Sample records for absorption spectrum shift

  1. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine

    PubMed Central

    2017-01-01

    The solvatochromic effects of six different solvents on the UV absorption spectrum of 2-thiocytosine have been studied by a combination of experimental and theoretical techniques. The steady-state absorption spectra show significant shifts of the absorption bands, where in more polar solvents the first absorption maximum shifts to higher transition energies and the second maximum to lower energies. The observed solvatochromic shifts have been rationalized using three popular solvatochromic scales and with high-level multireference quantum chemistry calculations including implicit and explicit solvent effects. It has been found that the dipole moments of the excited states account for some general shifts in the excitation energies, whereas the explicit solvent interactions explain the differences in the spectra recorded in the different solvents. PMID:28452483

  2. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  3. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  4. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  5. Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage.

    PubMed

    Gray, Victor; Lennartson, Anders; Ratanalert, Phasin; Börjesson, Karl; Moth-Poulsen, Kasper

    2014-05-25

    Red-shifting the absorption of norbornadienes (NBDs), into the visible region, enables the photo-isomerization of NBDs to quadricyclanes (QCs) to be driven by sunlight. This is necessary in order to utilize the NBD-QC system for molecular solar thermal (MOST) energy storage. Reported here is a study on five diaryl-substituted norbornadienes. The introduced aryl-groups induce a significant red-shift of the UV/vis absorption spectrum of the norbornadienes, and device experiments using a solar-simulator set-up demonstrate the potential use of these compounds for MOST energy storage.

  6. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  7. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  8. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotso, H. F.; Dobrovitski, V. V.

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  9. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE PAGES

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  10. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  11. In vivo and in vitro absorption spectrum of disulphonated aluminum phthalocyanine in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Canti, Gianfranco L.; Pifferi, Antonio; Taroni, Paola; Valentini, Gianluca

    1995-03-01

    The absorption spectrum of disulphonated aluminum phthalocyanine (AlS2Pc) between 650 nm and 695 nm was measured in vivo by means of time-resolved reflectance. The experiments were performed on mice bearing the L1210 leukemia 1, 4, and 7 hr after the i.p. administration of 2.5 mg/kg body weight (b.w.) of AlS2Pc. The absorption peak is centered at 685 nm, red-shifted of 10 - 15 nm with respect to the spectra obtained in solution in various environments. Measurements performed in vitro confirm the results in vivo and seem to suggest that the extracellular environment can cause the shift in the absorption line shape.

  12. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  13. Model Order Reduction Algorithm for Estimating the Absorption Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Beeumen, Roel; Williams-Young, David B.; Kasper, Joseph M.

    The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator’s eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comesmore » at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect

  14. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    PubMed

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  15. Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.

    PubMed

    Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng

    2018-01-01

    We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.

  16. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  17. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.

  18. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  19. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD{sub 2}OO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A., E-mail: hwitek@mail.nctu.edu.tw, E-mail: yplee@mail.nctu.edu.tw

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD{sub 2}OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD{sub 2}OO was produced from photolysis of flowing mixtures of CD{sub 2}I{sub 2}, N{sub 2}, and O{sub 2} (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH{sub 2}OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm{sup −1} are assigned to the OO stretching mode, two distinctmore » in-plane OCD bending modes, and the CO stretching mode of CD{sub 2}OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD{sub 2}OO at 1318 cm{sup −1} is blue shifted from the corresponding band of CH{sub 2}OO at 1286 cm{sup −1}; this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm{sup −1}, observed only at higher pressure (87 Torr), is tentatively assigned to the CD{sub 2} wagging mode of CD{sub 2}IOO.« less

  20. The widetilde{A}←widetilde{X} ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan; Takematsu, Kana; Okumura, Mitchio

    2009-06-01

    The nitrate radical is an important atmospheric oxidant in the nighttime sky. Nitrate radicals react by addition to alkenes, and in the presence of oxygen form nitrooxyalkyl peroxy radicals. The peroxy radical formed from the reaction of 2-butene, nitrate radical, and oxygen was detected by cavity ringdown spectroscopy (CRDS) via its widetilde{A}←widetilde{X} electronic absorption spectrum. The widetilde{A}←widetilde{X} electronic transition is a bound-bound transition with enough structure to distinguish between different peroxy radicals as well as different conformers of the same peroxy radical. Two conformers of the nitrooxybutyl peroxy radical have been observed; the absorption features are red shifted from the same absorption features of sec-butyl peroxy radical. Calculations on the structure of nitrooxyalkyl peroxy radicals and general trends of the position of the widetilde{A}←widetilde{X} absorption transitions have also been performed and compared to those of unsubstituted peroxy radicals.

  1. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  2. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  3. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  4. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    NASA Astrophysics Data System (ADS)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  5. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silant’ev, A. V., E-mail: kvvant@rambler.ru

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  6. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  7. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  8. Temperature dependence of the ClONO2 UV absorption spectrum

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  9. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  10. Computational study of the absorption spectrum of defected ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Michos, F. I.; Sigalas, M. M.

    2018-04-01

    Energy levels and absorption spectra of defected ZnS nanoparticles (NPs) were calculated with Density Functional Theory (DFT) and Time Dependent DFT. Several types of defects were examined such as vacancies and substitutions. NPs with S vacancies were found to have their absorption spectra moved to lower energies well inside the visible spectrum with significantly high oscillator strength. Also, NPs with substitution of S atoms with Cl, Br, or I showed significant absorption. In general, this type of defect moves the absorption spectra in lower energies, thus bringing the absorption edge into the visible spectrum, while the unperturbed NPs have absorption edges in the UV region. In addition, ZnS NPs are made from more abundant and less toxic elements than the more commonly used CdSe NPs. For that reason, they may find significant applications in solar cells and other photonic applications, as well as in biosensing applications as biomarkers.

  11. Spectrum of Transient ASASSN-13at

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter; Deal, Shanel

    2013-06-01

    We observed the transient ASASSN-13at (ATEL 5168) on June 28.3 (UT) with the Vatican Advanced Technology Telescope (VATT) and VATTSPEC instrument. The resulting spectrum covers the wavelength range between 365 nm and 750 nm with a resolution of 1100. The spectrum of ASASSN-13at shows a blue continuum with strong Balmer absorption lines. Helium absorption at 447 nm and 588 nm is also seen. Blue-shifted emission lines are visible within the Halpha and Hbeta absorption features.

  12. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    PubMed

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  13. Temperature dependence of the ClONO{sub 2} UV absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R.

    1994-04-01

    The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant atmore » the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.« less

  14. Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity.

    PubMed

    Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu

    2018-04-06

    The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.

  15. Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity

    NASA Astrophysics Data System (ADS)

    Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu

    2018-04-01

    The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.

  16. Electronic absorption spectrum of copper-doped magnesium potassium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Rao, S. N.; Sivaprasad, P.; Reddy, Y. P.; Rao, P. S.

    1992-04-01

    The optical absorption and EPR spectra of magnesium potassium phosphate hexahydrate (MPPH) doped with copper ions are recorded both at room and liquid nitrogen temperatures. The spectrum is characteristic of Cu2+ in tetragonal symmetry. The spin-Hamiltonian parameters and molecular orbital coefficients are evaluated. A correlation between EPR and optical absorption studies is drawn.

  17. Visual attention shifting in autism spectrum disorders.

    PubMed

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be

  18. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  19. Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L

    NASA Astrophysics Data System (ADS)

    Mendonca, C. R.; Correa, D. S.; Baldacchini, T.; Tayalia, P.; Mazur, E.

    2008-03-01

    Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.

  20. Ab Initio Modeling of the Electronic Absorption Spectrum of Previtamin D in Solution

    NASA Astrophysics Data System (ADS)

    Zhu, Tianyang

    To study the solvent effects of water on the previtamin D absorption spectrum, we use the quantum mechanics (QM)/molecular mechanics (MM) method combined with replica-exchange molecular dynamics (REMD). The QM method is applied for the previtamin D molecule and the MM method is used for the water molecules. To enhance conformational sampling of the flexible previtamin D molecule we apply REMD. Based on the REMD structures, we calculate the macroscopic ensemble of the absorption spectrum in solution by time-dependent density functional theory (TDDFT). Comparison between the calculated spectrum in the gas phase and in the solution reveals minor influences of the solvent on the absorption spectrum. In the conventional molecule dynamics simulation, the previtamin D molecule can be trapped by local minimum and cannot overcome energetics barriers when it is calculated at the room temperature. In addition, the higher temperature calculation for the molecule in REMD allows to overcome energetics barriers and to change the structure to other rotational isomers, then switch to the lower temperature and gives a more complete result in the configuration space for the lower temperature.

  1. Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Hammond, T. J.; Monchocé, Sylvain; Zhang, Chunmei; Brown, Graham G.; Corkum, P. B.; Villeneuve, D. M.

    2016-12-01

    As light propagates through a medium, absorption caused by electronic or rovibrational transitions is evident in the transmitted spectrum. The incident electromagnetic field polarizes the medium and the absorption is due to the imaginary part of the linear susceptibility. In the time domain, the field establishes a coherence in the medium that radiates out of phase with the initial field. This coherence can persist for tens of picoseconds in atmospheric molecules such as H2O . We propagate a few-cycle laser pulse centered at 1.8 μ m through the atmosphere and measure the long-lasting molecular coherence in the time domain by high-order harmonic cross correlation. The measured optical free-induction decay of the pulse is compared with a calculation based on the calculated rovibrational spectrum of H2O absorption.

  2. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  3. Absorption spectrum of neat liquid benzene and its concentrated solutions in n-hexane from 220 to 170 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saik, V.O.; Lipsky, S.

    The electronic absorption spectrum of benzene has been obtained by phototransmission measurements over a concentration range from 0.005 M in n-hexane to the neat liquid at 11.2 M and over a spectral range that extends down to 170 nm. Good agreement is obtained with previously reported measurements on the neat liquid. The oscillator strength of the strongly allowed A{sub 1g} {yields} E{sub 1u} transition is maintained at ca. 1.0 as the benzene concentration increases but is accompanied by extensive redistribution of the intensity such that the optical cross section at the position of the absorption maximum (which shifts from 184{submore » .2} nm in dilute solution to 189{sub .5} nm in the neat liquid) reduces by a factor of 2.7. An explanation for these changes in terms of Lorentz field corrections to the complex dielectric constant is developed, and its implication to the assignment of the neat liquid absorption as a collective excitation is considered. 43 refs., 5 figs., 1 tab.« less

  4. Excitonic Effects and Optical Absorption Spectrum of Doped Graphene

    NASA Astrophysics Data System (ADS)

    Jornada, Felipe; Deslippe, Jack; Louie, Steven

    2012-02-01

    First-principles calculations based on the GW-Bethe-Salpeter Equation (GW-BSE) approach and subsequent experiments have shown large excitonic effects in the optical absorbance of graphene. Here we employ the GW-BSE formalism to probe the effects of charge carrier doping and of having an external electric field on the absorption spectrum of graphene. We show that the absorbance peak due to the resonant exciton exhibits systematic changes in both its position and profile when graphene is gate doped by carriers, in excellent agreement to very recent measurementsootnotetextTony F. Heinz, private communications.. We analyze the various contributions to these changes in the absorption spectrum, such as the effects of screening by carriers to the quasiparticle energies and electron-hole interactions. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the U.S. DOD - Office of Naval Research under RTC Grant No. N00014-09-1-1066. Computer time was provided by NERSC.

  5. A resonant absorption line in the ASCA spectrum of NGC 985?

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Fiore, F.; Brandt, N.; Reynolds, C. S.

    1999-01-01

    We present timing and spectral analyses of the ASCA observation of the Seyfert 1 galaxy NGC 985. The 0.6-10keV spectrum of this source is complex: large residuals are evident below 1keV when fitting the spectrum with a power-law model. Fitting a warm absorber model to the 0.6-2.5keV spectrum gives α=1.12+/-0.04, LogNWAH=21.97+/-0.08 and LogU=0.06+/-0.09, but the residuals continue to show a deficit of counts between 0.9 and 1keV. Adding an absorption line improves the fit, and the energy of the line is consistent with that of Kα NeIX-X resonant absorption lines. Hence, we confirm the presence of an ionized absorber along the line of sight to this source and interpret the further 1keV spectral feature as the first detection of a strong resonant absorption line associated with this system. The extrapolation of this model above 2.5keV produces large positive residuals above 3-4keV. Fitting the data with a broken power law plus warm absorber model gives an acceptable χ2 and Δα~0.5. A narrow iron line at 6.4keV (quasar frame) of equivalent width 138+64-110eV is also present in the ASCA data.

  6. On the nature of solvatochromic effect: The riboflavin absorption spectrum as a case study

    NASA Astrophysics Data System (ADS)

    Daidone, Isabella; Amadei, Andrea; Aschi, Massimiliano; Zanetti-Polzi, Laura

    2018-03-01

    We present here the calculation of the absorption spectrum of riboflavin in acetonitrile and dimethyl sulfoxide using a hybrid quantum/classical approach, namely the perturbed matrix method, based on quantum mechanical calculations and molecular dynamics simulations. The calculated spectra are compared to the absorption spectrum of riboflavin previously calculated in water and to the experimental spectra obtained in all three solvents. The experimentally observed variations in the absorption spectra upon change of the solvent environment are well reproduced by the calculated spectra. In addition, the nature of the excited states of riboflavin interacting with different solvents is investigated, showing that environment effects determine a recombination of the gas-phase electronic states and that such a recombination is strongly affected by the polarity of the solvent inducing significant changes in the absorption spectra.

  7. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  8. The effect of Cd substitution doping on the bandgap and absorption spectrum of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Li, Yong; Qu, Lingfeng; Zhao, Chunwang

    2016-08-01

    Many research papers have reported that in the ultraviolet area of 290-360 nm wavelength range, blueshift and redshift in the absorption spectrum occurred in ZnO with Cd doping; however, there is no reasonable theoretical explanation to this so far. To solve this problem, this study investigates the differences of blueshift and redshift in doping system by adopting plane-wave ultrasoft pseudopotential technology based on the density functional theory and applying LDA + U method to calculate band structures, density of states and absorption spectrum distribution of the models, which is on the basis of model geometry optimization. By increasing the Cd doping concentration, the following results are obtained: increased volume of the mixed system, raised total energy, a decrease in stability, narrowed bandgaps and a significant redshift in the absorption spectrum in the ultraviolet or visible light area.

  9. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  10. Spread-Spectrum Carrier Estimation With Unknown Doppler Shift

    NASA Technical Reports Server (NTRS)

    DeLeon, Phillip L.; Scaife, Bradley J.

    1998-01-01

    We present a method for the frequency estimation of a BPSK modulated, spread-spectrum carrier with unknown Doppler shift. The approach relies on a classic periodogram in conjunction with a spectral matched filter. Simulation results indicate accurate carrier estimation with processing gains near 40. A DSP-based prototype has been implemented for real-time carrier estimation for use in New Mexico State University's proposal for NASA's Demand Assignment Multiple Access service.

  11. The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Orphal, J.; Fellows, C. E.; Flaud, P.-M.

    2003-02-01

    The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.

  12. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  13. Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.

    PubMed

    Helseth, Lars Egil

    2012-02-13

    The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.

  14. Photoacoustic Monitoring of Absorption Spectrum During the Dehydration Process of pasilla Chili Pepper

    NASA Astrophysics Data System (ADS)

    Zendejas-Leal, Blanca Estela; Barrientos-Sotelo, Víctor Rodrigo; Cano-Casas, Rogelio; Alvarado-Noguez, Margarita Lizeth; Hernández-Rosas, Juan; Cruz-Orea, Alfredo

    2018-07-01

    In this work, the optical absorption spectrum of peppers was monitored by phase-resolved photoacoustic spectroscopy during a dehydration process based on hot-air drying, yielding simultaneous information about changes in the exocarp and mesocarp. Our results show that between all of the dehydration processes of green Capsicum annuum L. variety pasilla peppers, only very small changes occur in the different phase angles, which has been correlated with the small changes in the exocarp thickness. The phase-resolved spectra of mesocarp show more clearly the evolution of the carotenoid compounds with respect to the optical absorption spectrum without phase resolving, due to the last spectrum having a band broadening in that region with more signals convolved. We have shown that not only do the ripened chili peppers produce new carotenoid compounds, but also we are probing that the dehydration process, beginning with the green stage, preserves the nutrimental content, similar to changes that occur in the natural ripening process.

  15. Experimental observation of the shift and width of the aluminium K absorption edge in laser shock-compressed plasmas

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.

    1998-03-01

    Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.

  16. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  17. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; hide

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  18. Probing Lewis Acid-Base Interactions with Born-Oppenheimer Molecular Dynamics: The Electronic Absorption Spectrum of p-Nitroaniline in Supercritical CO2.

    PubMed

    Cabral, Benedito J Costa; Rivelino, Roberto; Coutinho, Kaline; Canuto, Sylvio

    2015-07-02

    The structure and dynamics of p-nitroaniline (PNA) in supercritical CO2 (scCO2) at T = 315 K and ρ = 0.81 g cm(-3) are investigated by carrying out Born-Oppenheimer molecular dynamics, and the electronic absorption spectrum in scCO2 is determined by time dependent density functional theory. The structure of the PNA-scCO2 solution illustrates the role played by Lewis acid-base (LA-LB) interactions. In comparison with isolated PNA, the ν(N-O) symmetric and asymmetric stretching modes of PNA in scCO2 are red-shifted by -17 and -29 cm(-1), respectively. The maximum of the charge transfer (CT) absorption band of PNA in scSCO2 is at 3.9 eV, and the predicted red-shift of the π → π* electronic transition relative to the isolated gas-phase PNA molecule reproduces the experimental value of -0.35 eV. An analysis of the relationship between geometry distortions and excitation energies of PNA in scCO2 shows that the π → π* CT transition is very sensitive to changes of the N-O bond distance, strongly indicating a correlation between vibrational and electronic solvatochromism driven by LA-LB interactions. Despite the importance of LA-LB interactions to explain the solvation of PNA in scCO2, the red-shift of the CT band is mainly determined by electrostatic interactions.

  19. UV absorption spectrum of allene radical cations in solid argon

    NASA Astrophysics Data System (ADS)

    Chin, Chih-Hao; Lin, Meng-Yeh; Huang, Tzu-Ping; Wu, Yu-Jong

    2018-05-01

    Electron bombardment during deposition of an Ar matrix containing a small proportion of allene generated allene cations. Further irradiation of the matrix sample at 385 nm destroyed the allene cations and formed propyne cations in solid Ar. Both cations were identified according to previously reported IR absorption bands. Using a similar technique, we recorded the ultraviolet absorption spectrum of allene cations in solid Ar. The vibrationally resolved progression recorded in the range of 266-237 nm with intervals of about 800 cm-1 was assigned to the A2E ← X2E transition of allene cations, and the broad continuum absorption recorded in the region of 229-214 nm was assigned to their B2A1 ← X2E transition. These assignments were made based on the observed photolytic behavior of the progressions and the vertical excitation energies and oscillator strengths calculated using time-dependent density functional theory.

  20. Pressure shift coefficient measurements in an RF discharge for Ar 4s[3/2]2—5p[3/2]3 transition with the help of diodelaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.

    2018-04-01

    Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.

  1. Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Bürkle, Sebastian; Walter, Nicole; Wagner, Steven

    2018-06-01

    A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7-1.5% for broadening coefficients and 0.6-1.6% for pressure shift coefficients.

  2. Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Zhang, Long-Fei; Han, Fang-Yuan; Luo, Zong-Chang; Liang, Qin-Qin; Liu, Chen-Yao; Zhu, Li-Ping; Zhang, Jie-Ming

    2018-01-01

    As a widely used gas insulator, sulfur hexafluoride (SF6) has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV), which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.

  3. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  4. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.

  5. Continuous optical measurement system of hemolysis during a photosensitization reaction using absorption spectrum

    NASA Astrophysics Data System (ADS)

    Hamada, R.; Ogawa, E.; Arai, T.

    2018-02-01

    To investigate hemolysis phenomena during a photosensitization reaction with the reaction condition continuously and simultaneously for a safety assessment of hemolysis side effect, we constructed an optical system to measure blood sample absorption spectrum during the reaction. Hemolysis degree might be under estimated in general evaluation methods because there is a constant oxygen pressure assumption in spite of oxygen depression take place. By investigating hemoglobin oxidation and oxygen desorption dynamics obtained from the contribution of the visible absorption spectrum and multiple regression analysis, both the hemolysis phenomena and its oxygen environment might be obtained with time. A 664 nm wavelength laser beam for the reaction excitation and 475-650 nm light beam for measuring the absorbance spectrum were arranged perpendicularly crossing. A quartz glass cuvette with 1×10 mm in dimensions for the spectrum measurement was located at this crossing point. A red blood cells suspension medium was arranged with low hematocrit containing 30 μg/ml talaporfin sodium. This medium was irradiated up to 40 J/cm2 . The met-hemoglobin, oxygenatedhemoglobin, and deoxygenated-hemoglobin concentrations were calculated by a multiple regression analysis from the measured spectra. We confirmed the met-hemoglobin concentration increased and oxygen saturation decreased with the irradiation time, which seems to indicate the hemolysis progression and oxygen consumption, respectively. By using our measuring system, the hemolysis progression seems to be obtained with oxygen environment information.

  6. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  7. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  8. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less

  10. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less

  11. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE PAGES

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; ...

    2015-10-06

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less

  12. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  13. Ultraviolet absorption spectrum of the half-filled bilayer graphene

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2018-07-01

    We consider the optical properties of the half-filled AB-stacked bilayer graphene with the excitonic pairing and condensation between the layers. Both intra and interlayer local Coulomb interaction effects have been taken into account and the role of the exact Fermi energy has been discussed in details. We have calculated the absorption coefficient, refractive index, dielectric response functions and the electron energy loss spectrum for different interlayer Coulomb interaction regimes and for different temperatures. Considering the full four-band model for the interacting AB bilayer graphene, a good agreement is achieved with other theoretical and experimental works on the subject, in particular, limiting cases of the theory. The calculations, presented here, permit to estimate accurately the effects of excitonic pairing and condensation on the optical properties of the bilayer graphene. The modifications of the plasmon excitation spectrum are discussed in details for a very large interval of the interlayer interaction parameter.

  14. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    PubMed

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  15. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  16. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gold reflective metallic gratings with high absorption efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaojian; Liang, Linmei; Yang, Junbo

    2017-10-01

    Electromagnetic (EM) wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed and then transformed into ohmic heat or other forms of energy. Especially, EM absorbers based on metallic structures have distinct advantages in comparison with the traditional counterparts. Thus, they have different potential applications at different frequency ranges such as absorbing devices in solar energy harvesting systems. The reflective metallic grating is a kind of metallic EM absorbers and has the fascinating property of efficiently absorbing the incident light due to the excitation of surface plasmon polaritons (SPPs), consequently drawing more and more attention. In this paper, the absorption effect of a reflective metallic grating made of gold is studied by changing grating parameters such as the period, polarization direction of the incident light and so on. We use finite difference time-domain (FDTD) method to design the grating, and simulate the process and detect the absorption spectrum. In our design, the grating has rectangular shaped grooves and has the absorption efficiency 99% for the vertically incident transverse magnetic (TM) light at the wavelength of 818nm with the period of 800 nm, the width of 365 nm and the height of 34 nm. And then we find that the absorption spectrum is blue-shifted about 87 nm with decreasing period from 800 nm to700 nm and red-shifted about 14 nm with increasing the width of the block from 305 nm to 405 nm. The absorption becomes gradually weaker from 98% to almost zero with the polarization angle from 0° to 90°. Finally, we make a theoretical explanation to these phenomena in details. It is believed that the results may provide useful guidance for the design of EM wave absorbers with high absorption efficiency.

  18. Substituent and solvent effects on the UV-vis absorption spectrum of the photoactive yellow protein chromophore.

    PubMed

    García-Prieto, F Fernández; Aguilar, M A; Galván, I Fdez; Muñoz-Losa, A; Olivares del Valle, F J; Sánchez, M L; Martín, M E

    2015-05-28

    Solvent effects on the UV-vis absorption spectra and molecular properties of four models of the photoactive yellow protein (PYP) chromophore have been studied with ASEP/MD, a sequential quantum mechanics/molecular mechanics method. The anionic trans-p-coumaric acid (pCA(-)), thioacid (pCTA(-)), methyl ester (pCMe(-)), and methyl thioester (pCTMe(-)) derivatives have been studied in gas phase and in water solution. We analyze the modifications introduced by the substitution of sulfur by oxygen atoms and hydrogen by methyl in the coumaryl tail. We have found some differences in the absorption spectra of oxy and thio derivatives that could shed light on the different photoisomerization paths followed by these compounds. In solution, the spectrum substantially changes with respect to that obtained in the gas phase. The n → π1* state is destabilized by a polar solvent like water, and it becomes the third excited state in solution displaying an important blue shift. Now, the π → π1* and π → π2* states mix, and we find contributions from both transitions in S1 and S2. The presence of the sulfur atom modulates the solvent effect and the first two excited states become practically degenerate for pCA(-) and pCMe(-) but moderately well-separated for pCTA(-) and pCTMe(-).

  19. Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Millea, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Narimani, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Pettorino, V.; Piacentini, F.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Stanco, L.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.

    2017-11-01

    The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ, the baryon density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial power spectrum, ns, and Ase- 2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment ℓ < 800 in the Planck temperature power spectrum) and an all angular-scale data set (ℓ < 2500Planck temperature power spectrum), each with a prior on τ of 0.07 ± 0.02. We find that the shifts, in units of the 1σ expected dispersion for each parameter, are { Δτ,ΔAse- 2τ,Δns,Δωm,Δωb,Δθ∗ } = { -1.7,-2.2,1.2,-2.0,1.1,0.9 }, with a χ2 value of 8.0. We find that this χ2 value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2σ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing ℓ < 800 instead to ℓ> 800, or splitting at a different multipole, yields similar results. We examined the ℓ < 800 model residuals in the ℓ> 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum

  20. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  1. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  2. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.

    PubMed

    Nechaev, Dmitry I; Milekhina, Olga N; Supin, Alexander Ya

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.

  3. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise

    PubMed Central

    Nechaev, Dmitry I.; Milekhina, Olga N.; Supin, Alexander Ya.

    2015-01-01

    The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels. PMID:26462066

  4. Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars

    2008-01-01

    We present the first ground-based detection of sodium absorption in the transmission spectrum of an extrasolar planet. Absorption due to the atmosphere of the extrasolar planet HD 189733b is detected in both lines of the Na I doublet. High spectral resolution observations were taken of 11 transits with the High Resolution Spectrograph (HRS) on the 9.2 m Hobby-Eberly Telescope (HET). The Na I absorption in the transmission spectrum due to HD 189733b is (- 67.2 +/- 20.7) × 10-5 deeper in the "narrow" spectral band that encompasses both lines relative to adjacent bands. The 1 σ error includes both random and systematic errors, and the detection is >3 σ. This amount of relative absorption in Na I for HD 189733b is ~3 times larger than that detected for HD 209458b by Charbonneau et al. (2002) and indicates that these two hot Jupiters may have significantly different atmospheric properties. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  5. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)

    NASA Astrophysics Data System (ADS)

    Economou, Nikos; Kritikakis, George

    2016-03-01

    Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.

  6. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  7. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  8. Effect of coulomb correlations on luminescence and absorption in compensated semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogoslovskiy, N. A., E-mail: nikitabogoslovskiy@gmail.com; Petrov, P. V.; Ivánov, Yu. L.

    2016-07-15

    The spectra of donor–acceptor light absorption and luminescence in lightly doped and lightly compensated semiconductors are calculated. In the photoluminescence calculation, two limiting cases of long and short carrier lifetimes relative to the carrier-energy relaxation time are considered. It is shown that, at long lifetimes, the photoluminescence spectrum is significantly shifted toward longer wavelengths due to the relaxation of minority charge carriers. At intermediate lifetimes, the photoluminescence spectrum consists of two peaks, which is in good agreement with the experimental data.

  9. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  10. The hot DOA1 degenerate HZ 21 - A search for circumstellar/photospheric metals and peculiar absorption at He II

    NASA Technical Reports Server (NTRS)

    Fritz, M. L.; Leckenby, H.; Sion, E. M.; Vauclair, G.; Liebert, J.

    1990-01-01

    A high-resolution IUE spectrum of the hot DO1 degenerate HZ 21 was obtained by combining US1 + European 2 low-background observing shifts. The SWP image reveals a rich spectrum of interstellar absorption lines with an average velocity in the line of sight to HZ 21 of -30 km/s. However, there is no clear evidence of any highly or lowly ionized metal features which could be attributed to circumstellar, wind, or photospheric absorption. There is, however, a broad absorption trough at He II (1640) which was not unexpected, given the clear presence of He II (4686) absorption in this star's optical spectrum. The velocity width of He II (1640) appears consistent with photospheric absorption wings which appear to flank the geocoronal Ly-alpha emission feature. The He II (1640) feature reveals what appears to be a broad (310 km/s) emission reversal. Evidence is provided that the emission reversal is probably real.

  11. An organoboron compound with a wide absorption spectrum for solar cell applications.

    PubMed

    Liu, Fangbin; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2017-11-09

    Organoboron compounds offer new approaches to tune the electronic structures of π-conjugated molecules. In this work, an electron acceptor (M-BNBP4P-1) is developed by endcapping an organoboron core unit with two strong electron-withdrawing groups. M-BNBP4P-1 exhibits a unique wide absorption spectrum with two strong absorption bands in the long wavelength region (λ max = 771 nm) and the short wavelength region (λ max = 502 nm), which indicate superior sunlight harvesting capability. This is due to its special electronic structure, i.e. a delocalized LUMO and a localized HOMO. Prototype solution-processed organic solar cells based on M-BNBP4P-1 show a power conversion efficiency of 7.06% and a wide photoresponse from 350 nm to 880 nm.

  12. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  13. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  14. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  15. RETRACTED: Theoretical study of electronic properties and isotope effects in the UV absorption spectrum of disulfur

    NASA Astrophysics Data System (ADS)

    Sarka, Karolis; Danielache, Sebastian O.; Kondorskiy, Alexey; Nanbu, Shinkoh

    2017-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy) This article has been retracted at the request of the Authors because of a large amount of errors caused by incorrect interpretation of the potential energy curve boundaries by the data processing functions in their close-coupling algorithm, producing incorrect wavefunctions for the continuum region in the absorption spectrum. The spectrum calculated using the incorrect wavefunctions introduced periodic fluctuation in the absorption cross-section seen in the original article, which results in erroneous isotopic fractionation values. The updated spectra calculated after fixing the issues features a smooth continuum band, removing all false artifacts from isotopic effect analysis, producing significantly different results from the ones in this original article. The authors will submit the corrected data in a new article.

  16. High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase

    NASA Astrophysics Data System (ADS)

    Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali

    2006-09-01

    The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.

  17. Inelastic losses in X-ray absorption theory

    NASA Astrophysics Data System (ADS)

    Campbell, Luke Whalin

    There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a

  18. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    PubMed

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  19. Fab MOR03268 triggers absorption shift of a diagnostic dye via packaging in a solvent-shielded Fab dimer interface.

    PubMed

    Hillig, Roman C; Urlinger, Stefanie; Fanghänel, Jörg; Brocks, Bodo; Haenel, Cornelia; Stark, Yvonne; Sülzle, Detlev; Svergun, Dmitri I; Baesler, Siegfried; Malawski, Guido; Moosmayer, Dieter; Menrad, Andreas; Schirner, Michael; Licha, Kai

    2008-03-14

    Molecular interactions between near-IR fluorescent probes and specific antibodies may be exploited to generate novel smart probes for diagnostic imaging. Using a new phage display technology, we developed such antibody Fab fragments with subnanomolar binding affinity for tetrasulfocyanine, a near-IR in vivo imaging agent. Unexpectedly, some Fabs induced redshifts of the dye absorption peak of up to 44 nm. This is the largest shift reported for a biological system so far. Crystal structure determination and absorption spectroscopy in the crystal in combination with microcalorimetry and small-angle X-ray scattering in solution revealed that the redshift is triggered by formation of a Fab dimer, with tetrasulfocyanine being buried in a fully closed protein cavity within the dimer interface. The derived principle of shifting the absorption peak of a symmetric dye via packaging within a Fab dimer interface may be transferred to other diagnostic fluorophores, opening the way towards smart imaging probes that change their wavelength upon interaction with an antibody.

  20. Red and blue shift of liquid water's excited states: A many body perturbation study

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2016-08-01

    In the present paper, accurate optical absorption spectrum of liquid H2O is calculated in the energy range of 5-20 eV to probe the nature of water's excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by single particle effects at high energies. The exciton distribution of the low-energy states, in particular of S1, is highly anisotropic and localized mostly on one water molecule. The S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S1. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S1 state of liquid water is red-shifted with respect to S1 state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of resonant and anti-resonant contributions to the

  1. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Meiyue; Jornada, Felipe H. da; Lin, Lin

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  2. Highly specific spectroscopic photoacoustic molecular imaging of dynamic optical absorption shifts of an antibody-ICG contrast agent (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wilson, Katheryne E.; Bachawal, Sunitha; Abou-Elkacem, Lotfi; Jensen, Kristen C.; Machtaler, Steven; Tian, Lu; Willmann, Juergen K.

    2017-03-01

    Improved techniques for breast cancer screening are critically needed as current methods lack diagnostic accuracy. Using spectroscopic photoacoustic (sPA) molecular imaging with a priori knowledge of optical absorption spectra allows suppression of endogenous background signal, increasing the overall sensitivity and specificity of the modality to exogenous contrast agents. Here, sPA imaging was used to monitor antibody-indocyanine green (ICG) conjugates as they undergo optical absorption spectrum shifts after cellular endocytosis and degradation to allow differentiation between normal murine mammary glands from breast cancer by enhancing molecular imaging signal from target (B7-H3)-bound antibody-ICG. First, B7-H3 was shown to have highly specific (AUC of 0.93) expression on both vascular endothelium and tumor stroma in malignant lesions through quantitative immunohistochemical staining of B7-H3 on 279 human samples (normal (n=53), benign lesions (11 subtypes, n=182), breast cancers (4 subtypes, n=97)), making B7-H3 a promising target for sPA imaging. Second, absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control (Iso-ICG) were characterized through in vitro and in vivo experiments. Finally, a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was imaged, and sPA imaging in found a 3.01 (IQR 2.63, 3.38, P<0.001) fold increase in molecular B7-H3-ICG signal in tumors (n=80) compared to control conditions (B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)) despite significant tumor accumulation of Iso-ICG, confirmed through ex vivo histology. Overall, leveraging anti-B7-H3 antibody-ICG contrast agents, which have dynamic optical absorption spectra representative of molecular interactions, allows for highly specific sPA imaging of murine breast cancer.

  3. Nuclear quantum effects in electronically adiabatic quantum time correlation functions: Application to the absorption spectrum of a hydrated electron

    NASA Astrophysics Data System (ADS)

    Turi, László; Hantal, György; Rossky, Peter J.; Borgis, Daniel

    2009-07-01

    A general formalism for introducing nuclear quantum effects in the expression of the quantum time correlation function of an operator in a multilevel electronic system is presented in the adiabatic limit. The final formula includes the nuclear quantum time correlation functions of the operator matrix elements, of the energy gap, and their cross terms. These quantities can be inferred and evaluated from their classical analogs obtained by mixed quantum-classical molecular dynamics simulations. The formalism is applied to the absorption spectrum of a hydrated electron, expressed in terms of the time correlation function of the dipole operator in the ground electronic state. We find that both static and dynamic nuclear quantum effects distinctly influence the shape of the absorption spectrum, especially its high energy tail related to transitions to delocalized electron states. Their inclusion does improve significantly the agreement between theory and experiment for both the low and high frequency edges of the spectrum. It does not appear sufficient, however, to resolve persistent deviations in the slow Lorentzian-like decay part of the spectrum in the intermediate 2-3 eV region.

  4. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  5. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  6. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.

    PubMed

    Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2016-10-03

    Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.

  7. Study on the effects of Ga-2N high co-doping and preferred orientation on the stability, bandgap and absorption spectrum of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qing-Yu; Li, Wen-Cai; Qu, Ling-Feng; Zhao, Chun-Wang

    2017-06-01

    Currently, the stability and visible light properties of Ga-2N co-doped ZnO systems have been studied extensively by experimental analysis and theoretical calculations. However, previous theoretical calculations arbitrarily assigned Ga- and 2N-doped sites in ZnO. In addition, the most stable and possible doping orientations of doped systems have not been fully and systematically considered. Therefore, in this paper, the electron structure and absorption spectra of the unit cells of doped and pure systems were calculated by first-principles plane-wave ultrasoft pseudopotential with the GGA+U method. Calculations were performed for pure ZnO, Ga-2N supercells heavily co-doped with Zn1-xGaxO1-yNy (x = 0.03125 - 0.0625, y = 0.0625 - 0.125) under different co-doping orientations and conditions, and the Zn16GaN2O14 interstitial model. The results indicated that under different orientations and constant Ga-2N co-doping concentrations, the systems co-doped with Ga-N atoms vertically oriented to the c-axis and with another N atom located in the nearest-neighboring site exhibited higher stability over the others, thus lowering formation energy and facilitating doping. Moreover, Ga-interstitial- and 2N-co-doped ZnO systems easily formed chemical compounds. Increasing co-doping concentration while the co-doping method remained constant decreased doped system volume and lowered formation energies. Meantime, co-doped systems were more stable and doping was facilitated. The bandgap was also narrower and red shifting of the absorption spectrum was more significant. These results agreed with previously reported experimental results. In addition, the absorption spectra of Ga-interstitial- and 2N-co-doped ZnO both blue shifted in the UV region compared with that of the pure ZnO system.

  8. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. HFS and isotope shift in the atomic spectrum of205Pb

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, M.; Redi, O.; Schönberger, P.; Stroke, H. H.; Naumann, R. A.

    1987-06-01

    The hfs of205Pb in the 283.3-nm resonance line and its isotope shift (IS) have been measured in absorption with the use of dispersive spectroscopy. A new method for calibration and analysis, when internal standards are not available is described. The results are: hfs interaction constants A=70.3(5)×10-3 cm-1, B=-0.6(1.1)×10-3 cm-1,205Pb-208Pb IS=-123.9(2.0)×10-3 cm-1. The derived nuclear magnetic dipole moment, μ=0.704(5) μ N is in good agreement with values calculated with a nuclear configuration mixing model.

  10. Mg I absorption features in the solar spectrum near 9 and 12 microns

    NASA Technical Reports Server (NTRS)

    Glenar, David A.; Reuter, Dennis C.; Deming, Drake; Chang, Edward S.

    1988-01-01

    High-resolution FTS observations from the Kitt Peak National Solar Observatory and the Spacelab 3 ATMOS experiment have revealed additional infrared transitions due to Mg I in the spectra of both quiet sun and sunspot penumbra. In contrast to previous observations, these transitions are seen in absorption, not emission. Absorption intensities range from 1 to 7 percent of the continuum in the quiet sun. In the penumbra, the same features appear to show Zeeman splitting. Modeling of the line profiles in the photospheric spectrum shows evidence for a factor of three overabundance in the n = 5 or more levels of Mg I in the upper photosphere, but with no deviations from a Planck source function. It is concluded that whatever the process that produces the emission (including the Lemke and Holweger mechanism), it must occur well above the tau(5000) = 0.01 level.

  11. Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space

    NASA Astrophysics Data System (ADS)

    Deng, Nai Jing; Yu, Kin Wah

    2013-03-01

    Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government

  12. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; hide

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  13. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oraiqat, I; Rehemtulla, A; Lam, K

    2016-06-15

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 dropsmore » from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.« less

  14. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  15. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.

    PubMed

    Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang

    2018-04-02

    Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

  16. Energy Spectrum and Optical Absorption of Isomer No. 11 of C84 Fullerene of C 2 Symmetry Within the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Murzashev, A. I.; Rumyantsev, I. A.

    2018-05-01

    Energy spectrum of isomer No. 11 of C84 fullerene of C2 symmetry is calculated within the Hubbard model. Based on the obtained energy spectrum, the optical absorption spectrum is modeled taking into account not only allowed, but also forbidden symmetry transitions. Good qualitative agreement with the experimental data is obtained. This suggests that when studying fullerenes, the intra-site Coulomb interaction of electrons must be taken into account.

  17. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  18. UV absorption spectrum of the ClO dimer (Cl2O2) between 200 and 420 nm.

    PubMed

    Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Fahey, David W; Burkholder, James B

    2009-12-10

    The UV photolysis of Cl(2)O(2) (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl(2)O(2) was measured using diode array spectroscopy and absolute cross sections, sigma, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl(2)O at 248 nm or Cl(2)/Cl(2)O mixtures at 351 nm at low temperature (200-228 K) and high pressure (approximately 700 Torr, He) was used to produce ClO radicals and subsequently Cl(2)O(2) via the termolecular ClO self-reaction. The Cl(2)O(2) spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl(2)O(2) spectrum. The Cl(2)O(2) UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6(-0.5)(+0.8) x 10(-18) cm(2) molecule(-1) where the quoted error limits are 2sigma and include estimated systematic errors. The Cl(2)O(2) absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl(2)O(2) spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl(2)O(2) cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of sigma(Cl(2)O(2))(lambda) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl(2)O(2) are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  19. UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Papadimitriou, Vassileios C.; Fahey, David W.; Burkholder, James B.

    2009-11-01

    The UV photolysis of Cl2O2 (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl2O2 was measured using diode array spectroscopy and absolute cross sections, σ, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl2O at 248 nm or Cl2/Cl2O mixtures at 351 nm at low temperature (200-228 K) and high pressure (˜700 Torr, He) was used to produce ClO radicals and subsequently Cl2O2 via the termolecular ClO self-reaction. The Cl2O2 spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl2O2 spectrum. The Cl2O2 UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6-0.5+0.8 × 10-18 cm2 molecule-1 where the quoted error limits are 2σ and include estimated systematic errors. The Cl2O2 absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl2O2 spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl2O2 cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of σCl2O2(λ) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl2O2 are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  20. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.

    PubMed

    Jung, Youngeui; Hwang, Jungseek

    2013-02-01

    We used near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in aqueous solutions in the near-infrared range (3800-7500 cm(-1)). Here we introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we were able to extract the water displacement coefficients of glucose, and this may offer a new general method using spectroscopy techniques applicable to other water-soluble materials. We also observed red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from the contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift gets larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on the concentration. We also performed the same measurements and analysis with sucrose instead of glucose as solute and compared.

  1. Cognitive shifting and externalising problem behaviour in intellectual disability and autism spectrum disorder.

    PubMed

    Visser, E M; Berger, H J C; Van Schrojenstein Lantman-De Valk, H M J; Prins, J B; Teunisse, J P

    2015-08-01

    Behavioural problems are frequently reported in residential care for people with an intellectual disability (ID) in particular when they are additionally diagnosed with autism spectrum disorder (ASD). There are indications that impairment in cognitive shifting may be associated with problem behaviour. The objectives of this study were (1) to examine the relationship of cognitive shifting and severity of ASD symptoms with externalising problem behaviour in individuals with ID, with and without ASD, and (2) to examine whether a diagnosis based on shifting impairment is more predictive of externalising problem behaviour than an ASD diagnosis. Participants consisted of adolescents and young adults with mild ID, with and without ASD (n = 41). Pearson intercorrelations were computed to explore the relationship between shifting impairment and severity of ASD symptoms on the one hand and ratings of externalising problem behaviour on the other hand. t-Tests were performed to analyse differences in externalising problem behaviour. Unlike ASD symptom severity, shifting scores were found to be associated with externalising problem behaviour, but only if shifting was measured using rating scales and not when using neuropsychological tasks. Externalising problem behaviour scores significantly differed when groups were classified according to shifting impairment (impaired vs. non-impaired) but not when they were classified according to ID and ASD diagnoses. It is proposed to use a cognition-based approach when analysing problem behaviour, thus concentrating not so much on ID and ASD diagnosis and their corresponding symptoms, but rather placing the focus on cognitive symptoms. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  2. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  3. Purification of electron-transferring flavoprotein from Megasphaera elsdenii and binding of additional FAD with an unusual absorption spectrum.

    PubMed

    Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi

    2003-11-01

    Electron-transferring flavoprotein (ETF), its redox partner flavoproteins, i.e., D-lactate dehydrogenase and butyryl-CoA dehydrogenase, and another well-known flavoprotein, flavodoxin, were purified from the same starting cell paste of an anaerobic bacterium, Megasphaera elsdenii. The purified ETF contained one mol FAD/mol ETF as the sole non-protein component and bound almost one mol of additional FAD. This preparation is a better subject for investigations of M. elsdenii ETF than the previously isolated ETF, which contains varying amounts of FAD and varying percentages of modified flavins such as 6-OH-FAD and 8-OH-FAD. The additionally bound FAD shows an anomalous absorption spectrum with strong absorption around 400 nm. This spectral change is not due to a chemical modification of the flavin ring because the flavin released by KBr or guanidine hydrochloride is normal FAD. It is also not due to unknown small molecules because the same spectrum appears when ETF is reconstituted from its guanidine-denatured subunits and FAD. A similar anomalous spectrum was observed for AMP-free pig ETF under acidic conditions, suggesting a common flavin environment between pig and M. elsdenii ETFs.

  4. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  5. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  6. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    NASA Astrophysics Data System (ADS)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  7. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).

    PubMed

    Dawes, Richard; Jiang, Bin; Guo, Hua

    2015-01-14

    The lowest-lying singlet states of the simplest Criegee intermediate (CH2OO) have been characterized along the O-O dissociation coordinate using explicitly correlated MRCI-F12 electronic structure theory and large active spaces. It is found that a high-level treatment of dynamic electron-correlation is essential to accurately describe these states. A significant well on the B-state is identified at the MRCI-F12 level with an equilibrium structure that differs substantially from that of the ground X-state. This well is presumably responsible for the apparent vibrational structure in some experimental UV absorption spectra, analogous to the structured Huggins band of the iso-electronic ozone. The B-state potential in the Franck-Condon region is sufficiently accurate that an absorption spectrum calculated with a one-dimensional model agrees remarkably well with experiment.

  8. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  9. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  10. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE PAGES

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...

    2016-01-18

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  11. Red and blue shift of liquid water’s excited states: A many body perturbation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziaei, Vafa, E-mail: ziaei@thch.uni-bonn.de; Bredow, Thomas, E-mail: bredow@thch.uni-bonn.de

    In the present paper, accurate optical absorption spectrum of liquid H{sub 2}O is calculated in the energy range of 5–20 eV to probe the nature of water’s excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by singlemore » particle effects at high energies. The exciton distribution of the low-energy states, in particular of S{sub 1}, is highly anisotropic and localized mostly on one water molecule. The S{sub 1} state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S{sub 1}. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S{sub 1} state of liquid water is red-shifted with respect to S{sub 1} state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of

  12. Immersion in altered experience: An investigation of the relationship between absorption and psychopathology

    PubMed Central

    Rosen, Cherise; Jones, Nev; Chase, Kayla A.; Melbourne, Jennifer K.; Grossman, Linda S.; Sharma, Rajiv P.

    2017-01-01

    Understanding alterations in perceptual experiences as a component of the basic symptom structure of psychosis may improve early detection and the identification of subtle shifts that can precede symptom exacerbation. We explored the phenomenological construct of absorption and psychotic experiences in both clinical (bipolar psychosis and schizophrenia spectrum) and non-clinical participants. Participants with psychosis endorsed significantly higher absorption compared to the non-clinical group. Absorption was positively correlated with all types of hallucinations and multiple types of delusions. The analysis yielded two distinct cluster groups that demarcated a distinction along the continuum of self-disturbance: on characterized by attenuated ego boundaries and the other stable ego boundaries. The study suggests that absorption is a potentially important but under-researched component of psychosis that overlaps with, but is not identical to the more heavily theorized constructs of aberrant salience and hyperreflexivity. PMID:28219788

  13. Doping dependent blue shift and linewidth broadening of intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotani, Teruhisa, E-mail: tkotani@iis.u-tokyo.ac.jp; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505; Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567

    2015-09-14

    Blue shift and broadening of the absorption spectra of mid-infrared intersubband transition in non-polar m-plane AlGaN/GaN 10 quantum wells were observed with increasing doping density. As the doping density was increased from 6.6 × 10{sup 11} to 6.0 × 10{sup 12 }cm{sup −2} per a quantum well, the intersubband absorption peak energy shifted from 274.0 meV to 302.9 meV, and the full width at half maximum increased from 56.4 meV to 112.4 meV. Theoretical calculations reveal that the blue shift is due to many body effects, and the intersubband linewidth in doped AlGaN/GaN QW is mainly determined by scattering due to interface roughness, LO phonons, and ionized impurities.

  14. Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESO323-G077

    NASA Astrophysics Data System (ADS)

    Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.

    2008-12-01

    We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  15. Photodissociation dynamics in the first absorption band of pyrrole. I. Molecular Hamiltonian and the Herzberg-Teller absorption spectrum for the A12(π σ* ) ←X˜ 1 A1(π π ) transition

    NASA Astrophysics Data System (ADS)

    Picconi, David; Grebenshchikov, Sergy Yu.

    2018-03-01

    This paper opens a series in which the photochemistry of the two lowest πσ* states of pyrrole and their interaction with each other and with the ground electronic state X ˜ are studied using ab initio quantum mechanics. New 24-dimensional potential energy surfaces for the photodissociation of the N-H bond and the formation of the pyrrolyl radical are calculated using the multiconfigurational perturbation theory (CASPT2) for the electronic states X ˜ (π π ) , 11A2(πσ*), and 11B1(πσ*) and locally diabatized. In this paper, the ab initio calculations are described and the photodissociation in the state 11A2(πσ*) is analyzed. The excitation 11 A2←X ˜ is mediated by the coordinate dependent transition dipole moment functions constructed using the Herzberg-Teller expansion. Nuclear dynamics, including 6, 11, and 15 active degrees of freedom, are studied using the multi-configurational time-dependent Hartree method. The focus is on the frequency resolved absorption spectrum as well as on the dissociation time scales and the resonance lifetimes. Calculations are compared with available experimental data. An approximate convolution method is developed and validated, with which absorption spectra can be calculated and assigned in terms of vibrational quantum numbers. The method represents the total absorption spectrum as a convolution of the diffuse spectrum of the detaching H-atom and the Franck-Condon spectrum of the heteroaromatic ring. Convolution calculation requires a minimal quantum chemical input and is a promising tool for studying the πσ* photodissociation in model biochromophores.

  16. Absorption spectrum and absorption cross sections of the 2ν1 band of HO2 between 20 and 760 Torr air in the range 6636 and 6639 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Emmanuel; Liu, Lu; Schoemaecker, Coralie; Fittschen, Christa

    2018-05-01

    The absorption spectrum of HO2 radicals has been measured in the range 6636-6639 cm-1 at several pressures between 20 and 760 Torr of air. Absolute absorption cross sections of the strongest line at around 6638.2 cm-1 have been determined from kinetic measurements, taking advantage of the well known rate constant of the self-reaction. Peak absorption cross sections of 22.6, 19.5, 14.4, 7.88, 5.12 and 3.23 × 10-20 cm2 were obtained at 20, 50, 100, 200, 400 and 760 Torr, respectively. By fitting these data, an empirical expression has been obtained for the absorption cross section of HO2 in the range 20-760 Torr air: σ6638.2cm-1 = 1.18 × 10-20 + (2.64 × 10-19 × (1-exp (-63.1/p (Torr))) cm2.

  17. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adriano Junior, L.; Fonseca, T. L.; Castro, M. A.

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller–Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to themore » gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.« less

  18. Spectrum Evolution of Accelerating or Slowing down Soliton at its Propagation in a Medium with Gold Nanorods

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2018-04-01

    We investigate both numerically and analytically the spectrum evolution of a novel type soliton - nonlinear chirped accelerating or decelerating soliton - at a femtosecond pulse propagation in a medium containing noble nanoparticles. In our consideration, we take into account one- or two-photon absorption of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption. The chirped solitons are formed due to the trapping of laser radiation by the nanorods reshaping fronts, if a positive or negative phase-amplitude grating is induced by laser radiation. Accelerating or slowing down chirped soliton formation is accompanied by the soliton spectrum blue or red shift. To prove our numerical results, we derived the approximate analytical law for the spectrum maximum intensity evolution along the propagation coordinate, based on earlier developed approximate analytical solutions for accelerating and decelerating solitons.

  19. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  20. Role of the oxyallyl substructure in the near infrared (NIR) absorption in symmetrical dye derivatives: A computational study.

    PubMed

    Prabhakar, Ch; Chaitanya, G Krishna; Sitha, Sanyasi; Bhanuprakash, K; Rao, V Jayathirtha

    2005-03-24

    It is well-known from experimental studies that the oxyallyl-substructure-based squarylium and croconium dyes absorb in the NIR region of the spectrum. Recently, another dye has been reported (J. Am. Chem. Soc. 2003, 125, 348) which contains the same basic chromophore, but the absorption is red-shifted by at least 300 nm compared to the former dyes and is observed near 1100 nm. To analyze the reasons behind the large red shift, in this work we have carried out symmetry-adapted cluster-configuration interaction (SAC-CI) studies on some of these NIR dyes which contain the oxyallyl substructure. From this study, contrary to the earlier reports, it is seen that the donor groups do not seem to play a major role in the red-shift of the absorption. On the other hand, on the basis of the results of the high-level calculations carried out here and using qualitative molecular orbital theory, it is observed that the orbital interactions play a key role in the red shift. Finally, design principles for the oxyallyl-substructure-based NIR dyes are suggested.

  1. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  2. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    ;Pure shift; NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  3. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  4. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  5. Absorption and Emission of the Apigenin and Luteolin Flavonoids: A TDDFT Investigation

    NASA Astrophysics Data System (ADS)

    Amat, Anna; Clementi, Catia; de Angelis, Filippo; Sgamellotti, Antonio; Fantacci, Simona

    2009-09-01

    The absorption and emission properties of the two components of the yellow color extracted from weld (Reseda luteola L.), apigenin and luteolin, have been extensively investigated by means of DFT and TDDFT calculations. Our calculations reproduce the absorption spectra of both flavonoids in good agreement with the experimental data and allow us to assign the transitions giving rise to the main spectral features. For apigenin, we have also computed the electronic spectrum of the monodeprotonated species, providing a rationale for the red-shift of the experimental spectrum with increasing pH. The fluorescence emission of both apigenin and luteolin has then been investigated. Excited-state TDDFT geometry optimizations have highlighted an excited-state intramolecular proton transfer (ESIPT) from the 5-hydroxyl to the 4-carbonyl oxygen of the substituted benzopyrone moiety. By computing the potential energy curves at the ground and excited states as a function of an approximate proton transfer coordinate for apigenin, we have been able to trace an ESIPT pathway and thus explain the double emission observed experimentally.

  6. PARTIAL REVISION: ABSORPTION SPECTRUM AND QUANTUM STATES OF THE PRASEODYMIUM ION. I. SINGLE CRYSTALS OF PRASEODYMIUM CHLORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, E.V.; Sancier, K.M.; Freed, S.

    1958-07-01

    In an analysis of term splitting in the absorption spectrum of 24 samples of praseodymium chloride, Judd (Proc. Roy. Soc. (London) A241, 414(1957)) found all but two of the authors' results to be constant with his. A discussion of reconciliation is presentrd, and the authors point out that the error is due to a mistake in descrimination between electronic transitions and the weak vibrationally coupled lines. (J.R.D.)

  7. X-Ray Absorption Microspectroscopy with Electrostatic Force Microscopy and its Application to Chemical States Mapping

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.

    2007-02-01

    A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.

  8. Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; Gann, Gabriel Orebi; Gehman, Victor

    2018-04-01

    A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films - a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the "black-box" efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs.

  9. An equivalent n-source for WGPu derived from a spectrum-shifted PuBe source

    NASA Astrophysics Data System (ADS)

    Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Walker, Scotty; Cornelison, Spring

    2008-04-01

    We have designed, built, and laboratory-tested a unique shield design that transforms the complex neutron spectrum from PuBe source neutrons, generated at high energies, to nearly exactly the neutron signature leaking from a significant spherical mass of weapons grade plutonium (WGPu). This equivalent "X-material shield assembly" (Patent Pending) enables the harder PuBe source spectrum (average energy of 4.61 MeV) from a small encapsulated standard 1-Ci PuBe source to be transformed, through interactions in the shield, so that leakage neutrons are shifted in energy and yield to become a close reproduction of the neutron spectrum leaking from a large subcritical mass of WGPu metal (mean energy 2.11 MeV). The utility of this shielded PuBe surrogate for WGPu is clear, since it directly enables detector field testing without the expense and risk of handling large amounts of Special Nuclear Materials (SNM) as WGPu. Also, conventional sources using Cf-252, which is difficult to produce, and decays with a 2.7 year half life, could be replaced by this shielded PuBe technology in order to simplify operational use, since a sealed PuBe source relies on Pu-239 (T½=24,110 y), and remains viable for more than hundreds of years.

  10. Optical absorption in recycled waste plastic polyethylene

    NASA Astrophysics Data System (ADS)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  11. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  12. Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water.

    PubMed

    P, Sudheer Kumar; Genova, Alessandro; Pavanello, Michele

    2017-10-19

    The optical spectrum of liquid water is analyzed by subsystem time-dependent density functional theory. We provide simple explanations for several important (and so far elusive) features. Due to the disordered environment surrounding each water molecule, the joint density of states of the liquid is much broader than that of the vapor, thus explaining the red-shifted Urbach tail of the liquid compared to the gas phase. Confinement effects provided by the first solvation shell are responsible for the blue shift of the first absorption peak compared to the vapor. In addition, we also characterize many-body excitonic effects. These dramatically affect the spectral weights at low frequencies, contributing to the refractive index by a small but significant amount.

  13. Ultralow-threshold laser and blue shift cooperative luminescence in a Yb{sup 3+} doped silica microsphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yantang, E-mail: g@fzu.edu.cn; Huang, Yu; Zhang, Peijin

    2014-02-15

    An experimental investigation on ultralow threshold laser and blue shift cooperative luminescence (CL) in a Yb{sup 3+} doped silica microsphere (YDSM) with continuous-wave 976 nm laser diode pumping is reported. The experimental results show that the YDSM emits laser oscillation with ultralow threshold of 2.62 μW, and the laser spectrum is modulated by the microsphere morphology characteristics. In addition, blue emission of YDSM is also observed with the increase of pump power, which is supposed to be generated by CL of excited Yb ion-pairs with the absorption of 976 nm photons and Si-O vibration phonons, and the process is explainedmore » with an energy level diagram. This property of the blue shift CL with phonons absorption in the Yb{sup 3+}doped microcavity makes it attractive for the application of laser cooling based on anti-Stokes fluorescence emission, if the Yb{sup 3+}doped microcavity made from with low phonon energy host materials.« less

  14. Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, P. D.

    2011-05-01

    The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.

  15. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Retrieval of methanol absorption parameters at terahertz frequencies using multispectral fitting

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Xu, Li-Hong; Giles, Robert H.; Goyette, Thomas M.

    2015-12-01

    A high-resolution broadband study of the methanol absorption spectrum was performed at 1.480-1.495 THz. The transmittance was recorded under both self- and air-broadening conditions for multiple pressures at a resolution of 500 kHz. A multispectral fitting analysis was then performed. The transition frequency, absolute intensity, self- and air-broadening coefficients, and self- and air-induced pressure shifts were retrieved for 221 absorption lines using the multispectral fitting routine. Observed in the data were two different series of transitions, both a b-type Q-branch with K = - 7 ← - 6 and an a-type R-branch with J = 31 ← 30 . The retrieved frequency position values were compared with values from spectral databases and trends within the different series were identified. An analysis of the precision of the fitting routine was also performed.

  17. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    PubMed

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  18. Careful measurement of first hyperpolarizability spectrum by hyper-Rayleigh scattering (HRS)

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Lu, Changgui; Cui, Yiping

    2008-01-01

    The first hyperpolarizability (β) spectrum of an azobenzene derivative around its two-photon resonance region is detected carefully by hyper-Rayleigh scattering. The present work uses a fluorescence spectrometer (Edinburgh instruments, F900) as the detector instead of interference filter and photoelectric multiplier tube (PMT). For each wavelength, HRS emission spectrum accompanied with two-photon fluorescence (TPF) is carefully detected by changing the detection wavelength around half of the incident wavelength. Full width to half maximum (FWHM) of the spectrum is about 0.4nm, which is similar to that of the laser. When the incident wavelength moves into the two-photon resonance region, TPF signal increases quickly and should be eliminated. In order to receive accurate β spectrum, the data detected by the oscillograph should be made some emendations, such as TPF, incident energy, absorption and pulse width. Compared with the β spectrum detected in previous works, the spectrum received in this work presents a clearer profile. The β spectrum exhibits a similar profile as its UV-visible spectrum just with blue-shift of wavelength. It could be explained that the electronic vibration structure in two-photon progress is different from that in one-photon progress, while the broadening mechanism may be similar, considering the resonant two-state model (RTSM).

  19. Measurement of the vacuum-ultraviolet absorption spectrum of low-k dielectrics using X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Choudhury, F. A.; Nguyen, H. M.; King, S. W.; Lee, C. H.; Lin, Y. H.; Fung, H. S.; Chen, C. C.; Li, W.; Benjamin, D.; Blatz, J. M.; Nishi, Y.; Shohet, J. L.

    2018-02-01

    During plasma processing, low-k dielectrics are exposed to high levels of vacuum ultraviolet (VUV) radiation that can cause severe damage to dielectric materials. The degree and nature of VUV-induced damage depend on the VUV photon energies and fluence. In this work, we examine the VUV-absorption spectrum of low-k organosilicate glass using specular X-ray reflectivity (XRR). Low-k SiCOH films were exposed to synchrotron VUV radiation with energies ranging from 7 to 21 eV, and the density vs. depth profile of the VUV-irradiated films was extracted from fitting the XRR experimental data. The results show that the depth of the VUV-induced damage layer is a function of the photon energy. Between 7 and 11 eV, the depth of the damaged layer decreases sharply from 110 nm to 60 nm and then gradually increases to 85 nm at 21 eV. The maximum VUV absorption in low-k films occurs between 11 and 15 eV. The depth of the damaged layer was found to increase with film porosity.

  20. Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions

    NASA Astrophysics Data System (ADS)

    Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.

    2018-06-01

    We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.

  1. The Absorption Spectrum of Iodine Vapour

    ERIC Educational Resources Information Center

    Tetlow, K. S.

    1972-01-01

    A laboratory experiment is described which presents some molecular parameters of iodine molecule by studying iodine spectrum. Points out this experiment can be conducted by sixth form students in high school laboratories. (PS)

  2. Phonon-Assisted Optical Absorption in Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Noffsinger, Jesse; Kioupakis, Emmanouil; Van de Walle, Chris G.; Louie, Steven G.; Cohen, Marvin L.

    2012-04-01

    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.

  3. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  4. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have putmore » specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.« less

  5. Vibronic coupling effect on circular dichroism spectrum: Carotenoid-retinal interaction in xanthorhodopsin

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.; Balashov, Sergei P.

    2017-03-01

    The role of vibronic coupling of antenna carotenoid and retinal in xanthorhodopsin (XR) in its circular dichroism (CD) spectrum is examined computationally. A vibronic exciton model combined with a transition-density-fragment interaction (TDFI) method is developed, and applied to absorption and CD spectral calculations of XR. The TDFI method is based on the electronic Coulomb and exchange interactions between transition densities for individual chromophores [K. J. Fujimoto, J. Chem. Phys. 137, 034101 (2012)], which provides a quantitative description of electronic coupling energy. The TDFI calculation reveals a dominant contribution of the Coulomb interaction to the electronic coupling energy and a negligible contribution of the exchange interaction, indicating that the antenna function of carotenoid results from the Förster type of excitation-energy transfer, not from the Dexter one. The calculated absorption and CD spectra successfully reproduce the main features of the experimental results, which allow us to investigate the mechanism of biphasic CD spectrum observed in XR. The results indicate that vibronic coupling between carotenoid and retinal plays a significant role in the shape of the CD spectrum. Further analysis reveals that the negative value of electronic coupling directly contributes to the biphasic shape of CD spectrum. This study also reveals that the C6—C7 bond rotation of salinixanthin is not the main factor for the biphasic CD spectrum although it gives a non-negligible contribution to the spectral shift. The present method is useful for analyzing the molecular mechanisms underlying the chromophore-chromophore interactions in biological systems.

  6. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  7. Analysis of the red and green optical absorption spectrum of gas phase ammonia

    NASA Astrophysics Data System (ADS)

    Zobov, Nikolai F.; Coles, Phillip A.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Hargreaves, Robert J.; Bernath, Peter F.; Tennyson, Jonathan; Yurchenko, Sergei N.; Polyansky, Oleg L.

    2018-04-01

    Room temperature NH3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 - 15,700 cm-1 and 17,950 - 18,250 cm-1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J = 1 - 7 are determined from analysis of the experimental spectrum in the 5νNH (red) region and 46 for 6νNH (green) region. These levels span four vibrational bands in each of the two regions, associated with stretching overtones.

  8. The methane absorption spectrum near 1.73 μm (5695-5850 cm-1): Empirical line lists at 80 K and 296 K and rovibrational assignments

    NASA Astrophysics Data System (ADS)

    Ghysels, M.; Mondelain, D.; Kassi, S.; Nikitin, A. V.; Rey, M.; Campargue, A.

    2018-07-01

    The methane absorption spectrum is studied at 297 K and 80 K in the center of the Tetradecad between 5695 and 5850 cm-1. The spectra are recorded by differential absorption spectroscopy (DAS) with a noise equivalent absorption of about αmin≈ 1.5 × 10-7 cm-1. Two empirical line lists are constructed including about 4000 and 2300 lines at 297 K and 80 K, respectively. Lines due to 13CH4 present in natural abundance were identified by comparison with a spectrum of pure 13CH4 recorded in the same temperature conditions. About 1700 empirical values of the lower state energy level, Eemp, were derived from the ratios of the line intensities at 80 K and 296 K. They provide accurate temperature dependence for most of the absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values is illustrated by the clear propensity of the corresponding lower state rotational quantum number, Jemp, to be close to integer values. Using an effective Hamiltonian model derived from a previously published ab initio potential energy surface, about 2060 lines are rovibrationnally assigned, adding about 1660 new assignments to those provided in the HITRAN database for 12CH4 in the region.

  9. Surface-enhanced infrared absorption spectroscopy of cytosine using gold film deposited on CaF2 substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Padma, N.; Kshirsagar, R. J.

    2018-04-01

    Surface-enhanced infrared absorption (SEIRA) studies of cytosine adsorbed on the thermally evaporated gold film on CaF2 have been carried out in transmission mode. SEIRA spectrum down to 0.1 µM was observed owing to the plasmonic effect of the gold nano film. Cytosine molecules appear to adsorb on the film via C=O and NH groups as evidenced by the red shift observed in the stretching vibrations of the above groups. The molecules assume a perpendicular orientation with respect to the surface.

  10. Fingerprint extraction from interference destruction terahertz spectrum.

    PubMed

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  11. A QM/MM study of the absorption spectrum of harmane in water solution and interacting with DNA: the crucial role of dynamic effects.

    PubMed

    Etienne, Thibaud; Very, Thibaut; Perpète, Eric A; Monari, Antonio; Assfeld, Xavier

    2013-05-02

    We present a time-dependent density functional theory computation of the absorption spectra of one β-carboline system: the harmane molecule in its neutral and cationic forms. The spectra are computed in aqueous solution. The interaction of cationic harmane with DNA is also studied. In particular, the use of hybrid quantum mechanics/molecular mechanics methods is discussed, together with its coupling to a molecular dynamics strategy to take into account dynamic effects of the environment and the vibrational degrees of freedom of the chromophore. Different levels of treatment of the environment are addressed starting from purely mechanical embedding to electrostatic and polarizable embedding. We show that a static description of the spectrum based on equilibrium geometry only is unable to give a correct agreement with experimental results, and dynamic effects need to be taken into account. The presence of two stable noncovalent interaction modes between harmane and DNA is also presented, as well as the associated absorption spectrum of harmane cation.

  12. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  13. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  14. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  15. Anatomising proton NMR spectra with pure shift 2D J-spectroscopy: A cautionary tale

    NASA Astrophysics Data System (ADS)

    Kiraly, Peter; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A.

    2017-09-01

    Analysis of proton NMR spectra has been a key tool in structure determination for over 60 years. A classic tool is 2D J-spectroscopy, but common problems are the difficulty of obtaining the absorption mode lineshapes needed for accurate results, and the need for a 45° shear of the final 2D spectrum. A novel 2D NMR method is reported here that allows straightforward determination of homonuclear couplings, using a modified version of the PSYCHE method to suppress couplings in the direct dimension. The method illustrates the need for care when combining pure shift data acquisition with multiple pulse methods.

  16. The effect of surface irradiance on the absorption spectrum of chromophoric dissolved organic matter in the global ocean

    NASA Astrophysics Data System (ADS)

    Swan, Chantal M.; Nelson, Norman B.; Siegel, David A.; Kostadinov, Tihomir S.

    2012-05-01

    The cycling pathways of chromophoric dissolved organic matter (CDOM) within marine systems must be constrained to better assess the impact of CDOM on surface ocean photochemistry and remote sensing of ocean color. Photobleaching, the loss of absorption by CDOM due to light exposure, is the primary sink for marine CDOM. Herein the susceptibility of CDOM to photobleaching by sea surface-level solar radiation was examined in 15 samples collected from wide-ranging open ocean regimes. Samples from the Pacific, Atlantic, Indian and Southern Oceans were irradiated over several days with full-spectrum light under a solar simulator at in situ temperature in order to measure photobleaching rate and derive an empirical matrix, ɛsurf (m-1 μEin-1), which quantifies the effect of surface irradiance on the spectral absorption of CDOM. Irradiation responses among the ocean samples were similar within the ultraviolet (UV) region of the spectrum spanning 300-360 nm, generally exhibiting a decrease in the CDOM absorption coefficient (m-1) and concomitant increase in the CDOM spectral slope parameter, S (nm-1). However, an unexpected irradiation-induced increase in CDOM absorption between approximately 360 and 500 nm was observed for samples from high-nutrient low-chlorophyll (HNLC) environments. This finding was linked to the presence of dissolved nitrate and may explain discrepancies in action spectra for dimethylsulfide (DMS) photobleaching observed between the Equatorial Pacific and Subtropical North Atlantic Oceans. The nitrate-to-phosphate ratio explained 27-70% of observed variability in ɛsurf at observation wavelengths of 330-440 nm, while the initial spectral slope of the samples explained up to 52% of variability in ɛsurf at observation wavelengths of 310-330 nm. These results suggest that the biogeochemical and solar exposure history of the water column, each of which influence the chemical character and thus the spectral quality of CDOM and its photoreactivity, are the

  17. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  18. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE PAGES

    Wu, M.; Xin, Houlin L.; Wang, J. O.; ...

    2018-04-24

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  19. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Xin, Houlin L.; Wang, J. O.

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  20. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples

    PubMed Central

    Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei

    2017-01-01

    Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160

  1. NMR spectrum analysis for CrAs at ambient pressure

    NASA Astrophysics Data System (ADS)

    Kotegawa, H.; Nakahara, S.; Matsushima, K.; Tou, H.; Matsuoka, E.; Sugawara, H.; Harima, H.

    2018-05-01

    We report NMR spectrum analysis for CrAs, which was recently reported to be superconducting under pressure. The NMR spectrum obtained by the powdered single crystals shows a typical powder pattern reproduced by the electric field gradient (EFG) parameters and isotropic Knight shift, indicating anisotropy of Knight shift is not remarkable in CrAs. For the oriented sample, the spectrum can be understood by considering that the crystals are aligned for H ∥ b . The temperature dependence of Knight shift was successfully obtained from NMR spectrum with large nuclear quadrupole interaction.

  2. Electronic and nuclear contributions to time-resolved optical and X-ray absorption spectra of hematite and insights into photoelectrochemical performance

    DOE PAGES

    Hayes, Dugan; Hadt, Ryan G.; Emery, Jonathan D.; ...

    2016-11-02

    Ultrafast time-resolved studies of photocatalytic thin films can provide a wealth of information crucial for understanding and thereby improving the performance of these materials by directly probing electronic structure, reaction intermediates, and charge carrier dynamics. The interpretation of transient spectra, however, can be complicated by thermally induced structural distortions, which appear within the first few picoseconds following excitation due to carrier–phonon scattering. Here we present a comparison of ex situ steady-state thermal difference spectra and transient absorption spectra spanning from NIR to hard X-ray energies of hematite thin films grown by atomic layer deposition. We find that beyond the firstmore » 100 picoseconds, the transient spectra measured for all excitation wavelengths and probe energies are almost entirely due to thermal effects as the lattice expands in response to the ultrafast temperature jump and then cools to room temperature on the microsecond timescale. At earlier times, a broad excited state absorption band that is assigned to free carriers appears at 675 nm, and the lifetime and shape of this feature also appear to be mostly independent of excitation wavelength. The combined spectroscopic data, which are modeled with density functional theory and full multiple scattering calculations, support an assignment of the optical absorption spectrum of hematite that involves two LMCT bands that nearly span the visible spectrum. Lastly, our results also suggest a framework for shifting the ligand-to-metal charge transfer absorption bands of ferric oxide films from the near-UV further into the visible part of the solar spectrum to improve solar conversion efficiency.« less

  3. The gas-phase absorption spectrum of a neutral GFP model chromophore.

    PubMed

    Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H

    2007-01-01

    We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.

  4. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    PubMed

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Deimos: A featureless asteroid-like spectrum

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Fink, Uwe

    1991-01-01

    High quality CCD spectra were obtained of Deimos from 0.5 to 1.0 micron at a spectral resolution of 15A at the time of the 1988 Mars opposition. The data acquisition and reduction methods allowed the quantitative prevention of scattered light from Mars contaminating the spectra. Solar analog stars BS560, BS2007, and BS8931 were observed the same night to allow removal of telluric absorptions. The ratio spectrum of Deimos has a red slope, increasing in reflectance by a factor of approx. 50 pct. over the one octave wavelength interval observed. Other than this slope, the spectrum is remarkably featureless. The absence of absorption bands in the spectrum of Deimos is in marked contrast with the spectra of Martian surface materials. No trace of the Fe(2+) charge transfer absorption band around 1 micron is observed, which rules out the presence of significant quantities of minerals such as the pyroxenes or olivine at the surface of Deimos. The featureless red spectrum of Deimos appears to be consistent with a surface composition of fine grained carbonaceous chondrite type material. An analysis is presented of the spectrum of Deimos which makes use of the Hapke scattering surface model.

  6. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  7. Signs of strong Na and K absorption in the transmission spectrum of WASP-103b

    NASA Astrophysics Data System (ADS)

    Lendl, M.; Cubillos, P. E.; Hagelberg, J.; Müller, A.; Juvan, I.; Fossati, L.

    2017-09-01

    Context. Transmission spectroscopy has become a prominent tool for characterizing the atmospheric properties on close-in transiting planets. Recent observations have revealed a remarkable diversity in exoplanet spectra, which show absorption signatures of Na, K and H2O, in some cases partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and hazes) themselves have been detected in the transmission spectra of several planets thanks to wavelength-dependent slopes caused by the particles' scattering properties. Aims: We present an optical 550-960 nm transmission spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest (2500 K) and most massive (1.5 MJ) planets yet to be studied with this technique. WASP-103b orbits its star at a separation of less than 1.2 times the Roche limit and is predicted to be strongly tidally distorted. Methods: We have used Gemini/GMOS to obtain multi-object spectroscopy throughout three transits of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2 nm to infer the planet's transmission spectrum. Results: We find that WASP-103b shows increased absorption in the cores of the alkali (Na, K) line features. We do not confirm the presence of any strong scattering slope as previously suggested, pointing towards a clear atmosphere for the highly irradiated, massive exoplanet WASP-103b. We constrain the upper boundary of any potential cloud deck to reside at pressure levels above 0.01 bar. This finding is in line with previous studies on cloud occurrence on exoplanets which find that clouds dominate the transmission spectra of cool, low surface gravity planets while hot, high surface gravity planets are either cloud-free, or possess clouds located below the altitudes probed by transmission spectra. The spectrophotometric time series data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  8. A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.

    2009-12-01

    Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with

  9. Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An

    1999-07-01

    Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.

  10. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-07

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  11. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  12. Tunable, high-sensitive measurement of inter-dot transition via tunneling induced absorption

    NASA Astrophysics Data System (ADS)

    Peng, Yandong; Yang, Aihong; Chen, Bing; Li, Lei; Liu, Shande; Guo, Hongju

    2016-10-01

    A tunable, narrow absorption spectrum induced by resonant tunneling is demonstrated and proposed for measuring interdot tunneling. Tunneling-induced absorption (TIA) arises from constructive interference between different transition paths, and the large nonlinear TIA significantly enhances the total absorption. The narrow nonlinear TIA spectrum is sensitive to inter-dot tunneling, and its sensor characteristics, including sensitivity and bandwidth, are investigated in weak-coupling and strong-coupling regimes, respectively.

  13. Energy-absorption spectroscopy of unitary Fermi gases in a uniform potential

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2018-04-01

    We propose to use the energy absorption spectroscopy to measure the kinetic coefficients of unitary Fermi gases in a uniform potential. We show that, in our scheme, the energy absorption spectrum is proportional to the dynamic structure factor of the system. The profile of the spectrum depends on the shear viscosity η , the thermal conductivity κ , and the superfluid bulk viscosity ξ3. We show that extraction of these coefficients from the spectrum is achievable in present experiments.

  14. Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fakhardji, W.; Gustafsson, M.

    2017-02-01

    We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.

  15. Self-interaction-corrected time-dependent density-functional-theory calculations of x-ray-absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Guangde; Rinkevicius, Zilvinas; Vahtras, Olav

    We outline an approach within time-dependent density functional theory that predicts x-ray spectra on an absolute scale. The approach rests on a recent formulation of the resonant-convergent first-order polarization propagator [P. Norman et al., J. Chem. Phys. 123, 194103 (2005)] and corrects for the self-interaction energy of the core orbital. This polarization propagator approach makes it possible to directly calculate the x-ray absorption cross section at a particular frequency without explicitly addressing the excited-state spectrum. The self-interaction correction for the employed density functional accounts for an energy shift of the spectrum, and fully correlated absolute-scale x-ray spectra are thereby obtainedmore » based solely on optimization of the electronic ground state. The procedure is benchmarked against experimental spectra of a set of small organic molecules at the carbon, nitrogen, and oxygen K edges.« less

  16. Strategy for sensor based on fluorescence emission red shift of conjugated polymers: applications in pH response and enzyme activity detection.

    PubMed

    Tang, Yanli; Liu, Yue; Cao, Ali

    2013-01-15

    A new strategy was developed and applied in monitoring pH response and enzyme activity based on fluorescence emission red shift (FERS) of the conjugated polymer PPP-OR10 induced by the inner filter effect (IFE) of nitrobenzene derivatives. Neutral poly(p-phenylenes) functionalized with oligo(oxyethylene) side chains (PPP-OR10) was designed and synthesized by the Suzuki cross-coupling reaction. Nitrobenzene derivatives display different light absorption activities in the acidic or basic form due to adopting different electron-transition types. When environmental pH is higher than their pK(a) values, nitrobenzene derivatives exhibit strong absorbance around 400 nm, which is close to the maximal emission of polymer PPP-OR10. As a result, the maximal emission wavelength of PPP-OR10/nitrobenzene derivatives red shifts with the pH value increasing. Apparently, the IFE plays a very important role in this case. A new method has been designed that takes advantage of this pH-sensitive platform to sensor α-chymotrypsin (ChT) based on the IFE of p-nitroaniline, since the absorption spectrum of p-nitroaniline, the ChT-hydrolyzed product of N-benzoyl-L-tyrosine-p-nitroaniline (BTNA), overlaps with the emission spectrum of PPP-OR10. In addition, the present approach can detect α-chymotrypsin with a detection limit of 0.1 μM, which is lower than that of the corresponding absorption spectroscopy method. Furthermore, the pH response and enzyme detections can be carried out in 10% serum, which makes this new FERS-based strategy promising in applications in more complex conditions and a broader field.

  17. Absorption spectrum and ultrafast response of monolayer and bilayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Turkowski, Volodymyr; Ramirez-Torres, Alfredo; Rahman, Talat S.

    2015-03-01

    We apply a combined time-dependent density functional theory and many-body theory approach to examine the absorption spectrum and nonequilibrium response of monolayer and bilayer MoS2, MoSe2, WS2 and WSe2 systems. In particular, we evaluate the possibility of existence of bound states - excitons and trions in the undoped systems. In a previous work we have already demonstrated that the binding energies of these states in the monolayer systems are large which makes them available for room temperature applications. We analyze the possibility of ultrafast electron-hole separation in bilayer systems through inter-layer hole transfer, and show that such a possibility exists, in agreement with experimental observations. For doped systems we consider the possibility of Mahan excitonic states in monolayers and show that the binding energy for these states is of the order of 10 meV. We perform a detailed analysis of the relaxation of doped monolayers excited by ultrafast laser pulse by taking into account electron-phonon scattering effects, and demonstrate that ultrafast (10-100fs) processes, including luminescence, may be relevant for these materials. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  18. Electrochemical and optical study of carotenoids in TX 100 micelles: Electron transfer and a large blue shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Kispert, L.D.

    1999-10-21

    The first oxidation waves of 8{prime}-apo-{beta}-caroten-8{prime}-al (I) and 8{prime}-apo-{beta}-caroten-8{prime}nitrile (II) in TX100 micelles are clearly observed in their cyclic voltammograms (CVs). The CV of {beta}-carotene (III) in TX100 micelles shows that III is not oxidized. It is proposed that the hydrophobic barrier of the micelle is an important reason for the failure to oxidize III, which is totally located in the hydrophobic center of the micelle. The oxidation of I and II demonstrates that electrons can be transferred through the terminal groups over a distance of ca. 22 {angstrom}. An unusually large blue band shift (100 nm, relative to thatmore » in CH{sub 2}Cl{sub 2}) is observed in the optical absorption spectrum of 7{prime}-apo-7{prime},7{prime}-dicyano-{beta}-carotene (IV) in TX100 micelles. This phenomenon is not observed in the absorption spectra of other studied carotenoids. A change in the ground-state electronic structure of IV, due to the influence of water near the terminal dicyanomethylidene group, is proposed to be the major reason for this large band shift.« less

  19. Reconstruction of the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its digital image: the challenge of algal colours.

    PubMed

    Coltelli, Primo; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna Maria; Gualtieri, Paolo

    2016-12-01

    A novel procedure for deriving the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its image is presented. Any digital image acquired by a microscope can be used; typical applications are the analysis of cellular/subcellular metabolic processes under physiological conditions and in response to environmental stressors (e.g. heavy metals), and the measurement of chromophore composition, distribution and concentration in cells. In this paper, we challenged the procedure with images of algae, acquired by means of a CCD camera mounted onto a microscope. The many colours algae display result from the combinations of chromophores whose spectroscopic information is limited to organic solvents extracts that suffers from displacements, amplifications, and contraction/dilatation respect to spectra recorded inside the cell. Hence, preliminary processing is necessary, which consists of in vivo measurement of the absorption spectra of photosynthetic compartments of algal cells and determination of spectra of the single chromophores inside the cell. The final step of the procedure consists in the reconstruction of the absorption spectrum of the cell spot from the colour values of the corresponding pixel(s) in its digital image by minimization of a system of transcendental equations based on the absorption spectra of the chromophores under physiological conditions. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. Optical absorption of zigzag single walled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-11-01

    In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E<5, 77.5 eV. We found that in lower energies, E<5 eV, all groups show different behaviors while in the higher energies, 77.5 eV, their behaviors depend on their even or odd nanotube index. We also found that in the energy range 7shift for all peaks except ‘A’ peak where this peak moves to higher energies. Our results are in good agreement with the experimental results.

  1. The structure and spectrum of the accretion shock in the atmospheres of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.

  2. VARIATIONS OF ABSORPTION TROUGHS IN THE QUASAR SDSS J125216.58+052737.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Fu; Qin, Yi-Ping, E-mail: zhichenfu@126.com

    2015-01-20

    In this work, we analyze the spectra of quasar J125216.58+052737.7 (z {sub em} = 1.9035) which was observed by SDSS-I/II on 2003 January 30 and by BOSS on 2011 April 2. Both the continuum and the absorption spectra of this quasar show obvious variations between the two epochs. In the SDSS-I/II spectrum, we detect 8 C IV λλ1548,1551 absorption systems, which are detected at z {sub abs} = 1.9098, 1.8948, 1.8841, 1.8770, 1.8732, 1.8635, 1.8154, and 1.7359, respectively, and one Mg II λλ2796,2803 absorption system at z {sub abs} = 0.9912. Among these absorption systems, two C IV λλ1548,1551 absorptionmore » systems at z {sub abs} = 1.9098 and 1.7359 and the Mg II λλ2796,2803 absorption system are imprinted on the BOSS spectrum as well, and have similar absorption strengths when compared to those measured from the SDSS-I/II spectrum. Three C IV λλ1548,1551 absorption systems at z {sub abs} = 1.8948, 1.8841, and 1.8770 are also detected in the BOSS spectrum, while their absorption strengths are much weaker than those measured from the SDSS-I/II spectrum; three systems at z {sub abs} = 1.8732, 1.8635, and 1.8154 disappeared from the BOSS spectrum. Based on the variability analysis, the absorption systems that disappeared and weakened are likely to be intrinsic to the quasar. If these intrinsic absorption gases are blown away from the central region of the quasar, with respect to the quasar system, the absorption systems that disappeared would have separation velocities of 3147 kms{sup –1}, 4161 km s{sup –1}, and 9241 km s{sup –1}, while the absorption systems that weakened would have separation velocities of 900 km s{sup –1}, 2011 km s{sup –1}, and 2751 km s{sup –1}. Well-coordinated variations of the six C IV λλ1548,1551 absorption systems that disappeared and weakened, occurring on a timescale of 1026.7 days at the quasar rest frame, can be interpreted as a result of global changes in the ionization state of the absorbing gas.« less

  3. Negative symptom domain prevalence across diagnostic boundaries: The relevance of diagnostic shifts.

    PubMed

    Lyne, John; Renwick, Laoise; O'Donoghue, Brian; Kinsella, Anthony; Malone, Kevin; Turner, Niall; O'Callaghan, Eadbhard; Clarke, Mary

    2015-08-30

    Negative symptoms are included in diagnostic manuals as part of criteria for schizophrenia spectrum psychoses only, however some studies have found their presence in other diagnoses. This study sought to clarify negative symptom domain prevalence across diagnostic categories, while investigating whether negative symptoms predicted diagnostic shift over time. Scale for the Assessment of Negative Symptoms (SANS) data were collected at first presentation in 197 individuals presenting with first episode psychosis and again at one year follow-up assessment. Negative symptoms were highest among individuals with schizophrenia and among those whose diagnosis shifted from non-schizophrenia spectrum at baseline to schizophrenia spectrum at follow-up. In a non-schizophrenia spectrum group negative symptoms at baseline were not a significant predictor of diagnostic shift to schizophrenia spectrum diagnoses. The study suggests negative symptoms can present among individuals with non-schizophrenia spectrum diagnoses, although this is most relevant for individuals following diagnostic shift from non-schizophrenia spectrum to schizophrenia spectrum diagnoses. The findings support introduction of a negative symptom dimension when describing a range of psychotic illnesses, and indicate that further research investigating the evolution of negative symptoms in non-schizophrenia diagnoses is needed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Cl2O photochemistry: ultraviolet/vis absorption spectrum temperature dependence and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Papanastasiou, Dimitrios K; Feierabend, Karl J; Burkholder, James B

    2011-05-28

    The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible. © 2011 American Institute of Physics

  5. Luminescence and Absorption Spectra of C sub 60 Films

    DTIC Science & Technology

    1991-02-01

    J. McKeirnan, J.L Zink, R. Stanley Williams, W.M. Tong, D.A.A. Ohlberg and R.L. Whetten Submitted t DTIC Physical Review Letters ELECT E SFEB 2? 7,19...range at 20K. A 1400 cm"& progression in the a soccerball inflation mode is observed. The low-temperature absorption spectrum exhibits similar fine...ag soccerball inflation mode is observed. The low temperature absorption spectrum exhibits similar fine structure. The characterization of vibronic

  6. The vibrational spectrum of H2O3: An ab initio investigation

    NASA Technical Reports Server (NTRS)

    Jackels, Charles F.

    1991-01-01

    Theoretically determined frequencies and absorption intensities are reported for the vibrational spectrum of the covalent HOOOH and hydrogen bonded HO---HOO intermediates that may form in the reaction of the hydroxyl and hydroperoxyl radicals. Basis sets of DZP quality, augmented by diffuse and second sets of polarization functions have been used with CASSCF wave functions. The calculated harmonic vibrational frequencies of HOOOH have been corrected with empirical factors and presented in the form of a 'stick' spectrum. The oxygen backbone vibrations, predicted to occur at 519, 760, and 870 cm(exp -1), are well separated from most interferences, and may be the most useful for the species' identification. In the case of the hydrogen bonded isomer, emphasis has been placed upon prediction of the shifts in the intramolecular vibrational frequencies that take place upon formation of the complex. In particular, the HO stretch and HOO bend of HO2 are predicted to have shifts of -59 and 53 cm(exp -1), respectively, which should facilitate their identification. It is also noted that the antisymmetric stretching frequency of the oxygen backbone in HOOOH exhibits a strong sensitivity to the degree of electron correlation, such as has been previously observed for the same mode in ozone.

  7. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  8. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  9. Isomeric and Isotopic Effects on the Electronic Spectrum of {{\\rm{C}}}_{60}^{+}–He: Consequences for Astronomical Observations of {{\\rm{C}}}_{60}^{+}

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2018-05-01

    Laboratory measurements are reported that enable a more accurate determination of the characteristics of the near-infrared absorptions of {{{C}}}60+ below 10 K. These data were obtained by photofragmentation of {{{C}}}60+{--}{He} complexes in a cryogenic trap. Asymmetry in the profiles of the observed 9577 and 9632 Å absorption bands of {{{C}}}60+{--}{He} is caused by the attachment of the weakly bound helium atom to hexagonal or pentagonal faces of {{{C}}}60+. The implication is that the FWHM of the bands in the electronic spectrum of {{{C}}}60+ below 10 K is 1.4 Å. The effect of 13C isotopes on the {{{C}}}60+ electronic spectrum is experimentally evaluated by measurement of {}12{{{C}}}60+{--}{He}, {}13{{{C}}}112{{{C}}}59+{--}{He}, and {}13{{{C}}}212{{{C}}}58+{--}{He}. Data on the 9365 Å absorption band indicate a wavelength shift of about 0.3 Å between the former and latter. This result is consistent with models used to interpret the vibrational isotope effect in the Raman spectrum of neutral C60. The influence of 13C isotopes on the 9348, 9365, 9428, 9577, and 9632 Å diffuse interstellar bands is expected to be minor considering other broadening factors that affect astronomical observations. The presented data also provide more accurate relative intensities of the five interstellar bands attributed to {{{C}}}60+.

  10. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    PubMed

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  11. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the regionmore » from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.« less

  12. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. © 2014 WILEY Periodicals, Inc.

  14. On the nitrogen-induced far-infrared absorption spectra

    NASA Technical Reports Server (NTRS)

    Dore, P.; Filabozzi, A.

    1987-01-01

    The rototranslational absorption spectrum of gaseous N2 is analyzed, considering quadrupolar and hexadecapolar induction mechanisms. The available experimental data are accounted for by using a line-shape analysis in which empirical profiles describe the single-line translational profiles. Thus, a simple procedure is derived that allows the prediction of the N2 spectrum at any temperature. On the basis of the results obtained for the pure gas, a procedure to compute the far-infrared spectrum of the N2-Ar gaseous mixture is also proposed. The good agreement between computed and experimental N2-Ar data indicates that it is possible to predict the far-infrared absorption induced by N2 on the isotropic polarizability of any interacting partner.

  15. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  16. [Discussion of scattering in THz time domain spectrum tests].

    PubMed

    Yan, Fang; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Li, Zhi; Zhang, Han

    2014-06-01

    Using THz-TDS to extract the absorption spectrum of a sample is an important branch of various THz applications. Basically, we believe that the THz radiation scatters from sample particles, leading to an obvious baseline increasing with frequencies in its absorption spectrum. The baseline will affect the measurement accuracy due to ambiguous height and pattern of the spectrum. The authors should try to remove the baseline, and eliminate the effects of scattering. In the present paper, we investigated the causes of baselines, reviewed some of scatter mitigating methods and summarized some of research aspects in the future. In order to validate the correctness of these methods, we designed a series of experiments to compare the computational accuracy of molar concentration. The result indicated that the computational accuracy of molar concentration can be improved, which can be the basis of quantitative analysis in further researches. Finally, with comprehensive experimental results, we presented further research directions on THz absorption spectrum that is needed for the removal of scattering effects.

  17. Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, frequency shift, and body absorption.

    PubMed

    Fernandez, Marta; Espinosa, Hugo G; Thiel, David V; Arrinda, Amaia

    2018-01-01

    The interaction of body-worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the -10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body-mass index (BMI) between 17 and 29 kg/m 2 took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 39:25-34, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Electron localization and optical absorption of polygonal quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  19. [UV-Vis spectrum characteristics of phycocyanin in water from Taihu lake].

    PubMed

    Zhang, Jing; Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Xia, Xiao-Rui

    2014-05-01

    The present paper analyzed the UV-Vis spectrum characteristics of phycocyanin extracted from 75 water samples around Meiliang Bay of Taihu Lake, China in spring, summer and autumn, 2011, taking standard sample of phycocyanin, Micro-cystic aeruginosa and Anabaena cultured indoor as the reference, and discussed the difference and relation of spectrum among water samples, standard sample and single algae samples. According to the number of absorption peak in the wavelength range from 500 to 700 nm, phycocyanin spectrum of water sampling in Taihu Lake can be divided into three patterns: no peak, single peak and two peaks. In the first pattern, the absorbance changed smoothly and no absorption peak was observed around 620 nm. Depending on the absorption difference in the wavelength range from 300 to 450 nm, this pattern can be divided into type I and type II. Type I only had a absorption peak near 260 nm, with the similar spectrum of chromophoric dissolved organic matter (CDOM) in the wavelength range from 250 to 800 nm. Type II had absorption peak respectively near 260 and 330 nm. In single peak pattern and two peaks pattern, significant absorption peak of phycocyanin appeared around 620 nm. Compared to the other patterns, single peak pattern was more similar to that of standard sample and single algae samples, but different in their maximum absorption peaks position and relative absorption intensity in the wavelength range of 250 approximately 300, 300 approximately 450 and 500 approximately 700 nm, because of different algae species and purity after extraction. In the two peaks pattern, another absorption peak appeared at 670nm, with the absorption shoulder from 350 to 450 nm, and shared the absorption characteristics of phycocyanin and chlorophyll complex protein. The research can provide a basic support for the phycocyanin quantitation and blooms monitoring in Taihu Lake.

  20. Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity

    NASA Astrophysics Data System (ADS)

    Rashidi, Arezou; Namdar, Abdolrahman

    2018-04-01

    Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.

  1. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi; Zhang, Shen; Kang, Wei

    2016-05-15

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less

  2. Oxygen-17 NMR Shifts Caused by Cr{Sup ++} in Aqueous Solutions

    DOE R&D Accomplishments Database

    Jackson, J. A.; Lemons, J. F.; Taube, H.

    1962-01-01

    Cr{sup ++} in solution produces a paramagnetic shift in the NMR absorption of O{sup 17} in ClO{sub 4}{sup -}, as well as the expected paramagnetic shift for O{sup 17} in H{sub 2}O. As the concentration of ClO{sub 4}{sup -} increases, the shift in the H{sub 2}O{sup 17} absorption is diminished, and eventually changes sign. The effects are ascribed to preferential replacement by ClO{sub 4}{sup -} of water molecules from the axial positions in the first coordination sphere about Cr{sup ++}.

  3. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  4. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broadmore » absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.« less

  5. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  6. A transform from absorption to Raman excitation profile. A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Y.; Yeo, Robert C. K.

    1994-04-01

    An alternative time-frame approach, which is canonically conjugate to the energy-frame approach, for implementing the transform relations for calculating Raman excitation profiles directly from the optical absorption spectrum is presented. Practical and efficient fast Fourier transformation in the time frame replaces the widely used Chan and Page algorithm for evaluating the Hilbert transform in the energy frame. The time-frame approach is applied to: (a) a two-mode model which illustrates the missing mode effect in both absorption and Raman excitation profiles, (b) carotene, in which both the absorption spectrum and the Raman excitation profile show vibrational structure and (c) hexamethylbenzene: TCNE electron donor—acceptor complex where the same spectra are structureless and the Raman excitation profile for the 168 cm -1 mode poses a problem for the energy-frame approach. A similar time-frame approach can be used for the inverse transform from the Raman excitation profile to the optical absorption spectrum.

  7. Time evolution of the Lamb shift.

    PubMed

    Wang, Da-Wei; Li, Zheng-Hong; Wang, Li-Gang; Zhu, Shi-Yao; Zubairy, M Suhail

    2010-09-01

    The time evolution of the Lamb shift that accompanies the real photon emission is studied for the first time (to our knowledge). The investigation of the explicit time dependence of the Lamb shift becomes possible because the self-energy of the free electron, which is divergent, is subtracted from the Hamiltonian after a unitary transformation. The Lamb shift can then be separated into two parts: one is the time-independent shift due to the virtual photon exchange, and the other is the time-dependent shift due to the real photon emission. The time evolution depends on the nature of the coupling spectrum of the reservoir.

  8. Measurement of absorption spectrum of deuterium oxide (D{sub 2}O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai

    2016-01-11

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersionmore » enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.« less

  9. Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458b

    NASA Astrophysics Data System (ADS)

    Snellen, I. A. G.; Albrecht, S.; de Mooij, E. J. W.; Le Poole, R. S.

    2008-08-01

    Context: The first detection of an atmosphere around an extrasolar planet was presented by Charbonneau and collaborators in 2002. In the optical transmission spectrum of the transiting exoplanet HD 209458b, an absorption signal from sodium was measured at a level of 0.023 ± 0.006%, using the STIS spectrograph on the Hubble Space Telescope. Despite several attempts, so far only upper limits to the Na D absorption have been obtained using telescopes from the ground, and the HST result has yet to be confirmed. Aims: The aims of this paper are to re-analyse data taken with the High Dispersion Spectrograph on the Subaru telescope, to correct for systematic effects dominating the data quality, and to improve on previous results presented in the literature. Methods: The data reduction process was altered in several places, most importantly allowing for small shifts in the wavelength solution. The relative depth of all lines in the spectra, including the two sodium D lines, are found to correlate strongly with the continuum count level in the spectra. These variations are attributed to non-linearity effects in the CCDs. After removal of this empirical relation the uncertainties in the line depths are only a fraction above that expected from photon statistics. Results: The sodium absorption due to the planet's atmosphere is detected at > 5σ, at a level of 0.056±0.007% (2 × 3.0 Å band), 0.070±0.011% (2 × 1.5 Å band), and 0.135 ± 0.017% (2 ×0.75 Åband). There is no evidence that the planetary absorption signal is shifted with respect to the stellar absorption, as recently claimed for HD 189733b. Conclusions: The STIS/HST measurements are confirmed. The measurements of the Na D absorption in the two most narrow bands indicate that some signal is being resolved. Due to variations in the instrumental resolution and intrinsic variations in the stellar lines due to the Rossiter-McLauglin effect, it will be challenging to probe the planetary absorption on spectral scales

  10. Shuttle spectrum despreader

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of the spread spectrum despreader project are reported and three principal products are designed and tested. The products are, (1) a spread spectrum despreader breadboard, (2) associated test equipment consisting of a spectrum spreader and bit reconstruction/error counter and (3) paper design of a Ku-band receiver which would incorporate the despreader as a principal subsystem. The despreader and test set are designed for maximum flexibility. A choice of unbalanced quadriphase or biphase shift keyed data modulation is available. Selectable integration time and threshold voltages on the despreader further lend true usefulness as laboratory test equipment to the delivered hardware.

  11. The spectrum of (136199) Eris between 350 and 2350 nm: results with X-Shooter

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Licandro, J.; Cook, J.; Mason, E.; Roush, T.; Cruikshank, D.; Gourgeot, F.; Dotto, E.; Perna, D.

    2011-08-01

    Context. X-Shooter is the first second-generation instrument for the ESO-Very Large Telescope. It is a spectrograph covering the entire 300-2480 nm spectral range at once with a high resolving power. These properties enticed us to observe the well-known trans-Neptunian object (136199) Eris during the science verification of the instrument. The target has numerous absorption features in the optical and near-infrared domain that have been observed by different authors, showing differences in these features' positions and strengths. Aims: Besides testing the capabilities of X-Shooter to observe minor bodies, we attempt to constrain the existence of super-volatiles, e.g., CH4, CO and N2, and in particular we try to understand the physical-chemical state of the ices on Eris' surface. Methods: We observed Eris in the 300 - 2480 nm range and compared the newly obtained spectra with those available in the literature. We identified several absorption features, measured their positions and depth, and compare them with those of the reflectance of pure methane ice obtained from the optical constants of this ice at 30 K to study shifts in these features' positions and find a possible explanation for their origin. Results: We identify several absorption bands in the spectrum that are all consistent with the presence of CH4 ice. We do not identify bands related to N2 or CO. We measured the central wavelengths of the bands and compared to those measured in the spectrum of pure CH4 at 30 K finding variable spectral shifts. Conclusions: Based on these wavelength shifts, we confirm the presence of a dilution of CH4 in other ice on the surface of Eris and the presence of pure CH4 that is spatially segregated. The comparison of the centers and shapes of these bands with previous works suggests that the surface is heterogeneous. The absence of the 2160 nm band of N2 can be explained if the surface temperature is below 35.6 K, the transition temperature between the alpha and beta phases

  12. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  13. Robust phase-shifting interferometry resistant to multiple disturbances

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yue, Xiaobin; Li, Lulu; Zhang, Hui; He, Jianguo

    2018-04-01

    Phase-shifting interferometry (PSI) is sensitive to many disturbances, including the environmental vibration, laser instability, phase-shifting error and camera nonlinearity. A robust PSI (RPSI) based on the temporal spectrum analysis is proposed to suppress the effects of these common disturbances. RPSI retrieves wavefront phase from the temporal Fourier spectrum peak, which is identified by detecting the modulus of spectrum, and a referencing method is presented to improve the phase extracting accuracy. Simulations demonstrate the feasibility and effectiveness of RPSI. Experimental results indicate that RPSI is resistant to common disturbances in implementing PSI and achieves accuracy better than 0.03 rad in the disturbed environment. RPSI relaxes requirements on the hardware, environment and operator, and provides an easy-to-use design of an interferometer.

  14. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹ ,²⁴¹Pu and ²³⁵ ,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  15. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11.

    PubMed

    Brack, T L; Delaney, J K; Atkinson, G H; Albeck, A; Sheves, M; Ottolenghi, M

    1993-08-01

    The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data. The resonance Raman spectrum of ground-state BR6.11, measured with low-energy, 560-nm excitation, is significantly different from the spectrum of native BR-570, thus confirming that the

  16. Stability assessments on luminescent down-shifting molecules for UV-protection of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gheno, Alexandre; Trigaud, Thierry; Bouclé, Johann; Audebert, Pierre; Ratier, Bernard; Vedraine, Sylvain

    2018-01-01

    In this work the use of a S-tetrazine (NITZ) molecule with down-shifting capability to improve the stability of perovskite solar cells is reported. Indeed perovskite solar cells are known to present a high sensitivity to UV light and one strategy to overcome this issue is to actually supress the UV from the illumination light. The NITZ down-shifting molecule is well suited for this application since it has the particularity to be excited in the near-UV region and to emit into the visible light spectrum, giving the possibility to recycle UV photons for additional current generation. Through current-voltage curves, incident-photon-to-electron conversion efficiency, and photoluminescence spectroscopy characterization we show that NITZ presents an emission quantum yield of 30% which allows to reduce the loss of JSC induced by the use of a conventional UV filter, even if a net gain in photocurrent is not achieved in our case. We also present a simple prediction of the ability of a down-shifting molecule to efficiently perform for a specific active material. Moreover, we finally discuss the possibility to improve using such down-shifting strategy, the performance of some perovskite solar cells based on alternatives electron-transporting layers such as WO3, which are known to alter the active layer performance following UV light absorption.

  17. Frequency up-shift in the stimulated thermal scattering under two-photon absorption in liquids and colloids of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Smetanin, I. V.; Erokhin, A. I.; Baranov, A. N.

    2018-07-01

    We report the results of the experimental and theoretical study of stimulated temperature scattering in toluene and hexane solutions of Ag-nanoparticles, as well as in pure toluene in the two-photon absorption regime. A four-wave mixing scheme with two counter-propagating pump waves of the same frequency is utilised to demonstrate the lasing effect and the amplification of the backscattered anti-Stokes signal. For the first time, we have measured anti-Stokes spectral shifts which turn out to appreciably exceed the Rayleigh line widths in those liquids. It is shown that the amplification effect is provided predominantly by thermally induced coherent polarisation oscillations, while the dynamic interference temperature grating causes the formation of a self-induced optical cavity inside the interaction region.

  18. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  19. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  20. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  1. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae

    2018-07-01

    It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.

  2. C IV absorption-line variability in X-ray-bright broad absorption-line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Chand, Hum; Srianand, Raghunathan; Majumdar, Jhilik

    2014-07-01

    We report the kinematic shift and strength variability of the C IV broad absorption-line (BAL) trough in two high-ionization X-ray-bright quasi-stellar objects (QSOs): SDSS J085551+375752 (at zem ˜ 1.936) and SDSS J091127+055054 (at zem ˜ 2.793). Both these QSOs have shown a combination of profile shifts and the appearance and disappearance of absorption components belonging to a single BAL trough. The observed average kinematic shift of the whole BAL profile resulted in an average deceleration of ˜-0.7 ± 0.1, -2.0 ± 0.1 cm s-2 over rest-frame time-spans of 3.11 and 2.34 yr for SDSS J085551+375752 and SDSS J091127+055054, respectively. To our knowledge, these are the largest kinematic shifts known, exceeding by factors of about 2.8 and 7.8 the highest deceleration reported in the literature; this makes both objects potential candidates to investigate outflows using multiwavelength monitoring of their line and continuum variability. We explore various possible mechanisms to understand the observed profile variations. Outflow models involving many small self-shielded clouds, probably moving in a curved path, provide the simplest explanation for the C IV BAL strength and velocity variations, along with the X-ray-bright nature of these sources.

  3. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pettersson, Håkan

    2018-05-01

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire (NW) arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) NWs, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InP DBRs, an unselective 78% absorption efficiency (72% for NWs without DBRs) is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50°. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work, we calculated optical spectra for InP NWs, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in NWs offers great potential for high-performance photovoltaic applications.

  4. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  5. Super RLuc8: A novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission.

    PubMed

    Rahnama, Somaieh; Saffar, Behnaz; Kahrani, Zahra Fanaei; Nazari, Mahboobeh; Emamzadeh, Rahman

    2017-01-01

    Renilla luciferase is a bioluminescent enzyme which is broadly used as a reporter protein in molecular biosensors. In this study, a novel luciferase with desired light emission wavelength and thermostability is reported. The results indicated that the new luciferase, namely super RLuc8, had a red-shifted spectrum and showed stable light emission. Super RLuc8 showed a 10-fold (p-value=0.0084) increase in the thermostability at 37°C after 20min incubation, in comparison to the native enzyme. The optimum temperature of the mutant increased from 30 to 37°C. Molecular dynamics simulation analysis indicated that the increased thermostability was most probably caused by a better structural compactness and more local rigidity in the regions out of the emitter site. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hyperfine structure and isotope shift of /sup 208/Bi in the 3067-A resonance line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamontagne, J.J.

    1982-01-01

    The hyperfine structure of /sup 208/Bi (I = 5) was measured using the 3067 A spectral line from the 6p/sup 2/7s (/sup 4/P/sub 1/2/) - 6p/sup 3/ (/sup 4/S/sub 3/2/) transition. After production of the isotope at the Princeton University Cyclotron, chemical separation, and mass separation, some 10/sup 12/ atoms were used to produce an absorption spectrum. The monochromator, Czerny-Turner design), had a 9.1 m focal length with a 25 cm diffraction grating used in autocollimation near 63/sup 0/. The spectrum was recorded on photographic plates. Measurements were made of the position of the components. From these the value /supmore » 208/A (/sup 4/P/sub 1/2) = 166 (1.5) mK was obtained. Neglecting hyperfine anomalies this gives /sup 208/A (/sup 4/S/sub 3/2/) = 15.07 (.1). The isotope shift /sup 208/Bi-/sup 208/Bi was measured to be 50.58 (7.5) mK.« less

  7. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  8. Normal mode analysis of isotopic shifts in Raman spectrum of TNT-d5

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Tzeng, Nianfeng; Liu, Yucheng; Junk, Thomas

    2017-09-01

    A combined experimental-computational study was conducted on the Raman spectrum of TNT-d5 in the present study. It was found that among the 24 hybrid density functional theory (DFT) methods, O3LYP, tHCTHhyb, and B3LYP simulations yielded the strongest Raman bands which were closest to those measured from experiments. Simulations of hybrid DFT methods did not show that deuterium replacements alter orientations of 2- and 6-nitro with respect to phenyl ring, considering a larger size of the methyl group. However, the deuterium replacements apparently changed the reduced masses for all deuterium related vibrations. Although no difference of structural parameters was shown between TNT and its deuterated analogue, discrepancy was indicated in vibrational zero energy from our simulations. O3LYP simulation exhibited 24 deuterium involved vibrations, which were coupled into seven Raman bands of TNT-d5. This phenomenon can account for the experimental Raman band shifts or split of TNT-d5 when compared with the corresponding bands of TNT. The present study and its outcomes provide in-depth microchemical insights of Raman characteristics of TNT and may facilitate the design of nano-structures of SERS substrates for detection of TNT and its degradation products. All intensities displayed in this study were calculated from numerical simulations.

  9. Selective optical contacting for solar spectrum management

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Chen, Weijian; Wang, Bo; Zhang, Zhilong; Huang, Shujuan; Shrestha, Santosh; Wen, Xiaoming; Patterson, Robert; Conibeer, Gavin

    2017-02-01

    Solar spectrum management using up/down conversion is an important method to improve the photovoltaic energy conversion efficiency. It asks for a monochromatic luminescence absorption at the band edge of the photovoltaic device to reduce both the sub-band-gap and over-band-gap energy losses. Here, we demonstrate an energy selective optical contacting concept to improve the luminescence transfer efficiency for spectrum management. By increasing both the luminescence emission and re-absorption ability through photonic resonance, an efficient photon transfer channel could be established between the luminescence emitter and the photovoltaic component in a near-field region. This concept is not only able to compensate the insufficient band edge absorption ability of the photovoltaic device, but also to break the far-field limitation of luminescence radiation. The energy selection on the optical spectrum naturally imposed by the mode resonance is also helpful to improve the monochromaticity of the luminescence yield. In this paper, a photonic crystal cavity is used to realize the optical contacting concept between a thin silicon film and spectrum converter. The optical power and photon flux transferred between different components are calculated analytically using the electromagnetic Green's function. The corresponding radiative dipole moment is estimated by the fluctuation-dissipation theorem. The example shows an over 80 times enhancement in the luminescence absorbance by the silicon layer, illustrating the great potential of this concept to be applied on nano-structured photovoltaic devices.

  10. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  11. Molecular dynamics simulation and TDDFT study of the structures and UV-vis absorption spectra of MCT-β-CD and its inclusion complexes.

    PubMed

    Lu, Huijuan; Wang, Yujiao; Xie, Xiaomei; Chen, Feifei; Li, Wei

    2015-01-01

    In this research, the inclusion ratios and inclusion constants of MCT-β-CD/PERM and MCT-β-CD/CYPERM inclusion complexes were measured by UV-vis and fluorescence spectroscopy. The inclusion ratios are both 1:1, and the inclusion constants are 60 and 342.5 for MCT-β-CD/PERM and MCT-β-CD/CYPERM, respectively. The stabilities of inclusion complexes were investigated by MD simulation. MD shows that VDW energy plays a vital role in the stability of inclusion complex, and the destruction of inclusion complex is due to the increasing temperature. The UV-vis absorption spectra of MCT-β-CD and its inclusion complexes were studied by time-dependent density functional theory (TDDFT) method employing BLYP-D3, B3LYP-D3 and M06-2X-D3 functionals. BLYP-D3 well reproduces the UV-vis absorption spectrum and reveals that the absorption bands of MCT-β-CD mainly arise from n→π(∗) and n→σ(∗) transition, and those of inclusion complexes mainly arise from intramolecular charge transfer (ICT). ICT results in the shift of main absorption bands of MCT-β-CD. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    NASA Astrophysics Data System (ADS)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz < 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  13. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    PubMed

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  14. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  15. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  16. Infrared spectrum analysis of the dissociated states of simple amino acids.

    PubMed

    Sebben, Damien; Pendleton, Phillip

    2014-11-11

    In this work, we present detailed analyses of the dissociation of dilute aqueous solutions of glycine and of lysine over the range 1spectrum subtraction methods, we obtained ATR-IR spectra of the solvated species as a function of pH. Discernible changes in the ionic species were identified in the absorption region between 1800 and 1100 cm(-1). By applying peak deconvolution techniques to the spectra, we correctly interpret the apparent peak shift from 1615 to 1600 cm(-1) as being due to the receding NH3+ asymmetric deformation alongside the appearing COO- asymmetric stretching. The effect of aqueous solution environment was also investigated in terms of 10 and 100 mmol/L NaCl. Salt solution spectra at each pH were also subtracted from each solution phase spectrum. Analysis of the deconvoluted peak areas due to CO and COO- at pH ranges<4.5 and those due to NH2 and NH3+ for pH>8 resulted in consistent pKa values for the amino acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Absorption spectrum of the firefly luciferin anion isolated in vacuo.

    PubMed

    Støchkel, Kristian; Milne, Bruce F; Brøndsted Nielsen, Steen

    2011-03-24

    The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 μs and up to 3 ms) and on a short time scale (0-3 μs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.

  18. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    NASA Astrophysics Data System (ADS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-02-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μm IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ˜15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ˜15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  19. Pressure Swing Absorption Device and Process for Separating CO{sub 2} from Shifted Syngas and its Capture for Subsequent Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirkar, Kamalesh; Jie, Xingming; Chau, John

    Using the ionic liquid (IL) 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]) as the absorbent on the shell side of a membrane module containing either a porous hydrophobized ceramic tubule or porous hydrophobized polyether ether ketone (PEEK) hollow fiber membranes, studies for CO{sub 2} removal from hot simulated pre-combustion shifted syngas were carried out by a novel pressure swing membrane absorption (PSMAB) process. Helium was used as a surrogate for H{sub 2} in a simulated shifted syngas with CO{sub 2} around 40% (dry gas basis). In this cyclic separation process, the membrane module was used to achieve non-dispersive gas absorption from a high-pressure feedmore » gas (689-1724 kPag; 100-250 psig) at temperatures between 25-1000C into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by among other cycle steps controlled desorption of the absorbed gases from the liquid in the rest of the cycle. Two product streams were obtained, one He-rich and the other CO{sub 2}-rich. Addition of polyamidoamine (PAMAM) dendrimer of generation 0 to IL [bmim][DCA] improved the system performance at higher temperatures. The solubilities of CO{sub 2} and He were determined in the ionic liquid with or without the dendrimer in solution as well as in the presence or absence of moisture; polyethylene glycol (PEG) 400 was also studied as a replacement for the IL. The solubility selectivity of the ionic liquid containing the dendrimer for CO{sub 2} over helium was considerably larger than that for the pure ionic liquid. The solubility of CO{sub 2} and CO{sub 2}-He solubility selectivity of PEG 400 and a solution of the dendrimer in PEG 400 were higher than the corresponding ones in the IL, [bmim][DCA]. A mathematical model was developed to describe the PSMAB process; a numerical solution of the governing equations described successfully the observed performance of the PSMAB process for the pure ionic liquid-based system.« less

  20. A Ferrocene-Quinoxaline Derivative as a Highly Selective Probe for Colorimetric and Redox Sensing of Toxic Mercury(II) Cations

    PubMed Central

    Zapata, Fabiola; Caballero, Antonio; Molina, Pedro; Tarraga, Alberto

    2010-01-01

    A new chemosensor molecule 3 based on a ferrocene-quinoxaline dyad recognizes mercury (II) cations in acetonitrile solution. Upon recognition, an anodic shift of the ferrocene/ferrocenium oxidation peaks and a progressive red-shift (Δλ = 140 nm) of the low-energy band, are observed in its absorption spectrum. This change in the absorption spectrum is accompanied by a colour change from orange to deep green, which can be used for a “naked-eye” detection of this metal cation. PMID:22163528

  1. Effect of algae and water on water color shift

    NASA Astrophysics Data System (ADS)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  2. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  3. Molecular design of TiO2 for gigantic red shift via sublattice substitution.

    PubMed

    Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun

    2010-11-01

    The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.

  4. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.; Harker, K. J.

    1974-01-01

    Predictions of the backscatter spectrum, including effects of ionospheric inhomogeneity, are compared with experimental observations of incoherent backscatter from an artificially heated region. Our calculations show that the strongest backscatter echo received is not from the reflection level, but from a region some distance below. Certain asymmetrical features are explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several satellite peaks accompanying them.

  5. A progressive model for teaching children with autism to follow gaze shift.

    PubMed

    Gunby, Kristin V; Rapp, John T; Bottoni, Melissa M

    2018-06-06

    Gunby, Rapp, Bottoni, Marchese and Wu () taught three children with autism spectrum disorder to follow an instructor's gaze shift to select a specific item; however, Gunby et al. used different types of prompts with each participant. To address this limitation, we used a progressive training model for increasing gaze shift for three children with autism spectrum disorder. Results show that each participant learned to follow an adult's shift in gaze to make a correct selection. In addition, two participants displayed the skill in response to a parent's gaze shift and with only social consequences; however, the third participant required verbal instruction and tangible reinforcement to demonstrate the skill outside of training sessions. © 2018 Society for the Experimental Analysis of Behavior.

  6. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    PubMed

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  7. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m < 0 exciton states is first red-shifted and then blue-shifted with increasing the magnetic field strength B. This is attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  8. Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei

    2016-11-01

    We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} < 0.06 + 0.05 (1σ ) derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) < 10-20 mK2 over a range of k from 0.5 to 2.0 h Mpc-1, with the exact limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.

  9. Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W. M.

    2012-01-01

    One critical issue for noninvasive imaging of transplanted bioluminescent cells is the large amount of light absorption in tissue when emission wavelengths below 600 nm are used. Luciferase with a red-shifted spectrum can potentially bypass this limitation. We assessed and compared a mutant of firefly luciferase (Ppy RE9, PRE9) against the yellow luciferase luc2 gene for use in cell transplantation studies. C17.2 neural stem cells expressing PRE9-Venus and luc2-Venus were sorted by flow cytometry and assessed for bioluminescence in vitro in culture and in vivo after transplantation into the brain of immunodeficient Rag2-/- mice. We found that the luminescence from PRE9 was stable, with a peak emission at 620 nm, shifted to the red compared to that of luc2. The emission peak for PRE9 was pH-independent, in contrast to luc2, and much less affected by tissue absorbance compared to that of luc2. However, the total emitted light radiance from PRE9 was substantially lower than that of luc2, both in vitro and in vivo. We conclude that PRE9 has favorable properties as compared to luc2 in terms of pH independence, red-shifted spectrum, tissue light penetration, and signal quantification, justifying further optimization of protein expression and enzymatic activity.

  10. Extreme Variability in a Broad Absorption Line Quasar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Daniel; Jun, Hyunsung D.; Graham, Matthew J.

    CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar withmore » extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.« less

  11. Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters.

    PubMed

    Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem

    2009-05-01

    We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.

  12. Spectroscopic Measurement of LEAD-204 Isotope Shift and LEAD-205 Nuclear Spin.

    NASA Astrophysics Data System (ADS)

    Schonberger, Peter

    The isotope shift of ('204)Pb and the nuclear spin of 1.4 x 10('7)-y ('205)Pb was determined from a high -resolution optical measurement of the 6p('2) ('3)P(,o) -6p7s('3)P(,1)('o) 283.3-nm resonance line. The value of the shift, relative to ('208)Pb is -140.2(8) x 10('-3)cm(' -1), the negative sign indicating a shift to lower wave numbers. The precision is 3-4 times greater than that of previous measurements. The spin of ('205)Pb l = 5/2 was obtained from the measurement of the relative intensities of its three hyperfine components. This method of absorption spectroscopy determination of ground state nuclear spin is applicable to any stable or longlived isotope. High resolution optical absorption spectra were obtained with a 25.4cm diffraction grating in a 9.1m focal length Czerny-Turner spectrometer. A signal-averaging scanning technique was used to record the spectra. Increased precision in the isotope shift measurement was attained by using separated isotope samples of ('204)Pb and ('207)Pb. A controlled amount of the later was incorporated in the absorption cell to provide internal calibration by its 6p7s ('3)P(,1)('o) hfs separation. Absorption spectra were recorded for several optical thicknesses of the absorber. A single spin value of increased precision was derived from the entire set of combined data.

  13. A measurement of the width and shift of the Fe I 3719.94 A line broadened by helium. [for stellar atmosphere studies

    NASA Technical Reports Server (NTRS)

    Driver, R. D.; Lombardi, G.

    1977-01-01

    Results are reported for measurements of the widths and shifts of the overlapping helium-broadened profiles of the Fe I absorption lines at 3719.94 and 3722.56 A, which were performed in a ballistic piston compressor using a saturated solution of FeCl3 in ethanol. It is found that at 4000 K, the 3719.94-A line has a gamma/n (FWHM) value of approximately 5.2 billionths rad/sec per cu cm, the blue shift of this line corresponds to a beta/n value of about 0.49 billionth rad/sec per cu cm, and the 3722.56-A line has the same values. These results are compared with previous experimental determinations and with theoretical calculations of neutral-line broadening for the Fe I lines. The significance of these measurements with respect to the solar spectrum and cool DG white dwarfs is discussed.

  14. Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells

    NASA Astrophysics Data System (ADS)

    Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.

    1995-12-01

    We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.

  15. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential

  16. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  17. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    PubMed

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  18. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  19. Soluble Corn Fiber Increases Calcium Absorption Associated with Shifts in the Gut Microbiome: A Randomized Dose-Response Trial in Free-Living Pubertal Females.

    PubMed

    Whisner, Corrie M; Martin, Berdine R; Nakatsu, Cindy H; Story, Jon A; MacDonald-Clarke, Claire J; McCabe, Linda D; McCabe, George P; Weaver, Connie M

    2016-07-01

    Soluble corn fiber (SCF; 12 g fiber/d) is shown to increase calcium absorption efficiency, associated with shifts in the gut microbiota in adolescent males and females who participated in a controlled feeding study. We evaluated the dose response of 0, 10, and 20 g fiber/d delivered by PROMITOR SCF 85 (85% fiber) on calcium absorption, biochemical bone properties, and the fecal microbiome in free-living adolescents. Healthy adolescent females (n = 28; aged 11-14 y) randomly assigned into a 3-phase, double-blind, crossover study consumed SCF for 4 wk at each dose (0, 10, and 20 g fiber/d from SCF) alongside their habitual diet and were followed by 3-d clinical visits and 3-wk washout periods. Stable isotope ((44)Ca and (43)Ca) enrichment in pooled urine was measured by inductively coupled plasma mass spectrometry. Fecal microbial community composition was assessed by high-throughput sequencing (Illumina) of polymerase chain reaction-amplified 16S rRNA genes. Mixed model ANOVA and Friedman analysis were used to determine effects of SCF on calcium absorption and to compare mean microbial proportions, respectively. Calcium absorption increased significantly with 10 (13.3% ± 5.3%; P = 0.042) and 20 g fiber/d (12.9% ± 3.6%; P = 0.026) from SCF relative to control. Significant differences in fecal microbial community diversity were found after consuming SCF (operational taxonomic unit measures of 601.4 ± 83.5, 634.5 ± 83.8, and 649.6 ± 75.5 for 0, 10, and 20 g fiber/d, respectively; P < 0.05). Proportions of the genus Parabacteroides significantly increased with SCF dose (1.1% ± 0.8%, 2.1% ± 1.6%, and 3.0% ± 2.0% for 0, 10, and 20 g fiber/d from SCF, respectively; P < 0.05). Increases in calcium absorption positively correlated with increases in Clostridium (r = 0.44, P = 0.023) and unclassified Clostridiaceae (r = 0.40, P = 0.040). SCF, a nondigestible carbohydrate, increased calcium absorption in free-living adolescent females. Two groups of bacteria may be

  20. Primordial power spectrum from Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters andmore » the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.« less

  1. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  2. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  3. An absorption profile centred at 78 megahertz in the sky-averaged spectrum.

    PubMed

    Bowman, Judd D; Rogers, Alan E E; Monsalve, Raul A; Mozdzen, Thomas J; Mahesh, Nivedita

    2018-02-28

    After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz. Here we report the detection of a flattened absorption profile in the sky-averaged radio spectrum, which is centred at a frequency of 78 megahertz and has a best-fitting full-width at half-maximum of 19 megahertz and an amplitude of 0.5 kelvin. The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected. Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude. The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.

  4. An absorption profile centred at 78 megahertz in the sky-averaged spectrum

    NASA Astrophysics Data System (ADS)

    Bowman, Judd D.; Rogers, Alan E. E.; Monsalve, Raul A.; Mozdzen, Thomas J.; Mahesh, Nivedita

    2018-03-01

    After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz. Here we report the detection of a flattened absorption profile in the sky-averaged radio spectrum, which is centred at a frequency of 78 megahertz and has a best-fitting full-width at half-maximum of 19 megahertz and an amplitude of 0.5 kelvin. The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected. Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude. The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.

  5. Optical absorption properties of Ge 2–44 and P-doped Ge nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wei; Lu, Wen-Cai; Zhao, Li-Zhen

    The optical absorption properties of non-crystalline and crystalline Ge nanoparticles with the sizes from ~ 2.5 to 15 Å have been studied at the B3LYP/6-31G level using time-dependent density functional theory. Hydrogen passivation and phosphorus doping on some selected Ge nanoparticles were also calculated. With the increase of cluster size, the optical absorption spectra of the non-crystalline Ge nanoparticles change from many peaks to a continuous broad band and at the same time exhibit a systematic red-shift. Doping phosphorus also causes the absorption spectra to shift toward the lower energy region for both non-crystalline and crystalline Ge nanoparticles. The non-crystallinemore » Ge nanoparticles are found to have stronger absorption in the visible region in comparison with the crystalline ones, regardless phosphorus doping.« less

  6. Optical absorption properties of Ge 2–44 and P-doped Ge nanoparticles

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Zhao, Li-Zhen; ...

    2017-09-15

    The optical absorption properties of non-crystalline and crystalline Ge nanoparticles with the sizes from ~ 2.5 to 15 Å have been studied at the B3LYP/6-31G level using time-dependent density functional theory. Hydrogen passivation and phosphorus doping on some selected Ge nanoparticles were also calculated. With the increase of cluster size, the optical absorption spectra of the non-crystalline Ge nanoparticles change from many peaks to a continuous broad band and at the same time exhibit a systematic red-shift. Doping phosphorus also causes the absorption spectra to shift toward the lower energy region for both non-crystalline and crystalline Ge nanoparticles. The non-crystallinemore » Ge nanoparticles are found to have stronger absorption in the visible region in comparison with the crystalline ones, regardless phosphorus doping.« less

  7. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  8. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  9. Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction

    NASA Astrophysics Data System (ADS)

    Mahalik, S. S.; Kundu, M.

    2018-06-01

    Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.

  10. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), 1H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1H-1H homonuclear dipolar couplings and narrow 1H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1H-1H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for

  11. Transmission Spectrum of HAT-P-11b

    NASA Image and Video Library

    2014-09-24

    A plot of the transmission spectrum for exoplanet HAT-P-11b, with data from NASA Kepler, Hubble and Spitzer observatories combined. The results show a robust detection of water absorption in the Hubble data.

  12. ABSORPTION MEASURE DISTRIBUTION IN Mrk 509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.

    2015-12-20

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is tomore » assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 10{sup 8} cm{sup −3}.« less

  13. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    NASA Astrophysics Data System (ADS)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  14. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  15. Dissociation, absorption and ionization of some important sulfur oxoanions (S2On2- n = 2, 3, 4, 6, 7 and 8)

    NASA Astrophysics Data System (ADS)

    Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi

    2015-08-01

    In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.

  16. A multimode vibronic treatment of absorption, resonance Raman, and hyper-Rayleigh scattering of excitonically coupled molecular dimers

    NASA Astrophysics Data System (ADS)

    Myers Kelley, Anne

    2003-08-01

    The linear absorption spectra, resonance Raman excitation profiles and depolarization dispersion curves, and hyper-Rayleigh scattering profiles are calculated for excitonically coupled homodimers of a model electron donor-acceptor "push-pull" conjugated chromophore as a function of dimer geometry. The vibronic eigenstates of the dimer are calculated by diagonalizing the matrix of transition dipole couplings among the vibronic transitions of the constituent monomers. The absorption spectra show the usual red- or blueshifted transitions for J-type or H-type dimers, respectively. When the electronic coupling is large compared with the vibronic width of the monomer spectrum, the dimer absorption spectra exhibit simple Franck-Condon progressions having reduced vibronic intensities compared with the monomer, and the resonance Raman excitation profiles are shifted but otherwise only weakly perturbed. When the coupling is comparable to the vibronic width, the H-dimer absorption spectra exhibit irregular vibronic frequency spacings and intensity patterns and the effects on the Raman excitation profiles are larger. There is strong dispersion in the Raman depolarization ratios for dimer geometries in which both transitions carry oscillator strength. The first hyperpolarizabilities are somewhat enhanced in J-dimers and considerably reduced in H-dimers. These effects on the molecular β will amplify the effects of dimerization on the ground-state dipole moment in electro-optic materials formed from chromophore-doped polymers that must be electric field poled to obtain the net alignment needed for a macroscopic χ(2).

  17. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  18. A plant canopy light absorption model with application to wheat

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.

  19. Investigation of broadening and shift of vapour absorption lines of H{sub 2}{sup 16}O in the frequency range 7184 – 7186 cm{sup -1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadezhdinskii, A I; Pereslavtseva, A A; Ponurovskii, Ya Ya

    2014-10-31

    We present the results of investigation of water vapour absorption spectra in the 7184 – 7186 cm{sup -1} range that is of particular interest from the viewpoint of possible application of the data obtained for monitoring water vapour in the Earth's stratosphere. The doublet of H{sub 2}{sup 16}O near ν = 7185.596 cm{sup -1} is analysed. The coefficients of broadening and shift of water vapour lines are found in the selected range in mixtures with buffer gases and compared to those obtained by other authors. (laser spectroscopy)

  20. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1985-01-01

    Previous attempts to explain the effect of aerosols on satellite measurements of surface properties for the visible and near-infrared spectrum have emphasized the amount of aerosols without consideration of their absorption properties. In order to estimate the importance of absorption, the radiances of the sunlight scattered from models of the earth-atmosphere system are computed as functions of the aerosol optical thickness and absorption. The absorption effect is small where the surface reflectance is weak, but is important for strong reflectance. These effects on classification of surface features, measuring vegetation index, and measuring surface reflectance are presented.

  1. The Spectrum of Thermally Stimulated Surface Plasmon Polaritons of a Linear Sample

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. V.; Nikitin, A. K.; Khasanov, I. Sh.; Trang, Ta Thu

    2017-12-01

    An analytical model of the spectrum of thermally stimulated surface plasmon polaritons (TSSPPs) coming to the edge of a linear conducting sample has been developed. It has been found that the spectrum of such TSSPPs obeys neither the Wien law nor the Stefan-Boltzmann law for thermal radiation. The maximum of this spectrum is shifted to the low-frequency region with respect to the spectrum of the absolutely black body, and the magnitude of the shift is proportional to the sample length. The plasmon nature of the intensity increment of thermal radiation from the edge of a plane face of a duralumin sample has been verified experimentally. It has been shown that the intensity and spectrum of this increment can be controlled both by the sample temperature and by the extension of the face.

  2. The Ultraviolet Spectrum of the Jovian Dayglow

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Dalgarno, A.

    1995-01-01

    The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.

  3. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  4. A mechanism to explain the spectrum of Hessdalen Lights phenomenon

    NASA Astrophysics Data System (ADS)

    Paiva, G. S.; Taft, C. A.

    2012-07-01

    In this work, we present a model to explain the apparently contradictory spectrum observed in Hessdalen Lights (HL) phenomenon. According to our model, its nearly flat spectrum on the top with steep sides is due to the effect of optical thickness on the bremsstrahlung spectrum. At low frequencies self-absorption modifies the spectrum to follow the Rayleigh-Jeans part of the blackbody curve. This spectrum is typical of dense ionized gas. Additionally, spectrum produced in the thermal bremsstrahlung process is flat up to a cutoff frequency, ν cut, and falls off exponentially at higher frequencies. This sequence of events forms the typical spectrum of HL phenomenon when the atmosphere is clear, with no fog.

  5. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  6. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  7. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  8. Interstellar proteins and the discovery of a new absorption feature at lambda = 2800 A

    NASA Astrophysics Data System (ADS)

    Karim, L. M.; Hoyle, F.; Wickramasinghe, N. C.

    1983-07-01

    In order to check the presence of biogenic materials in interstellar grains, the spectra of three early-type, heavily reddened stars recorded by the IUE were examined. These stars showed comparatively weak absorption at 2200 A, minimizing the effect of graphite grains. A broad absorption feature centered on 2800 A is discovered in HD 14250 and interpreted to be due to the amino acid tryptophan. Comparison of the spectrum with that of the calculated extinction behavior of graphite spheres of radii 0.02 microns suggests that the latter are not responsible for the observed spectrum.

  9. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-mass X-Ray Binary 1A 1744-361

    NASA Astrophysics Data System (ADS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-07-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT ~ 1.0 keV) plus power law (Γ ~ 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 ± 0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2-1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km s-1. We find an equivalent width for the line of 27+2 - 3 eV, from which we determine a column density of (7 ± 1) × 1017 cm-2 via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm s-1. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source.

  10. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  11. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  12. Effects on the magnetic and optical properties of Co-doped ZnO at different electronic states

    NASA Astrophysics Data System (ADS)

    Huo, Qingyu; Xu, Zhenchao; Qu, Linfeng

    2017-12-01

    Both blue and red shifts in the absorption spectrum of Co-doped ZnO have been reported at a similar concentration range of doped Co. Moreover, the sources of magnetism of Co-doped ZnO are controversial. To solve these problems, the geometry optimization and energy of different Co-doped ZnO systems were calculated at the states of electron spin polarization and nonspin polarization by adopting plane-wave ultra-soft pseudopotential technology based on density function theory. At the state of electron nonspin polarization, the total energies increased as the concentration of Co-doped increased. The doped systems also became unstable. The formation energies increased and doping became difficult. Furthermore, the band gaps widened and the absorption spectrum exhibited a blue shift. The band gaps were corrected by local-density approximation + U at the state of electron spin polarization. The magnetic moments of the doped systems weakened as the concentration of doped Co increased. The magnetic moments were derived from the coupling effects of sp-d. The band gaps narrowed and the absorption spectrum exhibited a red shift. The inconsistencies of the band gaps and absorption spectrum at the states of electron spin polarization and nonspin polarization were first discovered in this research, and the sources of Co-doped ZnO magnetism were also reinterpreted.

  13. Nitrogen-Pressure Shifts in the v3 Band of Methane Measured at Several Temperatures between 300 and 90 K

    NASA Technical Reports Server (NTRS)

    Tumuhimbise, Anthony T.; Hurtmans, Daniel; Mantz, Arlan W.; Mondelain, Didier

    2008-01-01

    Remote sensing of the Earth's atmosphere requires accurate knowledge of spectroscopic line parameters for the molecules investigated. Knowledge of the temperature dependence of these parameters is also essential if agreement, at the noise level, between calculated and experimental data is to be achieved. The authors recently published results of nitrogen broadening measurements in the v3 band of 12CH4 using the 5.37 m long absorption path length all-copper Herriott cell. The temperature dependent line parameters determined in the laboratory were applied to fit a portion of the atmospheric spectrum recorded with a balloon-borne remote sensing FTIR instrument, called the Limb Profile Monitor of the Atmosphere, and operating in absorption against the sun. Since the authors had a relatively complete series of data for the P(9) transition in the v3 band of 12CH4, the A2 1 as well as the F2 1, F1 1 and A1 1 lines recorded at different pressures and at four temperatures between 300 and 90 K, we reanalyzed the data to derive pressure shift information at different temperatures. The temperatures for which data were collected and analyzed are 298, 140 and 90K. The high precision pressure shift data obtained here over a large range of temperature demonstrate the ability of our experimental arrangement to address specific questions on a given spectral window like in the balloon experiment or in a satellite project, for example.

  14. Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths.

    PubMed

    Ajay, Akhil; Blasco, Rodrigo; Polaczynski, Jakub; Spies, Maria; den Hertog, Martien; Monroy, Eva

    2018-06-27

    In this paper, we study intersubband characteristics of GaN/AlN and GaN/Al0.4Ga0.6N heterostructures in GaN nanowires structurally designed to absorb in the mid-infrared wavelength region. Increasing the GaN well width from 1.5 to 5.7 nm leads to a red shift of the intersubband absorption from 1.4 to 3.4 µm. The red shift in larger quantum wells is amplified by the fact that one of the GaN/AlN heterointerfaces (corresponding to the growth of GaN on AlN) is not sharp but rather a graded alloy extending around 1.5-2 nm. Using AlGaN instead of AlN for the same barrier dimensions, we observe the effects of reduced polarization, which blue shifts the band-to-band transitions and red shifts the intersubband transitions. In heavily doped GaN/AlGaN nanowires, a broad absorption band is observed in the 4.5-6.4 µm spectral region. © 2018 IOP Publishing Ltd.

  15. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  16. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  17. EFFECTS OF LASER RADIATION ON MATTER: Photoinduced absorption in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ponomar', V. V.

    1990-08-01

    A dependence of the absorption coefficient on the optical radiation intensity in the range 10 - 5 - 1 W/cm2 was observed for chalcogenide glasses at a photon energy less than the band gap of the material. The absorption coefficient depended on the irradiation time. In the case of arsenic sulfide in the range 1.6-1.7 eV an absorption peak was observed at intensities of the order of 10 - 3 W/cm2. In this part of the spectrum the absorption probably involved metastable As-As, S-Se, and Se-Se "defect" bonds and was similar to the photoinduced degradation of hydrogenated amorphous silicon.

  18. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1973-01-01

    Predictions of the backscatter spectrum are compared, including effects of ionospheric inhomogeneity with experimental observations of incoherent backscatter from an artificially heated region. Calculations show that the strongest backscatter echo received is not, in fact, from the reflection level, but from a region some distance below (about 0.5 km for an experiment carried out at Arecibo), where the pump wave from a HF transmitter approximately 100 kW) is below the threshold for parametric amplification. By taking the standing wave pattern of the pump into account, asymmetry is explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several peaks typically observed in the region of the spectrum near the HF transmitter frequency.

  19. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which rendermore » it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful

  20. [The Lambert-Beer's law characterization of formal analysis in Terahertz spectrum quantitative testing].

    PubMed

    Su, Hai-Xia; Zhang, Zhao-Hui; Zhao, Xiao-Yan; Li, Zhi; Yan, Fang; Zhang, Han

    2013-12-01

    The present paper discusses the Lambert-Beer' s law application in the terahertz spectrum, studies the single amino acid tablet sample (glutamine) and two kinds of amino acids mixture tablet (threonine and cystine) under the condition of different concentrations. Absorbance and absorption coefficient was analyzed in the description of the terahertz optical properties of matter. By comparing absorption coefficient and absorbance value of the single component in the vicinity of 1. 72 THz, we verified the material under two kinds of absorption characterization of quantity of THz wave absorption along with the change in the concentration. Using the index of goodness of fit R , it studied the stand or fall of linear relationship between the terahertz absorption quantity of material and concentration under two kinds of representation. This paper analyzes the two components mixture under two kinds of absorption characterization of quantity of terahertz absorption in 0. 3-2. 6 THz. Using the similarity co- efficient and the estimate concentration error as evaluation index, it has been clear that the absorbance of additivity instead of the absorption coefficient should be used during the terahertz spectrum quantitative test, and the Lambert-Beer's law application in the terahertz wave band was further clarified.

  1. NMR Spectroscopy Using a Chiral Lanthanide Shift Reagent to Assess the Optical Purity of 1-Phenylethylamine

    NASA Astrophysics Data System (ADS)

    Viswanathan, Tito; Toland, Alan

    1995-10-01

    Enantiomeric forms of 1-phenylethylamine cannot be distinguished by 1H or 13C-NMR because the groups attached to the stereocenter are in an enantiopic environment. However, the chemical shifts of the protons in the groups attached to the stereocenter can be differentially altered to appear as distinct peaks in the NMR spectrum. This is accomplished by the use of a commercially available chiral lanthanide shift reagent, Yb(tfC)3. The NMR spectrum after the addition of a chiral shift reagent allows one to assess the optical purity of the sample.

  2. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  3. Plant Growth Absorption Spectrum Mimicking Light Sources

    PubMed Central

    Jou, Jwo-Huei; Lin, Ching-Chiao; Li, Tsung-Han; Li, Chieh-Ju; Peng, Shiang-Hau; Yang, Fu-Chin; Justin Thomas, K. R.; Kumar, Dhirendra; Chi, Yun; Hsu, Ban-Dar

    2015-01-01

    Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants. PMID:28793503

  4. Attentional Shifts between Audition and Vision in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Occelli, Valeria; Esposito, Gianluca; Venuti, Paola; Arduino, Giuseppe Maurizio; Zampini, Massimiliano

    2013-01-01

    Previous evidence on neurotypical adults shows that the presentation of a stimulus allocates the attention to its modality, resulting in faster responses to a subsequent target presented in the same (vs. different) modality. People with Autism Spectrum Disorders (ASDs) often fail to detect a (visual or auditory) target in a stream of stimuli after…

  5. Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle

    NASA Astrophysics Data System (ADS)

    Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing

    2018-06-01

    Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.

  6. Laser Irradiated Foam Targets: Absorption and Radiative Properties

    NASA Astrophysics Data System (ADS)

    Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.

    2018-01-01

    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.

  7. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  8. Comparing the VIRTIS Spectrum of 67P/Churyumov-Gerasimenko to Wild 2 and in Primitive Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Flynn, George

    2016-04-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, a point spectrometer with high spectral resolution covering the range from 2 to 5 microns, on the ESA Rosetta spacecraft obtained spectra of the surface of Comet 67P/Churyumov-Gerasimenko. The spectral region covered by VIRTIS has been well studied in meteorites, interplanetary dust particles (IDPs) collected by NASA from the Earth's stratosphere, and the samples of Comet 81P/Wild 2 that were delivered to Earth by the NASA Stardust spacecraft. Infrared spectra of the nucleus of Comet 67P/Churyumov-Gerasimenko acquired by VIRTIS show a broad absorption band observed at ~3.3 μm, a region of the spectrum where C-H, O-H, and N-H stretching features occur (Capaccioni et al., 2015). This broad feature is similar to the O-H feature exhibited by hydrous minerals, but shifted to a significantly longer wavelength. Capaccioni et al. (2015) compared the VIRTIS spectra to laboratory spectra of carbonaceous chondrite meteorites of the CI, CM, and CR types and concluded that none of the typical features of these meteorite spectra are compatible with the spectra of the surface of 67P/Churyumov-Gerasimenko. Comparison of VIRTIS spectra of 67P/ Churyumov-Gerasimenko to the laboratory spectra of well-characterized extraterrestrial materials including the Wild 2 dust and the IDPs, a significant fraction of which are believed to be cometary, could aid in the interpretation of the 67P/Churyumov-Gerasimenko spectra. None of the Wild 2 particles examined by infrared spectroscopy exhibit an O-H feature, but this may be due to the high temperature reached during their capture in the aerogel collection medium. The O-H feature is also absent in all anhydrous IDPs. The hydrous IDPs exhibit varying strengths of both aliphatic C-H absorption features and the O-H absorption feature, but, as with the meteorites, the O-H feature occurs at a significantly shorter wavelength than the broad feature detected in 67P

  9. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  10. Recent developments in luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  11. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  12. The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1998-01-01

    Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  13. Broadband superior electromagnetic absorption of a discrete-structure microwave coating

    NASA Astrophysics Data System (ADS)

    Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin

    2016-10-01

    A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.

  14. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Herbicidal Spectrum, Absorption and Transportation, and Physiological Effect on Bidens pilosa of the Natural Alkaloid Berberine.

    PubMed

    Wu, Jiao; Ma, Jing-Jing; Liu, Bo; Huang, Lun; Sang, Xiao-Qing; Zhou, Li-Juan

    2017-08-02

    Berberine is a natural herbicidal alkaloid from Coptis chinensis Franch. Here we characterized its herbicidal spectrum and absorption and transportation in the plant, along with the possible mechanism. Berberine showed no effect on the germination of the 10 tested plants. The IC 50 values of berberine on the primary root length and fresh weight of the 10 tested plants ranged from 2.91 to 9.79 mg L -1 and 5.76 to 35.07 mg L -1 , respectively. Berberine showed a similar herbicidal effect on Bidens pilosa as the commercial naturally derived herbicide cinmethylin. HPLC and fluorescence analysis revealed that berberine was mainly absorbed by B. pilosa root and transported through vascular bundle acropetally. Enzyme activity studies, GC-MS analysis, and SEM and TEM observations indicated that berberine might first function on the cell membrane indicated by variation of the IUFA percent and then cause POD, PPO, and SOD activity changes and cellular structure deformity, which was eventually expressed as the decrease of cell adaptation ability and abnormal cell function and may even result in cell death. Environmental safety evaluation tests revealed that berberine was low in toxicity to Brachydanio rerio. These indicate that berberine has the potential to be a bioherbicide and/or a lead molecule for new herbicides.

  16. Io: Near-Infrared Absorptions Not Attributable to SO2

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Clark, R. N.; Soderblom, L. A.; Carlson, R. W.; Kamp, L. W.; Galileo NIMS Team

    2001-11-01

    The Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft imaged the leading side of Jupiter's satellite Io at full spectral resolution and with triple Nyquist spatial sampling during the fifteenth orbital encounter (E15). New despiking and "dejittering" algorithms have been applied to this high S/N observation (15INHRSPEC01A). Spectral absorption features not attributable to SO2 are found between 3.0-3.4 microns and near 4.65 microns. The patterns of the spatial distributions of both absorbers differ from that of the omnipresent SO2. The broad 3.0-3.4 micron absorption is most pronounced in polar regions. Preliminary work suggests that the 4.65 micron feature may be associated with an unidentified sulfate mineral, while the 3.0-3.4 micron feature may result from the presence of more than one absorbing material. Hydrogen-bearing species are likely candidates. For example, H2O ice provides a good match for the absorption near 3.2 microns, but the absorption is shifted to wavelengths longer than that in pure H2O ice. If only one absorber is present, then hydrogen bonding of small numbers of H2O molecules could perhaps account for the shift. The absorption is weak; if H20 related, optical path lengths of a fraction of a micron are indicated. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  18. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  19. Simulations of absorption spectra of conjugated oligomers: role of planar conformation and aggregation in condensed phase

    NASA Astrophysics Data System (ADS)

    Yuan, Xiang-Ai; Wen, Jin; Zheng, Dong; Ma, Jing

    2018-04-01

    This Review highlights the structure/property relationship underlying the morphology modulation through various factors towards the exploration of light-absorbing materials for efficient utilisation of solar power. Theoretical study using a combination of molecular dynamics imulations and the time-dependent density functional theory demonstrated that the planarity plays an important role in tuning spectral properties of oligomer aggregates. The aggregation-induced blue-shift in absorption spectra of oligothiophenes and the red-shift for oligofluorenols were rationalised in a unified way from the reduced (and increased) content of planar conformations in molecular aggregates. The planarity versus non-planarity of oligomers can be modulated by introduction of alkyl side chain or steric bulky substituents. The substitution with various groups in the ortho-position of azobenzene leads to the distorted backbone, breaking symmetry, and hence the red-shift in spectra, expanding the application in biological systems with visible light absorption. The donor-acceptor substituent groups in conjugated oligomers can increase the degree of planarity, electron delocalisation and polarisation, and charge separation, giving rise to the red-shift in spectra and enhancement in polarisability and charge mobility for device applications. The solvent dependent and pH-sensitive properties and intramolecular hydrogen bonds also caused the shift of absorption spectra with the appearance of planar conformers.

  20. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    NASA Astrophysics Data System (ADS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  1. Nitryl chloride (ClNO2): UV/vis absorption spectrum between 210 and 296 K and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Roberts, James M; Burkholder, James B

    2012-06-21

    Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200–475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200–370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.

  2. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang

    2016-12-01

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  3. Two-photon absorption resonance in 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP)

    NASA Astrophysics Data System (ADS)

    Miniewicz, Andrzej; Delysse, Stéphane; Nunzi, Jean-Michel; Kajzar, François

    1998-04-01

    A two-photon absorption spectrum of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) in tetrahydrofuran solution has been studied by the Kerr ellipsometry technique. The spectral shape and amplitude of the imaginary part of the dominant molecular hyperpolarizability term Im( γXXXX) is compared with the relevant linear absorption spectrum within a simple two-level model. Agreement between the measured γXXXX=2.0×10 -48 m 5 V -2 and calculated γXXXX=(1.2-1.5)×10 -48 m 5 V -2 two-photon absorption molecular hyperpolarizabilties in the vicinity of the two-photon resonance transition is satisfactory.

  4. Dependence of the electronic absorption spectra of aqueous solutions of iodine monochloride on the conditions of dilution and storage time

    NASA Astrophysics Data System (ADS)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2017-04-01

    The electronic absorption spectra of aqueous solutions of iodine monochloride ICl are studied. The spectra of as-prepared solutions display the absorption band associated with hydrated ICl molecules. An additional band indicating that molecular iodine was formed in the solution emerges in the spectrum as dissolution takes place. Only the band belonging to iodine monochloride remains in the absorption spectra, and no additional bands appear after chloride anions Cl- are added to the solution. The absorption spectrum becomes more complex when ICl is dissolved in an alkaline medium. The band belonging to molecular iodine emerges in the spectra at low alkali concentrations, while being transformed to other shorter-wavelength bands at high alkali concentrations (pH ≥ 12).

  5. Intersubband absorption of p-type wurtzite GaN/AlN quantum well for fiber-optics telecommunication

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong

    2017-11-01

    The intersubband transition of wurtzite (WZ) p-type GaN/AlN quantum well (QW) structures grown on GaN substrate was investigated theoretically using the multiband effective-mass theory. The peak value of the TE-polarization absorption spectrum is found to be similar to that of the TM-polarization absorption spectrum. The absorption coefficients for TE- and TM-polarizations are mainly attributed to the absorption from the ground state (m1 = 1) because holes are mainly confined in ground states near the band-edge in an investigated range of the carrier density. We observe that a transition wavelength of 1.55 μm can be obtained for the QW structure with a relatively thin (˜16 Å) well width. Thus, we expect that a p-type WZ AlN/GaN heterostructure is applicable for a photodetector application for fiber-optic communications with normal incidence of wave.

  6. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  7. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    PubMed

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  8. Abnormal blueshift of the absorption edge in graphene nanodots

    NASA Astrophysics Data System (ADS)

    Sheng, Weidong

    2018-06-01

    In a conventional semiconductor, when the dielectric screening effect is suppressed, the exciton binding energy increases and the corresponding excitonic transition would exhibit a redshift in the spectrum. In this work, I study the optical properties of hexagonal graphene nanodots by using a configuration interaction approach and reveal that the edge of the absorption spectrum shows an abnormal blueshift as the environmental dielectric constant ɛr decreases. The two dominant many-body effects in the nanodot: the quasiparticle and excitonic effects are both found to scale almost linearly with ɛr-1. The former is shown to have a larger proportionality constant and thus accounts for the blueshift of the absorption edge. In contrast to the long-range Coulomb interaction, the on-site Coulomb energy is found to have a negative impact on the bright excitonic states. In the presence of a strong dielectric screening effect, a strong short-range Coulomb interaction is revealed to be responsible for the disintegration of the bright exciton.

  9. Einstein X-ray observations of QSO's with absorption-line systems

    NASA Technical Reports Server (NTRS)

    Junkkarinen, V. T.; Marscher, A. P.; Burbidge, E. M.

    1982-01-01

    The detection of X-ray emission from eight QSO's is reported, plus an upper limit to the X-ray flux from one QSO, using the Einstein X-ray Observatory (HEAO-2). Each object in the sample contains at least one absorption-line system that has been identified in its optical spectrum. The present results are combined with those of other investigators to form a sample of 44 absorption-line QSO's (with 2 sub e greater than 1.2) which have been observed in the X-ray. This sample cannot be distinguished, in terms of X-ray properties, from one which consists of QSO's in which no absorption systems have been identified. These results are consistent with extrinsic models for absorption-line clouds, as well as with current versions of intrinsic models.

  10. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  11. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene; Wagner, William J. (Technical Monitor)

    2003-01-01

    This grant supported the research and publication of a major 26-page paper in The Astrophysical Journal, by Fontenla, Avrett, & Loeser (2002): 'Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion.' This paper extended our previous modeling of the chromosphere-corona transition region to include cases with particle and mass flows. Inflows and outflows were shown to produce striking changes in the profiles of hydrogen and helium lines. An important conclusion is that line shifts are much less significant than the changes in line intensity and central reversal due to the influence of flows on the excitation and ionization of atoms in the solar atmosphere. This modeling effort at SAO is the only current one being undertaken anywhere to simulate in detail the full range of non-LTE absorption, emission, and scattering processes in the solar atmosphere to account for the entire solar spectrum from radio waves to X-rays. This effort is being continued with internal SAO funding at a relatively slow pace. Further NASA support in the future would yield results of great value for the interpretation of solar observations from NASA spacecraft.

  12. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-24

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  13. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  14. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  15. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  16. Inner filter effect and the onset of concentration dependent red shift of synchronous fluorescence spectra.

    PubMed

    Tarai, Madhumita; Mishra, Ashok Kumar

    2016-10-12

    The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2

    NASA Astrophysics Data System (ADS)

    Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.

    2003-03-01

    Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.

  18. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan

    2015-11-01

    Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.

  19. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    PubMed

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-29

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σ p and σ m ). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.

  20. The extreme wings of atomic emission and absorption lines. [in low pressure gases

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Sando, K. M.

    1973-01-01

    Consideration of the extreme wings of atomic and molecular emission and absorption lines in low pressure gases. Classical and semiclassical results are compared with accurate quantal calculations of the self-broadening of Lyman-alpha in the hydrogen absorption spectrum that arises from quasimolecular transition. The results of classical, quantal, and semiclassical calculations of the absorption coefficient in the red wing are shown for temperatures of 500, 200, and 100 K. The semiclassical and quantal spectra agree well in shape at 500 K. Various other findings are discused.

  1. Negligible shift of 3Ag- potential in longer-chain carotenoids as revealed by a single persistent peak of 3Ag-→1Ag- stimulated emission followed by 3Ag-←1Ag- transient-absorption

    NASA Astrophysics Data System (ADS)

    Li, Chunyong; Miki, Takeshi; Kakitani, Yoshinori; Koyama, Yasushi; Nagae, Hiroyoshi

    2007-12-01

    Upon excitation of lycopene, anhydrorhodovibrin or spirilloxanthin to the 1Bu+(0) state, stimulated emission followed by transient-absorption was observed as a single peak with the 3Ag-(0) energy that had been determined by measurement of resonance-Raman excitation profiles. This observation was explained in terms of negligible shift of the 3Ag- potential, in reference to the 1Ag- potential, where only the 3Ag-(υ)→1Ag-(υ) emission and the 3Ag-(υ)←1Ag-(υ) absorption become allowed during the vibrational relaxation of υ = 2 → 1 → 0, starting from the 3Ag-(2) level generated by diabatic internal conversion from the 1Bu+(0) level, in anhydrorhodovibrin, for example.

  2. Doppler-shifted self-reflected wave from a semiconductor

    NASA Astrophysics Data System (ADS)

    Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser

    1997-06-01

    We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.

  3. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  4. Identification and Characterization of Visible Absorption Components in Aqueous Methylglyoxal-Ammonium Sulfate Mixtures

    NASA Astrophysics Data System (ADS)

    McGivern, W. S.; Allison, T. C.; Radney, J. G.; Zangmeister, C. D.

    2014-12-01

    The aqueous reaction of methylglyoxal (MG) with ammonium sulfate has been suggested as a source of atmospheric ``brown carbon.'' We have utilized high-performance liquid chromatography coupled to ultraviolet-visible spectroscopy and tandem mass spectrometry to study the products of this reaction at high concentrations. The overall product spectrum shows a large number of distinct components; however, the visible absorption from this mixture is derived a very small number of components. The largest contributor is an imine-substituted (C=N-H) product of aldol condensation/facile dehydration reaction between the parent MG and a hydrated product of the MG + ammonia reaction. The asymmetric nature of this compound relative to the aldol condensation of two MG results in a sufficiently large redshift of the UV absorption spectrum that absorption of visible radiation can occur in the long-wavelength tail. The simplicity of the imine products is a result of a strong bias toward ketimine products due to the extensive hydration of the aldehydic moiety in the parent in aqueous solution. In addition, a strong pH dependence of the absorption cross section was observed with significantly greater absorption under more basic conditions. We have performed time-dependent density functional theory calculations to evaluate the absorption spectra of all of the possible condensation products and their respective ions, and the results are consistent with the experimental observations. We have also observed smaller concentrations of other condensation products of the imine-substituted parent species that do not contribute significantly to the visible absorption but have not been previously discussed.

  5. Transient Absorption of Attosecond Pulses by He Atoms in Presence of Near-Infrared Laser Fields: A TDDFT Analysis of Sub-Cycle Temporal Structures

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2013-05-01

    We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.

  6. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorptionmore » and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.« less

  7. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  8. The Spectrum of Single Bubble Sonoluminescence.

    NASA Astrophysics Data System (ADS)

    Hiller, Robert Anthony

    1995-01-01

    An acoustically levitated bubble in a liquid may be driven to produce short flashes of light synchronous with the sound field in a process called sonoluminescence. The spectrum of the emitted light is measured with a grating monochromator and calibrated for absolute spectral radiance. The spectrum has been measured for various gases dissolved in pure water and heavy water, and alcohols and other hydrocarbon liquids. At a bandpass of 10nm EWHM the spectra are broad -band, showing no sign of lines or absorptions, with a peak in the ultraviolet. The experimental apparatus, including a system for producing sonoluminescence in a sealed container, is described.

  9. Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance

    DTIC Science & Technology

    2004-01-01

    For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/cubic meter, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote - sensing reflectance using a newly...potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory pigments. (7 figures, 47 refs.)

  10. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas

  11. Label-free pathological evaluation of grade 3 cancer using Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    In this study, Stokes shift spectroscopy (S3) is used for measuring the aggressiveness of malignant tumors. S3 is an optical tool which utilizes the difference between the emission wavelength (λem) and the absorption wavelength (λabs) (the Stokes shift) to give a fixed wavelength shift (Δλs).Our analysis of tumor samples using S3 shows grade 3 (high grade) cancers consistently have increased relative tryptophan content compared to grade 1 or 2 tumors. This technique may be a useful tool in the evaluation of a patient's cancer.

  12. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  13. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.

    PubMed

    Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-05-01

    In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.

  14. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power-law (Gamma approx. 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of 7+/-1 x 10(exp 17)/sq cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10(exp 3.6) erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that IA 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  15. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  16. Ultra narrow flat-top filter based on multiple equivalent phase shifts

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong

    2008-11-01

    Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.

  17. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    NASA Astrophysics Data System (ADS)

    Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh

    2016-10-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.

  18. Realistic absorption coefficient of ultrathin films

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  19. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  20. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  1. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  2. Research of the NH3 Lines in the Region λ 6475 Å Band of Jupiter Spectrum

    NASA Astrophysics Data System (ADS)

    Atai, Adalat; Mikailov, Khidir Mustafa; Farziyev, Zabit

    Context. In 2014, spectral observations of separate areas on the disk of Jupiter in the visible spectrum were made by means of the echelle-spectrometer installed in Cassegrain 2-meter mirror telescope's focus of Shamakhi Astrophysical Observatory. The echellespectrometer equipped with the CCD camera provided spectral resolution R=14000 with dispersion of 10 Å/mm. Aims. Features of the intensity change of the ammonia absorption lines at 6475 Å were studied for the spectra of different details of Jupiter's disk. The absorption line 6495.7 Å for ammonia was found only in the GRS spectrum of Jupiter. Methods. Earlier that line was noted in the laboratory spectrum of Giver; it was absent in the spectrum obtained by Mason; in the theoretical spectrum of ammonia it was noted at 6495.9 Å. Comparison of characteristics of the ammonia line in the spectra of various details allows investigating horizontal inhomogeneity of ammonia distribution on the Jupiter's disk. Results.

  3. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  4. Condensing Raman spectrum for single-cell phenotype analysis.

    PubMed

    Sun, Shiwei; Wang, Xuetao; Gao, Xin; Ren, Lihui; Su, Xiaoquan; Bu, Dongbo; Ning, Kang

    2015-01-01

    In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  5. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    PubMed

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O.

  6. Effect of silver nanoparticles on the spectral luminescent properties of a gelatin film

    NASA Astrophysics Data System (ADS)

    Efendiev, T. Sh.; Kruchenok, J. V.; Rubinov, A. N.

    2013-03-01

    We studied the absorption and fluorescence spectra of a rhodamine 6G-activated gelatin film of thickness 10 μm, with and without silver nanoparticles. We observed that doping the film with nanoparticles of diameter 5 nm leads to an increase in the intensity of the absorption spectrum by a factor of 1.17 and its short-wavelength shift (~1.5 nm), while the intensity of the fluorescence spectrum increases by a factor of ~2.

  7. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  8. Synthesis of blue-shifted luminescent colloidal GaN nanocrystals through femtosecond pulsed laser ablation in organic solution

    NASA Astrophysics Data System (ADS)

    Demirel, Abdülmelik; Öztaş, Tuğba; Kurşungöz, Canan; Yılmaz, İbrahim; Ortaç, Bülend

    2016-05-01

    We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295-400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.

  9. Strong-field two-photon transition by phase shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook

    2010-08-15

    We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.

  10. Interstellar absorption in the Mg II resonance line k2 and h2 emissions

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    High-resolution (0.2 A) IUE spectra for the long wavelength range (1800-3000 A) have been studied. It is shown that narrow interstellar Mg II lines are seen in the center of the k2 and h2 emissions from nearby stars with large rotational velocities. For all observed stars, the radial velocity of the central k3 absorption component in the rest system of the star is strongly correlated with the mirror image of the radial velocity of the stars; this shows that a major fraction if not all of the k3 absorption is due to interstellar absorption in the solar neighborhood. The violet to red asymmetry of the k2 emission also correlates with the radial velocities of the star; this shows that the shift of k3 is due to the velocity shift of the local interstellar cloud with respect to the star.

  11. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  12. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  13. Geant4 simulations of the absorption of photons in CsI and NaI produced by electrons with energies up to 4 MeV and their application to precision measurements of the β-energy spectrum with a calorimetric technique

    NASA Astrophysics Data System (ADS)

    Huyan, X.; Naviliat-Cuncic, O.; Voytas, P.; Chandavar, S.; Hughes, M.; Minamisono, K.; Paulauskas, S. V.

    2018-01-01

    The yield of photons produced by electrons slowing down in CsI and NaI was studied with four electromagnetic physics constructors included in the Geant4 toolkit. The subsequent absorption of photons in detector geometries used for measurements of the β spectrum shape was also studied with a focus on the determination of the absorption fraction. For electrons with energies in the range 0.5-4 MeV, the relative photon yields determined with the four Geant4 constructors differ at the level of 10-2 in amplitude and the relative absorption fractions differ at the level of 10-4 in amplitude. The differences among constructors enabled the estimation of the sensitivity to Geant4 simulations for the measurement of the β energy spectrum shape in 6He decay using a calorimetric technique with ions implanted in the active volume of detectors. The size of the effect associated with photons escaping the detectors was quantified in terms of a slope which, on average, is respectively - 5 . 4 %/MeV and - 4 . 8 %/MeV for the CsI and NaI geometries. The corresponding relative uncertainties as determined from the spread of results obtained with the four Geant4 constructors are 0.0067 and 0.0058.

  14. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  15. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  16. Valley- and spin-polarized oscillatory magneto-optical absorption in monolayer MoS2 quantum rings

    NASA Astrophysics Data System (ADS)

    Oliveira, D.; Villegas-Lelovsky, L.; Soler, M. A. G.; Qu, Fanyao

    2018-03-01

    Besides optical valley selectivity, strong spin-orbit interaction along with Berry curvature effects also leads to unconventional valley- and spin-polarized Landau levels in monolayer transition metal dichalcogenides (TMDCs) under a perpendicular magnetic field. We find that these unique properties are inherited to the magneto-optical absorption spectrum of the TMDC quantum rings (QRs). In addition, it is robust against variation of the magnetic flux and of the QR geometry. In stark contrast to the monolayer bulk material, the MoS2 QRs manifest themselves in both the optical valley selectivity and unprecedented size tunability of the frequency of the light absorbed. We also find that when the magnetic field setup is changed, the phase transition from Aharonov-Bohm (AB) quantum interference to aperiodic oscillation of magneto-optical absorption spectrum takes place. The exciton spectrum in a realistic finite thickness MoS2 QR is also discussed.

  17. Assignment for the Infrared Spectrum of Solid Sodium Propionate from Low-Temperature Measurements in Combination with 13C Isotopic Shifts

    NASA Astrophysics Data System (ADS)

    Kakihana, Masato; Nagumo, Tadashi

    1987-05-01

    The infrared spectra of CH3CH2COONa and its 13C-labeled modifications (1-13C, 2-13C, and 3-13C) suspended in KBr disks were measured in the region 4000 -200 cm-1 at room temperature and liquid nitrogen temperature. Overlapping complex band contours appeared in some regions of the room temperature spectrum, most notably in the region 1500 -1350 cm-1, where 5 fundamentals having contributions from the methyl deformation, methylene bending, and carboxylate stretching modes should occur. In contrast to this, excellent resolution was reached at the low temperature, from which all 22 fundamentals expected in the whole spectral region investigated were detected. A complete assignment of the fundamentals is proposed mainly on the basis of the characteristic isotopic shifts of the three 13C substituted sodium propionate species. A fair number of the fundamentals were found to feature coupled modes having contributions from several group vibrations.

  18. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.

    PubMed

    Hogg, D C; Guiraud, F O

    1979-05-31

    MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.

  19. Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Chen, Jiajia; Zhou, Zigang; Yi, Zao; Ye, Xin

    2018-04-01

    In this paper, we propose a wavelength-tunable absorber consisting of electric split-ring resonators (eSRRs)-shaped graphene arrays deposited on a SiO2/Si substrate in the far-infrared and terahertz regions. The simulation results exhibit that two resonance modes are supported by the structure. In terms of the resonance at longer wavelength, the light absorption declines while the period a or length L increases. However, absorption contrarily improves with enlargement of incident angle under the transverse magnetic (TM) polarization. And in terms of resonance at shorter wavelengths, absorption enhances with increasing length L and incident angle θ. Generally, the light absorption enhances with Fermi level E F of graphene, accompanied by blue shift. The aforementioned results unquestionably provide a distinctive source of inspiration for how to design and manufacture devices related to absorption such as filters, spatial light modulator and sensors.

  20. The CI pressure shift and gravitational redshift of the cool DBQA5 white dwarf LDS678A

    NASA Technical Reports Server (NTRS)

    Sion, E. M.; Vauclair, G.; Oswalt, T. D.; Hammond, G.; Liebert, J.; Koester, D.; Wegner, G.; Marcum, P.

    1990-01-01

    A high resolution ultraviolet spectrum of the helium rich degenerate LDS 678A, obtained with the International Ultraviolet Explorer (IUE) satellite is presented. LDS 678A is the coolest metallic line generate (DQ or DZ) yet observed with the IUE scale. These observations provide a detailed line profile of the strong C I 2479 absorption line with equivalent width (W sub 2479 = 2.35 plus or minus 0.06 angstroms) from which theoretical line profile fits yield a C abundance (log C/He = 6.4). The presence of carbon in a helium rich atmosphere lends credence to the notion that LDS 678A is a transitional case between the DB white dwarfs with nearly pure helium atmospheres and the helium rich DQ white dwarfs which exhibit carbon bands. Corrected for an inferred pressure shift for the C I line, a gravitational redshift is deduced from which a most probable mass of 0.55 solar mass is derived.

  1. Action spectrum for retinal thermal injury

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter R.

    1999-06-01

    The action spectrum for light-induced damage to the retina results from the wavelength dependence transmission of the preretinal ocular media, wavelength dependent absorption in retinal chromophores and chromatic aberration of the eye optics. While various light/tissue interaction mechanisms have been implicated, thermal mechanisms dominate in the red and near-infrared for all exposure durations and in the visible for exposures shorter than a few seconds. A number of investigators have measured the transmission of the eye and the spectra of retinal absorbers, and thermal models based on these data predict the broad features of the action spectrum. Dose/response studies with lasers and incoherent light sources, conducted over the past 10 years mainly validate the thermal models.

  2. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  3. Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.

    PubMed

    Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro

    2012-04-01

    Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max)  ≈ 490 to λ(max)  ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Measurement of winds in Venus' upper mesosphere based on Doppler shifts of the 2.6-mm (C-12)O line

    NASA Technical Reports Server (NTRS)

    Shah, Kathryn P.; Muhleman, Duane O.; Berge, Glenn L.

    1991-01-01

    Venus observations conducted in 1988 at the first rotational transition of (C-12)O finely sampled this absorption line by means of a 32-channel filter bank; with this spatial and spectral resolution, it proved possible to measure Doppler shifts of the absorption line across the planet due to strong winds in Venus' upper mesosphere. The Doppler shifts change in a way that is indicative of westward horizontal winds. The radial wind speeds from the Doppler shifts were smoothed to reduce noise and then fitted in least-squares fashion to canonical forms of the lower atmosphere's westward zonal flow. The two flows exhibit a high correlation in orientation.

  5. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  6. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  7. Role of Self-Association and Supersaturation in Oral Absorption of a Poorly Soluble Weakly Basic Drug.

    PubMed

    Narang, Ajit S; Badawy, Sherif; Ye, Qingmei; Patel, Dhaval; Vincent, Maria; Raghavan, Krishnaswamy; Huang, Yande; Yamniuk, Aaron; Vig, Balvinder; Crison, John; Derbin, George; Xu, Yan; Ramirez, Antonio; Galella, Michael; Rinaldi, Frank A

    2015-08-01

    Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.

  8. The slightly-enriched spectral shift control reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, W.R.; Lee, J.C.; Larsen, E.W.

    1991-11-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technologymore » retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.« less

  9. Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region.

    PubMed

    Thakur, Pooja; Tan, Bo; Venkatakrishnan, Krishnan

    2015-10-19

    Inadequate absorption of Near Infrared (NIR) photons by conventional silicon solar cells has been a major stumbling block towards the attainment of a high efficiency "full spectrum" solar cell. An effective enhancement in the absorption of such photons is desired as they account for a considerable portion of the tappable solar energy. In this work, we report a remarkable gain observed in the absorption of photons in the near infrared and visible region (400 nm-1000 nm) by a novel multi-phased oxide of titanium. Synthesised via a single step ultra-fast laser pulse interaction with pure titanium, characterisation studies have identified this oxide of titanium to be multi-phased and composed of Ti3O, (TiO.716)3.76 and TiO2 (rutile). Computed to have an average band gap value of 2.39 eV, this ultrafast laser induced multi-phased titanium oxide has especially exhibited steady absorption capability in the NIR range of 750-1000 nm, which to the best of our knowledge, was never reported before. The unique NIR absorption properties of the laser functionalised titanium coupled with the simplicity and versatility of the ultrafast laser interaction process involved thereby provides tremendous potential towards the photon sensitization of titanium and thereafter for the inception of a "full spectrum" solar device.

  10. Ultrafast photo-initiated molecular quantum dynamics in the DNA dinucleotide d(ApG) revealed by broadband transient absorption spectroscopy.

    PubMed

    Stuhldreier, Mayra C; Temps, Friedrich

    2013-01-01

    The ultrafast photo-initiated quantum dynamics of the adenine-guanine dinucleotide d(ApG) in aqueous solution (pH 7) has been studied by femtosecond time-resolved spectroscopy after excitation at lambda = 260 nm. The results reveal a hierarchy of processes on time scales from tau < 100 fs to tau > 100 ps. Characteristic spectro-temporal signatures are observed indicating the transformation of the molecules in the electronic relaxation from the photo-excited state to a long-lived exciplex. In particular, broadband UV/VIS excited-state absorption (ESA) measurements detected a distinctive absorption by the excited dinucleotide around lambda = 335 nm, approximately 0.5 eV to the blue compared to the maximum of the broad and unstructured ESA spectrum after excitation of an equimolar mixture of the mononucleotides dAMP and dGMP. A similar feature has been identified as signature of the excimer in the dynamics of the adenine dinucleotide d(ApA). The lifetime of the d(ApG) exciplex was found to be tau = 124 +/- 4 ps both from the ESA decay time and from the ground-state recovery time, far longer than the sub-picosecond lifetimes of excited dAMP or dGMP. Fluorescence-time profiles measured by the up-conversion technique indicate that the exciplex state is reached around approximately 6 ps after excitation. Very weak residual fluorescence at longer times red-shifted to the emission from the photo-excited state shows that the exciplex is almost optically dark, but still has enough oscillator strength to give rise to the dual fluorescence of the dinucleotide in the static fluorescence spectrum.

  11. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    PubMed

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  12. Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.

    2018-06-01

    We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.

  13. pH-Induced Modulation of One- and Two-Photon Absorption Properties in a Naphthalene-Based Molecular Probe.

    PubMed

    Murugan, N Arul; Kongsted, Jacob; Ågren, Hans

    2013-08-13

    Presently, there is a great demand for small probe molecules that can be used for two-photon excitation microscopy (TPM)-based monitoring of intracellular and intraorganelle activity and pH. The candidate molecules should ideally possess a large two-photon absorption cross section with optical properties sensitive to pH changes. In the present work, we investigate the potential of a methoxy napthalene (MONAP) derivative for its suitability to serve as a pH sensor using TPM. Using an integrated approach rooted in hybrid quantum mechanics/molecular mechanics, the structures, dynamics, and the one- and two-photon properties of the probe in dimethylformamide solvent are studied. It is found that the protonated form is responsible for the optical property of MONAP at moderately low pH, for which the calculated pH-induced red shift is in good agreement with experiments. A 2-fold increase in the two-photon absorption cross section in the IR region of the spectrum is predicted for the moderately low pH form of the probe, suggesting that this can be a potential probe for pH monitoring of living cells. We also propose some design principles aimed at obtaining control of the absorption spectral range of the probe by structural tuning. Our work indicates that the integrated approach employed is capable of capturing the pH-induced changes in structure and optical properties of organic molecular probes and that such in silico tools can be used to draw structure-property relationships to design novel molecular probes suitable for a specific application.

  14. Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption.

    PubMed

    Rashidian Vaziri, Mohammad Reza

    2013-07-10

    In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.

  15. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  16. Shock absorption ability of laminate mouth guards in two different malocclusions using fiber Bragg grating (FBG) sensor.

    PubMed

    Bhalla, Ashish; Grewal, Navneet; Tiwari, Umesh; Mishra, Vandana; Mehla, Nahar Singh; Raviprakash, Suryanarain; Kapur, Pawan

    2013-06-01

    The majority of orofacial injuries affect the upper jaw, with the maxillary incisors being most prone to injury, often accounting for as many as 80% of all cases. Children with malocclusion in the anterior segment of the maxilla are more prone to traumatic injuries than those exhibiting normal occlusion, because most often the damaging force impacts directly against the maxillary anterior teeth. Hence, because of the difference of dissipation of the impact force because of the presence or absence of malocclusion, the mouthguard's shock absorption capacity would be influenced by certain factors. In the present study, a unique in vitro experiment utilizing fiber Bragg Grating (FBG) as distributed strain sensors was carried out to evaluate the shock absorption ability of laminate customized mouthguards in two different malocclusions compared with normal occlusion. The impact was produced using a customized pendulum device with three interchangeable impact objects on typhodont models with two different malocclusions and normal occlusion from different heights. Response of gratings was monitored using an optical spectrum analyzer. Strain induced because each impact was determined from the Bragg's wavelength shifts for each grating. For every model, 12 impact strikes were measured using three different impact objects on the two specified sites by releasing the object from two different heights. The laminated mouthguards showed significant variation in shock absorption ability when different malocclusions were compared. Hence, modifications in the original design of the laminated mouthguards should be considered for athletic competitors with malocclusion to provide adequate protection against impact. FBG sensor has shown the unique advantage of high sensitivity to strain measurement and can be used in further studies. The height of the impact is an important variable in determining the shock absorption ability of mouthguards. © 2012 John Wiley & Sons A/S.

  17. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe2O3 nanoparticles formed in dendrimer

    NASA Astrophysics Data System (ADS)

    Domracheva, Natalia E.; Vorobeva, Valerya E.; Gruzdev, Matvey S.; Pyataev, Andrew V.

    2015-02-01

    We are presenting the investigation of the optical, magnetic, and photoinduced superparamagnetic properties of single-domain γ-Fe2O3 nanoparticles (NPs) with diameters of about 2.5 nm formed in second-generation poly(propylene imine) dendrimer. The optical absorption studies indicated direct allowed transition with the band gap (4.5 eV), which is blue shift with respect to the value of the bulk material. Low-temperature blocking of the NPs magnetic moments at 18 K is determined by SQUID measurements. The influence of pulsed laser irradiation on the superparamagnetic properties of γ-Fe2O3 NPs was studied by EPR spectroscopy. It has been shown that irradiation of the sample held in vacuo and cooled in zero magnetic field to 6.9 K leads to the appearance of a new EPR signal, which decays immediately after the irradiation is stopped. The appearance and disappearance of this new signal can be repeated many times at 6.9 K when we turn on/turn off the laser. We suppose that the generation of conduction band electrons by irradiation into the band gap of the γ-Fe2O3 changes the superparamagnetic properties of NPs.

  18. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  19. An Improved Red Spectrum of the Methane or T Dwarf SDSS 1624+0029: The Role of the Alkali Metals.

    PubMed

    Liebert; Reid; Burrows; Burgasser; Kirkpatrick; Gizis

    2000-04-20

    A Keck II low-resolution spectrum shortward of 1 µm is presented for SDSS 1624+0029, the first field methane or T dwarf discovered in the Sloan Digital Sky Survey. Significant flux is detected down to the spectrum's short-wavelength limit of 6200 Å. The spectrum exhibits a broad absorption feature centered at 7700 Å, which we interpret as the K i lambdalambda7665, 7699 resonance doublet. The observed flux declines shortward of 7000 Å, most likely owing to the red wing of the Na i doublet. Both Cs i doublet lines are detected more strongly than in an earlier red spectrum. Neither Li i absorption nor Halpha emission are detected. An exploratory model fit to the spectrum suggests that the shape of the red spectrum can be primarily accounted for by the broad wings of the K i and Na i doublets. This behavior is consistent with the argument proffered by Burrows, Marley, & Sharp that strong alkali absorption is principally responsible for depressing T dwarf spectra shortward of 1 µm. In particular, there seems no compelling reason at this time to introduce dust or an additional opacity source in the atmosphere of the Sloan object. The width of the K i and strengths of the Cs i lines also indicate that the Sloan object is warmer than Gl 229B.

  20. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  1. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  2. The free jet microwave spectrum of 2-phenylethylamine-water.

    PubMed

    Melandri, Sonia; Maris, Assimo; Giuliano, Barbara M; Favero, Laura B; Caminati, Walther

    2010-09-21

    We observed the rotational spectrum of the 1:1 molecular adduct between 2-phenylethylamine and water (normal and H(2)(18)O species) by free jet absorption microwave spectroscopy in the frequency region 60-78 GHz. The dominant spectrum belongs to the structure where the PEA moiety is in the most stable gauche conformation and the water molecule is hydrogen bound to the nitrogen lone pair. The orientation of the water molecule is such that the oxygen atom is almost equidistant (ca. 2.5 A) from the closest methylenic and aromatic hydrogen atoms.

  3. Device for frequency modulation of a laser output spectrum

    DOEpatents

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  4. Device for frequency modulation of a laser output spectrum

    DOEpatents

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  5. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    NASA Technical Reports Server (NTRS)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  6. First-principles study of direct and indirect optical absorption in BaSnO3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Peelaers, Hartwin; Krishnaswamy, Karthik; Van de Walle, Chris G.

    2018-02-01

    We report first-principles results for the electronic structure and the optical absorption of perovskite BaSnO3 (BSO). BSO has an indirect fundamental gap, and hence, both direct and indirect transitions need to be examined. We assess direct absorption by calculations of the dipole matrix elements. The phonon-assisted indirect absorption spectrum at room temperature is calculated using a quasiclassical approach. Our analysis provides important insights into the optical properties of BSO and addresses several inconsistencies in the results of optical absorption experiments. We shed light on the variety of bandgap values that have been previously reported, concluding that the indirect gap is 2.98 eV and the direct gap is 3.46 eV.

  7. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  8. Numerical investigation of frequency spectrum in the Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Juhyung; Terry, P. W.

    2013-10-15

    The wavenumber-frequency spectrum of the two-dimensional Hasegawa-Wakatani model is investigated in the hydrodynamic, intermediate, and adiabatic regimes. A nonlinear frequency and a line width related to energy transfer properties provide a measure of the average frequency and spectral broadening, respectively. In the adiabatic regime, narrow spectra, typical of wave turbulence, are observed with a nonlinear frequency shift in the electron drift direction. In the hydrodynamic regime, broad spectra with almost zero nonlinear frequencies are observed. Nonlinear frequency shifts are shown to be related to nonlinear energy transfer by vorticity advection through the high frequency region of the spectrum. In themore » intermediate regime, the nonlinear frequency shift for density fluctuations is observed to be weaker than that of electrostatic potential fluctuations. The weaker frequency shift of the density fluctuations is due to nonlinear density advection, which favors energy transfer in the low frequency range. Both the nonlinear frequency and the spectral width increase with poloidal wavenumber k{sub y}. In addition, in the adiabatic regime where the nonlinear interactions manifest themselves in the nonlinear frequency shift, the cross-phase between the density and potential fluctuations is observed to match a linear relation, but only if the linear response of the linearly stable eigenmode branch is included. Implications of these numerical observations are discussed.« less

  9. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  10. Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation

    NASA Technical Reports Server (NTRS)

    Williams, Richard M.; Leone, Stephen R.

    1994-01-01

    Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.

  11. The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-Ray absorption spectroscopy.

    PubMed Central

    Meneghini, C; Morante, S

    1998-01-01

    A detailed study of the x-ray absorption spectrum of tetanus neurotoxin in the K-edge EXAFS region of the zinc absorber is presented that allows the complete identification of the amino acid residues coordinated to the zinc active site. A very satisfactory interpretation of the experimental data can be given if multiple scattering contributions are included in the analysis. Comparing the absorption spectrum of tetanus neurotoxin to that of two other structurally similar zinc-endopeptidases, thermolysin and astacin, in which the zinc coordination mode is known from crystallographic data, we conclude that in tetanus neurotoxin, besides a water molecule, zinc is coordinated to two histidines and a tyrosine. PMID:9746536

  12. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas

    Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less

  13. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    DOE PAGES

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; ...

    2018-04-14

    Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less

  14. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ren, Min; Maddox, Scott J.; Woodson, Madison E.; Chen, Yaojia; Bank, Seth R.; Campbell, Joe C.

    2016-05-01

    We report AlxIn1-xAsySb1-y separate absorption, charge, and multiplication avalanche photodiodes (APDs) that operate in the short-wavelength infrared spectrum. They exhibit excess noise factor less or equal to that of Si and the low dark currents typical of III-V compound APDs.

  15. Gravitational red shift tests and a spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Yokoo, Hiromitsu

    Japanese astronomers and physicians tried to test the Einstein theory by gravitational red shift tests at 1920's. Spectroscopists in Japan contributed to Stark broadening of spectrum lines. Rikiti Kinoshita (1877 - 1935) probably started experiments according to Voigt's prediction earlier than Stark. Tokyo Astronomical Observatory constructed and used another Einstein Tower in Mitaka.

  16. Pressure broadening and frequency shift of the D 1 and D 2 lines of K in the presence of Ne and Kr

    NASA Astrophysics Data System (ADS)

    Wang, Xulin; Chen, Yao; Quan, Wei; Chi, Haotian; Fang, Jiancheng

    2018-02-01

    We present the results of pressure broadening and frequency shift of K D 1 and D 2 lines in presence of 1-4 amg of Neon gas and 1-5 amg of Krypton gas by laser absorption spectroscopy. Both pressure broadening and frequency shift are linearly related to gas density with high accuracy. The asymmetry of the absorption line shape caused by van der Waals potential was first found in the near-line wings of large density Kr in the experiment. We have also investigated the temperature dependence of the pressure broadening and frequency shift in a range of 353-403 K in Neon and 373-417 K in Krypton and compared the results of the pressure broadening and frequency shift with previous values.

  17. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  18. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  19. Direct-Sequence Spread Spectrum System

    DTIC Science & Technology

    1990-06-01

    by directly modulating a conventional narrowband frequency-modulated (FM) carrier by a high rate digital code. The direct modulation is binary phase ...specification of the DSSS system will not be developed. The results of the evaluation phase of this research will be compared against theoretical...spread spectrum is called binary phase -shift keying 19 (BPSK). BPSK is a modulation in which a binary Ŕ" represents a 0-degree relative phase

  20. Observing random walks of atoms in buffer gas through resonant light absorption

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  1. Broadband ultrafast transient absorption of multiple exciton dynamics in lead sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Gesuele, Felice; Wong, Chee Wei; Sfeir, Matthew; Misewich, James; Koh, Weonkyu; Murray, Christopher

    2011-03-01

    Multiple exciton generation (MEG) is under intense investigation as potential third-generation solar photovoltaics with efficiencies beyond the Shockley-Queisser limit. We examine PbS nanocrystals, dispersed and vigorously stirred in TCE solution, by means of supercontinuum femtosecond transient absorption (TA). TA spectra show the presence of first and second order bleaches for the 1Sh-Se and 1Ph-Pe excitonic transition while photoinduced absorption for the 1Sh,e-Ph,e transitions. We found evidence of carrier multiplication (MEG for single absorbed photon) from the analysis of the first and second order bleaches, in the limit of low number of absorbed photons (Nabs ~ 0.01), for energy three times and four times the Energy gap. The MEG efficiency, derived from the ratio between early-time to long-time TA signal, presents a strongly dispersive behavior with maximum red shifted respect the first absorption peak. Analysis of population dynamics shows that in presence of biexciton, the 1Sh-Se bleach peak is red-shifted indicating a positive binding energy. MEG efficiency estimation will be discussed with regards to spectral integration, correlated higher-order and first excitonic transitions, as well as the nanocrystal morphologies.

  2. Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.

    1997-01-01

    The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.

  3. Application of MCD spectroscopy and TD-DFT to a highly non-planar porphyrinoid ring system. New insights on red-shifted porphyrinoid spectral bands.

    PubMed

    Mack, John; Asano, Yoshiaki; Kobayashi, Nagao; Stillman, Martin J

    2005-12-21

    The first magnetic circular dichroism (MCD) spectra are reported for tetraphenyltetraacenaphthoporphyrin (TPTANP). The impact on the electronic structure of steric interactions between the fused acenaphthalene rings and the meso-tetraphenyl substituents is explored based on an analysis of the optical spectra of the Zn(II) complex (ZnTPTANP) and the free base dication species ([H4TPTANP]2+). In the case of ZnTPTANP, significant folding of the porphyrinoid ligand induces a highly unusual MCD-sign reversal providing the first direct spectroscopic evidence of ligand nonplanarity. Density functional theory (DFT) geometry optimizations for a wide range of Zn(II) porphyrinoids based on the B3LYP functional and TD-DFT calculations of the associated UV-visible absorption spectra are reported, allowing a complete assessment of the MCD data. TPTANP complexes are found to fall into a class of cyclic polyenes, termed as soft MCD chromophores by Michl (J. Pure Appl. Chem. 1980, 52, 1549.), since the signs of the Faraday A1 terms observed in the MCD spectrum are highly sensitive to slight structural changes. The origin of an unusually large red shift of the main B (or Soret) band of MTPTANP (the most red shifted ever reported for fused-ring-expanded metal porphines) and of similar red shifts observed in the spectra of other peripherally crowded porphyrinoid complexes is also explored and explained on this basis.

  4. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  5. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy.

    PubMed

    Raju, Gajula; Ram Reddy, A

    2016-02-05

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state. Copyright © 2015. Published by Elsevier B.V.

  6. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.

    PubMed

    Huang, Houjin; Kajiura, Hisashi; Maruyama, Ryuichiro; Kadono, Koji; Noda, Kazuhiro

    2006-03-16

    While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.

  7. Solute-Solvent Charge-Transfer Excitations and Optical Absorption of Hydrated Hydroxide from Time-Dependent Density-Functional Theory.

    PubMed

    Opalka, Daniel; Sprik, Michiel

    2014-06-10

    The electronic structure of simple hydrated ions represents one of the most challenging problems in electronic-structure theory. Spectroscopic experiments identified the lowest excited state of the solvated hydroxide as a charge-transfer-to-solvent (CTTS) state. In the present work we report computations of the absorption spectrum of the solvated hydroxide ion, treating both solvent and solute strictly at the same level of theory. The average absorption spectrum up to 25 eV has been computed for samples taken from periodic ab initio molecular dynamics simulations. The experimentally observed CTTS state near the onset of the absorption threshold has been analyzed at the generalized-gradient approximation (GGA) and with a hybrid density-functional. Based on results for the lowest excitation energies computed with the HSE hybrid functional and a Davidson diagonalization scheme, the CTTS transition has been found 0.6 eV below the first absorption band of liquid water. The transfer of an electron to the solvent can be assigned to an excitation from the solute 2pπ orbitals, which are subject to a small energetic splitting due to the asymmetric solvent environment, to the significantly delocalized lowest unoccupied orbital of the solvent. The distribution of the centers of the excited state shows that CTTS along the OH(-) axis of the hydroxide ion is avoided. Furthermore, our simulations indicate that the systematic error arising in the calculated spectrum at the GGA originates from a poor description of the valence band energies in the solution.

  8. Radial velocity observations of the sun at night

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Moore, T. L.; Perry, M. L.; Smith, P. H.

    1993-01-01

    The ability to detect planets orbiting stars has been evaluated through solar-spectrum Doppler shift measurements for 5 years, using the sunlit surface of the moon to furnish nighttime access to the solar spectrum integrated over the solar disk as though the sun were being observed at stellar distance. These lunar observations have indicated that the Doppler shift of the integrated solar photosphere disk in violet absorption lines has varied less that +/- 4 m/sec over the 1987-1992 interval studied.

  9. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  10. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN

    2012-01-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732

  11. Phase-shifting response to light in older adults

    PubMed Central

    Kim, Seong Jae; Benloucif, Susan; Reid, Kathryn Jean; Weintraub, Sandra; Kennedy, Nancy; Wolfe, Lisa F; Zee, Phyllis C

    2014-01-01

    Abstract Age-related changes in circadian rhythms may contribute to the sleep disruption observed in older adults. A reduction in responsiveness to photic stimuli in the circadian timing system has been hypothesized as a possible reason for the advanced circadian phase in older adults. This project compared phase-shifting responses to 2 h of broad-spectrum white light at moderate and high intensities in younger and older adults. Subjects included 29 healthy young (25.1 ± 4.1 years; male to female ratio: 8: 21) and 16 healthy older (66.5 ± 6.0 years; male to female ratio: 5: 11) subjects, who participated in two 4-night and 3-day laboratory stays, separated by at least 3 weeks. Subjects were randomly assigned to one of three different time-points, 8 h before (−8), 3 h before (−3) or 3 h after (+3) the core body temperature minimum (CBTmin) measured on the baseline night. For each condition, subjects were exposed in a randomized order to 2 h light pulses of two intensities (2000 lux and 8000 lux) during the two different laboratory stays. Phase shifts were analysed according to the time of melatonin midpoint on the nights before and after light exposure. Older subjects in this study showed an earlier baseline phase and lower amplitude of melatonin rhythm compared to younger subjects, but there was no evidence of age-related changes in the magnitude or direction of phase shifts of melatonin midpoint in response to 2 h of light at either 2000 lux or 8000 lux. These results indicate that the acute phase-shifting response to moderate- or high-intensity broad spectrum light is not significantly affected by age. PMID:24144880

  12. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  13. Ultralight Fe@C Nanocapsules/Sponge Composite with Reversibly Tunable Microwave Absorption Performances.

    PubMed

    Li, Yixing; Mao, Zhe; Liu, Rongge; Zhao, Xiaoning; Zhang, Yanhui; Qin, Gaowu; Zhang, Xuefeng

    2017-08-11

    Microwave absorbers are usually designed to solve electromagnetic interferences at a specific frequency, while the requirements may be dynamic during service life. Therefore, a recoverable tuning for microwave absorption properties in response to an external stimulus would be highly desirable. We herein present a micro/nano-scale hybrid absorber, in which high-performance Fe@C nanocapsule absorbents are integrated with a porous melamine sponge skeleton, exhibiting multiple merits of light weight, strong absorption and high elasticity. By mechanically compressing and decompressing the absorber, microwave absorption performances can be effectively shifted between 18 GHz and 26.5 GHz. The present study thus provides a new strategy for the design of a 'dynamic' microwave absorber.

  14. Ultralight Fe@C Nanocapsules/Sponge Composite with Reversibly Tunable Microwave Absorption Performances

    NASA Astrophysics Data System (ADS)

    Li, Yixing; Mao, Zhe; Liu, Rongge; Zhao, Xiaoning; Zhang, Yanhui; Qin, Gaowu; Zhang, Xuefeng

    2017-08-01

    Microwave absorbers are usually designed to solve electromagnetic interferences at a specific frequency, while the requirements may be dynamic during service life. Therefore, a recoverable tuning for microwave absorption properties in response to an external stimulus would be highly desirable. We herein present a micro/nano-scale hybrid absorber, in which high-performance Fe@C nanocapsule absorbents are integrated with a porous melamine sponge skeleton, exhibiting multiple merits of light weight, strong absorption and high elasticity. By mechanically compressing and decompressing the absorber, microwave absorption performances can be effectively shifted between 18 GHz and 26.5 GHz. The present study thus provides a new strategy for the design of a ‘dynamic’ microwave absorber.

  15. Tailoring noise frequency spectrum to improve NIR determinations.

    PubMed

    Xie, Shaofei; Xiang, Bingren; Yu, Liyan; Deng, Haishan

    2009-12-15

    Near infrared spectroscopy (NIR) contains excessive background noise and weak analytical signals caused by near infrared overtones and combinations. That makes it difficult to achieve quantitative determinations of low concentration samples by NIR. A simple chemometric approach has been established to modify the noise frequency spectrum to improve NIR determinations. The proposed method is to multiply one Savitzky-Golay filtered NIR spectrum with another reference spectrum added with thermal noises before the other Savitzky-Golay filter. Since Savitzky-Golay filter is a kind of low-pass filter and cannot eliminate low frequency components of NIR spectrum, using one step or two consecutive Savitzky-Golay filter procedures cannot improve the determination of NIR greatly. Meanwhile, significant improvement is achieved via the Savitzky-Golay filtered NIR spectrum processed with the multiplication alteration before the other Savitzky-Golay filter. The frequency range of the modified noise spectrum shifts toward higher frequency regime via multiplication operation. So the second Savitzky-Golay filter is able to provide better filtering efficiency to obtain satisfied result. The improvement of NIR determination with tailoring noise frequency spectrum technique was demonstrated by both simulated dataset and two measured NIR spectral datasets. It is expected that noise frequency spectrum technique will be adopted mostly in applications where quantitative determination of low concentration sample is crucial.

  16. Singular-value demodulation of phase-shifted holograms.

    PubMed

    Lopes, Fernando; Atlan, Michael

    2015-06-01

    We report on phase-shifted holographic interferogram demodulation by singular-value decomposition. Numerical processing of optically acquired interferograms over several modulation periods was performed in two steps: (1) rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; and (2) eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts.

  17. INFRARED SPECTRUM OF POTASSIUM-CATIONIZED TRIETHYLPHOSPHATE GENERATED USING TANDEM MASS SPECTROMETRY AND INFRARED MULTIPLE PHOTON DISSOCIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold; Christopher M. Leavitt; Ryan P. Dain

    2009-09-01

    Tandem mass spectrometry and wavelength selective infrared photodissociation was used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm-1 that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+g(d), 6-311+g(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which inmore » turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.« less

  18. THE FIRST SPECTRUM OF THE COLDEST BROWN DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.

    2016-08-01

    The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs—near-infrared spectroscopy—is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5–5.2 μ m spectrum, the same bandpass long used to study Jupiter’s deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter’s. The spectrum quality ismore » high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter’s atmosphere, but now on an extrasolar world.« less

  19. A quantum cascade laser-based Mach-Zehnder interferometer for chemical sensing employing molecular absorption and dispersion

    NASA Astrophysics Data System (ADS)

    Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard

    2018-02-01

    We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.

  20. Infrared absorption of methanethiol clusters (CH3SH)n, n = 2-5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization

    NASA Astrophysics Data System (ADS)

    Fu, Lung; Han, Hui-Ling; Lee, Yuan-Pern

    2012-12-01

    We investigated IR spectra in the CH- and SH-stretching regions of size-selected methanethiol clusters, (CH3SH)n with n = 2-5, in a pulsed supersonic jet using infrared (IR)-vacuum ultraviolet (VUV) ionization. VUV emission at 132.50 nm served as the source of ionization in a time-of-flight mass spectrometer. Clusters were dissociated with light from a tunable IR laser before ionization. The variations in intensity of methanethiol cluster ions (CH3SH)n+ were monitored as the IR laser light was tuned across the range 2470-3100 cm-1. In the SH-stretching region, the spectrum of (CH3SH)2 shows a weak band near 2601 cm-1, red-shifted only 7 cm-1 from that of the monomer. In contrast, all spectra of (CH3SH)n, n = 3-5, show a broad band near 2567 cm-1 with much greater intensity. In the CH-stretching region, absorption bands of (CH3SH)2 are located near 2865, 2890, 2944, and 3010 cm-1, red-shifted by 3-5 cm-1 from those of CH3SH. These red shifts increase slightly for larger clusters and bands near 2856, 2884, 2938, and 3005 cm-1 were observed for (CH3SH)5. These spectral results indicate that the S-H...S hydrogen bond plays an important role in clusters with n = 3-5, but not in (CH3SH)2, in agreement with theoretical predictions. The absence of a band near 2608 cm-1 that corresponds to absorption of the non-hydrogen-bonded SH moiety and the large width of observed feature near 2567 cm-1 indicate that the dominant stable structures of (CH3SH)n, n = 3-5, have a cyclic hydrogen-bonded framework.

  1. Phases of New Physics in the BAO Spectrum

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias

    2017-11-01

    We show that the phase of the spectrum of baryon acoustic oscillations (BAO) is immune to the effects of nonlinear evolution. This suggests that any new physics that contributes to the initial phase of the BAO spectrum, such as extra light species in the early universe, can be extracted reliably at late times. We provide three arguments in support of our claim: first, we point out that a phase shift of the BAO spectrum maps to a characteristic sign change in the real space correlation function and that this feature cannot be generated or modified by nonlinear dynamics. Second, we confirm this intuition through an explicit computation, valid to all orders in cosmological perturbation theory. Finally, we provide a nonperturbative argument using general analytic properties of the linear response to the initial oscillations. Our result motivates measuring the phase of the BAO spectrum as a robust probe of new physics.

  2. Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki

    2015-06-01

    In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.

  3. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Tanaka, Takuo

    2018-03-01

    The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.

  4. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  5. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Cucchiara, Antonino; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.; Filippenko, Alexei V.; Fruchter, Andrew S.; Gezari, Suvi; Kasen, Daniel; Levan, Andrew J.; Miller, Jon M.; Pasham, Dheeraj R.; Ramirez-Ruiz, Enrico; Strubbe, Linda E.; Tanvir, Nial R.; Tombesi, Francesco

    2016-02-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with {T}{UV}=3.5× {10}4 K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (˜2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Δv = -(250-400) km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and “N-rich” quasars.

  6. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    NASA Technical Reports Server (NTRS)

    Cenko, S. Bradley; Cucchiara, Antonio; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.

    2016-01-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T(sub UV) = 3.5 x 10(exp. 4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry).Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad {approx. 2000-8000 km s(exp. -1)} emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta(sub v) = -(250-400) km s(exp. -1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and N-rich quasars.

  7. Collision-induced absorption with exchange effects and anisotropic interactions: theory and application to H2 - H2.

    PubMed

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  8. Sound absorption characteristics of aluminum foam with spherical cells

    NASA Astrophysics Data System (ADS)

    Li, Yunjie; Wang, Xinfu; Wang, Xingfu; Ren, Yuelu; Han, Fusheng; Wen, Cuie

    2011-12-01

    Aluminum foams were fabricated by an infiltration process. The foams possess spherical cells with a fixed porosity of 65% and varied pore sizes which ranged from 1.3 to 1.9 mm. The spherical cells are interconnected by small pores or pore openings on the cell walls that cause the foams show a characteristic of open cell structures. The sound absorption coefficient of the aluminum foams was measured by a standing wave tube and calculated by a transfer function method. It is shown that the sound absorption coefficient increases with an increase in the number of pore openings in the unit area or with a decrease of the diameter of the pore openings in the range of 0.3 to 0.4 mm. If backed with an air cavity, the resonant absorption peaks in the sound absorption coefficient versus frequency curves will be shifted toward lower frequencies as the cavity depth is increased. The samples with the same pore opening size but different pore size show almost the same absorption behavior, especially in the low frequency range. The present results are in good agreement with some theoretical predictions based on the acoustic impedance measurements of metal foams with circular apertures and cylindrical cavities and the principle of electroacoustic analogy.

  9. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  10. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    PubMed

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  11. The self-absorption effect of gamma rays in /sup 239/Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsiao-Hua

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less

  12. Optimal extraction of quasar Lyman limit absorption systems from the IUE archive

    NASA Technical Reports Server (NTRS)

    Tytler, David

    1992-01-01

    The IUE archive contains a wealth of information on Lyman limit absorption systems (LLS) in quasar spectra. QSO spectra from the IUE data base were optimally extracted, coadded, and analyzed to yield a homogeneous samples of LLS at low red shifts. This sample comprise 36 LLS, twice the number previously analyzed low z samples. These systems are ideal for the determination of the origin, redshift evolution, ionization, velocity dispersions and the metal abundances of absorption systems. Two of them are also excellent targets for the primordial Deuterium to Hydrogen ratio.

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  14. A Simple Experiment Demonstrating the Relationship between Response Curves and Absorption Spectra.

    ERIC Educational Resources Information Center

    Li, Chia-yu

    1984-01-01

    Describes an experiment for recording two individual spectrophotometer response curves. The two curves are directly related to the power of transmitted beams that pass through a solvent and solution. An absorption spectrum of the solution can be constructed from the calculated rations of the curves as a function of wavelength. (JN)

  15. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  16. Doppler-free satellites of resonances of electromagnetically induced transparency and absorption on the D 2 lines of alkali metals

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Sarkisyan, D.; Staedter, D.; Akulshin, A. M.

    2006-11-01

    The peculiarities of intra-Doppler structures that are observed in the atomic absorption spectrum of alkali metals with the help of two independent lasers have been studied. These structures accompany ultranarrow coherent resonances of electromagnetically induced transparency and absorption. With the D 2 line of rubidium taken as an example, it is shown that, in the scheme of unidirectional waves, the maximum number of satellite resonances caused by optical pumping selective with respect to the atomic velocity is equal to seven, while only six resonances are observed in the traditional scheme of saturated absorption with counterpropagating waves of the same frequency. The spectral position of the resonances and their polarity depend on the frequency of the saturating radiation, while their number and relative amplitude depend also on the experimental geometry. These features are of general character and should show themselves in the absorption spectrum on the D 2 lines of all alkali metals. An explanation of these features is given. The calculated spectral separations between the resonances are compared to the experimental ones, and their possible application is discussed.

  17. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  18. Shape-shifting colloids via stimulated dewetting

    NASA Astrophysics Data System (ADS)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  19. Ionic species produced on gamma radiolysis: Studies by matrix isolation technique—I. Electronic absorption spectra of perfluorosubstituted aromatic radical anions

    NASA Astrophysics Data System (ADS)

    Shou-te, Lian C. T.; Mittal, Jai P.

    The absorption spectra of several perfluorosubstituted aromatic radical anions are compared with the corresponding perhydro compounds in which the various transitions involved have been assigned to those predicted theoretically. The electronic absorption spectra were obtained for pentafluorostyrene, pentafluorobenzaldehyde, pentafluorobenzoic acid, pentafluorobenzonitride, tetrafluorophthalic acid and pentafluoroaniline, by gamma radiolysis in 2-methyltetrahydrofuran at 77 K. A general similarity in the absorption spectra between the perfluorinated and the corresponding perhydro radical anion is observed except for a shift in the absorption band.

  20. Atomic Clocks with Suppressed Blackbody Radiation Shift

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Okhapkin, M. V.; Bagayev, S. N.; Tamm, Chr.; Peik, E.; Huntemann, N.; Mehlstäubler, T. E.; Riehle, F.

    2011-07-01

    We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a “synthetic” frequency νsyn ∝ (ν1-ɛ12ν2) largely immune to the blackbody radiation shift. For example, in the case of Yb+171 it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10-18 in a broad interval near room temperature (300±15K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency νsyn is generated as one of the components of the comb spectrum.

  1. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 < 21B1 < 11A1 < 21A1 < 11B2 < 31A1 < 31B1. These, together with calculated higher energy states, give a satisfactory account of the principal maxima observed in the VUV spectrum. Basis sets up to quadruple zeta valence with extensive polarization are used. The diffuse functions within this type of basis generate both valence and low-lying Rydberg excited states. The optimum position for the site of further diffuse functions in the calculations of Rydberg states is shown to lie on the H-atoms. The routine choice on the F-atoms is shown to be inadequate for both CHF3 and CH2F2. The lowest excitation energy region has mixed valence and Rydberg character. TDDFT calculations show that the unusual structure of the onset arises from the near degeneracy of 11B1 and 11A2 valence states, which mix in symmetric and antisymmetric combinations. The absence of fluorescence in the 10.8-11 eV region contrasts with strong absorption. This is interpreted by the 21B1 and 11A1 states where no fluorescence is calculated for these

  2. Evolution and Spectrum of the Radio Emission of Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.

    2018-02-01

    The radio spectrum of Tycho's Supernova Remnant is constructed at frequencies 12.6-143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = -(0.46 ± 0.03)%/year: S_ν ^{3C10} (t = 2010.3) = (43.1 ± 1.8 Jy)(ν [GHz])^{ - (0.592 ± 0.019) + (0.041 ± 0.012)log (ν [GHz])} . The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.

  3. Variability of the broad absorption lines in the QSO UM 232

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret

    1989-01-01

    Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.

  4. Effect of heavy Ag doping on the physical properties of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Xu, Zhenchao

    2018-04-01

    The band structure, density of state and absorption spectrum of Zn1‑xAgxO (x = 0.02778, 0.04167) were calculated. Results indicated that a higher doping content of Ag led to a higher total energy, lower stability, higher formation energy, narrower bandgap, more significant red shift of the absorption spectrum, higher relative concentration of free hole, smaller hole effective mass, lower mobility and better conductivity. Furthermore, four types of model with the same doping content of double Ag-doped Zn1‑xAgxO (x = 0.125) but different manners of doping were established. Two types of models with different doping contents of double Ag-doped Zn1‑xAgxO (x = 0.0626, 0.0833) but the same manner of doping, were also established. Under the same doping content and different ordering occupations in Ag double doping, the doped system almost caused magnetic quenching upon the nearest neighbor -Ag-O-Ag- bonding at the direction partial to the a- or b-axis. Upon the next-nearest neighbor of -Ag-O-Zn-O-Ag- bonding at the direction partial to the c-axis, the total magnetic moment of the doped system increased, and the doped system reached a Curie temperature above the room-temperature. All these results indicated that the magnetic moments of Ag double-doped ZnO systems decreased with increased Ag doping content. Within the range of the mole number of the doping content of 0.02778-0.04167, a greater Ag doping content led to a narrower bandgap of the doped system and a more significant red shift in the absorption spectrum. The absorption spectrum of the doped ZnO system with interstitial Ag also shows a red shift.

  5. Changes in the optical absorption induced by sequential exposition to short- and long-wavelength radiation in the BTO:Al crystal

    NASA Astrophysics Data System (ADS)

    Shandarov, S. M.; Dyu, V. G.; Kisteneva, M. G.; Khudyakova, E. S.; Smirnov, S. V.; Akrestina, A. S.; Kargin, Yu F.

    2017-02-01

    Modifications of the spectral dependences of the optical absorption induced in the Bi12TiO20:Al crystal as a result of sequential exposition to cw laser radiation first with the wavelength λ g = 532 nm and then with the longer wavelength λ l,n = 588, 633, 655, 658, 663, 700, 780, 871, or 1064 nm are investigated. We revealed that after the short-wavelength exposition to radiation with λg = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of a prehistory. The subsequent exposition to longer-wavelength radiation leads to bleaching of the crystal in the examined spectral range. A maximum diminishing of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λ l,5 = 663 nm. To describe the experimentally observed reversible changes in the optical absorption spectrum in the Bi12TiO20:Al we use the impurity absorption model that takes into account the photoinduced transitions between two metastable states of a deep defect center leading to the change of its position in the crystal lattice under conditions of strong lattice relaxation.

  6. Influence of synchrotron self-absorption on 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Gu, Jun-Hua; Wang, Jingying; Xu, Haiguang

    2012-08-01

    The presence of spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources could break down the spectral smoothness feature. This leads to the premise that the bright radio foreground can be successfully removed in 21-cm experiments that search for the epoch of reionization (EoR). We present a quantitative estimate of the effect of the spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources on the measurement of the angular power spectrum of the low-frequency sky. We incorporate a phenomenological model, which is characterized by the fraction (f) of radio sources with turnover frequencies in the range of 100-1000 MHz and by a broken power law for the spectral transition around the turnover frequencies νm, into simulated radio sources over a small sky area of 10° × 10°. We compare statistically the changes in their residual maps with and without the inclusion of the synchrotron self-absorption of extragalactic radio sources after the bright sources of S150 MHz ≥100 mJy are excised. Furthermore, the best-fitting polynomials in the frequency domain on each pixel are subtracted. It has been shown that the effect of synchrotron self-absorption on the detection of the EoR depends sensitively on the spectral profiles of the radio sources around the turnover frequencies νm. A hard transition model, described by the broken power law with the turnover of spectral index at νm, would leave pronounced imprints on the residual background and would therefore cause serious confusion with the cosmic EoR signal. However, the spectral signatures on the angular power spectrum of the extragalactic foreground, generated by a soft transition model in which the rising and falling power laws of the spectral distribution around νm are connected through a smooth transition spanning ≥200 MHz in a characteristic width, can be fitted and consequently subtracted by the use of polynomials to an acceptable

  7. Enhanced performance of dye-sensitized solar cells based on TiO{sub 2} with NIR-absorption and visible upconversion luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Li; Yulin, Yang, E-mail: ylyang@hit.edu.cn; Mi, Zhou

    2013-02-15

    TiO{sub 2} with NIR-absorption and visible upconversion luminescence (UC-TiO{sub 2}) is prepared by a sol-gel method and calcined at 700 Degree-Sign C for 6 h. The material broadens the response region of dye sensitized solar cells (DSSCs) from an ultraviolet-visible region to the whole region of the solar spectrum. It shifts NIR sunlight to visible light which matches the strong absorbing region of the dye (N719). DSSCs based on UC-TiO{sub 2} achieved higher conversion efficiency than that on raw TiO{sub 2}. UC-TiO{sub 2} was mixed with commercial raw TiO{sub 2} as additive, and the short-circuit current density, open-circuit voltage andmore » conversion efficiency of the DSSC reached to the optimum values 13.38 mA/cm{sup 2}, 0.78 V and 6.63% (AM1.5 global), comparing with the blank values: 7.99 mA/cm{sup 2}, 0.75 V and 4.07%, respectively. Also the mechanisms of upconversion by multiphoton absorption and energy transfer processes are interpreted in this paper. - Graphical abstract: By introducing TiO{sub 2} with NIR-absorption and visible up-conversion luminescence into DSSC, a signal reflection was explored from ultra-violet region to visible region, and to near-IR region. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} with NIR-absorption and visible up-conversion luminescence (UC-TiO{sub 2}) was prepared by a sol-gel method. Black-Right-Pointing-Pointer A systematic characterization and analysis was carried out to discuss the mechanism. Black-Right-Pointing-Pointer A significantly enhanced performance of DSSC was explored by using UC-TiO{sub 2} as an additive.« less

  8. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  9. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  10. Platinum-mordenite catalysts for n-Hexane isomerization: Characterization by X-ray absorption spectroscopy and chemical probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otten, M.M.; Clayton, M.J.; Lamb, H.H.

    Platinum-mordenite (Pt-MOR) catalysts were prepared from NH{sub 4}-MOR by ion exchange with (Pt{sup II}(NH{sub 3}){sub 4})(OH){sub 2}, calcination in O{sub 2} at 350{degrees}C, and reduction in H{sub 2} at 350{degrees}C. The resultant Pt-H-MOR was active for n-hexane isomerization and hydrocracking via bifunctional catalysis at 240-300{degrees}C and 1 atm. The observed activation energies for C{sub 6} branched-isomer formation are unusually low, suggesting that the isomerization rates were controlled by pore diffusion. A Pt-KH-MOR catalyst was prepared by ion exchange with aqueous KNO{sub 3} and re-reduction at 350{degrees}C; elemental analysis evidenced 90% exchange of protons for K{sup +} ions. The product distributionmore » and observed activation energies for C{sub 6} branched-isomer formation over Pt-KH-MOR are consistent with n-hexane isomerization via bifunctional catalysis. Hydrocracking was strongly suppressed, and light hydrocarbons were formed primarily by Pt-catalyzed hydrogenolysis. From in-situ extended X-ray absorption fine structure spectroscopy and H{sub 2} temperature-programmed desorption, we conclude that the Pt-MOR catalysts consist of small Pt clusters hosted within the mordenite crystals. The PtL{sub III}X-ray absorption near-edge structure (XANES) spectra of Pt-H-MOR and Pt-KH-MOR are closely similar, suggesting that the electronic structure of the Pt clusters is unaffected by mordenite acid-base chemistry. The infrared spectrum of CO adsorbed on Pt-H-MOR contains an intense band at 2084 cm{sup -1}, which is assigned to linear CO moieties on Pt clusters. The infrared spectrum of CO adsorbed on Pt-KH-MOR evidences a red shift of the linear CO band, which the authors suggest is due to electrostatic interactions between carbonyl O atoms and nearby K{sup +} ions. 45 refs., 9 figs., 6 tabs.« less

  11. Alternating absorption features during attosecond-pulse propagation in a laser-controlled gaseous medium

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.

    2013-11-01

    Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.

  12. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  13. Statistical effects in the absorption and optical activity of particulate suspensions.

    PubMed Central

    Bustamante, C; Maestre, M F

    1988-01-01

    The phenomenon of Duysens flattening of the absorption spectra resulting from the inhomogeneous distribution of the chromophores in the solution is analyzed. These inhomogeneities are treated as localized statistical fluctuations in the concentration of the absorbing species, by using the Gaussian distribution. A law of absorbance is obtained, and the effect of light scattering on the flattening is also characterized. The flattening in the circular dichroism spectra of particulate suspensions is then analyzed. It is shown that the degree of flattening of the circular dichroism of a suspension is, in general, different from the corresponding flattening of its absorption spectrum. A quantitative relationship between the two effects is established. PMID:3186738

  14. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  15. The line-locking hypothesis, absorption by intervening galaxies, and the z = 1.95 peak in redshifts

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1978-01-01

    The controversy over whether the absorption spectrum in QSOs is intrinsic or extrinsic is approached with attention to the peak of redshifts at z = 1.95. Also considered are the line-locking and the intervening galaxy hypotheses. The line locking hypothesis is based on observations that certain ratios found in absorption line QSOs are preferred, and leads inevitably to the conclusion that the absorption line systems are intrinsic. The intervening galaxy hypothesis is based on absorption redshifts resulting from given absorption cross-sections of galactic clusters and the intergalactic medium, and would lead to the theoretical conclusion that most QSOs show strong absorption, a conclusion which is not supported by empirical data. The 1.95 peak, on the other hand, is most probably an intrinsic property of QSOs. The peak is enhanced by redshift, and it is noted that both an emission and an absorption redshift peak are seen at 1.95.

  16. A study of the spectrum of HD 108, an unusual Of star

    NASA Astrophysics Data System (ADS)

    Underhill, Anne B.

    1994-01-01

    Spectra of the peculiar O star HD 108 obtained at a scale of 30 A/mm in the years 1986-1991 have been studied for line displacements and line profiles. The wavelength regions covered are 4180-5050 A, 5100-5980 A, and 6180-7070 A. The spectra were recorded with a Reticon, and most have a signal-to-noise ratio per pixel in the continuum greater than 200. It is argued that the spectral type is best described as O7fpe III. The spectrum at the time of observation was similar to te description given by Plaskett (1924), but the radial velocity has changed. In 1922 and 1923 the absorption lines and the emission lines showed a displacement of -62 km/s. In the ensuing years the radial velocity shown by the absorption lines, mostly He II, N III, and O III, has changed to about -84 km/s in 1991. The emission-line velocity remained near -62 km/s until about 1991, when this radial velocity became (apparently) about -66 km/s. There is some reason to suspect that the last few spectra obtained in 1991 suffer from a small random negative shift. The meaning of the radial velocity results is discussed, and it is argued that by 1973 the photosphere may have begun to undergo an outward surge. The change of motion shown by the emission lines is less than that shown by the photospheric absorption lines. It is argued that the emission lines, both the strong sharp emission lines due to H and He I and the weaker lines due to C II, C III, N II, O II, and Si III, are formed in a polar jet which is moving almost perpendicular to the line of sight. The star HD 108 appears to be related to the luminous blues variables (LBVs) and to the B(e) stars. No forbidden emission lines, as from a nebula, were detected in the visible spectral range. Strong distinctive P Cygni type displaced absorption components for the H and He I lines are not seen. Rather, one sees a sharp emission line superposed on a photospehric absorption line. The absence of a strong P Cygni type absorption component indicates that

  17. The identification of hydrophobic sites on the surface of proteins using absorption difference spectroscopy of bromophenol blue.

    PubMed

    Bertsch, M; Mayburd, A L; Kassner, R J

    2003-02-15

    Hydrophobic sites on the surface of protein molecules are thought to have important functional roles. The identification of such sites can provide information about the function and mode of interaction with other cellular components. While the fluorescence enhancement of polarity-sensitive dyes has been useful in identifying hydrophobic sites on a number of targets, strong intrinsic quenching of Nile red and ANSA dye fluorescence is observed on binding to a cytochrome c('). Fluorescence quenching is also observed to take place in the presence of a variety of other biologically important molecules which can compromise the quantitative determination of binding constants. Absorption difference spectroscopy is shown not to be sensitive to the presence of fluorescence quenchers but sensitive enough to measure binding constants. The dye BPB is shown to bind to the same hydrophobic sites on proteins as polarity-sensitive fluorescence probes. The absorption spectrum of BPB is also observed to be polarity sensitive. A binding constant of 3x10(6)M(-1) for BPB to BSA has been measured by absorption difference spectroscopy. An empirical correlation is observed between the shape of the absorption difference spectrum of BPB and the polarity of the environment. The results indicate that absorption difference spectroscopy of BPB provides a valuable supplement to fluorescence for determining the presence of hydrophobic sites on the surface of proteins as well as a method for measuring binding constants.

  18. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  19. Combined dispersive/interference spectroscopy for producing a vector spectrum

    DOEpatents

    Erskine, David J.

    2002-01-01

    A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.

  20. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.