Science.gov

Sample records for absorption spectroscopic characterization

  1. X-Ray Absorption Spectroscopic Characterization of the Molybdenum Site of 'Escherichia Coli' Dimethyl Sulfoxide Reductase

    SciTech Connect

    George, G.N.; Doonan, C.J.; Rothery, R.A.; Boroumand, N.; Weiner, J.H.; /Saskatchewan U. /Alberta U.

    2007-07-09

    Structural studies of dimethyl sulfoxide (DMSO) reductases were hampered by modification of the active site during purification. We report an X-ray absorption spectroscopic analysis of the molybdenum active site of Escherichia coli DMSO reductase contained within its native membranes. The enzyme in these preparations is expected to be very close to the form found in vivo. The oxidized active site was found to have four Mo-S ligands at 2.43 angstroms, one Mo=O at 1.71 angstroms, and a longer Mo-O at 1.90 angstroms. We conclude that the oxidized enzyme is a monooxomolybdenum(VI) species coordinated by two molybdopterin dithiolenes and a serine. The bond lengths determined for E. coli DMSO reductase are very similar to those determined for the well-characterized Rhodobacter sphaeroides DMSO reductase, suggesting similar active site structures for the two enzymes. Furthermore, our results suggest that the form found in vivo is the monooxobis(molybdopterin) species.

  2. X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative

    PubMed Central

    Newcomb, Martin; Halgrimson, James A.; Horner, John H.; Wasinger, Erik C.; Chen, Lin X.; Sligar, Stephen G.

    2008-01-01

    The cytochrome P450 enzyme CYP119, its compound II derivative, and its nitrosyl complex were studied by iron K-edge x-ray absorption spectroscopy. The compound II derivative was prepared by reaction of the resting enzyme with peroxynitrite and had a lifetime of ≈10 s at 23°C. The CYP119 nitrosyl complex was prepared by reaction of the enzyme with nitrogen monoxide gas or with a nitrosyl donor and was stable at 23°C for hours. Samples of CYP119 and its derivatives were studied by x-ray absorption spectroscopy at temperatures below 140 (K) at the Advanced Photon Source of Argonne National Laboratory. The x-ray absorption near-edge structure spectra displayed shifts in edge and pre-edge energies consistent with increasing effective positive charge on iron in the series native CYP119 < CYP119 nitrosyl complex < CYP119 compound II derivative. Extended x-ray absorption fine structure spectra were simulated with good fits for k = 12 Å−1 for native CYP119 and k = 13 Å−1 for both the nitrosyl complex and the compound II derivative. The important structural features for the compound II derivative were an iron-oxygen bond length of 1.82 Å and an iron-sulfur bond length of 2.24 Å, both of which indicate an iron-oxygen single bond in a ferryl-hydroxide, FeIVOH, moiety. PMID:18174331

  3. Integrated approaches of x-ray absorption spectroscopic and electron microscopic techniques on zinc speciation and characterization in a final sewage sludge product.

    PubMed

    Kim, Bojeong; Levard, Clément; Murayama, Mitsuhiro; Brown, Gordon E; Hochella, Michael F

    2014-05-01

    Integration of complementary techniques can be powerful for the investigation of metal speciation and characterization in complex and heterogeneous environmental samples, such as sewage sludge products. In the present study, we combined analytical transmission electron microscopy (TEM)-based techniques with X-ray absorption spectroscopy (XAS) to identify and characterize nanocrystalline zinc sulfide (ZnS), considered to be the dominant Zn-containing phase in the final stage of sewage sludge material of a full-scale municipal wastewater treatment plant. We also developed sample preparation procedures to preserve the organic and sulfur-rich nature of sewage sludge matrices for microscopic and spectroscopic analyses. Analytical TEM results indicate individual ZnS nanocrystals to be in the size range of 2.5 to 7.5 nm in diameter, forming aggregates of a few hundred nanometers. Observed lattice spacings match sphalerite. The ratio of S to Zn for the ZnS nanocrystals is estimated to be 1.4, suggesting that S is present in excess. The XAS results on the Zn speciation in the bulk sludge material also support the TEM observation that approximately 80% of the total Zn has the local structure of a 3-nm ZnS nanoparticle reference material. Because sewage sludge is frequently used as a soil amendment on agricultural lands, future studies that investigate the oxidative dissolution rate of ZnS nanoparticles as a function of size and aggregation state and the change of Zn speciation during post sludge-processing and soil residency are warranted to help determine the bioavailability of sludge-born Zn in the soil environment. PMID:25602819

  4. Spectroscopic Characterization of Metallofullerenes

    NASA Astrophysics Data System (ADS)

    Bethune, D. S.; de Vries, M. S.; Macfarlane, R.; Wittman, G.; Grannan, S.; Birmingham, J.; Richards, P.; Stevenson, S.; Glass, T.; Burbank, P.; Sun, Z.; Dorn, H. C.

    1996-03-01

    Scandium and Erbium metallofullerenes have been isolated using HPLC techniques and characterized by NMR, optical and far IR spectroscopy. In particular, Sc NMR spectra of Sc_2@C_2n species for several n have been obtained, and far infrared spectra of both discandium and and dierbium metallofullerenes have been measured. These show structure in the 20-200 cm-2 where vibrations of the encapsulated metal atoms are expected. Fluorescence spectra from dierbium metallofullerenes in the 1.5 μm region have been obtained at He and room temperatures.

  5. Spectroscopic characterization of polymers: report

    SciTech Connect

    Koenig, J.L.

    1987-10-01

    Polymer characterization has presented major difficulties to the analytical chemist, who has had to develop techniques to cope with the challenge. Even the elementary problem of measuring molecular weight is not easy. Yet such measurements are essential, because the physical, mechanical, and flow properties depend on the length of the polymer chain. Because of the limited solubility and high viscosity of polymers, many classical techniques have been of little use or have had to be extensively modified to measure the molecular weight of polymers. Size-exclusion chromatographic techniques such as gel permeation have been developed to measure these molecular weight distributions. Special chromatographic instruments with a range of spectroscopic detectors (including infrared and laser-light scattering) have emerged commercially to aid the analytical chemist in the fundamental endeavor to measure the length of the polymer chain and its distribution. The author describes the advantages and disadvantages and disadvantages of various spectroscopic techniques.

  6. Spectroscopic characterization of the Stentor photoreceptor.

    PubMed

    Walker, E B; Lee, T Y; Song, P S

    1979-09-20

    1. On the basis of chromatographic and spectroscopic (absorption, fluorescence and its polarization, fluorescence lifetime, circular dichroism) characterization of the Stentor photoreceptor (stentorin) for photophobic response, the photoreceptor chromophore released from mild acid hydrolysis has been identified as hypericin. 2. The native chromophore is apparently linked to a protein (65 K) containing Lys and several hydrophobic residues, which is soluble in acetone and n-pentane. The peptide-linked stentorin (I) chromophore exhibits circular dichroism in the visible region due to the induced optical activity provided by the peptide. 3. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of a 38% fraction of the sucrose density centrifugation has resolved stentorin II proteins having molecular weights of 13 000, 16 000, 65 000 and 130 000. These proteins, as well as the acetone-soluble peptide, have been spectroscopically characterized with particular emphasis on their primary photoreactivity as the photophobic receptor of Stentor coeruleus. 4. Irradiation of whole living Stentor in dilute buffer solutions induces a decrease in the pH of the medium. A strong dependence upon pH in the fluorescence spectra of both synthetic and native chromophores is also evident, showing a significant drop in the pKa of one or more hydroxyl groups in the excited state. A mechanism for the photophobic response, based on this lowering of the pKa as the primary photoprocess, has been discussed. PMID:39631

  7. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a.

    PubMed

    Jasniewski, Andrew J; Engstrom, Lisa M; Vu, Van V; Park, Myung Hee; Que, Lawrence

    2016-09-01

    Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes. PMID:27380180

  8. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  9. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  10. Spectroscopic characterization of C7H3(+) and C7H3˙: electronic absorption and fluorescence in 6 K neon matrices.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Dietsche, Rainer; Maier, John P

    2014-04-21

    Mass selective deposition of C7H3(+) (m/z = 87) into solid neon reveals the 1(1)A1←X(1)A1 electronic absorption system of hepta-1,2,3,4,5,6-heptahexaenylium cation B(+) [H2CCCCCCCH](+) with an origin band at 441.3 nm, 1(1)A'←X(1)A' transition of 2,4-pentadiynylium,1-ethynyl cation C(+) [HCCCHCCCCH](+) starting at 414.6 nm and the 1(1)A1←X(1)A1 one of cyclopropenylium,1,3-butadiynyl cation A(+) [HCCCCC<(CH=CH)](+) with an onset at 322.2 nm. Vibrationally resolved fluorescence was observed for isomer B(+) upon laser excitation of the absorption bands in the 1(1)A1←X(1)A1 transition. After neutralization of the cations in the matrix five absorption systems of the C7H3 neutral radicals starting at 530.3, 479.4, 482.3, 325.0 and 302.5 nm were detected. These were identified as the 1(2)A'←X(2)A' and 2(2)A'←X(2)A' electronic transitions of 2-(buta-1,3-diynyl)cycloprop-2yl-1-1ylidene E˙ [HCCCCC<(C=CH2)]˙, 1(2)B1←X(2)B1 of 1,2,3,4,5,6-heptahexaenyl B˙ [H2CCCCCCCH]˙, 3(2)B1←X(2)B1 of 3-buta-1,3-diynyl-cyclopropenyl A˙ [HCCCCC<(CH=CH)]˙ and 2(2)B1←X(2)A2 transition of 1,2-divinylidene-cyclopropanyl radical F˙ [HCC-cyc-(CCHC)-CCH]˙, respectively. The assignment is based on calculated vertical excitation energies using the CASPT2 method. Comparison of the calculated harmonic vibrational frequencies with those inferred from the spectra supports the assignment. PMID:24603977

  11. Vibrational spectroscopic characterization of fluoroquinolones

    NASA Astrophysics Data System (ADS)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  12. Spectroscopic characterization of visbreaking tars

    SciTech Connect

    Scotti, R.; Clericuzio, M.; Pirovano, C.

    1995-12-31

    Visbreaking (VB) is a thermal cracking process, widely used in the refineries of Western Europe to obtain distillates (gasoil, naphtha) from a petroleum residue (feedstock). The visbroken residue (tar) is used to produce fuel oil, after addition of the appropriate amounts of cutter-stock. Even if the highest conversion of feedstock would be desirable, the severity of the VB process is limited by the stability of the resulting VB tars. The stability index (SI) here employed is: SI = I + V{sub cet}, where V{sub cet} is the maximum amount of n-cetane, expressed as ml of cetane for g of sample, that can be added before the flocculation of asphaltenes starts. VB tars having SI<1.1 are considered to be unstable and cannot be used in the preparation of fuel oils with the appropriate specifications. Several papers can be found in the literature dealing with the molecular changes occuring during the VB process. The present paper is aimed at verifying the amount of information that can be extracted from optical spectroscopies and, in particular, the possibility of directly monitoring the physico-chemical modifications caused by VB process. To this purpose a series of VB tars, produced from a single feedstock at different severities, were investigated by a number of spectroscopic techniques, viz.: NIR; UV-Vis; Fluorescence; {sup 1}H and {sup 13}C NUR, EPR.

  13. Characterization of semicrystalline polymers after nanoimprint by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Wang, Si; Rond, Johannes; Steinberg, Christian; Papenheim, Marc; Scheer, Hella-Christin

    2016-02-01

    Semicrystalline Reg-P3HT (regio-regular poly-3-hexylthiophene) is a promising material for organic electronics. It features relatively high charge mobility and enables easy preparation because of its solubility. Due to its high optical and electrical anisotropy, the size, number and orientation of the ordered domains are important for applications. To control these properties without limitation from crystalline domains existing after spin coating, thermal nanoimprint is performed beyond the melting point. The state of the art of measurement to analyze the complex morphology is X-ray diffraction (XRD). We address an alternative measurement method to characterize the material by its optical properties, spectroscopic ellipsometry. It provides information on the degree of order from the typical fingerprint absorption spectrum. In addition, when the material is modeled as a uniaxial layer, an anisotropy factor can be derived. The results obtained from spectroscopic ellipsometry are in accordance with those from XRD. In particular, spectroscopic ellipsometry is able to distinguish between order along the backbone and order in π- π stacking direction, which is important with respect to conductivity.

  14. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has

  15. Spectroscopic characterization of genetically modified flax fibers

    NASA Astrophysics Data System (ADS)

    Dymińska, L.; Gągor, A.; Hanuza, J.; Kulma, A.; Preisner, M.; Żuk, M.; Szatkowski, M.; Szopa, J.

    2014-09-01

    The principal goal of this paper is an analysis of flax fiber composition. Natural and genetically modified flax fibers derived from transgenic flax have been analyzed. Development of genetic engineering enables to improve the quality of fibers. Three transgenic plant lines with different modifications were generated based on fibrous flax plants as the origin. These are plants with: silenced cinnamyl alcohol dehydrogenase (CAD) gene; overexpression of polygalacturonase (PGI); and expression of three genes construct containing β-ketothiolase (phb A), acetoacetyl-CoA reductase (phb B), and poly-3-hydroxybutyric acid synthase (phb C). Flax fibers have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes. The spectroscopic data were compared to those obtained from chemical analysis of flax fibers. X-ray studies have been used to characterize the changes of the crystalline structure of the flax cellulose fibers.

  16. Surface spectroscopic characterization of titanium implant materials

    NASA Astrophysics Data System (ADS)

    Lausmaa, Jukka; Kasemo, Bengt; Mattsson, Håkan

    1990-04-01

    Titanium is one of the most commonly used biomaterials for dental and orthopedic applications. Its excellent tissue compatibility is mainly due to the properties of the stable oxide layer which is present on the surface. This paper reports a detailed spectroscopic characterization of the surface composition of non-alloyed Ti implant materials, prepared according to procedures commonly used in clinical practice (machining, ultrasonic cleaning and sterilization). The main methods of characterization are XPS and AES, and complementary information is obtained by SIMS, EDX and NMA (nuclear microanalysis). The surface of the implants is found to consist of a thin surface oxide which is covered by a carbon-dominated contamination layer. By comparison with reference spectra from single crystal TiO 2 (rutile) the composition of the surface oxide is shown to be mainly TiO 2, with minor amounts of suboxides and TiN x. The thickness of the surface oxides is 2-6 nm, depending on the method of sterilization. The surface contamination layer is found to vary considerably from sample to sample and consists of mainly hydrocarbons with trace amounts of Ca, N, S, P, Cl. Some differences in surface composition between directly prepared surfaces, and some possible contamination sources, are identified and discussed shortly.

  17. Spectroscopic characterizations of organic/inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  18. Spectroscopic characterization of uranium in evaporation basin sediments

    NASA Astrophysics Data System (ADS)

    Duff, M. C.; Morris, D. E.; Hunter, D. B.; Bertsch, P. M.

    2000-05-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the containment of irrigation drainage waters contain elevated levels of uranium (U) resulting from the extensive leaching by carbonate-rich irrigation waters of the local agricultural soils that contain low levels of naturally-occurring U. The SJV ponds are subjected to changes in redox chemistry with cycles of drying and flooding. Our past studies have shown that U in the SJV Pond 14 surface sediments is present as mostly the oxidized and soluble form, U(VI). However, we were uncertain whether the U in the soil was only present as a U oxide of mixed stoichiometry, such as U 3O 8(s) (pitchblende) or other species. Here we present characterization information, which includes wet chemical and in situ spectroscopic techniques (X-ray absorption near-edge structure (XANES) and low temperature time-resolved luminescence spectroscopies) for samples from two SJV Pond sediments. Surface sediments from SJV Pond 16 were characterized for average oxidation state of U with XANES spectroscopy. The fraction of U(VI) to U(IV) in the Pond 16 sediments decreased with depth with U(IV) being the dominant oxidation state in the 5 cm to 15 cm depth. Two luminescent U(VI) species were identified in the surface sediments from Pond 14; a U(VI)-tricarbonate phase and another phase likely comprised of U(VI)-hydroxide or hydroxycarbonate. The luminescent U(VI) population in the Pond 16 sediments is dominated by species with comparable spectral characteristics to the U(VI)-hydroxide or hydroxycarbonate species found in the Pond 14 sediments. The luminescence spectroscopic results were complemented by wet chemical U leaching methods, which involved the use of carbonate and sulfuric acid solutions and oxidizing solutions of peroxide, hypochlorite and Mn(IV). Leaching was shown to decrease the total U concentration in the sediments in all cases. However, results from luminescence studies of the residual fraction in the leached

  19. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  20. Opto-nanomechanical spectroscopic material characterization

    DOE PAGESBeta

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanicalmore » [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.« less

  1. Opto-nanomechanical spectroscopic material characterization

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanical [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.

  2. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  3. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates†

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G.; Padamati, Sandeep K.; Gómez, Laura; Hage, Ronald; Costas, Miquel

    2015-01-01

    Abstract FeIII–hypohalite complexes have been implicated in a wide range of important enzyme‐catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post‐translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII‐OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo‐ESIMS. DFT methods rationalize the pathways to the formation of the FeIII‐OCl, and ultimately FeIV=O, species and provide indirect evidence for a short‐lived FeII‐OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:27478260

  4. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  5. Photoelectron, nuclear gamma-ray and infrared absorption spectroscopic studies of neptunium in sodium silicate glass

    SciTech Connect

    Veal, B.W.; Carnall, W.T.; Dunlap, B.D.; Mitchell, A.W.; Lam, D.J.

    1986-04-01

    The valence state of neptunium ions in sodium silicate glasses prepared under reducing and oxidizing conditions has been investigated by the x-ray photoelectron, Moessbauer and optical absorption spectroscopic techniques. Results indicate that the Np ions are tetravalent in glasses prepared under reducing conditions and pentavalent in glasses prepared under oxidizing conditions.

  6. Spectroscopic characterization of the Karin family

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Fulchignoni, M.; Birlan, M.; Dotto, E.; Rossi, A.; Fornasier, S.; Marzari, F.; Nesvorny, D.

    2005-08-01

    The Karin asteroidal family was firstly identified by Nesvorny et al. (2002, Nature 417) who numerically integrated the orbits of 39 known members. More recently Nesvorny and Bottke (2004) analyzed a wider sample of objects and, taking into account also the Yarkovsky effect, identified the common origin of 90 family members at 5.75±0.05 Myr in the past. This is an exceptionally young age for an asteroid family. In fact, other known families are thought to be much older, 100 Myr to Gyrs old. We carried out visible and near-infrared spectroscopy of several members of the Karin family. We observed 5 member of the Karin family on November 2003 using the IRTF telescope. These data confirm that 832 Karin is an S-type asteroid (as indicated by Binzel, private communication), characterized by strong absorption features of olivine and pyroxene at about 1 and 2 μ m. Visible spectra for 20 objects were later obtained in December, 2004 with EMMI/NTT (ESO, La Silla) and with MOS/CFHT (Mauna Kea, Hawaii). Fifteen of these objects (832 Karin among them), have S-type spectra with the maximum of each spectra located at a very similar wavelength. This result sustain the hypothesis of a common origin. Five other spectra obtained seem rather primitive (B,C types). We analysed the spectra of the Karin cluster in the context of the Koronis family. This analysis reveals that the spectra are less red than those of the Koronis members. Moreover, we can interpret them as less mature surfaces. Finally, we made an interpretation of the surface composition of 832 Karin, using the Shkuratov scattering model.

  7. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking.

    PubMed

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488nm and 785nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level. PMID:27372511

  8. Spectroscopic characterization of nitroaromatic landmine signature explosives

    NASA Astrophysics Data System (ADS)

    Hernandez-Rivera, Samuel P.; Manrique-Bastidas, Cesar A.; Blanco, Alejandro; Primera, Oliva M.; Pacheco, Leonardo C.; Castillo-Chara, Jairo; Castro, Miguel E.; Mina, Nairmen

    2004-09-01

    TNT and DNT are important explosives used as base charges of landmines and other explosive devices. They are often combined with RDX in specific explosive formulations. Their detection in vapor phase as well as in soil in contact with the explosives is important in landmine detection technology. The spectroscopic signatures of nitroaromatic compounds in neat forms: crystals, droplets, and recrystallized samples were determined by Raman Microspectroscopy (RS), Fourier Transform Infrared Microscopy (FTIR) and Fiber Optics Coupled - Fourier Transform Infrared Spectroscopy (FOC-FTIR) using a grazing angle (GA) probe. TNT exhibits a series of characteristic bands: vibrational signatures, which allow its detection in soil. The spectroscopic signature of neat TNT is dominated by strong bands about 1380 and 2970 cm-1. The intensity and position of these bands were found remarkably different in soil samples spiked with TNT. The 1380 cm-1 band is split into a number of bands in that region. The 2970 cm-1 band is reduced in intensity and new bands are observed about 2880 cm-1. The results are consistent with a different chemical environment of TNT in soil as compared to neat TNT. Interactions were found to be dependent on the physical source of the explosive. In the case of DNT-sand interactions, shifts in vibrational frequencies of the explosives as well as the substrates were found.

  9. Spectroscopic characterization of isomerization transition states.

    PubMed

    Baraban, Joshua H; Changala, P Bryan; Mellau, Georg Ch; Stanton, John F; Merer, Anthony J; Field, Robert W

    2015-12-11

    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate a method for extracting transition state energies and properties from a characteristic pattern found in frequency-domain spectra of isomerizing systems. This pattern-a dip in the spacings of certain barrier-proximal vibrational levels-can be understood using the concept of effective frequency, ω(eff). The method is applied to the cis-trans conformational change in the S1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders. PMID:26659051

  10. Spectroscopic characterization of isomerization transition states

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; Changala, P. Bryan; Mellau, Georg Ch.; Stanton, John F.; Merer, Anthony J.; Field, Robert W.

    2015-12-01

    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate a method for extracting transition state energies and properties from a characteristic pattern found in frequency-domain spectra of isomerizing systems. This pattern—a dip in the spacings of certain barrier-proximal vibrational levels—can be understood using the concept of effective frequency, ωeff. The method is applied to the cis-trans conformational change in the S1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders.

  11. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow

  12. Extraction, Purification, and Spectroscopic Characterization of a Mixture of Capsaicinoids

    ERIC Educational Resources Information Center

    Wagner, Carl E.; Cahill, Thomas M.; Marshall, Pamela A.

    2011-01-01

    This laboratory experiment provides a safe and effective way to instruct undergraduate organic chemistry students about natural-product extraction, purification, and NMR spectroscopic characterization. On the first day, students extract dried habanero peppers with toluene, perform a pipet silica gel column to separate carotenoids from…

  13. Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Graf, Iulia M.; Su, Jimmy; Yeager, Doug; Amirian, James; Smalling, Richard; Emelianov, Stanislav

    2011-03-01

    Carotid atherosclerosis has been identified as a potential risk factor for cerebrovascular events, but information about its direct effect on the risk of recurrent stroke is limited due to incomplete diagnosis. The combination of vascular ultrasound, strain rate and spectroscopic photoacoustics could improve the timely diagnosis of plaque status and risk of rupturing. Current ultrasound techniques can noninvasively image the anatomy of carotid arteries. The spatio-temporal variation in displacement of different regions within the arterial wall can be derived from ultrasound radio frequency data; therefore an ultrasound based strain rate imaging modality can be used to reveal changes in arterial mechanical properties. Additionally, spectroscopic photoacoustic imaging can provide information on the optical absorption properties of arterial tissue and it can be used to identify the location of specific tissue components, such as lipid pools. An imaging technique combining ultrasound, strain rate and spectroscopic photoacoustics was tested on an excised atherosclerotic rabbit aorta. The ultrasound image illustrates inhomogeneities in arterial wall thickness, the strain rate indicates the arterial segment with reduced elasticity and the spectroscopic photoacoustic image illustrates the accumulation of lipids. The results demonstrated that ultrasound, strain rate and spectroscopic photoacoustic imaging are complementary. Thus the integration of the three imaging modalities advances the characterization of atherosclerotic plaques.

  14. Absorption spectroscopic study of EDA complexes of [70] fullerene with a series of methyl benzenes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumanta; Nayak, Sandip K.; Chattopadhyay, Subrata K.; Banerjee, Manas; Mukherjee, Asok K.

    2001-02-01

    [70]Fullerene has been shown to form 1:1 molecular complexes with toluene, p-xylene, m-xylene, 1,2,4,5-tetramethyl benzene (durene) and pentamethyl benzene (PMB) in CCl 4 medium by absorption spectroscopic method. Isosbestic points have been detected in case of complexes with PMB and durene. Charge transfer absorption band could not be detected but the intensity of the broad absorption band of C 70 in CCl 4 decreases systematically with increase in the concentration of the added methylbenzenes. From this trend the formation constants ( Kc) of the complexes have been determined at three different wavelengths. The constancy of Kc with respect to change in the wavelength of measurement supports the view that complex of a single stoichiometry (1:1) is formed in each case.

  15. Spectroscopic characterization of natural calcite minerals

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Anbalagan, G.

    2007-11-01

    The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm -1. The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a = 4.9781 Å, c = 17.1188 Å. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.

  16. Opto-nanomechanical spectroscopic material characterization.

    PubMed

    Tetard, L; Passian, A; Farahi, R H; Thundat, T; Davison, B H

    2015-10-01

    The non-destructive, simultaneous chemical and physical characterization of materials at the nanoscale is an essential and highly sought-after capability. However, a combination of limitations imposed by Abbe diffraction, diffuse scattering, unknown subsurface, electromagnetic fluctuations and Brownian noise, for example, have made achieving this goal challenging. Here, we report a hybrid approach for nanoscale material characterization based on generalized nanomechanical force microscopy in conjunction with infrared photoacoustic spectroscopy. As an application, we tackle the outstanding problem of spatially and spectrally resolving plant cell walls. Nanoscale characterization of plant cell walls and the effect of complex phenotype treatments on biomass are challenging but necessary in the search for sustainable and renewable bioenergy. We present results that reveal both the morphological and compositional substructures of the cell walls. The measured biomolecular traits are in agreement with the lower-resolution chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. These results should prove relevant in other fields such as cancer research, nanotoxicity, and energy storage and production, where morphological, chemical and subsurface studies of nanocomposites, nanoparticle uptake by cells and nanoscale quality control are in demand. PMID:26258550

  17. Opto-nanomechanical spectroscopic material characterization

    NASA Astrophysics Data System (ADS)

    Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.; Davison, B. H.

    2015-10-01

    The non-destructive, simultaneous chemical and physical characterization of materials at the nanoscale is an essential and highly sought-after capability. However, a combination of limitations imposed by Abbe diffraction, diffuse scattering, unknown subsurface, electromagnetic fluctuations and Brownian noise, for example, have made achieving this goal challenging. Here, we report a hybrid approach for nanoscale material characterization based on generalized nanomechanical force microscopy in conjunction with infrared photoacoustic spectroscopy. As an application, we tackle the outstanding problem of spatially and spectrally resolving plant cell walls. Nanoscale characterization of plant cell walls and the effect of complex phenotype treatments on biomass are challenging but necessary in the search for sustainable and renewable bioenergy. We present results that reveal both the morphological and compositional substructures of the cell walls. The measured biomolecular traits are in agreement with the lower-resolution chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. These results should prove relevant in other fields such as cancer research, nanotoxicity, and energy storage and production, where morphological, chemical and subsurface studies of nanocomposites, nanoparticle uptake by cells and nanoscale quality control are in demand.

  18. Interaction between indium tin oxide nanoparticles and cytochrome c: A surface-enhanced Raman scattering and absorption spectroscopic study

    SciTech Connect

    Yang, Yimin E-mail: tqiu@seu.edu.cn; Du, Deyang; Fan, Jiyang; Qiu, Teng E-mail: tqiu@seu.edu.cn; Kong, Fan

    2015-06-28

    Indium-tin-oxide (ITO) nanoparticles were annealed in vacuum or reducing atmosphere to obtain different surface structures and investigate their influence on the adsorptive character and conformation of cytochrome c (Cyt c) molecule. Annealing-induced morphometric or structural changes of ITO nanoparticles were characterized by instruments of transmission electron microscopy, x-ray diffraction, and Raman scattering. Semiconductor ITO nanoparticle-enhanced Raman scattering of Cyt c was observed and the enhanced efficiency was found to closely depend on the surface structures which control the adsorbance of buffer anions needed for Cyt c loading. Direct electron transfer between Cyt c and ITO surface at the moment of molecular elastic collision was found and a reverse electron transfer process for O-terminated surface and metal-terminated surface was observed, according to absorption spectroscopic measurement on the residual solution.

  19. Crystallographic and X-ray absorption spectroscopic characterization of Helicobacter pylori UreE bound to Ni2+ and Zn2+ reveal a role for the disordered C-terminal arm in metal trafficking

    PubMed Central

    Banaszak, Katarzyna; Martin-Diaconescu, Vlad; Bellucci, Matteo; Zambelli, Barbara; Rypniewski, Wojciech; Maroney, Michael J.; Ciurli, Stefano

    2012-01-01

    The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni2+ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni2+ insertion into the apo-enzyme. Crystals of apo-HpUreE and its Ni2+ and Zn2+ bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni) and 2.52 Å (Zn) resolution, show the conserved proximal and solvent-exposed His102 residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apo-protein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His152. The analysis of X-ray absorption spectral data obtained on solutions of Ni2+- and Zn2+-HpUreE provided accurate information of the metal ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal ion binding, and the mutual influence of protein framework and metal ion stereo-electronic properties in establishing coordination number and geometry leading to metal selectivity. PMID:22010876

  20. Phenanthro[4,5-fgh]quinoxaline-Fused Subphthalocyanines: Synthesis, Structure, and Spectroscopic Characterization.

    PubMed

    Pan, Houhe; Liu, Wenbo; Wang, Chiming; Wang, Kang; Jiang, Jianzhuang

    2016-07-01

    A series of four phenanthro[4,5-fgh]quinoxaline-fused subphthalocyanine derivatives 0-3 containing zero, one, two, and three phenanthro[4,5-fgh]quinoxaline moieties, respectively, were isolated from the mixed cyclotrimerization reaction of 2,9-di-tert-butylphenanthro[4,5-fgh]quinoxaline-5,6-dicarbonitrile with 4,5-bis(2,6-diisopropylphenoxy)phthalonitrile and characterized by a series of spectroscopic methods including MALDI-TOF mass, (1) H NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence spectroscopy. The molecular structures for the compounds 0 and 2 were clearly revealed on the basis of single-crystal X-ray diffraction analysis. Their electrochemical properties were also studied by cyclic voltammetry. In particular, theoretical calculations in combination with the electronic absorption and electrochemical analyses revealed the significant influence of the fused-phenanthro[4,5-fgh]quinoxaline units on the electronic structures. PMID:27123546

  1. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  2. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  3. Optical absorption and emission characterization of P3HT: graphene composite for its prospective photovoltaic application

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Prasad, Neetu; Nirwal, Varun Singh; Gautam, Khyati; Peta, Koteswara Rao; Bhatnagar, P. K.

    2016-05-01

    In the present work, regioregular P3HT (Poly (3-hexylthiophene-2, 5-diyl) was blended with graphene nanopowder and the optical spectroscopic characterization of the composite has been performed. It was observed that at low concentration of graphene (up to 0.1 wt %) there is no significant variation in absorption intensity or wavelength range. But at higher concentration (> 0.1 wt %) the absorption intensity starts reducing. Whereas, the photoluminescence of the composite solution quenches as we increase the concentration of graphene. It reveals that charge recombination decreases with increase in concentration (0.05 to 0.5 wt %) of graphene. Therefore 0.1 wt % seems to be the optimized concentration of graphene in the composite for which appropriate quenching of PL was observed without any significant reduction in absorption of photons. Thus maximum efficiency in P3HT: graphene composite photovoltaic cell is expected for 0.1 wt % of graphene concentration in our typical case.

  4. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    NASA Astrophysics Data System (ADS)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  5. Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst

    SciTech Connect

    Porkodi, K. . E-mail: porkodikathirvel@yahoo.com; Arokiamary, S. Daisy

    2007-06-15

    Nanocrystalline TiO{sub 2} was synthesized by the sol-gel process by controlling the crystallite size through calcination. The resulting nanocrystals were characterized using XRD, FT-Raman, SEM/EDX, DSC/TGA and UV-Vis spectroscopic techniques. XRD patterns confirmed the presence of only pure 100% anatase phase TiO{sub 2}. The surface morphology of the nanotitania was evaluated with Scanning Electron Microscopy. The purity of the sol-gel-derived TiO{sub 2} was confirmed through EDX measurements. The band gap of the nanotitania was found to be 3.6 eV from UV-Vis measurements. The pHzpc of the titania sample was measured as 5.90.

  6. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    NASA Technical Reports Server (NTRS)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  7. Thermal, optical and spectroscopic characterizations of borate laser crystals

    SciTech Connect

    Chavoutier, M.; Jubera, V.; Veber, P.; Velazquez, M.; Viraphong, O.; Hejtmanek, J.; Decourt, R.; Debray, J.; Menaert, B.; Segonds, P.; Adamietz, F.; Rodriguez, V.; Manek-Hoenninger, I.; Fargues, A.; Descamps, D.; Garcia, A.

    2011-02-15

    The Yb-content Li{sub 6}Ln(BO{sub 3}){sub 3} (Ln: Gd, Y) solid solution has been investigated. Crystal growth has been successful for several compositions. A 22% molar content of ytterbium ions was determined by chemical analysis (ICP). Physical properties relevant to laser operation like mechanical hardness, thermal expansion and thermal conductivity were measured on single crystals. Optical measurements, including refractive index and low temperature spectroscopy, were also performed. Finally, the effect of the Y/Gd ratio is discussed. -- Graphical abstract: Several solid solutions of a rare earth borate were studied. The figure illustrates one of these single crystals obtained by Czochralski and shows thermal behaviour and absorption spectra at low temperature. Display Omitted Research highlights: {yields} We have grown by Czochralski method five Li{sub 6}Ln(BO{sub 3}){sub 3} (Ln=Y, Gd,Yb) single crystals. {yields} Chemical, physical and spectroscopic characteristics are reported. {yields} Data relevant to laser operation are listed.

  8. Synthesis, characterization and spectroscopic investigation of a novel phenylhydrazone Schiff base with solvatochromism.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Luo, Hong

    2010-02-01

    A novel Schiff base of 4,5-diazafluorene-9-p-nitrophenylhydrazone (DAFND) has been synthesized and characterized. The crystal structures of DAFND and its analogue 4,5-diazafluorene-9-phenylhydrazone (DAFPD) were determined by single crystal X-ray diffraction method. X-ray analyses reveal that DAFPD comprise of a nonplanar molecule and all atoms of DAFND are essentially coplanar. The color of DAFND changes from brown to blue when heated, so called thermochromism and the spectroscopic properties of the two compounds are investigated by electronic absorption spectra, showing DAFND possess solvatochromism, while DAFPD does not have thermochromic and solvatochromic properties. The lambda(max) of DAFND within various pure solvents are different ranging from 370 nm in toluene to 614 nm in pyridine. The imaginable mechanisms of thermochromism and solvatochromism are proposed. PMID:20031480

  9. Synthesis, characterization and spectroscopic investigation of a novel phenylhydrazone Schiff base with solvatochromism

    NASA Astrophysics Data System (ADS)

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Luo, Hong

    2010-02-01

    A novel Schiff base of 4,5-diazafluorene-9- p-nitrophenylhydrazone (DAFND) has been synthesized and characterized. The crystal structures of DAFND and its analogue 4,5-diazafluorene-9-phenylhydrazone (DAFPD) were determined by single crystal X-ray diffraction method. X-ray analyses reveal that DAFPD comprise of a nonplanar molecule and all atoms of DAFND are essentially coplanar. The color of DAFND changes from brown to blue when heated, so called thermochromism and the spectroscopic properties of the two compounds are investigated by electronic absorption spectra, showing DAFND possess solvatochromism, while DAFPD does not have thermochromic and solvatochromic properties. The λmax of DAFND within various pure solvents are different ranging from 370 nm in toluene to 614 nm in pyridine. The imaginable mechanisms of thermochromism and solvatochromism are proposed.

  10. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  11. Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Le; Vitkin, Edward; Fang, Hui; Zaman, Munir M.; Andersson, Charlotte; Salahuddin, Saira; Modell, Mark D.; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2007-02-01

    We recently developed a new microscopic optical technique capable of noninvasive analysis of cell structure and cell dynamics on the submicron scale [1]. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS) and is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. To test the ability of CLASS microscopy to monitor cellular dynamics in vivo we performed experiments with human bronchial epithelial cells treated with DHA and undergoing apoptosis. The treated and untreated cells show not only clear differences in organelle spatial distribution but time sequencing experiments on a single cell show disappearance of certain types of organelles and change of the nuclear shape and density with the progression of apoptosis. In summary, CLASS microscopy provides an insight into metabolic processes within the cell and opens doors for the noninvasive real-time assessment of cellular dynamics. Noninvasive monitoring of cellular dynamics with CLASS microscopy can be used for a real-time dosimetry in a wide variety of medical and environmental applications that have no immediate observable outcome, such as photodynamic therapy, drug screening, and monitoring of toxins.

  12. BASE: Bayesian Astrometric and Spectroscopic Exoplanet Detection and Characterization Tool

    NASA Astrophysics Data System (ADS)

    Schulze-Hartung, Tim

    2012-08-01

    BASE is a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The tool fulfills two major tasks of exoplanet science, namely the detection of exoplanets and the characterization of their orbits. BASE was developed to provide the possibility of an integrated Bayesian analysis of stellar astrometric and Doppler-spectroscopic measurements with respect to their binary or planetary companions’ signals, correctly treating the astrometric measurement uncertainties and allowing to explore the whole parameter space without the need for informative prior constraints. The tool automatically diagnoses convergence of its Markov chain Monte Carlo (MCMC[2]) sampler to the posterior and regularly outputs status information. For orbit characterization, BASE delivers important results such as the probability densities and correlations of model parameters and derived quantities. BASE is a highly configurable command-line tool developed in Fortran 2008 and compiled with GFortran. Options can be used to control the program’s behaviour and supply information such as the stellar mass or prior information. Any option can be supplied in a configuration file and/or on the command line.

  13. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  14. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  15. Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure.

    PubMed

    Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi

    2016-09-01

    The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state. PMID:27350153

  16. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    SciTech Connect

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work has demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.

  17. Preliminary spectroscopic characterization of six toxins from Latin American scorpions.

    PubMed

    Possani, L; Steinmetz, W E; Dent, M A; Alagón, A C; Wüthrich, K

    1981-07-28

    This paper reports on spectroscopic studies of six toxins from the Latin American scorpions Centruroides noxius Hoffmann, Centruroides elegans Thorell and Tityus serrulatus Lutz and Mello. The isolation and purification of five of these toxins was described previously. The preparation of toxin II.9.2.2 from the venom of C. noxius is first described here. Circular dichroism and nuclear magnetic resonance spectra indicate similarities and differences between these scorpion toxins and previously characterized snake toxins. While there is evidence that the toxins from scorpions and snakes both contain extended beta-sheet secondary structures, the spectral properties of the scorpion toxins are overall of a different type from those of snake toxins. Among the six scorpion toxins those from T. serrulatus have spectral properties markedly different from those of the Centruroides species. Furthermore, thermal denaturation and amide proton exchange measurements showed that the globular structures of the Tityus toxins were markedly less stable and less rigid than those of the Centruroides toxins. PMID:7284435

  18. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  19. Electrical and Spectroscopic Characterization of Metal-Molecule-Metal Junctions

    NASA Astrophysics Data System (ADS)

    Mayer, Theresa

    2005-03-01

    Considerable attention has been devoted to developing an understanding of the mechanisms that dominate electrical transport in metal- molecule-metal junctions comprised of single and small ensembles of molecules. In this talk, we will present an overview of recent research on the electrical and spectroscopic characterization of molecular junctions inserted along the length of sub-40-nm diameter Au and Pd metal nanowires (i.e., in-wire junctions) fabricated by template-directed synthesis. In particular, we will show results that investigate the relationship between the temperature dependent (10 -- 300 K) current-voltage (I-V) characteristics and the vibrational spectra measured by inelastic electron tunneling (IET) spectroscopy for candidate molecular wires and bistable switching molecules. The two types of molecular wire junctions that were studied incorporate a self assembled monolayer of dithiolated oligo(phenylene- ethynylene) (OPE) molecules or their -NO2 derivatives. The I-V of these junctions are stable and reproducible between +/-1V. Temperature independent I-V are measured for both types of junctions, which is indicative of coherent tunneling transport. Moreover, strong vibrations associated with υ(18b) and υ(19a) ring modes were observed in both junctions. In contrast, measurements of molecular junctions that incorporate SAMs based on aniline derivatives show reproducible bistable switching with an on-off ratio of >10:1 at 1V. Differences are observed in the vibrational spectra that depend on the state of the junction.

  20. Direct imaging and spectroscopic characterization of habitable planets with ELTs

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien

    2015-12-01

    While the ~1e10 reflected light contrast between Earth-like planets and Sun-like stars is extremely challenging to overcome for ground-based telescopes, habitable planets around lower-mass stars can be "only" a 10 million times fainter than their host stars. Thanks to the small angular resolution offered by upcoming extremely large telescopes (ELTs) and recent advances in wavefront control and coronagraphic techniques, direct imaging and spectroscopic characterization of habitable planets will be possible around nearby M-type stars. Deep (~1e-8) contrast can be achieved by combining (1) sensitive fast visible light wavefront sensing (extreme-AO) with (2) kHz speckle control in the near-IR and (3) high efficiency coronagraphy. Spectroscopy will measure abundances of water, oxygen and methane, measure the planet rotation period, orbit, and identify main surface features through time-domain spectrophotometry.The Subaru Coronagraphic Extreme AO (SCExAO) system is a technology precursor to such a habitable planet imager for ELTs, and is currently under active development. By combining small inner working angle coronagraphy, visible-WFS based extreme-AO and fast speckle control, it will include the key elements of a future ELT system able to image and characterize habitable planets. We describe a technical plan to evolve SCExAO into a habitable planet imager for the Thirty Meter Telescope (TMT), which is aimed at providing such scientific capability during the 2020 decade, and inform the design, deployment and scientific operation of a more capable Extreme-AO instrument.

  1. [Electrochemical synthesis and spectroscopic characterization of gold nanoparticles].

    PubMed

    Shen, Li-Ming; Yao, Jian-Lin; Gu, Ren-Ao

    2005-12-01

    Two electrochemical methods were used to synthesize Au nanoparticles (AuNPs) with different shapes depending on the applied current. The dumbbell, spheroid and rod-like AuNPs were synthesized by increasing the current with a certain increment, while spheroid and dumbbell AuNPs were obtained by applying constant current. The AuNPs were characterized by TEM, UV-Vis spectrum and surface enhanced Raman spectra (SERS). One absorption band located at near-IR region was observed on the AuNPs, indicating the existence of gold nanorods with the aspect ratio of about 6. The SERS effect from the AuNPs surface was studied by using crystal violet as probe molecules, which adsorbed on AuNPs surface with flat orientation. Meanwhile, the forming mechanism of AuNPs involving crystallization and growth was deduced based on the TEM results. PMID:16544491

  2. Synthesis, spectroscopic characterization and comparative DNA binding studies of Schiff base complexes derived from L-leucine and glyoxal

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Shahid, Nida; Sami, Naushaba; Azam, Mohammad; Khan, Asad U.

    2011-11-01

    The mononuclear Schiff base complexes of the type, [ML(CH 3OH) 2] [M = Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by template condensation of L-leucine and glyoxal. The complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, Mass, 1H NMR and 13C NMR spectra. The UV-vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) ion with distortion around Cu(II) ion complex confirmed by EPR data. The conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that all the complexes exhibit a significant binding to calf thymus DNA.

  3. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies

    NASA Astrophysics Data System (ADS)

    Anselmi, Massimiliano; Marocchi, Simone; Aschi, Massimiliano; Amadei, Andrea

    2012-01-01

    Firefly luciferin and its oxidated form, oxyluciferin, are two heterocyclic compounds involved in the enzymatic reaction, catalyzed by redox proteins called luciferases, which provides the bioluminescence in a wide group of arthropods. Whereas the electronic absorption spectra of D-luciferin in water at different pHs are known since 1960s, only recently reliable experimental electronic spectra of oxyluciferin have become available. In addition oxyluciferin is involved in a triple chemical equilibria (deprotonation of the two hydroxyl groups and keto-enol tautomerism of the 4-hydroxythiazole ring), that obligates to select during an experiment a predominant species, tuning pH or solvent polarity besides introducing chemical modifications. In this study we report the absorption spectra of luciferin and oxyluciferin in each principal chemical form, calculated by means of perturbed matrix method (PMM), which allowed us to successfully introduce the effect of the solvent on the spectroscopic absorption properties, and compare the result with available experimental data.

  4. Transient absorption characterization of Cu- and Zn-metallized derivatives of meso-tetrakis(4-caynophenyl) N-confused porphyrin

    NASA Astrophysics Data System (ADS)

    Ao, Guanghong; Xiao, Zhengguo; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2015-10-01

    Meso-tetrakis(4-cyanophenyl)N-confused porphyrin [NCTPP(CN)4] and its two metallized derivatives with Cu2+ and Zn2+ ligand in the central position of the macrocycle are synthesized and spectroscopically characterized. Their excited-state dynamics are investigated with transient absorption (TA) spectroscopy upon excitation by 190 fs laser pulses at 420 nm within their Soret band region. A global and target analysis for the TA spectra of each porphyrin is performed via a four-level model including singlet (S) and triplet (T) states to extract the photophysical parameters at a variety of absorption wavelengths. Furthermore the corresponding excited-state lifetimes are extracted and discussed.

  5. Characterization of hydrophobic nanoporous particle liquids for energy absorption

    NASA Astrophysics Data System (ADS)

    Hsu, Yi; Liu, Yingtao

    2016-04-01

    Recently, the development of hydrophobic nanoporous technologies has drawn increased attention, especially for the applications of energy absorption and impact protection. Although significant amount of research has been conducted to synthesis and characterize materials to protect structures from impact damage, the tradition methods focused on converting kinetic energy to other forms, such as heat and cell buckling. Due to their high energy absorption efficiency, hydrophobic nanoporous particle liquids (NPLs) are one of the most attractive impact mitigation materials. During impact, such particles directly trap liquid molecules inside the non-wetting surface of nanopores in the particles. The captured impact energy is simply stored temporarily and isolated from the original energy transmission path. In this paper we will investigate the energy absorption efficiency of combinations of silica nanoporous particles and with multiple liquids. Inorganic particles, such as nanoporous silica, are characterized using scanning electron microscopy. Small molecule promoters, such as methanol and ethanol, are introduced to the prepared NPLs. Their effects on the energy absorption efficiency are studied in this paper. NPLs are prepared by dispersing the studied materials in deionized water. Energy absorption efficiency of these liquids are experimentally characterized using an Instron mechanical testing frame and in-house develop stainless steel hydraulic cylinder system.

  6. Submillimeter-Wave Spectroscopic Instruments: Multi-functional Atmospheric Characterization

    NASA Astrophysics Data System (ADS)

    Mehdi, I.; Gulkis, S.; Allen, M. A.; Schlecht, E.; Chattopadhyay, G.

    2012-10-01

    Submillimeter-wave spectroscopic instruments provide unique capability in terms of providing quantitative measurements of trace gas compositions in planetary atmospheres. Such instruments also provide temporal and wind velocity mapping capability.

  7. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  8. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y.-H.; Johnson, S. R.

    2015-02-01

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm-1 as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  9. PROCESSING OF HIGH LEVEL WASTE: SPECTROSCOPIC CHARACTERIZATION OF REDOX REACTIONS IN SUPERCRITICAL WATER

    EPA Science Inventory

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of ...

  10. Spectroscopic and computational characterization of the base-off forms of cob(II)alamin.

    PubMed

    Liptak, Matthew D; Fleischhacker, Angela S; Matthews, Rowena G; Telser, Joshua; Brunold, Thomas C

    2009-04-16

    The one-electron-reduced form of vitamin B(12), cob(II)alamin (Co(2+)Cbl), is found in several essential human enzymes, including the cobalamin-dependent methionine synthase (MetH). In this work, experimentally validated electronic structure descriptions for two "base-off" Co(2+)Cbl species have been generated using a combined spectroscopic and computational approach, so as to obtain definitive clues as to how these and related enzymes catalyze the thermodynamically challenging reduction of Co(2+)Cbl to cob(I)alamin (Co(1+)Cbl). Specifically, electron paramagnetic resonance (EPR), electronic absorption (Abs), and magnetic circular dichroism (MCD) spectroscopic techniques have been employed as complementary tools to characterize the two distinct forms of base-off Co(2+)Cbl that can be trapped in the H759G variant of MetH, one containing a five-coordinate and the other containing a four-coordinate, square-planar Co(2+) center. Accurate spin Hamiltonian parameters for these low-spin Co(2+) centers have been determined by collecting EPR data using both X- and Q-band microwave frequencies, and Abs and MCD spectroscopic techniques have been employed to probe the corrin-centered pi --> pi* and Co-based d --> d excitations, respectively. By using these spectroscopic data to evaluate electronic structure calculations, we found that density functional theory provides a reasonable electronic structure description for the five-coordinate form of base-off Co(2+)Cbl. However, it was necessary to resort to a multireference ab initio treatment to generate a more realistic description of the electronic structure of the four-coordinate form. Consistent with this finding, our computational data indicate that, in the five-coordinate Co(2+)Cbl species, the unpaired spin density is primarily localized in the Co 3d(z(2))-based molecular orbital, as expected, whereas in the four-coordinate form, extensive Co 3d orbital mixing, configuration interaction, and spin-orbit coupling cause the

  11. Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins

    PubMed Central

    Droghetti, Enrica; Tundo, Grazia R.; Sanz-Luque, Emanuel; Polticelli, Fabio; Visca, Paolo; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2015-01-01

    The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2− binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2− concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2−binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles. PMID:25993270

  12. Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins.

    PubMed

    Ciaccio, Chiara; Ocaña-Calahorro, Francisco; Droghetti, Enrica; Tundo, Grazia R; Sanz-Luque, Emanuel; Polticelli, Fabio; Visca, Paolo; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2015-01-01

    The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2- binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2- concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2-binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles. PMID:25993270

  13. Structural and spectroscopic characterization of mixed planetary ices.

    PubMed

    Plattner, Nuria; Lee, Myung Won; Meuwly, Markus

    2010-01-01

    Mixed ices play a central role in characterizing the origin, evolution, stability and chemistry of planetary ice surfaces. Examples include the polar areas of Mars, the crust of the Jupiter moon Europa, or atmospheres of planets and their satellites, particularly in the outer solar system. Atomistic simulations using accurate representations of the interaction potentials have recently shown to be suitable to quantitatively describe both, the mid- and the far-infrared spectrum of mixed H2O/CO amorphous ices. In this work, molecular dynamics simulations are used to investigate structural and spectroscopic properties of mixed and crystalline ices containing H2O, CO and CO2. Particular findings include: (a) the sensitivity of the water bending mode to the local environment of the water molecules which, together with structural insights from MD simulations, provides a detailed picture for the relationship between spectroscopy and structure; and (b) the sensitivity of the low-frequency spectrum to the structure of the mixed CO2/H2O ice. Specifically, for mixed H2O/CO2 ices with low water contents isolated water molecules are found which give rise to a band shifted by only 12 cm(-1) from the gas-phase value whereas for increasing water concentration (for a 1 : 1 mixture) the band progressively shifts to higher frequency because water clusters can form. More generally it is found that changes in the ice structure due to the presence of CO2 are larger compared to changes induced by the presence of CO and that this difference is reflected in the shape of the water bending vibration. Thus, the water bending vibration appears to be a suitable diagnostic for structural and chemical aspects of mixed ices. PMID:21302549

  14. Spectroscopic characterization of nanocrystalline chromium nitride (CrN).

    PubMed

    Mangamma, G; Sairam, T N; Dash, S; Rajalakshmi, M; Kamruddin, M; Mittal, V K; Narasimhan, S V; Arora, A K; Sundar, C S; Tyagi, A K; Raj, Baldev

    2007-03-01

    Nanocrystalline chromiuim nitride has been synthesised by direct gas phase nitridation of nanocrystalline chromia at 1100 degrees C in ammonia-atmosphere. XRD of this material showed formation of single phase CrN with particle size around 20 nm. AFM studies showed particle distribution along with some soft agglomerated nanostructures. Nanocrystalline Cr2O3 and partially-as well as fully--converted nanocrystalline CrN were also investigated using various spectroscopic techniques like XPS, FT-IR, and Raman for gaining insight into the conversion pathways. Spectroscopic investigations of these materials clearly indicate that complete conversion of CrN occurs by nitriding at 1100 degrees C for 4 hrs. The salient spectroscopic features of these nanocrystalline materials with respect to their microcrystalline counterparts are discussed. PMID:17450861

  15. Spectroscopic characterization of iron-doped II-VI compounds for laser applications

    NASA Astrophysics Data System (ADS)

    Martinez, Alan

    The middle Infrared (mid-IR) region of the electromagnetic spectrum between 2 and 15 ?m has many features which are of interest to a variety of fields such as molecular spectroscopy, biomedical applications, industrial process control, oil prospecting, free-space communication and defense-related applications. Because of this, there is a demand for broadly tunable, laser sources operating over this spectral region which can be easily and inexpensively produced. II-VI semiconductor materials doped with transition metals (TM) such as Co 2+, Cr2+, or Fe2+ exhibit highly favorable spectroscopic characteristics for mid-IR laser applications. Among these TM dopants, Fe2+ has absorption and emission which extend the farthest into the longer wavelength portion of the mid-IR. Fe2+:II-VI crystals have been utilized as gain elements in laser systems broadly tunable over the 3-5.5 microm range [1] and as saturable absorbers to Q -switch [2] and mode-lock [3] laser cavities operating over the 2.7-3 microm. TM:II-VI laser gain elements can be fabricated inexpensively by means of post-growth thermal diffusion with large homogeneous dopant concentration and good optical quality[4,5]. The work outlined in this dissertation will focus on the spectroscopic characterization of TM-doped II-VI semiconductors. This work can be categorized into three major thrusts: 1) the development of novel laser materials, 2) improving and extending applications of TM:II-VI crystals as saturable absorbers, and 3) fabrication of laser active bulk crystals. Because current laser sources based on TM:II-VI materials do not cover the entire mid-IR spectral region, it is necessary to explore novel laser sources to extend available emissions toward longer wavelengths. The first objective of this dissertation is the spectroscopic characterization of novel ternary host crystals doped with Fe2+ ions. Using crystal field engineering, laser materials can be prepared with emissions placed in spectral regions not

  16. X-ray absorption fine structure spectroscopic study of uranium nitrides

    SciTech Connect

    Poineau, Frederic; Yeamans, Charles B.; Cerefice, Gary S.; Sattelberger, Alfred P; Czerwinski, Ken R.

    2012-01-01

    Uranium mononitride (UN), sesquinitride (U2N3) and dinitride (UN2) were characterized by extended X-Ray absorption fine structure spectroscopy. Analysis on UN indicate the presence of three uranium shells at distances of 3.46(3), 4.89(5) and 6.01(6) A and a nitrogen shell at a distance of 2.46(2) A . For U2N3, two absorbing uranium atoms at different crystallographic positions are present in the structure. One of the uranium atoms is surrounded by nitrogen atoms at 2.28(2) A and by uranium atoms at 3.66(4) and 3.95(4) A . The second type of uranium atom is surrounded by nitrogen atoms at 2.33(2) and 2.64(3) A and by uranium atoms at 3.66(4), 3.95(4) and 5.31(5) A . Results on UN2 indicate two uranium shells at 3.71(4) and 5.32(5) A and two nitrogen shells at 2.28(2).

  17. Synthesis and spectroscopic characterization of a new (aryl-SCN)n polymer: Polythiocyanatohydroquinone

    NASA Astrophysics Data System (ADS)

    Baryshnikov, Gleb V.; Galagan, Rostislav L.; Shepetun, Ludmila P.; Litvin, Valentina A.; Minaev, Boris F.

    2015-09-01

    In the present work we have demonstrated the first synthesis of the polythiocyanogen-like (aryl-SCN)n compound (polythiocyanatohydroquinone) from the initial 1,4-benzoquinone and NH4SCN reagents under the normal conditions in the glacial acetic acid medium. The synthesized amorphous polymer was characterized experimentally by the FT-IR and UV-vis spectroscopic methods accompanied with theoretical assignments by the density functional theory (DFT) and time-dependent DFT calculations. The transmission electron microscopy and the XRD pattern analysis were used to indicate the amorphous structure of the synthesized polymer. The DFT geometry optimization of a number of oligomers (n = 4-8) permit us to predict the possible structure of polythiocyanatohydroquinone and to assign the observed bands in IR and UV-vis absorption spectra. It was found that the synthesized polythiocyanatohydroquinone powder has a complicated structure which can be represented as a branched polymer constructed from the mono- and doubly-SCN-substituted benzene-1,4-diol moieties. This new material demonstrates a good stabilizing effect in respect to colloidal solutions of Ag and Au nanoparticles. Additionally, polythiocyanatohydroquinone is predicted to be a promising candidate for creation of metal-containing composite materials. Its application as a framework for the Pt electrode closing is found very useful.

  18. Raman spectroscopic characterization on cervical neoplasm in biopsy direction

    NASA Astrophysics Data System (ADS)

    Shin, Hsiao Hsin; Tsai, Yan Sheng; Wang, Tao Yuan; Chu, Shou Chia; Chiang, Huihua Kenny

    2007-02-01

    Raman spectroscopy was applied to distinguish the spectroscopic information between normal cervical tissues (14) and cervical neoplasia (17), including low grade squamous intraepithelial lesions (6) and high grade squamous intraepithelial lesions (11). Standard pathological sections of these cervical tissues were measured from superficial to stroma layers. We have normalized significant Raman peaks, 1250 and 1579-1656 cm -1 by taking a ratio over a stationary Raman at 1004 cm -1, and successfully discriminated between normal and neoplasm cervical tissues.

  19. Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.

    2009-05-01

    We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.

  20. Characterization of vanadium, manganese and iron model clusters by vibrational and optical spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin

    1999-12-01

    The active ferryl intermediates in the catalytic cycles of heme proteins are subject to interactions from the proximal and distal amino acid residues which control their activities and affect the ν(FeIVO) frequency. The effects of sixth axial ligation, hydrogen bonding, and solvent induced polarization on the resonance Raman (RR) spectra of the ferryl porphyrin analogs, vanadyl (VIVO) porphyrins and their π-cation radicals, are characterized. ν(VIVO) stretching bands for (VO)TMPyP and (VO)PPIX are observed to be sensitive to the pH value of the aqueous solutions, and reveal a number of coexisting 5-coordinate (c) and 6- c vanadyl porphyrins in solution. Moreover, the ν(VIVO) bands for (VO)TMP and (VO)TPP porphyrins upshift to higher frequencies with the formation of their π-cation radicals, in agreement with that of the (VO)OEP radical. For both a1u (OEP) and a2u (TPP, TMP) type radicals, an increased positive charge on the porphyrin reduces the porphyrin --> vanadium electron donation, but enhances the oxo --> V donation. The UV-Vis absorption and RR spectroscopic studies on a series of oxo-bridged vanadium(III) and manganese (III, IV) complexes established spectrostructural correlations that are useful as monitors of the structure of vanadium(III) and manganese(III, IV) centers in biological systems. The linear and bent V-O-V dimers display distinctive RR and absorption spectra. The linear V-O-V bridge displays an intense μ-O --> V charge transfer (CT) absorption band and a strongly enhanced symmetric (νs) or antisymmetric (νas) V-O-V stretching band in RR spectra, depending upon terminal ligands. In contrast, the bent bridge shows two μ-O --> V CT bands and both νs and νas V- O-V stretches are observed in RR spectra. These νs and νas vibrations are used to indicate that the vanadium(III) oxo-bridged dimer intercalates with DNA. The Mn-O-Mn vibrational frequencies in the 400-700 cm -1 region of the oxo-bridged manganese(III, IV) dimers, trimers, and

  1. Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.

    PubMed

    Kao, Joseph P Y; Muralidharan, Sukumaran

    2013-01-01

    Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter. PMID:23494372

  2. Raman spectroscopic characterization and differentiation of seminal plasma

    NASA Astrophysics Data System (ADS)

    Huang, Zufang; Chen, Xiwen; Chen, Yanping; Chen, Jinhua; Dou, Min; Feng, Shangyuan; Zeng, Haishan; Chen, Rong

    2011-11-01

    Raman spectroscopy (RS) was applied for the analysis of seminal plasma in order to detect spectral parameters, which might be used for differentiating the normal and abnormal semen samples. Raman spectra of seminal plasma separated from normal and abnormal semen samples, showed a distinct difference in peak ratios between 1449 and 1418 cm-1 (P < 0.05). More efficient alternative method of using principal component analysis-linear discriminate analysis based on Raman spectroscopic data yielded a diagnostic sensitivity of 73% and specificity of 82%. The results suggest that RS combined with the multivariate analysis method has the potential for differentiating semen samples by examination of the corresponding seminal plasma.

  3. Life Finder Detectors; Detector Needs and Status for Spectroscopic Biosignature Characterization

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn; McElwain, Michael W.; Moseley, Samuel H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2016-01-01

    The search for life on other worlds looms large in NASA's future. Outside our solar system, direct spectroscopic biosignature characterization using very large UV-Optical-IR telescopes with coronagraphs or starshades is a core technique to both AURA's High Definition Space Telescope (HDST) concept and NASA's 30-year strategic plan. These giant space observatories require technological advancements in several areas, one of which is detectors. In this presentation, we review the detector requirements for spectroscopic biosignature characterization and discuss the status of some existing and proposed detector technologies for meeting them.

  4. Comprehensive Spectroscopic Characterization of Model Aromatic Substituents of Lignin

    NASA Astrophysics Data System (ADS)

    Dean, Jacob C.; Vara, Vanesa Vaquero; Hotopp, Kelly M.; Dian, Brian C.; Zwier, Timothy S.

    2012-06-01

    2,6-Dimethoxyphenol (2,6-DMP) is a model compound with aromatic substitution similar to that in sinapyl alcohol, one of the three monomers that make up lignin. 2,6-DMP has been studied combining several spectroscopic techniques that span the microwave, infrared and ultraviolet regions. Spectra from laser-induced fluorescence excitation, IR-UV hole-burning, fluorescence dip IR, dispersed fluorescence and rotational spectra have allowed us to develop more insight to the structural details, intramolecular H-bonding and electronic excited states of this sinapyl alcohol analog. Coupling in the CH stretch region, broadening effects in the IR spectra and Coriolis coupling due to the OH tunneling coordinate in the rotational spectrum will be shown as we present this diverse set of experimental data involving transitions between different vibronic, vibrational and rotational levels of the molecule. These features will be compared to those in 2-methoxyphenol and 4-methyl-2,6-DMP during the discussion.

  5. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    SciTech Connect

    Kolesniková, L.; Alonso, J. L.; Daly, A. M.; Tercero, B.; Cernicharo, J.; Gordon, B. P.; Shipman, S. T. E-mail: jlalonso@qf.uva.es E-mail: terceromb@cab.inta-csic.es E-mail: brittany.gordon@ncf.edu

    2014-03-20

    New laboratory data of ethyl mercaptan, CH{sub 3}CH{sub 2}SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH{sub 3}CH{sub 2}SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH{sub 3}SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.

  6. Characterization of optically compressing diode array for spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.

    2013-10-01

    Spectroscopic detection and classification techniques suffer from the collection of excessive data and utilize only a fraction of the information collected for classification. Compressed Sensing (CS) techniques have been utilized in optical, photonic, electronic and controls applications. This limits data collection to the essentials and reduces the hardware, software, and computational requirements. Applying CS to just the general computational system results in the collection of data which is ultimately discarded. The result is excessive power consumption, mass, physical sizes, and complexity. Compressive Sensing requires, at a minimum, a non-uniform encoding system with a non-linear decompression system for total reconstruction. Pseudorandom encoding is frequently preferred. Total reconstruction of a compressed signal has been shown to be very computational intensive and other optical-based techniques have been demonstrated to accelerate the result. Prior work has demonstrated that total reconstruction is not necessary for effective classification via PCA and other spectroscopic relevant techniques. Prior work revised the system design and modified the signal processing, both electronic and computational, to reduce system requirements. To propagate this savings back into the photonics and optical chain, it is necessary to further develop alternative techniques. In particular, a modification to the traditional LDA allows the contraction of primary optics. In this presentation an optical detector scheme is detailed. A number of configurations are considered with the most savings achieved by a spatial integrating version that allows the maintenance of optical and photonic SNR by collecting a number of photons greater than or equal to the traditional LDA. Since primary optical diameter is largely specified by the need to subtend an angle sufficient to overcome system noise, optical diameters can be reduced by up to an order of magnitude. This also mitigates optical

  7. Characterization of used mineral oil condition by spectroscopic techniques.

    PubMed

    Vanhanen, Jarmo; Rinkiö, Marcus; Aumanen, Jukka; Korppi-Tommola, Jouko; Kolehmainen, Erkki; Kerkkänen, Tuula; Törmä, Päivi

    2004-08-20

    Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use. PMID:15352397

  8. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    SciTech Connect

    Westre, T.E.

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s{yields}3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  9. Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics

    SciTech Connect

    Rahman, Md. T. Ramana, C. V.

    2014-10-28

    Gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}, referred to CFGO) with variable Gd content (x = 0.0–0.4) have been synthesized by solid state ceramic method. The crystal structure and impedance properties of CFGO compounds have been evaluated. X-ray diffraction measurements indicate that CFGO crystallize in the inverse spinel phase. The CFGO compounds exhibit lattice expansion due to substitution of larger Gd ions into the crystal lattice. Impedance spectroscopy analysis was performed under a wide range of frequency (f = 20 Hz–1 MHz) and temperature (T = 303–573 K). Electrical properties of Gd incorporated Co ferrite ceramics are enhanced compared to pure CoFe{sub 2}O{sub 4} due to the lattice distortion. Impedance spectroscopic analysis illustrates the variation of bulk grain and grain-boundary contributions towards the electrical resistance and capacitance of CFGO materials with temperature. A two-layer heterogeneous model consisting of moderately conducting grain interior (ferrite-phase) regions separated by insulating grain boundaries (resistive-phase) accurately account for the observed temperature and frequency dependent electrical characteristic of CFGO ceramics.

  10. Performance and spectroscopic characterization of irradiated Nd:YAG

    NASA Astrophysics Data System (ADS)

    Rose, Todd S.; Fincher, Curtis L.; Fields, Renny A.

    1991-12-01

    The performance of longitudinally pumped Nd:YAG was evaluated before and after exposure to 60Co gamma radiation. For comparison, other Nd-doped materials, Cr:GSGG and YLF, were also included in this study. The cw unirradiated optical-to-optical slope efficiencies for Nd:YAG and Nd:YLF were 63% and degraded to 48% and 36%, respectively, after 600 kRads of irradiation. Nd:Cr:GSGG performed significantly worse, exhibiting a slope efficiency of 42%, but was not affected by irradiation (a result that is in agreement with previous reports). Electron paramagnetic resonance studies of the Nd:YAG samples indicated that there was no modification of the Nd3+ sites resulting from exposure to the radiation. It is concluded from the performance and spectroscopic analysis that the degradation in Nd:YAG is primarily due to an induced passive optical loss of approximately 0.02 cm-1. Furthermore, this effect was observed to saturate at exposure levels of 50 kRad. The relatively low induced loss indicates that Nd:YAG systems employing pulsed diode pumping in the longitudinal configuration, should be resistant to ambient space environment radiation damage. This point was experimentally verified with respect to the effect of gamma rays on performance.

  11. Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.

    PubMed

    Puzzarini, Cristina

    2015-11-25

    The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed. PMID:26529434

  12. New homotrinuclear lanthanide complexes: synthesis, characterization and spectroscopic study.

    PubMed

    Silva, Wagner E; Belian, Mônica Freire; Freire, Ricardo O; de Sá, Gilberto F; Alves, Severino

    2010-09-23

    This work presents the synthesis and spectroscopic study of new homotrinuclear (TRI) systems for photonics applications. The luminescence spectroscopy shows characteristics transitions of Eu(III) and Tb(III) ions. For the Gd(III) complexes, the triplets states were determined by phosphorescence measurement. The complexes’ coordination geometries were calculated using the Sparkle/AM1 model. For the europium systems, the Sparkle/AM1 geometries were used to calculate all details involved in the energy transfer process, and the theoretical quantum yields were determined. From an energy diagram, that estimates triplet levels, it was possible to understand some experimental phenomenon, such as weak luminescence for precursor complex (without heterocyclics ligands), and ligands emission in terbium complexes. Some of these observations can also be explained by the Jablonski diagrams that describe, based on theoretical calculations, all luminescent process. The synthesized complexes showed high values of quantum yield in ethanolic environment: 50% for EuTRIDipy, 26% EuTRITerpy, and 56% for EuTRIPhen complexes. PMID:20738128

  13. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools

    NASA Astrophysics Data System (ADS)

    Mohaček-Grošev, Vlasta; Božac, Romano; Puppels, Gerwin J.

    2001-12-01

    Recently, there has been increase of general interest in fungi because of the possible medical applications of their polysaccharide constituents called glucans, some of which are reported to have immunomodulatory properties. Since an extraction method can change the chemical composition of a substance, especially a delicate one such as fungal thallus, it is necessary and useful to know more about the studied matter in advance in order to choose the chemical procedure properly. We demonstrated the usefulness of vibrational spectroscopy in identifying different glucan types in various parts of intact fruiting bodies of Asco- and Basidiomycetes. Fourier transform-infrared (FT-IR) spectroscopy was used for obtaining vibrational spectra of spores and fruiting bodies of more than 70 species belonging to 37 different genera of wild growing mushrooms. The list of the bands in 750-950 cm -1 interval, assigned to α- and β-glucans, is provided for all species studied. Vibrational spectra in the interval 1000-1200 cm -1 could serve as an indicator of mushroom genus, although particular species cannot be identified spectroscopically. Great similarities in spectra of spores of the same genus, but different species, e.g. Tricholoma album and Trichloma sulphureum, were observed. On the other hand, spectra of cap, stalk and spores of the same mushroom show great differences, indicating variety in the chemical composition of different parts of the same fruiting body.

  14. Spectroscopic characterization of ion-irradiated multi-layer graphenes

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Akira; Honda, Shin-ichi; Osugi, Ryo; Okada, Hiraku; Niibe, Masahito; Terasawa, Mititaka; Hirase, Ryuji; Izumi, Hirokazu; Yoshioka, Hideki; Niwase, Keisuke; Taguchi, Eiji; Lee, Kuei-Yi; Oura, Masaki

    2013-11-01

    Low-energy Ar ions (0.5-2 keV) were irradiated to multi-layer graphenes and the damage process, the local electronic states, and the degree of alignment of the basal plane, and the oxidation process upon ion irradiation were investigated by Raman spectroscopy, soft X-ray absorption spectroscopy (XAS) and in situ X-ray photoelectron spectroscopy (XPS). By Raman spectroscopy, we observed two stages similar to the case of irradiated graphite, which should relate to the accumulations of vacancies and turbulence of the basal plane, respectively. XAS analysis indicated that the number of sp2-hybridized carbon (sp2-C) atoms decreased after ion irradiation. Angle-resolved XAS revealed that the orientation parameter (OP) decreased with increasing ion energy and fluence, reflecting the turbulence of the basal plane under irradiation. In situ XPS shows the oxidation of the irradiated multi-layer graphenes after air exposure.

  15. Asymmetry between absorption and photoluminescence line shapes of TPD: spectroscopic fingerprint of the twisted biphenyl core.

    PubMed

    Scholz, Reinhard; Gisslén, Linus; Himcinschi, Cameliu; Vragović, Igor; Calzado, Eva M; Louis, Enrique; San Fabián Maroto, Emilio; Díaz-García, María A

    2009-01-01

    We analyze absorption, photoluminescence (PL), and resonant Raman spectra of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), with the aim of providing a microscopic interpretation of a significant Stokes shift of about 0.5 eV that makes this material suitable for stimulated emission. The optical spectra were measured for TPD dissolved in toluene and chloroform, as well as for polystyrene films doped with varying amounts of TPD. In addition, we measured preresonant and resonant Raman spectra, giving direct access to the vibrational modes elongated in the relaxed excited geometry of the molecule. The experimental data are interpreted with calculations of the molecular geometry in the electronic ground state and the optically excited state using density functional theory. Several strongly elongated high-frequency modes within the carbon rings results in a vibronic progression with a calculated spacing of 158 meV, corroborated by the observation of vibrational sidebands in the PL spectra. The peculiarities of the potential energy surfaces related to a twisting around the central bond in the biphenyl core of TPD allow to quantify the asymmetry between the line shapes observed in absorption and emission. PMID:19086796

  16. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    NASA Astrophysics Data System (ADS)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 μg mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 μg mL -1 using AAS method or 30-45 μg mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  17. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    SciTech Connect

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  18. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF PROTONATED OXIRANE: A POTENTIAL PREBIOTIC SPECIES IN TITAN’S ATMOSPHERE

    PubMed Central

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2015-01-01

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm−1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan’s atmosphere but also in the interstellar medium. PMID:26543241

  19. Spectroscopic Characterization of Mineralogy Across Vesta: Evidence of Different Lithologies

    NASA Technical Reports Server (NTRS)

    De Sanotis, M. C.; Ammannito, E.; Filacchione, G.; Capria, M. T.; Tosi, F.; Capaccioni, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Jaumann, R.; Magni, G.; Marchi, S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mittlefehldt, D. W.; Nathues, A.; Palomba, E.; Pieters, C. M.; Raymond, C. A.; Russell, C. T.; Turrini, D.

    2012-01-01

    The average spectrum of Vesta, obtained by VIR in the range 0.25-5.1 microns, shows clear evidence of absorption bands due to pyroxenes and thermal emissions beyond 3.5 11m. Vesta shows considerable variability across its surface in terms of spectral reflectance and emission, band depths, bands widths and bands centers, reflecting a complex geological history. Vesta's average spectrum and inferred mineralogy resemble those of howardite meteorites. On a regional scale, significant deviations are seen: the south polar 500km Rheasilvia impact crater has a higher diogenitic component, and equatorial regions show a higher eucritic component. This lithologic distribution, with a concentration of Mg-pyroxenes in the Rheasilvia area, reinforces the hypothesis of a deeper diogenitic crust excavated by the impact that formed the Rheasilvia crater, and an upper eucritic crust, whose remnants are seen in the equatorial region. This scenario has implications for Vesta differentiation, consistent with magma ocean models. However, serial magmatism models could also have concentrated pyroxene cumulates in plutons emplaced within the lower crust,

  20. Thiosaccharine disulfide: Synthesis, crystal structure, spectroscopic characterization and theoretical study

    NASA Astrophysics Data System (ADS)

    Ferullo, Ricardo M.; Granados, Alejandro; Lanterna, Anabel; Güida, Jorge A.; Piro, Oscar E.; Castellano, Eduardo E.; Dennehy, Mariana

    2013-01-01

    The title compound, (thiosaccharine disulfide), bis[1,1'dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV-Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.

  1. Spectroscopic characterization of a novel electronic brachytherapy system.

    PubMed

    Liu, Derek; Poon, Emily; Bazalova, Magdalena; Reniers, Brigitte; Evans, Michael; Rusch, Thomas; Verhaegen, Frank

    2008-01-01

    The Axxent developed by Xoft Inc. is a novel electronic brachytherapy system capable of generating x-rays up to 50 keV. These low energy photon-emitting sources merit attention not only because of their ability to vary the dosimetric properties of the radiation, but also because of the radiobiological effects of low energy x-rays. The objective of this study is to characterize the x-ray source and to model it using the Geant4 Monte Carlo code. Spectral and attenuation curve measurements are performed at various peak voltages and angles and the source is characterized in terms of spectrum and half-value layers (HVLs). Also, the effects of source variation and source aging are quantified. Bremsstrahlung splitting, phase-space scoring and particle-tagging features are implemented in the Geant4 code, which is bench-marked against BEAMnrc simulations. HVLs from spectral measurements, attenuation curve measurements and Geant4 simulations mostly agree within uncertainty. However, there are discrepancies between measurements and simulations for photons emitted on the source transverse plane (90 degrees). PMID:18182687

  2. Raman spectroscopic instrumentation and plasmonic methods for material characterization

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki

    The advent of nanotechnology has led to incredible growth in how we consume, make and approach advanced materials. By exploiting nanoscale material properties, unique control of optical, thermal, mechanical, and electrical characteristics becomes possible. This thesis describes the development of a novel localized surface plasmon resonant (LSPR) color sensitive photosensor, based on functionalization of gold nanoparticles onto tianium dioxide nanowires and sensing by a metal-semiconducting nanowire-metal photodiode structure. This LSPR photosensor has been integrated into a system that incorporates Raman spectroscopy, microfluidics, optical trapping, and sorting flow cytometry into a unique material characterization system called the microfluidic optical fiber trapping Raman sorting flow cytometer (MOFTRSFC). Raman spectroscopy is utilized as a powerful molecular characterization technique used to analyze biological, mineralogical and nanomaterial samples. To combat the inherently weak Raman signal, plasmonic methods have been applied to exploit surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR), increasing Raman intensity by up to 5 orders of magnitude. The resultant MOFTRSFC system is a prototype instrument that can effectively trap, analyze, and sort micron-sized dielectric particles and biological cells. Raman spectroscopy has been presented in several modalities, including the development of a portable near-infrared Raman spectrometer and other emerging technologies.

  3. X-ray absorption spectroscopic studies on novel microporous copper containing catalytic systems

    NASA Astrophysics Data System (ADS)

    Bhargava, Suresh K.; Akolekar, Deepak B.; Foran, Garry

    2006-11-01

    Novel copper metal modified microporous aluminosilicate and aluminophosphate catalysts with the high phase purity were synthesized and characterized. CuK-edge XAS measurements were carried out over a series of copper containing SAPO-34 and ZSM-5 catalysts. EXAFS technique was used to obtain specific climacteric information related to the copper atomic distances, coordination and near neighbour environments. EXAFS studies indicated the presence of different of Cu species on ZSM-5/SAPO34 catalysts.

  4. FTIR Spectroscopic Characterization Of II-VI Semiconductors

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Szofran, F. R.

    1991-01-01

    Combination of commercial Fourier-transform infrared (FTIR) spectrometer with computer and special-purpose software constitutes highly automated facility for acquisition and processing of infrared transmission or reflection spectral image data. Intended principally to acquire transmission spectra of some compounds of elements in groups II and VI of periodic table. System used to characterize specimens of II/VI alloy semiconductors grown by directional solidification and quenching. Transmission-edge maps helpful in studies of flows, gradients of temperature, and coefficients of diffusion in solidifying melts. Data acquired by system include optical characteristics, and they both verify and complement data obtained by such other techniques as measurements of density and x-ray-dispersion analysis.

  5. Characterization of Sorolla's gouache pigments by means of spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Roldán, Clodoaldo; Juanes, David; Ferrazza, Livio; Carballo, Jorgelina

    2016-02-01

    This paper presents the characterization of the Joaquín Sorolla's gouache sketches for the oil on canvas series "Vision of Spain" commissioned by A. M. Huntington to decorate the library of the Hispanic Society of America in New York. The analyses were focused on the identification of the elemental composition of the gouache pigments by means of portable EDXRF spectrometry in a non-destructive mode. Additionally, SEM-EDX and FTIR analyses of a selected set of micro-samples were carried out to identify completely the pigments, the paint technique and the binding media. The obtained results have confirmed the identification of lead and zinc white, vermillion, earth pigments, ochre, zinc yellow, chrome yellow, ultramarine, Prussian blue, chromium based and copper-arsenic based green pigments, bone black and carbon based black pigments, and the use of gum arabic as binding media in the gouache pigments.

  6. Spectroscopic Studies on the Characterization of a Persian Playing Card.

    PubMed

    Holakooei, Parviz; Niknejad, Maryam; Vaccaro, Carmela

    2016-01-01

    This paper presents the results of our investigations on a playing card preserved at The Mūzih-i Āynih va Rushanāī in Yazd, Iran. Conducting micro X-ray fluorescence spectrometry (μ-XRF), micro-Raman spectroscopy (μ-Raman), infrared reflectography (IRR), ultraviolet fluorescence photography, radiography, and optical microscopy, various paints applied on the playing card were identified. According to our analytical studies, red, green, blue, black, and gold-like metallic paints were identified to be a red monoazo pigment (β-naphthol PR 53:1), chrome green, artificial ultramarine blue, carbon black, and brass powder (Dutch metal powder), respectively, dating the playing card to 1895 onward based on the manufacturing date of the red monoazo pigment. Barite was also shown to be mixed with the pigments as an extender. On the other hand, the portrait's face of the playing card was peculiarly blackened. Our analytical approach toward characterizing the blackened face showed that the black paint was achieved by carbon black and, in other words, the face was not blackened due to the darkening of Pb-bearing pigments. Moreover, it was shown that there was no underdrawing under the black face and the black paint was most probably executed in the same time with the other paints. Considering the possible use of the playing card, it was suggested not to remove the blackened face in the cleaning process since the black paint was a part of the integrity of the playing card. PMID:26767645

  7. Spectroscopic and morphologic characterization of the dentin/adhesive interface

    NASA Astrophysics Data System (ADS)

    Lemor, R. M.; Kruger, Michael B.; Wieliczka, David M.; Swafford, Jim R.; Spencer, Paulette

    1999-01-01

    The potential environmental risks associated with mercury release have forced many European countries to ban the use of dental amalgam. Alternative materials such as composite resins do not provide the clinical function for the length of time characteristically associated with dental amalgam. The weak link in the composite restoration is the dentin/adhesive bond. The purpose of this study was to correlate morphologic characterization of the dentin/adhesive bond with chemical analyses using micro- Fourier transform infrared and micro-Raman spectroscopy. A commercial dental adhesive was placed on dentin substrates cut from extracted, unerupted human third molars. Sections of the dentin/adhesive interface were investigated using infrared radiation produced at the Aladdin synchrotron source; visible radiation from a Kr+ laser was used for the micro-Raman spectroscopy. Sections of the dentin/adhesive interface, differentially stained to identify protein, mineral, and adhesive, were examined using light microscopy. Due to its limited spatial resolution and the unknown sample thickness the infrared results cannot be used quantitatively in determining the extent of diffusion. The results from the micro-Raman spectroscopy and light microscopy indicate exposed protein at the dentin/adhesive interface. Using a laser that reduces background fluorescence, the micro-Raman spectroscopy provides quantitative chemical and morphologic information on the dentin/adhesive interface. The staining procedure is sensitive to sites of pure protein and thus, complements the Raman results.

  8. Spectroscopic characterization of bioactive carboxyamide with trinuclear lanthanide (III) ions.

    PubMed

    Singh, Bibhesh K; Prakash, Anant; Adhikari, Devjani

    2009-10-15

    Complexes of La(III), Sm(III), Eu(III) and Tb(III) with bioactive carboxyamide ligands N',N''-bis(3-caboxy-1-oxophenelenyl)2-amino-N-arylbenzamidine have been synthesized and characterized by various physico-chemical techniques. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML complexes. Vibrational spectra indicate coordination of Ln(III) with amide and carboxylate oxygen of the ligand along with nitrate ions. The magnetic moment of Sm(III) and Eu(III) complexes showed slightly higher-values which originated due to low J-J separation leading to thermal population of next higher energy J levels and susceptibility due to first order Zeeman effect. The strong luminescence emitting peaks at 587 nm for Eu(III) and 543 nm for Tb(III) can be observed, which could be attributed to the ligand have an enhanced effect to the luminescence intensity of the Eu(III) and Tb(III). The thermal behaviour of complexes shows that water molecules and nitrate ion are removed in first step followed by the removal of two molecules of nitrate ions and then decomposition of the ligand molecule in subsequent step. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redferm method, which confirm first order kinetics. PMID:19716336

  9. Crystal structure characterization as well as theoretical study of spectroscopic properties of novel Schiff bases containing pyrazole group

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Ren, Tiegang; Zhang, Jinglai; Li, Guihui; Li, Weijie; Yang, Lirong

    2012-09-01

    A series of novel Schiff bases containing pyrazole group were synthesized using 1-aryl-3-methyl-4-benzoyl-5-pyrazolone and phenylenediamine as the starting materials. All as-synthesized Schiff bases were characterized by means of NMR, FT-IR, and MS; and the molecular geometries of two Schiff bases as typical examples were determined by means of single crystal X-ray diffraction. In the meantime, the ultraviolet-visible light absorption spectra and fluorescent spectra of various as-synthesized products were also measured. Moreover, the B3LYP/6-1G(d,p) method was used for the optimization of the ground state geometry of the Schiff bases; and the spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVTZ basis set of TD-B3LYP method. It has been found that all as-synthesized Schiff bases show a remarkable absorption peak in a wavelength range of 270-370 nm; and their maximum emission peaks are around 344 nm and 332 nm, respectively.

  10. Spectroscopic measurements and characterization of soft tissue phantoms

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Ipus, Erick

    2013-02-01

    Tissue phantoms are important tools to calibrate and validate light propagation effects, measurements and diagnostic test in real biological soft tissue. We produce low cost phantoms using standard commercial jelly, distillated water, glycerol and a 20% lipid emulsion (Oliclinomel N7-1000 ®) was used in place of the usual Intralipid®. In a previous work we designed a protocol to elaborate high purity phantoms which can be used over months. We produced three different types of phantoms regarding the lipid emulsion - glycerol - gelatin - water composition: Pure gelatin phantoms, lipid in glycerol, and lipid in gelatin phantoms were produced and different concentrations of the lipid emulsion were used to study optical propagation properties of diffusive mixtures. Besides, 1.09 μm poly latex spheres in distilled water were used to produce reference phantoms. In order to use all the phantom sides, the phantoms were produced in disposable spectrometer cuvettes, designed for fluorescence studies. Measurements were performed using an OceanOptics 4000 channels spectrophotometer and integrating spheres. For the scattering measurements a homemade goniometer with a high resolution angular scale was used and the scattering detector was a linear array of optical fibers, with an angular collimator, connected to the spectrophotometer. White LED was used as light source, and the 6328.8 nm HeNe Laser was used for calibration. In this work we present characterization measurements for gelatin and microspheres phantoms using spectral reflectance, diffuse and direct spectral transmittance, and angle scattering measurements. The results of these measurements and their comparison are presented.

  11. Synthesis and spectroscopic characterization of copper zinc aluminum nanoferrite particles.

    PubMed

    Lakshmi Reddy, S; Ravindra Reddy, T; Roy, Nivya; Philip, Reji; Montero, Ovidio Almanza; Endo, Tamio; Frost, Ray L

    2014-06-01

    Copper doped zinc aluminum ferrites CuxZn1-x.(AlxFe2-x)O4 are synthesized by the solid-state reaction route and characterized by XRD, TEM, EPR and non linear optical spectroscopy techniques. The average particle size is found to be from 35 to 90nm and the unit cell parameter "a" is calculated as from 8.39 to 8.89Å. The cation distributions are estimated from X-ray diffraction intensities of various planes. The XRD studies have verified the quality of the synthesis of compounds and have shown the differences in the positions of the diffraction peaks due to the change in concentration of copper ions. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly. The selected area electron diffraction (SAED) of the ferrite system shows best crystallinity is obtained when Cu content is very. Some of the d-plane spacings are exactly coinciding with XRD values. EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe(3+) and at a higher content of Al/Cu the EPR spectra is due to Cu(2+). Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This property is useful in industrial applications. Nonlinear optical properties of the samples studied using 5ns laser pulses at 532nm employing the open aperture z-scan technique indicate that these ferrites are potential candidates for optical limiting applications. PMID:24632431

  12. A mononuclear nonheme iron(III)-superoxo complex: Crystallographic and spectroscopic characterization and reactivities

    PubMed Central

    Hong, Seungwoo; Sutherlin, Kyle D.; Park, Jiyoung; Kwon, Eunji; Siegler, Maxime A.; Solomon, Edward I.; Nam, Wonwoo

    2016-01-01

    Mononuclear nonheme iron(III)-superoxo species (FeIII-O2−•) have been implicated as key intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes. Although nonheme iron(III)-superoxo species have been trapped and characterized spectroscopically in enzymatic and biomimetic reactions, no structural information has yet been obtained. Here we report for the first time the isolation, spectroscopic characterization, and crystal structure of a mononuclear side-on (η2) iron(III)-superoxo complex with a tetraamido macrocyclic ligand (TAML), [FeIII (TAML) (O2)]2− (1). The nonheme iron(III)-superoxo species undergoes both electrophilic and nucleophilic oxidation reactions as well as O2-transfer between metal complexes. In the O2-transfer reaction, 1 transfers the bound O2 unit to a manganese(III) analogue, resulting in the formation of a manganese(IV)-peroxo complex, [MnIV(TAML)(O2)]2− (2); 2 is characterized structurally and spectroscopically as a mononuclear side-on (η2) manganese(IV)-peroxo complex. The difference in the redox distribution between the metal ions and O2 in 1 and 2 is rationalized using density functional theory calculations. PMID:25510711

  13. Quaoar: New, Longitudinaly Resolved, Spectroscopic Characterization of Its Surface

    NASA Technical Reports Server (NTRS)

    Ore, C. M. Dalle; Barucci, M. A.; Cruikshank, D. P.; Alunni, Antonella

    2014-01-01

    (50000) Quaoar, one of the largest Trans-neptunian objects, is comparable in size to Pluto's moon Charon. However, while Charon's surface is rich almost exclusively in H2O ice, Quaoar's surface characterized by ices of CH4, N2, as well as C2H6, a product of irradiation of CH4 (Dalle Ore et al. 2009). Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition, however, its relatively small size did not make it a prime candidate for presence of volatile ices in the study by Schaller and Brown (2007). Furthermore, based on the Brown et al. (2011) study (Brown, Schaller, & Fraser, 2011. A Hypothesis for the Color Diversity of the Kuiper Belt. ApJL, 739, L60) its red coloration points to CH3OH as the ice which, when irradiated, might have produced the red material. We present new visible to near-infrared (0.3-2.48 micrometers) spectro-photometric data obtained with the XSHOOTER (Vernet et al. 2011, A&A, 536A, 105 ) instrument at the VLT-ESO facility at four different longitudes on the surface of Quaoar. The data are complemented by previously published photometric observations obtained in the near-infrared (3.6, 4.5 micrometers) with the Spitzer Space Telescope, which provide an extra set of constraints in the model calculation process in spite of the different observing times that preclude establishing the spatial consistency between the two sets. For each of the four spectra we perform spectral modeling of the entire wavelength range -from 0.3 to 4.5 micrometers- by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We obtain spatially resolved compositional information for the surface of Quaoar supporting the presence of CH4 and C2H6, as previously reported, along with evidence for N2 and NH3OH. The albedo at the two Spitzer bands indicates the likely presence of CO and CO2. CH3OH, predicted on the basis of Quaoar's coloration (Brown et al. 2011), is not found at any of the

  14. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment. PMID:26465313

  15. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results. PMID:23003563

  16. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-01

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  17. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  18. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes : site-isolation, reactivity, and decomposition studies.

    SciTech Connect

    Trovitch, R. J.; Guo, N.; Janicke, M. T.; Li, H.; Marshall, C. L.; Miller, J. T.; Sattelberger, A. P.; John, K. D.; Baker, R. T.; LANL; Univ. of Ottawa

    2010-01-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated ?-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (?AlO)Ir(allyl)2, as characterized by CP-MAS 13C NMR, inductively coupled plasma-mass spectrometry, and Ir L3 edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)3 and several associated tertiary phosphine addition complexes suggest that the ?3-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir0 is also formed upon reaction of Ir(allyl)3 with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (?AlO)Ir(allyl)2(CNAr) [Ar = 2,6-(CH3)2C6H4] and (?AlO)Ir(allyl)2(CO)2, respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir0 nanoparticles, rather than a well-defined Ir3+ complex, are responsible for the observed activity.

  19. Reactivity of Chromium(III) Nutritional Supplements in Biological Media: An X-Ray Absorption Spectroscopic Study

    SciTech Connect

    Nguyen, A.; Mulyani, I.; Levina, A.; Lay, P.A.

    2009-05-22

    Chromium(III) nutritional supplements are widely used due to their purported ability to enhance glucose metabolism, despite growing evidence on low activity and the potential genotoxicity of these compounds. Reactivities of Cr(III) complexes used in nutritional formulations, including [Cr3O(OCOEt)6(OH2)3]+ (A), [Cr(pic)3] (pic) = 2-pyridinecarboxylato(-) (B), and trans-[CrCl2(OH2)4]+ (CrCl3 {center_dot} 6H2O; C), in a range of natural and simulated biological media (artificial digestion systems, blood and its components, cell culture media, and intact L6 rat skeletal muscle cells) were studied by X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectroscopic data were processed by multiple linear-regression analyses with the use of a library of model Cr(III) compounds, and the results were corroborated by the results of X-ray absorption fine structure spectroscopy and electrospray mass spectrometry. Complexes A and B underwent extensive ligand-exchange reactions under conditions of combined gastric and intestinal digestion (in the presence of a semisynthetic meal, 3 h at 310 K), as well as in blood serum and in a cell culture medium (1-24 h at 310 K), with the formation of Cr(III) complexes with hydroxo and amino acid/protein ligands. Reactions of compounds A-C with cultured muscle cells led to similar ligand-exchange products, with at least part of Cr(III) bound to the surface of the cells. The reactions of B with serum greatly enhanced its propensity to be converted to Cr(VI) by biological oxidants (H2O2 or glucose oxidase system), which is proposed to be a major cause of both the insulin-enhancing activity and toxicity of Cr(III) compounds (Mulyani, I.; Levina, A.; Lay, P. A. Angew. Chem. Int. Ed. 2004, 43, 4504-4507). This finding enhances the current concern over the safety of consumption of large doses of Cr(III) supplements, particularly [Cr(pic)3].

  20. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  1. Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS).

    PubMed

    Kinloch, Ryan D; Sono, Masanori; Sudhamsu, Jawahar; Crane, Brian R; Dawson, John H

    2010-03-01

    Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O(2), NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at -50 degrees C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH(4))-binding site and low BH(4)-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH(4)-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH(4) (>150muM) over gsNOS was present upon single turnover reaction in which O(2) was bubbled into dithionite-reduced NHA-bound protein solution at -35 degrees C or -50 degrees C. PMID:20110129

  2. Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions

    NASA Astrophysics Data System (ADS)

    Mehta, S. K.; Chaudhary, Savita; Kumar, Sanjay; Bhasin, K. K.; Torigoe, Kanjiro; Sakai, Hideki; Abe, Masahiko

    2008-07-01

    In this work, an attempt has been made to synthesize well-distributed stable selenium (Se) particles of nanosize dimensions via an aqueous micellar solution by the assistance of surfactants of two different polarities (anionic, sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and cationic, hexadecyltrimethylammonium bromide (CTAB)). The morphology of the particles was examined with transmission electron microscopy (TEM). X-ray analysis reveals that the particles have a monoclinic structure. The band gap of the particles was determined from UV-visible optical spectroscopic results. The size variation was estimated by employing a quantum confinement effect equation. The evolution of the selenium nanoparticles in AOT and CTAB micellar media was corroborated with the time-dependent absorption spectra. The influence of hydrazine hydrate concentrations on the formation kinetics of Se nanoparticles was also investigated. The capping ability of the surfactants has been quantitatively evaluated from Fourier transform infrared (FTIR) studies.

  3. Spectroscopic characterization of selected fullerene-organic chromophore Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Lewandowska, Kornelia; Wróbel, Danuta; Graja, Andrzej

    2012-08-01

    Electronic absorption in polarized and unpolarized light and steady-state fluorescence emission and excitation spectra of zinc porphyrins, their dimers and dyads with a fullerene as well as perylene-derived molecular systems containing a fullerene were investigated. In particular, dyads of the fullerene covalently bonded to perylene- and porphyrin-derived dyes were comprehensively studied in chloroform solution and in a form of Langmuir-Blodgett layers on solid inorganic substrates. The spectroscopic examination of the samples allowed us to analysis charge redistribution after the chromophore-fullerene dyads formation - this effect was detected as changes of the band wavelengths and shape of the lines. The layer organization, in particular the dye molecule orientation, was estimated from. Usefulness of the investigated dyads in photovoltaic devices was signaled.

  4. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong Soo; Song, Joon Woo; Jang, Sun-Joo; Lee, Jae Joong; Oh, Wang-Yuhl; Kim, Jin Won; Yoo, Hongki

    2016-07-01

    Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.

  5. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  6. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  7. Processing of High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water - Final Report

    SciTech Connect

    Arrington Jr., C. A.

    2000-11-15

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of oxidation reactions at subcritical and supercritical temperatures are being followed by Raman spectroscopy using a high temperature stainless steel cell with diamond windows. In these reactions both hydrogen peroxide and nitrate anions are used as the oxidizing species with Cr(III) compounds and organic compounds as reducing agents.

  8. The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: A survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.; Bowen, David B.; Tytler, David; Webb, John K.

    1995-01-01

    We present initial results of an imaging and spectroscopic survey of faint galaxies in fields of Hubble Space Telescope (HST) spectroscopic target QSOs. The primary objectives of the survey are (1) to determine the incidence, extent, and covering factor of extended gaseous envelopes of luminous galaxies and (2) to determine the fraction of Ly(alpha) absorption systems that arise in luminous galaxies. The goal of the survey is to identify in each field under construction all objects with apparent r-band magnitudes satisfying r less than 21.5 within angular distances to the QSOs satisfying 0 less thyan 1.3'. The current observations cover six fields and are 37% complete to the goal ofthe survey. These observations identify 46 galaxies at redshifts spanning z = 0.0700-0.5526 and at impact parameters to the QSOs spanning rho = 16.6-346.9/h kpc. Of these galaxies, 11 are coincident in redshift with absorption systems and 21 do not give rise to absorption to within sensitive upper limits. Nine galaxies are coincident in redshift with 'Ly(alpha)-forest' absorption systems that show Ly(alpha) absorption but no corresponding metal-line absorption, and two galaxies are coincident in redshift with C IV absorption systems that show both Ly(alpha) and C IV absorption. Various lines of evidence demonstrate that the coincident galaxies are responsible for the corresponding absorption systems and are not present as the result of chance coincidence or merely spatial correlated with the absorption systems. The most important evidence is that there exists a statistical anti-correlation between Ly(aplha) rest-frame equivalent width and the impact parameter. Each of five galaxies with rho = 70-160/h kpc give rise to Ly(alpha) absorption, and just one of nine galaxies with rho greater than 70-160/h kpc gives rise to Ly(alpha) absorption. At least eight of 23 Ly(alpha) absorption systyems arise in galaxies. On the basis of these results we reach the following conclusions: (1) At z less

  9. Structure and spectroscopic characterization of tetrathia- and tetraselena[8]circulenes as a new class of polyaromatic heterocycles.

    PubMed

    Minaeva, Valentina A; Baryshnikov, Gleb V; Minaev, Boris F; Karaush, Nataliya N; Xiong, Xiao-Dong; Li, Ming-De; Phillips, David Lee; Wong, Henry N C

    2015-12-01

    The FTIR, Raman and UV-vis spectra of the recently synthesized tetrathia[8]circulene and tetraselena[8]circulene compounds have been measured and interpreted in details by the density functional theory (DFT) calculations taking into account the molecular symmetry constrains. The structural and electronic features of the studied compounds have also been discussed in connection with the observed spectroscopic characteristics. Particularly, we have found that despite a slightly non-planar conformation the neutral tetrathia[8]circulene and tetraselena[8]circulene molecules demonstrate bifacial aromatic/antiaromatic nature. The inner octatetraene core is characterized by the presence of paratropic ("antiaromatic") ring currents, whereas the outer macrocycle constructed of benzene, thiophene or selenophene rings possesses the strong magnetically-induced diatropic ("aromatic") ring current. This fact suggests the general electronic and magnetic similarity of the tetrathia- and tetraselena[8]circulenes with the strictly planar isoelectronic tetraoxa[8]circulene and related azaoxa-derivatives discussed earlier. However, the vibrational and UV-vis absorption spectra of the studied circulenes are rather different from those of the parent tetraoxa[8]circulene which indicates a clear manifestation of the symmetry selection rules. PMID:26142658

  10. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-01

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd4Cl10(C6H14NO)2·2H2O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl6 and CdCl5O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O-H⋯Cl and O-H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C-H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the HC⋯Cl and HC⋯HC intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  11. Silver sulfadoxinate: Synthesis, structural and spectroscopic characterizations, and preliminary antibacterial assays in vitro

    NASA Astrophysics Data System (ADS)

    Zanvettor, Nina T.; Abbehausen, Camilla; Lustri, Wilton R.; Cuin, Alexandre; Masciocchi, Norberto; Corbi, Pedro P.

    2015-02-01

    The sulfa drug sulfadoxine (SFX) reacted with Ag+ ions in aqueous solution, affording a new silver(I) complex (AgSFX), which was fully characterized by chemical, spectroscopic and structural methods. Elemental, ESI-TOF mass spectrometric and thermal analyses of AgSFX suggested a [Ag(C12H13N4O2S)] empirical formula. Infrared spectroscopic measurements indicated ligand coordination to Ag(I) through the nitrogen atoms of the (deprotonated) sulfonamide group and by the pyrimidine ring, as well as through oxygen atom(s) of the sulfonamide group. These hypotheses were corroborated by 13C and 15N SS-NMR spectroscopy and by an unconventional structural characterization based on X-ray powder diffraction data. The latter showed that AgSFX crystallizes as centrosymmetric dimers with a strong Ag⋯Ag interaction of 2.7435(6) Å, induced by the presence of exo-bidentate N,N‧ bridging ligands and the formation of an eight-membered ring of [AgNCN]2 sequence, nearly planar. Participation of oxygen atoms of the sulfonamide residues generates in the crystal a 1D coordination polymer, likely responsible for its very limited solubility in all common solvents. Besides the analytical, spectroscopic and structural description, the antibacterial properties of AgSFX were assayed using disc diffusion methods against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. The AgSFX complex showed to be active against Gram-positive and Gram-negative bacterial strains, being comparable to the activities of silver sulfadiazine.

  12. Growth and spectroscopic characterization of Er3+:CaWO4

    NASA Astrophysics Data System (ADS)

    Cornacchia, Francesco; Toncelli, Alessandra; Tonelli, Mauro; Favilla, Elena; Subbotin, Kirill A.; Smirnov, Valerii A.; Lis, Denis A.; Zharikov, Evgenii V.

    2007-06-01

    In this work we present the growth and spectroscopic investigation of Er3+ in CaWO4 single crystals. Er3+ polarized absorption has been measured at room temperature from UV to 1700nm, and the fluorescence from the most important emitting states from the visible to the infrared has been recorded at 10 and 300K in the two possible polarizations. The lifetimes of the lower lying excited states have been measured as a function of the temperature to evaluate the contribution of nonradiative decay processes. The absorption spectra enabled us to determine radiative lifetimes of the emitting states by means of the the Judd-Ofelt approach. The stimulated emission cross section has been estimated for the 1.5μm transition. A comparison of the theoretical and experimental results permitted to obtain an estimate of the actual Er3+ doping level. A calculation of the effective gain cross section for the 1.5μm transition is also presented. These experimental results are discussed in order to evaluate the potentialities of Er3+ in this material as active medium in solid state laser devices.

  13. Structural and biochemical characterization of engineered tissue using FTIR spectroscopic imaging: melanoma progression as an example

    NASA Astrophysics Data System (ADS)

    Bhargava, Rohit; Kong, Rong

    2008-02-01

    Engineered tissue represents a convenient path to providing models for imaging and disease progression. The use of these models or phantoms is becoming increasingly prevalent. While structural characterization of these systems is well-documented, a combination of biochemical and structural knowledge is often helpful. Fourier transform infrared (FTIR) spectroscopic imaging is a rapidly emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. Here, we report on the application of FTIR spectroscopic for analysis of a melanoma model in engineered skin. We first characterize the biochemical properties, consistency and spectral changes in different layers of growing skin. Results provide simple indices for monitoring tissue consistency and reproducibility as a function of time. Second, we introduce malignant melanocytes to simulate tumor formation and growth. Both cellular changes associated with tumor formation and growth can be observed. FTIR images indicate holistic chemical changes during the tumor growth, allowing for the development of automated pathology protocols. FTIR imaging being non-destructive, further, samples remain entirely compatible with downstream tissue processing or staining. We specifically examined the correlation of structural changes, molecular content and reproducibility of the model systems. The development of analysis, integrating spectroscopy, imaging and computation will allow for quality control and standardization of both the structural and biochemical properties of tissue phantoms.

  14. Optical characterization of isotactic polypropylene and carbon nanotube composites using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi; Kalakonda, Parvathalu; Georgiev, Georgi; Iannacchione, Germano

    2013-03-01

    We report the dielectric properties of optically characterized isotactic polypropylene (iPP) and its composites with carbon nanotubes (CNTs) using spectroscopic ellipsometry. Characterization was performed at angles ranging from 50 to 70 degrees and for the spectral range between 300-1000 nm. CNT concentrations varied from 0 to 5 wt% in the iPP/CNT composites investigated. Ellipsometry is a non-invasive and non-destructive technique that enabled us to determine the dielectric properties of the materials investigated. A concentration dependency on CNT wt% was found to exist for both the refractive index and the extinction coefficient for the iPP/CNT composites. At higher concentrations however, this distinction was not very clear, suggesting that saturation levels were reached in the material. We will also discuss our efforts to separate the optical properties of bound CNT from the analyzed nanocomposites.

  15. Spectroscopic Character and Spatial Distribution of Hydroxyl and Water Absorption Features Measured on the Lunar Surface by the Moon Mineralogy Mapper Imaging Spectrometer on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Pieters, C. M.; Goswami, J.; Clark, R. N.; Annadurai, M.; Boardman, J. W.; Buratti, B. J.; Combe, J.; Dyar, M. D.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R. L.; Kramer, G. Y.; Kumar, S.; Livo, K. E.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.

    2009-12-01

    The Moon Mineralogy Mapper imaging spectrometer on Chandrayaan-1 has a broad spectral range from 430 to 3000 nm. By design, the range was specified to extend to 3000 nm to allow for possible detection of trace volatile compounds that possess absorption bands near 3000 nm. Soon after acquisition and calibration of a large fraction of the lunar surface in early February 2009, absorption features in the 2700 to 3000 nm region were detected over unexpectedly large regional areas. This extraordinary discovery has withstood extensive re-analysis and falsification efforts. We have concluded these absorption features are fundamentally present in the M3 measurements and are indicators of extensive hydroxyl and water-bearing materials occurring on the surface of the Moon. Based on current analyses, these absorption features appear strongest at high latitudes, but also occur in association with several fresh feldspathic craters. Interestingly, the distribution of these absorption features are not directly correlated with existing neutron spectrometer hydrogen abundance data for the sunlight surface. This may indicate that the formation and retention of hydroxyl and water is an active process largely restricted to the upper most surface. We present the detailed spectroscopic character of these absorption features in the 2700 to 3000 nm spectral region, including selected examples through all levels of measurement processing from raw data to calibrated apparent surface reflectance. In summary we show the measured strength and latitudinal distribution of the absorptions as well as selected localized occurrences in association with fresh feldspathic craters. The presence of hydroxyl and water bearing material over extensive regions of the lunar surface provides a new and unexpected source of volatiles. Options for harvesting these elements directly from the regolith may provide an alternate supply of volatiles for long term human exploration objectives.

  16. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films.

    PubMed

    Li, Guifeng; Morita, Shigeaki; Ye, Shen; Tanaka, Masaru; Osawa, Masatoshi

    2004-02-01

    The absorption process of bisphenol A (BPA) in a number of poly(acrylate) thin films, such as poly(2-methoxyethyl acrylate) (PMEA), poly(ethyl acrylate) (PEA), poly(n-butyl methacrylate) (PBMA), and poly(methyl methacrylate) (PMMA), has been investigated by quartz crystal microbalance (QCM) and infrared reflection absorption spectroscopy (IRRAS) measurements. Both QCM and IRRAS measurements show that the BPA molecules absorb in PMEA, PEA, and PBMA thin films but not in PMMA thin film. The differences in the BPA absorption behavior are mainly attributed to the difference in the glass transition temperature (T(g)) between these polymers. This absorption behavior also depends on the BPA concentration and polymer film thickness. Furthermore, IRRAS characterization demonstrates that the hydrogen bonding is formed between the hydroxyl group in BPA and the carbonyl group in the poly(acrylate) thin films. BPA molecule absorbed in these polymer thin films can be removed by ethanol rinse treatment. By optimizing experimental conditions for the QCM electrode modified by PMEA thin film, detection limitation of approximately 1 ppb for BPA can be realized by the in situ QCM measurement. This method is expected to be a sensitive in situ detection way for trace BPA in the environmental study. PMID:14750877

  17. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT

    NASA Astrophysics Data System (ADS)

    Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  18. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT.

    PubMed

    Bardak, F; Karaca, C; Bilgili, S; Atac, A; Mavis, T; Asiri, A M; Karabacak, M; Kose, E

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, (1)H and (13)C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400nm. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400cm(-1) and 3500-50cm(-1), respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The (13)C and (1)H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained. PMID:27107533

  19. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  20. Chemical and spectroscopic characterization of a suite of Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Banin, A.; Orenberg, J. B.; Carle, G. C.; Chang, S.; Scattergood, T. W.

    1987-01-01

    The National Aeronautics and Space Administration has begun preparations for the flight of the Mars Observer Mission in the early 1990s. An advanced ground-based study is being conducted on a usefully limited suite of Mars Soil Analog Materials (MarSAM) intended to simulate the aeolian material covering the surface of Mars. A series of variably proportioned iron/calcium smectite clays were prepared from a typical montmorillonite clay using the Banin method. The effect of increasing iron on a diverse set of chemical and spectroscopic properties of the suite of clays is discussed. In order to chemically characterize the MarSAM and compare them with the Martian soil studied by Viking, the clays were analyzed for their major and minor elemental compositions by X-ray fluorescence and ion-coupled plasma techniques. It was concluded that the surface iron has a complex and hitherto uninvestigated impact on the catalytic and spectroscopic properties of clays and on the ability of these material to store energy.

  1. Spectroscopic characterization of ethyl xanthate oxidation products and analysis by ion interaction chromatography

    PubMed

    Hao; Silvester; Senior

    2000-10-15

    An ion interaction chromatographic separation method, coupled with UV spectroscopic detection, has been developed for the analysis of ethyl xanthate (O-ethyl dithiocarbonate) and its oxidative decomposition products in mineral flotation systems. The effects of the ion-pairing agent (tetrabutylammonium ion), pH modifier (phosphoric acid), and organic modifier (acetonitrile) in the eluant upon the retention characteristics of the ethyl xanthate oxidation products have been determined. The optimized separation procedure has been successfully applied to the analysis of ethyl xanthate and its oxidation products in a nickel-iron sulfide mineral suspension containing a number of other anionic species, including cyanide complexes of nickel and iron, as well as sulfur-oxy anions. The ethyl xanthate oxidation products investigated in this study have been isolated as pure compounds and characterized by UV-visible, FT-IR, and NMR spectroscopies. The UV-visible and FT-IR spectroscopic properties of these species are discussed in terms of the chemical modifications of the thiocarbonate group. PMID:11055697

  2. 13C Solid State Nuclear Magnetic Resonance and µ-Raman Spectroscopic Characterization of Sicilian Amber.

    PubMed

    Barone, Germana; Capitani, Donatella; Mazzoleni, Paolo; Proietti, Noemi; Raneri, Simona; Longobardo, Ugo; Di Tullio, Valeria

    2016-08-01

    (13)C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers. PMID:27340217

  3. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization

    NASA Astrophysics Data System (ADS)

    Selvaraju, R.; Raja, A.; Thiruppathi, G.

    2015-02-01

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  4. Optical characterization of ferroelectric PZT thin films by variable angle spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shafiqur; Garcia, Carlos D.; Bhalla, Amar; Guo, Ruyan

    2014-09-01

    Ferroelectric thin films are used as high dielectric constant capacitors, infrared detectors, piezoelectric transducers, optical modulators, optical waveguides, and nonvolatile memory chips for dynamic random access memory (DRAM) etc. While ferroelectric and dielectric properties of these films have been extensively investigated, their optical properties have been comparatively less studied and of limited use in quantitative evaluation of multilayer thin films. In this work we explored the variable angle spectroscopic ellipsometry (VASE) technique for its effectiveness in physical property characterization. The VASE combined with its computer modeling tool enables nondestructive, nonintrusive, and contactless optical means for optical characterization. Crystalline Lead Zirconium Titanate PbZr0.52Ti0.48O3 (PZT) thin films, fabricated on SrTiO3 layer atop of Si substrates, were characterized using VASE (J.A. Woollam; Lincoln, NE, USA) by determining the ellipsometric parameters Ψ and Δ as a function of wavelengths (200-1000 nm) and incident angles (65°, 70°,75°) at room temperature. A physical representation of the multilayer system was constructed by a six layer model (analysis software WVASE32, J.A. Woollam) through a step-by-step method. Other physical properties characterized by several well-known techniques on structure, morphology and topographical features correspond well with the models developed using VASE alone. The technique and the methodology developed have shown promises in identifying the respective thickness and optical properties of multilayer thin film system, with limited input of processing or composition information.

  5. Characterization of High Ge Content SiGe Heterostructures and Graded Alloy Layers Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Heyd, A. R.; Alterovitz, S. A.; Croke, E. T.

    1995-01-01

    Si(x)Ge(1-x)heterostructures on Si substrates have been widely studied due to the maturity of Si technology. However, work on Si(x)Ge)1-x) heterostructures on Ge substrates has not received much attention. A Si(x)Ge(1-x) layer on a Si substrate is under compressive strain while Si(x)Ge(1-x) on Ge is under tensile strain; thus the critical points will behave differently. In order to accurately characterize high Ge content Si(x)Ge(1-x) layers the energy shift algorithm used to calculate alloy compositions, has been modified. These results have been used along with variable angle spectroscopic ellipsometry (VASE) measurements to characterize Si(x)Ge(1-x)/Ge superlattices grown on Ge substrates. The results agree closely with high resolution x-ray diffraction measurements made on the same samples. The modified energy shift algorithm also allows the VASE analysis to be upgraded in order to characterize linearly graded layers. In this work VASE has been used to characterize graded Si(x)Ge(1-x) layers in terms of the total thickness, and the start and end alloy composition. Results are presented for a 1 micrometer Si(x)Ge(1-x) layer linearly graded in the range 0.5 less than or equal to x less than or equal to 1.0.

  6. X-Ray Absorption Characterization of Diesel Exhaust Particulates

    SciTech Connect

    Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

    1999-11-18

    We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

  7. ATLAST Detector Needs for Direct Spectroscopic Biosignature Characterization in the Visible and Near-IR

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2015-01-01

    Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; lambda = 0.4 - 1.8 micrometers) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.

  8. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  9. ATLAST detector needs for direct spectroscopic biosignature characterization in the visible and near-IR

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2015-09-01

    Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; λ= 0.4 - 1.8 μm) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.

  10. Variable angle spectroscopic ellipsometry - Application to GaAs-AlGaAs multilayer homogeneity characterization

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Snyder, Paul G.; Merkel, Kenneth G.; Woollam, John A.; Radulescu, David C.

    1988-01-01

    Variable angle spectroscopic ellipsometry has been applied to a GaAs-AlGaAs multilayer structure to obtain a three-dimensional characterization, using repetitive measurements at several spots on the same sample. The reproducibility of the layer thickness measurements is of order 10 A, while the lateral dimension is limited by beam diameter, presently of order 1 mm. Thus, the three-dimensional result mainly gives the sample homogeneity. In the present case three spots were used to scan the homogeneity over 1 in of a wafer which had molecular-beam epitaxially grown layers. The thickness of the AlGaAs, GaAs, and oxide layers and the Al concentration varied by 1 percent or less from edge to edge. This result was confirmed by two methods of data analysis. No evidence of an interfacial layer was observed on top of the AlGaAs.

  11. Synthesis, spectroscopic characterization, DNA interaction and antibacterial study of metal complexes of tetraazamacrocyclic Schiff base

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Khanam, Sadiqa; Firdaus, Farha; Latif, Abdul; Aatif, Mohammad; Al-Resayes, Saud I.

    The template condensation reaction between benzil and 3,4-diaminotoulene resulted mononuclear 12-membered tetraimine macrocyclic complexes of the type, [MLCl2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The synthesized complexes have been characterized on the basis of the results of elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz. FT-IR, 1H and 13C NMR, FAB mass, UV-vis and EPR. An octahedral geometry has been envisaged for all these complexes, while a distorted octahedral geometry has been noticed for Cu(II) complex. Low conductivity data of all these complexes suggest their non-ionic nature. The interactive studies of these complexes with calf thymus DNA showed that the complexes are avid binders of calf thymus DNA. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents.

  12. Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters.

    PubMed

    McGrail, Brendan T; Sigmon, Ginger E; Jouffret, Laurent J; Andrews, Christopher R; Burns, Peter C

    2014-02-01

    Strategies for interpreting mass spectrometric and Raman spectroscopic data have been developed to study the structure and reactivity of uranyl peroxide cage clusters in aqueous solution. We demonstrate the efficacy of these methods using the three best-characterized uranyl peroxide clusters, {U24}, {U28}, and {U60}. Specifically, we show a correlation between uranyl-peroxo-uranyl dihedral bond angles and the position of the Raman band of the symmetric stretching mode of the peroxo ligand, develop methods for the assignment of the ESI mass spectra of uranyl peroxide cage clusters, and show that these methods are generally applicable for detecting these clusters in the solid state and solution and for extracting information about their bonding and composition without crystallization. PMID:24422479

  13. Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Da; Lu, Yi-Ying; Tamalampudi, Srinivasa Reddy; Cheng, Hung-Chieh; Chen, Yit-Tsong

    2013-10-01

    We present a chemical vapor deposition (CVD) method to catalytically synthesize large-area, transferless, single- to few-layer graphene sheets using hexamethyldisilazane (HMDS) on a SiO2/Si substrate as a carbon source and thermally evaporated alternating Ni/Cu/Ni layers as a catalyst. The as-synthesized graphene films were characterized by Raman spectroscopic imaging to identify single- to few-layer sheets. This HMDS-derived graphene layer is continuous over the entire growth substrate, and single- to trilayer mixed sheets can be up to 30 -m in the lateral dimension. With the synthetic CVD method proposed here, graphene can be grown into tailored shapes directly on a SiO2/Si surface through vapor priming of HMDS onto predefined photolithographic patterns. The transparent and conductive HMDS-derived graphene exhibits its potential for widespread electronic and opto-electronic applications.

  14. Spectroscopic characterization of recently excavated archaeological potsherds from Tamilnadu, India with multi-analytical approach.

    PubMed

    Raja Annamalai, G; Ravisankar, R; Rajalakshmi, A; Chandrasekaran, A; Rajan, K

    2014-12-10

    A combined analytical study of potsherds excavated from different archaeological sites of Tamilnadu (Kavalapatti, Nattapuraki and Thamaraikulam villages), India are analyzed by spectroscopic techniques such as FTIR, X-ray diffraction, thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) coupled with Energy Dispersive Spectrometer (EDS). FTIR and XRD techniques have been attempted to characterize the mineralogical composition, firing temperature and firing conditions of the archaeological potsherds. Thermogravimetric analysis (TGA) is the complementary study to estimate the firing temperature from characteristic thermal reactions in potsherds under controlled firing in inert gas atmosphere. Further, Scanning Electron Microscopy (SEM) equipped and coupled with an Energy Dispersive Spectrometer (EDS) to analyze internal morphology and chemical composition of the potsherds was used. From the results of the above techniques, the firing temperatures of potsherds were found to be greater than 650°C. PMID:24929323

  15. Electrochemical and resonance Raman spectroscopic characterization of polyaniline and polyaniline-metalloporphyrin electrode films

    SciTech Connect

    Macor, K.A.; Su, Y.O.; Miller, L.A.; Spiro, T.G.

    1987-08-12

    Characteristics of electropolymerized aniline and metallotetrakis(2-aminophenyl)porphine (metallo-2-TAPP) films are described. Aniline polymerized from methylene chloride solution by oxidative cycling at a platinum electrode shows characteristic two-wave or one-wave cycle voltammograms when scanned in pH 1 aqueous solution, depending on the positive potential sweep limit. Similar CV's are produced when the solution contains metallo-TAPP's, except that additional waves associated with metalloporphyrin redox processes are superimposed. The absorption spectra of the films formed on transparent SnO/sub 2/ electrodes showed characteristic metalloporphyrin Soret absorption bands, with red shifts relative to the solution spectra, due to axial coordination and/or excitonic effects. Raman spectra are reported for films polymerized from aniline, aniline-/sup 15/N, aniline-N,N-d/sub 2/, and aniline-d/sub 5/. The replacement of strong aniline bands at 1000 and 1029 cm/sup -1/ with bands in the films at 1190 and 1200 cm/sup -1/ is diagnostic for para-substituted aniline units in the polymer. The films show a strong /sup 15/N-sensitive band at 1525 cm/sup -1/, which is absent in aniline but present in p-phenylenediamine. Thus the electrochemical and spectroscopic characteristics of the TAPP films are fully consistent with unmodified porphyrin units contained within a polyaniline polymer. Porphyrin radical cation formation is insufficient to induce polymerization if the potential is lower than that required for aniline oxidation. Films containing Mn(2-TAPP) show a Mn/sup 3+/2+/ wave at approx.-0.2 V, negative of the polyaniline redox waves, when the electrode is in contact with nonaqueous or aqueous electrolyte. The metalloporphyrin redox process does not require electronic conduction through the polyaniline framework. 21 references. 8 figures.

  16. The Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization

    PubMed Central

    Op’t Holt, Bryan T.; Vance, Michael A.; Mirica, Liviu M.; Stack, T. Daniel P.; Solomon, Edward I.

    2009-01-01

    The μ-η2:η2-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the bis-diamine ligand N,N′-di-tert-butyl-ethylenediamine (DBED) with O2 is a functional and spectroscopic model of the coupled binuclear copper protein tyrosinase. This complex reacts with 2,4-di-tert-butylphenolate at low temperature to produce a mixture of the catechol and quinone products, which proceeds through three intermediates (A – C) that have been characterized. A, stabilized at 153K, is characterized as a phenolate-bonded bis-μ-oxo dicopper(III) species, which proceeds at 193K to B, presumably a catecholate-bridged coupled bis-copper(II) species via an electrophilic aromatic substitution mechanism wherein aromatic ring distortion is the rate-limiting step. Isotopic labeling shows that the oxygen inserted into the aromatic substrate during hydroxylation derives from dioxygen, and a late-stage ortho-H+ transfer to an exogenous base is associated with C-O bond formation. Addition of a proton to B produces C, determined from resonance Raman spectra to be a Cu(II)-semiquinone complex. The formation of C (the oxidation of catecholate and reduction to Cu(I)) is governed by the protonation state of the distal bridging oxygen ligand of B. Parallels and contrasts are drawn between the spectroscopically and computationally supported mechanism of the DBED system, presented here, and the experimentally-derived mechanism of the coupled binuclear copper protein tyrosinase. PMID:19368383

  17. Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin

    PubMed Central

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J.; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought. PMID:24932914

  18. Spectroscopic characterizations of Er doped LaPO4 submicron phosphors prepared by homogeneous precipitation method

    NASA Astrophysics Data System (ADS)

    Saltmarsh, N.; Kumar, G. A.; Kailasnath, M.; Shenoy, Vittal; Santhosh, C.; Sardar, D. K.

    2016-03-01

    Hexagonal shaped LaPO4 submicron particles doped with various concentrations of Er were successfully prepared by homogenous precipitation method using metal nitrates and ammonium phosphate. Particles of approximate particle size 125 nm and size distribution of 85 nm are obtained with good crystallinity. After heat treatment at 1200 °C for 2 h, the particles are characterized for their various optical properties such as absorption, emission, fluorescence decay and optical band gap. Optical absorption and emission data are numerically analyzed with the help of Judd-Ofelt model to evaluate various radiative spectral properties such as radiative decay rates, radiative quantum yield, emission cross-section and fluorescence branching ratios of various emission transitions. Though the radiative quantum yield of 1554 nm emission approaches the theoretical limit of 100%, the experimentally measured quantum yield is only 11% at 12 W/cm2 at 980 nm excitation power density in 2% Er doped LaPO4.

  19. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  20. Optical and spectroscopic characterization of Er/Yb-activated planar waveguides

    NASA Astrophysics Data System (ADS)

    Pelli, Stefano; Brenci, Massimo; Fossi, Matteo; Righini, Giancarlo C.; Duverger, Claire; Montagna, Maurizio; Rolli, Raffaella; Ferrari, Maurizio

    2000-04-01

    Soda-lime silicate glasses doped with different percentages of Er- and Yb-oxides were produced by melting, and both planar and channel waveguides were fabricated by diluted silver ion exchange. Their optical and spectroscopic properties have been investigated, and some results are reported here. The optical parameters such as refractive index, diffusion depth and number of modes were measured by m-line technique. Absorption and fluorescence spectra were also measured; particular attention was focused on upconversion phenomena. The upconversion luminescence spectra of an Er/Yb-activated waveguide were obtained by continuous-wave excitation at 514.5 nm, as a function of the excitation power. The weak upconversion bands are assigned to the 2H9/2 yields 4I15/2 and 4G11/2 yields 4I15/2 transitions of the Er3+ ion. The upconversion mechanism is found to be a two-photon process. Preliminary results of gain measurements in channel waveguides showed signal enhancement at 1.5 micrometers , for high input signal intensities, upon pumping at 0.98 micrometers .

  1. Optical and spectroscopic characterization of Er3+-Yb3+co-doped tellurite glasses and fibers

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; Chillcce, E. F.; Barbosa, L. C.; Rodriguez, E.; De la Rosa, E.

    2014-04-01

    Optical and spectroscopic properties of Er3+-Yb3+ co-doped TeO2-WO3-Nb2O5-Na2O-Al2O3 glasses and fibers were investigated. Emission spectra and fluorescence lifetimes of 4I13/2 level of Er3+ion as a function of rare earth concentration and fiber length were measured in glasses. Results show that the self-absorption effect broadens the spectral bandwidth of 4I13/2→4I15/2 transition and lengthens the lifetime significantly from 3.5 to 4.6 ms. Fibers were fabricated by the rod-in-tube technique using a Heathway drawing tower. The emission power of these Er3+-Yb3+ co-doped Step Index Tellurite Fibers (SITFs; lengths varying from 2 to 60 cm) were generated by a 980 nm diode laser pump and then the emission power spectra were acquired with an OSA. The maximum emission power spectra, within the 1530-1560 nm region, were observed for fiber lengths ranging from 3 to 6 cm. The highest bandwidth obtained was 108 nm for 8 cm fiber length around 1.53 µm.

  2. Skeletal silica characterization in porous-silica low-dielectric-constant films by infrared spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Takada, Syozo; Hata, Nobuhiro; Seino, Yutaka; Fujii, Nobutoshi; Kikkawa, Takamaro

    2005-06-01

    Porous-silica low-dielectric-constant (low-k) films were prepared using a sol-gel method based on the self-assembly of surfactant templates. No change in the refractive index at 633 nm nor in the infrared-absorption intensities of C-H and O-H stretching vibrations at around 2900 and 3400cm-1 of porous-silica low-k films were observed after annealing at each temperature from 523 to 723 K. On the other hand, the Young's elastic modulus and hardness increased with the increase of annealing temperature. The structure in the complex dielectric function of porous-silica low-k films observed in between 1000 and 1400cm-1 is assigned as the asymmetric stretching vibration mode of the Si-O-Si bond. By applying the effective-medium theory by Bruggeman to the experimental results from infrared spectroscopic ellipsometry, we analyzed the skeletal silica structures. The peak positions of transverse (ωTO) and longitudinal (ωLO) vibration modes for Si-O-Si network in the silica skeleton of porous-silica films changed from 1061 to 1068cm-1 and from 1219 to 1232cm-1, respectively, with the annealing temperature. It is shown that the ωLO2/ωTO2 of skeletal silica correlates with Young's elastic modulus of porous-silica low-k films.

  3. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  4. Biochemical and spectroscopic characterization of the catalytic domain of MMP16 (cdMMP16).

    PubMed

    Meng, Fan; Yang, Hao; Aitha, Mahesh; George, Sam; Tierney, David L; Crowder, Michael W

    2016-07-01

    Membrane-bound matrix metalloproteinase 16 (MMP16/MT3-MMP) is considered a drug target due to its role(s) in disease processes such as cancer and inflammation. Biochemical characterization of MMP16 is critical for developing new generation MMP inhibitors (MMPi), which exhibit high efficacies and selectivities. Herein, a modified over-expression and purification protocol was used to prepare the catalytic domain of MMP16 (cdMMP16). The resulting recombinant enzyme exhibited steady-state kinetic constants of K m = 10.6 ± 0.7 μM and k cat = 1.14 ± 0.02 s(-1), when using FS-6 as substrate, and the enzyme bound 1.8 ± 0.1 eq of Zn(II). The enzymatic activity of cdMMP16 is salt concentration-dependent, and cdMMP16 exhibits autoproteolytic activity under certain conditions, which may be related to an in vivo regulatory mechanism of MMP16 and of other membrane-type MMPs (MT-MMPs). Co(II)-substituted analogs (Co2- and ZnCo) of cdMMP16 were prepared and characterized using several spectroscopic techniques, such as UV-Vis, (1)H NMR, and EXAFS spectroscopies. A well-characterized cdMMP16 is now available for future inhibitor screening efforts. PMID:27229514

  5. Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y

    SciTech Connect

    Ogino, Isao; Gates, Bruce C.

    2010-01-12

    A mononuclear ruthenium complex anchored to dealuminated zeolite HY, Ru(acac)(C{sub 2}H{sub 4}){sup 2+} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sup 2}{sup -}), was characterized in flow reactors by transient infrared (IR) spectroscopy and Ru K edge X-ray absorption spectroscopy. The combined results show how the supported complex was converted into a form that catalyzes ethene conversion to butene. The formation of these species resulted from the removal of acac ligands from the ruthenium (as shown by IR and extended X-ray absorption fine structure (EXAFS) spectra) and the simultaneous decrease in the symmetry of the ruthenium complex, with the ruthenium remaining mononuclear and its oxidation state remaining essentially unchanged (as shown by EXAFS and X-ray absorption near-edge structure spectra). The removal of anionic acac ligands from the ruthenium was evidently compensated by the bonding of other anionic ligands, such as hydride from H2 in the feed stream, to form species suggested to be Ru(H)(C{sub 2}H{sub 4}){sub 2}{sup +}, which is coordinatively unsaturated and inferred to react with ethene, leading to the observed formation of butene in a catalytic process.

  6. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  7. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  8. [Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421].

    PubMed

    Chakdar, N; Sakha, S; Pabbi, S

    2014-01-01

    Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as a-and (3 subunits by SDS-PAGE and MALDI-TOE HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that alpha and beta subunits contained one and two phycocyanobilin groups as chromophores, respectively. PMID:25272755

  9. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  10. Characterization of SiGe/Ge heterostructures and graded layers using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Croke, E. T.; Wang, K. L.; Heyd, A. R.; Alterovitz, S. A.; Lee, C. H.

    1996-01-01

    Variable angle spectroscopic ellipsometry (VASE) has been used to characterize Si(x)Ge(1-x)/Ge superlattices (SLs) grown on Ge substrates and thick Si(x)Ge(1-x)/Ge heterostructures grown on Si substrates. Our VASE analysis yielded the thicknesses and alloy compositions of all layers within the optical penetration depth of the surface. In addition, strain effects were observed in the VASE results for layers under both compressive and tensile strain. Results for the SL structures were found to be in close agreement with high resolution x-ray diffraction measurements made on the same samples. The VASE analysis has been upgraded to characterize linearly graded Si(x)Ge(1-x) buffer layers. The algorithm has been used to determine the total thickness of the buffer layer along with the start and end alloy composition by breaking the total thickness into many (typically more than 20) equal layers. Our ellipsometric results for 1 (mu)m buffer layers graded in the ranges 0.7 less than or = x less than or = 1.0, and 0.5 less than or = x less than or = 1.0 are presented, and compare favorably with the nominal values.

  11. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    SciTech Connect

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg; Seo, D. M.; Sommer, Roger D.; Young, Victor G.; Henderson, Wesley A.

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation of electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.

  12. Chemical, spectroscopic characterization, DFT studies and antibacterial activities in vitro of a new gold(I) complex with rimantadine.

    PubMed

    Sucena, Suelen F; Paiva, Raphael E F; Abbehausen, Camilla; Mattos, Ives B; Lancellotti, Marcelo; Formiga, André L B; Corbi, Pedro P

    2012-04-01

    A novel gold(I) complex with rimantadine (RTD) was obtained and structurally characterized by a set of chemical and spectroscopic analysis. 1H, 13C and 15N nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic measurements suggest coordination of the ligand to Au(I) through the N atom of the ethanamine group. Theoretical (DFT) calculations confirmed the IR assignments and permit proposing an optimized geometry for the complex. The gold(I)-rimantadine complex (Au-RTD) is soluble in methanol, ethanol, dimethylsulfoxide, acetone and acetonitrile. The preliminary kinetic studies based on UV-vis spectroscopic measurements indicate the stability of the compound in solution. Antibacterial activities of the complex were evaluated by an antibiogram assay. The Au-RTD complex showed an effective in vitro antibacterial activity against the Pseudomonas aeruginosa, Escherichia coli (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. PMID:22257715

  13. Spectroscopic characterization of Er-doped KPb 2Cl 5 laser crystals

    NASA Astrophysics Data System (ADS)

    Jenkins, N. W.; Bowman, S. R.; O'Connor, S.; Searles, S. K.; Ganem, Joseph

    2003-06-01

    A discussion of the spectroscopic properties of the low-phonon energy laser host material potassium lead chloride, KPb 2Cl 5, doped with trivalent erbium is presented. In this paper we present room temperature spectroscopic measurements and subsequent analysis based on the Judd-Ofelt model. Additionally, Stark level energies of the Er 3+ ions in the crystal were determined from spectroscopic measurements performed at cryogenic temperatures.

  14. Raman Spectroscopic Characterization of the Feldspars: Implications for Surface Mineral Characterization in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Freeman, J. J.; Wang, Alian; Kuebler, K. E.; Haskin, L. A.

    2003-01-01

    The availability in the last decade of improved Raman instrumentation using small, stable, intense lasers, sensitive CCD array detectors, and advanced fast grating systems enabled us to develop the Mars Microbeam Raman Spectrometer (MMRS), a field-portable Raman spectrometer with precision and accuracy capable of identifying minerals and their different compositions. For example, we can determine Mg cation ratios in pyroxenes and olivines to +/-0.1 on the basis of Raman peak positions. Feldspar is another major mineral formed in igneous systems whose characterization is important for determining rock petrogenesis and alteration. From their Raman spectral pattern, feldspars can be readily distinguished from ortho- and chain-silicates and from other tecto-silicates such as quartz and zeolites. We show here how well Raman spectral analysis can distinguish among members within the feldspar group.

  15. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  16. Optical Properties of CuInSe2 Bulk Material Characterized by a Fixed Polarizer-Rotating Analyzer Spectroscopic Ellipsometer

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. L.; Lachab, M.; Zouaoui, A.; Alhamed, M.; Llinares, C.; Peyrade, J. P.; Galibert, J.

    1997-03-01

    In the present paper, we have investigated the optical properties of CuInSe2 single and polycrystals using a broad band fixed polarizer-rotating analyzer spectroscopic ellipsometer (RAE) in the spectral range 250 to 1700 nm. The wavelength dependence of CuInSe2 optical constants was studied assuming a two-phase system: the ambient medium and the sample. We have determined interband transition energies near and above the bandgap by a detailed analysis of the absorption spectrum and through the third joint-density-of-states (JDOS) derivative computation. Measurements were carried out on nearly-stoichiometric and In-rich CuInSe2 substrates.

  17. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    2005-03-16

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  18. Spectroscopic characterization of the metal-binding sites in the periplasmic metal-sensor domain of CnrX from Cupriavidus metallidurans CH34.

    PubMed

    Trepreau, Juliette; de Rosny, Eve; Duboc, Carole; Sarret, Géraldine; Petit-Hartlein, Isabelle; Maillard, Antoine P; Imberty, Anne; Proux, Olivier; Covès, Jacques

    2011-10-25

    CnrX, the dimeric metal sensor of the three-protein transmembrane signal transduction complex CnrYXH of Cupriavidus metallidurans CH34, contains one metal-binding site per monomer. Both Ni and Co elicit a biological response and bind the protein in a 3N2O1S coordination sphere with a nearly identical octahedral geometry as shown by the X-ray structure of CnrXs, the soluble domain of CnrX. However, in solution CnrXs is titrated by 4 Co-equiv and exhibits an unexpected intense band at 384 nm that was detected neither by single-crystal spectroscopy nor under anaerobiosis. The data from a combination of spectroscopic techniques (spectrophotometry, electron paramagnetic resonance, X-ray absorption spectroscopy) showed that two sites correspond to those identified by crystallography. The two extra binding sites accommodate Co(II) in an octahedral geometry in the absence of oxygen and are occupied in air by a mixture of low-spin Co(II) as well as EPR-silent Co(III). These extra sites, located at the N-terminus of the protein, are believed to participate to the formation of peroxo-bridged dimers. Accordingly, we hypothesize that the intense band at 384 nm relies on the formation of a binuclear μ-peroxo Co(III) complex. These metal binding sites are not physiologically relevant since they are not detected in full-length NccX, the closest homologue of CnrX. X-ray absorption spectroscopy demonstrates that NccX stabilizes Co(II) in two-binding sites similar to those characterized by crystallography in its soluble counterpart. Nevertheless, the original spectroscopic properties of the extra Co-binding sites are of interest because they are susceptible to be detected in other Co-bound proteins. PMID:21942751

  19. Spectroscopic characterization of high-energy and high fluence rate photon beams

    NASA Astrophysics Data System (ADS)

    Bartol, Laura J.

    High-energy, high fluence rate photon sources are used in radiation oncology for the treatment of a variety of disease sites. Common dosimetry methods for characterizing these sources use energy-integrating devices; however, the most descriptive characterization of these sources are performed with devices that preserve the energy-specific information in the source output. This work used Monte-Carlo- (MC-) and measurement-based spectroscopic methods to characterize two therapeutic-level megavoltage photon sources. MC simulations were performed using the MCNP5 transport code and measurements were performed with a Compton-scattering (CS) technique. Because MC was used extensively in this work, some general MCNP5 investigations were performed to benchmark the techniques used. Limitations in the advanced variance reduction techniques, Doppler-broadening model, and use of phase space files were investigated. Based on the results of these investigations, recommendations were made for using each technique. The validity of the CS technique for use with megavoltage systems was demonstrated using MC simulations of a 6 MV linear accelerator field and measurements of a high dose rate 192Ir source. Following these initial demonstrations, the spectrum of a 60Co teletherapy unit was characterized. Simulations were performed to determine the spectrum's sensitivity to the source model. Multiple measurements were completed using a reverse-electrode germanium (REGe) detector with the CS spectrometry technique. The CS spectra were corrected for detector response and the CS geometry using a novel detector response function that was calculated using MCNP5. The detector response was unfolded using the Gold deconvolution method. Comparisons of the simulated and measured spectra showed agreement in terms of the peak positions, mean spectrum energy, and relative fluences under specific portions of the spectra. The spectrum of a 6 MV photon field from a Varian Clinac iX linear accelerator was

  20. Characterization of intestinal absorption of mizoribine mediated by concentrative nucleoside transporters in rats.

    PubMed

    Mori, Nobuhiro; Yokooji, Tomoharu; Kamio, Yoshihiro; Murakami, Teruo

    2008-05-31

    Mizoribine, an imidazole nucleoside, is an inhibitor of purine synthesis and has been used as an orally available immunosuppressive agent in human renal transplantation. In the present study, the intestinal absorption of mizoribine was characterized by examining the contribution of concentrative nucleoside transporters (CNT1, CNT2) in rats. When mizoribine was administered orally in conscious rats, the bioavailability of mizoribine estimated by urinary excretion percentage of unchanged mizoribine was a dose dependent: 53.1+/-6.0% at 5 mg/kg and 24.0+/-5.1% at 20 mg/kg. In in-situ loop studies, the disappearance rate, or absorption rate, of mizoribine from the intestinal lumen was comparable between 1 and 5 mg/kg, but significantly lower at 25 mg/kg. Coadministration of adenosine (a substrate of both CNT1 and CNT2), thymidine (a CNT1 substrate) and inosine (a CNT2 substrate) significantly suppressed the intestinal mizoribine absorption, depending on the nucleoside concentrations coadministered. Gemcitabine (a pyrimidine nucleoside analogue, a CNT1 substrate) and ribavirin (a purine nucleoside analog, a CNT2 substrate) also significantly suppressed the mizoribine intestinal absorption. Bile salts such as sodium cholate and sodium glycocholate (10 mM) also significantly suppressed the intestinal mizoribine absorption, but not ribavirin absorption. Mizoribine is an amphoteric compound, however, the suppression of intestinal absorption by bile salts was not ascribed to the electrostatic interaction or micellar formation between mizoribine and bile salts. In conclusion, the intestinal absorption of mizoribine is mediated by CNT1 and CNT2, and nucleoside-derived drugs such as gemcitabine and ribavirin can suppress the intestinal absorption of mizoribine. Bile salts such as sodium glycocholate were also found to cause interaction with mizoribine. PMID:18371949

  1. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  2. Spectroscopic and Electrochemical Characterization of Nanostructured Optically-Transparent Carbon Electrodes

    PubMed Central

    Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational the selection of the conditions to fabricate optically-transparent carbon electrodes (OTCE) with specific electro-optical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry (VASE). Such data was complemented with topography and roughness (obtained by AFM), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. PMID:23595607

  3. Spectroscopic ellipsometric characterization of Si/Si(1-x)Ge(x) strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Yao, H.; Woollam, J. A.; Wang, P. J.; Tejwani, M. J.; Alterovitz, S. A.

    1993-01-01

    Spectroscopic ellipsometry (SE) was employed to characterize Si/Si(1-x)Ge(x) strained-layer superlattices. An algorithm was developed, using the available optical constants measured at a number of fixed x values of Ge composition, to compute the dielectric function spectrum of Si(1-x)Ge(x) at an arbitrary x value in the spectral range 17 to 5.6 eV. The ellipsometrically determined superlattice thicknesses and alloy compositional fractions were in excellent agreement with results from high-resolution x ray diffraction studies. The silicon surfaces of the superlattices were subjected to a 9:1 HF cleaning prior to the SE measurements. The HF solution removed silicon oxides on the semiconductor surface, and terminated the Si surface with hydrogen-silicon bonds, which were monitored over a period of several weeks, after the HF cleaning, by SE measurements. An equivalent dielectric layer model was established to describe the hydrogen-terminated Si surface layer. The passivated Si surface remained unchanged for greater than 2 h, and very little surface oxidation took place even over 3 to 4 days.

  4. Growth and Raman spectroscopic characterization of As 4S 4 (II) single crystals

    NASA Astrophysics Data System (ADS)

    Kyono, Atsushi

    2010-11-01

    As described by Kutoglu (1976 [16]), single crystals of As 4S 4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS 2 solvent. Results show that single crystals of the As 4S 4 (II) phase were obtained reproducibly through the dissolution-recrystallization process. Single crystals of As 4S 4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As 4S 4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å 3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.

  5. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis.

    PubMed

    Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano

    2016-09-01

    Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. PMID:27432883

  6. High-k dielectric characterization by VUV spectroscopic ellipsometry and X-ray reflection

    NASA Astrophysics Data System (ADS)

    Boher, P.; Evrard, P.; Piel, J. P.; Defranoux, C.; Fouere, J. C.; Bellandi, E.; Bender, H.

    2003-09-01

    In this study, we use vacuum UV spectroscopic ellipsometry (VUVSE) to characterize new high dielectric materials. Indeed, all the candidates for high k dielectrics become strongly absorbent when the wavelength is reduced down to 140nm. So, the correlation between thickness and refractive index is reduced in the VUV range and much more precise structural information can be deduced. HfO2, Al2O3 and mixed HfAlOx layers have been studied with and without thin SiO2 oxide at the interface. X-ray reflectometry (XRR) has been used to measure precisely the layer thickness and roughness. The two techniques are included in the same automated metrology system dedicated to 300mm technology which is also presented. We show in particular that VUVSE can detect the crystalline character of the layers and their composition can be measured in addition to the layer thickness. Results are compared to those obtained by transmission electron microscopy (TEM), x-ray fluorescence analysis (XRF) and x-ray photoemission (XPS).

  7. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization.

    PubMed

    Hassanien, Reda; Al-Said, Said A Farha; Siller, Lidija; Little, Ross; Wright, Nicholas G; Houlton, Andrew; Horrocks, Benjamin R

    2012-02-24

    DNA strands have been used as templates for the self-assembly of smooth and conductive cuprous oxide (Cu₂O) nanowires of diameter 12-23 nm and whose length is determined by the template (16 μm for λ-DNA). A combination of spectroscopic, diffraction and probe microscopy techniques showed that these nanowires comprise single crystallites of Cu₂O bound to the DNA molecules which fused together over time in a process analogous to Ostwald ripening, but driven by the free energy of interaction with the template as well as the surface tension. Electrical characterization of the nanowires by a non-contact method, scanned conductance microscopy and by contact mode conductive AFM showed the wires are electrically conductive. The conductivity estimated from the AFM cross section and the zero-bias conductance in conductive AFM experiments was 2.2-3.3 S cm⁻¹. These Cu₂O nanowires are amongst the thinnest reported and show evidence of strong quantum confinement in electronic spectra. PMID:22261265

  8. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  9. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    PubMed

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment. PMID

  10. First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics

    NASA Astrophysics Data System (ADS)

    Toci, Guido; Pirri, Angela; Li, Jiang; Xie, Tengfei; Pan, Yubai; Nikl, Martin; Babin, Vladimir; Beitlerová, Alena; Vannini, Matteo

    2016-03-01

    We present the optical and spectroscopic characterization and the first example of laser operation of Yb doped LuYAG ceramics, with two different compositions, namely (Lu0.25Y0.75)3Al5O12 and (Lu0.50Y0.50)3Al5O12, both with 15% Yb doping. Ceramic samples were prepared by reactive sintering from high purity α-Al2O3, Lu2O3, Y2O3, Yb2O3 powders using Tetraethoxysilane (TEOS) and MgO as sintering aids. After ball milling, the slurry was dried, uniaxially pressed into 20 mm diameter pellets at 20 MPa, and then cold isostatically pressed at 200 MPa. Sintering was conducted at 1850°C for 30 h under vacuum, followed by annealing in air (1500 °C, 10 h) to remove the oxygen vacancies. Laser tests were carried out in a laser cavity end pumped by a fiber coupled diode laser emitting at 936 nm. A slope efficiency as high as 65.2% with a maximum output power of 8.7 W (in quasi-CW pumping conditions) was obtained from the sample with composition (Lu0.25Y0.75)3Al5O12, whereas the sample with composition (Lu0.50Y0.50)3Al5O12 had a maximum slope efficiency of 49.5% (due to the higher scattering losses), and 6.7 W of maximum output power. Furthermore we characterized the tuning range of the two samples.

  11. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen

    PubMed Central

    Bağcıoğlu, Murat; Zimmermann, Boris; Kohler, Achim

    2015-01-01

    Background Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. Methodology Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. Results The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of

  12. Sensitivity analysis for OMOG and EUV photomasks characterized by UV-NIR spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Richter, U.; Mikolajick, T.

    2013-09-01

    We investigated the potentials, applicability and advantages of spectroscopic ellipsometry (SE) for the characterization of high-end photomasks. The SE measurements were done in the ultraviolet-near infrared (UVNIR) wavelength range from 300 nm to 980 nm, at angle of incidences (AOI) between 10 and 70° and with a microspot size of 45 x 10 μm2 (AOI=70°). The measured Ψ and 𝛥 spectra were modeled using the rigorous coupled wave analysis (RCWA) to determine the structural parameters of a periodic array, i.e. the pitch and critical dimension (CD). Two different types of industrial photomasks consisting of line/space structures were evaluated, the reflecting extreme ultraviolet (EUV) and the transmitting opaque MoSi on glass (OMOG) mask. The Ψ and 𝛥 spectra of both masks show characteristic differences, which were related to the Rayleigh singularities and the missing transmission diffraction in the EUV mask. In the second part of the paper, a simulation based sensitivity analysis of the Fourier coefficients α and β is presented, which is used to define the required measurement precision to detect a CD deviation of 1%. This study was done for both mask types to investigate the influence of the stack transmission. It was found that sensitivities to CD variations are comparable for OMOG and EUV masks. For both masks, the highest sensitivities appear close to the Rayleigh singularities and significantly increase at very low AOI. To detect a 1% CD deviation for pitches below 150 nm a measurement precision in the order of 0.01 is required. This measurement precision can be realized with advanced optical hardware. It is concluded that UV-NIR ellipsometry is qualified to characterize photomasks down to the 13 nm technology node in 2020.

  13. Structural and spectroscopic characterization of a thiosemicarbazidatodioxouranium(VI) complex: a combined experimental and DFT study.

    PubMed

    Şahin, Musa; Özdemir, Namık; Bal-Demirci, Tülay; Ülküseven, Bahri; Dinçer, Muharrem; Soylu, Mustafa Serkan

    2015-01-25

    The title thiosemicarbazidatodioxouranium(VI) compound was synthesized and characterized by FT-IR, NMR and UV-vis spectroscopies. Solid-state structure of the compound was confirmed by X-ray crystallography. Besides, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) (1)H and (13)C NMR chemical shift values of the compound in the ground state have been calculated using the density functional theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set for the C, H, Cl, N, O, S atoms and SDD pseudo-potential for the U atom, and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the compound have been predicted at same level. As a result, a good agreement is obtained between the experimental and theoretical ones. PMID:25168237

  14. EPR spectroscopic characterization of persistent germyl-substituted Pb(III)- and Sn(III)-radicals.

    PubMed

    Kurzbach, Dennis; Yao, Shenglai; Hinderberger, Dariush; Klinkhammer, Karl W

    2010-07-28

    In this report we present the synthesis and the detailed electron paramagnetic resonance (EPR) spectroscopic characterization of novel trivalent lead- and tin-based radicals comprising sterically demanding germyl substituents. The investigated radicals are derived from the recently reported trihypersilyl-substituted tetryl radicals *PbHyp3 and *SnHyp3. The tetryl radicals *Pb(Ge(SiMe3)3)3 (8), *Pb(Ge(SiMe3)3)2Si(SiMe3)3 (9), *PbGe(SiMe3)3(Si(SiMe3)3)2 (10), and *Sn(Ge(SiMe3)3)3 (11) show substitution patterns derived from stepwise (9, 10) or complete (8, 11) substitution of hypersilyl groups (Hyp = Si(SiMe3)3) in *PbHyp3 and *SnHyp3 by homologous hypergermyl groups (Hge = Ge(SiMe3)3). They were generated through oxidation of the corresponding potassium tetranides KPbR3 and KSnR3 (R = Hyp, Hge), which in turn had been synthesized employing nucleophilic addition of KHyp or KHge to PbHyp2 or to the novel tetrylenes PbHge2 (1) and SnHge2 (12). The gained EPR spectroscopic data give insights into the influence of the substitution pattern on the geometric and electronic properties of the lead-centered species. With an increasing number of germyl substituents, the spin-orbit coupling to the central atom increases resulting in larger g(iso)-values and larger g-anisotropies while the 209Pb hyperfine splitting constants A(iso) decrease. These decreasing splitting constants are indicative of a diminished s-character of the singly occupied molecular orbital (SOMO) and to a molecular geometry running from slightly pyramidal to almost planar. Interestingly, already one germyl substituent (for radical 10) dominates most of the mentioned properties. For stannyl radical 11 a similar trend is seen for the spin-orbit coupling, while the (117/119)Sn hyperfine splittings unexpectedly increase from SnHyp3 to SnHge3. PMID:20532294

  15. New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared

    NASA Astrophysics Data System (ADS)

    Terrien, Ryan C.

    M dwarfs are the least massive and most common stars in the Galaxy. Due to their prevalence and long lifetimes, these diminutive stars play an outsize role in several fields of astronomical study. In particular, it is now known that they commonly host planetary systems, and may be the most common hosts of Earth-size, rocky planets in the habitable zone. A comprehensive understanding of M dwarfs is crucial for understanding the origins and conditions of their planetary systems, including their potential habitability. Such an understanding depends on methods for precisely and accurately measuring their properties. These tools have broader applicability as well, underlying the use of M dwarfs as fossils of Galactic evolution, and helping to constrain the structures and interiors of these stars. The measurement of the fundamental parameters of M dwarfs is encumbered by their spectral complexity. Unlike stars of spectral type F, G, or K that are similar to our G type Sun, whose spectra are dominated by continuum emission and atomic features, the cool atmospheres of M dwarfs are dominated by complex molecular absorption. Another challenge for studies of M dwarfs is that these stars are optically faint, emitting much of their radiation in the near-infrared (NIR). The availability and performance of NIR spectrographs have lagged behind those of optical spectrographs due to the challenges of producing low-noise, high-sensitivity NIR detector arrays, which have only recently become available. This thesis discusses two related lines of work that address these challenges, motivated by the development of the Habitable Zone Planet Finder (HPF), a NIR radial velocity (RV) spectrograph under development at Penn State that will search for and confirm planets around nearby M dwarfs. This work includes the development and application of new NIR spectroscopic techniques for characterizing M dwarfs, and the development and optimization of new NIR instrumentation for HPF. The first line

  16. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted

  17. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  18. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    SciTech Connect

    Lezama-pacheco, Juan S; Conradson, Steven D; Clark, David L

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  19. Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals

    NASA Astrophysics Data System (ADS)

    Peppers, J.; Martyshkin, D. V.; Fedorov, V. V.; Mirov, S. B.

    2014-02-01

    Cobalt doped II-VI wide band semiconductors (e.g. ZnSe, ZnS, CdSe) are promising media for infrared (IR) laser applications. They could be utilized as effective passive Q-switches for cavities of Alexandrite as well as Nd and Er lasers operating over 0.7-0.8, 1.3-1.6, and ~2.8 μm spectral ranges. We report spectroscopic characterization of Co:ZnSe and Co:ZnS crystals. Absorption cross-sections were measured for 4A2(F) → 4T1(P), 4A2(F) → 4T1(F), and 4A2(F) → 4T2(F) transitions with maximum absorption at 768(726), 1615(1500), 2690(2740) nm for ZnSe(ZnS) crystals, respectively. The calculated absorption cross-sections of the above transitions were estimated to be 64(56)×1019, 7.5(7.8)×1019, and 0.52(0.49)×1019 cm2 for ZnSe(ZnS) crystal hosts. In addition to the above applications the cobalt ions could be utilized for excitation of Fe2+ ions via resonance energy transfer process. Tunable room temperature lasing of Fe 2+ doped binary and ternary chalcogenides has been successfully demonstrated over 3.5-6 μm spectral range. However, II-VI lasers based on Fe2+ active ions don't feature convenient commercially available pump sources (e.g. some Fe doped crystal hosts require pump wavelengths longer than 3 μm). Therefore, the process of energy transfer from Co2+ to Fe2+ ions could enable utilization of commercially available visible and near-infrared pump sources. We report a spectroscopic characterization of iron-cobalt co-doped ZnS and ZnSe crystals over 14-300K temperature range. Mid-IR laser oscillation at 3.9 μm(3.6 μm) via energy transfer in the Co:Fe:ZnSe (Co:Fe:ZnS) co-doped crystals was demonstrated under cobalt excitation at 4A2(F) → 4T1(P) (~0.7μm) and 4A2(F) → 4T1(F) (~1.56 μm) transitions.

  20. Characterisation of bhringaraj and guduchi herb by ICP-MS analysis, optical absorption, infrared and EPR spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Reddy, N. C. G.; Ahmad, Adeel; Reddy, G. Siva; Rao, P. Sambasiva; Reddy, B. Jagannatha; Frost, R. L.

    2008-11-01

    Leaves of bhringaraj and guduchi herb of Kadapa district of Andhra Pradesh, India, are dried and powdered. ICP-MS analysis of samples indicates that copper is present in both the samples. An EPR study of guduchi sample also confirms the presence of Fe(III) whereas Eclipta alba confirms the presence of Fe(III), Mn(II) and Cu(II). Optical absorption spectrum of guduchi indicates that Cu(II) is present in rhombically distorted octahedral environment. NIR and IR results are due to carbonate fundamentals.

  1. Chemical Characterization of Riverine Dissolved Organic Matter Using a Combination of Spectroscopic and Pyrolytic Methods

    NASA Astrophysics Data System (ADS)

    Templier, J.; Derenne, S.

    2006-12-01

    It is now well established that riverine dissolved organic matter (DOM) play a major role in environmental processes. However natural organic matter exhibit different properties depending on their sources and the fractions considered. As a result chemical characterization of DOM has appeared essential for a better understanding of their reactivity. The purpose of this work was to characterize all of the DOM at molecular level, including the non-hydrolysable fraction, which is a major part of this OM. To this aim a new analytical approach had to be considered. A combination of spectroscopic and pyrolytic methods has been applied to various fractions of DOM originating from different catchments (French and Amazonian rivers). The fractions were termed hydrophilic, transphilic and colloids according to the IHSS fractionation procedure, and account for at least 70% of the total dissolved organic carbon. Solid state 13C NMR and FTIR afford information on the nature and relative abundance of the chemical functions occurring in macromolecules. Differential thermogravimetric analysis allows to determine the thermal behaviour of the studied material and hence to optimize analytical pyrolysis conditions. Curie point pyrolysis combined to gas chromatography and mass spectrometry leads to identification of characteristic pyrolysis products, some of them being specific of a macromolecular source. Additional information can be provided by thermochemolysis with tetramethylammonium hydroxide (TMAH). TMAH was shown to allow an increase in the efficiency of the cracking of macromolecular structures and an enhancement of the detection of the polar pyrolysis products especially due to methylation of the alcohol, phenol and acid groups. The results obtained have established the importance of terrestrial contribution to DOM. Hydrophobic fractions mainly originate from lignin-derived units, whereas transphilic fractions mostly contain cellulose units together with lignin derived ones and

  2. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  3. Tiny peaks vs mega backgrounds: a general spectroscopic method with applications in resonant Raman scattering and atmospheric absorptions.

    PubMed

    Auguié, Baptiste; Reigue, Antoine; Le Ru, Eric C; Etchegoin, Pablo G

    2012-09-18

    A simple method using standard spectrometers with charge-coupled device (CCD) detectors is described to routinely measure background-corrected spectra in situations where the signal is composed of weak spectral features (such as Raman peaks or absorption lines) engulfed in a much stronger (by as much as ∼10(5)) broad background. The principle of the method is to subtract the dominant fixed-structure noise and obtain a shot-noise limited spectrum. The final noise level can therefore be reduced as desired by sufficient integration time. The method requires multiple shifts of the diffraction gratings to extract the pixel-dependent noise structure, which is then used as a flat-field correction. An original peak-retrieval procedure is proposed, demonstrating accurate determination of peak lineshapes and linewidths and robustness on practical examples where conventional methods would not be applicable. Examples are discussed to illustrate the potential of the technique to perform routine resonant Raman measurements of fluorescent dyes with high quantum yield, using conventional Raman systems. The method can equally be applied to other situations where small features are masked by a broad overwhelming background. An explicit example is given with the measurement of weak absorption lines in atmospheric gases. PMID:22894881

  4. PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW

    SciTech Connect

    Fox, Andrew J.; Bordoloi, Rongmon; Hernandez, Svea; Tumlinson, Jason; Savage, Blair D.; Wakker, Bart P.; Lockman, Felix J.; Bland-Hawthorn, Joss; Kim, Tae-Sun; Benjamin, Robert A.

    2015-01-20

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (ℓ, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v {sub LSR} = –235 and +250 km s{sup –1}, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of ≳900 km s{sup –1} and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.

  5. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  6. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates.

    PubMed

    Feigelson, Boris N; Bermudez, Victor M; Hite, Jennifer K; Robinson, Zachary R; Wheeler, Virginia D; Sridhara, Karthik; Hernández, Sandra C

    2015-02-28

    Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer. PMID:25640166

  7. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates

    NASA Astrophysics Data System (ADS)

    Feigelson, Boris N.; Bermudez, Victor M.; Hite, Jennifer K.; Robinson, Zachary R.; Wheeler, Virginia D.; Sridhara, Karthik; Hernández, Sandra C.

    2015-02-01

    Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer.

  8. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  9. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Robert A.; Young, Cora J.

    2016-01-01

    The majority of brown carbon (BrC) in atmospheric aerosols is derived from biomass burning (BB) and is primarily composed of extremely low volatility organic carbons. We use two chromatographic methods to compare the contribution of large and small light-absorbing BrC components in aged BB aerosols with UV-vis absorbance detection: (1) size exclusion chromatography (SEC) and (2) reverse phase high-performance liquid chromatography. We observe no evidence of small molecule absorbers. Most BrC absorption arises from large molecular weight components (>1000 amu). This suggests that although small molecules may contribute to BrC absorption near the BB source, analyses of aerosol extracts should use methods selective to large molecular weight compounds because these species may be responsible for long-term BrC absorption. Further characterization with electrospray ionization mass spectrometry (MS) coupled to SEC demonstrates an underestimation of the molecular size determined through MS as compared to SEC.

  10. Probing the Fermi Bubbles in Ultraviolet Absorption: A Spectroscopic Signature of the Milky Way's Biconical Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Fox, Andrew J.; Bordoloi, Rongmon; Savage, Blair D.; Lockman, Felix J.; Jenkins, Edward B.; Wakker, Bart P.; Bland-Hawthorn, Joss; Hernandez, Svea; Kim, Tae-Sun; Benjamin, Robert A.; Bowen, David V.; Tumlinson, Jason

    2015-01-01

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (l, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v LSR = -235 and +250 km s-1, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of gsim900 km s-1 and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles. Based on observations taken under program 13448 of the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, and under program 14B-299 of the NRAO Green Bank Telescope, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  11. Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin

    NASA Astrophysics Data System (ADS)

    Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.

    2015-03-01

    Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.

  12. Spectroscopic Characterization of Dust-Fall Samples Collected from Greater Cairo, Egypt.

    PubMed

    Shaltout, Abdallah A; Allam, Mousa A; Mostafa, Nasser Y; Heiba, Zein K

    2016-04-01

    This work aimed to characterize dust-fall samples collected from street's trees in Greater Cairo (GC), Egypt, and its surroundings by different spectroscopic techniques, namely; X-ray diffraction (XRD), attenuated total-reflection Fourier transform infrared (ATR-FTIR), particle-size analyzer, and scanning electron microscopy (SEM) combined with energy dispersive X-ray measurements. Samples were collected from 19 different locations inside and outside of GC. Quantitative phase analysis of the dust-fall samples was performed using the Rietveld method. Results showed that the most frequently observed phases in the dust-fall samples were calcite (CaCO3), dolomite (CaMg(CO3)2), gypsum (CaSO4·2H2O), and quartz (SiO2) with average concentrations of 39 ± 16, 8 ± 7, 22 ± 13, and 33 ± 14 wt%, respectively. The occurrence of these constituents referred to a combination of different anthropogenic and natural sources. The ATR-FTIR results are in good agreements with XRD data of the different observed phases. Based on the SEM and particle-size measurements, quantitative determination of the particle-size distribution was described. It was found that not only the large-sized particles are deposited but also the small-sized ones (PM10 and PM2.5). In addition, the particle size of the collected dust-fall samples varied from 0.1 to 200 µm with an average particle size of 17.36 µm; however, the particle size ranged from 2.5 to 40 µm predominated in all of the dust-fall samples. PMID:26710766

  13. Elemental and spectroscopic characterization of fractions of an acidic extract of oil sands process water.

    PubMed

    Jones, D; Scarlett, A G; West, C E; Frank, R A; Gieleciak, R; Hager, D; Pureveen, J; Tegelaar, E; Rowland, S J

    2013-11-01

    'Naphthenic acids' (NAs) in petroleum produced water and oil sands process water (OSPW), have been implicated in toxicological effects. However, many are not well characterized. A method for fractionation of NAs of an OSPW was used herein and a multi-method characterization of the fractions conducted. The unfractionated OSPW acidic extract was characterized by elemental analysis, electrospray ionization-Orbitrap-mass spectrometry (ESI-MS), and an esterified extract by Fourier Transform infrared (FTIR) and ultraviolet-visible (UV) absorption spectroscopy and by comprehensive multidimensional gas chromatography-MS (GCxGC-MS). Methyl esters were fractionated by argentation solid phase extraction (Ag(+) SPE) and fractions eluting with: hexane; diethyl ether: hexane and diethyl ether, examined. Each was weighed, examined by elemental analysis, FTIR, UV, GC-MS and GCxGC-MS (both nominal and high resolution MS). The ether fraction, containing sulfur, was also examined by GCxGC-sulfur chemiluminescence detection (GCxGC-SCD). The major ions detected by ESI-MS in the OSPW extract were assigned to alicyclic and aromatic 'O2' acids; sulfur was also present. Components recovered by Ag(+) SPE were also methyl esters of alicyclic and aromatic acids; these contained little sulfur or nitrogen. FTIR spectra showed that hydroxy acids and sulfoxides were absent or minor. UV spectra, along with the C/H ratio, further confirmed the aromaticity of the hexane:ether eluate. The more minor ether eluate contained further aromatics and 1.5% sulfur. FTIR spectra indicated free carboxylic acids, in addition to esters. Four major sulfur compounds were detected by GCxGC-SCD. GCxGC-high resolution MS indicated these were methyl esters of C18 S-containing, diaromatics with ≥C3 carboxylic acid side chains. PMID:23856466

  14. In vitro characterization of the intestinal absorption of methylmercury using a Caco-2 cell model.

    PubMed

    Vázquez, Marta; Vélez, Dinoraz; Devesa, Vicenta

    2014-02-17

    Methylmercury (CH3Hg) is one of the forms of mercury found in food, particularly in seafood. Exposure to CH3Hg is associated with neurotoxic effects during development. In addition, methylmercury has been classified by the International Agency for Research on Cancer as a possible human carcinogen. Although the diet is known to be the main source of exposure, few studies have characterized the mechanisms involved in the absorption of this contaminant. The present study examines the absorption process using the Caco-2 cell line as a model of the intestinal epithelium. The results indicate that transport across the intestinal cell monolayer in an absorptive direction occurs mainly through passive transcellular diffusion. This mechanism coexists with carrier-mediated transcellular transport, which has an active component. The participation of H(+)- and Na(+)-dependent transport was observed. Inhibition tests point to the possible participation of amino acid transporters (B(0,+) system, L system, and/or y(+)L system) and organic anion transporters (OATs). Our study suggests the participation in CH3Hg absorption of transporters that have already been identified as being responsible for the transport of this species in other systems, although further studies are needed to confirm their participation in intestinal absorption. It should be noted that CH3Hg experiences important cellular acumulation (48-78%). Considering the toxic nature of this contaminant, this fact could affect intestinal epithelium function. PMID:24397474

  15. Tissue characterization with ballistic photons: counting scattering and/or absorption centres

    NASA Astrophysics Data System (ADS)

    Corral, F.; Strojnik, M.; Paez, G.

    2015-03-01

    We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

  16. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.

    PubMed

    Pollastri, Simone; D'Acapito, Francesco; Trapananti, Angela; Colantoni, Ivan; Andreozzi, Giovanni B; Gualtieri, Alessandro F

    2015-11-15

    Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves. PMID:26073382

  17. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  18. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  19. Synthesis, spectroscopic characterization and molecular modeling of a tetranuclear platinum(II) complex with thiazolidine-4-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Corbi, Pedro P.; Formiga, André L. B.; Bonk, Fábio A.; Quintão, Frederico A.; Ferraresi, Diego K. D.; Lustri, Wilton R.; Massabni, Antonio C.

    2012-07-01

    The synthesis, spectroscopic characterization and molecular modeling of a novel tetranuclear platinum(II) complex with thiazolidine-4-carboxylic acid (THC) are described. Elemental analysis is consistent with the composition PtCl2C4H7NO2S·H2O. Infrared (IR) spectroscopic results and solid-state 13C and 15N nuclear magnetic resonance (NMR) data indicate coordination of the ligand to Pt(II) through the nitrogen and sulfur atoms. The square planar geometry of the platinum(II) complex is completed by chlorine atoms. Density functional theory (DFT) suggests the formation of a tetrameric cluster as the most probable structure, where each THC molecule bridges between two metal centers. The compound is insoluble in water.

  20. Preparation, spectroscopic characterization and energy transfer investigation of iron-chromium diffusion co-doped ZnSe for mid-IR laser applications

    NASA Astrophysics Data System (ADS)

    Wang, XiangYong; Chen, Zhe; Zhang, Lianhan; Jiang, Benxue; Xu, Min; Hong, Jiaqi; Wang, Yaqi; Zhang, Peixiong; Zhang, Long; Hang, Yin

    2016-04-01

    The spectroscopic characterization and energy transfer mechanism of iron-chromium co-doped ZnSe polycrystalline (Cr,Fe:ZnSe) were reported with dimension of 15 mm × 15 mm × 2 mm obtained by controlled post-growth thermal diffusion method. The infrared absorption is characterized by a strong broad-band centered at 1770 nm which can be attributed to the only spin-allowed transition 5T2 → 5E within the 3d4 shell of Cr2+ ions. Photoluminescence spectrum shows a relatively strong broad emission band centered at 4.1 μm with a width of 0.8 μm (FWHM) under 1770 nm excitation at room temperature and reveals effective Cr2+ → Fe2+ energy transfer process. Room temperature photoluminescence decay about 8 μs was measured. All the results indicate that Cr,Fe:ZnSe could achieve laser operation at 3.7-4.5 μm via Cr2+ → Fe2+ energy transfer using a more convenient laser pump source in the near IR region.

  1. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase.

    PubMed

    Manesis, Anastasia C; Shafaat, Hannah S

    2015-08-17

    Nickel-containing enzymes are key players in global hydrogen, carbon dioxide, and methane cycles. Many of these enzymes rely on Ni(I) oxidation states in critical catalytic intermediates. However, due to the highly reactive nature of these species, their isolation within metalloenzymes has often proved elusive. In this report, we describe and characterize a model biological Ni(I) species that has been generated within the electron transfer protein, azurin. Replacement of the native copper cofactor with nickel is shown to preserve the redox activity of the protein. The Ni(II/I) couple is observed at -590 mV versus NHE, with an interfacial electron transfer rate of 70 s(-1). Chemical reduction of Ni(II)Az generates a stable species with strong absorption features at 350 nm and a highly anisotropic, axial EPR signal with principal g-values of 2.56 and 2.10. Density functional theory calculations provide insight into the electronic and geometric structure of the Ni(I) species, suggesting a trigonal planar coordination environment. The predicted spectroscopic features of this low-coordinate nickel site are in good agreement with the experimental data. Molecular orbital analysis suggests potential for both metal-centered and ligand-centered reactivity, highlighting the covalency of the metal-thiolate bond. Characterization of a stable Ni(I) species within a model protein has implications for understanding the mechanisms of complex enzymes, including acetyl coenzyme A synthase, and developing scaffolds for unique reactivity. PMID:26234790

  2. X-ray photoelectron and optical absorption spectroscopic studies on the dye chlorodiane blue, used as a carrier generation molecule in organic photoconductors

    SciTech Connect

    Pacansky, J.; Waltman, R.J.

    1992-07-01

    The dye chlorodiane blue, used as a carrier generation molecule in organic photoconductors, is characterized via optical absorption and X-ray photoelectron spectroscopy, and the results are interpreted on the basis of ab initio quantum mechanical molecular models. These data indicate that chlorodiane blue exists as azo-enol and hydrazone-quinone chemical structures and it is the hydrazone-quinone form that provides the higher xerographic gain in electrophotographic applications. Optimized geometries, atomic charges, and molecular orbital plots and energies are reported for both the azo-enol and hydrazone-quinone forms of chlorodiane blue. The two structural forms of the dye are experimentally distinguishable via both optical absorption and X-ray photoelectron spectroscopy, and the wavelength and chemical shifts, respectively, are interpreted via the theoretical results. 29 refs., 9 figs., 4 tabs.

  3. Development of cellular absorptive tracers (CATs) for a quantitative characterization of microbial mass in flow systems.

    PubMed

    Choi, Jaeyoung; Saripalli, Prasad; Meldrum, Deirdre; Lee, Ju Young

    2007-12-01

    A new method was developed for a simple non-destructive characterization of bacterial mass in flow systems. Results of partition and transport experiments showed that adsorption of a CAT molecule into the cellular mass resulted in its retardation during flow, which was a good measure of the biomass quantity and distribution. Three dyes, acridine orange (AO), toluidine blue (TB), and safranin O (SO), were chosen as CATs to demonstrate their utility to quantitatively characterize the biomass, its location and morphology in flow system. The results clearly demonstrated the applicability of AO, TB, and SO as cellular absorptive tracers in columnar flow experiments. PMID:17329099

  4. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites.

    PubMed

    Hayes, J R; Grosvenor, A P

    2011-11-23

    Rare-earth orthoferrites, REFeO₃ (RE D rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO₃ compounds (RE D La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is. PMID:22056809

  5. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites

    SciTech Connect

    Hayes, J.R.; Grosvenor, A.P.

    2011-11-07

    Rare-earth orthoferrites, REFeO{sub 3} (RE=rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO{sub 3} compounds (RE=La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is.

  6. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites

    NASA Astrophysics Data System (ADS)

    Hayes, J. R.; Grosvenor, A. P.

    2011-11-01

    Rare-earth orthoferrites, REFeO3 (RE=rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO3 compounds (RE=La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is.

  7. SPECTROSCOPIC AND ELECTROCHEMICAL CHARACTERIZATION OF IRON(II) AND 2,4-DINITROTOLUENE

    PubMed Central

    Brown, Kristopher; Doo, Hyungie; Makamba, Honest; Seo, Seong S.

    2016-01-01

    The objective of this work was the development of reliable methods to determine 2,4-dinitrotoluene, a precursor to explosives. A complex between Fe(II) ion and 2,4-dinitrotoluene was formed in solution and characterized by ultraviolet-visible absorption spectroscopy using Job’s plots and attenuated total reflection-Fourier transform infrared spectroscopy. Surface modification of glassy carbon electrodes were performed with iron nanoparticles via electrochemical reduction of iron(II). The modified electrode was employed for the determination of 2,4-dinitrotoluene. Scanning electron micrographs showed that the iron nanoparticles were incorporated on the surface of glassy carbon electrode. The electrochemical determination of 2,4-dinitrotoluene was performed by cyclic voltammetry using the modified electrode. The iron modified electrode produced larger reduction currents than the unmodified electrode for the same concentration of 2,4-dinitrotoluene. Concentrations of 2,4-dinitrotoluene as low as 10 parts per billion were determined using the modified electrode. PMID:27239059

  8. Spectroscopic and structural characterization of reduced technetium species in acetate media

    SciTech Connect

    Mausolf, Edward; Poineau, Frederic; Droessler, Janelle; Czerwinski, Kenneth R.

    2011-11-17

    The reduction of ammonium pertechnetate by sodium borohydride in 0.1 M NaOH/glacial acetic acid has been studied. The reduction products (solids and solutions) have been characterized by UV-Visible spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray emission spectroscopy (SEM/EDS), and X-ray absorption fine structure (XAFS) spectroscopy. UV-Visible spectra of the solution, after reduction, exhibit bands at 350 and 500 nm that have been attributed to the formation of polymeric Tc(IV) species. SEM/EDS on the solid (X-ray amorphous) indicates the absence of metallic Tc and the presence of oxygen. EXAFS measurements further indicate that the precipitate exhibits a [Tc({mu}-O){sub 2}Tc] core structure. XANES is consistent with the formation of Tc(III) and/or Tc(IV). Results infer that reduction of aqueous Tc(VII) by borohydride in the presence of acetic acid does not produce metallic Tc, but a mixture of various oxidation states of Tc near Tc(III) and Tc(IV).

  9. Characterization of the rare earth orthophosphates and Ce-doped LaPO{sub 4} by X-ray Absorption Spectroscopy

    SciTech Connect

    Shuh, D.K.; Perry, D.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-12-31

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d{sup 10}4f {yields} 3d{sup 9}4f{sup n+1} (M{sub 4,5}) transitions that contain a wealth of spectroscopic features. XAS is a useful technique for the characterization of 4f-occupancy, 4f-hybridization, and valence in RE-containing materials. The XAS measurements of the single crystal RE-orthophosphates, as well as a range of Cedoped ({approx}1--30%) LaPO{sub 4} hosts were performed at the 3d edge in the total electron yield mode at beamline 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble that of the corresponding RE metal and emphasize the major contribution of the trivalent state to the electronic transitions occurring at the 3d edge. There is no energy shift of the La and Ce absorption peaks with Ce doping and furthermore, no additional transitions are observed in either spectral region. However, accompanying the Ce doping there is a significant narrowing of the La absorption peak full width half maximum that contrasts to the Ce features that exhibit no contraction. The La and Ce spectra indicate that the Ce-doping of LaPO{sub 4} is purely substitutional.

  10. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; Ali, Mayada S.; El-Asmy, Ahmed A.

    2015-06-01

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO2+, Zr4+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pd2+ complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H+ due to the deprotonation of the two hydroxyl groups and the enolization of the amide (Odbnd CNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO2+ complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.

  11. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone.

    PubMed

    Jeragh, Bakir; Ali, Mayada S; El-Asmy, Ahmed A

    2015-06-15

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO(2+), Zr(4+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pd(2+) complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H(+) due to the deprotonation of the two hydroxyl groups and the enolization of the amide (OCNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO(2+) complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393. PMID:25791887

  12. Synthesis and spectroscopic characterization of super-stable rhenium(V)porphyrins

    NASA Astrophysics Data System (ADS)

    Bichan, N. G.; Tyulyaeva, E. Yu.; Khodov, I. A.; Lomova, T. N.

    2014-03-01

    The preparation of rhenium(V) porphyrin complexes {μ-oxo-bis[(oxo)(5,10,15,20-tetraphenyl-21H,23H-porphinato)rhenium(V)] [OReTPP]2O (1), (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(PhO)MPOEP (2), (cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5,15-diphenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)5,15DPOEP (4), and (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(PhO)OEP (5)} by the interaction of H2ReCl6 with corresponding porphyrin in boiling phenol is described. (Cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)MPOEP (3) and (oxo)(chloro)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(Cl)OEP (6) have been prepared by the reaction of axial-ligand substitution from (2) and (5), respectively. Compounds (2-4) were newly synthesized. Characterization of the compounds (1-6) reported herein was made mainly by UV-Visible, IR, 1Н NMR, 1H1H 2D COSY, 1H1H 2D DOSY, 1H1H 2D ROESY, 1H1H 2D TOCSY spectroscopic techniques and elemental analysis. The stability of the complexes in solutions when exposed to strong acids at the presence of atmospheric oxygen has been estimated. Compounds (2-4) and (6) show them super-stable since they do not undergo dissociation along MN bonds in concentrated H2SO4 under heating up to 363 K. Compounds (3) and (4) undergo one-electron oxidation to form stable π-cation radicals ORe(HSO)P under these conditions. The products of the reaction between all studied porphyrins and concentrated H2SO4 were isolated in CHCl3 by reprecipitation onto ice and proved to be rhenium(V) complexes ORe(HSO4)P.

  13. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  14. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  15. Accurate structural and spectroscopic characterization of prebiotic molecules: The neutral and cationic acetyl cyanide and their related species.

    PubMed

    Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C

    2015-11-14

    In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations. PMID:26567669

  16. Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHs) binding affinity.

    PubMed

    Tang, Jianfeng; Li, Xinhu; Luo, Yan; Li, Gang; Khan, Sardar

    2016-06-01

    In recent years, biochar has received a great attention due to its high application in different sectors of environment. The feasibility of biochar applications is depended on its physical and chemical properties and biochar-derived dissolved organic matter (DOM) characteristics. This study was conducted to investigate the spectroscopic characteristics of biochar-derived DOM and its binding capacity of hydrophobic organic chemicals (HOCs). DOM solutions were isolated from five different biochars prepared through pyrolysis and analyzed for dissolved organic carbon (DOC) contents. The optical analysis with UV-visible absorption and excitation-emission matrix (EEM) fluorescence spectroscopes and DOC water distribution coefficient (KDOC) were calculated in the presence of PAHs and DOM. The DOC contents and the estimated aromaticity (SUVA254) were different for selected biochars. The DOM derived from soybean straw biochar (SBBC) showed the highest DOC contents followed by rice straw biochar (RSBC). The SBBC and RSBC peak position in the fluorescence excitation/emission matrix at longer wavelength corresponded to the peak position of other three biochars indicating that SBBC and RSBC had relatively higher degree of humification. This was well correlated with the observed KDOC values, suggesting that the KDOC value(')s dominant factor was the degree of biochar-derived DOM humification. The results of this study indicate that the optical analysis may provide valuable information regarding the characteristics of biochar-derived DOM and its application as environmental amendments for minimization of toxic organic compounds. PMID:26994600

  17. Synthesis, conformational and spectroscopic characterization of monomeric styrene derivatives having pendant p-substituted benzylic ether groups.

    PubMed

    Cinar, Mehmet; Ozcan, Levent; Karabacak, Mehmet; Erol, Ibrahim

    2013-07-01

    Three derivatives of styrene monomer, 4-chlorophenyl-4-vinylbenzyl ether (I), 4-methoxyphenyl-4-vinylbenzyl ether (II) and 4-ethylphenyl-4-vinylbenzyl ether (III) were synthesized. The synthesized two novel compounds (I and III) and one with undefined structural features were identified by experimental spectroscopic techniques and density functional approach. The optimized geometrical structure, vibrational and electronic transitions along with chemical shifts of those compounds were presented in this study. The vibrational spectra of investigated compounds were recorded in solid state with FT-IR spectrometry in the range of 4000-400 cm(-1). The computational vibrational wavenumbers and also ground state equilibrium conformations were carried out by using density functional method with 6-311++G(d,p) basis set. Assignments of the fundamental vibrational modes were examined on the basis of the measured data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. Isotropic chemical shift of hydrogen and carbon nuclei were investigated via observed (1)H and (13)C NMR spectra in deuterated DMSO solution and predicted data applied with gauge-invariant atomic orbitals (GIAOs) method. The UV absorption spectra of monomers were observed in the range of 200-800 nm in ethanol, and time dependent DFT method was used to obtain the electronic properties. A detailed description of spectroscopic behaviors of compound was given based on the comparison of experimental measurements and theoretical computations. PMID:23608133

  18. Purification and spectroscopic characterization of photosystem II reaction center complexes isolated with or without Triton X-100.

    PubMed

    Eijckelhoff, C; van Roon, H; Groot, M L; van Grondelle, R; Dekker, J P

    1996-10-01

    The pigment composition of the isolated photosystem II reaction center complex in its most stable and pure form currently is a matter of considerable debate. In this contribution, we present a new method based on a combination of gel filtration chromatography and diode array detection to analyze the composition of photosystem II reaction center preparations. We show that the method is very sensitive for the detection of contaminants such as the core antenna protein CP47, pigment-free and denatured reaction center proteins, and unbound chlorophyll and pheophytin molecules. We also present a method by which the photosystem II reaction center complex is highly purified without using Triton X-100, and we show that in this preparation the contamination with CP47 is less than 0.1%. The results strongly indicate that the photosystem II reaction center complex in its most stable and pure form binds six chlorophyll a, two pheophytin a, and two beta-carotene molecules and that the main effect of Triton X-100 is the extraction of beta-carotene from the complex. Analysis of 4 K absorption and emission spectra indicates that the spectroscopic properties of this preparation are similar to those obtained by a short Triton X-100 treatment. In contrast, preparations obtained by long Triton X-100 treatment show decreased absorption of the shoulder at 684 nm in the 4 K absorption spectrum and an increased number of pigments that trap excitation energy at very low temperatures. We conclude that the 684 nm shoulder in the 4 K absorption spectrum should at least in part be attributed to the primary electron donor of photosystem II. PMID:8841130

  19. New 1,2,4-triazole-based azo-azomethine dyes. Part I: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Hamid; Erfantalab, Malihe

    2012-02-01

    Four new 1,2,4-triazole-based azo-azomethine dyes were synthesized via condensation of 3,5-diamino-1,2,4-triazole with azo-coupled o-vanillin precursors. The prepared dyes were characterized by IR, UV-vis and 1H NMR spectroscopic methods as well as elemental analyses. Thermal properties of the prepared dyes were examined by thermogravimetric analysis. Results indicated that the framework of the dyes was stable up to 225 °C. Also, the influence of various factors including time and mixed DMSO/EtOH solution on UV-vis spectra of the dyes were investigated.

  20. Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase

    PubMed Central

    Andris, Erik; Jašík, Juraj; Gómez, Laura

    2016-01-01

    Abstract Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state. PMID:26878833

  1. Dichromated poly(vinyl alchohol)-xanthene dye systems: holographic characterization and electron spin resonance spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manivannan, Gurusamy; Changkakoti, Rupak; Lessard, Roger A.; Mailhot, Gilles; Bolte, Michel

    1994-01-01

    Dichromated poly(vinyl alcohol)-xanthene dye (DCPVA-XD) systems have been employed as real-time holographic recording materials. In this paper, holographic characterization of dichromated poly(vinyl alcohol) with fluorescein (Fl), eosin Y (EY) and Rose Bengal (RB) is presented. In addition, a systematic ESR spectroscopic investigation was also performed on these systems. The photochemical evolution of Cr(V), Cr(III), polymer radical and dye radical in these systems has been monitored and a comparison is made.

  2. Infrared spectroscopic characterization of dehydration and accompanying phase transition behaviors in NAT-topology zeolites

    SciTech Connect

    Wang, Hsiu-Wen; Bishop, David

    2012-01-01

    Relative humidity (PH2O, partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known PH2O conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na?/Ca2? cations and H2O molecules. The observation of different interactions of H2O molecules and Na?/Ca2? cations with host aluminosilicate frameworks under highand low-PH2O conditions indicated the development of different local strain fields, arising from cation H2O interactions in NAT-type channels. These strain fields influence the Si O/Al O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm-1 in natrolite, 2,276 cm-1 in scolecite, and 2,176 and 2,259 cm-1 in mesolite) result from strong cation H2O Al Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na?/Ca2? cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm-1 absorption bands in mesolite also appear to be related to Na?/Ca2? order disorder that occur when mesolite loses its Ow4 H2O molecules.

  3. Vitamin C interaction with cobalt-ammine cations. Synthesis, spectroscopic and structural characterization of cobalt-pentammine and cobalt-tetrammine sugar complexes containing L-ascorbate anion.

    PubMed

    Tajmir-Riahi, H A

    1986-11-01

    Interaction between [Co(NH3)5Cl]Cl2, [Co(NH3)4Cl2]Cl and L-ascorbic acid has been investigated in aqueous solution and solid complexes of the type [Co(NH3)5 ascorbate]Cl2 X H2O and [Co(NH3)4 ascorbate]Cl2 X H2O have been isolated and characterized by 13C-NMR, FT-IR and electron absorption spectroscopy. Spectroscopic and other evidence suggested that the sugar anion binds monodentately in the [Co(NH3)5 ascorbate]2+ cation via the ionized O3 oxygen atom and bidentately in [Co(NH3)4 ascorbate]2+ through the O1 and O4 oxygen atoms, resulting in a six-coordinate geometry around the Co(III) ion. The intermolecular sugar hydrogen-bonding network is perturbed upon sugar metalation and the sugar moiety shows a similar conformation to that of the sodium ascorbate compound in these series of cobalt-ammine complexes. PMID:3814746

  4. Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Vyas, Komal M.; Joshi, Rushikesh G.; Jadeja, R. N.; Ratna Prabha, C.; Gupta, Vivek K.

    2011-12-01

    Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.

  5. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  6. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    SciTech Connect

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J.

    2014-08-15

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1–2 transitions in F- through Li-like Ti ions in the 4400–4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e} = 400–600 eV and N{sub e} = 3.0–10.0 × 10{sup 24} cm{sup −3} for all but the most distant Ti-doped layer, with error bars ∼5% T{sub e} value and ∼10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  7. Theoretical Characterization of Zinc Phthalocyanine and Porphyrin Analogs for Organic Solar Cell Absorption

    NASA Astrophysics Data System (ADS)

    Theisen, Rebekah

    The absorption spectra of metal-centered phthalocyanines (MPc's) have been investigated since the early 1960's. With improved experimental techniques to characterize this class of molecules the band assignments have advanced. The characterization remains difficult with historic disagreements. A new push for characterization came with a wave of interest in using these molecules for absorption/donor molecules in organic photovoltaics. The use of zinc phthalocyanine (ZnPc) became of particular interest, in addition to novel research being done for azaporphyrin analogs of ZnPc. A theoretical approach is taken to research the excited states of these molecules using time-dependent density functional theory (TDDFT). Most theoretical results for the first excited state in ZnPc are in only limited agreement with experiment (errors near 0.1 eV or higher). This research investigates ZnPc and 10 additional porphyrin analogs. Excited-state properties are predicted for 8 of these molecules using ab initio computational methods and symmetry breaking for accurate time- dependent self-consistent optimization. Franck-Condon analysis is used to predict the Q-band absorption spectra for all 8 of these molecules. This is the first time that Franck-Condon analysis has been reported in absolute units for any of these molecules. The first excited-state energy for ZnPc is found to be the closest to experiment thus far using a range-separated meta-GGA hybrid functional. The theoretical results are used to find a trend in the novel design of new porphyrin analog molecules.

  8. X-Ray Absorption Spectroscopic And Theoretical Studies on (L)(2)[Cu-2(S-2)N](2+) Complexes: Disulfide Versus Disulfide(Center Dot 1-) Bonding

    SciTech Connect

    Sarangi, R.; York, J.T.; Helton, M.E.; Fujisawa, K.; Karlin, K.D.; Tolman, W.B.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /SLAC, SSRL /Minnesota U. /Johns Hopkins U. /Tsukuba U.

    2009-04-30

    Cu K-, Cu L-, and S K-edge X-ray absorption spectroscopic (XAS) data have been combined with density functional theory (DFT) calculations on [{l_brace}(TMPA)Cu{r_brace}{sub 2}S{sub 2}](ClO{sub 4}){sub 2} (1), [{l_brace}Cu[HB(3,5-Pr{sub 2}{sup i}pz){sub 3}]{r_brace}{sub 2}(S{sub 2})] (2), and [{l_brace}(TMEDA)Cu{r_brace}{sub 2}(S{sub 2}){sub 2}](OTf){sub 2} (3) to obtain a quantitative description of their ground state wavefunctions. The Cu L-edge intensities give 63 and 37% Cu d-character in the ground state of 1 and 2, respectively, whereas the S K-pre-edge intensities reflect 20 and 48% S character in their ground states, respetively. These data indicate a more than 2-fold increase in the total disulfide bonding character in 2 relative to 1. The increase in the number of Cu?S bonds in 2 ({mu}-{eta}{sup 2}:{eta}{sup 2} S{sub 2}{sup 2-} bridge) compared to 1 ({mu}-{eta}{sup 1}:{eta}{sup 1} S{sub 2}{sup 2-} bridge) dominantly determines the large increase in covalency and Cu-disulfide bond strength in 2. Cu K- and L- and S K-pre-edge energy positions directly demonstrate the Cu{sup II}/(S{sub 2}{sup -}){sub 2} nature of 3. The two disulfide({center_dot}1?)'s in 3 undergo strong bonding interactions that destabilize the resultant filled antibonding {pi}* orbitals of the (S{sub 2}{sup -}){sub 2} fragment relative to the Cu 3d levels. This leads to an inverted bonding scheme in 3 with dominantly ligand-based holes in its ground state, consistent with its description as a dicopper(II)-bis-disulfide({center_dot}1?) complex.

  9. Electrochemical Kinetics and X-ray Absorption Spectroscopic Investigations of Oxygen Reduction on Chalcogen-Modified Ruthenium Catalysts in Alkaline Media

    SciTech Connect

    N Ramaswamy; R Allen; S Mukerjee; Y

    2011-12-31

    The oxygen reduction reaction (ORR) in alkaline media has been investigated on chalcogen-modified ruthenium nanoparticles (Ru/C, Se/Ru/C, Se/RuMo/C, S/Ru/C, S/RuMo/C) synthesized in-house via aqueous routes. In acidic medium, it is well known that modification by a chalcogen prevents the oxidation of the underlying transition-metal (Ru) surface, thereby promoting direct molecular O{sub 2} adsorption on the Ru metal. On an unmodified Ru catalyst in alkaline media, the surface oxides on Ru mediate the 2e{sup -} reduction of molecular O{sub 2} to a stable peroxide anion (HO{sub 2}{sup -}) intermediate via an outer-sphere electron-transfer mechanism. This increases the activity of HO{sub 2}{sup -} near the electrode surface and decreases the overpotential for ORR by effectively carrying out the reduction of HO{sub 2}{sup -} to OH{sup -} at the oxide-free ruthenium metal site. An increase in ORR activity of Ru is observed by modification with a chalcogen; however, the increase is not as significant as observed in acidic media. Ternary additives, such as Mo, were found to significantly improve the stability of the chalcogen-modified catalysts. Detailed investigations of the ORR activity of this class of catalyst have been carried out in alkaline media along with comparisons to acidic media wherever necessary. A combination of electrochemical and X-ray absorption spectroscopic (EXAFS, XANES, {Delta}{mu}) studies has been performed in order to understand the structure/property relationships of these catalysts within the context of ORR in alkaline electrolytes.

  10. The WO3/WS2 nanostructures: Preparation, characterization and optical absorption properties

    NASA Astrophysics Data System (ADS)

    Cao, Shixiu; Zhao, Cong; Han, Tao; Peng, Lingling

    2016-07-01

    The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV-visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV-visible light region of 245-750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV-visible photocatalyst.

  11. Synthesis, structural, and spectroscopic (FT-IR, NMR, and UV) Characterization of 1-(Cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole by experimental techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Özdemir, Namık; Dayan, Osman; Demirmen, Selin

    2016-05-01

    The title compound ( II), 1-(cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole (C19H21N3), was synthesized via N-alkylation of 2-(pyridin-2-yl)-1 H-benzo[ d]imidazole ( I). Both compounds I and II were characterized by IR, NMR and UV-vis spectroscopy. Solid-state structure of compound II was determined by single-crystal X-ray diffraction technique. Furthermore, quantum chemical calculations employing density functional theory (DFT/B3LYP) method with the 6-311++ G( d, p) basis set were performed for the theoretical characterization of the molecular and spectroscopic features of the compounds. Using the TD-DFT method, electronic absorption spectra of the compounds have been predicted at same level. When the obtained results were compared with the experimental findings, it is seen that theoretical results support the experimental data and a good agreement exists between them.

  12. Spectroscopic characterization of the 1-substituted 3,3-diphenyl-4-(2'-hydroxyphenyl)azetidin-2-ones: Application of 13C NMR, 1H- 13C COSY NMR and mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Girija S.; Pheko, Tshepo

    2008-08-01

    The article deals with spectroscopic characterization of azetidin-2-ones. The presence of substituents like hydroxyl, fluoro, methoxy and benzhydryl, etc., on the azetidin-2-one ring significantly affects the IR absorption and 13C NMR frequencies of the carbonyl group present in these compounds. The presence of an ester carbonyl group or too many methine protons in the molecule has been observed to limit the scope of IR and 1H NMR spectroscopy in unambiguous assignment of the structure. The application of 13C NMR, 2D NMR ( 1H- 13C COSY) and mass spectroscopy in characterization of complex azetidin-2-ones is discussed. An application of the latter two techniques is described in deciding unequivocally between an azetidin-2-one ring and chroman-2-one ring structure for the product obtained by treatment of the 1-substituted 3,3-diphenyl-4-[2'-( O-diphenylacyl)hydroxyphenyl]-2-azetidinones with ethanolic sodium hydroxide at room temperature.

  13. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B.

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  14. Multiparametric Characterization of Grade 2 Glioma Subtypes Using Magnetic Resonance Spectroscopic, Perfusion, and Diffusion Imaging1

    PubMed Central

    Bian, Wei; Khayal, Inas S; Lupo, Janine M; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R; Chang, Susan M; Cha, Soonmee; Nelson, Sarah J

    2009-01-01

    BACKGROUND AND PURPOSE: The purpose of this study was to derive quantitative parameters from magnetic resonance (MR) spectroscopic, perfusion, and diffusion imaging of grade 2 gliomas according to the World Health Organization and to investigate how these multiple imaging modalities can contribute to evaluating their histologic subtypes and spatial characteristics. MATERIALS AND METHODS: MR spectroscopic, perfusion, and diffusion images from 56 patients with newly diagnosed grade 2 glioma (24 oligodendrogliomas, 18 astrocytomas, and 14 oligoastrocytomas) were retrospectively studied. Metabolite intensities, relative cerebral blood volume (rCBV), and apparent diffusion coefficient (ADC) were statistically evaluated. RESULTS: The 75th percentile rCBV and median ADC were significantly different between oligodendrogliomas and astrocytomas (P < .0001) and between oligodendrogliomas and oligoastrocytomas (P < .001). Logistic regression analysis identified both 75th percentile rCBV and median ADC as significant variables in the differentiation of oligodendrogliomas from astrocytomas and oligoastrocytomas. Group differences in metabolite intensities were not significant, but there was a much larger variation in the volumes and maximum values of metabolic abnormalities for patients with oligodendroglioma compared with the other tumor subtypes. CONCLUSIONS: Perfusion and diffusion imaging provide quantitative MR parameters that can help to differentiate grade 2 oligodendrogliomas from grade 2 astrocytomas and oligoastrocytomas. The large variations in the magnitude and spatial extent of the metabolic lesions between patients and the fact that their values are not correlated with the other imaging parameters indicate that MR spectroscopic imaging may provide complementary information that is helpful in targeting therapy, evaluating residual disease, and assessing response to therapy. PMID:19956389

  15. Growth and spectroscopic characterization of Pb2+:CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Nicoara, I.; Paraschiva, M.; Stef, M.; Stef, F.

    2012-08-01

    CaF2 crystals doped with various concentrations of PbF2 (0.4, 0.5, 1 and 2 mol%) were grown in vacuum, in a shaped graphite furnace using the vertical Bridgman method. The optical absorption spectra reveal the four characteristic UV absorption bands (labeled A, B, C and D) of the Pb2+ ions. As the PbF2 concentration increases, the structure of the bands become clearly visible, that is characteristic for the ns 2 ions in various hosts. High intensity emission bands in the near UV spectral region have been observed. The dependence on the Pb2+ concentration of the optical absorption and emission of the Pb2+:CaF2 crystals were not reported before.

  16. Spectroscopic characterization of genetically modified flax fibres enhanced with poly-3-hydroxybutyric acid

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-02-01

    Genetically modified flax fibres, derived from transgenic flax with expression of three bacterial genes necessary for synthesis of poly-3-hydroxybutyric acid (PHB), have been analysed. These transgenic flaxes, enhanced with different amount of the PHB, have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes as well as the differences between the natural and genetically modified flax fibres. The spectroscopic data were compared to those obtained from chemical analysis of flax fibres.

  17. Biochemical, Mechanistic, and Spectroscopic Characterization of Metallo-β-lactamase VIM-2

    PubMed Central

    2015-01-01

    This study examines metal binding to metallo-β-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate. PMID:25356958

  18. Cyanide/isocyanide abundances in the interstellar medium - I. Theoretical spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Dumouchel, F.; Lique, F.

    2012-02-01

    Modelling molecular abundances in the interstellar medium requires accurate molecular data. In this work, structural and spectroscopic properties of a series of metal cyanides/isocyanide species containing Na, Mg, Al and Si are calculated and compared using highly correlated ab initio calculations. The metal substitution effect on molecular properties is discussed. Isomerization pathways and transitions states are detailed. NaCN shows three isomeric structures, one T shaped and two linear forms, whereas the remaining compounds display two linear minimum energy geometries. For the first time, NaCN secondary minima are described. Second-order perturbation theory spectroscopic parameters are determined from an anharmonic RCCSD(T)/aug-cc-pV5Z force field. Very accurate rotational constants are calculated using a complete basis set and taking into account vibrational effects and the structure variation with core electron correlation. For l-SiCN and l-SiNC, spin-orbit parameters are also provided. Present theoretical results are compared with available experimental data attaining a good agreement.

  19. Toward an alternative intrinsic probe for spectroscopic characterization of a protein.

    PubMed

    Goswami, Nirmal; Makhal, Abhinandan; Pal, Samir Kumar

    2010-11-25

    The intrinsic fluorescent amino acid tryptophan is the unanimous choice for the spectroscopic investigation of proteins. However, several complicacies in the interpretation of tryptophan fluorescence in a protein are inevitable and an alternative intrinsic protein probe is a longstanding demand. In this contribution, we report an electron-transfer reaction in a human transporter protein (HSA) cavity which causes the tryptophan residue (Trp214) to undergo chemical modification to form one of its metabolites kynurenine (Kyn214). Structural integrity upon modification of the native protein is confirmed by dynamic light scattering (DLS) as well as near and far circular dichroism (CD) spectroscopy. Femtosecond-resolved fluorescence transients of the modified protein describe the dynamics of solvent molecules in the protein cavity in both the native and denatured states. In order to establish general use of the probe, we have studied the dipolar interaction of Kyn214 with a surface-bound ligand (crystal violet, CV) of the protein. By using the sensitivity of FRET, we have determined the distance between Kyn214 (donor) and CV (acceptor). Our study is an attempt to explore an alternative intrinsic fluorescence probe for the spectroscopic investigation of a protein. In order to establish the efficacy of the modification technique we have converted the tryptophan residues of other proteins (bovine serum albumin, chymotrypsin and subtilisin Carlsberg) to kynurenine and confirmed their structural integrity. We have also shown that catalytic activity of the enzymes remains intact upon the modification. PMID:21028859

  20. Biochemical, Mechanistic, and Spectroscopic Characterization of Metallo-β-lactamase VIM-2

    SciTech Connect

    Aitha, Mahesh; Marts, Amy R.; Bergstrom, Alex; Møller, Abraham Jon; Moritz, Lindsay; Turner, Lucien; Nix, Jay C.; Bonomo, Robert A.; Page, Richard C.; Tierney, David L.; Crowder, Michael W.

    2014-11-25

    Our study examines metal binding to metallo-β-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We also determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate.

  1. Characterizing the dissolution profiles of supersaturable salts, cocrystals, and solvates to enhance in vivo oral absorption.

    PubMed

    Hisada, Nozomi; Takano, Ryusuke; Takata, Noriyuki; Shiraki, Koji; Ueto, Takamitsu; Tanida, Satoshi; Kataoka, Makoto; Yamashita, Shinji

    2016-06-01

    The purposes of this study were to elucidate the type-specific characteristics of salt, cocrystal, and solvate formulations upon dissolution and precipitation, and to clarify their effect on enhancing oral absorption. Several types of solid formulations (dantrolene sodium salt [DAN-NA], pioglitazone hydrochloride salt [PIO-HCL], megestrol acetate saccharin cocrystal [MEG-SA], and an in-house compound ZR ethanolate [ZR-ETH]) that induce supersaturation of BCS class II drugs were compared to their crystalline free forms. An in vitro miniscale dissolution test in biorelevant media was used to characterize their dissolution profiles and residue forms. Both salts (DAN-NA and PIO-HCL) rapidly reached the maximum concentration within 5min, whereas the cocrystal (MEG-SA) did so slowly. After the maximum concentration had been reached, the dissolved concentrations of DAN-NA, PIO-HCL, and MEG-SA decreased, but that of ZR-ETH did not. Time-dependent XRPD analysis revealed that the initial solid state of each salt dissolved within 5min, whereas the cocrystal remained for more than 10min, and the solvate remained for 4h. It also revealed that PIO-HCL and MEG-SA precipitated to the stable free form, while DAN-NA precipitated to the metastable form, which maintains a higher concentration than the stable free form continuously. In vivo absorption in beagle dogs was also examined. The plasma AUC of DAN-NA, MEG-SA, and ZR-ETH was respectively 1.5-, 2.1-, and 11-fold more than each free form. On the other hand, the absorption of PIO-HCL was not enhanced compared with its free form. The results in the present study clarified that not only the precipitation rate and the form of precipitation but also the retention of the initial solid state in the absorption process contribute to enhancing the in vivo absorption of Class II drugs from solid formulations such as salts, solvates, and cocrystals. PMID:27060622

  2. Effect of steric hindrance on carbon dioxide absorption into new amine solutions: thermodynamic and spectroscopic verification through solubility and NMR analysis.

    PubMed

    Park, Jung-Yeon; Yoon, Sang Jun; Lee, Huen

    2003-04-15

    Acid gas absorption technology is of great importance in these days for the prevention of global warming and the resulting worldwide climate change. More efficient process design and development for the removal of acid gases has become important, together with the development of new absorbents as one of urgent areas of research in addressing global-warming problems. In the present work, aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), a sterically hindered amine, has been examined as a potential CO2 absorbent and compared with the most commonly used absorbent, monoethanolamine (MEA) solution, through equilibrium solubility measurements and 13C NMR spectroscopic analyses. The solubilities of CO2 in aqueous 10 mass % AHPD solutions were higher than those in aqueous 10 mass % MEA solutions above 4 kPa at 298.15 K, but below 4 kPa, the solubility behavior appeared to be the opposite. The solubility difference between these two solutions increased with the CO2 partial pressures above the crossover pressure. Equilibrated CO2-MEA-H2O and CO2-AHPD-H2O solutions at various CO2 partal pressures ranging from 0.01 to 3000 kPa were analyzed by 13C NMR spectroscopy to provide a more microscopic understanding of the reaction mechanisms in the two solutions. In the CO2-amine-H2O solutions, amine reacted with CO2 to form mainly the protonated amine (AMH+), bicarbonate ion (HCO3-), and carbamate anion (AMCO2-), where the quantitative ratio of bicarbonate ion to carbamate anion strongly influenced the CO2 loading in the amine solutions. A profusion of bicarbonate ions, but a very small amount of carbamate anions, was identified in the CO2-AHPD-H2O solution, whereas a considerable amount of carbamate anions was formed in the CO2-MEA-H2O solution. AHPD contains more hydroxyl groups than nonhindered MEA, and hence, the chemical shifts in its 13C NMR spectra were strongly influenced by the solution pH values. In contrast, MEA appeared to be insensitive to pH. The

  3. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfur and chlorine centers in photographic materials

    SciTech Connect

    DeWitt, J.G.

    1993-01-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus (Bath) and Methylosinus trichosporium (OB3b) has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the hydroxylase consists of [approximately]6 N and O atoms at an average distance of 2.04[angstrom] in the oxidized form, increasing to 2.06-2.09[angstrom] in the semimet form, and 2.15 [angstrom] for the oxidized and semimet hydroxylase samples. No evidence for the presence of a short oxo bridge in the iron center was found. The presence of component B, the regulatory protein of the MMO enzyme system, had an effect on the distance distribution of first shell atoms in the hydroyxlase active site. No evidence of a Br contribution was seen in the hydroxylase EXAFS in the presence of a brominated substrate, suggesting the substrate binds more than 4[angstrom] from the iron center. An investigation of the EXAFS analysis technique using structurally-characterized iron dimers demonstrated that the results of the second shell fits exhibit a bias for the Fe-FE distance of the model compound from which the fitting parameters were obtained. An asymmetric pre-edge feature in the edge spectra of iron dimers was characteristic of oxo-bridge compounds, while a split pre-edge was characteristic of non-oxo-bridged compounds. Spectral sensitizing dyes and chemical sensitizing centers of importance to the photographic system were characterized by S and Cl K-edge X-ray absorption spectroscopy. The appearance of the S K-edge spectra was characteristic of the environment of the S atoms and oriented single-crystal studies permitted the assignment of the features. The nature and extend of interaction between S and Ag and Au was characterized using XAS and used to investigate the nature of the interaction between photographic dyes and the AgBr substrate.

  4. SEM, EDX, infrared and Raman spectroscopic characterization of the silicate mineral yuksporite.

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Theiss, Frederick L; Romano, Antônio Wilson

    2015-02-25

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)⋅H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm(-1) and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm(-1). A very sharp band is observed at 3668 cm(-1) and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm(-1) are assigned to water stretching vibrations. PMID:25240833

  5. Characterization of multilayer GaAs/AlGaAs transistor structures by variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Merkel, Kenneth G.; Snyder, Paul G.; Woollam, John A.; Alterovitz, Samuel; Rai, A. K.

    1989-01-01

    Variable angle of incidence spectroscopic ellipsometry (VASE) has been implemented as a means of determining layer thickness, alloy composition, and growth quality of GaAs/AlGaAs samples composed of relatively thick layers as well as superlattices. The structures studied in this work contained GaAs/AlGaAs multilayers with a superlattice 'barrier' and were grown for later formation of modulation-doped field effect transistors (MODFETs). Sample modeling was performed by treating the superlattice as a bulk AlGaAs layer of unknown composition. Extremely good data fits were realized when five layer thicknesses and two alloy ratios were allowed to vary in a regression analysis. Room temperature excitonic effects associated with the e-hh(1), e-lh(1) and e-hh(2) transitions were observed in the VASE data.

  6. SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson

    2015-02-01

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.

  7. Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.

    PubMed

    Koput, Jacek

    2015-11-15

    The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679

  8. Synthesis and spectroscopic characterization of copper(II) tetraazaiminooxime macrocyclic complexes--a tetragonal distortion analysis.

    PubMed

    Protasiewyck, Gisele Marina; Nunes, Fábio Souza

    2006-11-01

    Herein we describe the synthesis and spectroscopic (infrared and UV-vis) analysis of [Cu(II)(dohpn)(L)](n+) (dohpn=imineoximic tetraazamacrocyclic ligand 2,3,9,10-tetramethyl-1,4,8,11-tetraazaundecane-1,3,8,10-tetraen-11-ol-1-olate) and L=SCN(-), I(-), Cl(-) (n=0) and 4-aminopyridine (ampy), 4,4'-bipyridine (bipy), imidazole (im), 2-aminopyrazine (ampz) and water (n=1+). The following order of the Jahn-Teller stabilization energy (cm(-1)) was observed: I(-)(6452)

  9. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  10. Practical photoluminescence and photoreflectance spectroscopic system for optical characterization of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Huang, Kuo-Wei; Lin, Yu-Shyan; Lin, Der-Yuh

    2005-05-01

    We present a practical experimental design for performing photoluminescence (PL) and photoreflectance (PR) measurements of semiconductors with only one PL spectroscopic system. The measurement setup is more cost efficient than typical PL-plus-PR systems. The design of the experimental setup of the PL-PR system is described in detail. Measurements of two actual device structures, a high-electron-mobility transistor (HEMT) and a double heterojunction-bipolar transistor (DHBT), are carried out by using this design. The experimental PL and PR spectra of the HEMT device, as well as polarized-photoreflectance (PPR) spectra of the DHBT structure, are analyzed in detailed and discussed. The experimental analyses demonstrate the well-behaved performance of this PL-PR design.

  11. Characterization of personal RF electromagnetic field exposure and actual absorption for the general public.

    PubMed

    Joseph, W; Vermeeren, G; Verloock, L; Heredia, Mauricio Masache; Martens, Luc

    2008-09-01

    In this paper, personal electromagnetic field exposure of the general public due to 12 different radiofrequency sources is characterized. Twenty-eight different realistic exposure scenarios based upon time, environment, activity, and location have been defined and a relevant number of measurements were performed with a personal exposure meter. Indoor exposure in office environments can be higher than outdoor exposure: 95th percentiles of field values due to WiFi ranged from 0.36 to 0.58 V m(-1), and for DECT values of 0.33 V m(-1) were measured. The downlink signals of GSM and DCS caused the highest outdoor exposures up to 0.52 V m(-1). The highest total field exposure occurred for mobile scenarios (inside a train or bus) from uplink signals of GSM and DCS (e.g., mobile phones) due to changing environmental conditions, handovers, and higher required transmitted signals from mobile phones due to penetration through windows while moving. A method to relate the exposure to the actual whole-body absorption in the human body is proposed. An application is shown where the actual absorption in a human body model due to a GSM downlink signal is determined. Fiftieth, 95th, and 99 th percentiles of the whole-body specific absorption rate (SAR) due to this GSM signal of 0.58 microW kg(-1), 2.08 microW kg(-1), and 5.01 microW kg(-1) are obtained for a 95th percentile of 0.26 V m(-1). A practical usable function is proposed for the relation between the whole-body SAR and the electric fields. The methodology of this paper enables epidemiological studies to make an analysis in combination with both electric field and actual whole-body SAR values and to compare exposure with basic restrictions. PMID:18695413

  12. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Saravanabhavan, Munusamy; Sathya, Krishnan; Puranik, Vedavati G.; Sekar, Marimuthu

    2014-01-01

    Carbazole picrate (CP), a new organic compound has been synthesized, characterized by various analytical and spectroscopic technique such as FT-IR, UV-Vis, 1H and 13C NMR spectroscopy. An orthorhombic geometry was proposed based on single crystal XRD study. The thermal stability of the crystal was studied by using thermo-gravimetric and differential thermal analyses and found that it was stable up to 170 °C. Further, the newly synthesized title compound was tested for its in vitro antibacterial and antifungal activity against various bacterial and fungal species. Also, the compound was tested for its binding activity with Calf thymus (CT) DNA and the results show a considerable interaction between CP and CT-DNA.

  13. Potential approaches to the spectroscopic characterization of high performance polymers exposed to energetic protons and heavy ions

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1991-01-01

    A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).

  14. Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin 1

    NASA Astrophysics Data System (ADS)

    Gauden, Magdalena; Crosson, Sean; van Stokkum, I. H. M.; van Grondelle, Rienk; Moffat, Keith; Kennis, John T. M.

    2004-09-01

    The phototropins are plant blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in light, oxygen or voltage (LOV) domains. The spectroscopic properties of the LOV2 domain of phototropin 1 of Avena sativa (oat) have been investigated by means of low-temperature absorption and fluorescence spectroscopy and by time-resolved fluorescence spectroscopy. The low-temperature absorption spectrum of the LOV2 domain showed a fine structure around 473 nm, indicating heterogeneity in the flavin binding pocket. The fluorescence quantum yield of the flavin cofactor increased from 0.13 to 0.41 upon cooling the sample from room temperature to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K, allowing for an accurate positioning of the flavin triplet state in the LOV2 domain at 16900 cm-1. Fluorescence from the cryotrapped covalent adduct state was extremely weak, with a fluorescence spectrum showing a maximum at 440 nm. Time-resolved fluorescence experiments utilizing a synchroscan streak camera revealed a singlet-excited state lifetime of the LOV2 domain of 2.4 ns. FMN dissolved in aqueous solution showed a pH-dependent lifetime ranging between 2.9 ns at pH 2.0 to 4.7 ns at pH 8.0. No spectral shifting of the flavin emission was observed in the LOV2 domain nor in FMN in aqueous solution.

  15. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources.

    PubMed

    Shaltout, Abdallah A; Allam, Moussa A; Moharram, Mohamed A

    2011-12-01

    The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO(3)(2-) was exhibited at 1446 cm(-1), and the phosphate ions PO(4)(3-) was assigned at 1105 and 1035 cm(-1). At high temperatures (600, 700 and 600°C) further absorption bands of the phosphate ions PO(4)(3-) was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm(-1) and the vibrational absorption band of the carbonate ions CO(3)(2-) was assigned at 871, 1416 and 1461 cm(-1). X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves. PMID:21903453

  16. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.

    2011-12-01

    The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO 32- was exhibited at 1446 cm -1, and the phosphate ions PO 43- was assigned at 1105 and 1035 cm -1. At high temperatures (600, 700 and 600 °C) further absorption bands of the phosphate ions PO 43- was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm -1 and the vibrational absorption band of the carbonate ions CO 32- was assigned at 871, 1416 and 1461 cm -1. X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves.

  17. Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption.

    PubMed

    Ni, Xiaomin; Zheng, Zhong; Hu, Xiang; Xiao, Xiukun

    2010-01-01

    Novel cubic nanocapsules consisting of metallic iron core and amorphous silica shell were fabricated through a simple chemical reduction route followed by a Stöber process. Thus-prepared Fe@SiO(2) nanocubes were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectrometer (FTIR), thermogravimetry-differential thermal analysis (TG-DTA), vibrating sample magnetometer (VSM) and scalar network analysis (SNA). Comparing with that of pure iron counterparts, silica-coated iron nanocubes exhibited improved magnetic properties, oxidation resistance and microwave absorption performance. A reflection loss (RL) exceeding -12 dB was obtained in the frequency range of 8-14 GHz for an absorber thickness of 2 mm, with an optimal RL of -18.2 dB at 9 GHz. Mechanism of the improved microwave absorption properties of the Fe@SiO(2) composite was discussed based on their magnetic properties and electromagnetic theory. PMID:19833348

  18. Predicting X-ray absorption spectra of semiconducting polymers for electronic structure and morphology characterization

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Patel, Shrayesh; Pemmaraju, C. Das; Kramer, Edward; Prendergast, David; Chabinyc, Michael

    2015-03-01

    Core-level X-ray absorption spectroscopy (XAS) reveals important information on the electronic structure of materials and plays a key role in morphology characterization. Semiconducting polymers are the active component in many organic electronics. Their electronic properties are critically linked to device performance, and a proper understanding of semiconducting polymer XAS is crucial. Techniques such as resonant X-ray scattering rely on core-level transitions to gain materials contrast and probe orientational order. However, it is difficult to identify these transitions based on experiments alone, and complementary simulations are required. We show that first-principles calculations can capture the essential features of experimental XAS of semiconducting polymers, and provide insight into which molecular model, such as oligomers or periodic boundary conditions, are best suited for XAS calculations. Simulated XAS can reveal contributions from individual atoms and be used to visualize molecular orbitals. This allows for improved characterization of molecular orientation and scattering analysis. These predictions lay the groundwork for understanding how chemical makeup is linked to electronic structure, and to properly utilize experiments to characterize semiconducting polymers.

  19. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  20. Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser

    SciTech Connect

    Lacroix, D.; Jeandel, G.; Boudot, C.

    1997-05-01

    A spectroscopic study of a laser-induced plume created during the welding of stainless steel and other materials (iron and chromium) has been carried out. A pulsed Nd:YAG laser of 1000 W average power is used. The evolutions of the electron temperature and electron density have been studied for several welding parameters. We use working powers from 300 to 900 W and pulse durations between 1.5 and 5 ms. The influence of shielding gases like nitrogen and argon has been taken into account. Temperature and density calculations are based on the observation of the relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method and the density with the Stark broadening of an iron line. The electron temperatures vary in the range of 4500{endash}7100 K, electron density between 3{times}10{sup 22} and 6.5{times}10{sup 22} m{sup {minus}3}. The absorption of the laser beam in the plasma is calculated using the Inverse Bremsstrahlung theory. {copyright} {ital 1997 American Institute of Physics.}

  1. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  2. The spectroscopic characterization of newly developed emissive materials and the effects of environment on their photophysical properties

    NASA Astrophysics Data System (ADS)

    McNamara, Louis Edward, III

    The development of new materials capable of efficient charge transfer and energy storage has become increasingly important in many areas of modern chemical research. This is especially true for the development of emissive optoelectronic devices and in the field of solar to electric energy conversion. The characterization of the photophysical properties of new molecular systems for these applications has become critical in the design and development of these materials. Many molecular building blocks have been developed and understanding the properties of these molecules at a fundamental level is essential for their successful implementation and future engineering. This dissertation focuses on the characterization of some of these newly-developed molecular systems. The spectroscopic studies focus on the characterization of newly-developed molecules based on perylene and indolizine derivatives for solar to electric energy conversion, thienopyrazine derivatives for near infrared (NIR) emissive applications, an SCS pincer complex for blue emissive materials and a fluorescent probe for medical applications. The effects of noncovalent interactions are also investigated on these systems and a benchmark biological molecule trimethylamine N-oxide (TMAO).

  3. Spectroscopic modeling and characterization of a laser-ablated lithium-silver plasma plume

    NASA Astrophysics Data System (ADS)

    Sherrill, Manolo Edgar

    In this dissertation, the modeling and spectroscopic analysis of optical line emission recorded during the laser ablation of plasma plumes from a solid Li-Ag alloy target is discussed. The spectral model considers the effects of multi-element collisional-radiative atomic kinetics, detailed Stark-broadened line profiles, and radiation transport. To compute the atomic data of neutrals and low-charge ions a semi-empirical procedure was implemented in a Hartree-Fock atomic structure code, that produces a set of wavefunctions consistent with measured energy levels. This procedure is critical to obtain spectroscopic quality atomic data for a transition element like silver. A large database of atomic cross sections and rates was computed to input the atomic kinetics calculations. Detailed line shapes were calculated for the Li and Ag line transitions observed in the experimental spectra taking into account the effects of natural, Doppler, Stark and resonance broadening. The radiation transport equation was solved to calculate the transport of the lines through the plasma and the emitted line intensity distribution. The final synthetic spectra self-consistently includes the Li and Ag line emissions. The temperature and density sensitivity of these spectra is discussed for the case of uniform and non-uniform plasmas. The spectral model was implemented in a versatile and efficient parallel processing code, and applied to the analysis of data recorded in laser ablation experiments performed at Sandia National Laboratories. First, raw data images recorded with a gated, space-resolving spectrograph were corrected for instrument efficiency, and the wavelength and space axes calibrated. Then, a collection of time- and space-resolved spectra lineouts was extracted for analysis. The results of the analysis indicate that early in time and close to the target's surface a dense plasma is formed with electron temperatures in the 1 eV to 2 eV range, and electron densities in the 1 x

  4. A COMPLETE SPECTROSCOPIC CHARACTERIZATION OF SO AND ITS ISOTOPOLOGUES UP TO THE TERAHERTZ DOMAIN

    SciTech Connect

    Martin-Drumel, M. A.; Hindle, F.; Mouret, G.; Cuisset, A.; Cernicharo, J.

    2015-02-01

    In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, {sup 34}SO, and {sup 33}SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of {sup 34}SO ({sup 34}S: 4.21%) and {sup 33}SO ({sup 33}S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources.

  5. High sensitivity spectroscopic and thermal characterization of cooling efficiency for optical refrigeration materials

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Di Lieto, Alberto; Tonelli, Mauro; Sheik-Bahae, Mansoor

    2012-03-01

    Since recent demonstration of cryogenic optical refrigeration, a need for reliable characterization tools of cooling performance of different materials is in high demand. We present our experimental apparatus that allows for temperature and wavelength dependent characterization of the materials' cooling efficiency and is based on highly sensitive spectral differencing technique or two-band differential spectral metrology (2B-DSM). First characterization of a 5% w.t. ytterbium-doped YLF crystal showed quantitative agreement with the current laser cooling model, as well as measured a minimum achievable temperature (MAT) at 110 K. Other materials and ion concentrations are also investigated and reported here.

  6. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. PMID:25682215

  7. Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes

    NASA Astrophysics Data System (ADS)

    Al-Saeedi, Sameerah I.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A.

    2016-05-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been. The elemental analyses, molar conductance, spectral, magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (OON). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.10-10.18 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using different equations. The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. The cyclic voltammograms of the Cu(II)/Co(II)/Ni(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions.

  8. Minerals from Macedonia XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates.

    PubMed

    Makreski, Petre; Jovanovski, Gligor

    2009-08-01

    IR and Raman spectroscopy study on two collected cyclosilicate species: schorl (from tourmaline group), Na(Fe,Mg)(3)Al(6)(BO(3))(3)Si(6)O(18)(OH,F)(4) and beryl (Be,Mg,Fe)(3)Al(2)Si(6)O(18) were carried out. Although beryl is nominally anhydrous mineral, vibrational results strongly indicate that H(2)O molecules exist in the structural channels. The number of vibrational bands and their frequencies revealed the presence of H(2)O type II, in which C(2) symmetry axis of the water molecule is parallel to the structural channel (and to the c-axis of beryl). On the other hand, it was found that observed bands in the IR and Raman OH stretching region of the other tourmaline varieties appear as a result of the cation combinations involving dominant presence of Mg and Fe cations in the Y structural sites. The strong indication derived from the vibrational spectroscopic results that the studied mineral represents a schorl variety, coincide very well with the results obtained by powder X-ray diffraction and X-ray microprobe analysis. Both minerals show IR spectral similarities in the region below 1500 cm(-1), whereas the resemblance between the Raman spectra (1500-100 cm(-1)) is less expressed confirming that these spectra are more sensitive to compositional changes and to structural disorder. The identification of both minerals was additionally supported by studying the powder X-ray diffraction diagrams. PMID:18722809

  9. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  10. Surface layer in composites containing 4- n-octyl-4'-cyanobiphenyl. FTIR spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Frunza, L.; Kosslick, H.; Bentrup, U.; Pitsch, I.; Fricke, R.; Frunza, S.; Schönhals, A.

    2003-06-01

    Composites containing 4- n-octyl-4'-cyanobiphenyl (8CB) either confined to nanopores of molecular sieves with very large pores or coating silica nanoparticles of aerosil type at high silica-to-8CB ratios are investigated by IR spectroscopy. Band shape analysis was performed in wavenumber regions in which the peaks due to CN stretching, CH stretching and CH out-of-plane vibrations appear. Some of molecules confined to molecular sieves show spectroscopic features characteristic to a bulk-like 8CB matter located in the centre of the pores or in the inter-grain space. Other features of the IR spectra are due to 8CB molecules located in the surface layer, mostly forming hydrogen bonds between their CN groups and surface OH groups. Another part of the 8CB molecules in the surface layer may also interact by π electrons of the aromatic rings. Hydrogen bonding is less hindered for the molecules of the surface layers onto aerosil particles than inside pores of the molecular sieves. Comparison is also made with the case of composites based on molecular sieves with small pores.

  11. Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Michels, Antje; Tombrink, Sven; Vautz, Wolfgang; Miclea, Manuela; Franzke, Joachim

    2007-11-01

    We report a miniaturized excitation source for soft ionization of molecules based on a dielectric barrier discharge. An atmospheric plasma is established at the end of a 500 μm diameter capillary using He as buffer gas. The plasma jet which comes out of the capillary is dependent on the gas flow rate. The mechanism of the production of N 2+ outside the capillary, which is relevant for the protonation of molecules and sustains the production of primary ions, is investigated by spatially resolved spectroscopic measurements throughout the plasma. Possible application of such miniaturized plasmas is the ionization of gaseous compounds under atmospheric pressure as an alternative to traditional APCI (atmospheric pressure chemical ionization). The miniaturized plasma was applied as ionization source for ion mobility spectrometry where the common sources are radioactive, thus limiting the place of installation. First measurements of gaseous compounds with such a plasma ion mobility spectrometer with promising results showed detection limits comparable or even better than those obtained using common radioactive ionization sources.

  12. Spectroscopic ellipsometry for characterization of InAs/Ga1-xInxSb superlattices

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Schmitz, J.; Herres, N.; Fuchs, F.; Walther, M.

    1998-05-01

    The pseudodielectric function of InAs/Ga1-xInxSb superlattices (SLs) grown by solid-source molecular-beam epitaxy, was measured by spectroscopic ellipsometry (SE) for photon energies ranging from 1.2 to 5 eV. The width of the extrema in the SL pseudodielectric function derived from the E1 and E1+Δ1 interband transitions of the SL constituents InAs and Ga1-xInxSb, was found to depend on the structural quality of the SL. Differences in the SL quality caused by different sequences of InSb- like and GaAs-like interfaces, were easily detected by SE. The formation of the intended interface alternations was verified by Raman spectroscopy. The extrema in the SL pseudodielectric function originating from the E1 and E1+Δ1 interband transitions of Ga1-xInxSb were found to shift to lower energies with increasing In content x. Finally SE has been applied to the analysis of a complete InAs/Ga1-xInxSb SL detector structure.

  13. Applied quantum chemistry: Spectroscopic detection and characterization of the F{sub 2}BS and Cl{sub 2}BS free radicals in the gas phase

    SciTech Connect

    Jin, Bing; Clouthier, Dennis J.; Sheridan, Phillip M.

    2015-03-28

    In this and previous work [D. J. Clouthier, J. Chem. Phys. 141, 244309 (2014)], the spectroscopic signatures of the X{sub 2}BY (X = H, halogen, Y = O, S) free radicals have been predicted using high level ab initio theory. The theoretical results have been used to calculate the electronic absorption and single vibronic level (SVL) emission spectra of the radicals under typical jet-cooled conditions. Using these diagnostic predictions, the previously unknown F{sub 2}BS and Cl{sub 2}BS free radicals have been identified and characterized. The radicals were prepared in a free jet expansion by subjecting precursor mixtures of BF{sub 3} or BCl{sub 3} and CS{sub 2} vapor to an electric discharge at the exit of a pulsed molecular beam valve. The B{sup ~2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence spectra were found within 150 cm{sup −1} of their theoretically predicted positions with vibronic structure consistent with our Franck-Condon simulations. The B{sup ~2}A{sub 1} state emits down to the ground state and to the low-lying A{sup ~2}B{sub 1} excited state and the correspondence between the observed and theoretically derived SVL emission Franck-Condon profiles was used to positively identify the radicals and make assignments. Excited state Coriolis coupling effects complicate the emission spectra of both radicals. In addition, a forbidden component of the electronically allowed B{sup ~}–X{sup ~} band system of Cl{sub 2}BS is evident, as signaled by the activity in the b{sub 2} modes in the spectrum. Symmetry arguments indicate that this component gains intensity due to a vibronic interaction of the B{sup ~2}A{sub 1} state with a nearby electronic state of {sup 2}B{sub 2} symmetry.

  14. Applied quantum chemistry: Spectroscopic detection and characterization of the F2BS and Cl2BS free radicals in the gas phase.

    PubMed

    Jin, Bing; Sheridan, Phillip M; Clouthier, Dennis J

    2015-03-28

    In this and previous work [D. J. Clouthier, J. Chem. Phys. 141, 244309 (2014)], the spectroscopic signatures of the X2BY (X = H, halogen, Y = O, S) free radicals have been predicted using high level ab initio theory. The theoretical results have been used to calculate the electronic absorption and single vibronic level (SVL) emission spectra of the radicals under typical jet-cooled conditions. Using these diagnostic predictions, the previously unknown F2BS and Cl2BS free radicals have been identified and characterized. The radicals were prepared in a free jet expansion by subjecting precursor mixtures of BF3 or BCl3 and CS2 vapor to an electric discharge at the exit of a pulsed molecular beam valve. The B̃(2)A1-X̃(2)B2 laser-induced fluorescence spectra were found within 150 cm(-1) of their theoretically predicted positions with vibronic structure consistent with our Franck-Condon simulations. The B̃(2)A1 state emits down to the ground state and to the low-lying Ã(2)B1 excited state and the correspondence between the observed and theoretically derived SVL emission Franck-Condon profiles was used to positively identify the radicals and make assignments. Excited state Coriolis coupling effects complicate the emission spectra of both radicals. In addition, a forbidden component of the electronically allowed B̃-X̃ band system of Cl2BS is evident, as signaled by the activity in the b2 modes in the spectrum. Symmetry arguments indicate that this component gains intensity due to a vibronic interaction of the B̃(2)A1 state with a nearby electronic state of (2)B2 symmetry. PMID:25833573

  15. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    NASA Astrophysics Data System (ADS)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  16. Complementary characterization of Ti-Si-C films by x-ray diffraction and absorption

    NASA Astrophysics Data System (ADS)

    Lawniczak-Jablonska, K.; Klepka, M. T.; Dynowska, E.; Wolska, A.; Borysiewicz, M. A.; Piotrowska, A.

    2013-12-01

    Advanced electronic devices based on III-N semiconductors, particularly these operated at the high power and high frequency or corrosive atmosphere, need elaboration of new technology for contacts metallization which are thermally and chemically stable. Performed studies aimed at the development of materials for applications in the improved metallization. Due to the unique combination of the metallic electro-thermal conductivity and ceramic resistance to oxidation and thermal stability, the MAX phases were chosen as the materials potentially applicable to this task. Particular interest lies in the MAX phases based on the Ti, Si and C or N atoms, especially on the Ti3SiC2 phase. The paper focuses on a comprehensive characterization of films grown by means of high-temperature magnetron Ti, Si and C co-sputtering. The complementary characterization by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) is presented. XRD studies pointed out the presence of several phases in the investigated samples, therefore XAS as an atomic sensitive probe was applied to examine the average atomic order around Ti atoms as a function of the technological parameters and to point towards proper procedures to achieve the appropriate stoichiometry around Ti atoms and finally the Ti3SiC2 phase.

  17. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    NASA Astrophysics Data System (ADS)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  18. Spectroscopic Characterization of HD 95086 b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    De Rosa, Robert J.; Rameau, Julien; Patience, Jenny; Graham, James R.; Doyon, René; Lafrenière, David; Macintosh, Bruce; Pueyo, Laurent; Rajan, Abhijith; Wang, Jason J.; Ward-Duong, Kimberly; Hung, Li-Wei; Maire, Jérôme; Nielsen, Eric L.; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Chilcote, Jeffrey K.; Galvez, Ramon L.; Gerard, Benjamin L.; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Morzinski, Katie M.; Oppenheimer, Rebecca; Perrin, Marshall D.; Rantakyrö, Fredrik T.; Savransky, Dmitry; Thomas, Sandrine

    2016-06-01

    We present new H (1.5–1.8 μm) photometric and K 1 (1.9–2.2 μm) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The H-band magnitude has been significantly improved relative to previous measurements, whereas the low-resolution K 1 (λ /δ λ ≈ 66) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature L\\prime photometry, we compare the spectral energy distribution (SED) of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in {K}1-L\\prime color than 2MASS J12073346–3932539 b and HR 8799 c and d, despite having a similar L\\prime magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature ({T}{{eff}} = 800–1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color–magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.

  19. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    SciTech Connect

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  20. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate.

    PubMed

    Senent, M L; Puzzarini, C; Hochlaf, M; Domínguez-Gómez, R; Carvajal, M

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH3-S-CHO (MSCHO) and O-methyl thioformate CH3-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH3-S-CHO represents the most stable structure lying 4372.2 cm(-1) below cis-CH3-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm(-1)) than for MOCHS (1963.6 cm(-1)). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V3(cis) are determined to be 139.7 cm(-1) (CH3-S-CHO) and 670.4 cm(-1) (CH3-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm(-1) for CH3-S-CHO and negligible for CH3-O-CHS. PMID:25217912

  1. Design and spectroscopic characterization of novel series of near infrared indocyanine dyes

    NASA Astrophysics Data System (ADS)

    Abd-El-Aziz, Alaa S.; Strohm, Elizabeth A.; Okasha, Rawda M.

    2015-07-01

    A novel series of near infrared heptamethine indocyanine dyes bearing various aromatic chromophores has been synthesized. The synthetic methodology was achieved via ester condensation reactions of heptamethine indocyanine parent dye with carboxylic moiety and aromatic compounds such as anthracene, pyrene and thiophene derivatives. Structural analysis of the newly prepared dyes was accomplished using one- and two-dimensional nuclear magnetic resonance, infrared spectroscopy and electrospray ionization mass spectrometry. These dyes exhibited high molar absorptivity based on the UV-visible/near-infrared spectral data. Fluorescence emission spectral data was used to determine the relative quantum yield. The new dyes displayed formation of H-aggregates in water at low concentrations, while this behavior was not observed in methanol.

  2. Comparison and investigation of bovine hemoglobin binding to dihydroartemisinin and 9-hydroxy-dihydroartemisinin: Spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Xiao, Mengsi; Han, Lina; Zhou, Lin; Zhou, Yanhuai; Huang, Xiaoqin; Ge, Xuefeng; Wei, Shaohua; Zhou, Jiahong; Wu, Heming; Shen, Jian

    The UV-vis absorption, steady state/time resolved fluorescence spectroscopy and synchronous fluorescence, circular dichroism (CD) spectroscopy are used to investigate the interaction mechanisms of dihydroartemisinin (DHA) and 9-hydroxy-dihydroartemisinin (9-OH DHA), respectively. The UV-vis studies present that DHA and 9-OH DHA can disturb the structure of bovine hemoglobin (BHb). Steady state/time resolved and synchronous fluorescence spectroscopy reveal that the binding constant of DHA with BHb is bigger than 9-OH DHA. CD spectra indicate DHA and 9-OH DHA can change the conformation of BHb. The comparison results suggest that the binding of BHb with DHA is more stable and stronger than 9-OH DHA.

  3. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  4. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent.

    PubMed

    El-Megharbel, Samy M; Hamza, Reham Z; Refat, Moamen S

    2015-01-25

    The vanadyl(IV) adenine complex; [VO(Adn)2]⋅SO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes. PMID:25150436

  5. Spectroscopic characterization of the chemical composition of the potent sweetener Vartamil

    NASA Astrophysics Data System (ADS)

    Kolosova, T. E.; Prokhodchenko, L. K.; Pilipenko, V. V.; Suboch, V. P.

    2008-03-01

    The chemical composition of the potent sweetener Vartamil was characterized using spectral methods. It was demonstrated that Vartamil is a mixture of saccharose chloro derivatives, the main one of which is 4,1',6'-trichloro-4,1',6'-trideoxygalactosaccharose (Sucralose).

  6. Arsenate Uptake by Calcite: Macroscopic and Spectroscopic Characterization of Adsorption and Incorporation Mechanisms

    SciTech Connect

    Alexandratos,V.; Elzinga, E.; Reeder, R.

    2007-01-01

    Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO{sub 2} = 10{sup -3.5} atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 {mu}M. Maximum distribution coefficient values (K{sub d}), derived from a best fit to a Langmuir model, are {approx}190 L kg{sup -1}. Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on (10{bar 1}4) surfaces at low As(V) concentrations ({<=}5 {mu}M), but habit modification is evident at As(V) concentrations {>=}30 {mu}M in the form of macrostep development preferentially on the - vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of (10{bar 1}4) surfaces shows preferential incorporation of As in the - vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.

  7. Spectroscopic Characterization of Structural Changes in Membrane Scaffold Proteins Entrapped within Mesoporous Silica Gel Monoliths.

    PubMed

    Zeno, Wade F; Hilt, Silvia; Risbud, Subhash H; Voss, John C; Longo, Marjorie L

    2015-04-29

    The changes in the orientation and conformation of three different membrane scaffold proteins (MSPs) upon entrapment in sol-gel-derived mesoporous silica monoliths were investigated. MSPs were examined in either a lipid-free or a lipid-bound conformation, where the proteins were associated with lipids to form nanolipoprotein particles (NLPs). NLPs are water-soluble, disk-shaped patches of a lipid bilayer that have amphiphilic MSPs shielding the hydrophobic lipid tails. The NLPs in this work had an average thickness of 5 nm and diameters of 9.2, 9.7, and 14.8 nm. We have previously demonstrated that NLPs are more suitable lipid-based structures for silica gel entrapment than liposomes because of their size compatibility with the mesoporous network (2-50 nm) and minimally altered structure after encapsulation. Here we further elaborate on that work by using a variety of spectroscopic techniques to elucidate whether or not different MSPs maintain their protein-lipid interactions after encapsulation. Fluorescence spectroscopy and quenching of the tryptophan residues with acrylamide, 5-DOXYL-stearic acid, and 16-DOXYL-stearic acid were used to determine the MSP orientation. We also utilized fluorescence anisotropy of tryptophans to measure the relative size of the NLPs and MSP aggregates after entrapment. Finally, circular dichroism spectroscopy was used to examine the secondary structure of the MSPs. Our results showed that, after entrapment, all of the lipid-bound MSPs maintained orientations that were minimally changed and indicative of association with lipids in NLPs. The tryptophan residues appeared to remain buried within the hydrophobic core of the lipid tails in the NLPs and appropriately spaced from the bilayer center. Also, after entrapment, lipid-bound MSPs maintained a high degree of α-helical content, a secondary structure associated with protein-lipid interactions. These findings demonstrate that NLPs are capable of serving as viable hosts for functional

  8. Spectroscopic characterization of C2Hx intermediates in the dissociation of vinyl iodide on Pt(111)

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Waluyo, Iradwikanari; Yin, Jun; Trenary, Michael

    2015-07-01

    The thermal decomposition of vinyl iodide on Pt(111) was studied using reflection absorption infrared spectroscopy (RAIRS). Some of the vinyl iodide molecularly desorbs at 160 K and the remainder decomposes via scission of the C-I bond to form vinyl. In this way, the vibrational signature of vinyl on Pt(111) is directly determined by RAIRS. At 190 K, vinyl starts to convert to di-σ bonded ethylene. The ethylene undergoes further reaction at 230 K to hydrogenate to ethylidene, possibly by way of a vinyl intermediate. Upon annealing the surface to 300 K, ethylidene is converted to ethylidyne. Hydrogen pre-adsorption promotes the cleavage of the C-I bond of vinyl iodide and the formation of vinyl, which subsequently leads to an increase in the amount of di-σ bonded ethylene formed. The surface hydrogen enhances the formation of ethylidyne, possibly by removal of excess ethylidene by hydrogenation, as ethylidene was not observed when hydrogen was pre-adsorbed on the surface.

  9. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking.

    PubMed

    Shi, Jie-Hua; Liu, Ting-Ting; Jiang, Min; Chen, Jun; Wang, Qi

    2015-06-01

    The binding interaction of gefitinib with calf thymus DNA (ct-DNA) under the simulated physiological pH condition was studied employing UV absorption, fluorescence, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that gefitinib preferred to bind to the minor groove of ct-DNA with the binding constant (Kb) of 1.29 × 10(4)Lmol(-1) at 298K. Base on the signs and magnitudes of the enthalpy change (ΔH(0)=-60.4 kJ mol(-1)) and entropy change (ΔS(0)=-124.7 J mol(-1)K(-1)) in the binding process and the results of molecular docking, it can be concluded that the main interaction forces between gefitinib and ct-DNA in the binding process were van der Waals force and hydrogen bonding interaction. The results of CD experiments revealed that gefitinib did not disturb native B-conformation of ct-DNA. And, the significant change in the conformation of gefitinib in gefitinib-ct-DNA complex was observed from the molecular docking results and the change was close relation with the structure of B-DNA fragments, indicating that the flexibility of gefitinib molecule also plays an important role in the formation of the stable gefitinib-ct-DNA complex. PMID:25839749

  10. Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein.

    PubMed

    Sonar, S; Patel, N; Fischer, W; Rothschild, K J

    1993-12-21

    Bacteriorhodopsin (bR) is an integral membrane protein which functions as a light-driven proton pump in Halobacterium halobium (also known as Halobacterium salinarium). The cell-free synthesis of bR in quantities sufficient for FTIR and NMR spectroscopy and the ability to selectively isotope label bR using aminoacylated suppressor tRNAs would provide a powerful approach for studying the role of specific amino acid residues. However, no integral membrane protein has yet been expressed in a cell-free system in quantities sufficient for such biophysical studies. We report the cell-free synthesis of bacterioopsin, its purification, its refolding in polar lipids from H. halobium, and its regeneration with all-trans-retinal to yield bacteriorhodopsin in a form functionally similar to bR in purple membrane. Importantly, the yields obtained from in vitro and in vivo expression are comparable. Functionality of the cell-free expressed bR is established using static and time-resolved absorption spectroscopy and FTIR difference spectroscopy. PMID:8268152

  11. Towards nanoscale biomedical devices in medicine: biofunctional and spectroscopic characterization of superparamagnetic nanoparticles.

    PubMed

    Parracino, Antonietta; Gajula, Gnana Prakash; di Gennaro, Ane Kold; Neves-Petersen, Maria Teresa; Rafaelsen, Jens; Petersen, Steffen B

    2011-03-01

    Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report the immobilization of a PhEst, a S-formylglutathione hydrolase from the psychrophilic P. haloplanktis TAC125 onto the gold coated surface of modified superparamagnetic core-shell nanoparticles (Fe(3)O(4)@Au). The synthesis of the nanoparticles is also reported. S-formylglutathione hydrolases constitute a family of ubiquitous enzymes which play a key role in formaldehyde detoxification both in prokaryotes and eukaryotes. PhEst was originally annotated as a putative feruloyl esterase, an enzyme that releases ferulic acid (an antioxidant reactive towards free radicals such as reactive oxygen species) from polysaccharides esters. Dynamic light scattering, scanning electron microscopy with energy dispersive X-ray spectroscopy, UV-visible absorption spectroscopy, fluorescence spectroscopy, magnetic separation technique and enzyme catalytic assay confirmed the chemical composition of the gold covered superparamagnetic nanoparticles, the binding and activity of the enzyme onto the nanoparticles. Activity data in U/ml confirmed that the immobilized enzyme is approximately 2 times more active than the free enzyme in solution. Such particles can be directed with external magnetic fields for bio-separation and focused towards a medical target for therapeutical as well as bio-sensor applications. PMID:21107664

  12. Spectroscopic Characterization of Intermediates in the Iron Catalyzed Activation of Alkanes

    SciTech Connect

    Edward M. Eyring

    2007-05-28

    The present report begins with a brief survey of recent hypervalent iron chemistry and mentions two previously reported ferrate papers funded by the DOE/BES grant. The focus is then shifted to the seven publications acknowledging support of the grant that have not been reported since the last Progress Report, DOE/ER/14340-9, was prepared. These papers deal with: (a) the successful use of an ATR element in a stopped-flow infrared spectrometer, (b) the rationalization of a depolarization of a LiClO4 solution in polyethylene oxide high polymer, (c) an analysis of several coupled ultrasonic relaxations observed in solutions of pentoses undergoing isomerization, (d) the combination of ultrasonic absorption and Raman scattering measurements to elucidate zinc thiocyanate solutions in water, (e) the use of NMR to determine stability constants when LiClO4:12-crown-4 is dissolved in acetonitrile and in methanol, (f) the possible existence of triple ions in low permittivity solutions, and (g) the properties of a high surface area ceria aerogel. Collectively, these papers illustrate advantages of bringing several modern experimental techniques to bear on complex chemical systems.

  13. Combined X-Ray and Raman Spectroscopic Techniques for the Characterization of Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.; Kilthau, W.; Bothe, D.; Charnawskas, J. C.; Gilles, M. K.; OBrien, R. E.; Moffet, R.; Radway, J.

    2014-12-01

    Sea spray aerosol along with mineral dust dominates the global mass flux of particles to the atmosphere. Marine aerosol particles are of particular interest because of their continual impact on cloud formation, precipitation, atmospheric chemical processes, and thus global climate. Here we report on the physical/chemical characteristics of sub-surface waters, aerosolized sea spray particles, and particles/organic species present in surface microlayer (SML) samples collected during oceanic field campaigns and generated during laboratory experiments, revealing a biogenic primary source of the organic fraction of airborne particles. We also report on ice nucleation experiments with aerosolized particles collected during the May 2014 WACS II North Atlantic cruise and with laboratory generated exudate material from diatom cultures with the potential to impact cirrus and mixed phase clouds. Physicochemical analyses using a multi-modal approach which includes Scanning Transmission X-ray Microscopy coupled with Near-Edge Absorption Fine Structure Spectroscopy (STXM/NEXAFS) and Raman spectroscopy confirm the presence and chemical similarity of polysaccharide-rich transparent exopolymer (TEP) material and proteins in both SML sea spray aerosol and ice forming aerosol particles, regardless of the extent of biological activity in surface waters. Our results demonstrate a direct relationship between the marine environment and composition of marine aerosol through primary particle emission.

  14. Infrared and Raman spectroscopic characterization of some organic substituted hybrid silicas

    NASA Astrophysics Data System (ADS)

    Capeletti, Larissa B.; Baibich, Ione M.; Butler, Ian S.; dos Santos, João H. Z.

    2014-12-01

    Nine hybrid silicas bearing the organic substituent groups methyl, octyl, octadecyl, vinyl, phenyl, mercaptopropyl, isocyanatopropyl, chloropropyl and glycidoxypropyl were synthesized by an acid-catalyzed, hydrolytic sol-gel process. The resulting solid materials were characterized by their absorbance and attenuated total reflection (ATR) IR and Raman spectra. The latter technique proved to be particularly useful in the identification of the organic moieties in the hybrid silicas. The effect of the presence of the organic groups on the silica networks was also investigated - there were increases observed in both the Sisbnd Osbnd Si bond angles and bond lengths. Moreover, deconvolution of the IR-active antisymmetric Sisbnd Osbnd Si stretching bands permitted detection of the four- and six-membered siloxane rings present in the silicas. There proved to be a greater number of four-membered rings on the surfaces of the particles. Both IR and Raman spectroscopy proved to be invaluable in the characterization of these hybrid materials.

  15. Steady state and time-resolved fluorescence spectroscopic characterization of normal and cancerous urine

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Ramu; Aruna, Prakasa Rao; Balu David, Munusamy; Koteeswaran, Dornadula; Muthuvelu, Kulandaivel; Rai, R.; Ganesan, Singaravelu

    2013-03-01

    Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. There may be a variation in the distribution and the physiochemical properties of the fluorophores during any metabolic change and pathologic conditions. Native fluorescence spectroscopy has been considered as a promising tool to characterize the fluorophores present in the urine. In this study, we aimed at characterizing the urine of both normal and patients with confirmed cancer using steady state and time-resolved fluorescence spectroscopy at 280 nm and 350 nm excitation. It is observed that the metabolites indoxyl sulphate and neopterin and its derivatives are responsible for altered spectral signatures at 280 nm, and 350 nm excitation. The overall spectral data were subjected to Principal Component Analysis and the resultant components were used as input in the linear discriminant analysis. As a total, 84% and 81.8% of samples were correctly classified at 280 nm and 350 nm respectively.

  16. Spectroscopic techniques applied to the characterization of decorated potteries from Caltagirone (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barilaro, D.; Barone, G.; Crupi, V.; Donato, M. G.; Majolino, D.; Messina, G.; Ponterio, R.

    2005-06-01

    The aim of the present work is the characterization of decorated pottery samples from Caltagirone (Sicily, Italy), a renowned production centre of this kind of artwork. These fragments were found during archaeological excavations and were attributed to historical periods extremely far in time from each other (from XVIII century b.C. to XVI a.C.). Therefore, we expect that the manufacture techniques result rather different over so long time. The measurements, performed by Fourier Transform-InfraRed (FT-IR) absorbance and micro-Raman scattering, allowed us a non-destructive study of so precious artefacts. Some pigments were identified, various elements of ceramic paste and glazed layer were characterized.

  17. Terahertz broadband spectroscopic investigations of amino acid

    NASA Astrophysics Data System (ADS)

    Zhu, De-chong; Zhang, Liang-liang; Zhong, Hua; Zhang, Cun-lin

    2011-08-01

    We present an experimental terahertz (THz) spectroscopic investigation of amino acid using an air-breakdown-coherent detection (ABCD) system. The strong and ultra-broadband (0.1 to 10THz) terahertz radiations generated by two-color laser induced air plasma and measured by coherent heterodyne detection. The broadband THz reflection spectra of L-Lysine (C6H14N2O2) and L-Arginine (C6H14N2O2) are obtained. To solve the phase-retrieval problem in RTDS, the absorption signatures of the materials are extracted directly from the first derivative of the relative reflectance with respect to frequency. The absorption features of the two amino acids are characterized in the 0.5~6 THz region. It is found that both the two amino acids have an absorption peak at 1.10 THz.

  18. Spectroscopic characterization of copper(II) complexes of indoxyl N(4)-methyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Umendra

    2004-10-01

    New copper(II) complexes of indoxyl thiosemicarbazone (ITSC) of general composition CuL 2X 2 (where L: ITSC; X: Cl -, NO 3-, ClO 4-, NCS -) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements and spectral (electronic, IR, EPR, 1H NMR , Mass) studies. Cyclic voltammetry measurements show quasi-reversible Cu 2+/Cu 1+ couple. Various physico-chemical techniques suggest a tetragonal structure for these copper(II) complexes.

  19. Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sulfide isotopologues: a route toward their astrophysical detection

    SciTech Connect

    Puzzarini, C.; Senent, M. L.; Domínguez-Gómez, R.; Carvajal, M.; Hochlaf, M.; Al-Mogren, M. Mogren E-mail: senent@iem.cfmac.csic.es E-mail: miguel.carvajal@dfa.uhu.es E-mail: mmogren@ksu.edu.sa

    2014-11-20

    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.

  20. Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Zhou, Chu-wei

    2016-03-01

    For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.

  1. Biophenols from Table Olive cv Bella di Cerignola: Chemical Characterization, Bioaccessibility, and Intestinal Absorption.

    PubMed

    D'Antuono, Isabella; Garbetta, Antonella; Ciasca, Biancamaria; Linsalata, Vito; Minervini, Fiorenza; Lattanzio, Veronica M T; Logrieco, Antonio F; Cardinali, Angela

    2016-07-20

    In this study, the naturally debittered table olives cv Bella di Cerignola were studied in order to (i) characterize their phenolic composition; (ii) evaluate the polyphenols bioaccessibility; (iii) assess their absorption and transport, across Caco2/TC7. LC-MS/MS analysis has confirmed the presence of hydroxytyrosol acetate, caffeoyl-6'-secologanoside, and comselogoside. In vitro bioaccessibility ranged from 7% of luteolin to 100% of tyrosol, highlighting the flavonoids sensitivity to the digestive conditions. The Caco2/TC7 polyphenols accumulation was rapid (60 min) with an efficiency of 0.89%; the overall bioavailability was 1.86% (120 min), with hydroxytyrosol and tyrosol the highest bioavailables, followed by verbascoside and luteolin. In the cells and basolateral side, caffeic and coumaric acids metabolites, probably derived from esterase activities, were detected. In conclusion, the naturally debittered table olives cv Bella di Cerignola can be considered as a source of bioaccessible, absorbable, and bioavailable polyphenols that, for their potential health promoting effect, permit inclusion of table olives as a functional food suitable for a balanced diet. PMID:27355793

  2. Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Zhou, Chu-wei

    2016-08-01

    For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.

  3. Characterization of fluorinated multiwalled carbon nanotubes by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M. M.; Vinogradov, N. A.; Muradyan, V. E.; Shul'Ga, Yu. M.; Polyakova, N. V.; Vinogradov, A. S.

    2008-03-01

    The C 1 s and F 1 s x-ray absorption spectra of fluorinated multiwalled carbon nanotubes with different fluorine contents and reference compounds (highly oriented pyrolytic graphite crystals and "white" graphite fluoride) were measured using the equipment of the Russian-German beamline at the BESSY II storage ring with a high energy resolution. The spectra obtained were analyzed with the aim of characterizing multiwalled carbon nanotubes and their products formed upon treatment of the nanotubes with fluorine at a temperature of 420°C. It was established that, within the probing depth (˜15 nm) of carbon nanotubes, the process of fluorination occurs uniformly and does not depend on the fluorine concentration. The interaction of fluorine atoms with multiwalled carbon nanotubes in this case proceeds through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton and is accompanied by a change in the hybridization of the 2 s and 2 p valence electron states of the carbon atom from the trigonal ( sp 2) to tetrahedral ( sp 3) hybridization.

  4. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba.

    PubMed

    Reddy, B Jagannadha; Frost, Ray L

    2005-06-01

    The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of

  5. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.

    PubMed

    Soltermann, Daniela; Marques Fernandes, Maria; Baeyens, Bart; Dähn, Rainer; Joshi, Prachi A; Scheinost, Andreas C; Gorski, Christopher A

    2014-01-01

    Iron is an important redox-active element that is ubiquitous in both engineered and natural environments. In this study, the retention mechanism of Fe(II) on clay minerals was investigated using macroscopic sorption experiments combined with Mössbauer and extended X-ray absorption fine structure (EXAFS) spectroscopy. Sorption edges and isotherms were measured under anoxic conditions on natural Fe-bearing montmorillonites (STx, SWy, and SWa) having different structural Fe contents ranging from 0.5 to 15.4 wt % and different initial Fe redox states. Batch experiments indicated that, in the case of low Fe-bearing (STx) and dithionite-reduced clays, the Fe(II) uptake follows the sorption behavior of other divalent transition metals, whereas Fe(II) sorption increased by up to 2 orders of magnitude on the unreduced, Fe(III)-rich montmorillonites (SWy and SWa). Mössbauer spectroscopy analysis revealed that nearly all the sorbed Fe(II) was oxidized to surface-bound Fe(III) and secondary Fe(III) precipitates were formed on the Fe(III)-rich montmorillonite, while sorbed Fe is predominantly present as Fe(II) on Fe-low and dithionite-reduced clays. The results provide compelling evidence that Fe(II) uptake characteristics on clay minerals are strongly correlated to the redox properties of the structural Fe(III). The improved understanding of the interfacial redox interactions between sorbed Fe(II) and clay minerals gained in this study is essential for future studies developing Fe(II) sorption models on natural montmorillonites. PMID:24930689

  6. Theoretical spectroscopic characterization at low temperatures of methyl hydroperoxide and three S-analogs

    SciTech Connect

    Dalbouha, S. Senent, M. L.; Komiha, N.

    2015-02-21

    The low temperature spectra of the detectable species methyl hydroperoxide (CH{sub 3}OOH) and three sulfur analogs, the two isomers of methanesulfenic acid (CH{sub 3}SOH and CH{sub 3}OSH) and the methyl hydrogen disulfide (CH{sub 3}SSH), are predicted from highly correlated ab initio methods (CCSD(T) and CCSD(T)-F12). Rotational parameters, anharmonic frequencies, torsional energy barriers, torsional energy levels, and their splittings are provided. Our computed parameters should help for the characterization and the identification of these organic compounds in laboratory and in the interstellar medium.

  7. SULFUR CHEMISTRY. Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride.

    PubMed

    Mackenzie, Rebecca B; Dewberry, Christopher T; Leopold, Kenneth R

    2015-07-01

    We report the observation of a covalently bound species, formic sulfuric anhydride (FSA), that is produced from formic acid and sulfur trioxide under supersonic jet conditions. FSA has been structurally characterized by means of microwave spectroscopy and further investigated by using density functional theory and ab initio calculations. Theory indicates that a π2 + π2 + σ2 cycloaddition reaction between SO3 and HCOOH is a plausible pathway to FSA formation and that such a mechanism would be effectively barrierless. We speculate on the possible role that FSA may play in the Earth's atmosphere. PMID:26138972

  8. Theoretical spectroscopic characterization at low temperatures of methyl hydroperoxide and three S-analogs

    NASA Astrophysics Data System (ADS)

    Dalbouha, S.; Senent, M. L.; Komiha, N.

    2015-02-01

    The low temperature spectra of the detectable species methyl hydroperoxide (CH3OOH) and three sulfur analogs, the two isomers of methanesulfenic acid (CH3SOH and CH3OSH) and the methyl hydrogen disulfide (CH3SSH), are predicted from highly correlated ab initio methods (CCSD(T) and CCSD(T)-F12). Rotational parameters, anharmonic frequencies, torsional energy barriers, torsional energy levels, and their splittings are provided. Our computed parameters should help for the characterization and the identification of these organic compounds in laboratory and in the interstellar medium.

  9. Raman Spectroscopic Characterization of Rare Earth Ions Doped Bismuth-Based Glasses

    SciTech Connect

    Pop, L.; Culea, E.; Bosca, M.; Culea, M.

    2007-04-23

    The xReO(1-x)[3Bi2O3{center_dot}PbO] glass systems with diferent rare earth ions (ReO = CeO2, Tb4O7) have been prepared and examined with the aim of determining their structural characteristics. Raman sprectroscopy and density measurements were used to characterize the samples. Raman spectroscopy data permitted to identify some of the structural units that built up the lead bismuthate vitreous network. Density data were used to calculate the Poisson's ratio in terms of the Makishima-Mackenzie model.

  10. Novel isatinoxime molybdenum and chromium complexes: Synthesis, spectroscopic, and thermal characterization

    NASA Astrophysics Data System (ADS)

    Nassar, Mostafa Y.; Attia, Attia S.; Adawy, Shaymaa; El-Shahat, M. F.

    2012-10-01

    Reactions of molybdenum and chromium hexacarbonyls with isatin-3-oxime (H2L) in THF were carried out under sun light or according to the traditional thermal reflux synthetic routes. Di-μ-oxo bimolybdenum complex, [Mo(H2L)(THF)(O)2]2 was successfully synthesized under the reflux conditions. However, the dichromium oxo complex, [Cr(H2L)(O)2]2 was prepared using the sun light route. The prepared complexes were characterized using elemental analysis, IR, mass spectrometry, UV-Vis spectra, thermal analysis, and magnetic measurements.

  11. LCVD-grown micro carbon rod for MEMS applications: a study on the Raman spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Selvan, Jayaraman S.; Jeong, Sungho

    2002-11-01

    We have fabricated micro carbon rod/needle structures of size 30 to 400 μm on graphite substrate by the pyrolytic decomposition of ethylene precursor gas using argon ion laser (514.5 nm) at different laser power and chamber pressure. The micro carbon rods were characterized using Raman spectroscopy and two broad peaks centered at 1320-1345 cm-1 and 1589-1602 cm-1 were observed, which corresponds to D (disorder) and G (graphitic) bands, respectively. LCVD grown micro carbon rods consists of highly polycrystalline graphite as well as amorphous carbon phase. The microstructural features of the LCVD grown micro carbon rods are discussed in detail.

  12. Steady state fluorescence spectroscopic characterization of normal and diabetic urine at selective excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Kesavan, Anjana; Pachaiappan, Rekha; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Urine is considered diagnostically important for tits native fluorophores and they vary in their distribution, concentration and physiochemical properties, depending upon the metabolic condition of the subject. In this study, we have made an attempt, to characterize the urine of normal subject and diabetic patients under medication by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed employing the multivariate statistical method linear discriminant analysis (LDA) using leave one out cross validation method. The results were promising in discriminating diabetic urine from that of normal urine. This study in future may be extended to check the feasibility in ruling out the coexisting disorders such as cancer.

  13. Polymer characterization using the time-resolved phosphorescence of singlet oxygen as a spectroscopic probe

    SciTech Connect

    Ogilby, P.R.; Kristiansen, M.; Dillon, M.P. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1990-01-01

    The lowest excited electronic state of molecular oxygen, singlet oxygen ({sup 1}{Delta}{sub g}0{sub 2}), can be produced in solid organic polymers by a variety of different methods. Once produced, singlet oxygen will return to the ground triplet state by two pathways, radiative (phosphorescence) and non-radiative decay. Although the quantum efficiency of phosphorescence is small ({minus}10{sup {minus}5}), singlet oxygen can be detected by its emission at 1270 mn in both steady-state and time-resolved experiments. The phosphorescence of singlet oxygen can be used to characterize many properties of a solid organic polymer. 2 refs., 5 figs.

  14. Structural and spectroscopic characterization of ZrO2:Eu3+ nanoparticles.

    PubMed

    Salas, P; Nava, N; Angeles-Chavez, C; De la Rosa, E; Díaz-Torres, L A

    2008-12-01

    ZrO2:Eu3+ nanocrystals were prepared by the sol-gel technique. The structural and luminescence properties of europium doped zirconia with 0.5 to 2 mol% were studied by Mössbauer spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and photoluminescence (PL) under UV excitation. Structural characterization shows a crystallite size between 16 to 55 nm and monoclinic and tetragonal zirconia phases as the main crystalline structure. XRD patterns shown that the content of the active ions stabilizes the tetragonal structure of ZrO2 at 1000 degrees C, being 100% for 2 mol% Eu2O3 doped sample. Such results are in agreement with HRTEM and Raman spectroscopy. The Mössbauer spectra of the ZrO2:Eu3+ samples show a single peak near zero velocity which is attributed to Eu+3. Luminescence characterization shows the typical emission band centered at 595 and 611 nm. Change in the structure of such band was observed and explained in terms of crystalline phase change. The dependence between the fluorescence emission and the crystalline structure is discussed. PMID:19205217

  15. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    SciTech Connect

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  16. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    NASA Astrophysics Data System (ADS)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  17. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates.

    PubMed

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. PMID:25646895

  18. Gas-Phase Spectroscopic Signatures of Carboxylate-Li(+) Contact Ion Pairs: New Benchmarks For Characterizing Ion Pairing in Solution.

    PubMed

    Habka, Sana; Brenner, Valérie; Mons, Michel; Gloaguen, Eric

    2016-04-01

    The coexistence of several types of ion pairs in solution together with their elusive nature hampers their experimental characterization, which relies in practice on theoretical models resorting to numerous approximations. In this context, a series of isolated contact ion pairs between a lithium cation and phenyl-tagged carboxylate anions of various lengths (Ph-(CH2)n-COO(-), n = 1-3) has been investigated in a conformer-selective manner by IR and UV laser spectroscopy, in conjunction with quantum chemistry calculations. The typical gas-phase IR signature of the bidentate structure formed between the carboxylate moiety and Li(+) has thus been obtained in the CO2(-) stretch region. In addition to the cation-anion interaction, a cation-π interaction occurs simultaneously in the largest system investigated (n = 3). The resulting distorted ion pair structure has been evidenced from both the IR signature of the CO2(-) stretches and the unique vibrationally resolved UV spectroscopy of a phenyl ring interacting with a cation. Such specific spectroscopic signatures of contact ion pairs provide experimental benchmarks, alternative to theoretical predictions, that can assist the assignment of vibrational spectra in solution. PMID:26978595

  19. Optical spectroscopic approach as a rapid tool to characterize the interactions of retinoids with human nuclear receptors

    NASA Astrophysics Data System (ADS)

    Morjani, Hamid; Sockalingum, Ganesh D.; Beljebbar, Abdelilah; Manfait, Michel

    1998-04-01

    Retinoids are potent molecules that can affect a variety of fundamental biological processes including cell differentiation and proliferation and apoptosis. These molecules elicit their biological effects by activating a family of nuclear receptors which act as ligand-inducible transcription factors belonging to the steroid/thyroid receptor superfamily. Retinoic acid receptors form heterodimers in which response to ligand binding, both partners contribute to transactivation and/or DNA binding in vivo. Surface-enhanced Raman scattering (SERS), Fourier transform-SERS (FT-SERS), fluorescence and circular dichroism are proposed to rapidly give information on the interaction of the different RARs and RXRs with their specific ligands at physiological concentrations. FT-SERS data reveal a significant attenuation in intensity of the bands originating from the retinoic polyenic chain upon complexation. The spectrum is dominantly of the (Beta) - ionone ring. Fluorescence measurements supported the hydrophobic character of the ligand binding pocket and the circular dichroic data indicate that the protein helices extend upon ligand binding. These novel spectroscopic information are fully consistent with published x-ray crystallographic results and suggest that these techniques may be valuable additional tools to characterize the interactions of agonists and antagonists with residues of the ligand binding pocket retinoid receptor homo- and hetero-dimers.

  20. State-resolved photochemistry and spectroscopic characterization of atmospherically relevant hydroperoxides

    NASA Astrophysics Data System (ADS)

    Matthews, Jamie

    This dissertation focuses on the photodissociation dynamics, thermochemistry, spectroscopy and structure of important hydroperoxide molecules which influence the oxidation capacity of the atmosphere. Since hydroperoxides such as CH 3OOH, HOCH2OOH, HO2NO2 and HOOH species serve as reservoir for the HOx (=HO2 + OH) radicals, a thorough examination of excited state and ground state photochemistry of these species is needed. In this dissertation, the photodissociation dynamics of vibrationally excited HO2NO2 molecule is examined, and its first OH-stretching state dissociation quantum yield is assessed in order to quantify its contribution to the HOx budget. An ab initio study is used to obtain bond dissociation energies, vibrational spectra and absorption cross-sections. The HOONO molecule is an important structural isomer of nitric acid. Studies of HOONO molecule have primarily focused on the vibrational structure, spectra and energetics of vibrational states in the vicinity of the first and second OH-stretching overtones. From these measurements, the heat of formation and vibrational band assignment of cis-cis HOONO are determined. Organic hydroperoxides such as CH3OOH and HOCH2OOH are fundamental systems to explore the flow of energy among different vibrational modes. In HOCH2OOH, the dissociation rates that are extracted from the third OH-stretching overtone suggest that excitation of the alcohol OH-stretch result in dissociation rates that are substantially slower than rates resulting from excitation of the peroxide OH-stretch where IVR is evidently more restricted. Non-statistical behavior is also observed in CH3OOH, where the excitation of HOO-bending mode and CH-stretching modes result in more complete IVR due to strong state-mixing compared with excitation of the OH-stretching modes; as inferred from the quantities of vibrationally excited OH product formed. Enhanced IVR mixing is also observed in HOOH molecule, suggesting mode-selective behavior is a common

  1. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  2. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-01

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by 1H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B → C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  3. NMR spectroscopic characterization of β-cyclodextrin inclusion complex with vanillin

    NASA Astrophysics Data System (ADS)

    Pîrnau, Adrian; Bogdan, Mircea; Floare, Calin G.

    2009-08-01

    The inclusion of vanillin by β-cyclodextrin was investigated by 1H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with β-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, Δδobs = δfree - δobs of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  4. Spectroscopic characterization of a masterpiece: the Manueline foral charter of Sintra.

    PubMed

    Manso, Marta; Le Gac, Agnès; Longelin, Stéphane; Pessanha, Sofia; Frade, José Carlos; Guerra, Mauro; Candeias, António José; Carvalho, Maria Luísa

    2013-03-15

    The foral charter attributed by D. Manuel I of Portugal, in 1514, to the village of Sintra was studied using Energy Dispersive X-ray Fluorescence spectrometry, Raman and Infrared micro-spectroscopies. A complete characterization of the pictorial materials used in the production of this masterpiece allowed the identification of iron gall inks used in the written text; pigments such as malachite, azurite, lead white, cinnabar, yellow ochre, gold, silver and carbon black in the illuminations and letterings; filler and binder used in the production of coloring materials and inks. Gum and calcium carbonate were the most recurrent binder and filler identified in this study. Silvering and gilding were mostly obtained by applying ground silver and gold on parchment. PMID:23318772

  5. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    SciTech Connect

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  6. Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices.

    PubMed

    DeIonno, Erica; Tseng, Hsian-Rong; Harvey, Desmond D; Stoddart, J Fraser; Heath, James R

    2006-04-20

    Langmuir-Blodgett monolayers of a bistable [2]rotaxane were prepared at packing densities of 118, 73, and 54 A(2)/molecule. The monolayers were both characterized via infrared spectroscopy before and after evaporation of a 2 nm film of titanium and incorporated into molecular switch tunnel junction devices. The study suggests that the evaporation process primarily affects portions of the molecule exposed to the metal atom source. Thus, in tightly packed monolayers (73 and 54 A(2)/molecule), only the portions of the [2]rotaxane that are present at the molecule/air interface are clearly affected, leaving key functionality necessary for switching intact. Monolayers transferred at a lower pressure (118 A(2)/molecule) exhibit nonspecific damage and poor switching behavior following Ti deposition. These results indicate that tightly packed monolayers and sacrificial functionality displayed at the molecule/air interface are important design principles for molecular electronic devices. PMID:16610848

  7. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  8. Spectroscopic characterization of magnetic Fe3O4@Au core shell nanoparticles.

    PubMed

    Fouad, Dina M; El-Said, Waleed A; Mohamed, Mona B

    2015-04-01

    The magnetic nanoparticles iron oxide (Fe3O4) nanoparticles and iron oxide/gold core-shell (Fe3O4/Au) nanoparticles were synthesized and their catalytic photo-degradation activity towards malathion as example of organophosphorus pesticides were reported. Iron oxide (Fe3O4) magnetic nanoparticle was successfully prepared through co-precipitation method by the reduction of ferric chloride (FeCl3) using ascorbic acid. The morphology of the prepared nanoparticles was characterized by the TEM and XRD (X-ray diffraction) techniques. Degradation of 10 ppm of malathion in the presence of these nanoparticles under UV radiation was monitored using (HPLC) and UV-visible spectra. Fe3O4/Au nanoparticles showed higher efficiency in photo-degradation of malathion than Fe3O4 ones. PMID:25617979

  9. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    NASA Astrophysics Data System (ADS)

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-01

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  10. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  11. Molecular modelling, spectroscopic characterization and biological studies of tetraazamacrocyclic metal complexes

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Sharma, Kavita; Singh, Dharam Pal

    2014-09-01

    Macrocyclic complexes of the type [MLX]X2; where L is (C30H28N4), a macrocyclic ligand, M = Cr(III) and Fe(III) and X = Cl-, CH3COO- or NO3-, have been synthesized by template condensation reaction of 1,8-diaminonaphthalene and acetylacetone in the presence of trivalent metal salts in a methanolic medium. The complexes have been formulated as [MLX]X2 due to 1:2 electrolytic nature of these complexes. The complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, electronic, infrared, far infrared, Mass spectral studies and molecular modelling. Molecular weight of these complexes indicates their monomeric nature. On the basis of all these studies, a five coordinated square pyramidal geometry has been proposed for all these complexes. These metal complexes have also been screened for their in vitro antimicrobial activities.

  12. Spectroscopic characterization of a masterpiece: The Manueline foral charter of Sintra

    NASA Astrophysics Data System (ADS)

    Manso, Marta; Gac, Agnès Le; Longelin, Stéphane; Pessanha, Sofia; Frade, José Carlos; Guerra, Mauro; Candeias, António José; Carvalho, Maria Luísa

    2013-03-01

    The foral charter attributed by D. Manuel I of Portugal, in 1514, to the village of Sintra was studied using Energy Dispersive X-ray Fluorescence spectrometry, Raman and Infrared micro-spectroscopies. A complete characterization of the pictorial materials used in the production of this masterpiece allowed the identification of iron gall inks used in the written text; pigments such as malachite, azurite, lead white, cinnabar, yellow ochre, gold, silver and carbon black in the illuminations and letterings; filler and binder used in the production of coloring materials and inks. Gum and calcium carbonate were the most recurrent binder and filler identified in this study. Silvering and gilding were mostly obtained by applying ground silver and gold on parchment.

  13. Theoretical spectroscopic characterization at low temperatures of detectable sulfur-organic compounds: Ethyl mercaptan and dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Puzzarini, C.; Domínguez-Gómez, R.; Carvajal, M.; Hochlaf, M.

    2014-03-01

    Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH232SH, ETSH) and dimethyl sulfide (CH332SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are suggested for

  14. Theoretical spectroscopic characterization at low temperatures of detectable sulfur-organic compounds: ethyl mercaptan and dimethyl sulfide.

    PubMed

    Senent, M L; Puzzarini, C; Domínguez-Gómez, R; Carvajal, M; Hochlaf, M

    2014-03-28

    Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH2 (32)SH, ETSH) and dimethyl sulfide (CH3 (32)SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are

  15. Amino-Functionalized Layered Crystalline Zirconium Phosphonates: Synthesis, Crystal Structure, and Spectroscopic Characterization.

    PubMed

    Taddei, Marco; Sassi, Paola; Costantino, Ferdinando; Vivani, Riccardo

    2016-06-20

    Two new layered zirconium phosphonates functionalized with amino groups were synthesized starting from aminomethylphosphonic acid in the presence of different mineralizers, and their structures were solved from powder X-ray diffraction data. Their topologies are unprecedented in zirconium phosphonate chemistry: the first, of formula ZrH[F3(O3PCH2NH2)], prepared in the presence of hydrofluoric acid, features uncommon ZrO2F4 units and a remarkable thermal stability; the second, of formula Zr2H2[(C2O4)3(O3PCH2NH2)2]·2H2O, prepared in the presence of oxalic acid, is based on ZrO7 units with oxalate anions coordinated to the metal atom, which were never observed before in any zirconium phosphonate. In addition, the structure of another compound based on (2-aminoethyl)phosphonic acid is reported, which was the object of a previously published study. This compound has layered α-type structure with -NH3(+) groups located in the interlayer space. All of the reported compounds were further characterized by means of vibrational spectroscopy, which provided important information on fine structural details that cannot be deduced from the powder X-ray diffraction data. PMID:27254781

  16. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones

    NASA Astrophysics Data System (ADS)

    Miguel, Fábio Balbino; Dantas, Juliana Arantes; Amorim, Stefany; Andrade, Gustavo F. S.; Costa, Luiz Antônio Sodré; Couri, Mara Rubia Costa

    2016-01-01

    In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, 1H and 13C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(Cdbnd S)NH2 and R(Cdbnd O)NH2 species are more stable than the R(Cdbnd NH)SH and R(Cdbnd NH)OH species. Additionally, results found for the 1H NMR shifting, pointed out to which structure is present.

  17. Spectroscopic characterization and molecular modeling of novel palladium(II) complexes with carbazates and hydrazides

    NASA Astrophysics Data System (ADS)

    Sousa, L. M.; Corbi, P. P.; Formiga, A. L. B.; Lancellotti, Marcelo; Marzano, I. M.; Pereira-Maia, E. C.; Von Poelhsitz, G.; Guerra, W.

    2015-10-01

    Palladium(II) complexes of the type trans-[Pd(L)2Cl2], where L = 4-methoxybenzylcarbazate (4-MC), benzyl carbazate (BC), 4-fluorophenoxyacetic acid hydrazide (4-FH), 3-methoxybenzoic acid hydrazide (3-MH), ethyl carbazate (EC) and tert-butyl carbazate (TC) were synthesized by the slow addition of the ligand to K2PdCl4 previously dissolved in water or ethanol. These complexes were characterized by elemental analyses, conductivity measurements, TG/DTA, FT-IR, mass spectrometric and NMR spectroscopy (solution and solid-state). All coordination compounds exhibit a square planar coordination geometry in which the palladium(II) ion coordinates to two nitrogen atoms and two chlorine atoms. The structures of the palladium(II) complexes were optimized and theoretical data show that the trans isomer is more stable, in accordance with the experimental data. Preliminary in vitro tests of some these new palladium complexes in a chronic myelogenous leukemia cell line (k562 cells) are also reported.

  18. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  19. Raman spectroscopic characterization of a highly weathered basalt: Igneous mineralogy, alteration products, and a microorganism

    NASA Astrophysics Data System (ADS)

    Wang, Alian; Jolliff, Bradley L.; Haskin, Larry A.

    On-surface identification of minerals on Mars is likely to depend mainly on observations of rocks and soils as found, without access to fresh surfaces or other sample preparation. Both the original mineralogy of rocks and their alteration mineralogy will be important. To determine the capability of Raman spectroscopy to provide good mineralogical characterization of an altered igneous rock such as might be encountered on Mars, we have analyzed the heavily weathered, exterior surface of a cobble of Keweenawan basalt and compared the results with those from a roughly cut, unpolished interior surface, using a Raman point-counting method. Despite ubiquitous hematite, a strong Raman scatterer, and despite considerable alteration, original igneous plagioclase and pyroxene were identified and their approximate proportions determined from point-counting traverses on the original surface of the rock. Saponite, an alteration product, was easily identified on the freshly cut surface but could only occasionally be identified on the weathered surface, where saponite-rich areas were highly photoluminescent. Amygdular fill gave strong spectra of calcite and thomsonite (a zeolite). Tiny, sparse crustose lichen gave clear spectra of their waxy organic coating. On the basis of the surface Raman spectra alone, the rock could be identified as a mafic rock, probably basaltic, that was hydrothermally altered in an oxidizing environment at a temperature between ~250 and ~350°C.

  20. Cytotoxic behavior and spectroscopic characterization of metal complexes of ethylacetoacetate bis(thiosemicarbazone) ligand

    NASA Astrophysics Data System (ADS)

    El-Tabl, Abdou Saad; El-wahed, Moshira Mohamed Abd; Rezk, Ahmed Mahmoud Salah Mahmoud

    2014-01-01

    Reaction of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ion with 2,4-dihydrazino-thioamido-1-ethoxybutane led to the formation of mono and binuclear complexes. These complexes have been characterized by elemental analyses, IR, UV-Vis spectra, magnetic moments, molar conductances, 1H NMR and mass spectra (ligand and its Zn(II) complex), thermal analyses (DTA and TGA) and ESR measurements. The IR data suggest the involvement of sulfur and azomethane nitrogen atoms in coordination to the central metal ion .The Molar conductances of the complexes in DMF are commensurate with their non-ionic character. The ESR spectra of Cu(II) complexes show axial type symmetry (d(x2-y2)) ground state with covalent bond character. On the basis of spectral studies, octahedral or tetrahedral geometry has been assigned to the metal complexes. Complexes have been tested invitro against tumor cells and number of microorganisms in order to assess their antitumor and antimicrobial properties.

  1. Raman imaging spectroscopic characterization of modified poly(dimethylsiloxane) for micro total analysis systems applications

    NASA Astrophysics Data System (ADS)

    de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; Breitkreitz, Márcia Cristina; Poppi, Ronei Jesus; Fracassi da Silva, José Alberto

    Methacryloxypropyl-modified poly(dimethylsiloxane) rubbers were obtained from poly(dimethylsiloxane), PDMS, and methacryloxypropyltrimethoxysilane, MPTMS, by polycondensation reactions. The modified rubbers, prepared with 20 and 30% (v/v) of MPTMS, were used as substrates for microchannel fabrication by the CO2 laser ablation technique. Raman imaging spectroscopy was used for the surface characterization, showing the homogeneity of the rubbery material, with uniform distribution of the crosslinking centers. Under the experimental conditions used, damage to the rubber from the CO2 laser radiation used for the channel engraving was not observed. Correlation maps of the surface were obtained in order to spatially evaluate the modification inside and outside the channels. The correlations between the methacryloxypropyl-modified poly(dimethylsiloxane) rubbers and MPTMS (spectral range of 1800-1550 cm-1) and PDMS (spectral range of 820-670 cm-1) precursors were higher than 0.95 and 0.99, respectively. In addition, Raman imaging spectroscopy allows monitoring the topography of the fabricated microchannel.

  2. Combined Raman spectroscopic and electrical characterization of the conductive channel in pentacene based OFETs

    NASA Astrophysics Data System (ADS)

    Paez S., Beynor A.; Thurzo, Ilja; Salvan, Georgeta; Scholz, Reinhard; Zahn, Dietrich R. T.; von Seggern, H.

    2005-08-01

    During the deposition of Pentacene on a Si-SiO2 gate structure with Au bottom contacts for source and drain, the film growth was monitored with simultaneous in situ macro Raman spectroscopy and drain current measurements of the OFET device. The deposition of the active layer was carried out under UHV conditions at a growth rate of 0.65 Å/min. The purpose of the in situ characterization was to determine the minimum nominal thickness of the Pentacene layer required for efficient charge transport through the OFET circuit. At a thickness around 1.5 nm nominal coverage, the first percolation paths through the first organic monolayer develop, resulting in a sharp rise of the drain current. Up to a nominal film thickness of 30 nm, a subsequent slower increase of the drain current can be observed, revealing that the percolation of the first monolayer continues on a slower pace up to rather thick organic layers. These in situ measurements were complemented by ex situ isothermal deep level transient spectroscopy (charge QTS).

  3. Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice

    NASA Astrophysics Data System (ADS)

    Diagaradjane, Parmeswaran; Yaseen, Mohammad A.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2006-01-01

    While initially confined to the epidermis, squamous cell carcinoma can eventually penetrate into the underlying tissue if not diagnosed early and treated. The noninvasive early detection of the carcinoma is important to achieve a complete treatment of the disease. Of the various non-invasive optical techniques, the synchronous fluorescence (SF) technique is considered to provide a simplified spectral profile with more sharp spectral signatures of the endogenous fluorophores in complex systems. The potential use of the SF technique in the characterization of the sequential tissue transformation in 7,12-dimethylbenz(a)anthracene-12-O-tetradecanoylphorbol-13-acetate (DMBA-TPA)-induced mouse skin tumor model in conjunction with simple statistical analysis is explored. The SF spectra show distinct differences during the earlier weeks of the tumor-induction period. Intensity ratio variables are calculated and used in three discriminant analyses. All the discriminant analyses show better classification results with accuracy greater than 80%. From the observed differences in the spectral characteristics and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers to diagnose normal from abnormal tissues using the SF technique.

  4. Efficient MW-Assisted Synthesis, Spectroscopic Characterization, X-ray and Antioxidant Properties of Indazole Derivatives.

    PubMed

    Polo, Efrain; Trilleras, Jorge; Ramos, Juan; Galdámez, Antonio; Quiroga, Jairo; Gutierrez, Margarita

    2016-01-01

    A small series of tetrahydroindazoles was prepared, starting from 2-acetylcyclohexanone and different hydrazines using reflux and a focused microwave reactor. Microwave irradiation (MW) favored the formation of the desired products with improved yields and shortened reaction times. This is a simple and green method for the synthesis of substituted tetrahydroindazole derivatives. The in vitro antioxidant activity was evaluated using the DPPH and ABTS methods. In these assays, 2-(4-fluorophenyl)-3-methyl-4,5,6,7-tetrahydro-2H-indazole (3f) showed moderate DPPH decoloring activity, while 3-methyl-4,5,6,7-tetrahydro-1H-indazole (3a), 3-methyl-2-phenyl-4,5,6,7-tetrahydro-2H-indazole (3b) and 2-(4-fluorophenyl)-3-methyl-4,5,6,7-tetrahydro-2H-indazole (3f) were the most active in the ABTS assay. All compounds were well characterized by IR, ¹H-, (13)C-NMR and GC-MS spectroscopy and physical data, while the structure of 4-(3-methyl-4,5,6,7-tetrahydro-2H-indazol-2-yl)benzoic acid (3e) was also determined by single crystal X-ray analysis. PMID:27409599

  5. Structural characterization of humic-like substances with conventional and surface-enhanced spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Carletti, Paolo; Roldán, Maria Lorena; Francioso, Ornella; Nardi, Serenella; Sanchez-Cortes, Santiago

    2010-10-01

    Emission-excitation, synchronous fluorescence spectroscopy and surface-enhanced Raman scattering (SERS) combined with surface-enhanced fluorescence (SEF) were applied to aqueous solutions of a humic-like substance (HLS) extracted from earthworm faeces. All measurements were acquired in a wide range of pH (4-12) and analysed by the linear regression analysis. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra were also acquired to assist in the structural characterization of this HLS. The emission and excitation spectra allowed the identification of two main fluorophores in the analysed sample. Moreover, a close correlation between fluorescence intensities of each fluorophore with pH variation was observed. SERS and SEF, in agreement with the fluorescence spectroscopy, showed that the HLS at low pH values exists in an aggregated and coiled molecular structure while it is dispersed and uncoiled at alkaline conditions. The obtained spectra also evidenced that different conditions modify the functional groups exposed to the surrounding aqueous environment.

  6. Preparation, spectroscopic characterization and crystal structures of ferrocenylalkanediols and derived acetates

    NASA Astrophysics Data System (ADS)

    Lapić, Jasmina; Bilić, Josipa; Cetina, Mario; Djaković, Senka; Rapić, Vladimir

    2011-01-01

    ( meso, dl)-3-(Ferrocenylmethyl)pentane-2,4-diol ( 3) was synthesized by reduction of 3-(ferrocenylmethyl)pentane-2,4-dione ( 2) with LiAlH 4 in a good yield and corresponding monoacetate 4 and diacetate 5 were prepared. Newly prepared compounds are characterized by elemental analysis, IR and NMR spectroscopy and will be used as a substrate or standards for lipase mediated desymmetrization. The structures of 3-(ferrocenylmethyl)pentane-2,4-diol ( 3) and 2-(ferrocenylmethyl)propane-1,3-diol diacetate ( 8), which is derived from prochiral 2-(ferrocenylmethyl)propane-1,2-diol ( 6), were determined by X-ray crystal structure analysis. The conformation of the cyclopentadienyl rings is eclipsed in 3 and almost halfway between eclipsed and staggered in 8. One O-H⋯O hydrogen bond links the molecules of diol 3 into chains, while one weak C-H⋯π interaction self-assembles the molecules of diacetate 8 into dimers.

  7. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study.

    PubMed

    Ren, Fuzeng; Ding, Yonghui; Leng, Yang

    2014-02-01

    A combined experimental and computational approach was employed to investigate the feasibility and effectiveness of characterizing carbonated apatite (CAp) by infrared (IR) spectroscopy. First, an experimental comparative study was conducted to identify characteristic IR vibrational bands of carbonate substitution in the apatite lattice. The IR spectra of pure hydroxyapatite (HA), carbonate adsorbed on the HA surface, a physical mixture of HA and sodium carbonate monohydrate, a physical mixture of HA and calcite, synthetic CAps prepared using three methods (precipitation method, hydrothermal route, and solid-gas reaction at high temperature) and biological apatites (human enamel, human cortical bone, and two animal bones) were compared. Then, the IR vibrational bands of carbonate in CAp were calculated with density functional theory. The experimental study identified characteristic IR bands of carbonate that cannot be generated from surface adsorption or physical mixtures and the results show that the bands at ∼880, 1413, and 1450 cm(-1) should not be used as characteristic bands of CAp since they could result from carbonate adsorbed on the apatite crystals surface or present as a separate phase. The combined experimental and computational study reveals that the carbonate v3 bands at ∼1546 and 1465 cm(-1) are, respectively, the IR signature bands for type A CAp and type B CAp. PMID:23533194

  8. Structural and spectroscopic characterizations of tetra-nuclear niobium(V) complexes of quinolinol derivatives

    NASA Astrophysics Data System (ADS)

    Amini, Mostafa M.; Fazaeli, Yousef; Mohammadnezhad, Gholamhossein; Khavasi, Hamid Reza

    2015-06-01

    Reactions between niobium ethoxide and 8-hydroxy-2-methylquinoline or 5-chloro-8-hydroxyquinoline have been explored. Two new tetranuclear heteroleptic niobium complexes containing oxo, ethoxo, and quinolinate chelate rings have been synthesized and characterized by 1H, 13C and 93Nb NMR, UV-Vis, and FT-IR spectroscopies, and single-crystal X-ray diffraction. The molecular structures of the niobium complexes, [Nb4(μ-O)4(μ-OEt)2(ONC10H8)2(OEt)8] (I) and [Nb4(μ-O)4(μ-OEt)2(ONC9H5Cl)2(OEt)8] (II), are composed of a pair of edge-sharing bioctahedral moieties in which connected via two almost linear oxo-bridges, with a large difference in the NbO distances. Single-crystal structures showed both complexes are centrosymmetric and contain two distinct Nb centers, and results confirmed by observation of two niobium signals in the 93Nb NMR spectra of complexes.

  9. Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C-C Bond Coupling of Ethylene.

    PubMed

    Kumari, Sudesh; Cao, Wenjin; Zhang, Yuchen; Roudjane, Mourad; Yang, Dong-Sheng

    2016-07-01

    La(C2H2) and La(C4H6) are observed from the reaction of laser-vaporized La atoms with ethylene molecules by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. La(C2H2) is identified as a metallacyclopropene and La(C4H6) as a metallacyclopentene. The three-membered ring is formed by concerted H2 elimination and the five-membered cycle by dehydrogenation and C-C bond coupling. Both metallacycles prefer a doublet ground state with a La 6s-based unpaired electron. Ionization of the neutral doublet state of either complex produces a singlet ion state by removing the La-based electron. The ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon cycles are lower than that of the neutral La atom. Deuteration has a small effect on the ionization energies of the two cyclic radicals but distinctive effects on their vibrational frequencies. PMID:27322131

  10. Crystal structure, spectroscopic characterization and antibacterial activities of a silver complex with sulfameter

    NASA Astrophysics Data System (ADS)

    Nakahata, Douglas H.; Lustri, Wilton R.; Cuin, Alexandre; Corbi, Pedro P.

    2016-12-01

    A silver complex with the sulfonamide sulfameter, also known as sulfamethoxydiazine (SMTR), was prepared and characterized. Chemical analyses were consistent with the [Ag(C11H11N4O3S)] composition (AgSMTR), while conductivity measurements in DMSO indicated a non-electrolyte behavior of the complex in this solvent. High-resolution ESI(+)-QTOF mass spectrometric experiments revealed the presence of the [Ag(C11H11N4O3S)+H]+ and [Ag2(C11H11N4O3S)2+H]+ species in solution. Infrared and NMR spectroscopies indicated coordination of the ligand to the metal by the nitrogen atoms of the sulfonamide group and of the pyrimidine ring. The structure of AgSMTR was solved by powder X-ray diffraction technique using the Rietveld method. The solved structure confirms the formation of a dimer, where each silver ion is coordinated by one of the nitrogen atoms of the pyrimidine ring, the nitrogen of the sulfonamide group and by an oxygen atom from the sulfonyl group. An argentophilic interaction of 2.901(1) Å is present in this dimeric structure. The AgSMTR complex was assayed over Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains, and it was found that the compound is 8 times more active over the Gram-negative bacteria in DMSO solution, with MIC values in the micromolar range.

  11. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  12. Cytotoxic behavior and spectroscopic characterization of metal complexes of ethylacetoacetate bis(thiosemicarbazone) ligand.

    PubMed

    El-Tabl, Abdou Saad; El-wahed, Moshira Mohamed Abd; Rezk, Ahmed Mahmoud Salah Mahmoud

    2014-01-01

    Reaction of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ion with 2,4-dihydrazino-thioamido-1-ethoxybutane led to the formation of mono and binuclear complexes. These complexes have been characterized by elemental analyses, IR, UV-Vis spectra, magnetic moments, molar conductances, (1)H NMR and mass spectra (ligand and its Zn(II) complex), thermal analyses (DTA and TGA) and ESR measurements. The IR data suggest the involvement of sulfur and azomethane nitrogen atoms in coordination to the central metal ion .The Molar conductances of the complexes in DMF are commensurate with their non-ionic character. The ESR spectra of Cu(II) complexes show axial type symmetry (d(x2-y2)) ground state with covalent bond character. On the basis of spectral studies, octahedral or tetrahedral geometry has been assigned to the metal complexes. Complexes have been tested invitro against tumor cells and number of microorganisms in order to assess their antitumor and antimicrobial properties. PMID:24011929

  13. Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Queiroz, Camila de Siqueira; Belotti, Fernanda M.; Filho, Mauro Cândido

    2014-01-01

    Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm-1, assigned to ν1 symmetric stretching mode of the HOPO33- and PO43- units. Raman bands at around 1085, 1128 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm-1 to 3609 cm-1. The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm-1 and 3599 cm-1. By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm-1 were assigned to the first overtone of the fundamental, whilst NIR bands at 10,194 and 10,329 cm-1 are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy.

  14. Mononuclear metal complexes of organic carboxylic acid derivatives: Synthesis, spectroscopic characterization, thermal investigation and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Abd El-Wahab, Zeinab H.

    2007-05-01

    Two Schiff base ligands bearing organic acid moiety, vis., N-(2-thienylmethylidene)-2-amino-4-chlorobenzoic acid (HL 1) and N-(2-hydroxybenzylidene)-2-amino-4-chlorobenzoic acid (H 2L 2) have been synthesized by the interaction of 2-thiophenecarboxaldehyde and 2-hydroxybenzaldehyde with 2-amino-4-chlorobenzoic acid. Co(II), Ni(II), Cu(II) and Zn(II) complexes of these ligands have been prepared. They are characterized on the basis of analytical data, molar conductance, IR, 1H NMR, UV-vis, mass spectra, magnetic measurements, thermal analysis and X-ray powder diffraction technique. The molar conductance data reveal that these complexes are non-electrolytes. The ligands are coordinated to the metal ions in a terdentate manner with ONO/ONS donor sites of the carbonyl oxygen, azomethine nitrogen and phenolic oxygen or thiophenic sulphur. An octahedral structure is proposed for the prepared metal complexes and some ligand field parameters ( Dq, B and β) in addition to CFSE were calculated. The thermal stability of the metal complexes is evaluated. The Schiff base ligands and their metal complexes have been tested against four species of bacteria as well as four species of fungi and the results have been compared with some known antibiotics.

  15. Spectroscopic characterization of B/KNO3 diode-laser induced combustion.

    PubMed

    Sivan, J; Haas, Y

    2013-11-21

    The combustion of a B/KNO3 pyrotechnic mixture was characterized by its chemiluminescence for the first time. The reaction was initiated by a continuous wave (cw) diode laser inside a novel multipurpose reaction cell, whose design and construction are described. As in the case of the extensively studied oxidation of boron by O2, the most intense luminescence, recorded in the 400-600 nm range, is assigned to BO2. Its appearance delay time (10(-2) to 10(-1) s) equals that measured for the pressure increase and is shortened as the laser power is increased. A band observed at 355 nm appears at longer delay times than the BO2 bands. The band, and some weaker ones, may be assigned to BO, although some bands expected for BO (based on reaction between B atoms and O2) are absent from the spectra. This observation is discussed in the text, and possible emission from BN is discussed. If the band is assigned to BO, the absence of known bands may be due to specific E-V resonance energy transfer. Possible oxidation mechanisms consistent with the different delay ignition times are discussed. PMID:23679891

  16. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  17. Design, synthesis and characterization of captopril prodrugs for enhanced percutaneous absorption.

    PubMed

    Moss, Gary P; Gullick, Darren R; Cox, Paul A; Alexander, Cameron; Ingram, Matthew J; Smart, John D; Pugh, W John

    2006-02-01

    Most drugs are designed primarily for oral administration, but the activity and stability profiles desirable for this route often make them unsuitable for transdermal delivery. We were therefore interested in designing analogues of captopril, a model drug with poor percutaneous penetration, for which the sustained steady-state blood plasma level associated with transdermal delivery (and which is unattainable orally) would be particularly beneficial. Quantitative structure-permeability relationships (QSPRs) predicted that ester and thiol prodrug derivatives of captopril would have lower maximal transdermal flux (J(m)) than the parent drug, since the increases in permeability coefficient (k(p)) of prodrugs would be outweighed by the reductions in aqueous solubility. Therefore, the aim of this study was to synthesize a series of prodrugs of captopril and to determine if a QSPR model could be used to design therapeutically viable prodrugs. Molecules with the highest predicted k(p) values were synthesized and characterized, and J(m) measured in Franz diffusion cells from saturated aqueous donor across porcine skin (fresh and frozen). In-vitro metabolism was also measured. Captopril and the prodrugs crossed the skin relatively freely, with J(m) being highest for ethyl to butyl esters. Substantial first-order metabolism of the prodrugs was observed, suggesting that their enhanced percutaneous absorption was complemented by their metabolic performance. The results suggested that QSPR models provided excellent enhancements in drug delivery. This was not seen at higher lipophilicities, suggesting that issues of solubility need to be considered in conjunction with any such use of a QSPR model. PMID:16451744

  18. (TAML)Fe**IV=O Complex in Aqueous Solution: Synthesis And Spectroscopic And Computational Characterization

    SciTech Connect

    Chanda, A.; Shan, X.; Chakrabarti, M.; Ellis, W.C.; Popescu, D.L.; Oliveira, F.Tiago de; Wang, D.; Que, L.; Jr.; Collins, T.J.; Munck, E.; Bominaar, E.L.

    2009-05-12

    Recently, we reported the characterization of the S = 1/2 complex [Fe{sup V}(O)B*]{sup -}, where B* belongs to a family of tetraamido macrocyclic ligands (TAMLs) whose iron complexes activate peroxides for environmentally useful applications. The corresponding one-electron reduced species, [Fe{sup IV}(O)B*]{sup 2-} (2), has now been prepared in >95% yield in aqueous solution at pH > 12 by oxidation of [Fe{sup III}(H{sub 2}O)B*]{sup -} (1), with tert-butyl hydroperoxide. At room temperature, the monomeric species 2 is in a reversible, pH-dependent equilibrium with dimeric species [B*Fe{sup IV}?O?Fe{sup IV}B*]{sup 2-} (3), with a pK{sub a} near 10. In zero field, the Moessbauer spectrum of 2 exhibits a quadrupole doublet with {Delta}E{sub Q} = 3.95(3) mm/s and {delta} = ?0.19(2) mm/s, parameters consistent with a S = 1 Fe{sup IV} state. Studies in applied magnetic fields yielded the zero-field splitting parameter D = 24(3) cm{sup -1} together with the magnetic hyperfine tensor A/g{sub n}{beta}{sub n} = (?27, ?27, +2) T. Fe K-edge EXAFS analysis of 2 shows a scatterer at 1.69 (2) {angstrom}, a distance consistent with a Fe{sup IV} = O bond. DFT calculations for [Fe{sup IV}(O)B*]{sup 2-} reproduce the experimental data quite well. Further significant improvement was achieved by introducing hydrogen bonding of the axial oxygen with two solvent-water molecules. It is shown, using DFT, that the {sup 57}Fe hyperfine parameters of complex 2 give evidence for strong electron donation from B* to iron.

  19. Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Queiroz, Camila de Siqueira; Belotti, Fernanda M; Cândido Filho, Mauro

    2014-01-24

    Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm(-1), assigned to ν1 symmetric stretching mode of the HOPO3(3-) and PO4(3-) units. Raman bands at around 1085, 1128 and 1138 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm(-1) to 3609 cm(-1). The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm(-1) and 3599 cm(-1). By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm(-1) were assigned to the first overtone of the fundamental, whilst NIR bands at 10,194 and 10,329 cm(-1) are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy. PMID:24076459

  20. Structural and spectroscopic characterization of ettringite mineral -combined DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Scholtzová, Eva; Kucková, Lenka; Kožíšek, Jozef; Tunega, Daniel

    2015-11-01

    The structure of the ettringite mineral was studied by means of FTIR spectroscopy and single crystal X-ray diffraction method. The experimental study was combined with the first principle calculations based on density functional theory (DFT) method. Predicted structural parameters (unit cell vectors and positions of heavy atoms) are in a very good agreement with the experimental data. Moreover, calculations also enabled to refine the positions of the hydrogen atoms not determined precisely by the single crystal X-ray measurement. The detailed analysis of the hydrogen bonds in the ettringite structure was performed and several groups of the hydrogen bonds were classified. It was found that the water molecules from the coordination sphere of Ca2+ cations act as proton donors in moderate O-H···O hydrogen bonds with SO 32- anions. Further, multiple O-H···O hydrogen bonds were identified among water molecules themselves. In addition, also hydroxyl groups from the [Al(OH)6]3- octahedral units are involved in the weak O-H···O hydrogen bonding with the water molecules. The calculated vibrational spectrum showed all typical features observed in the experimental FTIR spectrum. Moreover, performing the analysis of the calculated spectrum, all vibrational modes were distinguished and assigned. Such a complete analysis of the measured IR and/or Raman spectra is not fully possible, specifically for the region below 1500 cm-1, which is characterized by a complex curve with many overlapped bands. A comparison of the vibrational spectra of ettringite and thaumasite (mineral structurally similar to ettringite) revealed the origin of the most important differences between them.

  1. Spectroscopic, scanning laser OBIC, and I-V/QE characterizations of browned EVA solar cells

    SciTech Connect

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    1996-05-01

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emission peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.

  2. Comprehensive characterization of oil refinery effluent-derived humic substances using various spectroscopic approaches.

    PubMed

    Lingbo, Li; Song, Yan; Congbi, Han; Guangbo, Shan

    2005-07-01

    Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS. PMID:15950039

  3. Raman spectroscopic characterization of a synthetic, non-stoichiometric Cu-Ba uranyl phosphate.

    PubMed

    Sánchez-Pastor, Nuria; Pinto, André J; Astilleros, José Manuel; Fernández-Díaz, Lurdes; Gonçalves, Mário A

    2013-09-01

    Crystals of phases belonging to the autunite group (general formula X(2+)(UO2)2(X(5+)O4)2·nH2O), specifically the uranyl phosphates (X(5+)=P) metauranocircite (X(2+)=Ba(2+)), metatorbernite (X(2+)=Cu(2+)) and a barian metatorbenite phase (X(2+)=Cu(2+)/Ba(2+)), have been synthesized in a silica gel medium and characterized by Raman spectroscopy. The Raman spectra showed bands in the range 750-1100 cm(-1), which were attributed to the ν1 and ν3 (PO(4))(3-) and (UO(2))(2+) stretching vibrations. By using the wavenumbers of the most intense and well defined ν1 (UO(2))(2+) vibration, the U-O bonds lengths were calculated for the three uranyl phosphate minerals. The results are in good agreement with previous single crystal structure analysis data. Bands in the spectra from 350 to 700 cm(-1) were attributed to the (PO(4))(3-) bending modes. Moreover, in the range 70-350 cm(-1), two groups of bands could be defined. The first group, with vibrations at lower wavenumbers, was attributed to the lattice modes and the second group, from 150 to 350 cm(-1), was assigned to the ν2 (UO(2))(2+) bending mode. Finally, in the case of the barian metatorbernite, bands in the range 1500-3800 cm(-1) were assigned to the OH stretching and the ν2 bending vibrations of water molecules. In this phase, all the vibrations show bandshifts when compared to the vibrations in metatorbernite. These bandshifts can be related to transitional Cu-O and Ba-O bond lengths. PMID:23727673

  4. Synthesis, structure, and spectroscopic characterization of three uranyl phosphates with unique structural units

    NASA Astrophysics Data System (ADS)

    Wylie, Ernest M.; Dawes, Colleen M.; Burns, Peter C.

    2012-12-01

    Single crystals of Zn4(OH)2[(UO2)(PO4)2(OH)2(H2O)] (UZnP), Cs[(UO2)(HPO4)NO3] (UCsP), and In3[(UO2)2(PO4)4OH(H2O)6].2H2O (UInP) were obtained from hydrothermal reactions and have been structurally and chemically characterized. UZnP crystallizes in space group Pbcn, a=8.8817(7), b=6.6109(5), c=19.569(1) Å; UCsP crystallizes in P-1, a=7.015(2), b=7.441(1), c=9.393(2) Å, α=72.974(2), β=74.261(2), γ=79.498(2); and UInP crystallizes in P-1, a=7.9856(5), b=9.159(1), c=9.2398(6) Å α=101.289(1), β=114.642(1), γ=99.203(2). The U6+ cations are present as (UO2)2+ uranyl ions coordinated by five O atoms to give pentagonal bipyramids. The structural unit in UZnP is a finite cluster containing a uranyl pentagonal bipyramid that shares corners with two phosphate tetrahedra. The structural unit in UCsP is composed of uranyl pentagonal bipyramids with one chelating nitrate group that are linked into chains by three bridging hydrogen phosphate tetrahedra. In UInP, the structural unit contains pairs of edge-sharing uranyl pentagonal bipyramids with two chelating phosphate tetrahedra that are linked into chains through two bridging phosphate tetrahedra. Indium octahedra link these uranyl phosphate chains into a 3-dimensional framework. All three compounds exhibit unique structural units that deviate from the typical layered structures observed in uranyl phosphate solid-state chemistry.

  5. Facile synthesis, spectroscopic characterization and X-ray analysis of 4-alkoxylated 2-hydroxybenzophenones

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; He, Liang

    2012-02-01

    Two 2-hydroxy-4-alkoxy-3'-nitrobenzophenones were synthesized in a facile way. Their structures were characterized with the aid of mass spectra and 1H NMR spectra analysis, as well as X-ray diffraction analysis. The 1H NMR spectra showed an intramolecular hydrogen bond formation in their structures. Compound 1 crystallizes in the monoclinic P2 (1) space group with the crystal cell parameters a = 3.9318(4) Å, b = 7.1042(9) Å, c = 22.0400(19) Å, α = 90.00°, β = 92.3140(10)°, γ = 90.00°, V = 615.13(11) Å3 and Z = 2. Compound 2 crystallizes in the monoclinic space group P2 (1)/n with the crystal cell parameters a = 3.9765(5) Å, b = 11.8286(15) Å, c = 28.867(3) Å, α = 90.00°, β = 92.8710(10)°, γ = 90.00°, V = 1356.1(3) Å3 and Z = 4. Results showed that the benzophenone skeletons are non-planar, with a large torsion to minimize their repulsive force. The substituted nitro or alkoxy groups are essentially coplanar with respect to the benzene rings to which it connected, whereas the carbonyl group in benzophenone skeleton is coplanar with the benzene ring which is substituted by alkoxy group. Classic and non-classic intra- and intermolecular hydrogen bonds, together with the π-π stacking interactions stabilize their molecular conformations. The minor variations in the alkoxy group substituent cause great difference in their intermolecular hydrogen bond formation and stacking mode.

  6. Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet.

    PubMed

    Bugs, Milton Roque; Forato, Lucimara Aparecida; Bortoleto-Bugs, Raquel Kely; Fischer, Hannes; Mascarenhas, Yvonne Primerano; Ward, Richard John; Colnago, Luiz Alberto

    2004-07-01

    Biophysical methods and structural modeling techniques have been used to characterize the prolamins from maize ( Zea mays) and pearl millet ( Pennisetum americanum). The alcohol-soluble prolamin from maize, called zein, was extracted using a simple protocol and purified by gel filtration in a 70% ethanol solution. Two protein fractions were purified from seed extracts of pearl millet with molecular weights of 25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight protein corresponds to pennisetin, which has a high alpha-helical content both in solution and the solid state, as demonstrated by circular dichroism and Fourier transform infrared spectra. Fluorescence spectroscopy of both fractions indicated changes in the tryptophan microenvironments with increasing water content of the buffer. Low-resolution envelopes of both fractions were retrieved by ab initio procedures from small-angle X-ray scattering data, which yielded maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and the low molecular weight protein, respectively, and similar values were observed by dynamic light scattering experiments. Furthermore, (1)H nuclear magnetic resonance spectra of zein and pennisetin do not show any signal below 0.9 ppm, which is compatible with more extended solution structures. The molecular models for zein and pennisetin in solution suggest that both proteins have an elongated molecular structure which is approximately a prolate ellipsoid composed of ribbons of folded alpha-helical segments with a length of about 14 nm, resulting in a structure that permits efficient packing within the seed endosperm. PMID:14508615

  7. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, T; Willey, T

    2004-03-24

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  8. Characterization of functionalized self-assembled monolayers and surface-attached interlocking molecules using near-edge X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Willey, Trevor Michael

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a "molecular riveting" step to hold the mechanically attached

  9. A New, Longitudinally Resolved, Spectroscopic Characterization of Quaoar’s Surface

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Barucci, Maria A.; Perna, Davide; Doressoundiram, Alain; Alvarez-Candal, Alvaro; Nitschelm, Christian; Cruikshank, Dale P.

    2014-11-01

    (50000) Quaoar, one of the largest Trans-neptunian objects, is comparable in size to Pluto’s moon Charon. However, while Charon’s surface is rich almost exclusively in H2O ice, Quaoar‘s surface is characterized by ices of CH4, N2, as well as C2H6, a product of irradiation of CH4 (Dalle Ore et al. 2009). Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition, however, its relatively small size did not make it a prime candidate for presence of volatile ices in the study by Schaller and Brown (2007). Furthermore, based on the Brown et al. (2011) study its red coloration points to CH3OH as the ice which, when irradiated, might have produced the red material. We present new visible to near-infrared (0.3-2.48μm) spectro-photometric data obtained with the XSHOOTER (Vernet et al. 2011) instrument at the VLT-ESO facility at four different longitudes on the surface of Quaoar. The data are complemented by previously published photometric observations obtained in the near-infrared (3.6, 4.5μm) with the Spitzer Space Telescope, which provide an extra set of constraints in the model calculation process in spite of the different observing times that preclude establishing the spatial consistency between the two sets.For each of the four spectra we perform spectral modeling of the entire wavelength range -from 0.3 to 4.5μm- by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We obtain spatially resolved compositional information for the surface of Quaoar supporting the presence of CH4 and C2H6, as previously reported, along with evidence for N2 and NH3OH. The albedo at the two Spitzer bands indicates the likely presence of CO and CO2. CH3OH, predicted on the basis of Quaoar’s coloration (Brown et al. 2011), is not found at any of the four longitudes, implying that the presence of this ice is a sufficient, but not necessary condition for reddening of TNO surfaces. Other ices

  10. Spectroscopic characterizations of a mixed surfactant mesophase and its application in materials synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Limin

    A viscous lyotropic crystalline mesophase containing bis (2-ethylhexyl) sodium sulfosuccinate (AOT), alpha-phosphatidylcholine (lecithin), with comparable volume fractions of isooctane and water was characterized by Fourier-transform 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. Shear alignment on the reverse hexagonal mesophase was reflected through both 31P NMR and 1H NMR spectra. A complicated 31P spectrum was observed as a result of superposition of chemical shifts according to the distribution of crystalline domains prior to shear. The initially disordered samples with polydomain structures became macroscopically aligned after Couette shear and the alignment retained for a long period of time. 31P NMR chemical shift anisotropy characteristics were used to elucidate orientation of the hexagonal phase. Interestingly, 1H NMR of the water, methyl and methylene groups exhibited spectral changes upon shear alignment closely corresponding with that of 31P NMR spectra. A reverse hexagonal to lamellar phase transition was manifested as an expanding of the expressed 31P NMR chemical shift anisotropy and an apparent reversal of the powder pattern with increasing water content and/or temperature. Correspondingly, 1H NMR spectra also experienced a spectral pattern transition as the water content or temperature was increased. These observations complement the findings of mesophase alignment obtained using small angle neutron scattering (SANS) and imply that 31P and 1H NMR spectroscopy can be used as probes to define microstructure and monitor orientation changes in this binary surfactant system. This is especially beneficial if these mesophases are used as templates for materials synthesis. The mesophase retains its alignment for extended periods allowing materials synthesis to be decoupled from the application of shear. Highly aligned string-like silica nanostructures were obtained through templated synthesis in the columnar hexagonal structure of the viscous

  11. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions. PMID:23003323

  12. Room-Temperature Absorption Edge of InGaN/GaN Quantum Wells Characterized by Photoacoustic Measurement

    NASA Astrophysics Data System (ADS)

    Takeda, Yosuke; Takagi, Daigo; Sano, Tatsuji; Tabata, Shin; Kobayashi, Naoki; Shen, Qing; Toyoda, Taro; Yamamoto, Jun; Ban, Yuzaburo; Matsumoto, Kou

    2008-12-01

    The absorption edges of five periods of InxGa1-xN (3 nm)/GaN (15 nm) (x=0.07-0.23) quantum wells (QWs) are characterized by photoacoustic (PA) measurement at room temperature. The absorption edge is determined by differentiating the PA signal curve to obtain the inflection point on the assumption that the signal curve consists of Urbach tail in the low-energy region and Elliott's equation in the high-energy region. The constant absorption edge of GaN is observed at 3.4 eV and an absorption edge redshift with increasing In composition is observed for InGaN QWs. As a result, the Stokes shift increases with In composition and the highest shift of 435 meV is observed at x=0.23. From the energy calculation of optical transition in the InGaN/GaN QWs under an internal polarization field, the transition between the ground states confined in the well with a triangular potential causes a low-energy shift in the photoluminescence peak from the bulk band-gap energy, and the excited bound states whose wave functions are confined by the step-linear potential extending over the GaN barrier lead to the high-energy shift in the absorption edge.

  13. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  14. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  15. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  16. Aminophenyl double decker silsesquioxanes: Spectroscopic elucidation, physical and thermal characterization, and their applications

    NASA Astrophysics Data System (ADS)

    Schoen, Beth Whitney

    The incorporation of cage-like silsesquioxanes (SQ) to form polymers has demonstrated property enhancements in areas such as: thermal and mechanical characteristics, flame retardance, dielectric properties, and oxidative resistance. However, with most hybrid polymers investigated, the attached SQs are pendant with respect to the polymer backbone. A recently developed class of these nano-structured, cage-like silsesquioxanes, formally known as double decker silsesquioxanes (DDSQ), offers the opportunity to form hybrid polymers with SQ cages as a part of the polymer backbone. However, during the capping reaction, these functionalized DDSQs generate cis and trans isomers with respect to the 3D Si-O core. Therefore, it is logical to characterize properties, which will allow for optimization of capping reaction parameters, particularly if one isomer is favored over the other. Moreover, these characteristics are also relevant when reacting or incorporating these isomers, or mixtures thereof, with other molecules to form novel materials. In this dissertation, three aminophenyl DDSQs were synthesized. More specifically, two meta- aminophenyl DDSQs, which were differentiated according to the moiety attached to the D-Si (methyl or cyclohexyl), and one para-aminophenyl DDSQ with a methyl moiety were used. Chemical, physical, and thermal characteristics were evaluated for individual isomers as well as binary mixtures of different cis/trans ratios. The 1H NMR spectra of the cis and trans isomers of these DDSQ had not previously been assigned to a degree that allowed for quantification, which was necessary for these studies. Thus, 1H-29Si HMBC correlations were applied to facilitate 1H spectral assignments and also to confirm previous 29Si assignments. Using 1H NMR not only saves time and material over 29Si NMR, but also provides a more accurate quantification, thus allowing for the ratio of cis and trans isomers present in each compound to be determined. Solubility behavior was

  17. Spectroscopic studies of copper enzymes

    SciTech Connect

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  18. Fourier transform infrared and Raman spectroscopic characterization of homogeneous solution concentration gradients near a container wall at different temperatures

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.

    1991-01-01

    Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.

  19. Structural, Spectroscopic, and Computational Characterization of the Azide Adduct of FeIII(2,6-diacetylpyridinebis(semioxamazide)), a Functional Analogue of Iron Superoxide Dismutase

    PubMed Central

    Gutman, Craig T.; Guzei, Ilia A.; Brunold, Thomas C.

    2013-01-01

    We have prepared and thoroughly characterized, using X-ray crystallographic, spectroscopic, and computational methods, the diazide adduct of [FeIII(dapsox)(H2O)2]1+ [dapsox=2,6-diacetylpyridinebis(semioxamazide)] (1), alow-molecular weight, functional analogue of iron superoxide dismutase (FeSOD). The X-ray crystal structure of the dimeric form of 1, (Na[FeIII(dapsox)(N3)2] DMF)2 (2) shows two axially coordinated, symmetry inequivalent azides with differing Fe–N3 bond lengths and Fe–N–N2 bond angles. This inequivalence of the azide ligands likely reflects the presence of an inter-dimer H-bonding interaction between a dapsox NH group and the coordinated nitrogen of one of the two azide ligands. Resonance Raman (rR) data obtained for frozen aqueous solution and solid-state samples of 2 indicate that the azides remain inequivalent in solution, suggesting that one of the azide ligands of 1 engages in an intermolecular hydrogen bonding interaction with a water molecule. Density functional theory (DFT) and time-dependent DFT calculations have been used to study two different computational models of 1, one using coordinates taken from the X-ray crystal structure of 2, and the other generated via DFT geometry optimization. An evaluation of these models on the basis of electronic absorption, magnetic circular dichroism, and rR data indicates that the crystal structure based model provides a more accurate electronic structure description of 1, providing further support for the proposed intermolecular hydrogen bonding of 1 in the solid state and in solution. An analysis of the experimentally validated DFT results for this model reveals that the azides have both σ- and π-bonding interactions with the FeIII center and that more negative charge is located on the Fe-bound, rather than on the terminal, nitrogen atom of each azide. These observations are reminiscent of the results previously reported for the azide adduct of FeSOD and provide clues regarding the origin the

  20. Synthesis, spectroscopic characterization, photochemical and photophysical properties and biological activities of ruthenium complexes with mono- and bi-dentate histamine ligand.

    PubMed

    Cardoso, Carolina R; de Aguiar, Inara; Camilo, Mariana R; Lima, Márcia V S; Ito, Amando S; Baptista, Maurício S; Pavani, Christiane; Venâncio, Tiago; Carlos, Rose M

    2012-06-14

    The monodentate cis-[Ru(phen)(2)(hist)(2)](2+)1R and the bidentate cis-[Ru(phen)(2)(hist)](2+)2A complexes were prepared and characterized using spectroscopic ((1)H, ((1)H-(1)H)COSY and ((1)H-(13)C)HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 × 10(-3) mol L(-1) for (1R + 2A) and 6.43 × 10(-4) mol L(-1) for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH(3)CN converted the starting complexes into cis-[Ru(phen)(2)(CH(3)CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 × 10(-6) mol L(-1)). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC(50) of 21 μmol L(-1) (referred to risvagtini, IC(50) 181 μmol L(-1) and galantamine IC(50) 0.006 μmol L(-1)) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 μmol L(-1)). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents. PMID:22539182

  1. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  2. Structures and spectroscopic characterization of calcium chloride-nicotinamide, -isonicotinamide, -picolinamide and praseodymium bromide-nicotinamide complexes.

    PubMed

    Xue, Junhui; Jiang, Ye; Li, Weihong; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Zhang, Gaohui; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2015-02-25

    The coordination structures formed by calcium complexes with nicotinamide (na), isonicotinamide (ina) and picolinamide (pa) and praseodymium bromide-na are reported. The structures of CaCl2·(C6H6N2O)2·2H2O (Ca-na), CaCl2·(C6H6N2O)2·4H2O (Ca-ina), CaCl2·(C6H6N2O)2·5H2O (Ca-pa) and PrBr3·(C6H6N2O)2·6H2O (PrBr-na) in the solid state have been characterized by X-ray single crystal diffraction, FTIR, FIR, THz and Raman spectroscopies. Carbonyl oxygen of nicotinamide is coordinated to Ca(2+), but it is O-monodentate (carbonyl oxygen) and N,O-bidentate ligand (pyridyl nitrogen and carbonyl oxygen) for Pr(3+) to form a chain structure in PrBr-na. For isonicotinamide, only carbonyl oxygen atom is coordinated to Ca(2+). Pyridyl nitrogen and carbonyl oxygen of picolinamide are coordinated to Ca(2+) to form a five-membered ring structure. The crystal structure and spectroscopic results indicate the differences of the coordination of Ca and Pr ions, the changes of hydrogen bonds and conformation of the ligands induced by complexation. Unlike transition metal ions, Sr(2+) or lanthanide ions, Ca(2+) is inclined to coordinate to carbonyl oxygen atoms of the ligands. PMID:25280333

  3. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer

    PubMed Central

    Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based

  4. Description of the Role of Shot Noise in Spectroscopic Absorption and Emission Measurements with Photodiode and Photomultiplier Tube Detectors: Information for an Instrumental Analysis Course

    ERIC Educational Resources Information Center

    McClain, Robert L.; Wright, John C.

    2014-01-01

    A description of shot noise and the role it plays in absorption and emission measurements using photodiode and photomultiplier tube detection systems is presented. This description includes derivations of useful forms of the shot noise equation based on Poisson counting statistics. This approach can deepen student understanding of a fundamental…

  5. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  6. Characterization and Processing of Organic Nonlinear Optical Materials using Ellipsometric, Waveguiding, and Absorption Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Olbricht, Benjamin C.

    The first focus of this work is to describe methods for characterizing organic electro-optic materials. Teng-Man Ellipsometry and Attenuated Total Internal Reflection are reviewed. Experimental techniques for these instruments are described and the calculation of an electro-optic activity is derived. The two techniques are compared; it has been found that in Situ Teng-Man ellipsometry is useful to determine poling conditions but not for reliably evaluating electro-optic activity. Attenuated Total Internal Reflection is found to provide very reliable and precise measurements of electro-optic activity and linear optical constants. As a reference, many materials systems have been evaluated and their electro-optic activities are recorded herein. Methods for fabricating devices for test by Teng-Man ellipsometry and Attenuated Total Internal Reflection are presented. A process for inducing Pockel's response via contact-geometry electric field poling is also described, along with modifications to the simple slab dielectric device to enhance the efficacy of poling. An additional method for enhancing the efficiency of poling is presented. This technique relies on the photoisomerization of azobenzene dyes under 532nm radiation to reduce the dimensionality accessible to chromophores doped into the azobenzene matrix. This effect is known as "Laser Assisted Poling" and is shown to increase poling efficiency by more than two fold. The second purpose of this work is to present an experimental technique to measure the order parameter = 3cos 2q -12 . This method is known as Variable-Angle Polarization-Referenced Absorption Spectroscopy (VAPRAS). The experimental apparatus used for VAPRAS introduces small alterations to a UV/Vis Spectrophotometer and an order parameter is derived by exclusively using classical models for transmittance. VAPRAS provides an effective refractive index for the electro-optic material film which is used to calculate the order of absorbers in the film

  7. Identification and Characterization of Visible Absorption Components in Aqueous Methylglyoxal-Ammonium Sulfate Mixtures

    NASA Astrophysics Data System (ADS)

    McGivern, W. S.; Allison, T. C.; Radney, J. G.; Zangmeister, C. D.

    2014-12-01

    The aqueous reaction of methylglyoxal (MG) with ammonium sulfate has been suggested as a source of atmospheric ``brown carbon.'' We have utilized high-performance liquid chromatography coupled to ultraviolet-visible spectroscopy and tandem mass spectrometry to study the products of this reaction at high concentrations. The overall product spectrum shows a large number of distinct components; however, the visible absorption from this mixture is derived a very small number of components. The largest contributor is an imine-substituted (C=N-H) product of aldol condensation/facile dehydration reaction between the parent MG and a hydrated product of the MG + ammonia reaction. The asymmetric nature of this compound relative to the aldol condensation of two MG results in a sufficiently large redshift of the UV absorption spectrum that absorption of visible radiation can occur in the long-wavelength tail. The simplicity of the imine products is a result of a strong bias toward ketimine products due to the extensive hydration of the aldehydic moiety in the parent in aqueous solution. In addition, a strong pH dependence of the absorption cross section was observed with significantly greater absorption under more basic conditions. We have performed time-dependent density functional theory calculations to evaluate the absorption spectra of all of the possible condensation products and their respective ions, and the results are consistent with the experimental observations. We have also observed smaller concentrations of other condensation products of the imine-substituted parent species that do not contribute significantly to the visible absorption but have not been previously discussed.

  8. Accurate spectroscopic characterization of oxirane: A valuable route to its identification in Titan's atmosphere and the assignment of unidentified infrared bands

    SciTech Connect

    Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2014-04-20

    In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm{sup –1} for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%-3%, and 3%-4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan's atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz).

  9. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF OXIRANE: A VALUABLE ROUTE TO ITS IDENTIFICATION IN TITAN’S ATMOSPHERE AND THE ASSIGNMENT OF UNIDENTIFIED INFRARED BANDS

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2015-01-01

    In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm−1 for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%–3%, and 3%–4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan’s atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz). PMID:26543240

  10. Spectroscopic evidence for the formation of singlet molecular oxygen (/sup 1/. delta. /sub g/O/sub 2/) upon irradiation of a solvent-oxygen (/sup 3/Sigma/sub g//sup -/O/sub 2/) cooperative absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R.

    1988-01-20

    It is well-known that the presence of molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) in a variety of organic solvents causes an often substantial red shift in the solvent absorption spectrum. This extra, broad absorption feature is reversibly removed by purging the solvent with nitrogen gas. Mulliken and Tsubomura assigned the oxygen-dependent absorption band to a transition from a ground state solvent-oxygen complex to a solvent-oxygen charge transfer (CT) state (sol/sup .+/O/sub 2//sup .-/). In addition to the broad Mulliken CT band, there are, often in the same spectral region, distinct singlet-triplet transitions (T/sub 1/ reverse arrow S/sub 0/) which are enhanced by molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/). Since both of these solvent-oxygen cooperative transitions may result in the formation of reactive oxygenating species, singlet molecular oxygen (/sup 1/..delta../sub g/O/sub 2/) and/or the superoxide ion (O/sub 2//sup .-/), it follows that recent studies have focused on unsaturated hydrocarbon oxygenation subsequent to the irradiation of the oxygen-induced absorption bands in both the solution phase and cryogenic (10 K) glasses. In these particular experiments, oxygenated products characteristic of both /sup 1/..delta../sub g/O/sub 2/ and O/sub 2//sub .-/ were obtained, although the systems studied appeared to involve the participation of one intermediate at the exclusion of the other. In this communication, the authors provide, for the first time, direct spectroscopic evidence for the formation of /sup 1/..delta../sub g/O/sub 2/ following a solvent-oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) cooperative absorption. They have observed, in a time-resolved experiment, a near-IR luminescence subsequent to laser excitation of the oxygen-induced absorption bands of mesitylene, p-xylene, o-xylene, toluene, and benzene at 355 nm and 1,4-dioxane at 266 nm. They suggest that this signal is due to /sup 1/..delta../sub g/O/sub 2

  11. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. PMID:23299022

  12. Ultra-violet and visible absorption characterization of explosives by differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E.

    2013-03-01

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R2 > 0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials.

  13. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions.

    PubMed

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-10

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, (13)C and (1)H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data. PMID:24967544

  14. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    NASA Astrophysics Data System (ADS)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  15. Local structure and speciation of platinum in fresh and road-aged North American sourced vehicle emissions catalysts: an X-ray absorption spectroscopic study.

    PubMed

    Ash, Peter W; Boyd, David A; Hyde, Timothy I; Keating, Jonathan L; Randlshofer, Gabriele; Rothenbacher, Klaus; Sankar, Gopinathan; Schauer, James J; Shafer, Martin M; Toner, Brandy M

    2014-04-01

    Given emerging concerns about the bioavailability and toxicity of anthropogenic platinum compounds emitted into the environment from sources including vehicle emission catalysts (VEC), the platinum species present in selected North American sourced fresh and road-aged VEC were determined by Pt and Cl X-ray absorption spectroscopy. Detailed analysis of the Extended X-ray Absorption Fine Structure at the Pt L3 and L2 edges of the solid phase catalysts revealed mainly oxidic species in the fresh catalysts and metallic components dominant in the road-aged catalysts. In addition, some bimetallic components (Pt-Ni, Pt-Pd, Pt-Rh) were observed in the road-aged catalysts from supporting Ni-, Pd-, and Rh-K edge XAS studies. These detailed analyses allow for the significant conclusion that this study did not find any evidence for the presence of chloroplatinate species in the investigated solid phase of a Three Way Catalyst or Diesel Oxidation Catalysts. PMID:24568168

  16. Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Liuding; Wu, Hongjing

    2014-01-01

    Magnetite dendrites/sugar carbon (MDs/SC) nanocomposites, embedding MDs within amorphous SC matrix, were prepared by simple carbonization-reduction method using α-Fe2O3 dendrites (HDs) as precursor of MDs and sucrose as SC source, while still maintain the dendritic shape of the precursor. The morphology, composition, structure and static magnetic properties of the as-prepared MDs/SC nanocomposites were characterized by various techniques thoroughly. Particularly, the electromagnetic and microwave absorption properties of the MDs/SC and MDs paraffin composites (40 wt.%) were compared over 2-14 GHz. The results show that the microwave absorption performance of MDs/SC samples is comparable or even superior to that of MDs case. The absorption band with reflection loss (RL) below -20 dB for one of the MDs/SC samples can cover the whole X-band (8-12 GHz) with thickness of 1.8-2.4 mm when the content of MDs in the MDs/SC nanocomposite is 25.8 wt.%, and the minimum RL can reach -49.9 dB at 12.1 GHz when the layer thickness is only 1.9 mm. The excellent microwave absorption properties of the MDs/SC paraffin composites are attributed to the proper match between the complex permittivity and permeability, and the unique fractal structures of MDs.

  17. Crystal structure, spectroscopic characterization and density functional studies of (E)-1-((3-methoxyphenylimino)methyl)naphthalen-2-ol.

    PubMed

    Alpaslan, Gökhan; Macit, Mustafa

    2014-01-01

    The Schiff base compound (E)-1-((3-methoxyphenylimino)methyl)naphthalen-2-ol was synthesized from the reaction of 2-hydroxy-1-naphthaldehyde with 3-methoxyaniline. The structural properties of the compound has been characterized by using FT-IR, UV-vis and X-ray single-crystal methods. According to X-ray diffraction result, the title compound exists in the phenol-imine tautomeric form. The molecular geometry, vibrational frequencies of the compound in the ground state have been calculated using the density functional theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set, and compared with the experimental data. The obtained results show that the optimized molecular geometry is well reproduce the crystal structure. The theoretical vibrational frequencies are in good agreement with the experimental values. The calculations of electronic absorption spectra of tautomeric forms of the compound were performed by using TD-DFT calculations both in the gas phase and ethanol solvent. To investigate the tautomeric stability, optimization calculations at the B3LYP/6-311++G(d,p) level were performed for the phenol-imine and keto-amine forms of the compound. According to calculated results, the OH form is more stable than NH form. In addition, molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO), thermodynamic and, non-linear optical (NLO) properties of the compound were investigated using same theoretical calculations. PMID:24280299

  18. Synthesis, spectroscopic characterization and DFT calculations of N-Methyl-2-(2ʹ-hydroxyphenyl)benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Saral, Hasan; Özdamar, Özgür; Uçar, İbrahim; Bekdemir, Yunus; Aygün, Muhittin

    2016-01-01

    1-Methyl-2-(2ʹ-hydroxyphenyl)benzimidazole (1) and 1-Methyl-2-(2ʹ-hydroxy-4ʹ-methylphenyl)benzimidazole (2) compounds have been synthesized and characterized by XRD, IE-MS, FT-IR, UV-Vis and 1H, 13C NMR techniques. The crystal structure of both compounds is stabilized with very strong O-H … N hydrogen-bond and π-π interactions. In the compound 1, an infinite chain structure with a trans-zigzag type was formed along the crystallographic [101] direction. Quantum mechanical calculations of energies, geometries, vibrational wavenumbers, NMR and electronic transitions were carried out by DFT using B3LYP functional combined with 6.31G(d,p) basis set. Calculated bond lengths, bond angles and dihedral angles were only slightly different from the experimental ones. The vibrational study was interpreted by means of potential energy distribution (PED). The electronic absorption spectra of the both compounds were predicted by using the time-dependent DFT methods and good agreement was found between the computational and the experimental values. The chemical shifts (1H and 13C NMR) and isotropic shielding values were calculated by using the gauge-invariant atomic orbital (GIAO) method. The analyses of HOMO and LUMO have been used to explain the charge transfer within the molecule.

  19. Development of a Tandem Electrodynamic Trap Apparatus for Merging Charged Droplets and Spectroscopic Characterization of Resultant Dried Particles.

    PubMed

    Kohno, Jun-Ya; Higashiura, Tetsu; Eguchi, Takaaki; Miura, Shumpei; Ogawa, Masato

    2016-08-11

    Materials work in multicomponent forms. A wide range of compositions must be tested to obtain the optimum composition for a specific application. We propose optimization using a series of small levitated single particles. We describe a tandem-trap apparatus for merging liquid droplets and analyzing the merged droplets and/or dried particles that are produced from the merged droplets under levitation conditions. Droplet merging was confirmed by Raman spectroscopic studies of the levitated particles. The tandem-trap apparatus enables the synthesis of a particle and spectroscopic investigation of its properties. This provides a basis for future investigation of the properties of levitated single particles. PMID:27438227

  20. Spectroscopic characterization of Ti-doped α-ZnAl2S4 spinel-type single crystals

    NASA Astrophysics Data System (ADS)

    Anghel, Sergiu; Boulon, Georges; Brenier, Alain; Fortin, Emery; Klokishner, Sophia; Koshchug, Dmitrii; Kulyuk, Leonid; Sushkevich, Konstantin

    2010-02-01

    The spectroscopic characteristics of the α-ZnAl2S4 wide bandgap semiconductor doped with Ti ions are investigated. It is shown, that the ZnAl2S4:Ti spinel-type crystals exhibit luminescence in the IR spectral range 0.8-1.4 µm. The observed spectroscopic characteristics are assigned to the emission bands arising from the ligand -Ti4+ charge transfer for octahedral sites of titanium that is in agreement with the experimental evidence for the absence of the EPR signal from Ti ions. A qualitative explanation of the experimental data is given.

  1. Spectroscopic characterization of Ti-doped α-ZnAl2S4 spinel-type single crystals.

    PubMed

    Anghel, Sergiu; Boulon, Georges; Brenier, Alain; Fortin, Emery; Klokishner, Sophia; Koshchug, Dmitrii; Kulyuk, Leonid; Sushkevich, Konstantin

    2010-02-10

    The spectroscopic characteristics of the α-ZnAl(2)S(4) wide bandgap semiconductor doped with Ti ions are investigated. It is shown, that the ZnAl(2)S(4):Ti spinel-type crystals exhibit luminescence in the IR spectral range 0.8-1.4 µm. The observed spectroscopic characteristics are assigned to the emission bands arising from the ligand -Ti(4+) charge transfer for octahedral sites of titanium that is in agreement with the experimental evidence for the absence of the EPR signal from Ti ions. A qualitative explanation of the experimental data is given. PMID:21386352

  2. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter

    NASA Astrophysics Data System (ADS)

    Hagvall, Kristoffer; Persson, Per; Karlsson, Torbjörn

    2014-12-01

    Interactions between metals and natural organic matter (NOM) are of great environmental importance and one of the key factors influencing hydrolysis, solubility, and speciation of the metals. However, studying geochemically relevant metals like Al, Fe, and Cu is sometimes associated with analytical problems; for example Fe and Cu are both redox active. Gallium (Ga) is a non-redox active metal that usually occurs at very low concentrations in environmental samples and therefore a wide concentration range of metal(III)-NOM species can be explored by adding Ga(III) to such samples. This makes Ga(III) a good probe and analogue for other metal ions, in particular Al. In addition, due to the increased usage of Ga in society, a better understanding of how Ga interacts with NOM is of importance but such studies are scarce. In this work, Ga(III) interactions with two different organic materials (Suwannee River natural organic matter and Suwannee River fulvic acid) were studied using infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy in a large experimental range (101-84,076 μg Ga g-1 dry weight; pH 3-8). Our IR spectroscopic results showed that Ga(III) is bonded mainly to carboxylic functional groups and suggested that only a fraction of the total number of carboxylic sites in the samples was actively involved in the bonding. Modeling of the EXAFS data revealed that Ga(III) formed mononuclear chelate complexes with NOM that strongly suppressed the hydrolysis and polymerization of Ga(III). At low Ga(III) concentrations (1675-16,649 μg g-1) organic complexes, consisting of 1-3 chelate ring structures, were the dominating species in the entire pH range while at higher concentrations (67,673-84,076 μg g-1, pH 3.0-7.0) we detected mixtures of mononuclear organic Ga(III) complexes, Ga(III) (hydr)oxide, and free Ga(III) (here defined as the hydrated Ga(III) ion and its soluble hydrolysis products). Moreover, the EXAFS results showed significantly

  3. Characterization of the contribution of buccal absorption to internal exposure to bisphenol A through the diet.

    PubMed

    Guignard, Davy; Gauderat, Glenn; Gayrard, Véronique; Lacroix, Marlène Z; Picard-Hagen, Nicole; Puel, Sylvie; Toutain, Pierre-Louis; Viguié, Catherine

    2016-07-01

    The gavage route is often used for the toxicological evaluation of food contaminants. This route does not take into account absorption of the toxicants through the buccal mucosa, as evidenced in dogs for bisphenol A (BPA). Our goal was to determine the functional significance of buccal BPA absorption during dietary exposure. Four ewes received BPA by nasogastric gavage (100 mg/kg) and through food pellets (10 mg/kg), 13 days apart. The time course of serum concentrations of BPA and its main metabolite BPA-G was submitted to non-compartmental analysis. The dietary route led to 3-fold higher bioavailability as compared to gavage. The ratio of BPA-G to BPA concentrations varied greatly over time after the food administration, but not after gavage, suggesting a delayed metabolism of BPA after dietary exposure. The maximum entrance rate of BPA in the systemic circulation, determined by deconvolution analysis, was much higher after dietary administration than after gavage and a biphasic pattern of BPA entry was observed in 3 of the 4 ewes. Our results evidenced a dual mechanism of BPA absorption (buccal and digestive) after dietary exposure and highlight the necessity to take buccal absorption into account when evaluating food contaminants. PMID:27090580

  4. Characterization of the X-ray absorption in the Galactic ISM

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Kallman, T.; Mendoza, C.

    2016-06-01

    The physical conditions of the Galactic interstellar medium (ISM) can be studied in detail through the high-resolution X-ray spectroscopy provided by the grating instruments in both Chandra and XMM-Newton. Using an X-ray source, which acts as a lamp, one can analyze the absorption features that are imprinted in the spectra by the gas located between the observer and the X-ray source, which offers the opportunity to study physical properties of the ISM such as ionization degree, column densities, and elemental abundances. We present a detailed analysis of the H, O, Ne, and Fe absorption in the X-ray spectra of 24 bright galactic sources obtained with the Chandra and XMM-Newton observatories. Implementing our new absorption model ISMabs, we have measured column densities, ionization fractions, and abundances for H, O, Ne, and Fe in the direction of each source. We find that the column densities tend to increase with source distance and decrease with galactic latitude, while the ionization fractions and abundances are mostly constant along every line of sight. Finally, we found that molecules and grains are not a major contributor to the absorption features in the O K-edge wavelength region.

  5. Direct characterization and removal of interfering absorption trends in two-layer turbid media.

    PubMed

    Saager, Rolf B; Berger, Andrew J

    2005-09-01

    We propose a method to isolate absorption trends confined to the lower layer of a two-layer turbid medium, as is desired in near-infrared spectroscopy (NIRS) of cerebral hemodynamics. Several two-layer Monte Carlo simulations of NIRS time series were generated using a physiologically relevant range of optical properties and varying the absorption coefficients due to bottom-layer, top-layer, and/or global fluctuations. Initial results showed that by measuring absorption trends at two source-detector separations and performing a least-squares fit of one to the other, processed signals strongly resemble the simulated bottom-layer absorption properties. Through this approach, it was demonstrated that fitting coefficients can be estimated within less than +/- 2% of the ideal value without any a priori knowledge of the optical properties present in the model. An analytical approximation for the least-squares coefficient provides physical insight into the nature of errors and suggests ways to reduce them. PMID:16211814

  6. Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Bruntt, H.; Michel, E.; Barban, C.; Verner, G.; Régulo, C.; Mosser, B.; Mathur, S.; Gaulme, P.; Garcia, R. A.; Boumier, P.; Appourchaux, T.; Samadi, R.; Catala, C.; Baudin, F.; Baglin, A.; Auvergne, M.; Roxburgh, I. W.; Pérez Hernández, F.

    2010-06-01

    Context. The star HD 49385 is the first G-type solar-like pulsator observed in the seismology field of the space telescope CoRoT. The satellite collected 137 days of high-precision photometric data on this star, confirming that it presents solar-like oscillations. HD 49385 was also observed in spectroscopy with the NARVAL spectrograph in January 2009. Aims: Our goal is to characterize HD 49385 using both spectroscopic and seismic data. Methods: The fundamental stellar parameters of HD 49385 are derived with the semi-automatic software VWA, and the projected rotational velocity is estimated by fitting synthetic profiles to isolated lines in the observed spectrum. A maximum likelihood estimation is used to determine the parameters of the observed p modes. We perform a global fit, in which modes are fitted simultaneously over nine radial orders, with degrees ranging from ℓ = 0 to ℓ = 3 (36 individual modes). Results: Precise estimates of the atmospheric parameters (Teff, [M/H], log g) and of the ν sin i of HD 49385 are obtained. The seismic analysis of the star leads to a clear identification of the modes for degrees ℓ = 0,1,2. Around the maximum of the signal (ν ≃ 1013 μHz), some peaks are found significant and compatible with the expected characteristics of ℓ = 3 modes. Our fit yields robust estimates of the frequencies, linewidths and amplitudes of the modes. We find amplitudes of ~5.6 ± 0.8 ppm for radial modes at the maximum of the signal. The lifetimes of the modes range from one day (at high frequency) to a bit more than two days (at low frequency). Significant peaks are found outside the identified ridges and are fitted. They are attributed to mixed modes. Based on data obtained from the CoRoT (Convection, Rotation and planetary Transits) space mission, developed by the French Space agency CNES in collaboration with the Science Programs of ESA, Austria, Belgium, Brazil, Germany and Spain.Based on data obtained using the Télescope Bernard Lyot at

  7. Synthesis, characterization and femtosecond nonlinear saturable absorption behavior of copper phthalocyanine nanocrystals doped-PMMA polymer thin films

    NASA Astrophysics Data System (ADS)

    Zongo, S.; Dhlamini, M. S.; Neethling, P. H.; Yao, A.; Maaza, M.; Sahraoui, B.

    2015-12-01

    In this work, we report the femtosecond nonlinear saturable absorption response of synthesized copper phthalocyanine nanocrystals (CPc-NCs)-doped PMMA polymer thin films. The samples were initially characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis and scanning electron microscopy (SEM) techniques. The crystalline phase and morphological analysis revealed nanocrystals of monoclinic structure with an average crystallite size between 31.38 nm and 42.5 nm. The femtosecond Z-scan study at 800 nm central wavelength indicated a saturable absorption behavior of which the mechanism is closely related to the surface plasmon resonance (SPR) of the particles. This nonlinear effect could potentially make the CPc-NCs useful in nonlinear optical devices.

  8. X-ray absorption spectroscopic study of LiCoO2 as the negative electrode of lithium-ion batteries.

    PubMed

    Chadwick, Alan V; Savin, Shelley L P; Alcántara, Ricardo; Fernández Lisbona, Diego; Lavela, Pedro; Ortiz, Gregorio F; Tirado, José L

    2006-05-12

    Lithium cobalt oxide (LiCoO(2)) particles are modified using rotor blade grinding and re-annealing and used as the active electrode material versus lithium in the 3-0 V potential interval, in which a maximum capacity of 903 mA h g(-1) is achieved. X-ray absorption near edge structure spectra reveal the complete reduction of Co(3+) to Co metal at 0 V. Cell recharge leads to an incomplete reoxidation of cobalt. A maximum reversible capacity of 812 mA h g(-1) is obtained, although a poor capacity retention upon prolonged cycling may limit its application. PMID:16612798

  9. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability.

    PubMed

    Curti, E; Puranen, A; Grolimund, D; Jädernas, D; Sheptyakov, D; Mesbah, A

    2015-10-01

    Direct disposal of spent nuclear fuel (SNF) in deep geological formations is the preferred option for the final storage of nuclear waste in many countries. In order to assess to which extent radionuclides could be released to the environment, it is of great importance to understand how they are chemically bound in the waste matrix. This is particularly important for long-lived radionuclides such as (79)Se, (129)I, (14)C or (36)Cl, which form poorly sorbing anionic species in water and therefore migrate without significant retardation through argillaceous repository materials and host rocks. We present here X-ray absorption spectroscopic data providing evidence that in the investigated SNF samples selenium is directly bound to U atoms as Se(-II) (selenide) ion, probably replacing oxygen in the cubic UO2 lattice. This result is corroborated by a simple thermodynamic analysis, showing that selenide is the stable form of Se under reactor operation conditions. Because selenide is almost insoluble in water, our data indirectly explain the unexpectedly low release of Se in short-term aqueous leaching experiments, compared to iodine or cesium. These results have a direct impact on safety analyses for potential nuclear waste repository sites, as they justify assuming a small fractional release of selenium in performance assessment calculations. PMID:26365814

  10. Effects of oxidation state on metal ion binding by Medicago sativa (alfalfa): Atomic and X-ray absorption spectroscopic studies with Fe(II) and Fe(III)

    SciTech Connect

    Tiemann, K.J.; Gardea-Torresdey, J.L.; Gamez, G.; Dokken, K.; Cano-Aguilera, I.; Renner, M.W.; Furenlid, L.R.

    2000-02-15

    The authors present here experimental results that investigate the effects of metal-ion binding on iron-ion sorption to and recovery from alfalfa biomass. Fe(II)- and Fe(III)-ion binding were measured in order to ascertain the differences in binding strengths due to changes in oxidation state. Stronger binding was found for iron(III)-biomass as compared to iron(II)-biomass. The optimal pH for iron uptake was determined to be 5. The results of pH binding profile, orion desorption, and temperature-dependent binding experiments as well as X-ray spectroscopic (XAS) measurements all suggest that binding of iron by alfalfa biomass may be occurring through carboxyl ligands. The XAS experiments further demonstrate that the metal binding proceeds without an oxidation state change, and both iron(II) and iron(III) have similar coordination environments. The information presented will assist in understanding the binding of other metals to alfalfa biomass and in developing methods for their recovery.

  11. X-ray absorption spectroscopic studies of the diiron center in methane monooxygenase in the presence of substrate and the coupling protein of the enzyme system

    SciTech Connect

    DeWitt, J.G.; Rosenzweig, A.C.; Salifoglou, A.

    1995-05-10

    The interaction among the hydroxylase component of methane monooxygenase (MMO) from Methylococcus capsulatus (Bath), the coupling protein of the MMO enzyme system (component B), and substrate has been investigated by using Fe K-edge X-ray absorption spectroscopy (XAS). Fe K-edge extended X-ray absorption fine structure (EXAFS) studies of the semimet form of the hydroxylase in the presence of the coupling protein, 1-bromo-1-propene, and both the coupling protein and 1-bromo-1-propene revealed small differences in the appearance of the EXAFS above k = 8 {Angstrom}{sup {minus}1} as compared to the noncomplexed hydroxylase. No dramatic change in the Fe coordination was seen in fits to the data. The average first shell Fe-O/N distance for the complexed forms of the semimet hydroxylase ranged between 2.06 and 2.08 {Angstrom}, which is comparable to the distance found for the noncomplexed form, 2.06-2.09 {Angstrom}. Although the average first shell coordination was similar for all samples, a difference was seen in the distribution of long vs short distance contributions to the first shell coordination sphere for samples with component B present. This difference was accompanied by a small but consistent decrease in the Fe-Fe distance of the B-complexed hydroxylase samples, from 3.42 to 3.39 {angstrom}.

  12. Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes

    SciTech Connect

    Wang, Shengke; Scott, R.A. ); Lee, M.H.; Hausinger, R.P. ); Clark, P.A.; Wilcox, D.E. )

    1994-04-13

    The structures of the dinuclear Ni(II) active sites of urease from jack bean and Klebsiella aerogenes are compared with and without the addition of the inhibitor 2-mercaptoethanol (2-ME). No significant differences are observed by nickel K-edge X-ray absorption spectroscopy between the plant and bacterial enzymes. The Ni X-ray absorption edge spectra display an 8332-eV 1s[yields]3d peak intensity similar to that observed for five-coordinate Ni(II) compounds[sup 1] for both native and 2-ME-bound derivatives. Curve-fitting of Ni EXAFS data indicates that the average Ni(II) coordination environment in native urease can be described as Ni(imidazole)[sub x](N,O)[sub 5[minus]x], with x = 2 or 3. Addition of 2-ME results in replacement of one of the non-imidazole (N,O) ligands with (S,Cl) (most likely the thiolate sulfur of 2-ME) and results in the appearance of a new peak in the Fourier transforms that can only be fit with a Ni[center dot][center dot][center dot]Ni scattering component at a Ni-Ni distance of [approximately]3.26 [angstrom]. A structure for this 2-ME-bound dinuclear site is proposed to contain the two Ni(II) ions bridged by the thiolate sulfur of 2-ME.

  13. Chemical and spectroscopic characterizations, ESI-QTOF mass spectrometric measurements and DFT studies of new complexes of palladium(II) with tryptamine and mefenamic acid

    NASA Astrophysics Data System (ADS)

    Carvalho, Marcos A.; Arruda, Eduardo G. R.; Profirio, Daniel M.; Gomes, Alexandre F.; Gozzo, Fábio C.; Formiga, André L. B.; Corbi, Pedro P.

    2015-11-01

    New palladium(II) complexes with tryptamine (Pd-tra) and mefenamic acid (Pd-mef) were prepared and characterized by chemical and spectroscopic methods. Elemental, ESI-QTOF mass spectrometric and thermogravimetric analyses of the compounds confirm the composition [PdCl2(tra)2] for Pd-tra and [Pd(mef)2(bipy)] for Pd-mef. Infrared data indicate the coordination of tryptamine to Pd(II) by the nitrogen atom of the amino group, while for mefenamic acid coordination occurs by the oxygen atom of carboxylate group in a monodentate form. The 1H, 13C and {15N,1H} NMR spectroscopic data confirm the nitrogen coordination of the NH2 group of trypatmine to Pd(II) in the Pd-tra complex and also the oxygen coordination of the carboxylate group of mefenamic acid to Pd(II) in the Pd-mef complex. Density functional theory (DFT) studies were applied to determine the difference in energy between the geometric isomers (cis/trans) of Pd-tra and to optimize the structure of the Pd-mef complex. Raman spectroscopic measurements reinforce the nitrogen coordination of tryptamine to Pd(II) in the Pd-tra complex and confirms the presence of the cis-[PdCl2(tra)2] isomer in the solid state. The complexes are insoluble in water.

  14. Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications

    NASA Astrophysics Data System (ADS)

    Wang, Chengao; Hasselbeck, Michael P.; Li, Chia-Yeh; Sheik-Bahae, Mansoor

    2010-02-01

    The state of current research in laser cooling of semiconductors is reviewed. Emphasis is placed on the characterization of external quantum efficiency and absorption efficiency in GaAs/InGaP double heterostuctures. New experimental results will be presented that characterize device operation as a function of laser excitation power and temperature. Optimum carrier density is obtained independently and used as a screening tool for sample quality. The crucial importance of parasitic background absorption is discussed.

  15. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    NASA Astrophysics Data System (ADS)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  16. Two complexes of Co(II) and Pd(II) formed in reaction with a mono-oxazoline derivative. Spectroscopic characterization and cytotoxic evaluation

    NASA Astrophysics Data System (ADS)

    Alexandru, Maria-Gabriela; Cirkovic Velickovic, Tanja; Krstic, Maja; Hrubaru, Madalina-Marina; Draghici, Constantin

    2013-06-01

    Two coordination compounds obtained from 2-(4-ethoxyphenyl)-4,5-dihydro-1H-oxazole, L, [CoCl2(L)2] (1) and [OHsbnd CH2sbnd CH2sbnd NH3]2·[PdCl4] (2) were synthesized and characterized through elemental analysis, spectroscopic methods (FTIR, UV-Vis, 1H NMR) and X-ray diffraction. Cytotoxicity tests on PBMC and HeLa cells were performed in order to evaluate the potential applications of these compounds in medicine. Also, compound (2) exhibits ligand assisted luminescent properties that were determined in solid state.

  17. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary. PMID:24245312

  18. Preparation, characterization and in vitro intestinal absorption of a dry emulsion formulation containing atorvastatin calcium.

    PubMed

    Yin, Yong-Mei; Cui, Fu-De; Kim, Jung Sun; Choi, Min-Koo; Choi, Byung Chul; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2009-01-01

    A redispersible dry emulsion (DE) formulation of atorvastatin calcium (AC) was developed to enhance the in vitro dissolution of AC, thereby increasing its gastrointestinal absorption. The spray-drying technology was used where Plurol Oleique CC 497 was chosen as the oil phase. Effects of carriers, surfactants, and homogenizers on the characteristics of DE containing AC were systematically investigated. The final formulation consisted of dextrin and Poloxamer 188 as carrier and surfactant, respectively, and was homogenized by a high pressure homogenizer before spray drying. The in vitro release of AC from the optimized DE was significantly higher than that of pure AC powder (76% vs. 30% at 24 hr). The in vitro intestinal absorption of AC from the DE formulation was 0.77 microg/cm(2) at 2 hr, which was a 2.33-fold increase compared to the pure unformulated AC powder. These results suggest that the oral dry emulsion formulation could improve the intestinal absorption of AC. PMID:19555306

  19. A flow-through x-ray absorption spectroscopy cell for characterization of powder catalysts in the working state

    NASA Astrophysics Data System (ADS)

    Odzak, J. F.; Argo, A. M.; Lai, F. S.; Gates, B. C.; Pandya, K.; Feraria, L.

    2001-10-01

    We report the design and demonstration of an x-ray absorption spectroscopy (XAS) cell used for the characterization of solid (powder) catalysts in operation with gas-phase reactants. The use of powder samples removes complications arising from mass transfer limitations in pressed wafer samples, the typical form of catalyst used in other in situ XAS cells. The new cell allows collection of XAS data at temperatures ranging from about 230 to 470 K, gas flow rates ranging from about 10 to 500 ml min-1, and pressures ranging from about 1 to 3 atm. The cell is designed to function nearly as a plug flow reactor.

  20. Analytical procedure for the simultaneous voltammetric determination of trace metals in food and environmental matrices. Critical comparison with atomic absorption spectroscopic measurements.

    PubMed

    Melucci, Dora; Torsi, Giancarlo; Locatelli, Clinio

    2007-01-01

    An analytical procedure fit for the simultaneous determination of copper (II), chromium(VI), thallium(I), lead(II), tin(II), antimony(III), and zinc(II) by square wave anodic stripping voltammetry (SWASV) in three interdependent environmental matrices involved in foods and food chain as meals, cereal plants and soils is described. The digestion of each matrix was carried out using a concentrated HCl-HNO3-H2SO4 (meals and cereal plants) and HCl-HNO3 (soils) acidic attack mixtures. 0.1 mol/L dibasic ammonium citrate pH 8.5 was employed as the supporting electrolyte. The voltammetric measurements were carried out using, as working electrode, a stationary hanging mercury drop electrode (HMDE) and a platinum electrode and an Ag/AgCl/KClsat electrode as auxiliary and reference electrodes, respectively. The analytical procedure was verified by the analyses of the standard reference materials: Wholemeal BCR-CRM 189, Tomato Leaves NIST-SRM 1573a and Montana Soil Moderately Elevated Traces NIST-SRM 2711. For all the elements in the certified matrix, the precision as repeatability, expressed as relative standard deviation (Sr %) was lower than 5%. The accuracy, expressed as percentage relative error (e %) was of the order of 3-7%, while the detection limits were in the range 0.015-0.103 microg/g. Once set up on the standard reference materials, the analytical procedure was transferred and applied to commercial meal samples, cereal plants and soils samples drawn in sites devoted to agricultural practice. A critical comparison with spectroscopic measurements is also discussed. PMID:17822223

  1. Spectroscopic Characterization of AN Alkyl-Substituted Criegee Intermediate CH_{3}CHOO and its OH Radical Products

    NASA Astrophysics Data System (ADS)

    Beames, Joseph M.; Liu, Fang; Lu, Lu; Lester, Marsha I.

    2013-06-01

    In the atmosphere, cycloaddition of ozone to the double bond of alkenes produces energized Criegee intermediates, which undergo subsequent decay processes to yield OH radicals. In this laboratory, a simple alkyl-substituted Criegee intermediate CH_{3}CHOO is produced by 248 nm photolysis of CH_{3}CHI_{2} and subsequent reaction of CH_{3}CHI with O_{2} in a quartz capillary tube reactor, following the same approach utilized for CH_{2}OO. The CH_{3}CHOO intermediate (m/z=60) and other products are detected following supersonic expansion using 118 nm VUV ionization in a time-of-flight mass spectrometer. The OH radical products from decomposition of the CH_{3}CHOO intermediate are also directly detected at m/z=17 using a new UV+VUV ionization scheme, combining UV excitation on the OH A ^2Σ^+-X ^2Π (1,0) transition with fixed-frequency VUV at 118 nm, or alternatively by UV laser-induced fluorescence on the OH A-X transition; OH products are also observed from CH_{2}OO. The CH_{3}CHOO intermediate is characterized by a strong B ^1A'-X ^1A' electronic transition, in which UV excitation near the peak of a broad absorption profile centered at 320 nm results in significant depletion of the CH_{3}CHOO photoionization signal. The mechanism proposed for OH generation from energized CH_{3}CHOO and many larger Criegee intermediates is a 1,4 H-atom shift to form vinylhydroperoxide species that decay to produce OH. This reaction scheme provides a non-photolytic source of OH radicals in the atmosphere during night and winter times. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. {134}, 20045 (2012). J. M. Beames, F. Liu, M. I. Lester and C. Murray, J. Chem. Phys. {134}, 241102 (2011).

  2. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  3. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    SciTech Connect

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  4. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    SciTech Connect

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 {Angstrom}. The Fe-Fe distance was determined to be 3.4 {Angstrom}. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  5. The spectroscopic foundation of radiative forcing of climate by carbon dioxide

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Daniels, Taumi S.; Kratz, David P.; Feldman, Daniel R.; Collins, William D.; Mlawer, Eli J.; Alvarado, Matthew J.; Lawler, James E.; Anderson, L. W.; Fahey, David W.; Hunt, Linda A.; Mast, Jeffrey C.

    2016-05-01

    The radiative forcing (RF) of carbon dioxide (CO2) is the leading contribution to climate change from anthropogenic activities. Calculating CO2 RF requires detailed knowledge of spectral line parameters for thousands of infrared absorption lines. A reliable spectroscopic characterization of CO2 forcing is critical to scientific and policy assessments of present climate and climate change. Our results show that CO2 RF in a variety of atmospheres is remarkably insensitive to known uncertainties in the three main CO2 spectroscopic parameters: the line shapes, line strengths, and half widths. We specifically examine uncertainty in RF due to line mixing as this process is critical in determining line shapes in the far wings of CO2 absorption lines. RF computed with a Voigt line shape is also examined. Overall, the spectroscopic uncertainty in present-day CO2 RF is less than 1%, indicating a robust foundation in our understanding of how rising CO2 warms the climate system.

  6. Light Absorption Properties of Brown Carbon from Fresh and Aged Biomass Burning Aerosols Characterized in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Chuang, W.; Hennigan, C.; McMeeking, G. R.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2011-12-01

    Black carbon is an important particulate phase light absorber in the atmosphere. Recent studies have shown that some organic matter also absorb visible light, especially at short wavelengths. These organic compounds are referred to as "brown carbon". Biomass burning is a major contributor to brown carbon in atmospheric particulate matter; however, its optical properties are poorly characterized. We have conducted smog chamber experiments to investigate light absorption properties of brown carbon in primary and aged biomass burning emissions, namely the imaginary refractive index. The aging was performed in a smog chamber, where dilute emissions were exposed to UV lights to initiate photo-oxidation, which often produced substantial secondary organic aerosol. The experiments took place at Carnegie Mellon University (CMU) and at the US Fire Science Laboratory in Missoula, MT as part of the Fire Lab at Missoula field campaign (FLAME 2009). The CMU experiments simulated household wood burning (oak), and the FLAME experiments simulated wildland fires with fuels including gallberry, lodgepole pine, black spruce and ponderosa pine. Absorption coefficients were measured using an Aethalometer (Magee Scientific) at 7 different wavelengths ranging between 370 nm and 950 nm. The black carbon size distributions were measured using a Single Particle Soot Photometer (SP2, DMT), and total aerosol size distributions were measured using a Scanning Mobility Particle Sizer (SMPS, TSI). The absorption coefficients of both the fresh and aged aerosol were significantly larger, and had stronger wavelength dependence than what would be expected for black carbon alone, and for a black carbon core with a non-absorbing shell. This indicates that biomass burning organic aerosol should be classified as brown carbon. A (black carbon) core - (brown carbon) shell absorption model based on Mie theory was optimized to determine the shell imaginary refractive index which produces model outputs that

  7. X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction.

    PubMed

    Hadt, Ryan G; Hayes, Dugan; Brodsky, Casey N; Ullman, Andrew M; Casa, Diego M; Upton, Mary H; Nocera, Daniel G; Chen, Lin X

    2016-08-31

    The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show that electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E(0) over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal-metal and antibonding interactions across the cluster. PMID:27515121

  8. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-09-01

    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  9. X-Ray Absorption Fine Structure Spectroscopic Studies of Octakis(DMSO)Lanthanoid(III) Complexes in Solution And in the Solid Iodides

    SciTech Connect

    Persson, I.; Risberg, E.Damian; D'Angelo, P.; Panfilis, S.De; Sandstrom, M.; Abbasi, A.

    2009-06-04

    Octakis(DMSO)lanthanoid(III) iodides (DMSO = dimethylsulfoxide), [Ln(OS(CH{sub 3}){sub 2}){sub 8}]I{sub 3}, of most lanthanoid(III) ions in the series from La to Lu have been studied in the solid state and in DMSO solution by extended X-ray absorption fine structure (EXAFS) spectroscopy. L{sub 3}-edge and also some K-edge spectra were recorded, which provided mean Ln-O bond distances for the octakis(DMSO)lanthanoid(III) complexes. The agreement with the average of the Ln-O bond distances obtained in a separate study by X-ray crystallography was quite satisfactory. The crystalline octakis(DMSO)lanthanoid(III) iodide salts have a fairly broad distribution of Ln-O bond distances, ca. 0.1 {angstrom}, with a few disordered DMSO ligands. Their EXAFS spectra are in excellent agreement with those obtained for the solvated lanthanoid(III) ions in DMSO solution, both of which show slightly asymmetric distributions of the Ln-O bond distances. Hence, all lanthanoid(III) ions are present as octakis(DMSO)lanthanoid(III) complexes in DMSO solution, with the mean Ln-O distances centered at 2.50 (La), 2.45 (Pr), 2.43 (Nd), 2.41 (Sm), 2.40 (Eu), 2.39 (Gd), 2.37 (Tb), 2.36 (Dy), 2.34 (Ho), 2.33 (Er), 2.31 (Tm), and 2.29 {angstrom} (Lu). This decrease in the Ln-O bond distances is larger than expected from the previously established ionic radii for octa-coordination. This indicates increasing polarization of the Ln{sup III}-O(DMSO) bonds with increasing atomic number. However, the S(1s) electron transition energies in the sulfur K-edge X-ray absorption near-edge structure (XANES) spectra, probing the unoccupied molecular orbitals of lowest energy of the DMSO ligands for the [Ln(OS(CH{sub 3}){sub 2}){sub 8}]{sup 3+} complexes, change only insignificantly from Ln = La to Lu. This indicates that there is no appreciable change in the ?-contribution to the S-O bond, probably due to a corresponding increase in the contribution from the sulfur lone pair to the bonding.

  10. An X-ray absorption spectroscopic study of the metal site preference in Al{sub 1-x}Ga{sub x}FeO{sub 3}

    SciTech Connect

    Walker, James D.S.; Grosvenor, Andrew P.

    2013-01-15

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO{sub 3} (Pna2{sub 1}; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al{sub 1-x}Ga{sub x}FeO{sub 3} was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L{sub 2,3}-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al{sub 1-x}Ga{sub x}FeO{sub 3} indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO{sub 3} than in GaFeO{sub 3}, implying more anti-site disorder is present in AlFeO{sub 3}. - Graphical abstract: Al{sub 1-x}Ga{sub x}FeO{sub 3} has been investigated by XANES. Through examination of Al L{sub 2,3}-, Ga K-, and Fe K-edge XANES spectra, it was found that more anti-site disorder of the Fe atoms is present in AlFeO{sub 3} compared to in GaFeO{sub 3}. Highlights: Black-Right-Pointing-Pointer Al{sub 1-x}Ga{sub x}FeO{sub 3} was investigated by X-ray absorption spectroscopy. Black-Right-Pointing-Pointer Ga prefers to occupy the tetrahedral site in Al{sub 1-x}Ga{sub x}FeO{sub 3}. Black-Right-Pointing-Pointer Fe prefers to occupy the octahedral sites in Al{sub 1-x}Ga{sub x}FeO{sub 3} as x increases. Black-Right-Pointing-Pointer More anti-site disorder is present in AlFeO{sub 3} compared to in GaFeO{sub 3.}.

  11. Synthesis, Characterization, and Microwave Absorption Property of the SnO2Nanowire/Paraffin Composites.

    PubMed

    Feng, Ht; Zhuo, Rf; Chen, Jt; Yan, D; Feng, Jj; Li, Hj; Cheng, S; Wu, Zg; Wang, J; Yan, Px

    2009-01-01

    In this article, SnO2nanowires (NWs) have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the SnO2NWs/paraffin composites have been measured in a frequency range of 0.1-18 GHz, and the measured results are compared with that calculated from effective medium theory. The value of maximum reflection loss for the composites with 20 vol.% SnO2NWs is approximately -32.5 dB at 14 GHz with a thickness of 5.0 mm. PMID:20651925

  12. Synthesis, Characterization, and Microwave Absorption Property of the SnO2Nanowire/Paraffin Composites

    PubMed Central

    2009-01-01

    In this article, SnO2nanowires (NWs) have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the SnO2NWs/paraffin composites have been measured in a frequency range of 0.1–18 GHz, and the measured results are compared with that calculated from effective medium theory. The value of maximum reflection loss for the composites with 20 vol.% SnO2NWs is approximately −32.5 dB at 14 GHz with a thickness of 5.0 mm. PMID:20651925

  13. New heterocyclic green, blue and orange dyes from indazole: Synthesis, tautomerism, alkylation studies, spectroscopic characterization and DFT/TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Poorhaji, Soodabeh; Pordel, Mehdi; Ramezani, Shirin

    2016-09-01

    Tautomerism and alkylation studies on the green intermediate 2-(5-hydroxyimino-1-methyl-4,5-dihydro-1H-4-indazolyliden)-2-phenylacetonitrile led to the synthesis of new heterocyclic green, blue and orange dyes in high yields. The structures of all newly synthesized compounds were confirmed by spectral and analytical data. The optical properties of the dyes were spectrally characterized by using a UV-vis spectrophotometer and results show that they exhibited interesting photophysical properties. Solvent effects on the absorption spectra of these dyes have been studied and the absorption band in polar solvents undergoes a red shift. Density functional theory calculations of the dyes were performed to provide the optimized geometries and relevant frontier orbitals. Calculated electronic absorption spectra were also obtained by time-dependent density functional theory method.

  14. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  15. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Lahiri, S. C.

    2008-06-01

    TNT (2,4,6-trinitrotoluene) formed deep red 1:1 CT complexes with chromogenic agents like isopropylamine, ethylenediamine, bis(3-aminopropyl)amine and tetraethylenepentamine in DMSO. The complexes were also observed in solvents like methanol, acetone, etc. when the amines were present in large excess. The isopropylamine, complex showed three absorption peaks (at 378, 532 and 629 nm) whereas higher amines showed four peaks (at 370, 463, 532 and 629 nm). The peak at 463 nm vanished rapidly. The peak of the complexes near 530 nm required about 8-10 min to develop and the complexes were stable for about an hour but the peak slowly shifted towards 500 nm and the complexes were found to be stable for more than 24 h. The evidence of complex formation was obtained from distinct spots in HPTLC plates and from the shifts in frequencies and formation of new peaks in FTIR spectra. The peaks near 460 nm (transient) and 530 nm may be due to Janovsky reaction but could not be established. The extinction coefficients of the complexes were determined directly which enabled the accurate determination of the association constants KDA with TNT and amines in stoichiometric ratios. The results were verified using iterative method. The quantfication of TNT was made using ɛ value of the complex with ethylenediamine. The vertical electron affinity ( EA) of TNT was calculated using the method suggested by Mulliken.

  16. Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles

    PubMed Central

    Hernandez-Viezcas, J.A.; Castillo-Michel, H.; Servin, A.D.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.

    2012-01-01

    The impact of metal nanoparticles (NPs) on biological systems, especially plants, is still not well understood. The aim of this research was to determine the effects of zinc oxide (ZnO) NPs in velvet mesquite (Prosopis juliflora-velutina). Mesquite seedlings were grown for 15 days in hydroponics with ZnO NPs (10 nm) at concentrations varying from 500 to 4000 mg L−1. Zinc concentrations in roots, stems and leaves were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Plant stress was examined by the specific activity of catalase (CAT) and ascorbate peroxidase (APOX); while the biotransformation of ZnO NPs and Zn distribution in tissues was determined by X-ray absorption spectroscopy (XAS) and micro X-ray fluorescence (μXRF), respectively. ICP-OES results showed that Zn concentrations in tissues (2102 ± 87, 1135 ± 56, and 628 ± 130 mg kg−1 d wt in roots, stems, and leaves, respectively) were found at 2000 mg ZnO NPs L−1. Stress tests showed that ZnO NPs increased CAT in roots, stems, and leaves, while APOX increased only in stems and leaves. XANES spectra demonstrated that ZnO NPs were not present in mesquite tissues, while Zn was found as Zn(II), resembling the spectra of Zn(NO3)2. The μXRF analysis confirmed the presence of Zn in the vascular system of roots and leaves in ZnO NP treated plants. PMID:22820414

  17. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  18. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline.

    PubMed

    Mölders, N; Schilling, P J; Wong, J; Roos, J W; Smith, I L

    2001-08-01

    The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P. PMID:11505987

  19. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Citro, Ilaria; Crupi, Cristina; Di Marco, Gaetano

    2014-11-11

    Dye-sensitized solar cells (DSSCs) based on Chlorine-e6 (Chl-e6), a Chlorophyll a derivative, and Chl-e6 containing Cu, have been investigated by carrying out incident photon to current efficiency (IPCE) and current-voltage (I-V) measurements. The effect of the metallic ion and the influence of the solvent polarity on the dye aggregation and their absorption bands have been analysed by performing electronic absorption measurements. The dependence of the photoelectrochemical parameters of these DSSCs on the electrolyte by the addition of pyrimidine and/or pyrrole has been discussed in details. For the first time I-V curves for a DSSC based on copper Chl-e6 dye have been shown and compared with Zn based chlorophyllin. Furthermore, the performance of a Cu-Chl-e6 based DSSC has been deeply improved by a progressive optimization of the TiO2 multilayer photoanode overcoming the best data reported in literature so far for this dye. It's worth to emphasize that, the analysis reported in this paper supplies very useful information which paves the way to further detailed studies turned to the employment of natural pigments as sensitizers for solar cells. PMID:24892526

  20. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Liang, Qianqian; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-12-01

    In this study, a novel environmental-friendly and superhydrophobic oil absorbent was fabricated by modifying magnetic silica nanocomposites. It was demonstrated that the modified rough magnetic silica nanocomposite particles possessed a number of superior features such as superhydrophobicity, superoleophilicity, and high oil-water separation efficiency etc. Moreover, the as-obtained material could be used as excellent absorbents for high density oils such as toluene and many organic liquids including viscous oils e.g. lubricating oil. The lubricating oil intake capacity for the nanocomposites was 7.15 times of its own weight. Importantly, the oil-absorption process of the nanocomposites was selective, fast and efficient when they were used in the purification of oil-contaminated water. Notably, the oil-absorbed nanocomposites could be renewed after suitable absolute ethanol washing and natural drying. In addition, the renewed nanocomposites still remained high oil-absorption capacity after the 20th cycle. These inspiring results show that the oil-absorbent material has good prospects for selection removal of oils and organic solvents on water surface. It is believed that the present work may have provided a novel and facile way for preparing environmental-friendly materials with ideal properties.

  1. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials. PMID:26969594

  2. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-03-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  3. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-02-01

    The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  4. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  5. Characterizing Quasar Outflows IV: Regulating Outflows Through X-ray and EUV Absorption

    NASA Astrophysics Data System (ADS)

    Derseweh, Jeffrey; Ganguly, R.; Richmond, J. M.; Stark, M. A.; Christenson, D. H.; Robbins, J. M.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from the GALEX All-sky imaging survey, as well as the Chandra and ROSAT archives. These provide coverage of the rest-frame extreme ultraviolet, and soft X-ray bands. In an accompanying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We are interested in testing the radiative-driving hypothesis that requires a suppression of X-ray flux in order to transfer momentum efficiently to the UV-absorbing gas. Hence, we explore how absorption in both the extreme ultraviolet and the soft X-ray bands correlate with properties of the UV outflows, quasar property, and changes in SED shape. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program and by Chandra

  6. Characterization of the dominating bulk recombination in bulk-heterojunction blends using photoinduced absorption

    NASA Astrophysics Data System (ADS)

    Sandén, S.; Wilson, N. M.; Sandberg, O. J.; Ã-sterbacka, R.

    2016-05-01

    In this work we show how to clarify the dominating bulk recombination in organic solar cells by using photoinduced absorption. We show how to use the intensity and frequency dependence of the in-phase and quadrature signals to obtain the effective reaction order. For trap-assisted recombination, we can show using a multiple trapping and retrapping model with an exponential tail-state distribution that a temperature dependent reaction order is obtained which allows for determination of the characteristic energy of the exponential distribution of trap-states. In the model system pBTTT:PC60BM, we show that trap-assisted recombination is the dominating bulk recombination in 1:1 blends with a characteristic energy of the exponential trap distribution E c h = 44 ± 5 meV. The 1:4 blend, on the other hand, shows temperature independent behavior in good agreement with a dominating 2D Langevin bulk recombination.

  7. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  8. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia.

    PubMed

    Chen, Jeng-Haur; Stoltz, David A; Karp, Philip H; Ernst, Sarah E; Pezzulo, Alejandro A; Moninger, Thomas O; Rector, Michael V; Reznikov, Leah R; Launspach, Janice L; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J

    2010-12-10

    Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO₃⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO₃⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  9. Chemical modification of TiO2 surfaces with methylsilanes and characterization by infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.; Vithanage, R.

    1982-01-01

    Infrared absorption spectra of methylsilanes bonded to a TiO2 powder were obtained. The reacting silanes include Me sub (4-n)SiX sub n (n=1-4; X=Cl, OMe) and hexamethyldisilazane (HMDS). Reactions were performed on hydroxylated-but-anhydrous TiO2 surfaces in the gas phase. IR spectra confirm the presence of a bonded silane layer. Terminal surface OH groups are found to react more readily than bridging OH groups. By-products of the modification adsorp tenaciously to the surface. The various silanes show only small differences in their ability to sequester surface OH groups. Following hydrolysis in moist air, Si-OH groups are observed only for the tetrafunctional silanes.

  10. Organic matter characterization by infrared spectroscopic methods in lake sediment records from boreal and subarctic Sweden: Implications for long-term carbon cycling

    NASA Astrophysics Data System (ADS)

    Meyer-Jacob, Carsten; Rosén, Peter; Bindler, Richard

    2013-04-01

    Freshwater systems play an important role in the global carbon cycle. In this dynamic system, inorganic and organic carbon can be incorporated into biota, effluxed to the atmosphere or accumulated in sediments. The amount and composition of the carbon, derived from both aquatic and terrestrial sources, accumulated in sediments depend on the climatic and environmental conditions present in the lake and its catchment, and are thus sensitive to changes in, e.g., temperature, precipitation, vegetation and hydrological flow patterns. In this study, we show the application of infrared spectroscopic methods to qualitatively and quantitatively characterize organic matter stored in lake sediments with a focus on changes in the source of terrestrial-derived organic matter. Infrared spectroscopic methods facilitate a fast, cost-efficient and non-destructive analysis of minerogenic as well as organic sediment components. We applied three different infrared spectroscopic analyses - visible-near infrared spectroscopy (VNIRS; 25000-4000 cm-1), Fourier-transform infrared spectroscopy in the mid-IR region (FTIR; 3750-400 cm-1) and a combined Fourier-transformed infrared - thermal programmed desorption technique (FTIR-TPD; 3750-400 cm-1) - to Holocene sediment records from two Swedish lakes, Lång-Älgsjön and Lake Koukkel, to reconstruct past changes in the organic matter composition. The infrared spectral information of these records indicate sections of different organic matter composition reflecting varying stages of the lake and landscape development. An early-Holocene mire development around the boreal lake Lång-Älgsjön led to an increased input of organic matter from the catchment into the lake initiating an early natural lake acidification, whereas the subarctic Lake Koukkel has been affected by mire and potentially late-Holocene permafrost dynamics, which caused an increased and less variable input of allochthonous organic matter. Overall, variations in organic matter

  11. Characterization of Metalloproteins by High-throughput X-ray Absorption Spectroscopy

    SciTech Connect

    W Shi; M Punta; J Bohon; J Sauder; R DMello; M Sullivan; J Toomey; D Abel; M Lippi; et al.

    2011-12-31

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal-binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.

  12. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E., Jr.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  13. Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy

    PubMed Central

    Shi, Wuxian; Punta, Marco; Bohon, Jen; Sauder, J. Michael; D'Mello, Rhijuta; Sullivan, Mike; Toomey, John; Abel, Don; Lippi, Marco; Passerini, Andrea; Frasconi, Paolo; Burley, Stephen K.; Rost, Burkhard; Chance, Mark R.

    2011-01-01

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal- binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function. PMID:21482623

  14. Spectroscopic characterization of pigment binding proteins in normal-grown and iron-stressed thermophilic cyanobacteria Synecococcus sp.

    NASA Astrophysics Data System (ADS)

    Lovčinský, M.; Dědic, R.; Pšenčík, J.; Benešová, J.; Štys, D.; Hála, J.

    1999-05-01

    The results of low temperature absorption, fluorescence and hole burning spectroscopy of pigment binding proteins in normal-grown and iron-stressed thermophilic Synecococcus sp. are reported. These experiments revealed that the growing of Synecococcus sp. under the iron-limited condition affects spectral characteristics and excited energy transfer (EET) in pigment proteins. The comparison of low temperature absorption spectra of normal-grown and iron-stressed thermophilic cyanobacteria well documents major changes in composition of the antenna systems and in composition of the core of photosystem II. The absorption of membrane chlorophyll in particular, is blue-shifted from 679 nm in normal cells to 673 nm which is caused by absorption of chlorophyll binding protein CP 34 in stressed sample. The presence of CP 34 in the photosystem II (PS II) has also been seen in the low temperature fluorescence spectra where the increased luminescence at 685 nm has been observed. This implies the decreased efficiency of photosynthesis in iron-limited sample. We studied the energy transfer in PS II by the means of fluorescence and absorption hole-burning spectroscopy which enabled to study the influence of iron-stressed condition on energy transfer and pigment-protein interaction (Debye-Waller factor). The stressed cells exhibit the broadened spectral hole width at 682 and 685.5 nm. Abbreviations: APC, allophycocyanin; CC, cylindrical core; Chl, chlorophyll; LT, low temperature; PBS, phycobilisomes; PSB, phonon sideband; PC, phycocyanin; PR, peripheral rods; PS, photosystem; RC, reaction center, ZPH, zero phonon hole.

  15. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study.

    PubMed

    Levina, Aviva; McLeod, Andrew I; Kremer, Lauren E; Aitken, Jade B; Glover, Christopher J; Johannessen, Bernt; Lay, Peter A

    2014-10-01

    The reactions of oral V(V/IV) anti-diabetic drugs within the gastrointestinal environment (particularly in the presence of food) are a crucial factor that affects their biological activities, but to date these have been poorly understood. In order to build up reactivity-activity relationships, the first detailed study of the reactivities of typical V-based anti-diabetics, Na3V(V)O4 (A), [V(IV)O(OH2)5](SO4) (B), [V(IV)O(ma)2] (C, ma = maltolato(-)) and (NH4)[V(V)(O)2(dipic)] (D, dipic = pyridine-2,5-dicarboxylato(2-)) with simulated gastrointestinal (GI) media in the presence or absence of food components has been performed by the use of XANES (X-ray absorption near edge structure) spectroscopy. Changes in speciation under conditions that simulate interactions in the GI tract have been discerned using correlations of XANES parameters that were based on a library of model V(V), V(IV), and V(III) complexes for preliminary assessment of the oxidation states and coordination numbers. More detailed speciation analyses were performed using multiple linear regression fits of XANES from the model complexes to XANES obtained from the reaction products from interactions with the GI media. Compounds B and D were relatively stable in the gastric environment (pH ∼ 2) in the absence of food, while C was mostly dissociated, and A was converted to [V10O28](6-). Sequential gastric and intestinal digestion in the absence of food converted A, B and D to poorly absorbed tetrahedral vanadates, while C formed five- or six-coordinate V(V) species where the maltolato ligands were likely to be partially retained. XANES obtained from gastric digestion of A-D in the presence of typical food components converged to that of a mixture of V(IV)-aqua, V(IV)-amino acid and V(III)-aqua complexes. Subsequent intestinal digestion led predominantly to V(IV) complexes that were assigned as citrato or complexes with 2-hydroxyacidato donor groups from other organic compounds, including certain

  16. Morphological and spectroscopic investigation of the behavior of permanent iridium modifier deposited on pyrolytic graphite coated and zirconium treated platforms in electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Slaveykova, Vera I.; Lampugnani, Leonardo; Tsalev, Dimiter L.; Sabbatini, L.

    1997-12-01

    In order to better characterise a permanent modifier based on iridium deposited on zirconium or tungsten treated platforms of transversely heated graphite atomizer, and to gain additional information about its chemical behavior directed to an eventual further optimization, a series of experiments were carried out, both by surface techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS or ESCA) and X-ray fluorescence (XRF) and by electrothermal atomic absorption spectrometry on the iridium release from unmodified and various other modified pyrolytic graphite platforms. Special attention was paid to the influence of the amount of iridium, zirconium carbide coating of the platform surface and the presence of citric acid on the iridium vaporization during pyrolysis and atomization. The processes of iridium losses during pyrolysis and atomization and peak maximum alignment depend on the amount of the iridium deposited on the pyrolytic graphite coated platforms in the presence of nitric acid. A fractional order of release which suggests an atom vaporization from the surface or edges of the iridium islands was estimated. In the presence of citric acid, mass independence and zero order of the atom release were found. The zirconium treatment of the platform results in change of the spatial distribution of iridium and hence its vaporization. Vaporization temperatures as high as 2100°C, and first order of the process of atom generation were obtained. While it was possible to study the iridium atomization from uncoated and zirconium coated surfaces, evidencing a different order for the release process, the same was not possible for the tungsten coated platforms due to an 'overstabilization' that brought the iridium atomization temperature out of the working range of the instrument used. The different chemical behavior of tungsten and zirconium was also confirmed by XPS investigations. With tungsten, evidence of both WC and WO bonding

  17. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  18. Five monomeric hemocyanin subunits from Portunus trituberculatus: purification, spectroscopic characterization, and quantitative evaluation of phenol monooxygenase activity.

    PubMed

    Fujieda, Nobutaka; Yakiyama, Aki; Itoh, Shinobu

    2010-11-01

    Five kinds of monomeric subunits of arthropod hemocyanin have been isolated from swimming crab Portunus trituberculatus hemolymph. The copper centers holding a peroxo species, [(μ-η2:η2-peroxo)dicopper(II)], of these subunits exhibited almost the same UV-vis and visible region CD spectroscopic properties, indicating that they have a similar copper coordination geometry and an electronic structure. Under anaerobic conditions, the oxy-forms of the monomeric subunits were stable in 0.5 M borate buffer (pH 9.0) and reacted with 4-methylphenol (p-cresol) to show the phenolases (cresolase/phenol monooxygenase) activity in the presence of urea. To compare the phenolase (monooxygenase) reactivity, the reactivity of the isolated subunits has been examined quantitatively by using a simplified catalytic system, where the initial product catechol is trapped with borate anion of the buffer solution to prevent following catecholase reaction (Yamazaki and Itoh, 2003). The far-UV region CD spectra were measured in order to clarify the relationship between the content of the secondary structure and the phenolase reactivity. Even though the monomeric subunits exhibit a weak catalytic phenol monooxygenase activity, addition of urea (3 M) significantly enhances their catalytic activity. The differences of the phenolase activity among the monomeric subunits has been discussed on the basis of the spectroscopic analysis and reactivity studies in order to shed light on the enzymatic function of the arthropod hemocyanin in vivo. PMID:20727990

  19. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  20. Characterization and measurement results of fluorescence in absorption optical filter glass

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, R.; Engel, A.

    2015-09-01

    Optical filter glasses (absorption filters) are for example used for spectroscopy. The filter glass absorbs the unwanted light and has a nearly angle independent spectral characteristic. The absorbed light can lead to (self-) fluorescence, i. e. the filter glass itself re-emits fluorescence light at a different wavelength - compared to the incident (excitation) light. This fluorescence light can disturb the measurement signal. In order to obtain an optimized optical design the fluorescence properties of the glasses must be known. By knowing fluorescence properties one can design a system with a good signal-to-noise ratio. We will present our measurement set-up for fluorescence measurements of optical filter glass. This set-up was used to obtain fluorescence measurement results for different optical filter glasses. For the first time we present results on the fluorescence level for different optical filter glasses. In addition the effect of excitation wavelength on the fluorescence level will be studied. Besides other factors, fluorescence depends on impurities of the raw material of the glass melt. Due to small fluctuations of the raw material used for the glass production the fluorescence of the same filter glass type can fluctuate from melt-to-melt. Thus, results from different melts will be shown for the same filter glass type.

  1. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  2. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  3. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  4. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    DOE PAGESBeta

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface duringmore » the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less

  5. Characterization of the electronic structure of silicon nanoparticles using x-ray absorption and emission

    NASA Astrophysics Data System (ADS)

    Montoya Vaverka, April Susan

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 rim are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  6. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  7. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    SciTech Connect

    Vaverka, April Susan Montoya

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  8. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  9. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells.

    PubMed

    Jagadeesh, M; Kalangi, Suresh K; Sivarama Krishna, L; Reddy, A Varada

    2014-01-24

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1=2.1228, g2=2.0706 and g3=2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM. PMID:24084484

  10. Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

    SciTech Connect

    Saykally, Richard J; Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2008-01-08

    We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.

  11. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    SciTech Connect

    Yabuuchi, T.; Sawada, H.; Wei, M. S.; Beg, F. N.; Regan, S. P.; Anderson, K.; Betti, R.; Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B.; Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C.

    2012-09-15

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm{sup 3} foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  12. Observation of x-ray absorption magnetic circular dichroism in well-characterized iron-cobalt-platinum multilayers

    SciTech Connect

    Jankowski, A.F.; Waddill, G.D.; Tobin, J.G.

    1993-04-01

    Magnetic circular dichroism in the Fe 2p x-ray absorption is observed in multilayers of(Fe9.5{Angstrom}/Pt9.5{Angstrom}){sub 92}. The magnetization and helicity are both in the plane of this multilayer which is prepared by magnetron sputter deposition. This sample is part of a study to examine magnetization in the ternary multilayer system of FeCo/Pt. Lattice and layer pair spacings are measured using x-ray scattering. The atomic concentration profiles of the multilayer films are characterized using Auger electron spectroscopy coupled with depth profiling. Conventional and high resolution transmission electron microscopy are used to examine the thin film, growth morphology and atomic structure.

  13. Synthesis, spectroscopic characterization, DFT studies, and antibacterial and antitumor activities of a novel water soluble Pd(II) complex with L-alliin

    NASA Astrophysics Data System (ADS)

    Abbehausen, Camilla; Sucena, Suelen F.; Lancellotti, Marcelo; Heinrich, Tassiele A.; Abrão, Emiliana P.; Costa-Neto, Claudio M.; Formiga, André L. B.; Corbi, Pedro P.

    2013-03-01

    A new water soluble Pd(II) complex with L-alliin (S-allyl-L-cysteine sulfoxide) was obtained and characterized by a set of chemical and spectroscopic measurements. Elemental and mass spectrometric data are consistent with the formula [Pd(C6H10NO3S)2]. The 1H and 13C nuclear magnetic resonance (NMR) data, [1H-15N] two dimensional (2D) NMR and infrared spectroscopic measurements indicate coordination of the ligand to Pd(II) through N and O atoms. DFT studies showed that the trans isomer is the most stable and preferred geometry for the complex. The complex is soluble in water and dimethylsulfoxide. An antibiogram assay revealed that the complex possess antibacterial activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus bacterial strains in the range 125-500 μg mL-1. Antitumor assays revealed that the complex presents cytotoxic activity over HeLa cells with an estimated IC50 of 20 μmol L-1.

  14. Microwave absorption enhancement and electron microscopy characterization of BaTiO₃ nano-torus.

    PubMed

    Xia, Feng; Liu, Jiwei; Gu, Dong; Zhao, Pengfei; Zhang, Jie; Che, Renchao

    2011-09-01

    Uniform BaTiO(3) nano-torus with either concave or epicenter holes were synthesized by a hydrothermal method. Experimental observations indicated that the BaTiO(3) nano-torus with an average diameter ranging from 50 to 100 nm was of tetragonal phases at room temperature. The morphology of the BaTiO(3) nano-torus depends on the shape of the original titanium dioxide precursor and reaction time. The microwave absorption properties of both the BaTiO(3) nano-torus and the BaTiO(3) solid nanoparticles were examined between 2-18 GHz microwave frequency bands. The maximum reflection loss of the BaTiO(3) nano-torus reached -28.38 dB at 11.36 GHz, compared to that of -12.87 dB at 16.32 GHz of the BaTiO(3) solid nanoparticles. The nearly 120% enhancement of the reflection loss in the range of 8-12 GHz was probably attributed to the hollow volume inside the BaTiO(3) nano-torus which might contribute more dissipation and scattering effects of the microwave. Growth mechanisms of the BaTiO(3) nano-torus were also investigated by changing both the reaction time from 0.5 h to 48 h and the reactants concentration ratio between Ba(OH)(2)·8H(2)O and titanium dioxide. Both an "in situ transformation" mechanism and a "dissolution-precipitation" growth mode were proposed. PMID:21826321

  15. Preformulation characterization and in vivo absorption in beagle dogs of JFD, a novel anti-obesity drug for oral delivery.

    PubMed

    Fan, Yunzhou; Yang, Meiyan; Wang, Yuli; Li, Yanyou; Zhou, Yuanda; Chen, Xiaoping; Shan, Li; Wei, Jun; Gao, Chunsheng

    2015-05-01

    JFD (N-isoleucyl-4-methyl-1,1-cyclopropyl-1-(4-chlorine)phenyl-2-amylamine·HCl) is a novel investigational anti-obesity drug without obvious cardiotoxicity. The objective of this study was to characterize the key physicochemical properties of JFD, including solution-state characterization (ionization constant, partition coefficient, aqueous and pH-solubility profile), solid-state characterization (particle size, thermal analysis, crystallinity and hygroscopicity) and drug-excipient chemical compatibility. A supporting in vivo absorption study was also carried out in beagle dogs. JFD bulk powders are prismatic crystals with a low degree of crystallinity, particle sizes of which are within 2-10 μm. JFD is highly hygroscopic, easily deliquesces to an amorphous glass solid and changes subsequently to another crystal form under an elevated moisture/temperature condition. Similar physical instability was also observed in real-time CheqSol solubility assay. pK(a) (7.49 ± 0.01), log P (5.10 ± 0.02) and intrinsic solubility (S0) (1.75 μg/ml) at 37 °C of JFD were obtained using potentiometric titration method. Based on these solution-state properties, JFD was estimated to be classified as BCS II, thus its dissolution rate may be an absorption-limiting step. Moreover, JFD was more chemically compatible with dibasic calcium phosphate, mannitol, hypromellose and colloidal silicon dioxide than with lactose and magnesium stearate. Further, JFD exhibited an acceptable pharmacokinetic profiling in beagle dogs and the pharmacokinetic parameters T(max), C(max), AUC(0-t) and absolute bioavailability were 1.60 ± 0.81 h, 0.78 ± 0.47 μg/ml, 3.77 ± 1.85 μg·h/ml and 52.30 ± 19.39%, respectively. The preformulation characterization provides valuable information for further development of oral administration of JFD. PMID:24694186

  16. Spectroscopic ellipsometry and electrical characterizations of InGaAs:Mg thin films lattice matched to InP

    NASA Astrophysics Data System (ADS)

    Zeydi, I.; Ezzedini, M.; Sayari, A.; Shalaan, E.; Wageh, S.; Sfaxi, L.; Al-Ghamdi, A. A.; M'Gaieth, R.

    2016-06-01

    Mg-doped InGaAs films were grown at 560 ° C lattice matched to InP semi-insulating substrate by metalorganic vapor phase epitaxy (MOVPE) under various Cp2Mg flow conditions. Hall effect, photoluminescence (PL), high-resolution X-ray diffraction (HR-XRD) and spectroscopic ellipsometry (SE) are the tools used in this work. The crystalline quality and the n-p conversion of the InGaAs:Mg films are described and discussed in relation to the Cp2Mg flow. Distinguishing triple emissions peaks in PL spectra are observed and seem to be strongly dependent on the Cp2Mg flow. SE was used to investigate the interband transitions in InGaAs:Mg/InP heterointerfaces and the different critical point energies were identified.

  17. Spectroscopic characterization of different structural forms of the new promising energetic material FOX-7 in different solvents

    NASA Astrophysics Data System (ADS)

    Šimková, Ludmila; Šoral, Michal; Lušpai, Karol; Ludvík, Jiří

    2015-03-01

    UV-vis, IR and NMR spectroscopy were utilized as direct monitoring techniques for structure changes of a new promising energetic material FOX-7 in different protic and aprotic solvents. The dissolved FOX-7 indicates changes in molecular structure as compared with that in solid-state. The push-pull properties of the molecule together with the effects of solvents result in charge separated zwitterion formed in solution. By combination of different spectroscopic techniques, structural changes of charge-separated molecule of FOX-7 were described in dependence on the solvent properties, temperature, proton activity and concentration. From the analytical point of view, the lowest detectable concentration of FOX-7 using UV-vis spectra was determined to approximately 6 × 10-7 mol L-1.

  18. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  19. Monitoring and characterization of compost obtained from household waste and pine sawdust in a facultative reactor by conventional and spectroscopic analyses.

    PubMed

    de Campos, Sandro Xavier; Resseti, Rolan Roney; Zittel, Rosimara

    2014-12-01

    This study proposes a new facultative reactor configuration for the treatment of organic household waste and pine sawdust. The process was monitored and the compost characterized by conventional (temperature, moisture, pH, ash content and ratio C/N) conjugated with spectroscopic analyses (ultraviolet (UV)/visible (Vis) and infrared (IR)) and germination index. The spectroscopy results revealed enrichment of carbon-carbon unsaturation structures and a degradation of the aliphatic structures. The results showed that stability of the final product was reached after 90 days and that the compost obtained presents substantial richness of stabilized organic matter and an absence of toxicity, so it may be considered as an organic fertilizer. Finally, this study led to the conclusion that the reactor proposed can be a promising technology for the management of organic household waste and sawdust. PMID:25106532

  20. Spectroscopic characterization of Co3O4 catalyst doped with CeO2 and PdO for methane catalytic combustion

    NASA Astrophysics Data System (ADS)

    Jodłowski, P. J.; Jędrzejczyk, R. J.; Rogulska, A.; Wach, A.; Kuśtrowski, P.; Sitarz, M.; Łojewski, T.; Kołodziej, A.; Łojewska, J.

    2014-10-01

    The study deals with the XPS, Raman and EDX characterization of a series of structured catalysts composed of cobalt oxides promoted by palladium and cerium oxides. The aim of the work was to relate the information gathered from spectroscopic analyses with the ones from kinetic tests of methane combustion to establish the basic structure-activity relationships for the catalysts studied. The most active catalyst was the cobalt oxide doped with little amount of palladium and wins a confrontation with pure palladium oxide catalyst which is commercially used in converters for methane. The analyses Raman and XPS analyses showed that this catalyst is composed of a cobalt spinel and palladium oxide. The quantitative approach to the composition of the catalysts by XPS and EDX methods revealed that the surface of palladium doped cobalt catalyst is enriched with palladium oxide which provides a great number of active centres for methane combustion indicated by kinetic parameters.