol, 4-SPAP, by coupling pyrogallol with diazotized sulfadiazine in medium of controlled pH. 4-SPAP was characterized by techniques of FT-IR, H-NMR, GC-Mass, TG and DSC thermal analysis methods. Solvatochromic behavior in solvents of various polarities was also investigated. The determination of sulfadiazine was accomplished by initial rate and fixed time methods. These methods were based on the reaction of the compound containing sulfadiazine, 4-SPAP, with Ca(II) to form colored product with a maximum absorbance at 520 nm. The two methods were adopted for constructing the calibration curves and examined for their suitability for the quantitation of sulfadiazine in pharmaceuticals. The limit of detection (LOD) and limit of quantification (LOQ) were found to be, by initial rate method, 0.35 and 1.05 μg·mL -1 and that by fixed time method were found to be 0.69 and 2.07 μg·mL -1 , respectively. The percent relative standard deviations (%RSD) for the results ranged from 1.04% to 1.76% and 0.85% to 1.42% for the initial rate and fixed time methods of the proposed kinetic spectrophotometric method, respectively. The existence of common excipients in the pharmaceutical formulation did not produce any significant interference. Statistical comparison was reported as indicated from the F- and t-test data of the proposed methods with that of reference method showing excellent agreement and indicating no significant difference in their accuracy and precision. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management.

    PubMed

    Mohamed, Heba M; Lamie, Nesrine T

    2016-02-15

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Application and validation of superior spectrophotometric methods for simultaneous determination of ternary mixture used for hypertension management

    NASA Astrophysics Data System (ADS)

    Mohamed, Heba M.; Lamie, Nesrine T.

    2016-02-01

    Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360 nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306 nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5 nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.

  1. Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers

    PubMed Central

    Shorter, Joanne H.; Nelson, David D.; Barry McManus, J.; Zahniser, Mark S.; Milton, Donald K.

    2010-01-01

    Breath analysis is a powerful noninvasive technique for the diagnosis and monitoring of respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Nitric oxide (NO) and carbon monoxide (CO) are markers of airway inflammation and can indicate the extent of respiratory diseases. We have developed a compact fast response laser system for analysis of multiple gases by infrared absorption. The instrument uses room temperature quantum cascade lasers to simultaneously measure NO, CO, carbon dioxide (CO2) and nitrous oxide (N2O) in exhaled breath. Four breath flow rates are employed to explore their exchange dynamics in the lungs and airways. We obtain 1-s detection precisions of 0.5-0.8 parts-per-billion (ppb) for NO, CO, and N2O with an instrument response time of less than 1 s. The breath analysis system has been demonstrated in a preliminary study of volunteers. It is currently deployed in a trial clinical study. PMID:20697459

  2. Liquid chromatographic and spectrophotometric determination of diflucortolone valerate and isoconazole nitrate in creams.

    PubMed

    Karacan, Elif; Cağlayan, Mehmet Gokhan; Palabiyik, Ismail Murat; Onur, Feyyaz

    2011-01-01

    A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE C18 column and a mobile phase composed of methanol-water (95 + 5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol-water (3 + 1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242-298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dlambda values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol-water (3 + 1, v/v). The linear ranges were 4.00-48.0 microg/mL for DIF and 50.0-400 microg/mL for ISO in the LC method, and 2.40-40.0 microg/mL for DIF and 60.0-260 microg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.

  3. Economic analysis of solar assisted absorption chiller for a commercial building

    NASA Astrophysics Data System (ADS)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  4. Sensitive Spectrophotometric Determination of Atenolol in Pharmaceutical Formulations Using Bromate-Bromide Mixture as an Eco-Friendly Brominating Agent

    PubMed Central

    Prashanth, Kudige N.; Basavaiah, Kanakapura

    2012-01-01

    Three simple and sensitive spectrophotometric methods are proposed for the determination of atenolol (ATN) in bulk drug and tablets. The methods are based on the bromination of ATN by the bromine generated in situ by the action of the acid on the bromate–bromide mixture followed by the determination of unreacted bromine by reacting with a fixed amount of either meta-cresol purple (MCP) and measuring the absorbance at 540 nm (method A) and 445 nm (method B) or erioglaucine (EGC) and measuring the absorbance at 630 nm (method C). Beer's law is valid within the concentration ranges of 1.0–20.0, 2.0–40.0 and 1.0–8.0 μg/mL for method A, method B and method C, respectively. The calculated molar absorptivities were found to be 1.20×104, 4.51×103 and 3.46 × 104  L/mol · cm for method A, method B and method C, respectively. Sandell's sensitivity values, correlation coefficients, limits of detection and quantification are also reported. Recovery results were statistically compared with those of a reference method by applying Student's t- and F-test. The novelty of the present study is the measurement of two different colors using MCP, that is, red-pink color of MCP in acid medium at 540 nm and yellowish-orange color of brominated MCP at 445 nm. PMID:22567567

  5. The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-Ray absorption spectroscopy.

    PubMed Central

    Meneghini, C; Morante, S

    1998-01-01

    A detailed study of the x-ray absorption spectrum of tetanus neurotoxin in the K-edge EXAFS region of the zinc absorber is presented that allows the complete identification of the amino acid residues coordinated to the zinc active site. A very satisfactory interpretation of the experimental data can be given if multiple scattering contributions are included in the analysis. Comparing the absorption spectrum of tetanus neurotoxin to that of two other structurally similar zinc-endopeptidases, thermolysin and astacin, in which the zinc coordination mode is known from crystallographic data, we conclude that in tetanus neurotoxin, besides a water molecule, zinc is coordinated to two histidines and a tyrosine. PMID:9746536

  6. A comparative study of smart spectrophotometric methods for simultaneous determination of sitagliptin phosphate and metformin hydrochloride in their binary mixture.

    PubMed

    Lotfy, Hayam M; Mohamed, Dalia; Mowaka, Shereen

    2015-01-01

    Simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the oral antidiabetic drugs; sitagliptin phosphate (STG) and metformin hydrochloride (MET) in combined pharmaceutical formulations. Three methods were manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and a novel approach of induced amplitude modulation (IAM) methods. The first two methods were used for determination of STG, while MET was directly determined by measuring its absorbance at λmax 232 nm. However, (IAM) was used for the simultaneous determination of both drugs. Moreover, another three methods were developed based on derivative spectroscopy followed by mathematical manipulation steps namely; amplitude factor (P-factor), amplitude subtraction (AS) and modified amplitude subtraction (MAS). In addition, in this work the novel sample enrichment technique named spectrum addition was adopted. The proposed spectrophotometric methods did not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined pharmaceutical formulations. Standard deviation values were less than 1.5 in the assay of raw materials and tablets. The obtained results were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there was no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Solar flare induced cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.

    2018-06-01

    Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.

  8. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance.

    PubMed

    Judycka-Proma, U; Bober, L; Gajewicz, A; Puzyn, T; Błażejowski, J

    2015-03-05

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH=2.5 and pH=7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Hypothesis testing for the validation of the kinetic spectrophotometric methods for the determination of lansoprazole in bulk and drug formulations via Fe(III) and Zn(II) chelates.

    PubMed

    Rahman, Nafisur; Kashif, Mohammad

    2010-03-01

    Point and interval hypothesis tests performed to validate two simple and economical, kinetic spectrophotometric methods for the assay of lansoprazole are described. The methods are based on the formation of chelate complex of the drug with Fe(III) and Zn(II). The reaction is followed spectrophotometrically by measuring the rate of change of absorbance of coloured chelates of the drug with Fe(III) and Zn(II) at 445 and 510 nm, respectively. The stoichiometric ratio of lansoprazole to Fe(III) and Zn(II) complexes were found to be 1:1 and 2:1, respectively. The initial-rate and fixed-time methods are adopted for determination of drug concentrations. The calibration graphs are linear in the range 50-200 µg ml⁻¹ (initial-rate method), 20-180 µg ml⁻¹ (fixed-time method) for lansoprazole-Fe(III) complex and 120-300 (initial-rate method), and 90-210 µg ml⁻¹ (fixed-time method) for lansoprazole-Zn(II) complex. The inter-day and intra-day precision data showed good accuracy and precision of the proposed procedure for analysis of lansoprazole. The point and interval hypothesis tests indicate that the proposed procedures are not biased. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Novel kinetic spectrophotometric method for estimation of certain biologically active phenolic sympathomimetic drugs in their bulk powders and different pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Omar, Mahmoud A.; Badr El-Din, Khalid M.; Salem, Hesham; Abdelmageed, Osama H.

    2018-03-01

    A simple, selective and sensitive kinetic spectrophotometric method was described for estimation of four phenolic sympathomimetic drugs namely; terbutaline sulfate, fenoterol hydrobromide, isoxsuprine hydrochloride and etilefrine hydrochloride. This method is depended on the oxidation of the phenolic drugs with Folin-Ciocalteu reagent in presence of sodium carbonate. The rate of color development at 747-760 nm was measured spectrophotometrically. The experimental parameters controlling the color development were fully studied and optimized. The reaction mechanism for color development was proposed. The calibration graphs for both the initial rate and fixed time methods were constructed, where linear correlations were found in the general concentration ranges of 3.65 × 10- 6-2.19 × 10- 5 mol L- 1 and 2-24.0 μg mL- 1 with correlation coefficients in the following range 0.9992-0.9999, 0.9991-0.9998 respectively. The limits of detection and quantitation for the initial rate and fixed time methods were found to be in general concentration range 0.109-0.273, 0.363-0.910 and 0.210-0.483, 0.700-1.611 μg mL- 1 respectively. The developed method was validated according to ICH and USP 30 -NF 25 guidelines. The suggested method was successfully implemented to the estimation of these drugs in their commercial pharmaceutical formulations and the recovery percentages obtained were ranged from 97.63% ± 1.37 to 100.17% ± 0.95 and 97.29% ± 0.74 to 100.14 ± 0.81 for initial rate and fixed time methods respectively. The data obtained from the analysis of dosage forms were compared with those obtained by reported methods. Statistical analysis of these results indicated no significant variation in the accuracy and precision of both the proposed and reported methods.

  11. Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases

    PubMed Central

    2012-01-01

    Backgrounds Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate. Results In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses. Conclusion We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general. PMID:23031230

  12. New porcine test-model reveals remarkable differences between algorithms for spectrophotometrical haemoglobin saturation measurements with VLS.

    PubMed

    Gade, John; Greisen, Gorm

    2016-09-01

    The study created an 'ex vivo' model to test different algorithms for measurements of mucosal haemoglobin saturation with visible light spectrophotometry (VLS). The model allowed comparison between algorithms, but it also allowed comparison with co-oximetry using a 'gold standard' method. This has not been described before. Seven pigs were used. They were perfused with cold Haemaxel, and thus killed, chilled and becoming bloodless. The bronchial artery was perfused with cold blood with known saturation and spectrophotometrical measurements were made through a bronchoscope. Based on 42 spectrophotometrical measurements of porcine bronchial mucosa saturation with fully oxygenated blood and 21 with de-oxygenated blood, six algorithms were applied to the raw-spectra of the measurements and compared with co-oxymetry. The difference from co-oxymetry in the oxygenated and de-oxygenated state ranged from  -32.8 to  +29.9 percentage points and from  -5.0 to  +9.2 percentage points, respectively. the algorithms showed remarkable in-between differences when tested on raw-spectra from an 'ex vivo' model. All algorithms had bias, more marked at high oxygenation than low oxygenation. Three algorithms were dis-recommended.

  13. Spectrophotometric method for the determination of paraquat in water, grain and plant materials.

    PubMed

    Shivhare, P; Gupta, V K

    1991-04-01

    A sensitive spectrophotometric method for the determination of paraquat using ascorbic acid (an easily available reducing agent) is described. Paraquat is reduced with ascorbic acid in alkaline solution to give a blue radical ion with an absorbance maximum at 600 nm. Beer's law is obeyed in the range 12-96 micrograms of paraquat in 10 ml of the final solution (1.2-9.6 ppm). The important analytical parameters and the optimum reaction conditions were evaluated. The method was applied successfully to the determination of paraquat in water, grain and plant materials.

  14. Preconcentration and Spectrophotometric Determination of a Naphthalene Analog of Medetomidine Using Modified Maghemite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maddah, B.; Hosseini, F.; Ahmadi, M.; Rajabi, A. Asghar; Beik-Mohammadlood, Z.

    2016-05-01

    A novel and sensitive extraction procedure using sodium dodecyl sulfate (SDS) modified maghemite nanoparticles (MNPs) as an efficient solid phase has been developed for removal, preconcentration, and spectrophotometric determination of trace amounts of a naphthalene analog of dexmedetomidine (4-(1-(na phthalene-1-yl)ethyl)-1Himidazole, NMED). The MNPs were obtained by a coprecipitation method, and their surfaces were furthermore modified by SDS. The size and morphological properties of the synthesized MNPs were determined by X-ray diffraction analysis, FT-IR, vibrating sample magnetometry, and scanning electron microscopy. NMED was adsorbed at pH 3.0. The adsorbed drug was then desorbed and determined by spectrophotometry at 280 nm. The calibration graph was linear in the range 1 × 10-6-1 × 10-4 mol/L of NMED with a correlation coefficient of 0.989. The detection limit of the method for NMED determination was 3.7 × 10-7 mol/L. The method was successfully applied to the determination of NMED in human urine samples.

  15. Matrix isolation with an ion transfer device for interference-free simultaneous spectrophotometric determinations of hexavalent and trivalent chromium in a flow-based system.

    PubMed

    Ohira, Shin-Ichi; Nakamura, Koretaka; Chiba, Mitsuki; Dasgupta, Purnendu K; Toda, Kei

    2017-03-01

    Chromium speciation by spectrophotometric determination of hexavalent chromium (Cr(VI)) with diphenylcarbazide (DPC) has several problems. These include: (1) the inability to directly detect trivalent chromium (Cr(III)) with DPC, (2) positive interference in Cr(VI) determination by other metal cations and (3) negative interference by any reducing agent present in the sample. These are addressed with an ion transfer device (ITD) in a flow injection analysis system. We previously developed the ITD for electrodialytic separations. Here we separate oppositely charged Cr(III) and Cr(VI) species by the ITD into two different acceptor solutions within ~5 s. The acceptor solutions consist of buffered H 2 O 2 to oxidize the Cr(III) to Cr(VI). Then DPC is added to either acceptor to measure Cr(III) and Cr(VI) spectrophotometrically. The system was optimized to provide the same response for Cr(VI) and Cr(III) with limits of detection (LODs, S/N=3) of 0.5 μg L -1 for each and a throughput rate of 30 samples h -1 . The ITD separation was also effective for matrix isolation and reduction of interferences. Potential cationic interferences were not transferred into the anionic Cr(VI) acceptor stream. Much of the organic compounds in soil extracts were also eliminated as evidenced from standard addition and recovery studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The thoron-tartaric acid systems for the spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, Mary H.

    1955-01-01

    Thoron is popularly used for the spectrophotometric determination of thorium.  An undesirable feature of its use is the high sensitivity of the reagent toward zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotataric acid, used in one of the systems, is found to be most effective in masking zirconium. The behavior of various rarer elements, usually found associated with thorium ores, is determined in two of the systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  17. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  18. Electron-cyclotron absorption in high-temperature plasmas: quasi-exact analytical evaluation and comparative numerical analysis

    NASA Astrophysics Data System (ADS)

    Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.

    2007-01-01

    On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.

  19. Validation of a spectrophotometric method for quantification of carboxyhemoglobin.

    PubMed

    Luchini, Paulo D; Leyton, Jaime F; Strombech, Maria de Lourdes C; Ponce, Julio C; Jesus, Maria das Graças S; Leyton, Vilma

    2009-10-01

    The measurement of carboxyhemoglobin (COHb) levels in blood is a valuable procedure to confirm exposure to carbon monoxide (CO) either for forensic or occupational matters. A previously described method using spectrophotometric readings at 420 and 432 nm after reduction of oxyhemoglobin (O(2)Hb) and methemoglobin with sodium hydrosulfite solution leads to an exponential curve. This curve, used with pre-established factors, serves well for lower concentrations (1-7%) or for high concentrations (> 20%) but very rarely for both. The authors have observed that small variations on the previously described factors F1, F2, and F3, obtained from readings for 100% COHb and 100% O(2)Hb, turn into significant changes in COHb% results and propose that these factors should be determined every time COHb is measured by reading CO and O(2) saturated samples. This practice leads to an increase in accuracy and precision.

  20. An efficient absorbing system for spectrophotometric determination of nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Kaveeshwar, Rachana; Amlathe, Sulbha; Gupta, V. K.

    A simple and sensitive spectrophotometric method for determination of atmospheric nitrogen dioxide using o-nitroaniline as an efficient absorbing, as well as diazotizing, reagent is described. o-Nitroaniline present in the absorbing medium is diazotized by the absorbed nitrite ion to form diazonium compound. This is later coupled with 1-amino-2-naphthalene sulphonic acid (ANSA) in acidic medium to give red-violet-coloured dye,having λmax = 545 nm. The isoamyl extract of the red azo dye has λmax = 530 nm. The proposed reagents has ≈ 100% collection efficiency and the stoichiometric ratio of NO 2:NO 2- is 0.74. The other important analytical parameters have been investigated. By employing solvent extraction the sensitivity of the reaction was increased and up to 0.03 mg m -3 nitrogen dioxide could be estimated.

  1. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  2. Simple, sensitive, selective and validated spectrophotometric methods for the estimation of a biomarker trigonelline from polyherbal gels

    NASA Astrophysics Data System (ADS)

    Chopra, Shruti; Motwani, Sanjay K.; Ahmad, Farhan J.; Khar, Roop K.

    2007-11-01

    Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20 μg mL -1 ( r2 = 0.9999) in deionised water and 1-24 μg mL -1 ( r2 = 0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 × 10 3 L mol -1 cm -1 and 0.0422 μg cm -2/0.001A in deionised water; and 3.05 × 10 3 L mol -1 cm -1 and 0.0567 μg cm -2/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 μg mL -1 in deionised water and 0.13 and 0.40 μg mL -1 in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.

  3. Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Hasselmann, P. H.; Barucci, M. A.; Feller, C.; Besse, S.; Leyrat, C.; Lara, L.; Gutierrez, P. J.; Oklay, N.; Tubiana, C.; Scholten, F.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Güttler, C.; Hviid, S. F.; Ip, W.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Matz, K.-D.; Michalik, H.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Preusker, F.; Shi, X.; Snodgrass, C.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims: We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods: The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results: The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with

  4. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    PubMed Central

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469

  5. Spectrophotometric Quantification of Flavonoids in Herbal Material, Crude Extract, and Fractions from Leaves of Eugenia uniflora Linn.

    PubMed

    Ramos, Rhayanne T M; Bezerra, Isabelle C F; Ferreira, Magda R A; Soares, Luiz Alberto Lira

    2017-01-01

    The traditional use of Eugenia uniflora L. ("Pitanga") is reported due to several properties, which have often been related to its flavonoid content. The aim was to evaluate analytical procedures for quantification of total flavonoids content (TFCs) by ultraviolet-visible (UV-Vis) spectrophotometry in the herbal material (HM), crude extract (CE), and fractions from leaves of E. uniflora . The method for quantification of flavonoids after complexation with aluminum chloride (AlCl 3 ) was evaluated: amount of sample (0.25-1.5 g); solvent (40%-80% ethanol); reaction time and AlCl 3 concentration (2.5%-7.5%). The procedures by direct dilution (DD) and after acid hydrolysis (AH) were used and validated for HM and CE and applied to the aqueous fraction (AqF), hexane fraction, and ethyl acetate fractions (EAF). The ideal conditions of analysis were ethanol 80% as solvent; 0.5 g of sample; λmax of 408 (DD) and 425 nm (AH); 25 min after addition of AlCl 3 5%. The procedures validated for standards and samples showed linearity ( R 2 > 0.99) with limit of detection and limit of quantification between 0.01 and 0.17 mg/mL (rutin and quercetin); and 0.03 and 0.09 mg/mL (quercetin), for DD and AH, respectively. The procedures were accurate (detect, practice, and repair < 5% and recovery >90%), and stable under robustness conditions (luminosity, storage, reagents, and equipment). The TFCs in AqF and EAF were 0.65 g% and 17.72 g%, calculated as rutin. UV-Vis methods for quantification of TFC in HM, CE, and fractions from leaves of E. uniflora were suitably validated. Regarding the analysis of fractions, the EAF achieved enrichment of about nine times in the content of flavonoids. The total flavonoids content (TFCs) of herbal material, crude extract, and fractions from Eugenia uniflora can be quantified by ultraviolet-visibleThe spectrophotometric methods (direct dilution and acid hydrolysis) were reproducible and able to quantify TFC in raw material and derivatives from leaves of

  6. Different Spectrophotometric Methods for Simultaneous Determination of Trelagliptin and Its Acid Degradation Product.

    PubMed

    Mowaka, Shereen; Ayoub, Bassam M; Hassan, Mostafa A; Zaghary, Wafaa A

    2018-01-01

    New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm-260.4 nm, amplitudes at 260.4 nm-274.0 nm, and mean-centered values at 287.6 nm-257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5-50  μ g/mL and 2.5-25  μ g/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD.

  7. A simple spectrophotometric method for the determination of beta-blockers in dosage forms.

    PubMed

    Al-Ghannam, S M

    2006-01-23

    A simple, extraction-free spectrophotometric method is proposed for the analysis of some beta-blockers, namely atenolol, timolol and nadolol. The method is based on the interaction of the drugs in chloroform with 0.1% chloroformic solutions of acidic sulphophthalein dyes to form stable, yellow-coloured, ion-pair complexes peaking at 415 nm. The dyes used were bromophenol blue (BPB), bromothymol blue (BTB) and bromocresol purple (BCP). Under the optimum conditions, the three drugs could be assayed in the concentration range 1-10 microg ml(-1) with correlation coefficient (n = 5) more than 0.999 in all cases. The stoichiometry of the reaction was found to be 1:1 in all cases and the conditional stability constant (K(F)) of the complexes have been calculated. The free energy changes (DeltaG) were determined for all complexes formed. The interference likely to be introduced from co-formulated drugs was studied and their tolerance limits were determined. The proposed method was then applied to dosage-forms the percentage recoveries ranges from 99.12-100.95, and the results obtained were compared favorably with those given with the official methods.

  8. Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter

    NASA Astrophysics Data System (ADS)

    Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben

    2005-09-01

    An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.

  9. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-02-03

    Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less

  10. Synthesis and characterization of an organic reagent 4-(6-bromo-2-benzothiazolylazo) pyrogallol and its analytical application.

    PubMed

    Naser, N A; Kahdim, K H; Taha, D N

    2012-01-01

    Organic reagent, 4-(6-Bromo-2-Benzothiazolylazo) pyrogallol (4-Br-BTAP), was synthesized by coupling reaction of diazotized 2-amino-6-bromobenzothiazole with pyrogallol and purified using ethanol recrystallization method. Analysis and characterization of synthesized product were carried out using melting point, elementary analysis, IR and H¹-NMR. Dissociation constants of the organic reagent were calculated by spectrophotometric method. Absorption spectra of the 4-Br-BTAP in solvents of different polarities were investigated. Analytical application of 4-Br-BTAP was established with Cu (II) and Pd (II).

  11. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  12. Spectrophotometric resolution of the severely overlapped spectra of clotrimazole with dexamethasone in cream dosage form by mathematical manipulation steps.

    PubMed

    Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty

    2018-09-05

    Several spectrophotometric techniques were recently conducted for the determination of binary mixtures of clotrimazole (CLT) and dexamethasone acetate (DA) without any separation procedure. The methods were based on generation of ratio spectra of mixture then applying simple mathematic manipulation. The zero order absorption spectra of both drugs could be obtained by the constant center (CC) method. The concentration of both CLT and DA could be obtained by constant value via amplitude difference (CV-AD) method depending on ratio spectra, Ratio difference (RD) method where the difference between the amplitudes at two wavelengths (ΔP) on the ratio spectra could eliminate the contribution of the interfering substance and bring the concentration of the other, and the derivative ratio (DD 1 ) method where the derivative of the ratio spectra was able to determine the drug of interest without any interference of the other one. While the concentration of DA could be measured after graphical manipulation as concentration using the novel advanced concentration value method (ACV). Calibration graphs were linear in the range of 75-550 μg/mL for CLT and 2-20 μg/mL for DA. The methods applied to the binary mixture under study were successfully applied for the simultaneous determination of the two drugs in synthetic mixtures and in their combined form Mycuten-D cream. The results obtained were compared statistically to each other and to the official methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Frequency and Thermal Behavior of Acoustic Absorption in ɛ-GaSe Crystals

    NASA Astrophysics Data System (ADS)

    Dzhafarova, S. Z.

    2018-04-01

    The paper presents results of measuring acoustic absorption in ɛ-GaSe crystals. The absorption of a longitudinal wave which propagates normal to the crystal layers, quadratically depends on frequency. However, it does not depend on temperature, i.e. it displays an Akhiezer behavior although its absolute value considerably exceeds the expected. The analysis of the frequency and thermal behavior of absorption of piezoelectric waves propagating along the layers, includes the deduction of contribution made by the interaction between waves and charge carriers. This analysis shows the linear dependence between the lattice absorption of these waves and the frequency. The linear frequency and weak temperature dependences of the acoustic absorption characterize the additional ultra-Akhiezer absorption in glasses. In our case, it can be caused by various polytypes forming in GaSe crystals which differ merely in a mutual arrangement of layers.

  14. New potentiometric and spectrophotometric methods for the determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    Elmosallamy, Mohamed A F; Amin, Alaa S

    2014-01-01

    New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.

  15. Kinetic spectrophotometric method for trace determination of thiocyanate based on its inhibitory effect

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Kumar, Basant; Asthana, Abhas

    2010-03-01

    A kinetic spectrophotometric method for the determination of thiocyanate, based on its inhibitory effect on silver(I) catalyzed substitution of cyanide ion, by phenylhydrazine in hexacyanoferrate(II) is described. Thiocyanate ions form strong complexes with silver(I) catalyst which is used as the basis for its determination at trace level. The progress of reaction was monitored, spectrophotometrically, at 488 nm ( λmax of [Fe(CN) 5PhNHNH 2] 3-, complex) under the optimum reaction conditions at: 2.5 × 10 -3 M [Fe(CN) 6] 4-, 1.0 × 10 -3 M [PhNHNH 2], 8.0 × 10 -7 M [Ag +], pH 2.8 ± 0.02, ionic strength ( μ) 0.02 M (KNO 3) and temperature 30 ± 0.1 °C. A linear relationship obtained between absorbance (measured at 488 nm at different times) and inhibitor concentration, under specified conditions, has been used for the determination of [thiocyanate] in the range of 0.8-8.0 × 10 -8 M with a detection limit of 2 × 10 -9 M. The standard deviation and percentage error have been calculated and reported with each datum. A most plausible mechanistic scheme has been proposed for the reaction. The values of equilibrium constants for complex formation between catalyst-inhibitor ( KCI), catalyst-substrate ( Ks) and Michaelis-Menten constant ( Km) have been computed from the kinetic data. The influence of possible interference by major cations and anions on the determination of thiocyanate and their limits has been investigated.

  16. New spectrophotometric and radiochemical assays for acetyl-CoA: arylamine N-acetyltransferase applicable to a variety of arylamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, H.H.; Klem, A.J.; Szabo, S.M.

    1985-03-01

    Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of (/sup 3/H)acetyl-CoA in the assaymore » using (/sup 3/H)acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-(/sup 3/H)acetylarylamine after separation from (/sup 3/H)acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase.« less

  17. Application of Certain π-Acceptors for the Spectrophotometric Determination of Alendronate Sodium in Pharmaceutical Bulk and Dosage Forms

    PubMed Central

    Raza, Asad; Zia-ul-Haq, Muhammad

    2011-01-01

    Two simple, fast, and accurate spectrophotometric methods for the determination of alendronate sodium are described. The methods are based on charge-transfer complex formation of the drug with two π-electron acceptors 7,7,7,8-tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile and methanol medium. The methods are followed spectrophotometrically by measuring the maximum absorbance at 840 nm and 465 nm, respectively. Under the optimized experimental conditions, the calibration curves showed a linear relationship over the concentration ranges of 2–10 μg mL−1 and 2–12 μg mL−1, respectively. The optimal reactions conditions values such as the reagent concentration, heating time, and stability of reaction product were determined. No significant difference was obtained between the results of newly proposed methods and the B.P. Titrimetric procedures. The charge transfer approach using TCNQ and DDQ procedures described in this paper is simple, fast, accurate, precise, and extraction-free. PMID:21760789

  18. Validation of four different spectrophotometric methods for simultaneous determination of Domperidone and Ranitidine in bulk and pharmaceutical formulation.

    PubMed

    Abdel-Ghany, Maha F; Abdel-Aziz, Omar; Mohammed, Yomna Y

    2015-01-01

    Four simple, specific, accurate and precise spectrophotometric methods were developed and validated for simultaneous determination of Domperidone (DP) and Ranitidine Hydrochloride (RT) in bulk powder and pharmaceutical formulation. The first method was simultaneous ratio subtraction (SRS), the second was ratio subtraction (RS) coupled with zero order spectrophotometry (D(0)), the third was first derivative of the ratio spectra ((1)DD) and the fourth method was mean centering of ratio spectra (MCR). The calibration curve is linear over the concentration range of 0.5-5 and 1-45 μg mL(-1) for DP and RT, respectively. The proposed spectrophotometric methods can analyze both drugs without any prior separation steps. The selectivity of the adopted methods was tested by analyzing synthetic mixtures of the investigated drugs, also in their pharmaceutical formulation. The suggested methods were validated according to International Conference of Harmonization (ICH) guidelines and the results revealed that; they were precise and reproducible. All the obtained results were statistically compared with those of the reported method, where there was no significant difference. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  20. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.