Science.gov

Sample records for abstract air thermal

  1. Solar thermal components. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Bozman, W. R. (Editor)

    1979-01-01

    This bibliographic series cites and abstracts literature and technical papers on components applied to solar thermal energy utilization. The quarterly volumes are divided into ten categories: material properties; flat plat collectors; concentrating collectors; thermal storage; heat pumps; coolers and heat exchangers; solar ponds and distillation; greenhouses; process pleat; and irrigation pumps. Each quarterly volume is compiled from a wide variety of data bases, report literature, technical briefs, journal articles and other traditional and non traditional sources. The Technology Application Center maintains a library containing many of the articles and publications referenced in the series.

  2. Mercury and Air Pollution: A Bibliography With Abstracts.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The Air Pollution Technical Information Center (APTIC) of the Office of Air Programs has selected and compiled this bibliography of abstracts on mercury and air pollution. The abstracted documents are considered representative of available literature, although not all-inclusive. They are grouped into eleven categories: (1) Emission Sources, (2)…

  3. Odors and Air Pollution: A Bibliography with Abstracts.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The annotated bibliography presents a compilation of abstracts which deal with odors as they relate to air pollution. The abstracts are arranged within the following categories: Emission sources; Control methods; Measurement methods; Air quality measurements; Atmospheric interaction; Basic science and technology; Effects-human health;…

  4. Thermal Barrier Coatings. Abstracts and figures

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Thermal Barrier Coatings Workshop was held May 21 and 22, 1985, at the NASA Lewis Research Center in Cleveland, Ohio. Six sessions covered Failure Mechanisms and Life Modeling, Effects of Oxidation and Creep, Phase Stability and Microstructural Aspects, Nondestructive and Analytical Assessment, Coating Development, and Alternative Applications.

  5. Air Pollution Translations: A Bibliography with Abstracts - Volume 4.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Technical Information Center.

    This volume is the fourth in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The entries are grouped into 12 subject categories: Emission Sources, Control Methods, Measurement Methods, Air Quality Measurements, Atmospheric Interaction, Basic Science and Technology, Effects--Human…

  6. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  7. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  8. Air Pollution Translations: A Bibliography with Abstracts - Volume 2.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Raleigh, NC.

    This volume is the second in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The 444 entries are grouped into 12 subject categories: General; Emission Sources; Atmospheric Interaction; Measurement Methods; Control Methods; Effects--Human Health; Effects--Plants and Livestock;…

  9. Air Pollution Translations: A Bibliography With Abstracts - Volume 1.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Cited are 558 references with abstracts translated from the original foreign languages, including 511 from Russian, 129 from German, and 18 from other countries. The entries are generally of a technical or advanced nature and are grouped into 13 subject areas: General, Emission Sources, Atmospheric Interaction, Measurement Methods, Control…

  10. Solar thermal energy utilization: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  11. (abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Nash, A. E.

    1994-01-01

    Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.

  12. Air Pollution Publications, A Selected Bibliography With Abstracts, 1966-1968.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Contained are over 1000 entries with abstracts spanning the literature from 1966 to 1968. The references are grouped into broad subject categories: emission sources; atmospheric interactions; measurement; control methods; biosciences and medicine; plants; materials deterioration; air quality; legal and administrative aspects; social aspects; basic…

  13. Air quality analysis of Phase I of the proposed oil backout legislation. [Lead abstract

    SciTech Connect

    Streets, D.G.

    1980-10-01

    This report presents an air quality analysis of Phase I of the President's proposed legislation to reduce the use of oil and natural gas in electric utility power plants by approximately 1 x 10/sup 6/ barrels of oil per day. The report analyzes changes in sulfur dioxide and nitrogen oxide emissions that would accompany the conversions. Local and regional impacts on ambient sulfur dioxide and sulfate concentrations are examined. Finally, the cost-effectiveness of certain control options and the effectiveness of converting the specified plants in reducing oil consumption without excessive environmental or cost impacts are discussed. Separate abstracts are prepared for the 6 chapters.

  14. Use of Structure as a Basis for Abstraction in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2004-01-01

    The safety and efficiency of the air traffic control domain is highly dependent on the capabilities and limitations of its human controllers. Past research has indicated that structure provided by the airspace and procedures could aid in simplifying the controllers cognitive tasks. In this paper, observations, interviews, voice command data analyses, and radar analyses were conducted at the Boston Terminal Route Control (TRACON) facility to determine if there was evidence of controllers using structure to simplify their cognitive processes. The data suggest that controllers do use structure-based abstractions to simplify their cognitive processes, particularly the projection task. How structure simplifies the projection task and the implications of understanding the benefits structure provides to the projection task was discussed.

  15. Thermal analysis of car air conditioning

    NASA Astrophysics Data System (ADS)

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  16. Atmospheric modeling of air pollution. 1979-May, 1980 (a bibliography with abstracts). Report for 1979-May 80

    SciTech Connect

    Carrigan, B.

    1980-06-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 130 abstracts, 88 of which are new entries to the previous edition.)

  17. Atmospheric modeling of air pollution. 1977-78 (a bibliography with abstracts). Report for 1977-1978

    SciTech Connect

    Carrigan, B.

    1980-06-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 216 abstracts, none of which are new entries to the previous edition.)

  18. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    EPA Science Inventory

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  19. Front surface thermal property measurements of air plasma spray coatings

    SciTech Connect

    Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand

    2009-04-15

    A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

  20. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  1. TOTAL HUMAN EXPOSURE AND INDOOR AIR QUALITY: AN AUTOMATED BIBLIOGRAPHY (BLIS) WITH SUMMARY ABSTRACTS

    EPA Science Inventory

    The Bibliographic Literature Information System (BLIS) is a computerized data base with brief abstracts that comprehensively reviews literature on total human exposure to environmental pollution. Unpublished draft reports are listed, as well as final reports of the U.S. Governmen...

  2. Thermal degradation of cereal straws in air and nitrogen

    SciTech Connect

    Ghaly, A.E.; Ergundenler, A.

    1991-12-31

    The termogravimetric behavior of four cereal straws (wheat, barley, oats, and rye) was examined at three heating rates (10, 20, and 50{degrees}C/min) in air and nitrogen atmospheres. The thermal degradation rate in active and passive pyrolysis zones, the initial degradation temperature, and the residual weight at 600{degrees}C were determined for these straws in both atmospheres. Increasing the heating rate increased the thermal degradation rate, and decreased both the initial degradation temperature and the residual weight at 600{degrees}C. The higher the cellulosic content of the straw, the higher the thermal degradation rate and the initial degradation temperature. Also, higher ash content in the straw resulted in higher residual weight at 600{degrees}C. The thermal degradation rate in active pyrolysis zone was lower in air atmosphere than in nitrogen atmosphere, whereas the thermal degradation rate in passive pyrolysis zone and the residual weight at 600{degrees}C were higher in nitrogen atmosphere than in air atmosphere.

  3. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  4. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  5. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  6. Numerical Analysis of Thermal Comfort at Open Air Spaces

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  7. Thermal analysis of Perforated Metal Air Transportable Package (PMATP) prototype.

    SciTech Connect

    Oneto, Robert; Levine, Howard; Mould, John; Pierce, Jim Dwight

    2003-08-01

    Sandia National Laboratories (SNL) has designed a crash-resistant container, the Perforated Metal Air Transportable Package (PMATP), capable of surviving a worst-case plane crash, including both impact and subsequent fire, for the air transport of plutonium. This report presents thermal analyses of the full-scale PMATP in its undamaged (pre-test) condition and in bounding post-accident states. The goal of these thermal simulations was to evaluate the performance of the package in a worst-case post-crash fire. The full-scale package is approximately 1.6 m long by 0.8 m diameter. The thermal analyses were performed with the FLEX finite element code. This analysis clearly predicts that the PMATP provides acceptable thermal response characteristics, both for the post-accident fire of a one-hour duration and the after-fire heat-soak condition. All predicted temperatures for the primary containment vessel are well within design limits for safety.

  8. Evaluation of sectrally-selective materials for multi-layer solar thermal crop drying (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solar thermal (ST) drying is a ubiquitous method in widespread use for fruit and vegetable crop preservation in developing countries; however, it has had limited commercialization in the United States due to concerns about slow drying rates, poor product quality, and predicted low return-on-investme...

  9. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION? (ABSTRACT)

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  10. System Level Analysis of a Water PCM HX Integrated Into Orion's Thermal Control System Abstract

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Hansen, Scott; Ungar, Eugene; Sheth, Rubik

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable water-based PCM HX.

  11. Yellowstone National Park as an opportunity for deep continental drilling in thermal regions. [Abstract only

    SciTech Connect

    Fournier, R.O.

    1983-03-01

    The Yellowstone caldera represnets the most intense magnatic and thermal anomaly within the conterminous United States. Voluminous rhyolite ash flows, accompanied by formation of huge calderas, occurred approximately 2.0, 1.3, and 0.6 My B.P. Although the last lava flow was about 70,000 B.P., much evidence suggests that magma may still be present at relatively shallow depth. The evidence from gravity and magnetic lows, magnetotelluric soundings, seismic wave velocities, maximum depths of earthquake foci, significant recent uplift of the caldera floor, and exceptionally high heat flux suggest that magmatic temperatures may be attained 5 to 10 km beneath much of the caldera. Most of the hot-spring and geyser activity occurs within the caldera and along a fault zone that trends north from the caldera rim through Norris Geyser Basin and Mammoth Hot Springs. The thermal waters and gases have been extensively sampled and analyzed over a period of 100 years. The chemical, isotopic, and hydrologic data obtained from natural discharges and from shallow wells drilled in thermal areas, enable formulation of models of the hydrothermal system. No previous intermediate-depth drilling has been conducted at Yellowstone to help select the best location for a deep drill hole, and because Yellowstone is a National Park, no commercial drilling will be available for add-on experiments. Also, a deep drill hole in Yellowstone would have to be sited with great regard to environmental and ecological considerations. Nevertheless, the large amount of existing data is sufficient to formulate testable models. The Yellowstone thermal anomaly is so extensive and scientifically interesting that almost any suitable drilling site there may be superior to the best drilling site in any other silicic caldera complex in the United States.

  12. (abstract) Variations in Polarimetric Backscatter of Saline Ice Grown Under Diurnal Thermal Cycling Condition

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Ding, K. H.

    1995-01-01

    An experiment was carried out in January 1994 at the Geophysical Research Facility in the Cold Regions Research and Engineering Laboratory. To investigate effects on polarimetric scattering signatures of sea ice growth under diurnal temperature variations, an ice sheet was grown for 2.5 days for the thickness of 10 cm and a polarimetric radar operating at C-band was used to obtain backscattering data in conjunction with ice-characterization measurements. The ice sheet was grown in the late morning of January 19, 1994. The initial growth rate was slow due to high insolation and temperature. As the air temperature dropped during the night, the growth rate increased significantly. The air temperature changed drastically from about -10(deg)C to -35(deg)C between day and night. The temperature cycle was repeated during the next day and the growth rate varied in the same manner. The surface of the ice was partially covered by frost flowers and the areal coverage increased as the ice became thicker. Throughout the ice growth duration of 2.5 days, polarimetric backscatter data were collected at roughly every centimeter of ice growth. For each set of radar measurements of saline ice, a set of calibration measurements was carried out with trihedrial corner reflectors and a metallic sphere. Measured polarimetric backscattering coefficients of the ice sheet reveal a strong correlation between radar data and temperature variations. As the temperature increased (decreased), the backscatter increased (decreased) correspondingly. From the ice-characterization data, temperatures of the air, at the ice-air interface, and in the ice layer had the same variation trend. Another interesting experimental observation is that the salinity measured as a function of ice depth from a sample of 10-cm thich ice indicated that the salinity variations had a similar cycle as the temperature; i.e., the salinity profile recorded the history of the temperature variations. Characterization data of the

  13. Surface modifications and surface-protective coatings analyzed by means of thermal waves (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Bein, B. K.; Fotsing, J. L. N.; Gibkes, J.; Delgadillo-Holtfort, I.; Dietzel, D.; Pelzl, J.

    2003-01-01

    The depth profiles of the thermophysical properties of alloy systems, for example, shape memory alloys (NiTi), steel, and tool steel, can vary considerably due to rolling, surface machining, heat treatment, mechanical wear, and erosion. The same is true for coated tool steel samples, which show variations of the effective thermal depth profiles due to the effects of substrate preparation and deposition of the coatings, for example, plasma-etching, arc erosion, nitriding, chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition, and plasma spraying. In this work we present a large variety of measured effective thermal depth profiles. In a first step, we identify the effects of coating deposition and substrate preparation on the measured depth profiles. In a second step, we identify and try to quantify the effects of mechanical wear and erosion of both coated and uncoated surface. To this finality, the signals, which have been measured with the help of IR radiometry as a function of the modulation frequency, have been calibrated with reference signals measured for homogeneous samples of glassy carbon. The normalized amplitudes and phases have been approximated using layer models, mainly the two- and three-layer model with an opaque first layer, with respect to both the visible and the IR spectrum. Additionally, the signals measured for different coatings have been normalized against each other. By this latter calibration procedure, even smaller details and differences of coating deposition and substrate preparation can be identified, as well as the effects of wear and surface erosion. The virgin coated samples normally can well be described by the two-layer model, and the thermal transport parameters of the coatings as a whole can be determined quantitatively with rather good reliability (Ref. 1). The deviations from the two-layer model, which can be related to details of the deposition process, for example, to gradient layers or bond

  14. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, El Hassan

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  15. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  16. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  17. Nonresonant Referenced Laser-Induced Thermal Acoustics Thermometry in Air

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, Gregory C.

    1999-01-01

    We report a detailed investigation of nonresonant laser-induced thermal acoustics (LITA) for the single-shot measurement of the speed of sound ( v S ) in an oven containing room air. A model for the speed of sound that includes important acoustic relaxation effects is used to convert the speed of sound into temperature. A reference LITA channel is used to reduce uncertainties in v S . Comparing thermocouple temperatures with temperatures deduced from our v S measurements and model, we find the mean temperature difference from 300 to 650 K to be 1% ( 2 ). The advantages of using a reference LITA channel are discussed.

  18. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  19. Photothermal depth profiling: Comparison between genetic algorithms and thermal wave backscattering (abstract)

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal depth profiling has been the subject of many papers in the last years. Inverse problems on different kinds of materials have been identified, classified, and solved. A first classification has been done according to the type of depth profile: the physical quantity to be reconstructed is the optical absorption in the problems of type I, the thermal effusivity for type II, and both of them for type III. Another classification may be done depending on the time scale of the pump beam heating (frequency scan, time scan), or on its geometrical symmetry (one- or three-dimensional). In this work we want to discuss two different approaches, the genetic algorithms (GA) [R. Li Voti, C. Melchiorri, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 410 (2001); R. Li Voti, Proceedings, IV Int. Workshop on Advances in Signal Processing for Non-Destructive Evaluation of Materials, Quebec, August 2001] and the thermal wave backscattering (TWBS) [R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 414 (2001); J. C. Krapez and R. Li Voti, Anal. Sci. 17, 417 (2001)], showing their performances and limits of validity for several kinds of photothermal depth profiling problems: The two approaches are based on different mechanisms and exhibit obviously different features. GA may be implemented on the exact heat diffusion equation as follows: one chromosome is associated to each profile. The genetic evolution of the chromosome allows one to find better and better profiles, eventually converging towards the solution of the inverse problem. The main advantage is that GA may be applied to any arbitrary profile, but several disadvantages exist; for example, the complexity of the algorithm, the slow convergence, and consequently the computer time consumed. On the contrary, TWBS uses a simplified theoretical model of heat diffusion in inhomogeneous materials. According to such a model, the photothermal signal depends linearly on the thermal effusivity

  20. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  1. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  2. Modern air protection technologies at thermal power plants (review)

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  3. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  4. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

  5. Thermal performance of a new solar air heater

    SciTech Connect

    Tiris, C.; Ozbalta, N.; Tiris, M.; Dincer, I.

    1995-05-01

    A solar air heater, part of a food drying system using solar energy as a renewable energy source for heat, was developed and tested for several agricultural products (i.e., sultana grapes, green beans, sweet peppers, chili peppers). Drying processes were conducted in the chamber with forced natural air heated partly by solar energy. Solar air heater performances were discussed along with estimates of energy efficiency of the system. The obtained results indicate that the present system is efficiency and effective.

  6. Thermal Gradient Behavior of TBCs Subjected to a Laser Gradient Test Rig: Simulating an Air-to-Air Combat Flight

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.; Marcoux, P.

    2016-01-01

    A computer-controlled laser test rig (using a CO2 laser) offers an interesting alternative to traditional flame-based thermal gradient rigs in evaluating thermal barrier coatings (TBCs). The temperature gradient between the top and back surfaces of a TBC system can be controlled based on the laser power and a forced air back-face cooling system, enabling the temperature history of complete aircraft missions to be simulated. An air plasma spray-deposited TBC was tested and, based on experimental data available in the literature, the temperature gradients across the TBC system (ZrO2-Y2O3 YSZ top coat/CoNiCrAlY bond coat/Inconel 625 substrate) and their respective frequencies during air-to-air combat missions of fighter jets were replicated. The missions included (i) idle/taxi on the runway, (ii) take-off and climbing, (iii) cruise trajectory to rendezvous zone, (iv) air-to-air combat maneuvering, (v) cruise trajectory back to runway, and (vi) idle/taxi after landing. The results show that the TBC thermal gradient experimental data in turbine engines can be replicated in the laser gradient rig, leading to an important tool to better engineer TBCs.

  7. Aconitine Challenge Test Reveals a Single Exposure to Air Pollution Causes Increased Cardiac Arrhythmia Risk in Hypertensive Rats - Abstract

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  8. Building America Top Innovations 2012: Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

  9. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  10. Air Dispersion Characteristics and Thermal Comparison of Traditional and Fabric Ductwork using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Andreopoulou, Areti

    This thesis research compares the air dispersion and thermal comfort characteristics of conventional diffuser and fabric-based ductwork systems. Heating, ventilation, and air-conditioning (HVAC) systems in buildings produce and regulate airflow traveling through ductwork. The performance characteristics of conventional ductwork are compared with recent advancements in fabric-based ductwork. Using computational fluid dynamics (CFD) analysis, thermal and air distribution flow patterns are compared between the two types of ductwork and preliminary thermal comfort and efficiency conclusions are drawn. Results of the Air Distribution Performance Index (ADPI) for both ducting systems reflect that, under the given test conditions, the fabric duct system is approximately 23% more comfortable than the traditional diffuser system in terms of air speed flow uniformity into the space, while staying within the Effective Draft Temperature comfort zone of -3 to +2°F.

  11. A correlation of air-coupled ultrasonic and thermal diffusivity data for CFCC materials

    SciTech Connect

    Pillai, T.A.K.; Easler, T.E.; Szweda, A.

    1997-01-01

    An air-coupled (non contact) through-transmission ultrasonic investigation has been conducted on 2D multiple ply Nicalon{trademark} SiC fiber/SiNC CFCC panels as a function of number of processing cycles. Corresponding thermal diffusivity imaging was also conducted. The results of the air-coupled ultrasonic investigation correlated with thermal property variations determined via infrared methods. Areas of delaminations were detected and effects of processing cycles were also detected.

  12. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  13. Air-Based Remediation Workshop - Section 6 Thermal Systems

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  14. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect

    Raghuraman, P.; Hendrie, S.D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  15. Comparison of thermal advection measurements by clear-air radar and radiosonde techniques

    SciTech Connect

    Crochet, M.; Rougier, G.; Bazile, G. Meteorologie Nationale, Trappes )

    1990-10-01

    Vertical profiles of the horizontal wind have been measured every 4 min by a clear-air radar (stratospheric-troposphere radar), and vertical profiles of temperature have been obtained every 2 hours by three radiosonde soundings in the same zone in Brittany during the Mesoscale Frontal Dynamics Project FRONTS 87 campaign. Radar thermal advection is deduced from the thermal wind equation using the measured real horizontal wind instead of the geostrophic wind. Radiosonde thermal advection is determined directly from the sounding station data sets of temperature gradients and also approximately from the thermodynamic equation by the temperature tendency. These approximations, applied during a frontal passage, show the same general features and magnitude of the thermal advection, giving a preliminary but encouraging conclusion for a possible real-time utilization of clear-air radars to monitor thermal advection and to identify its characteristic features. 6 refs.

  16. Two-Stage Energy Thermalization Mechanism in Nanosecond Pulse Discharges in Air and Hydrogen-Air Mixtures

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Lanier, Suzanne; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved and spatially resolved rotational temperature measurements in air and H2-air, by purely rotational Coherent Anti-Stokes Raman Spectroscopy (CARS), are presented. The experimental results demonstrate high accuracy of pure rotational psec CARS for thermometry measurements at low partial pressures of oxygen in nonequilibrium plasmas. The results are compared with modeling calculations using a state-specific master equation kinetic model of reacting hydrogen-air plasmas, showing good agreement. The results demonstrate that energy thermalization and temperature rise in these plasmas occur in two stages, (i) ``rapid'' heating, occurring on the time scale τrapid ~ 0 . 1 --1 μs .atm, caused by collisional quenching of excited electronic states of N2 molecules by O2, and (ii) ``slow'' heating, on the time scale τslow ~ 10 --100 μs .atm, caused primarily by N2 vibrational relaxation by O atoms (in air) and by chemical energy release during partial oxidation of hydrogen (in H2-air. Both energy thermalization mechanisms have major implications for plasma assisted combustion and plasma flow control.

  17. Abstract Painting

    ERIC Educational Resources Information Center

    Henkes, Robert

    1978-01-01

    Abstract art provokes numerous interpretations, and as many misunderstandings. The adolescent reaction is no exception. The procedure described here can help the student to understand the abstract from at least one direction. (Author/RK)

  18. Human requirements to the indoor air quality and the thermal environment

    NASA Astrophysics Data System (ADS)

    Fanger, P. Ole

    Perceived air quality, general thermal sensation of the occupants and risk of draft, aspects which human comfort in a space depends upon, are reviewed separately based on European Guidelines for Ventilation Requirements in Buildings and on a modified ISO (International Standards Organization) standard 7730 on thermal comfort. The perceived air quality is expressed in decipol or percentage of dissatisfied occupants. The general thermal sensation is expressed by the PMV/PPD indices. The perception of draft is expressed by the model of draft risk. Indoor air quality is mediocre and causes complaints in many buildings. The reason for this is often hidden pollution sources in the building, hitherto ignored in previous ventilation standards. To determine the required ventilation, a method is used in the European Guidelines. The new Guidelines acknowledge all pollution sources in the building, expressed in olfs. The method is based on the desired air quality in the space, the available quality of the outdoor air, the ventilation effectiveness and on the total pollution load in the space. The model of draft risk predicts the percentage of occupants feeling draft as a function of the mean air velocity, the turbulence intensity and the air temperature.

  19. Solar thermal drying of apricots: Effect of spectrally-selective cabinet materials on drying rate and quality metrics (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solar thermal (ST) drying is currently not in widespread commercial use due to concerns about slow drying rates and poor product quality. ST dryer cabinets could be constructed from spectrally-selective materials (materials which transmit only certain sunlight wavelength bands), but these types of ...

  20. Two-stage energy thermalization mechanism in nanosecond pulse discharges in air and hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Lanier, Suzanne; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2015-04-01

    Time-resolved and spatially resolved temperature measurements, by pure rotational picosecond broadband coherent anti-Stokes Raman spectroscopy (CARS), and kinetic modeling calculations are used to study kinetics of energy thermalization in nanosecond pulse discharges in air and hydrogen-air mixtures. The diffuse filament, nanosecond pulse discharge (pulse duration ˜100 ns) is sustained between two spherical electrodes and is operated at a low pulse repetition rate to enable temperature measurements over a wide range of time scales after the discharge pulse. The experimental results demonstrate high accuracy of pure rotational ps CARS for thermometry measurements in highly transient non-equilibrium plasmas. Rotational-translational temperatures are measured for time delays after the pulse ranging from tens of ns to tens of ms, spanning several orders of magnitude of time scales for energy thermalization in non-equilibrium plasmas. In addition, radial temperature distributions across the plasma filament are measured for several time delays after the discharge pulse. Kinetic modeling calculations using a state-specific master equation kinetic model of reacting hydrogen-air plasmas show good agreement with experimental data. The results demonstrate that energy thermalization and temperature rise in these plasmas occur in two clearly defined stages, (i) ‘rapid’ heating, caused by collisional quenching of excited electronic states of N2 molecules by O2, and (ii) ‘slow’ heating, caused primarily by N2 vibrational relaxation by O atoms (in air) and by chemical energy release during partial oxidation of hydrogen (in H2-air). The results have major implications for plasma assisted combustion and plasma flow control.

  1. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  2. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  3. Atmospheric Pressure Non-Thermal Air Plasma Jet

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam; Al-Mashraqi, Ahmed; Benghanem, Mohamed; Al Shariff, Samir

    2013-09-01

    Atmospheric pressure air cold plasma jet is introduced in this work. It is AC (60 Hz to 20 kHz) cold plasma jet in air. The system is consisted of a cylindrical alumina insulator tube with outer diameter of 1.59 mm and 26 mm length and 0.80 mm inner diameter. AC sinusoidal high voltage was applied to the powered electrode which is a hollow needle inserted in the Alumina tube. The inner electrode is a hollow needle with 0.80 mm and 0.46 mm outer and inner diameters respectively. The outer electrode is grounded which is a copper ring surrounded the alumina tube locates at the nozzle end. Air is blowing through the inner electrode to form a plasma jet. The jet length increases with flow rate and applied voltage to reach 1.5 cm. The gas temperature decreases with distance from the end of the nozzle and with increasing the flow rate. The spectroscopic measurement between 200 nm and 900 nm indicates that the jet contains reactive species such as OH, O in addition to the UV emission. The peak to peak current values increased from 6 mA to 12 mA. The current voltage waveform indicates that the generated jet is homogenous plasma. The jet gas temperature measurements indicate that the jet has a room temperature. This work was supported by the National Science, Technology and Innovation Plan(NSTIP) through the Science and Technology Unit (STU) at Taibah University, Al Madinah Al Munawwarah, KSA, with the grant number 08-BIO24-5.

  4. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    PubMed Central

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  5. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose.

    PubMed

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  6. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    NASA Astrophysics Data System (ADS)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  7. Thermal Characteristics of Air in the Problem of Hypersonic Motion of Bodies in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Alhussan, K.; Morozov, D. O.; Stankevich, Yu. A.; Stanchits, L. K.; Stepanov, K. L.

    2014-07-01

    The thermal properties of hot air needed for describing the hypersonic motion of bodies in the Earth's atmosphere have been considered. Such motion, as is known, is accompanied by the propagation of strong shock waves analogous to waves generated by powerful explosions. Calculations have been made and data banks have been created for the equations of state and thermal characteristics of air in the temperature and density ranges corresponding to velocities of motion of bodies of up to 10 km/s at altitudes of 0-100 km. The formulation of the problem of hypersonic motion in the absence of thermodynamic equilibrium is discussed.

  8. Analysis of breathing air flow patterns in thermal imaging.

    PubMed

    Fei, Jin; Pavlidis, Ioannis

    2006-01-01

    We introduce a novel methodology to characterize breathing patterns based on thermal infrared imaging. We have retrofitted a Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO(2) absorption band (4130 - 4427 nm). We use this system to record the radiation information from within the breathing flow region. Based on this information we compute the mean dynamic thermal signal of breath. The breath signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then filter the high frequency noise due to tracking instability. We detect the breathing cycles through zero cross thresholding, which is insensitive to noise around the zero line. We normalize the breathing cycles and align them at the transition point from inhalation to exhalation. Then, we compute the mean breathing cycle. We use the first eight (8) harmonic components of the mean cycle to characterize the breathing pattern. The harmonic analysis highlights the intra-individual similarity of breathing patterns. Our method opens the way for desktop, unobtrusive monitoring of human respiration and may find widespread applications in clinical studies of chronic ailments. It also brings up the intriguing possibility of using breathing patterns as a novel biometric. PMID:17945610

  9. Application of buffer thermal energy storage to an Air Brayton Solar Engine

    NASA Astrophysics Data System (ADS)

    Strumpf, H. J.; Barr, K. P.

    1982-02-01

    The application of latent heat buffer thermal energy (TES) storage to a point focusing solar receiver equipped with an air Brayton engine is discussed. The 85-kw(th) Air Brayton Solar Receiver (ABSR) and Mod "O" engine were used as a baseline system. The operating life of a Brayton engine depends, in general, upon the number of start-stop cycles. The main advantage of buffer thermal energy storage is that it enables the engine to continue running during periods of cloud cover, thus reducing the number of engine shutdowns and increasing engine life. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written for complete transient/steady/state Brayton cycle performance. The solar insolation input was minute by minute data. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. It was also found that the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns. It was also indicated that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life. At low predicted life, thermal storage is economically attractive; for highly reliable, long lived engines, thermal storage is not economical.

  10. Consequences of a small decrease of air temperature from thermal equilibrium on thermoregulation in sleeping neonates.

    PubMed

    Telliez, F; Bach, V; Krim, G; Libert, J P

    1997-09-01

    A new heating unit (servocontrolled skin temperature derivative system) has been designed to control the thermal environment in closed incubators. This type of control acts to attain and closely maintain a thermal equilibrium between a neonate's skin temperature and the environment. The present study aims to discover if thermal equilibrium is located within a thermoneutral range defined from oxygen consumption VO2 and body temperature, and whether it is more appropriate to define an optimal thermal environment. As regards VO2 and body temperature, results show that the air temperature reached at thermal equilibrium fulfils the definition of thermoneutrality. According to these criteria, a small decrease (1:5 degrees C) from thermal equilibrium also provides a near thermoneutral environment to the neonate but induces sleep disturbances and an increase in body movements. These two additional parameters delineate a narrower thermoneutral zone than does minimal metabolic rate because VO2 can stay constant even when air and body temperatures decrease. The results suggest that thermal equilibrium might be assimilated with a thermal comfort zone. PMID:9374057

  11. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  12. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    NASA Astrophysics Data System (ADS)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  13. Ultralocalized thermal reactions in subnanoliter droplets-in-air

    PubMed Central

    Salm, Eric; Guevara, Carlos Duarte; Dak, Piyush; Dorvel, Brian Ross; Reddy, Bobby; Alam, Muhammad Ashraf; Bashir, Rashid

    2013-01-01

    Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand–receptor interactions, and rapid temperature cycling for amplification of DNA molecules. PMID:23401557

  14. Ultralocalized thermal reactions in subnanoliter droplets-in-air.

    PubMed

    Salm, Eric; Guevara, Carlos Duarte; Dak, Piyush; Dorvel, Brian Ross; Reddy, Bobby; Alam, Muhammad Ashraf; Bashir, Rashid

    2013-02-26

    Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules. PMID:23401557

  15. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  16. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  17. Integrating causal reasoning at different levels of abstraction. [in problem-solving system functioning as pilot assistant in commercial air transport emergencies

    NASA Technical Reports Server (NTRS)

    Hudlicka, Eva; Corker, Kevin

    1988-01-01

    In this paper, a problem-solving system which uses a multilevel causal model of its domain is described. The system functions in the role of a pilot's assistant in the domain of commercial air transport emergencies. The model represents causal relationships among the aircraft subsystems, the effectors (engines, control surfaces), the forces that act on an aircraft in flight (thrust, lift), and the aircraft's flight profile (speed, altitude, etc.). The causal relationships are represented at three levels of abstraction: Boolean, qualitative, and quantitative, and reasoning about causes and effects can take place at each of these levels. Since processing at each level has different characteristics with respect to speed, the type of data required, and the specificity of the results, the problem-solving system can adapt to a wide variety of situations. The system is currently being implemented in the KEE(TM) development environment on a Symbolics Lisp machine.

  18. Minimizing Thermal Deformation of Aerostatic Spindle System by Temperature Control of Supply Air

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hayato; Matsumura, Shimpei; Hashizume, Hitoshi; Shinno, Hidenori

    Aerostatic spindle systems have been widely used in many machine tools due to their low heat generation and high-speed capability. To meet industrial demands for higher accuracy and higher productivity, such spindle systems have recently become important as the kernel component in an ultraprecision machine tool. In this study, therefore, thermal deformation control for aerostatic spindle systems has been proposed considering heat balance in an objective spindle bearing system. In the proposed method, the temperature of supply air is controlled by monitoring that of exhaust air to minimize the thermal deformation of the spindle. The performance of the thermal deformation control system developed has been evaluated through a series of actual experiments.

  19. The Thermal Performance and Air Leakage Characteristics of Six Log Homes in Idaho.

    SciTech Connect

    Roos, Carolyn; Eklund, Ken; Baylon, David

    1993-08-01

    The thermal performance and air leakage characteristics of four electrically heated log houses located in Idaho are summarized. The air leakage and construction characteristics of two additional log homes are also examined. The energy consumption of the four homes was submetered at weekly reporting intervals for up to 16 months. Blower door tests and site audits were performed. In addition, conditions at two of these homes, including heat flux through the log walls, indoor and outdoor temperatures, solar flux and envelope tightness, were measured in detail over several days during winter conditions. The energy use and thermal performance of these two homes were then modeled using SUNCODE-PC, an hourly thermal simulation program employing a finite difference technique.

  20. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies. PMID:24457302

  1. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  2. An evaluation of thermal energy storage options for precooling gas turbine inlet air

    SciTech Connect

    Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

    1992-12-01

    Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

  3. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    PubMed

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, <2% for benzene, 11+/-2.4% for toluene, 3+/-1% for ethylbenzene, 1+/-1% for sigma-xylene, and 3+/-0.4% for m-/rho-xylene were found. A fairly wide range of degradation products could be identified. On both trapping media, various oxidized species such as alcohols, aldehydes, ketones and one epoxide were observed. The formation of adipaldehyde from nebulized cyclohexene clearly indicates an ozonolysis reaction. Other degradation products observed suggests reactions with OH radicals. We propose that mostly ozone and OH radicals are responsible for the degradation of organic molecules in the plasma air purifier. PMID:20167347

  4. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    SciTech Connect

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  5. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  6. Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

    SciTech Connect

    Helminiak, M A; Yanar, N M; Pettit, F S; Taylor, T A; Meier, G H

    2012-10-01

    The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

  7. Properties of thermal air plasma with admixing of copper and carbon

    NASA Astrophysics Data System (ADS)

    Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph

    2014-11-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.

  8. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  9. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. Evaluation of a rapid air thermal cycler for detection of Mycobacterium tuberculosis.

    PubMed Central

    Chapin, K; Lauderdale, T L

    1997-01-01

    The Air Thermal Cycler (ATC) (Idaho Technology, Idaho Falls, Idaho) utilizes the unique technology of small-volume glass capillary tubes and high-velocity air for the heating and cooling medium for the PCR. Standard heat block thermal cycler (HBTC) and ATC performance characteristics were compared for the detection of Mycobacterium tuberculosis. Sensitivity was 100% for all smear-positive, M. tuberculosis culture-positive specimens for both the HBTC and the ATC. Of smear-negative, M. tuberculosis culture-positive specimens, sensitivity was 42.9% with the HBTC and 22.0% with the ATC. Specificity was 100% for both assay systems. Total assay time was 6.5 and 4 h and the reagent cost was 84 and 32 cents for the HBTC and ATC, respectively. The ATC offered an excellent alternative to the traditional HBTC for diagnosis of M. tuberculosis in smear-positive specimens by PCR. PMID:9230404

  12. Thermal performance predictions of flat-plate solar collector air heaters

    NASA Astrophysics Data System (ADS)

    Oneill, T. C.

    1980-03-01

    A computer program was written that models heat exchanges occurring within flat plate solar air collectors and which computes the incoming solar flux and heat losses to the environment. Internal collector temperatures and thermal efficiencies are predicted for either steady state or transient cases from finite difference solutions to a set of energy balance equations. These relations are written for thermal modes that are generated and linked together by the internal deck logic. The program was utilized in a study of three types of air collectors. The first two configurations employed crossflow impingement along the backside of their absorbers to augment heat transfer coefficients developed at those surfaces, while the third used a rock matrix absorber to expand its surface area for heat transfer. In addition, the first collector replaced the conventional stationary plate absorber of the second design by a traveling belt.

  13. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  14. Thermal Behavior of Fe2O3/Al Thermite Mixtures in Air and Vacuum Environments

    SciTech Connect

    Duraes, L.; Santos, R.; Correia, A.; Campos, J.; Portugal, A.

    2006-07-28

    In this work, the thermal behavior of Fe2O3/Al thermite mixtures, in air and vacuum, is studied. The individual reactants and three mixtures - stoichiometric and over aluminized - are tested, by Simultaneous Thermal Analysis (STA) and heating microscopy, with a heating rate of 10 deg. C/min. The STA results show that the presence of O2 from air, or from residual air in vacuum, influenced the reaction scheme. The Al oxidation by this oxygen was extensive, making the thermite reaction with Fe2O3 unviable. There was also evidence of significant conversion of the Fe2O3 into Fe3O4, supporting the previous conclusion. So, the STA curves for the three mixtures were similar and displayed features of the individual reactants' curves. The heating microscopy images confirmed the STA conclusions, with one exception: the thermal explosion of the Al sample close to 550 deg. C. The absence of this phenomenon in STA results was explained by the limited amount of material used in each sample.

  15. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  16. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality

  17. Thermal analysis and design of air cooled electronic circuit boards using a desktop computer

    NASA Astrophysics Data System (ADS)

    Foltz, R. A.

    1980-06-01

    A thermal design procedure for air cooled electronic circuit boards has been developed for the Hewlett-Packard Model 9845 desktop computer. The system of interactive programs, called THERMELEX, performs thermal analysis of printed circuit boards to predict either junction temperatures for given power dissipation levels or the maximum power levels for given junction temperature limits. The system includes the following features: totally interactive with all input in question and answer format; simple data verification and correction capabilities; ability to store and retrieve circuit board descriptive data totally under program control; and wide variety of output formats including tabular and graphical. By using internal selection of heat transfer correlations, the THERMELEX system depends only on input of physical parameters for thermal predictions.

  18. Applicability of thermal-storage systems to air force facilities. Master's thesis

    SciTech Connect

    McCormick, D.B.

    1990-09-01

    Thermal storage is a technology that shifts the electrical demand for air conditioning from on-peak to off-peak periods. This is accomplished by chilling a storage medium during off-peak periods, storing this medium in an insulated container, and using it during on-peak periods to provide cooling. The result of this action is a lowered electric bill. This study approaches this issue from both a qualitative and a quantitive stand point. The qualitative portion addresses the general validity and effectiveness of thermal storage. The quantitative portion determines the specific market potential of packaged ice thermal storage systems for the 51 CONUS bases studied based on three initial cost scenarios.

  19. INVENTORY ABSTRACTION

    SciTech Connect

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the

  20. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  1. Air Entrainment and Thermal Evolution of Pyroclastic Density Currents at Tungurahua, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2015-12-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the thermal profile and evolution of the current. However, the associated hazards and opaqueness of PDCs make it difficult to discern internal dynamics and entrainment through direct observations. In this work, we use a three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model, deposit descriptions, and pyroclast field data, such as paleomagnetic and rind thickness, to study the entrainment efficiency and thus the thermal history of PDCs down the Juive Grande quebrada during the August 16-17th 2006 eruption of Tungurahua volcano. We conclude that 1) the efficient entrainment of ambient air cools the nose and upper portion of the PDCs by 30-60% of the original temperature, 2) PDCs with an initial temperature of 727 °C are on average more efficient at entraining ambient air than PDCs with an initial temperature of 327 °C, 3) the channelized PDCs develop a particle concentration gradient with a concentrated bed load region and suspended load region that leads to a large vertical temperature gradient, and 4) observations and pyroclast temperatures and textures suggest that the PDCs had temperatures greater than 327 °C in the bed load region while the upper, exterior portion of the currents cooled down to temperatures less than 100 °C. By combining field data and numerical models, the structure and dynamics of a PDC can be deduced for these relatively common small volume PDCs.

  2. Thermal imaging and air-coupled ultrasound characterization of a continuous-fiber ceramic composite panels.

    SciTech Connect

    Sun, J. G.; Easler, T. E.; Szweda, A.; Pillai, T. A. K.; Deemer, C.; Ellingson, W. A.

    1998-04-01

    SYLRAMIC{trademark} continuous fiber ceramic-matrix composites (Nicalon{trademark} fiber/SiNC matrix) were fabricated by Dow Corning Corporation with the polymer-impregnation and pyrolysis (PIP) process. The composite microstructure and its uniformity, and the completeness of infiltration during processing were studied as a function of number of PIP cycles. Two nondestructive evaluation (NDE) methods, i.e., infrared thermal imaging and air-coupled ultrasound (UT), were used to investigate flat composite panels of two thicknesses and various sizes. The thermal imaging method provided two-dimensional (2D) images of through-thickness thermal diffusivity distributions, and the air-coupled UT method provided 2D images of through-thickness ultrasonic transmission of the panel components. Results from both types of NDEs were compared at various PIP cycles during fabrication of the composites. A delaminated region was clearly detected and its progressive repair was monitored during processing. The NDE data were also correlated to results obtained from destructive characterization.

  3. Development of a Thermal Transport Database for Air Plasma Sprayed ZrO2 ? Y2O3 Thermal Barrier Coatings

    SciTech Connect

    Wang, Hsin; Dinwiddie, Ralph Barton; Porter, Wallace D

    2010-01-01

    Thermal Diffusivities of Air Plasma Sprayed (APS) thermal barrier coatings (TBCs) are measured by the laser flash method. The data are used to calculate thermal conductivity of TBCs when provided with density and specific heat data. Due to the complicated microstructure and other processing related parameters, thermal diffusivity of TBCs can vary as much as three to four fold. Data collected from over 200 free-standing ZrO2 7-8 wt%Y2O3 TBCs are presented. The large database gives a clear picture of the expected band of thermal diffusivity values. When this band is used as reference for thermal diffusivity of a specific TBC, the thermal transport property of TBC can be more precisely described. The database is intended to serve researchers and manufacturers of TBCs as a valuable source for evaluating their coatings.

  4. An efficient route to thermal rate constants in reduced dimensional quantum scattering simulations: applications to the abstraction of hydrogen from alkanes.

    PubMed

    von Horsten, H F; Banks, S T; Clary, D C

    2011-09-01

    We present an efficient approach to the determination of two-dimensional potential energy surfaces for use in quantum reactive scattering simulations. Our method involves first determining the minimum energy path (MEP) for the reaction by means of an ab initio intrinsic reaction coordinate calculation. This one-dimensional potential is then corrected to take into account the zero point energies of the spectator modes. These are determined from Hessians in curvilinear coordinates after projecting out the modes to be explicitly treated in quantum scattering calculations. The final (1+1)-dimensional potential is constructed by harmonic expansion about each point along the MEP before transforming the whole surface to hyperspherical coordinates for use in the two-dimensional scattering simulations. This new method is applied to H-atom abstraction from methane, ethane and propane. For the latter, both reactive channels (producing i-C(3)H(7) or n-C(3)H(7)) are investigated. For all reactions, electronic structure calculations are performed using an efficient, explicitly correlated, coupled cluster methodology (CCSD(T)-F12). Calculated thermal rate constants are compared to experimental and previous theoretical results. PMID:21913767

  5. An efficient route to thermal rate constants in reduced dimensional quantum scattering simulations: Applications to the abstraction of hydrogen from alkanes

    NASA Astrophysics Data System (ADS)

    von Horsten, H. F.; Banks, S. T.; Clary, D. C.

    2011-09-01

    We present an efficient approach to the determination of two-dimensional potential energy surfaces for use in quantum reactive scattering simulations. Our method involves first determining the minimum energy path (MEP) for the reaction by means of an ab initio intrinsic reaction coordinate calculation. This one-dimensional potential is then corrected to take into account the zero point energies of the spectator modes. These are determined from Hessians in curvilinear coordinates after projecting out the modes to be explicitly treated in quantum scattering calculations. The final (1 + 1)-dimensional potential is constructed by harmonic expansion about each point along the MEP before transforming the whole surface to hyperspherical coordinates for use in the two-dimensional scattering simulations. This new method is applied to H-atom abstraction from methane, ethane and propane. For the latter, both reactive channels (producing i-C3H7 or n-C3H7) are investigated. For all reactions, electronic structure calculations are performed using an efficient, explicitly correlated, coupled cluster methodology (CCSD(T)-F12). Calculated thermal rate constants are compared to experimental and previous theoretical results.

  6. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  7. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively. PMID:24881370

  8. Control of ammonia air pollution through the management of thermal processes in cowsheds.

    PubMed

    Bleizgys, Rolandas; Bagdoniene, Indre

    2016-10-15

    Experimental researches performed in manufacturing cowsheds have demonstrated a variation of ammonia concentration and the factors influencing this most during different periods of the year. The process of ammonia evaporation from manure is influenced by many varying and interrelated factors with temperature and the intensity of air ventilation being the most critical ones. The influence of these factors on the process of ammonia evaporation was established by laboratory researches. An increase in temperature results in an exponential increase in ammonia emission, whereas the dependence of the emission on the air velocity is best expressed by a second degree polynomial. The results obtained may be used as a forecast of the ammonia emissions from cowsheds during different periods of the year. Intensive ventilation is required for the removal of excess moisture from the housing, and this limits the possibilities to reduce ammonia emissions by controlling the intensity of ventilation. A reduction in the amount of ventilation is only recommended if the air quality indices meet the requirements applied to the housing. Better opportunities to reduce ammonia emissions are provided through management of the thermal processes in a cowshed. If the average annual air temperature (11.3°C) is reduced by one degree in a cubicle housing cowshed, the ammonia emissions will decrease by 10%. PMID:27350091

  9. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    NASA Astrophysics Data System (ADS)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  10. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  11. Medium temperature thermal desorption soil remediation case study - Selfridge Air National Guard Base, Mt. Clemens, Michigan

    SciTech Connect

    Flemingloss, K. )

    1994-08-01

    Carlo Environmental Technologies, Inc., (CET) was contracted by the Selfridge Air National Guard base (SANG) to remove an abandoned underground storage tank (UST) farm and remediate the contaminated soil using thermal desorption technology. The first phase of this project was to remove fourteen 25,000 gal underground storage tanks that had been installed during the 1930's, including all ancillary equipment at the facility. The USTs had been used to store aviation fuels, including both av-gas and jet fuels. The tank-removal project disclosed over 5000 yd[sup 3] of contaminated soil in the tank excavation pit, and excavation continued until analytical sampling demonstrated that the perimeter was within the Michigan Department of Natural Resources (MDNR) Act 307 Type B cleanup criteria (state superfund act). The contaminated soil was trucked to a remote location on the base property for the thermal remediation. CET employed its Cedarapids 64MT thermal desorption plant to treat the contaminated soils from the tank removal site. These soils were predominantly clays, and the contamination included BTEX compounds up to 5 parts per million (ppm), and PNA compounds per 100 ppm. The medium temperature thermal desorption process, which heats the contaminated soil to approximately 850[degrees]F was successful in removing BTEX and PNA contamination from the soil (to levels below MDNR Type B cleanup criteria). The vapor stream from the desorption process was then filtered to minimize particulate emissions, and the contaminant compounds were then destroyed in the thermal oxidizer section of the process, at temperatures up to 1800[degrees]F. The remediated soil was returned to the original excavation as clean compacted fill material. With the use of the thermal desorption technology, CET remediated the site to MDNR cleanup standards, recycled the soils from the site, and eliminated off-site disposal liability for SANG.

  12. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  13. Added value of a geostationary thermal infrared and visible instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, Emeric; Attié, Jean-Luc; Tourneur, Cyrille; Ricaud, Philippe; Coret, Laurent; Lahoz, William; El Amraoui, Laaziz; Josse, Béatrice; Hamer, Paul; Warner, Juying; Liu, Xiong; Chance, Kelly; Höpfner, Michael; Spurr, Robert; Natraj, Vijay; Kulawik, Susan; Eldering, Annmarie; Orphal, Johannes

    2014-05-01

    Air quality concerns the atmospheric composition of the lowermost troposphere between the ground and 500 m; it depends on chemical and transport processes and emissions. Air quality has a strong impact on human health, and protecting society from its adverse effects has a high cost (Lahoz et al., 2012). It is thus important to monitor species that are key for air quality - these include ozone, carbon monoxide, NOx and aerosols. In this study we focus on ozone, and compare the capability of two instrument configurations onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and 0-1 km column): 1) in the thermal infrared (GEO TIR), and 2) in the thermal infrared and the visible (GEO TIR+VIS). We consider one week during the Northern Hemisphere summer simulated by the chemical transport model MOCAGE, and use the two GEO instrument configurations to measure ozone. The GEO TIR instrument is described in Claeyman et al. (2011a, b). The GEO TIR+VIS instrument is the GEO TIR instrument with an additional visible Chappuis band to improve the sensitivity of the instrument in the lowermost troposphere. We compare these configurations against each other, and against an ozone reference state and a priori ozone information, to evaluate the benefit of the TIR+VIS in comparison to the TIR in the lowermost troposphere. The results from this work will inform an Observing System Simulation Experiment (OSSE) performed to quantify the added value of the GEO TIR+VIS configuration for forecasting air quality conditions.

  14. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.

    PubMed

    Naganuma, Tamaki; Traversa, Enrico

    2014-06-21

    Abundant oxygen vacancies coexisting with Ce(3+) ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce(3+) ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce(3+) ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce(3+) and Ce(4+) ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce(3+) ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce(3+) ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce(3+) ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce(3+) to Ce(4+) occurred at 350 °C in air. Highly concentrated Ce(3+) ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce(3+) stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce(3+) sites. This study also illuminates the potential interaction mechanisms of stable Ce(3+) ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. PMID:24812662

  15. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings

    SciTech Connect

    Helminiak, Yanar NM

    2009-12-01

    Research on the behavior of high-purity, low-density (85%) air plasma sprayed (APS) thermal barrier coatings (TBC) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The microstructure of the APS topcoats is one variable in this study intended to maximize the coating thicknesses that can be applied without spallation and to minimize the thermal conduction through the YSZ layer. The specimens were evaluated using cyclic oxidation tests and important properties of the TBCs, such as resistance to sintering and phase transformation, were determined. The high purity resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The porous topcoat microstructure also resulted in significant durability during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, CTE of the superalloy substrate and the nature of the thermal exposure.

  16. Thermal degradation of diesel-contaminated peats in an air atmosphere

    SciTech Connect

    Ghaly, R.A.; Ugursal, V.I.; Ghaly, A.E.; Mansaray, K.G.

    1999-06-01

    Peat, plant matter that is partially fossilized, is formed in poorly oxygenated wetlands where the rate at which the plant matter accumulates is greater than the rate at which it decomposes. Peat is a common solid fuel ranked among coal, coke, wood, and sugarcane bagasse. Peat has also been used to recover oil during the soil and water remediation processes. However, industrial utilization of peat in thermochemical conversion systems to liberate energy requires the knowledge of its thermal characteristics. In this study, the thermal behavior of peat (both uncontaminated and diesel-contaminated) was examined at three heating rates (10, 20, and 50 C/min) in a stationary air atmosphere using a thermogravimetric analysis technique between ambient temperature (25 C) and 600 C. The thermal degradation rate in active and passive pyrolysis zones, the initial degradation temperature, and the residual weight at 600 C were determined. Increasing the heating rate increased both the thermal degradation rate and the residual weight at 600 C and decreased the initial degradation temperature. The residual weight at 600 C was less than the ash content in all of the peat samples indicating the burnout of some of the mineral oxides, which have low melting and boiling temperatures, such as K{sub 2}O and P{sub 2}O. The results provide useful information about utilization of diesel-contaminated peat in thermochemical conversion systems, especially gasifiers, because of its high energy content and low ash content.

  17. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore

    NASA Astrophysics Data System (ADS)

    de Dear, R. J.; Leow, K. G.; Foo, S. C.

    1991-12-01

    Thermal comfort field experiments were conducted in Singapore in both naturally ventilated highrise residential buildings and air conditioned office buildings. Each of the 818 questionnaire responses was made simultaneously with a detailed set of indoor climatic measurements, and estimates of clothing insulation and metabolic rate. Results for the air conditioned sample indicated that office buildings were overcooled, causing up to one-third of their occupants to experience cool thermal comfort sensations. These observations in air conditioned buildings were broadly consistent with the ISO, ASHRAE and Singapore indoor climatic standards. Indoor climates of the naturally ventilated apartments during the day and early evening were on average three degrees warmer than the ISO comfort standard prescriptions, but caused much less thermal discomfort than expected. Discrepancies between thermal comfort responses in apartment blocks and office buildings are discussed in terms of contemporary perceptual theory.

  18. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air.

    PubMed

    Rueda-Ordóñez, Yesid Javier; Tannous, Katia

    2016-07-01

    The aim of this work was to analyze the thermal decomposition, kinetics and heat of reaction of sugarcane straw in synthetic air by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG and DSC experiments were carried out using heating rates of 2.5°C/min, 5°C/min, and 10°C/min, and particle diameter of 0.250mm. In the study of the smoldering reaction were identified three consecutive stages, drying, oxidative pyrolysis, and combustion. Thus, the kinetic pathway was composed by six independent parallel reactions, three for each stage after drying, in which the activation energies were 176, 313, 150, 80, 150, and 100kJ/mol. The heat of reaction in synthetic air was completely exothermic releasing 8MJ/kg. The modeled curves of thermal decomposition of sugarcane straw presented good agreement with experimental data. Then, the kinetic parameters obtained could be used to analyze different processes involving smoldering. PMID:27019126

  19. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect

    Hobson, M. J.

    1981-11-01

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  20. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  1. Air-Water Gas Exchange in Wetland Water Columns Due To Wind and Thermal Convection

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2011-12-01

    The goal of this work is to provide a parameterization of the air-water gas transfer rate in wetlands, and do so in terms of easily measured environmental variables. This parameterization is intended to support biogeochemical modeling in wetlands by providing an interfacial flux of key importance. Our approach uses laboratory experiments describe the oxygen transfer across an air-water interface in a model wetland. The oxygen transfer is sensitive to the externally imposed wind, vegetation characteristics, and vertical thermal convection. We vary these systematically, determining the gas transfer (or "piston") velocity that describes interfacial gas flux. We measure velocity vector fields near the air-water interface using particle image velocimetry, and use these measurements to help explain the mechanisms behind the measured trends in oxygen transfer. The explanatory power of these measurements includes the relationship between plant geometry and surface divergence. We explore the potential impact of our results on wetland modeling and management, for issues such as carbon sequestration and methane emission.

  2. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules

    NASA Astrophysics Data System (ADS)

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  3. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.

    PubMed

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process. PMID:26133864

  4. Magnetic changes accompanying the thermal decomposition of nontronite /in air/ and its relevance to Martian mineralogy

    NASA Technical Reports Server (NTRS)

    Moskowitz, B. M.; Hargraves, R. B.

    1982-01-01

    It is found that the thermal treatment of nontronite in air, for long periods at 700 C or short periods at 900 C, results in the destruction of the nontronite structure, a distinct reddening in color, and a large increase in magnetic susceptibility and saturation magnetization. Measurements and calculations of the magnetic properties suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3. The highly magnetic thermally treated nontronite is amorphous to X-rays consistent with an ultrafine grain size. Prolonged heating results in the growth of alpha Fe2O3, while reflectivity spectra of a sample heated for 1 hr at 900 C indicate the presence of an opaque, magnetite-like phase in addition to alpha Fe2O3. It is found that the thermally treated nontronite has chemical, color, and magnetic properties similar to those found by Viking on Mars. It is concluded that these results indicate an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith (Weldon et al., 1980).

  5. Magnetic changes accompanying the thermal decomposition of nontronite /in air/ and its relevance to Martian mineralogy

    NASA Astrophysics Data System (ADS)

    Moskowitz, B. M.; Hargraves, R. B.

    1982-11-01

    It is found that the thermal treatment of nontronite in air, for long periods at 700 C or short periods at 900 C, results in the destruction of the nontronite structure, a distinct reddening in color, and a large increase in magnetic susceptibility and saturation magnetization. Measurements and calculations of the magnetic properties suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3. The highly magnetic thermally treated nontronite is amorphous to X-rays consistent with an ultrafine grain size. Prolonged heating results in the growth of alpha Fe2O3, while reflectivity spectra of a sample heated for 1 hr at 900 C indicate the presence of an opaque, magnetite-like phase in addition to alpha Fe2O3. It is found that the thermally treated nontronite has chemical, color, and magnetic properties similar to those found by Viking on Mars. It is concluded that these results indicate an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith (Weldon et al., 1980).

  6. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  7. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-02-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  8. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions. PMID:24510118

  9. Modeling of Thermal Arcs in Molded Case Circuit Breakers in Air

    NASA Astrophysics Data System (ADS)

    Breden, Doug; Mahadevan, Shankar; Raja, Laxminarayan

    2015-09-01

    A general-purpose thermal plasma simulation tool (VizArc) was utilized to model a circuit breaker in atmospheric pressure air. The molded case circuit breaker (MCCB) circuit breaker works by separating two metal contacts when the breaking current is exceeded generating an arc. The self-consistent Lorentz force generated by the current pushes the arc into an array of splitter plates which quench the arc and break the circuit. The arc channel is modeled by coupling the electromagnetic equations with flow governing equations to model a multi-species, single-temperature quasi neutral arc plasma. Conjugate heat transfer to the metal splitter plates and vapor ablation into the gas are included in the model. The opening action of the moving contact armature is simulated dynamically in the simulation. The set of all governing equations and their implementation in the model will be discussed, and then the simulations of the MCCB circuit breaker using the model will be presented.

  10. Indoor test for thermal performance evaluation of the Solaron (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  11. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  12. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium

    SciTech Connect

    Gnoffo, P.A.; Gupta, R.N.; Shinn, J.L.

    1989-02-01

    The conservation equations for simulating hypersonic flows in thermal and chemical nonequilibrium and details of the associated physical models are presented. These details include the curve fits used for defining thermodynamic properties of the 11 species air model, curve fits for collision cross sections, expressions for transport properties, the chemical kinetics models, and the vibrational and electronic energy relaxation models. The expressions are formulated in the context of either a two or three temperature model. Greater emphasis is placed on the two temperature model in which it is assumed that the translational and rotational energy models are in equilibrium at the translational temperature, T, and the vibrational, electronic, and electron translational energy modes are in equilibrium at the vibrational temperature, T sub v. The eigenvalues and eigenvectors associated with the Jacobian of the flux vector are also presented in order to accommodate the upwind based numerical solutions of the complete equation set.

  13. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Gupta, Roop N.; Shinn, Judy L.

    1989-01-01

    The conservation equations for simulating hypersonic flows in thermal and chemical nonequilibrium and details of the associated physical models are presented. These details include the curve fits used for defining thermodynamic properties of the 11 species air model, curve fits for collision cross sections, expressions for transport properties, the chemical kinetics models, and the vibrational and electronic energy relaxation models. The expressions are formulated in the context of either a two or three temperature model. Greater emphasis is placed on the two temperature model in which it is assumed that the translational and rotational energy models are in equilibrium at the translational temperature, T, and the vibrational, electronic, and electron translational energy modes are in equilibrium at the vibrational temperature, T sub v. The eigenvalues and eigenvectors associated with the Jacobian of the flux vector are also presented in order to accommodate the upwind based numerical solutions of the complete equation set.

  14. Thermal stability effects on the structure of the velocity field above an air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  15. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    NASA Technical Reports Server (NTRS)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  16. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. PMID:25626476

  17. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  18. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  19. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  20. A dynamic thermal model for design and control of an 800-element open-air radio telescope

    NASA Astrophysics Data System (ADS)

    Bremer, Michael; Greve, Albert

    2011-09-01

    In earlier work we have described the thermal modelling for design and control of a fully insulated, and sometimes ventilated, high precision radio telescope. For such an insulated telescope the modelling of the time-variable dynamic influence of the thermal environment (air, sky and ground radiation, insolation) is relatively simple. The modelling becomes however quite complex for an open-air radio telescope where each individual member of the reflector backup structure (BUS) and the support structure (fork or yoke) is exposed under a different and time-dependent aspect angle to the thermal environment, which applies in particular to solar radiation. We present a time-dependent 800-element thermal model of an open-air telescope. Using the IRAM 30-m radio telescope as the basic mechanical structure, we explain how the temperature induced, real-time pointing and reflector surface deformations can be derived when using as input the day of the year, the thermal environment, and the geographic position of the telescope and its changing pointing direction. Thermal modelling and results similar to those reported here can be used for radio telescope design and real-time control of pointing and surface adjustment of a telescope with active panels.

  1. COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM

    SciTech Connect

    Uppu, N.; Mensah, P.F.; Ofori, D.

    2006-07-01

    A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC coating of 250 μm thick can reduce the temperature by up to 200° C. Air Plasma Spray Process (APS) and High Enthalpy Plasma Spray Process (100HE) were the processes used for coating the blades with the TBCs. Because thermal conductivity increases with increase in temperature, it is desired that these processes yield very low thermal conductivities at high temperatures in order not to damage the blade. An experiment was carried out using Flash line 5000 apparatus to compare the thermal conductivity of both processes.The apparatus could also be used to determine the thermal diffusivity and specific heat of the TBCs. 75 to 2800 K was the temperature range used in the experimentation. It was found out that though 100HE has high deposition efficiency, the thermal conductivity increases with increase in temperatures whiles APS yielded low thermal conductivities.

  2. Effects of Thermal Cycling and Thermal Aging on the Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals

    SciTech Connect

    Weil, K. Scott; Coyle, Christopher A.; Darsell, Jens T.; Xia, Gordon; Hardy, John S.

    2005-12-01

    Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4mol% CuO in silver. The brazed samples were exposure tested at 750°C for 200, 400, and 800hrs in both simulated fuel and air environments and thermally cycled at rapid rate (75°C/min) between room temperature and 750°C for as many as fifty cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800hrs of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800hrs of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze/electrolyte interface after 50 cycles.

  3. Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant

    NASA Astrophysics Data System (ADS)

    Gao, Xiufeng; Zhang, Chengwei; Wei, Jinjia; Yu, Bo

    2009-09-01

    Numerical simulation of the thermal-flow characteristics and heat transfer performance is made of an air-cooled steam condenser (ACSC) in a thermal power plant by considering the effects of ambient wind speed and direction, air-cooled platform height, location of the main factory building and terrain condition. A simplified physical model of the ACSC combined with the measured data as input parameters is used in the simulation. The wind speed effects on the heat transfer performance and the corresponding steam turbine back pressure for different heights of the air-cooled platform are obtained. It is found that the turbine back pressure (absolute pressure) increases with the increase of wind speed and the decrease of platform height. This is because wind can not only reduce the flowrate in the axial fans, especially at the periphery of the air-cooled platform, due to cross-flow effects, but also cause an air temperature increase at the fan inlet due to hot air recirculation, resulting in the deterioration of the heat transfer performance. The hot air recirculation is found to be the dominant factor because the main factory building is situated on the windward side of the ACSC.

  4. The Role of Oxygen in Determining Upper Thermal Limits in Lottia digitalis under Air Exposure and Submersion.

    PubMed

    Bjelde, Brittany E; Miller, Nathan A; Stillman, Jonathon H; Todgham, Anne E

    2015-01-01

    Oxygen limitation of aerobic metabolism is hypothesized to drive organismal thermal tolerance limits. Differences in oxygen availability in air and water may underlie observed differences in upper thermal tolerance of intertidal limpets if oxygen is limiting in submerged environments. We explored how cardiac performance (heart rate, breakpoint temperature [BPT], flat-line temperature [FLT], and temperature sensitivity) was affected by hyperoxia and hypoxia in the finger limpet, Lottia digitalis, under air exposure and submersion. Upper thermal tolerance limits were unchanged by increasing availability of oxygen, although air-exposed limpets were able to maintain cardiac function to higher temperatures than submerged limpets. Maximum heart rate did not increase with greater partial pressure of oxygen (Po2), suggesting that tissue Po2 levels are likely maximized during normoxia. Hypoxia reduced breakpoint BPTs and FLTs in air-exposed and submerged limpets and accentuated the difference in BPTs between the two groups through greater reductions in BPT in submerged limpets. Differences in respiratory structures and the degree to which thermal limits are already maximized may play significant roles in determining how oxygen availability influences upper temperature tolerance. PMID:26658246

  5. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  6. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    NASA Technical Reports Server (NTRS)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  7. Room-temperature thermal-resistance measurements of new and existing materials for shipboard air-duct systems

    SciTech Connect

    Zarr, R.R.; Somers, T.A.

    1988-10-01

    Thermal resistance measurements of conventional and composite-material insulation for shipboard air duct systems are described. Conventional shipboard air ducts are constructed of metal walls insulated externally with fibrous-glass board. Composite materials are being considered as replacements for these duct walls. Thermal measurements were conducted using the National Bureau of Standards 1-meter Guarded Hot Plate at a mean temperature of 23.9/sup 0/C (75/sup 0/F). Measurements of the fibrous-glass board specimens were within 3% of certified values of NBS SRM 1450a, fibrous-glass board. Measurements of two aramid-fiber honeycomb specimens were approximately one-half the thermal resistance of the fibrous-glass board specimens.

  8. Failure of thick, low density air plasma sprayed thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the

  9. Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.

    PubMed

    Bialowiec, Andrzej; Janczukowicz, Wojciech; Gusiatin, Zygmunt M; Thornton, Arthur; Rodziewicz, Joanna; Zielinska, Magdalena

    2014-03-01

    Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate. PMID:24616344

  10. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Fan, X. L.; Wang, T. J.

    2011-11-01

    The objective of this work is to understand the effect of interface roughness on the strain energy release rate and surface cracking behavior in air plasma sprayed thermal barrier coating system. This is achieved by a parameter investigation of the interfacial shapes, in which the extended finite element method (XFEM) and periodic boundary condition are used. Predictions for the stress field and driving force of multiple surface cracks in the film/substrate system are presented. It is seen that the interface roughness has significant effects on the strain energy release rate, the interfacial stress distribution, and the crack propagation patterns. One can see the completely different distributions of stress and strain energy release rate in the regions of convex and concave asperities of the substrate. Variation of the interface asperity is responsible for the oscillatory characteristics of strain energy release rate, which can cause the local arrest of surface cracks. It is concluded that artificially created rough interface can enhance the durability of film/substrate system with multiple cracks.

  11. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  12. Study on the thermal ignition of gasoline-air mixture in underground oil depots based on experiment and numerical simulation

    NASA Astrophysics Data System (ADS)

    Ou, Yihong; Du, Yang; Jiang, Xingsheng; Wang, Dong; Liang, Jianjun

    2010-04-01

    The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.

  13. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Xu, D. A.; Shneider, M. N.; Lacoste, D. A.; Laux, C. O.

    2014-06-01

    We present quantitative schlieren measurements and numerical analyses of the thermal and hydrodynamic effects of a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air at 300 and 1000 K. The plasma is created by voltage pulses at an amplitude of 10 kV and a duration of 10 ns, applied at a frequency of 1-10 kHz between two pin electrodes separated by 2 or 4 mm. The electrical energy of each pulse is of the order of 1 mJ. We recorded single-shot schlieren images starting from 50 ns to 3 µs after the discharge. The time-resolved images show the shock-wave propagation and the expansion of the heated gas channel. Gas density profiles simulated in 1D cylindrical coordinates have been used to reconstruct numerical schlieren images for comparison with experimental ones. We propose an original method to determine the initial gas temperature and the fraction of energy transferred into ultrafast gas heating, using a comparison of the contrast profiles obtained from experimental and numerical schlieren images. This method is found to be much more sensitive to these parameters than the direct comparison of measured and predicted shock-wave and heated channel radii. The results show that a significant fraction of the electric energy is converted into gas heating within a few tens of ns. The values range from about 25% at a reduced electric field of 164 Td to about 75% at 270 Td, with a strong dependance on the initial gas temperature. These experiments support the fast heating processes via dissociative quenching of N2(B3 Πg, C3 Πu) by molecular oxygen.

  14. Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Kroupnov, A. A.; Kovalev, V. L.

    2015-08-01

    Elementary stage rate coefficients of the full system of kinetic equations describing heterogeneous catalytic recombination of the dissociated air on the surfaces of thermal protective ceramic coatings of β-cristobalite and α-Al2O3 are determined using the quantum-mechanical calculations within the framework of cluster models and literature data. Both the impact and associative recombination processes of adsorbed oxygen and nitrogen atoms are taken into account.

  15. Synergistic and Antagonistic Effects of Thermal Shock, Air Exposure, and Fishing Capture on the Physiological Stress of Squilla mantis (Stomatopoda)

    PubMed Central

    Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano

    2014-01-01

    This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593

  16. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples. PMID:23859797

  17. Preliminary results of thermal igniter experiments in H/sub 2/-air-steam environments. [PWR; BWR

    SciTech Connect

    Lowry, W.

    1981-01-01

    Thermal igniters (glow plugs), proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containment, have been tested for functionability in mixtures of air, hydrogen, and steam. Test environments included 6% to 16% hydrogen concentrations in air, and 8%, 10%, and 12% hydrogen in mixtures with 30% and 40% steam fractions. All were conducted in a 10.6 ft/sup 3/ insulated pressure vessel. For all of these tests the glow plug successfully initiated combustion. Dry air/hydrogen tests exhibited a distinct tendency for complete combustion at hydrogen concentrations between 8% and 9%. Steam suppressed both peak pressures and completeness of combustion. No combustion could be initiated at or above a 50% steam fraction. Circulation of the mixture with a fan increased the completeness of combustion. The glow plug showed no evidence of performance degradation throughout the program.

  18. The meaning of air quality and flue gas emission standards for public acceptance of new thermal power plants.

    PubMed

    Barbalić, N; Marijan, G; Marić, M

    2000-06-01

    For the time being only 30-40% of the electric energy supply in Croatia comes from burning fossil fuel. New capacities of 800-1400 MW for the next decade will have to rely on the exclusive use of fossil fuels in thermal power plants (TPP). Public opinion will probably have a decisive influence on the issuing of construction permissions. The potential adverse effects on air seem to be the main argument against construction of TPPs. The priority is therefore to unambiguously state what air quality is warranted in the influenced area for the whole operation period of a TPP. It is important that the public should understand the real meaning of current air quality standards and emission limits. The only known way to do it today is through comparison with the corresponding standards and limits accepted worldwide. This paper discusses some important aspects of such comparison. PMID:11103526

  19. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  20. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  1. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  2. Piaget on Abstraction.

    ERIC Educational Resources Information Center

    Moessinger, Pierre; Poulin-Dubois, Diane

    1981-01-01

    Reviews and discusses Piaget's recent work on abstract reasoning. Piaget's distinction between empirical and reflective abstraction is presented; his hypotheses are considered to be metaphorical. (Author/DB)

  3. Impact of air pollution control regulations on thermal enhanced oil recovery production in the United States. Final report

    SciTech Connect

    Norton, J.F.; Rouge, J.D.; Beekley, P.K.; Husband, S.N.; Arnold, C.W.; Menzies, W.R.; Balentine, H.W.

    1982-03-01

    This study assesses the impact of air pollution control regulations on the costs of present and future thermal enhanced oil recovery (TEOR) production. The conclusions of this study indicate that lengthy permitting processes, limited control sytem availability, and costly control system requirements complicate regulatory compliance and constrain TEOR production expansion. Seven heavy oil production areas with potential for increased TEOR production were selected for detailed analyses. Five of these areas are in California: central Kern County, western Kern County, Coalinga, San Ardo, and Los Angeles Basin. The other two areas are the Slocum field in Texas and the Smackover field in Arkansas. Air pollution control rule and regulation requirements were determined for each production area. State-of-the-art air pollution control technology was assessed and costs were estimated for the control systems needed to comply with previous new source review (NSR) and retrofit rules in each area. For each California production area, the maximum potential increase in TEOR production was estimated, based on available emission offsets. Potential increases in the Texas and Arkansas fields were not projected because production is expected to decrease in these areas. Costs were calculated for the control systems required to allow the maximum increase in TEOR production. An air quality impact analysis was performed for the four largest production areas in California. The results of this analysis allowed estimation of the air quality changes associated with the maximum TEOR production increase and compliance with retrofit and NSR rules.

  4. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  5. Design and optimization of personalized ventilation for overall improvement of thermal comfort, air quality, and energy efficiency

    NASA Astrophysics Data System (ADS)

    Metzger, Ian Dominic

    This paper presents a simple and repeatable CFD-based method that can accurately predict the optimal operating conditions of personalized ventilation systems. In contrast to previous studies, the optimal performance of the PV system includes the influences of various operation characteristics (supply air velocity, PV flow rate, PV temperature, PV distance from face, turbulence intensity, relative humidity, central system flow rate, central system temperature, central system type, and PV on/off operation) on three critical performance factors: thermal comfort, indoor air quality, and energy savings. This method is able to predict more achievable and comprehensive operating performance of PV systems. It is found for the computer perimeter grill air terminal device that supply temperatures, central flow rate, and PV flow rate are the most influential factors on performance in terms of thermal comfort, IAQ, and energy. Using the Taguchi design of experiment and optimal performance prediction method, the computer perimeter grill personalized ventilation system is optimized in conjunction with under-floor and overhead central systems, separately.

  6. Effect of air annealing on structural, optical, morphological and electrical properties of thermally evaporated CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Dhaka, M. S.

    2015-05-01

    In this paper, a study on effect of air annealing on structural, optical, morphological and electrical properties of CdSe thin films is undertaken. The thin films of thickness 810 nm were deposited on glass and ITO coated glass substrates employing thermal evaporation technique. The glass substrates were used to find structural, optical and morphological properties while ITO coated glass substrates for electrical properties. The as-deposited films were subjected to thermal annealing in air atmosphere at different temperatures 100 °C, 200 °C and 300 °C. The X-ray diffraction pattern shows that the films have cubic phase with preferred orientation (111). The structural parameters like inter-planner spacing, lattice constant, grain size, dislocation density, strain and number of crystallites per unit area are calculated. The grain size is found in the range 27.11-34.03 nm and observed to be varied with air annealing. The dislocation density and strain vary with annealing in the range (0.86-1.36)×1011 cm-2 and 0.276-0.347 respectively. The extinction coefficient is found to be increased at lower annealing temperature and decreased at higher. The refractive index is also calculated and found in the range 2.75-2.80. The AFM studies show that roughness of thin films are increased with annealing. The electrical resistivity is found to be decreased with annealing temperature. The results are in good agreement with the standard data and available literature.

  7. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  8. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  9. The effects of electron thermal radiation on laser ablative shock waves from aluminum plasma into ambient air

    NASA Astrophysics Data System (ADS)

    Sai Shiva, S.; Leela, Ch.; Prem Kiran, P.; Sijoy, C. D.; Chaturvedi, S.

    2016-05-01

    The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (Vsw) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 1010 to 1.4 × 1011 W/cm2. It is observed that the numerically obtained Vsw is significantly influenced by the thermal radiation effects which are found to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.

  10. Highly regioselective hydride transfer, oxidative dehydrogenation, and hydrogen-atom abstraction in the thermal gas-phase chemistry of [Zn(OH)](+)/C3H8.

    PubMed

    Wu, Xiao-Nan; Zhao, Hai-Tao; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2014-12-28

    The thermal reactions of [Zn(OH)](+) with C3H8 have been studied by means of gas-phase experiments and computational investigation. Two types of C-H bond activation are observed in the experiment, and pertinent mechanistic features include inter alia: (i) the metal center of [Zn(OH)](+) serves as active site in the hydride transfer to generate [i-C3H7](+) as major product, (ii) generally, a high regioselectivity is accompanied by remarkable chemoselectivity: for example, the activation of a methyl C-H bond results mainly in the formation of water and [Zn(C3,H7)](+). According to computational work, this ionic product corresponds to [HZn(CH3CH=CH2)](+). Attack of the zinc center at a secondary C-H bond leads preferentially to hydride transfer, thus giving rise to the generation of [i-C3H7](+); (iii) upon oxidative dehydrogenation (ODH), liberation of CH3CH2=CH2 occurs to produce [HZn(H2O)](+). Both, ODH as well as H2O loss proceed through the same intermediate which is characterized by the fact that a methylene hydrogen atom from the substrate is transferred to the zinc and one hydrogen atom from the methyl group to the OH group of [Zn(OH)](+). The combined experimental/computational gas-phase study of C-H bond activation by zinc hydroxide provides mechanistic insight into related zinc-catalyzed large-scale processes and identifies the crucial role that the Lewis-acid character of zinc plays. PMID:25230924

  11. Performance assessment of future thermal infrared geostationary instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Gaubert, B.; Flaud, J.-M.

    2012-04-01

    Air quality (AQ) has a recognized onerous impact on human health and the environment, and then on society. It is more and more clear that constantly and efficiently monitoring AQ from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in this field have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations [1]. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a general simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAfit inversion module [2]. Note that to assess the

  12. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air. PMID:26493981

  13. Evaluation of thermal formation and air ventilation inside footwear during gait: The role of gait and fitting.

    PubMed

    Shimazaki, Yasuhiro; Matsutani, Toshiki; Satsumoto, Yayoi

    2016-07-01

    Comfort is an important concept in footwear design. The microclimate inside footwear contributes to the perception of thermal comfort. To investigate the effect of ventilation on microclimate formation inside footwear, experiments with subjects were conducted at four gait speeds with three different footwear sizes. Skin temperature, metabolism, and body mass were measured at approximately 25 °C and 50% relative humidity, with no solar radiation and a calm wind. The footwear occupancy and ventilation rate were also estimated, with the latter determined using the tracer gas method. The experimental results revealed that foot movement, metabolism, evaporation, radiation, convection, and ventilation were the main factors influencing the energy balance for temperature formation on the surface of the foot. The cooling effect of ventilation on the arch temperature was observed during gait. The significance of the amount of air space and ventilation on the improvement in the thermal comfort of footwear was clarified. PMID:26611985

  14. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  15. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  16. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.

    PubMed

    Beyer, H; Meini, S; Tsiouvaras, N; Piana, M; Gasteiger, H A

    2013-07-14

    The decomposition of lithium peroxide during the charging process of lithium-air batteries is investigated. A novel preparation method for electrodes in the discharged state, i.e., prefilled with Li2O2 using polyethylene oxide as a binder, is presented. The composition and reactivity of Li2O2-prefilled electrodes are examined by thermal analysis coupled with on-line mass spectrometry. Voltage profiles and gas evolution during the charging process of Li2O2-prefilled electrodes in battery cells are correlated with the thermal decomposition process of Li2O2 and its impact on other electrode compounds. It is found that both thermal Li2O2 decomposition and the electrochemical decomposition of Li2O2 during charging enhance the oxidation of the electrolyte, the binder, and/or carbon, which is suggested to be due to the formation of "nascent" oxygen during Li2O2 decomposition into O2 and Li2O (thermally) or into O2 and lithium ions (electrochemically). PMID:23715054

  17. Impact of Air Leakage on the Thermal and Moisture Performance of the Building Envelope

    SciTech Connect

    Karagiozis, A

    2001-08-15

    The air tightness of building envelopes systems is critical to the performance of a building. Uncontrolled airflow movements can cause moisture-induced damage by transporting large amounts of moisture, and may also impact occupant health and safety, sound control, fire control and energy efficiency. Building envelopes are often designed to control airflow by providing a resistance to the bulk flow. Implementation of air barrier systems to restrict airflow is commonly used to reduce the quantity of airflow movement between the exterior and interior environments through the wall. This paper presents a preliminary assessment of the influence of airflow on the moisture performance of a residential building envelope system. The combined heat, air and moisture (hygrothermal) transport in a selected wall is numerically investigated. Vapor diffusion, liquid transport and temperature dependent sorption isotherms are included in the investigation.

  18. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1975

    1975-01-01

    Papers abstracted represent those submitted to the distribution center at the 83rd American Society for Engineering Education Convention. Abstracts are grouped under headings corresponding to the main topic of the paper. (Editor/CP)

  19. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  20. Predictions of thermal comfort and pollutant distributions for a thermostatically-controlled, air-conditioned, partitioned room: Numerical results and enhanced graphical presentation

    SciTech Connect

    White, M.D.; Eyler, L.L.

    1989-05-01

    An index of local thermal comfort and pollutant distributions have been computed with the TEMPEST computer code, in a transient simulation of an air-conditioned enclosure with an incomplete partition. This complex three-dimensional air conditioning problem included forced ventilation through inlet veins, flow through a partition, remote return air vents, and infiltration source, a pollutant source, and a thermostatically controlled air conditioning system. Five forced ventilation schemes that varied in vent areas and face velocities were simulated. Thermal comfort was modeled as a three-dimensional scalar field dependent on the fluid velocity and temperature fields; where humidity activity levels, and clothing were considered constants. Pollutants transport was incorporated through an additional constituent diffusion equation. Six distinct graphic techniques for the visualization of the three-dimensional data fields of air velocity, temperature, and comfort index were tested. 4 refs., 7 figs., 1 tab.

  1. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  2. Abstraction and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Giunchiglia, Fausto

    1992-01-01

    In work done jointly with Toby Walsh, the author has provided a sound theoretical foundation to the process of reasoning with abstraction (GW90c, GWS9, GW9Ob, GW90a). The notion of abstraction formalized in this work can be informally described as: (property 1), the process of mapping a representation of a problem, called (following historical convention (Sac74)) the 'ground' representation, onto a new representation, called the 'abstract' representation, which, (property 2) helps deal with the problem in the original search space by preserving certain desirable properties and (property 3) is simpler to handle as it is constructed from the ground representation by "throwing away details". One desirable property preserved by an abstraction is provability; often there is a relationship between provability in the ground representation and provability in the abstract representation. Another can be deduction or, possibly inconsistency. By 'throwing away details' we usually mean that the problem is described in a language with a smaller search space (for instance a propositional language or a language without variables) in which formulae of the abstract representation are obtained from the formulae of the ground representation by the use of some terminating rewriting technique. Often we require that the use of abstraction results in more efficient .reasoning. However, it might simply increase the number of facts asserted (eg. by allowing, in practice, the exploration of deeper search spaces or by implementing some form of learning). Among all abstractions, three very important classes have been identified. They relate the set of facts provable in the ground space to those provable in the abstract space. We call: TI abstractions all those abstractions where the abstractions of all the provable facts of the ground space are provable in the abstract space; TD abstractions all those abstractions wllere the 'unabstractions' of all the provable facts of the abstract space are

  3. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS.

    PubMed

    Wu, Chien-Hou; Feng, Chien-Tai; Lo, Yu-Shiu; Lin, Tsai-Yin; Lo, Jiunn-Guang

    2004-07-01

    Investigation of volatile organic compounds (VOCs) was first conducted in the air of class-100 cleanrooms at liquid crystal display (LCD) fabrication facilities. Air samples were collected on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve S-III) and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry (GC-MS). Optimal conditions lead to average recoveries in the range of 96.2-98.2%, and method detection limits between 0.38 and 0.78 ppb, under the condition of 1-l sampling volume and 80% relative humidity. The method appears to be accurate, sensitive, simple and well-suited for determining VOC distributions from various stages of LCD manufacturing process and temporal variations of the analyte concentrations. About 15 VOCs were identified in workplace air. The major pollutants such as propylene glycol methyl ether acetate (PGMEA), butyl acetate, and acetone that are commonly used in the opto-electronics industry were detected and accurately quantified with the established method. PMID:15109881

  4. Abstraction in mathematics.

    PubMed

    Ferrari, Pier Luigi

    2003-07-29

    Some current interpretations of abstraction in mathematical settings are examined from different perspectives, including history and learning. It is argued that abstraction is a complex concept and that it cannot be reduced to generalization or decontextualization only. In particular, the links between abstraction processes and the emergence of new objects are shown. The role that representations have in abstraction is discussed, taking into account both the historical and the educational perspectives. As languages play a major role in mathematics, some ideas from functional linguistics are applied to explain to what extent mathematical notations are to be considered abstract. Finally, abstraction is examined from the perspective of mathematics education, to show that the teaching ideas resulting from one-dimensional interpretations of abstraction have proved utterly unsuccessful. PMID:12903658

  5. Comparison of the weight loss and adherence of nine different polyimide films thermally aged at 315 C and 350 C in air. [high temperature lubricants

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1980-01-01

    Thermal exposure experiments at 315 and 350 C were performed in air on nine different types of polyimides applied to thin 304 stainless steel foils. The tests were conducted to determine which polyimide was the most thermally stable and adherent when subjected to long exposure times at elevated temperatures. One polyimide designated PIC-7 was found to be more thermally stable than the others; however, it did not possess the adherent properties of PIC-2 and PIC-5. It was concluded that as far as thermal stability and adherence are concerned, five of the polyimides are more suitable for high temperature applications than the other four.

  6. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOEpatents

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  7. Air Force space power and thermal management technology - Requirements for the early 21st century

    NASA Astrophysics Data System (ADS)

    Herrera, Ernest D.; Kuck, Inara

    Typical projections for military space power and thermal management technologies have posited requirements for high powered and highly survivable systems. Recent changes in defense needs, however, will require spacecraft that are smaller, lower powered, less survivable, and highly proliferated. Technologies will be developed to provide low cost, ultra-light, high power density, 'smart' conventional power systems. Compact nuclear power systems will also be developed to meet higher power needs.

  8. Loving Those Abstracts

    ERIC Educational Resources Information Center

    Stevens, Lori

    2004-01-01

    The author describes a lesson she did on abstract art with her high school art classes. She passed out a required step-by-step outline of the project process. She asked each of them to look at abstract art. They were to list five or six abstract artists they thought were interesting, narrow their list down to the one most personally intriguing,…

  9. Assessment of air quality benefits from the national pollution control policy of thermal power plants in China: A numerical simulation

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun

    2015-04-01

    In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be

  10. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Herring, G. C.; Balla, R. Jeffrey

    2007-06-01

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  11. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  12. Electrically heated, air-cooled thermal modulator and at-column heating for comprehensive two-dimensional gas chromatography.

    PubMed

    Libardoni, Mark; Waite, J Hunter; Sacks, Richard

    2005-05-01

    An instrument for comprehensive two-dimensional gas chromatography (GCxGC) is described using an electrically heated and air-cooled thermal modulator requiring no cryogenic materials or compressed gas for modulator operation. In addition, at-column heating is used to eliminate the need for a convection oven and to greatly reduce the power requirements for column heating. The single-stage modulator is heated by current pulses from a dc power supply and cooled by a conventional two-stage refrigeration unit. The refrigeration unit, together with a heat exchanger and a recirculating pump, cools the modulator to about -30 degrees C. The modulator tube is silica-lined stainless steel with an internal film of dimethylpolysiloxane. The modulator tube is 0.18 mm i.d. x 8 cm in length. The modulator produces an injection plug width as small as 15 ms. PMID:15859594

  13. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    PubMed Central

    2012-01-01

    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices. PMID:22502639

  14. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  15. Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.

    2015-09-01

    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.

  16. Application of laser-induced thermal acoustics in air to measurement of shock-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Mizukaki, Toshiharu; Matsuzawa, Toyoki

    2009-10-01

    The laser-induced thermal acoustics (LITA) method was used to measure the temperature profiles induced behind spherical shock waves, generated by high-voltage discharge in air with an energy of 6 J. A Nd:YAG laser (wavelength 532 nm, energy 300 mJ, pulse duration 10 ns, line width 0.005 cm-1) and an Ar-ion laser (wavelength 488 nm, power 4 W) served as the pump and probe lasers, respectively for the LITA measurements. The peak temperatures were in good agreement with results calculated with the Euler equations. The temperature profiles behind the shock, however, differed in decay rates. The peak temperatures behind the shock wave were determined by reflected overpressure and agreed with those from the LITA measurements within a maximum error of 5%.

  17. A tough, thermally conductive silicon carbide composite with high strength up to 1600 degreesC in Air

    PubMed

    Ishikawa; Kajii; Matsunaga; Hogami; Kohtoku; Nagasawa

    1998-11-13

    A sintered silicon carbide fiber-bonded ceramic, which consists of a highly ordered, close-packed structure of very fine hexagonal columnar fibers with a thin interfacial carbon layer between fibers, was synthesized by hot-pressing plied sheets of an amorphous silicon-aluminum-carbon-oxygen fiber prepared from an organosilicon polymer. The interior of the fiber element was composed of sintered beta-silicon carbide crystal without an obvious second phase at the grain boundary and triple points. This material showed high strength (over 600 megapascals in longitudinal direction), fibrous fracture behavior, excellent high-temperature properties (up to 1600 degreesC in air), and high thermal conductivity (even at temperatures over 1000 degreesC). PMID:9812889

  18. INDOOR AIR QUALITY AND THERMAL COMFORT—RESULTS OF A PILOT STUDY IN ELDERLY CARE CENTERS IN PORTUGAL

    PubMed Central

    Mendes, Ana; Pereira, Cristiana; Mendes, Diana; Aguiar, Lívia; Neves, Paula; Silva, Susana; Batterman, Stuart; Teixeira, João Paulo

    2014-01-01

    The age of the European population is rising and percentage of adults aged 65 years and older is projected to increase from 16% in 2000 to 20% in 2020. It has been estimated that older subjects spend approximately 19 to 20 h/d indoors. Older individuals may be particularly at risk for detrimental effects from pollutants, even at low concentrations, due to reduced immunological defenses and multiple underlying chronic diseases. Six Porto, Portugal, urban area elderly care centers (ECC), housing a total of 425 older persons, were studied to assess indoor air quality (IAQ) and thermal comfort (TC) in two seasons. This study presents the IAQ and TC results in 36 rooms and constitutes part of a wider and ongoing study. The study areas were all naturally ventilated, and indoor concentrations in winter were within Portuguese reference values. However, 42% of the participants were dissatisfied with indoor thermal conditions, rating it “slightly cool.” In summer, the index rate of dissatisfied individuals was lower (8%). Significant differences were found between seasons in predicted percent of dissatisfied people (PPD) and predicted mean vote (PMV) indices. Fungal concentrations frequently exceeded reference levels (>500 colony-forming units [CFU]/m3). In addition, other pollutants occasionally exceeded reference levels. To our knowledge, this is the first study in Portugal to assess effects of indoor air contaminants on the health status and quality of life in older subjects living in ECC. Although IAQ and TC parameters were mostly within reference values, the results suggest a need to improve the balance between IAQ and TC in ECC, a critical environment housing a susceptible population. PMID:23514075

  19. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  20. Community Development Abstracts.

    ERIC Educational Resources Information Center

    Agency for International Development (Dept. of State), Washington, DC.

    This volume of 1,108 abstracts summarizes the majority of important works on community development during the last ten years. Part I contains abstracts of periodical literature and is classified into 19 sections, including general history, communications, community and area studies, decision-making, leadership, migration and settlement, social…

  1. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  2. Has Abstractness Been Resolved?

    ERIC Educational Resources Information Center

    Al-Omoush, Ahmad

    1989-01-01

    A discussion focusing on the abstractness of analysis in phonology, debated since the 1960s, describes the issue, reviews the literature on the subject, cites specific natural language examples, and examines the extent to which the issue has been resolved. An underlying representation is said to be abstract if it is different from the derived one,…

  3. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  4. Knowledge-Based Abstracting.

    ERIC Educational Resources Information Center

    Black, William J.

    1990-01-01

    Discussion of automatic abstracting of technical papers focuses on a knowledge-based method that uses two sets of rules. Topics discussed include anaphora; text structure and discourse; abstracting techniques, including the keyword method and the indicator phrase method; and tools for text skimming. (27 references) (LRW)

  5. Leadership Abstracts, 1995.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1995-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, and teaching in community colleges. The 12 abstracts for Volume 8, 1995, are: (1) "Redesigning the System To Meet the Workforce Training Needs of the Nation," by Larry Warford; (2) "The College President, the Board, and the Board Chair: A…

  6. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  7. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  8. Journalism Abstracts. Vol. 15.

    ERIC Educational Resources Information Center

    Popovich, Mark N., Ed.

    This book, the fifteenth volume of an annual publication, contains 373 abstracts of 52 doctoral and 321 master's theses from 50 colleges and universities. The abstracts are arranged alphabetically by author, with the doctoral dissertations appearing first. These cover such topics as advertising, audience analysis, content analysis of news issues…

  9. Leadership Abstracts, 1996.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1996-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 9 for 1996 includes the following 12 abstracts: (1) "Tech-Prep + School-To-Work: Working Together To Foster Educational Reform," (Roderick F. Beaumont); (2)…

  10. Mathematical Abstraction through Scaffolding

    ERIC Educational Resources Information Center

    Ozmantar, Mehmet Fatih; Roper, Tom

    2004-01-01

    This paper examines the role of scaffolding in the process of abstraction. An activity-theoretic approach to abstraction in context is taken. This examination is carried out with reference to verbal protocols of two 17 year-old students working together on a task connected to sketching the graph of |f|x|)|. Examination of the data suggests that…

  11. Abstract coherent categories.

    PubMed

    Rehder, B; Ross, B H

    2001-09-01

    Many studies have demonstrated the importance of the knowledge that interrelates features in people's mental representation of categories and that makes our conception of categories coherent. This article focuses on abstract coherent categories, coherent categories that are also abstract because they are defined by relations independently of any features. Four experiments demonstrate that abstract coherent categories are learned more easily than control categories with identical features and statistical structure, and also that participants induced an abstract representation of the category by granting category membership to exemplars with completely novel features. The authors argue that the human conceptual system is heavily populated with abstract coherent concepts, including conceptions of social groups, societal institutions, legal, political, and military scenarios, and many superordinate categories, such as classes of natural kinds. PMID:11550753

  12. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  13. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-02-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  14. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-07-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider 1 week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  15. Cellular Attachment and Differentiation on Titania Nanotubes Exposed to Air- or Nitrogen-Based Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity

  16. Abstract Interpreters for Free

    NASA Astrophysics Data System (ADS)

    Might, Matthew

    In small-step abstract interpretations, the concrete and abstract semantics bear an uncanny resemblance. In this work, we present an analysis-design methodology that both explains and exploits that resemblance. Specifically, we present a two-step method to convert a small-step concrete semantics into a family of sound, computable abstract interpretations. The first step re-factors the concrete state-space to eliminate recursive structure; this refactoring of the state-space simultaneously determines a store-passing-style transformation on the underlying concrete semantics. The second step uses inference rules to generate an abstract state-space and a Galois connection simultaneously. The Galois connection allows the calculation of the "optimal" abstract interpretation. The two-step process is unambiguous, but nondeterministic: at each step, analysis designers face choices. Some of these choices ultimately influence properties such as flow-, field- and context-sensitivity. Thus, under the method, we can give the emergence of these properties a graph-theoretic characterization. To illustrate the method, we systematically abstract the continuation-passing style lambda calculus to arrive at two distinct families of analyses. The first is the well-known k-CFA family of analyses. The second consists of novel "environment-centric" abstract interpretations, none of which appear in the literature on static analysis of higher-order programs.

  17. Path integral calculation of thermal rate constants within the quantum instanton approximation: Application to the H+CH4-->H2+CH3 hydrogen abstraction reaction in full Cartesian space

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Yamamoto, Takeshi; Miller, William H.

    2004-02-01

    The quantum instanton approximation for thermal rate constants of chemical reactions [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)], which is modeled after the earlier semiclassical instanton approach, is applied to the hydrogen abstraction reaction from methane by a hydrogen atom, H+CH4→H2+CH3, using a modified and recalibrated version of the Jordan-Gilbert potential surface. The quantum instanton rate is evaluated using path integral Monte Carlo approaches based on the recently proposed implementation schemes [Yamamoto and Miller, J. Chem. Phys. 120, 3086 (2004)]. The calculations were carried out using the Cartesian coordinates of all the atoms (thus involving 18 degrees of freedom), thereby taking explicit account of rotational effects of the whole system and also allowing the equivalent treatment of the four methane hydrogens. To achieve such a treatment, we present extended forms of the path integral estimators for relevant quantities that may be used for general N-atom systems with any generalized reaction coordinates. The quantum instanton rates thus obtained for the temperature range T=200-2000 K show good agreement with available experimental data, which gives support to the accuracy of the underlying potential surface used.

  18. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space.

    PubMed

    Zhao, Yi; Yamamoto, Takeshi; Miller, William H

    2004-02-15

    The quantum instanton approximation for thermal rate constants of chemical reactions [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)], which is modeled after the earlier semiclassical instanton approach, is applied to the hydrogen abstraction reaction from methane by a hydrogen atom, H + CH4 --> H2 + CH3, using a modified and recalibrated version of the Jordan-Gilbert potential surface. The quantum instanton rate is evaluated using path integral Monte Carlo approaches based on the recently proposed implementation schemes [Yamamoto and Miller, J. Chem. Phys. 120, 3086 (2004)]. The calculations were carried out using the Cartesian coordinates of all the atoms (thus involving 18 degrees of freedom), thereby taking explicit account of rotational effects of the whole system and also allowing the equivalent treatment of the four methane hydrogens. To achieve such a treatment, we present extended forms of the path integral estimators for relevant quantities that may be used for general N-atom systems with any generalized reaction coordinates. The quantum instanton rates thus obtained for the temperature range T = 200-2000 K show good agreement with available experimental data, which gives support to the accuracy of the underlying potential surface used. PMID:15268462

  19. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1997

    1997-01-01

    Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…

  20. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  1. 1971 Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1971

    1971-01-01

    Included are 112 abstracts listed under headings such as: acoustics, continuing engineering studies, educational research and methods, engineering design, libraries, liberal studies, and materials. Other areas include agricultural, electrical, mechanical, mineral, and ocean engineering. (TS)

  2. 2016 ACPA MEETING ABSTRACTS.

    PubMed

    2016-07-01

    The peer-reviewed abstracts presented at the 73rd Annual Meeting of the ACPA are published as submitted by the authors. For financial conflict of interest disclosure, please visit http://meeting.acpa-cpf.org/disclosures.html. PMID:27447885

  3. Abstracts of contributed papers

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  4. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  5. Quantification of Alkyl Nitrates in Ambient Air by Thermal Dissociation Cavity Ring-Down Spectroscopy with Preconcentration

    NASA Astrophysics Data System (ADS)

    Ye, C. Z.; Osthoff, H. D.; Taha, Y. M.; Pak, J. K.; Saowapon, M. T.

    2015-12-01

    Alkyl nitrates (AN, molecular formula RONO2) play a crucial role in the troposphere as temporary reservoirs of nitrogen oxides (NOx =NO +NO2) and by acting as chain terminators in the photochemical production of ozone. Mixing ratios of AN in ambient air are commonly quantified by gas chromatography with electron capture or mass spectrometric detection (GC-ECD or GC-MS) coupled to purge-and-trap preconcentration, usually on Tenax sorbent, to improve the detection limits. The analysis, however, is quite laborious as there are many alkyl nitrates that are low in individual abundance (often less than 1 parts-per-trillion by volume, pptv) and that exhibit different instrumental response factors. An alternative method is to determine alkyl nitrates as a sum (ΣAN) by thermal dissociation (TD) to a common fragment (NO2), which can then be quantified with a uniform response factor by optical absorption, for example by cavity ring-down spectroscopy (CRDS). However, the determination of ΣAN by TD-CRDS is hampered by its relatively high detection limits (several 100 pptv) and secondary chemistry following TD that results in both negative and positive interferences and depends on the composition of the ambient air sampled. In this work, a TD-CRDS equipped with a Tenax preconcentration unit is described. Matrix effects are minimized by desorbing the samples from the Tenax in a background of nitrogen. The performance of the instrument, in particular the recovery from the Tenax sorbent, was evaluated by sampling laboratory-generated mixtures of alkyl and peroxyacyl nitrates. Field data from a coastal site collected during the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at the Amphitrite Point Observatory in Ucluelet, BC, from July 6 - 31, 2015, are presented. Advantages and disadvantages of the new method are discussed.

  6. Metacognition and abstract reasoning.

    PubMed

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue. PMID:25416026

  7. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (ESTSC)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  8. Abstracting and indexing guide

    USGS Publications Warehouse

    U.S. Department of the Interior; Office of Water Resources Research

    1974-01-01

    These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.

  9. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 2: Thermal performance of compact high temperature air preheater and MEET boiler)

    SciTech Connect

    Iwahashi, Takashi; Kosaka, Hitoshi; Yoshida, Nobuhiro

    1998-07-01

    The compact high temperature air preheater and the MEET boiler, which are critical components of the MEET system, are the direct evolutions of the high temperature air combustion technology. Innovative hardware concept for a compact high temperature air preheater has been proposed, and preliminary experiment using the MEET-I high temperature air preheater based on this concept successfully demonstrated continuous high temperature air generation with almost no temperature fluctuation. A preliminary heat transfer calculation for the MEET boiler showed that regenerative combustion using high temperature air is quite effective for radiative heat transfer augmentation in a boiler, which will lead to significant downsizing of a boiler. The heat transfer characteristics in the MEET boiler were experimentally measured and the heat transfer promotion effect and the uniform heat transfer field were confirmed. Moreover, it was understood that excellent combustion with the low BTU gas of about 3,000 kcal/m{sup 3} was done.

  10. An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD)

    NASA Astrophysics Data System (ADS)

    Al-Abduly, Abdullah; Christensen, Paul

    2015-12-01

    This paper reports a spectroscopic study of non-thermal plasma chemistry in an air-fed dielectric barrier discharge (DBD) plasma jet. In situ analysis (i.e. the analysis of the plasma glow) and downstream analysis were carried out to identify and monitor species produced in the plasma as they propagate from the plasma glow to downstream regions. The analyses were carried out using Fourier Transform InfraRed (FTIR) and UV-Vis spectroscopies. The species: O3, N2O5, N2O, HNO3, CO2, CO and, for the first time, a vibrationally excited form of CO2 (i.e. \\text{CO}2* (v)) were identified in the plasma glow, while O3, N2O5, HNO3 and N2O were detected in the downstream exhaust. The behaviour of these species was monitored as a function of a range of experimental conditions including: input power, gas flow rate, relative humidity, gas temperature and feed gas composition. In addition, the uncertainty associated with UV-vis detection of ozone in the presence of N2O5 and/or HNO3 as interfering species was determined.

  11. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-06-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment.

  12. Alternating current-driven non-thermal arc plasma torch working with air medium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Lin, Qifu; Li, Lei; Cheng, Cheng; Chen, Longwei; Shen, Jie; Lan, Yan; Meng, Yuedong

    2013-11-01

    This work is devoted to the investigation of the discharge characteristics of high-frequency alternating current (ac) plasma torch working with air medium using electrical and spectroscopic techniques. A simple structure and compact ac plasma torch associated with a resonance power supply allows the generation of low power discharges (lower than 1 kW) with high voltage and low current. The discharge shows a negative resistance characteristic, and its curve shifts up with gas flow increased. The effects of power on the emission intensity of NO (A 2Σ+ → X 2Π), OH (A 2Σ → X 2Π, 0-0), N2(C 3Πu → B 3Πg), Hα and O (3p^{5}P \\to 3S^{5}S_{2}^{0}) and their spatial distributions in plasma jet axial direction were investigated. It has been found that the emission intensities of NO, OH, N2, Hα and O rise with an increase in power dissipation. With increasing axial distances of plasma jet from nozzle exit, the emission intensity of OH increases and then decreases, while the emission intensities of other species decrease sharply. The vibrational temperature is much higher than the gas temperature, which demonstrates the ac-driven arc discharge deviation from thermal equilibrium plasma.

  13. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Zhang, JunMin; Lu, ChunRong; Guan, YongGang; Liu, WeiDong

    2015-10-01

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around the number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.

  14. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    SciTech Connect

    Zhang, JunMin E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang E-mail: guanyg@tsinghua.edu.cn; Liu, WeiDong

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around the number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.

  15. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  16. The SIDdatagrabber (Abstract)

    NASA Astrophysics Data System (ADS)

    Silvis, G.

    2015-12-01

    (Abstract only) The Stanford/SARA SuperSid project offers an opportunity for adding data to the AAVSO SID Monitoring project. You can now build a SID antenna and monitoring setup for about $150. And with the SIDdatagrabber application you can easily re-purpose the data collected for the AAVSO.

  17. Making the Abstract Concrete

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2005-01-01

    President Ronald Reagan nominated a woman to serve on the United States Supreme Court. He did so through a single-page form letter, completed in part by hand and in part by typewriter, announcing Sandra Day O'Connor as his nominee. While the document serves as evidence of a historic event, it is also a tangible illustration of abstract concepts…

  18. Learning Abstracts, 2001.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.

    2001-01-01

    Volume 4 of the League for Innovation in the Community College's Learning Abstracts include the following: (1) "Touching Students in the Digital Age: The Move Toward Learner Relationship Management (LRM)," by Mark David Milliron, which offers an overview of an organizing concept to help community colleges navigate the intersection between digital…

  19. Leadership Abstracts, 2002.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.; Milliron, Mark David, Ed.

    2002-01-01

    This 2002 volume of Leadership Abstracts contains issue numbers 1-12. Articles include: (1) "Skills Certification and Workforce Development: Partnering with Industry and Ourselves," by Jeffrey A. Cantor; (2) "Starting Again: The Brookhaven Success College," by Alice W. Villadsen; (3) "From Digital Divide to Digital Democracy," by Gerardo E. de los…

  20. Leadership Abstracts, 1993.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1993-01-01

    This document includes 10 issues of Leadership Abstracts (volume 6, 1993), a newsletter published by the League for Innovation in the Community College (California). The featured articles are: (1) "Reinventing Government" by David T. Osborne; (2) "Community College Workforce Training Programs: Expanding the Mission to Meet Critical Needs" by…

  1. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  2. CIRF Abstracts, Volume 12.

    ERIC Educational Resources Information Center

    International Labour Office, Geneva (Switzerland).

    The aim of the CIRF abstracts is to convey information about vocational training ideas, programs, experience, and experiments described in periodicals, books, and other publications and relating to operative personnel, supervisors, and technical and training staff in all sectors of economic activity. Information is also given on major trends in…

  3. Leadership Abstracts, 1999.

    ERIC Educational Resources Information Center

    Leadership Abstracts, 1999

    1999-01-01

    This document contains five Leadership Abstracts publications published February-December 1999. The article, "Teaching the Teachers: Meeting the National Teacher Preparation Challenge," authored by George R. Boggs and Sadie Bragg, examines the community college role and makes recommendations and a call to action for teacher education. "Chaos…

  4. Double Trouble (Abstract)

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2015-12-01

    (Abstract only) Variable stars with close companions can be difficult to accurately measure and characterize. The companions can create misidentifications, which in turn can affect the perceived magnitudes, amplitudes, periods, and colors of the variable stars. We will show examples of these Double Trouble stars and the impact their close companions have had on our understanding of some of these variable stars.

  5. Send Me No Abstract.

    ERIC Educational Resources Information Center

    Levy, Steven

    1985-01-01

    Discusses Magazine Index's practice of assigning letter grades (sometimes inaccurate) to book, restaurant, and movie reviews, thus allowing patrons to get the point of the review from the index rather than the article itself, and argues that this situation is indicative of the larger problem of reliability of abstracts. (MBR)

  6. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  7. Water reuse. [Lead abstract

    SciTech Connect

    Middlebrooks, E.J.

    1982-01-01

    Separate abstracts were prepared for the 31 chapters of this book which deals with all aspects of wastewater reuse. Design data, case histories, performance data, monitoring information, health information, social implications, legal and organizational structures, and background information needed to analyze the desirability of water reuse are presented. (KRM)

  8. Reasoning abstractly about resources

    NASA Technical Reports Server (NTRS)

    Clement, B.; Barrett, A.

    2001-01-01

    r describes a way to schedule high level activities before distributing them across multiple rovers in order to coordinate the resultant use of shared resources regardless of how each rover decides how to perform its activities. We present an algorithm for summarizing the metric resource requirements of an abstract activity based n the resource usages of its potential refinements.

  9. Humor, abstraction, and disbelief.

    PubMed

    Hoicka, Elena; Jutsum, Sarah; Gattis, Merideth

    2008-09-01

    We investigated humor as a context for learning about abstraction and disbelief. More specifically, we investigated how parents support humor understanding during book sharing with their toddlers. In Study 1, a corpus analysis revealed that in books aimed at 1-to 2-year-olds, humor is found more often than other forms of doing the wrong thing including mistakes, pretense, lying, false beliefs, and metaphors. In Study 2, 20 parents read a book containing humorous and non-humorous pages to their 19-to 26-month-olds. Parents used a significantly higher percentage of high abstraction extra-textual utterances (ETUs) when reading the humorous pages. In Study 3, 41 parents read either a humorous or non-humorous book to their 18-to 24-month-olds. Parents reading the humorous book made significantly more ETUs coded for a specific form of high abstraction: those encouraging disbelief of prior utterances. Sharing humorous books thus increases toddlers' exposure to high abstraction and belief-based language. PMID:21585438

  10. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1995

    1995-01-01

    Presents abstracts of 15 special interest group (SIG) sessions. Topics include navigation and information utilization in the Internet, natural language processing, automatic indexing, image indexing, classification, users' models of database searching, online public access catalogs, education for information professions, information services,…

  11. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  12. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  13. Learning Abstracts, 1999.

    ERIC Educational Resources Information Center

    League for Innovation in the Community Coll.

    This document contains volume two of Learning Abstracts, a bimonthly newsletter from the League for Innovation in the Community College. Articles in these seven issues include: (1) "Get on the Fast Track to Learning: An Accelerated Associate Degree Option" (Gerardo E. de los Santos and Deborah J. Cruise); (2) "The Learning College: Both Learner…

  14. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  15. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  16. Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Stenkin, Yu. V.; Alekseenko, V. V.; Aynutdinov, V.; Cai, Z. Y.; Guo, X. W.; Liu, Y.; Rulev, V.; Shchegolev, O. B.; Stepanov, V.; Volchenko, V.; Zhang, H.

    2016-08-01

    We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and 6LiF. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to estimate the number of high energy hadrons in EAS. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distributions of both components and the total number of thermal neutrons have been measured. The correlation of these data with the measurements carried out by ARGO-YBJ confirms the excellent performance of the EN-detector.

  17. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    NASA Astrophysics Data System (ADS)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  18. Historical development of abstracting.

    PubMed

    Skolnik, H

    1979-11-01

    The abstract, under a multitude of names, such as hypothesis, marginalia, abridgement, extract, digest, précis, resumé, and summary, has a long history, one which is concomitant with advancing scholarship. The progression of this history from the Sumerian civilization ca. 3600 B.C., through the Egyptian and Greek civilizations, the Hellenistic period, the Dark Ages, Middle Ages, Renaissance, and into the modern period is reviewed. PMID:399482

  19. Generalized Abstract Symbolic Summaries

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Dwyer, Matthew B.

    2009-01-01

    Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.

  20. Thermally-driven advections of aerosol-rich air masses to an Alpine valley: Theoretical considerations and experimental evidences

    NASA Astrophysics Data System (ADS)

    Diémoz, Henri; Magri, Tiziana; Pession, Giordano; Zublena, Manuela; Campanelli, Monica; Gobbi, Gian Paolo; Barnaba, Francesca; Di Liberto, Luca; Dionisi, Davide

    2016-04-01

    A CHM-15k laser radar (lidar) was installed in April 2015 at the solar observatory of the Environmental Protection Agency (ARPA) of the Aosta Valley (Northern Italy, 45.74N, 7.36E, 560 m a.s.l.). The instrument operates at 1064 nm, is capable of mapping the vertical profile of aerosols and clouds up to the tropopause and is part of the Alice-net ceilometers network (www.alice-net.eu). The site is in a large Alpine valley floor, in a semi-rural context. Among the most interesting cases observed in the first months of operation, several days characterised by weak synoptic circulation and well-developed, thermally-driven up-valley winds are accompanied by the appearance of a thick aerosol layer in the afternoon. The phenomenon is frequent in Spring and Summer and is likely to be related to easterly airmass advections from polluted sites (e.g., the Po basin) rather than to local emissions. To test this hypothesis, the following method was adopted. First, some case studies were selected and the respective meteorological fields were analysed based on both observations at ground and the high-resolution output of the nonhydrostatic limited-area atmospheric prediction model maintained by the COnsortium for Small-scale MOdelling (COSMO) over the complex orography of the domain. Then, to evaluate the dynamics of the aerosol diffusion in the valley, the chemical transport 2D/3D eulerian Flexible Air quality Regional Model (FARM) was run. Finally, the three-dimensional output of the model was compared to the vertically-resolved aerosol field derived from the lidar-ceilometer soundings. The effects of up-slope winds, and the resulting subsidence along the main axis of the valley, is hypothesised to break up the aerosol layer close to the ground in the middle of the day and to drag the residual layer down into the mixing layer. The measurements by a co-located sun/sky photometer operating in the framework of the EuroSkyRad (ESR) network were additionally analysed to detect any

  1. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  2. Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA ® passive tubes.

    PubMed

    Raeppel, Caroline; Appenzeller, Brice M; Millet, Maurice

    2015-01-01

    A method coupling thermal desorption and gas chromatography/mass spectrometry (GC/MS) was developed for the simultaneous determination of 7 pyrethroids (allethrin, bifenthrin, cyphenothrin, imiprothrin, permethrin, prallethrin and tetramethrin) and piperonyl butoxide adsorbed on Tenax TA(®) passive samplers after exposure in indoor air. Thermal desorption was selected as it permits efficient and rapid extraction without solvent used together with a good sensitivity. Detection (S/N>3) and quantification (S/N>10) limits varied between 0.001 ng and 2.5 ng and between 0.005 and 10 ng respectively with a reproducibility varied between 14% (bifenthrin) and 39% (permethrin). The method was used for the comparison indoor air contamination after low-pressure spraying and fumigation application in a rubbish chute situated in the basement of a building. PMID:25281107

  3. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review

    NASA Astrophysics Data System (ADS)

    Karanasiou, A.; Minguillón, M. C.; Viana, M.; Alastuey, A.; Putaud, J.-P.; Maenhaut, W.; Panteliadis, P.; Močnik, G.; Favez, O.; Kuhlbusch, T. A. J.

    2015-09-01

    Thermal-optical analysis is currently under consideration by the European standardization body (CEN) as the reference method to quantitatively determine organic carbon (OC) and elemental carbon (EC) in ambient air. This paper presents an overview of the critical parameters related to the thermal-optical analysis including thermal protocols, critical factors and interferences of the methods examined, method inter-comparisons, inter-laboratory exercises, biases and artifacts, and reference materials. The most commonly used thermal protocols include NIOSH-like, IMPROVEA and EUSAAR2 protocols either with light transmittance or reflectance correction for charring. All thermal evolution protocols are comparable for total carbon (TC) concentrations but the results vary significantly concerning OC and especially EC concentrations. Thermal protocols with a rather low peak temperature in the inert mode like IMPROVEA and EUSAAR2 tend to classify more carbon as EC compared to NIOSH-like protocols, while charring correction based on transmittance usually leads to smaller EC values compared to reflectance. The difference between reflectance and transmittance correction tends to be larger than the difference between different thermal protocols. Nevertheless, thermal protocols seem to correlate better when reflectance is used as charring correction method. The difference between EC values as determined by the different protocols is not only dependent on the optical pyrolysis correction method, but also on the chemical properties of the samples due to different contributions from various sources. The overall conclusion from this literature review is that it is not possible to identify the "best" thermal-optical protocol based on literature data only, although differences attributed to the methods have been quantified when possible.

  4. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  5. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-01

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. PMID:25576042

  6. In-situ, in air, high-temperature phase transformations in rare-earth niobates and titanium oxides (dysprosium and yttrium) using a thermal-image furnace

    NASA Astrophysics Data System (ADS)

    Siah, Lay Foong

    Thermal-image furnaces afford two major advantages over the conventional resistance heating systems for high-temperature studies of oxides in air, namely: (i) the highly localized heating allows temperatures in excess of 2500°C to be reached in air or in an oxidizing atmosphere, and (ii) no sample contamination from volatile furnace components since the sample is heated by absorption of a focused, high intensity light beam. In this work, we developed a compact furnace powered by four halogen infrared reflector lamps (150 W each), for in-situ high-temperature studies using synchrotron radiation. The primary objective was to evaluate the feasibility of the thermal-image technique for in-situ, in air, studies of high-temperature phase transformations in oxide ceramics. Specifically, the issues of temperature measurement and reliability of results obtained in comparison with published literature were addressed. The use of a co-existent "in-situ thermometer" was found to be a viable method to monitor the sample temperature in the image "hot-spot". Studies of YNbO4 and DyNbO4 revealed the existence of a new cubic phase at elevated temperatures beyond the commonly known ferroelastic monoclinic-to-paraelastic tetragonal transformations. A series of high-temperature powder patterns of the pure hexagonal phase of DY2TiO5 was also collected in-situ, in air.

  7. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    PubMed Central

    Amos-Abanyie, S.; Akuffo, F. O.; Kutin-Sanwu, V.

    2013-01-01

    Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+) simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT). An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses. PMID:23878528

  8. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  9. Summer 2015 Internship Abstract

    NASA Technical Reports Server (NTRS)

    Smith, Courtney

    2015-01-01

    Green fluorescent protein (GFP) visually shows the expression of proteins by fluorescing when exposed to certain wavelengths of light. The GFP in this experiment was used to identify cells actively releasing viruses. The experiment focused on the effect of microgravity on the GFP expression of Akata B-cells infected with Epstein Barr Virus (EBV). Two flasks were prepared with 30 million cells each and two bioreactors were prepared with 50 million cells each. All four cultures were incubated for 16 days and fed every four days. Cellometer readings were taken on the feeding days to find cell size, viability, and GFP expression. In addition, the cells were treated with Propodium monoazide (PMA) and run through real time PCR to determine viral load on the feeding days. On the International Space Station air samples are taken to analyze the bacterial and fungal organisms in the air. The Sartorius Portable Airport is being investigated for potential use on the ISS to analyze for viral content in the air. Multiple samples were taken around Johnson Space Center building 37 and in Clear Lake Pediatric Clinic. The filter used was the gelatin membrane filter and the DNA was extracted directly from the filter. The DNA was then run through real time PCR for Varicella Zoster Virus (VZV) and EBV as well as GAPDH to test for the presence of DNA. The results so far have shown low DNA yield and no positive results for VZV or EBV. Further inquiry involves accurately replicating an atmosphere with high viral load from saliva as would be found on the ISS to run the air sampler in. Another line of research is stress hormones that may be correlated to the reactivation of latent viruses. The stress hormones from saliva samples are analyzed rather than blood samples. The quantity found in saliva shows the quantity of the hormones actually attached to cells and causing a reaction, whereas in the blood the quantity of hormones is the total amount released to cause a reaction. The particular

  10. A LARI Experience (Abstract)

    NASA Astrophysics Data System (ADS)

    Cook, M.

    2015-12-01

    (Abstract only) In 2012, Lowell Observatory launched The Lowell Amateur Research Initiative (LARI) to formally involve amateur astronomers in scientific research by bringing them to the attention of and helping professional astronomers with their astronomical research. One of the LARI projects is the BVRI photometric monitoring of Young Stellar Objects (YSOs), wherein amateurs obtain observations to search for new outburst events and characterize the colour evolution of previously identified outbursters. A summary of the scientific and organizational aspects of this LARI project, including its goals and science motivation, the process for getting involved with the project, a description of the team members, their equipment and methods of collaboration, and an overview of the programme stars, preliminary findings, and lessons learned is presented.

  11. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  12. Effect of fuel to air ratio on Mach 0.3 burner rig hot corrosion of ZrO2-Y2O3 thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.

    1982-01-01

    A Mach 0.3 burner rig test program was conducted to determine how the fuel to air mass ratio affects the durability of ZrO2-Y2O3/Ni-16Cr-6Al-0.31Y thermal barrier coating systems in combustion products containing 5 ppm Na and 2 ppm V. As the fuel to air mass ratio was increased from 0.039 to 0.049, the durability of ZrO2-6Y2O3, ZrO2-8Y2O3 and ZrO2-12Y2O3 coatings decreased. ZrO2-8Y2O3 coatings were approximately 2X and 1.3X more durable than ZrO2-12Y2O3 and ZrO2-6Y2O3 coatings respectively at the fuel to air mass ratio of 0.039. The number of one hour cycles endured by ZrO2-8Y2O3 coatings varied from averages of 53 to 200 for the fuel to air mass ratios of 0.049 and 0.039, respectively. At the fuel to air mass ratio of 0.049, all ZrO2-Y2O3 coated specimens failed in 40 to 60 one hour cycles

  13. Teaching for Abstraction: A Model

    ERIC Educational Resources Information Center

    White, Paul; Mitchelmore, Michael C.

    2010-01-01

    This article outlines a theoretical model for teaching elementary mathematical concepts that we have developed over the past 10 years. We begin with general ideas about the abstraction process and differentiate between "abstract-general" and "abstract-apart" concepts. A 4-phase model of teaching, called Teaching for Abstraction, is then proposed…

  14. Abstraction of Drift-Scale Coupled Processes

    SciTech Connect

    N.D. Francis; D. Sassani

    2000-03-31

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M&O 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  15. Sensitive method for quantification of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in end-exhaled air by thermal desorption gas chromatography mass spectrometry.

    PubMed

    Biesterbos, Jacqueline W H; Beckmann, Gwendolyn; Anzion, Rob B M; Ragas, Ad M J; Russel, Frans G M; Scheepers, Paul T J

    2014-06-17

    Octamethylcyclotetrasiloxane (D4) and decamethylpentasiloxane (D5) are used as ingredients for personal care products (PCPs). Because of the use of these PCPs, consumers are exposed daily to D4 and D5. A sensitive analytical method was developed for analysis of D4 and D5 in end-exhaled air by thermal desorption gas chromatography mass spectrometry (TD-GC-MS), to determine the internal dose for consumer exposure assessment. Fifteen consumers provided end-exhaled air samples that were collected using Bio-VOC breath samplers and subsequently transferred to automatic thermal desorption (ATD) tubes. Prior to use, the ATD tubes were conditioned for a minimum of 4 h at 350 °C. The TD unit and auto sampler were coupled to a GC-MS using electron ionization. Calibration was performed using 0-10 ng/μL solutions of D4/D5 and (13)C-labeled D4/D5 as internal standards. The ions monitored were m/z 281 for D4, 355 for D5, 285 for (13)C-labeled D4, and 360 for (13)C-labeled D5. The addition of internal standard reduced the coefficient of variation from 30.8% to 9.5% for D4 and from 37.8% to 12.5% for D5. The limit of quantification was 2.1 ng/L end-exhaled air for D4 and 1.4 ng/L end-exhaled air for D5. With this method, cyclic siloxanes (D4 and D5) can be quantified in end-exhaled air at concentrations as low as background levels observed in the general population. PMID:24833048

  16. Remote Sensing of Urban Thermal Landscape Characteristics and Their Affects on Local and Regional Meteorology and Air Quality: An Overview of NASA EOS-IDS Project Atlanta

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.

  17. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  18. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  19. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements

    NASA Astrophysics Data System (ADS)

    Reyes-Marambio, Jorge; Moser, Francisco; Gana, Felipe; Severino, Bernardo; Calderón-Muñoz, Williams R.; Palma-Behnke, Rodrigo; Estevez, Pablo A.; Orchard, Marcos; Cortés, Marcelo

    2016-02-01

    This paper presents a experimentally-validated fractal time thermal model to describe the discharge and cooling down processes of air-cooled cylindrical Lithium-ion cells. Three cases were studied, a spatially isolated single cell under natural convection and two spatial configurations of modules with forced air cooling: staggered and aligned arrays with 30 and 25 cells respectively. Surface temperature measurements for discharge processes were obtained in a single cell at 1 C, 2 C and 3 C discharge rates, and in the two arrays at 1 C discharge rate. In the modules, surface temperature measurements were obtained for selected cells at specific inlet cooling air speeds. The fractal time energy equation captures the anomalous temperature relaxation and describes the cell surface temperature using a stretched exponential model. Stretched exponential temperature models of cell surface temperature show a better agreement with experimental measurements than pure exponential temperature models. Cells closer to the horizontal side walls have a better heat dissipation than the cells along the centerline of the module. The high prediction capabilities of the fractal time energy equation are useful in new design approaches of thermal control strategies of modules and packs, and to develop more efficient signal-correction algorithms in multipoint temperature measurement technologies in Li-ion batteries.

  20. Abstraction of Drift Seepage

    SciTech Connect

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport.

  1. Heat Pipe Technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.

  2. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  3. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  4. Accepted scientific research works (abstracts).

    PubMed

    2014-01-01

    These are the 39 accepted abstracts for IAYT's Symposium on Yoga Research (SYR) September 24-24, 2014 at the Kripalu Center for Yoga & Health and published in the Final Program Guide and Abstracts. PMID:25645134

  5. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lieberman, A.

    1972-01-01

    A heat-transfer design analysis has been made of an air-cooled plug-nozzle system for a supersonic-cruise aircraft engine. The proposed 10deg half-angle conical plug is sting supported from the turbine frame. Plug cooling is accomplished by convection and film cooling. The flight profile studied includes maximum afterburning from takeoff to Mach 2.7 and supersonic cruise at Mach 2.7 with a low afterburner setting. The calculations indicate that, for maximum afterburning, about 2 percent of the engine primary flow, removed after the second stage of the nine-stage compressor, will adequately cool the plug and sting support. Ram air may be used for cooling during supersonic-cruise operations, however. Therefore, the cycle efficiency penalty paid for air cooling the plug and sting support should be low.

  6. Preliminary study of cyclic thermal shock resistance of plasma-sprayed zirconium oxide turbine outer air seal shrouds

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1977-01-01

    Several experimental concepts representing potential high pressure turbine seal material systems were subjected to cyclic thermal shock exposures similar to those that might be encountered under severe engine start-up and shut-down sequences. All of the experimental concepts consisted of plasma-sprayed yttria stabilized ZrO2 on the high temperature side of the blade tip seal shroud. Between the ZrO2 and a cooled, dense metal backing, various intermediate layer concepts intended to mitigate thermal stresses were incorporated. Performance was judged on the basis of the number of thermal shock cycles required to cause loss of seal material through spallation. The most effective approach was to include a low modulus, sintered metal pad between the ZrO2 and the metallic backing. It was also found that reducing the density of the ZrO2 layer significantly improved the performance of specimens with plasma-sprayed metal/ceramic composite intermediate layers.

  7. THERMAL DEFOLIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An apparatus designed to defoliate cotton with hot air was tested in two varieties and two field conditions. Cotton defoliation using hot air was as effective as defoliation using tyical chemicals under some conditions. Aphid populations were eliminated by the thermal treatment, reducing the risk ...

  8. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  9. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  10. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  11. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2016-04-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  12. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air.

    PubMed

    Camino-Sánchez, F J; Ruiz-García, J; Zafra-Gómez, A

    2013-08-30

    An analytical method for the detection and quantification of haloanisoles and their corresponding halophenols in wineries' ambient air was developed. The target analytes were haloanisoles and halophenols, reported by previous scientific literature as responsible for wine taint. A calibrated pump and active tubes filled with Tenax GR™ were used for sampling. These tubes were thermally desorbed and analyzed using gas chromatography-triple quadrupole mass spectrometry in the selected reaction monitoring mode. The adsorption efficiencies of five commercial sampling tubes filled with different materials were evaluated. The efficiencies of the selected adsorbent were close to 100% for all sampled compounds. Desorption, chromatographic and mass spectrometric conditions were accurately optimized allowing very low limits of quantification and wide linear ranges. The limits of quantification in ambient air ranged from 0.8pgtube(-1) for 2,4,6-trichlorophenol, to 28pgtube(-1) for pentachlorophenol. These results are of great importance because human sensory threshold for haloanisoles is very low. The chromatographic method was also validated and the instrumental precision and trueness were established, a maximum RSD of 9% and a mean recovery of 91-106% were obtained. The proposed method involves an easy and sensitive technique for the early detection of haloanisoles and their precursor halophenols in ambient air avoiding contamination of wine or winery facilities. PMID:23891369

  13. Behavior of oxide scales on 2. 25Cr-1Mo steel during thermal cycling. I. Scales formed in oxygen and air

    SciTech Connect

    Christl, W.; Rahmel, A.; Schuetze, M.

    1989-02-01

    The acoustic-emission (AE) technique has been applied to study scale-damage processes during thermal cycling of a tube, preferentially between 600 and 300/degree/C in air, oxygen, and air + 0.5% SO/sub 2/. The AE measurements were accompanied by optical and electron-optical investigations on tube rings exposed to the same cycling conditions. During the first period of cycling, a scale rich in hematite is formed. It suffers compressive stresses during cooling. The result is a buckled multilayered scale with separated lamellae. The scaling rate is lower than under isothermal conditions. AE signals start after 175/degree/C cooling. After longer exposure times, the scale contains an increasing amount of magnetite and becomes more compact. The scaling rate increases and is comparable to that under isothermal conditions. AE signals are already observed after 50/degree/C cooling and are correlated with crack formation in the magnetite caused by tensile stresses there. The addition of SO/sub 2/ to air enhances the crack-healing process due to higher Fe diffusion in FeS. The scale is more compact.

  14. The harmful effects of air pollutants around the Yenikoy thermal power plant on architecture of Calabrian pine (Pinus brutia Ten.) needles.

    PubMed

    Nuhoglu, Yasar

    2005-06-01

    The influence of air pollutants on the architecture of Calabrian pine (Pinus brutia Ten.) needles was examined in polluted and control forest sites around the Yeniköy thermal power plant (YTPP) in Muğla, Turkey. The aim of this research was to test the hypothesis that air pollutants emitted from the YTPP cause the dilation of resin canal diameter on the cross-sections of Calabrian pine needles. For this, the anatomical and morphological anomalies on the cross-sections of Calabrian pine needles were examined. It was determined that the air pollutants caused resin canal dilation and epidermis/hypodermis layers slimming on the cross-sections of Calabrian pine needles. It was also observed that the endodermis layer, the transfusion tissue cells had deformed, and the intra-cellular material had disappeared in the inner side of the cells. At the end of the land researches carried out around the YTPP, visible injury was observed and the ends of needles had withered, so the two and three-year old needles fell very early. Leak of resin on the surface of the needles especially in extensive dusty areas appeared. 0.217-0.423 mg/cm(2) fly ash on the needle surfaces in these areas were obtained. By means of the elemental analysis, it was found out that fly ash had some toxic elements on plants. PMID:16334260

  15. Study of suitability of Fricke-gel-layer dosimeters for in-air measurements to characterise epithermal/thermal neutron beams for NCT.

    PubMed

    Gambarini, G; Artuso, E; Giove, D; Felisi, M; Volpe, L; Barcaglioni, L; Agosteo, S; Garlati, L; Pola, A; Klupak, V; Viererbl, L; Vins, M; Marek, M

    2015-12-01

    The reliability of Fricke gel dosimeters in form of layers for measurements aimed at the characterization of epithermal neutron beams has been studied. By means of dosimeters of different isotopic composition (standard, containing (10)B or prepared with heavy water) placed against the collimator exit, the spatial distribution of gamma and fast neutron doses and of thermal neutron fluence are attained. In order to investigate the accuracy of the results obtained with in-air measurements, suitable MC simulations have been developed and experimental measurements have been performed utilizing Fricke gel dosimeters, thermoluminescence detectors and activation foils. The studies were related to the epithermal beam designed for BNCT irradiations at the research reactor LVR-15 (Řež). The results of calculation and measurements have revealed good consistency of gamma dose and fast neutron 2D distributions obtained with gel dosimeters in form of layers. In contrast, noticeable modification of thermal neutron fluence is caused by the neutron moderation produced by the dosimeter material. Fricke gel dosimeters in thin cylinders, with diameter not greater than 3mm, have proved to give good results for thermal neutron profiling. For greater accuracy of all results, a better knowledge of the dependence of gel dosimeter sensitivity on radiation LET is needed. PMID:26249744

  16. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  17. Recursive Abstractions for Parameterized Systems

    NASA Astrophysics Data System (ADS)

    Jaffar, Joxan; Santosa, Andrew E.

    We consider a language of recursively defined formulas about arrays of variables, suitable for specifying safety properties of parameterized systems. We then present an abstract interpretation framework which translates a paramerized system as a symbolic transition system which propagates such formulas as abstractions of underlying concrete states. The main contribution is a proof method for implications between the formulas, which then provides for an implementation of this abstract interpreter.

  18. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  19. Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production

    SciTech Connect

    Fox, Elise B; Kendrick, Sarah E.; Visser, Ann E.; Bridges, Nicholas J.

    2012-10-15

    The purpose of this study was to investigate the effect of long-term aging on the thermal stability and chemical structure of seven different ILs so as to explore their suitability for use as a heat transfer fluid. This was accomplished by heating the ILs for 15 weeks at 200°C in an oxidizing environment and performing subsequent analyses on the aged chemicals.

  20. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  1. Abstracts

    NASA Astrophysics Data System (ADS)

    2012-09-01

    Measuring cosmological parameters with GRBs: status and perspectives New interpretation of the Amati relation The SED Machine - a dedicated transient spectrograph PTF10iue - evidence for an internal engine in a unique Type Ic SN Direct evidence for the collapsar model of long gamma-ray bursts On pair instability supernovae and gamma-ray bursts Pan-STARRS1 observations of ultraluminous SNe The influence of rotation on the critical neutrino luminosity in core-collapse supernovae General relativistic magnetospheres of slowly rotating and oscillating neutron stars Host galaxies of short GRBs GRB 100418A: a bridge between GRB-associated hypernovae and SNe Two super-luminous SNe at z ~ 1.5 from the SNLS Prospects for very-high-energy gamma-ray bursts with the Cherenkov Telescope Array The dynamics and radiation of relativistic flows from massive stars The search for light echoes from the supernova explosion of 1181 AD The proto-magnetar model for gamma-ray bursts Stellar black holes at the dawn of the universe MAXI J0158-744: the discovery of a supersoft X-ray transient Wide-band spectra of magnetar burst emission Dust formation and evolution in envelope-stripped core-collapse supernovae The host galaxies of dark gamma-ray bursts Keck observations of 150 GRB host galaxies Search for properties of GRBs at large redshift The early emission from SNe Spectral properties of SN shock breakout MAXI observation of GRBs and short X-ray transients A three-dimensional view of SN 1987A using light echo spectroscopy X-ray study of the southern extension of the SNR Puppis A All-sky survey of short X-ray transients by MAXI GSC Development of the CALET gamma-ray burst monitor (CGBM)

  2. Vague Language in Conference Abstracts

    ERIC Educational Resources Information Center

    Cutting, Joan

    2012-01-01

    This study examined abstracts for a British Association for Applied Linguistics conference and a Sociolinguistics Symposium, to define the genre of conference abstracts in terms of vague language, specifically universal general nouns (e.g. people) and research general nouns (e.g. results), and to discover if the language used reflected the level…

  3. Leadership Abstracts; Volume 4, 1991.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1991-01-01

    "Leadership Abstracts" is published bimonthly and distributed to the chief executive officer of every two-year college in the United States and Canada. This document consists of the 15 one-page abstracts published in 1991. Addressing a variety of topics of interest to the community college administrators, this volume includes: (1) "Delivering the…

  4. Food Science and Technology Abstracts.

    ERIC Educational Resources Information Center

    Cohen, Elinor; Federman, Joan

    1979-01-01

    Introduces the reader to the Food Science and Technology Abstracts, a data file that covers worldwide literature on human food commodities and aspects of food processing. Topics include scope, subject index, thesaurus, searching online, and abstracts; tables provide a comparison of ORBIT and DIALOG versions of the file. (JD)

  5. Innovation Abstracts, Volume XV, 1993.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1993-01-01

    This volume of 30 one- to two-page abstracts from 1993 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) role-playing to encourage critical thinking; (2) team learning techniques to cultivate business skills; (3) librarian-instructor partnerships to create…

  6. Student Success with Abstract Art

    ERIC Educational Resources Information Center

    Hamidou, Kristine

    2009-01-01

    An abstract art project can be challenging or not, depending on the objectives the teacher sets up. In this article, the author describes an abstract papier-mache project that is a success for all students, and is a versatile project easily manipulated to suit the classroom of any art teacher.

  7. Abstraction in perceptual symbol systems.

    PubMed Central

    Barsalou, Lawrence W

    2003-01-01

    After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648

  8. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect

    Broesius, J.Y.

    1991-03-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  9. Metaphor: Bridging embodiment to abstraction.

    PubMed

    Jamrozik, Anja; McQuire, Marguerite; Cardillo, Eileen R; Chatterjee, Anjan

    2016-08-01

    Embodied cognition accounts posit that concepts are grounded in our sensory and motor systems. An important challenge for these accounts is explaining how abstract concepts, which do not directly call upon sensory or motor information, can be informed by experience. We propose that metaphor is one important vehicle guiding the development and use of abstract concepts. Metaphors allow us to draw on concrete, familiar domains to acquire and reason about abstract concepts. Additionally, repeated metaphoric use drawing on particular aspects of concrete experience can result in the development of new abstract representations. These abstractions, which are derived from embodied experience but lack much of the sensorimotor information associated with it, can then be flexibly applied to understand new situations. PMID:27294425

  10. Thermal and flow analysis of a convection air-cooled ceramic coated porous metal concept for turbine vanes

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1981-01-01

    The heat transfer and pressure drop through turbine vanes made of a sintered, porous metal coated with a thin layer of ceramic and convection cooled by spanwise flow of cooling air were analyzed. The analysis was made to determine the feasibility of using this concept for cooling very small turbines, primarily for short duration applications such as in missile engines. The analysis was made for gas conditions of approximately 10 and 40 atm and 1644 K and with turbine vanes made of felt type porous metals with relative densities from 0.2 to 0.6 and ceramic coating thicknesses of 0.076 to 0.254 mm.

  11. Evaluation of Thermal Barrier and PS-200 Self-Lubricating Coatings in an Air-Cooled Rotary Engine

    NASA Technical Reports Server (NTRS)

    Moller, Paul S.

    1995-01-01

    This project provides an evaluation of the feasibility and desirability of applying a thermal barrier coating overlaid with a wear coating on the internal surfaces of the combustion area of rotary engines. Many experiments were conducted with different combinations of coatings applied to engine components of aluminum, iron and titanium, and the engines were run on a well-instrumented test stand. Significant improvements in specific fuel consumption were achieved and the wear coating, PS-200, which was invented at NASA's Lewis Research Center, held up well under severe test conditions.

  12. Optimisation of sorbent trapping and thermal desorption-gas chromatography-mass spectrometric conditions for sampling and analysis of hydrogen cyanide in air.

    PubMed

    Juillet, Yannick; Le Moullec, Sophie; Bégos, Arlette; Bellier, Bruno

    2005-06-01

    Among the chemicals belonging to the schedules of the Chemical Weapons Convention (CWC), sampling and analysis of highly volatile compounds such as hydrogen cyanide (HCN) require special consideration. The latter is present in numerous old chemical weapons that are stockpiled awaiting destruction in Northeastern France: thus, sampling on stockpile area and subsequent verification of HCN levels is compulsory to ensure safety of workers on these areas. The ability of several commercial sorbents to trap hydrogen cyanide at various concentration levels and in various humidity conditions, was evaluated. Furthermore, thermal desorption of the corresponding samples, followed by analysis by gas chromatography-mass spectrometry was also optimised. Carbosieve S-III, a molecular sieve possessing a very high specific area, proved the most efficient sorbent for HCN sampling in all conditions tested. Conversely, the presented results show that Tenax, albeit generally considered as the reference sorbent for air monitoring and analysis of CWC-related chemicals, is not suitable for HCN trapping. PMID:15912249

  13. Review of progress in quantitative NDE. Abstracts

    SciTech Connect

    Not Available

    1992-09-01

    Abstracts of 386 papers and plenary presentations are included. The plenary sessions related to the national technology initiative. The other sessions covered the following NDE topics: corrosion, electromagnetic arrays, elastic wave scattering and backscattering/noise, civil structures, material properties, holography, shearography, UT wave propagation, eddy currents, coatings, signal processing, radiography, computed tomography, EM imaging, adhesive bonds, NMR, laser ultrasonics, composites, thermal, magnetic measurements, nonlinear acoustics, interface modeling and characterization, UT transducers, new techniques, joined materials, probes and systems, fatigue cracks and fracture, imaging and sizing, NDE in engineering and process control, acoustics of cracks, and sensors. An author index is included. (DLC)

  14. Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air

    NASA Astrophysics Data System (ADS)

    Han, H.; Mayer, J. W.; Alford, T. L.

    2006-10-01

    Indium-tin-oxide (ITO) thin films on polyethylene napthalate (PEN) with high carrier concentration (˜1021/cm3) have been grown by electron-beam deposition without the introduction of oxygen into the chamber. The electrical properties of the ITO films (such as, carrier concentration, electrical mobility, and resistivity) abruptly changed after annealing in the air atmospheres. In addition, optical transmittance and optical band gap values significantly changed after heat treatment. The optical band gap narrowing behavior is observed in the as-deposited sample because of impurity band and heavy carrier concentration. The influence of annealing in air on the electrical and optical properties of ITO/PEN samples can be explained by the change in the free electron concentration, which is evaluated in terms of the oxygen content. Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy analyses are used to determine the oxygen content in the film. Hall effect measurements are used to determine the dependence of electrical properties on oxygen content.

  15. NASA Patent Abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 21) Abstracts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 87 patents and applications introduced into the NASA scientific and technical information system during the period of January 1982 through June 1982. Each entry consists of a citation, an abstract, and in mose cases, a key illustration selected from the patent or patent application.

  16. Development and validation of a sensitive thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method for the determination of phosgene in air samples.

    PubMed

    Juillet, Y; Dubois, C; Bintein, F; Dissard, J; Bossée, A

    2014-08-01

    A new rapid, sensitive and reliable method was developed for the determination of phosgene in air samples using thermal desorption (TD) followed by gas chromatography-mass spectrometry (GC-MS). The method is based on a fast (10 min) active sampling of only 1 L of air onto a Tenax® GR tube doped with 0.5 mL of derivatizing mixture containing dimercaptotoluene and triethylamine in hexane solution. Validation of the TD-GC-MS method showed a low limit of detection (40 ppbv), acceptable repeatability, intermediate fidelity (relative standard deviation within 12 %) and excellent accuracy (>95%). Linearity was demonstrated for two concentration ranges (0.04 to 2.5 ppmv and 2.5 to 10 ppmv) owing to variation of derivatization recovery between low and high concentration levels. Due to its simple on-site implementation and its close similarity with recommended operating procedure (ROP) for chemical warfare agents vapour sampling, the method is particularly useful in the process of verification of the Chemical Weapons Convention. PMID:24817348

  17. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    NASA Astrophysics Data System (ADS)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  18. Teaching Abstract Concepts by Metaphor.

    ERIC Educational Resources Information Center

    Sutherland, Judith A.

    2001-01-01

    Defines metaphor and its uses; explains the construction and application of metaphors in nursing education. Describes the transformation of the abstract psychiatric concept of therapeutic milieu into a visual metaphor. (SK)

  19. Origin of thermal degradation of Sr(2-x)Si5N8:Eu(x) phosphors in air for light-emitting diodes.

    PubMed

    Yeh, Chiao-Wen; Chen, Wei-Ting; Liu, Ru-Shi; Hu, Shu-Fen; Sheu, Hwo-Shuenn; Chen, Jin-Ming; Hintzen, Hubertus T

    2012-08-29

    The orange-red emitting phosphors based on M(2)Si(5)N(8):Eu (M = Sr, Ba) are widely utilized in white light-emitting diodes (WLEDs) because of their improvement of the color rendering index (CRI), which is brilliant for warm white light emission. Nitride-based phosphors are adopted in high-performance applications because of their excellent thermal and chemical stabilities. A series of nitridosilicate phosphor compounds, M(2-x)Si(5)N(8):Eu(x) (M = Sr, Ba), were prepared by solid-state reaction. The thermal degradation in air was only observed in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.10, but it did not appear in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.02 and Ba analogue with x = 0.10. This is an unprecedented investigation to study this phenomenon in the stable nitrides. The crystal structural variation upon heating treatment of these compounds was carried out using the in situ XRD measurements. The valence of Eu ions in these compounds was determined by electron spectroscopy for chemical analysis (ESCA) and X-ray absorption near-edge structure (XANES) spectroscopy. The morphology of these materials was examined by transmission electron microscopy (TEM). Combining all results, it is concluded that the origin of the thermal degradation in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.10 is due to the formation of an amorphous layer on the surface of the nitride phosphor grain during oxidative heating treatment, which results in the oxidation of Eu ions from divalent to trivalent. This study provides a new perspective for the impact of the degradation problem as a consequence of heating processes in luminescent materials. PMID:22831180

  20. Deficiencies in structured medical abstracts.

    PubMed

    Froom, P; Froom, J

    1993-07-01

    This study was carried out to determine if the content of structured abstracts conforms with recommendations of the Ad Hoc Working Group for the critical appraisal of the medical literature as adopted by the Annals of Internal Medicine. The study design was a survey. All articles published in Annals of Internal Medicine in 1991, excluding editorials, case-reports, literature reviews, decision analysis, studies in medical education, descriptive studies of clinical and basic phenomena, and papers lacking a structured abstract, were studied. Of a total of 150 articles, 20 were excluded. The abstract and text of each article were assessed for the presence of the following items; patient selection criteria, statements concerning extrapolation of findings, need for further study, and whether or not the information should be used now. Number of refusers, drop outs and reason(s) for drop outs were assessed for intervention and prospective cohort studies only. Deficiencies of assessed items were noted in both abstracts and texts. For abstracts, patient selection criteria, numbers of refusers, number of drop outs and reason(s) for drop outs were reported in 44.6% (58/130), 3.1% (4/130), 16.9% (14/83) and 2.4% (2/83) respectively. These items were reported more frequently in the texts 87.7% (114/130), 9.2% (12/130), 60.2% (50/83) and 37.3% (31/83) respectively (p < 0.05). Statements concerning extrapolation of findings, need for further study and use of information now were also more frequent in texts than abstracts (p < 0.0001). A large number of structured abstracts published in the Annals of Internal Medicine in 1991, lack information recommended by the Ad Hoc Working Group. Our findings should not be extrapolated to other journals requiring structured abstracts. PMID:8326342

  1. Assessing the impact of extreme air temperature on fruit trees by modeling weather dependent phenology with variety-specific thermal requirements

    NASA Astrophysics Data System (ADS)

    Alfieri, Silvia Maria; De Lorenzi, Francesca; Missere, Daniele; Buscaroli, Claudio; Menenti, Massimo

    2013-04-01

    Extremely high and extremely low temperature may have a terminal impact on the productivity of fruit tree if occurring at critical phases of development. Notorious examples are frost during flowering or extremely high temperature during fruit setting. The dates of occurrence of such critical phenological stages depend on the weather history from the start of the yearly development cycle in late autumn, thus the impact of climate extremes can only be evaluated correctly if the phenological development is modeled taking into account the weather history of the specific year being evaluated. Climate change impact may lead to a shift in timing of phenological stages and change in the duration of vegetative and reproductive phases. A changing climate can also exhibit a greater climatic variability producing quite large changes in the frequency of extreme climatic events. We propose a two-stage approach to evaluate the impact of predicted future climate on the productivity of fruit trees. The phenological development is modeled using phase - specific thermal times and variety specific thermal requirements for several cultivars of pear, apricot and peach. These requirements were estimated using phenological observations over several years in Emilia Romagna region and scientific literature. We calculated the dates of start and end of rest completion, bud swell, flowering, fruit setting and ripening stages , from late autumn through late summer. Then phase-specific minimum and maximum cardinal temperature were evaluated for present and future climate to estimate how frequently they occur during any critically sensitive phenological phase. This analysis has been done for past climate (1961 - 1990) and fifty realizations of a year representative of future climate (2021 - 2050). A delay in rest completion of about 10-20 days has been predicted for future climate for most of the cultivars. On the other hand the predicted rise in air temperature causes an earlier development of

  2. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  3. Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter

    NASA Astrophysics Data System (ADS)

    Chiappini, L.; Verlhac, S.; Aujay, R.; Maenhaut, W.; Putaud, J. P.; Sciare, J.; Jaffrezo, J. L.; Liousse, C.; Gally-Lacaux, C.; Alleman, L.; Panteliadis, P.; Leoz, E.; Favez, O.

    2013-11-01

    Along with some research networking programs, the European Directive 2008/50/CE requires chemical speciation of fine aerosol (PM2.5), including elemental (EC) and organic carbon (OC), at a few rural sites in European countries. Meanwhile, the thermal-optical technique is considered by the European and US networking agencies and normalization bodies as a reference method to quantify EC-OC collected on filters. Although commonly used for many years, this technique is still suffering from a lack of information on the comparability of the different analytical protocols (temperature protocols, type of optical correction) currently applied in the laboratories. To better evaluate the EC-OC data set quality and related uncertainties, the French National Reference Laboratory for Ambient Air Quality Monitoring (LCSQA) has organized an EC-OC comparison exercise for French laboratories using different thermal-optical methods. While there is good agreement on total carbon (TC) measurements among all participants, some discrepancies can be observed on the EC/TC ratio, even among laboratories using the same thermal protocol. These results led to further tests on the influence of the optical correction: results obtained from different European Laboratories, confirming that there are higher differences between OCTOT and OCTOR measured with NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between ECTOT/ECTOT ratios can be observed when comparing rural and urban results whatever the thermal protocol ECTOT being 50% lower than ECTOT at rural sites whereas it is only 20% lower at urban sites. The PM chemical composition could explain these differences but the way it influences the EC-OC measurement is not clear and needs further investigations. Meanwhile, some additional tests seem to indicate an influence of the oven soiling on the EC-OC measurement data quality. This enlightens the necessity to follow the laser signal decrease with time and its impact on measurements

  4. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  5. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Not Available

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  6. Meeting Abstracts - Annual Meeting 2016.

    PubMed

    2016-04-01

    The AMCP Abstracts program provides a forum through which authors can share their insights and outcomes of advanced managed care practice through publication in AMCP's Journal of Managed Care & Specialty Pharmacy (JMCP). Most of the reviewed and unreviewed abstracts are presented as posters so that interested AMCP meeting attendees can review findings and query authors. The Student/Resident/ Fellow poster presentation (unreviewed) is Wednesday, April 20, 2016, and the Professional poster presentation (reviewed) is Thursday, April 21. The Professional posters will also be displayed on Friday, April 22. The reviewed abstracts are published in the JMCP Meeting Abstracts supplement. The AMCP Managed Care & Specialty Pharmacy Annual Meeting 2016 in San Francisco, California, is expected to attract more than 3,500 managed care pharmacists and other health care professionals who manage and evaluate drug therapies, develop and manage networks, and work with medical managers and information specialists to improve the care of all individuals enrolled in managed care programs. Abstracts were submitted in the following categories: Research Report: describe completed original research on managed care pharmacy services or health care interventions. Examples include (but are not limited to) observational studies using administrative claims, reports of the impact of unique benefit design strategies, and analyses of the effects of innovative administrative or clinical programs. Economic Model: describe models that predict the effect of various benefit design or clinical decisions on a population. For example, an economic model could be used to predict the budget impact of a new pharmaceutical product on a health care system. Solving Problems in Managed Care: describe the specific steps taken to introduce a needed change, develop and implement a new system or program, plan and organize an administrative function, or solve other types of problems in managed care settings. These

  7. Abstract communication for coordinated planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Durfee, Edmund H.

    2003-01-01

    work offers evidence that distributed planning agents can greatly reduce communication costs by reasoning at abstract levels. While it is intuitive that improved search can reduce communication in such cases, there are other decisions about how to communicate plan information that greatly affect communication costs. This paper identifies cases independent of search where communicating at multiple levels of abstraction can exponentially decrease costs and where it can exponentially add costs. We conclude with a process for determining appropriate levels of communication based on characteristics of the domain.

  8. A probabilistic and multi-objective conceptual design methodology for the evaluation of thermal management systems on air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Ordaz, Irian

    This thesis addresses the challenges associated with thermal management systems (TMS) evaluation and selection in the conceptual design of hypersonic, air-breathing vehicles with sustained cruise. The proposed methodology identifies analysis tools and techniques which allow the proper investigation of the design space for various thermal management technologies. The design space exploration environment and alternative multi-objective decision making technique defined as Pareto-based Joint Probability Decision Making (PJPDM) is based on the approximation of 3-D Pareto frontiers and probabilistic technology effectiveness maps. These are generated through the evaluation of a Pareto Fitness function and Monte Carlo analysis. In contrast to Joint Probability Decision Making (JPDM), the proposed PJPDM technique does not require preemptive knowledge of weighting factors for competing objectives or goal constraints which can introduce bias into the final solution. Preemptive bias in a complex problem can degrade the overall capabilities of the final design. The implementation of PJPDM in this thesis eliminates the need for the numerical optimizer which is required with JPDM in order to improve upon a solution. In addition, a physics-based formulation is presented for the quantification of TMS safety effectiveness corresponding to debris impact/damage and how it can be applied towards risk mitigation. Lastly, a formulation loosely based on non-preemptive Goal Programming with equal weighted deviations is provided for the resolution of the inverse design space. This key step helps link vehicle capabilities to TMS technology subsystems in a top-down design approach. The methodology provides the designer more knowledge up front to help make proper engineering decisions and assumptions in the conceptual design phase regarding which technologies show greatest promise, and how to guide future technology research.

  9. Innovation Abstracts, Volume XIX, 1997.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1997-01-01

    The 52 abstracts in these 29 serial issues describe innovative approaches to teaching and learning in the community college. Sample topics include a checklist for conference presenters, plan to retain students, faculty home page, improvements in writing instruction, cooperative learning, support for high risk students, competitive colleges and the…

  10. Handedness Shapes Children's Abstract Concepts

    ERIC Educational Resources Information Center

    Casasanto, Daniel; Henetz, Tania

    2012-01-01

    Can children's handedness influence how they represent abstract concepts like "kindness" and "intelligence"? Here we show that from an early age, right-handers associate rightward space more strongly with positive ideas and leftward space with negative ideas, but the opposite is true for left-handers. In one experiment, children indicated where on…

  11. Innovation Abstracts, Volume XX, 1998.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1998-01-01

    The 52 abstracts in these 29 serial issues describe innovative approaches to teaching and learning in the community college. Sample topics include reading motivation, barriers to academic success, the learning environment, writing skills, leadership in the criminal justice profession, role-playing strategies, cooperative education, distance…

  12. Abstract Journal Concept Being Examined

    ERIC Educational Resources Information Center

    Somerville, Brendan F.

    1972-01-01

    In order to control the information explosion, some European chemical groups are studying the idea of abandoning full publication in printed form of all primary journals and, in their place, substituting a new form of abstract journal combined with a microfilm record of full scientific papers. (Author/CP)

  13. Metaphoric Images from Abstract Concepts.

    ERIC Educational Resources Information Center

    Vizmuller-Zocco, Jana

    1992-01-01

    Discusses children's use of metaphors to create meaning, using as an example the pragmatic and "scientific" ways in which preschool children explain thunder and lightning to themselves. Argues that children are being shortchanged by modern scientific notions of abstractness and that they should be encouraged to create their own explanations of…

  14. Abstract Expressionism. Clip and Save.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2002-01-01

    Provides information on the art movement, Abstract Expressionism, and includes learning activities. Focuses on the artist Jackson Pollock, offering a reproduction of his artwork, "Convergence: Number 10." Includes background information on the life and career of Pollock and a description of the included artwork. (CMK)

  15. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  16. Does "Social Work Abstracts" Work?

    ERIC Educational Resources Information Center

    Holden, Gary; Barker, Kathleen; Covert-Vail, Lucinda; Rosenberg, Gary; Cohen, Stephanie A.

    2008-01-01

    Objective: The current study seeks to provide estimates of the adequacy of journal coverage in the Social Work Abstracts (SWA) database. Method: A total of 23 journals listed in the Journal Citation Reports social work category during the 1997 to 2005 period were selected for study. Issue-level coverage estimates were obtained for SWA and…

  17. Manpower Management Studies: Selected Abstracts.

    ERIC Educational Resources Information Center

    Ryerson, William R., Comp.

    This bibliography contains 58 selected abstracts of research reports dating back to 1964 on the general subject of manpower management. It was prepared from a search of the National Technical Information Service data base of more than 300,000 documents submitted by agencies of the Federal Government and also by private organizations or individuals…

  18. The Theatre Audience: An Abstraction.

    ERIC Educational Resources Information Center

    Campbell, Paul Newell

    1981-01-01

    Argues that theater is aimed at and presented to an ideal or abstract audience. Discusses the implications of performing for an actual audience, adaptation to various audiences, and the concept of the audience as an evaluative device. (See CS 705 536.) (JMF)

  19. Chemical Abstracts' Document Delivery Service.

    ERIC Educational Resources Information Center

    Rollins, Stephen

    1984-01-01

    The Document Delivery Service offered by Chemical Abstracts is described in terms of the DIALORDER option on the Dialog information retrieval system, mail requests, and requests transmitted through OCLC's Interlibrary Loan system. Transmission costs, success rates, delivery rates, and other considerations in utilizing the service are included.…

  20. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg‑1, Cu - 665.5 mg kg‑1, Pb - 138 mg kg‑1, Ni - 119.5 mg kg‑1, and interestingly high content of Au - 0.858 mg kg‑1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg‑1, Pb - 514.3 mg kg‑1, Cu - 476.6 mg kg‑1, Ni - 43.3 mg kg‑1. The content of Cd

  1. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Pankow, J.F.; Luo, W.; Isabelle, L.M.; Bender, D.A.; Baker, R.J.

    1998-01-01

    Adsorption/thermal desorption with multisorbent air-sampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3- trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected

  2. Clues for a standardised thermal-optical protocol for the assessment of organic and elemental carbon within ambient air particulate matter

    NASA Astrophysics Data System (ADS)

    Chiappini, L.; Verlhac, S.; Aujay, R.; Maenhaut, W.; Putaud, J. P.; Sciare, J.; Jaffrezo, J. L.; Liousse, C.; Galy-Lacaux, C.; Alleman, L. Y.; Panteliadis, P.; Leoz, E.; Favez, O.

    2014-06-01

    Along with some research networking programmes, the European Directive 2008/50/CE requires chemical speciation of fine aerosol (PM2.5), including elemental (EC) and organic carbon (OC), at a few rural sites in European countries. Meanwhile, the thermal-optical technique is considered by the European and US networking agencies and normalisation bodies as a reference method to quantify EC-OC collected on filters. Although commonly used for many years, this technique still suffers from a lack of information on the comparability of the different analytical protocols (temperature protocols, type of optical correction) currently applied in the laboratories. To better evaluate the EC-OC data set quality and related uncertainties, the French National Reference Laboratory for Ambient Air Quality Monitoring (LCSQA) organised an EC-OC comparison exercise for French laboratories using different thermal-optical methods (five laboratories only). While there is good agreement on total carbon (TC) measurements among all participants, some differences can be observed on the EC / TC ratio, even among laboratories using the same thermal protocol. These results led to further tests on the influence of the optical correction: results obtained from different European laboratories confirmed that there were higher differences between OCTOT and OCTOR measured with NIOSH 5040 in comparison to EUSAAR-2. Also, striking differences between ECTOT / ECTOR ratios can be observed when comparing results obtained for rural and urban samples, with ECTOT being 50% lower than ECTOR at rural sites whereas it is only 20% lower at urban sites. The PM chemical composition could explain these differences but the way it influences the EC-OC measurement is not clear and needs further investigation. Meanwhile, some additional tests seem to indicate an influence of oven soiling on the EC-OC measurement data quality. This highlights the necessity to follow the laser signal decrease with time and its impact on

  3. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  4. DNS of the effects of thermal stratication and turbulent mixing on H2/air ignition in a constant volume, and comparison with the multi-zone model.

    SciTech Connect

    Sankaran, Ramanan; Chen, Jacqueline H.; Hawkes, Evatt R.; Im, Hong G.

    2005-01-01

    The influence of thermal stratification on auto-ignition at constant volume and high pressure is studied by Direct Numerical Simulation (DNS) with complex H{sub 2}/air chemistry with a view to providing better understanding of combustion processes in homogeneous charge compression ignition engines. In particular the dependence of overall ignition progress on initial mixture conditions is determined. The propagation speed of ignition fronts that emanate from 'hot spots' given by a temperature spectrum is monitored by using the displacement velocity of a scalar that tracks the location of maximum heat release. The evolution of the front velocity is compared for different initial temperature distributions and the role of scalar dissipation of heat and mass is identified. It is observed that both deagrative as well as spontaneous ignition front propagation occur depending upon the local temperature gradient. It is found that the ratio of the instantaneous front speed to the deflagrative speed is a good measure of the local mode of propagation. This is verified by examining the energy and species balances. A parametric study in the amplitudes of the initial temperature fluctuation is performed and shows that this parameter has a significant influence on the observed combustion mode. Higher levels of stratification lead to more front-like structures. Predictions of the multi-zone model are presented and explained using the diagnostics developed.

  5. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  6. An Abstract Plan Preparation Language

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2006-01-01

    This paper presents a new planning language that is more abstract than most existing planning languages such as the Planning Domain Definition Language (PDDL) or the New Domain Description Language (NDDL). The goal of this language is to simplify the formal analysis and specification of planning problems that are intended for safety-critical applications such as power management or automated rendezvous in future manned spacecraft. The new language has been named the Abstract Plan Preparation Language (APPL). A translator from APPL to NDDL has been developed in support of the Spacecraft Autonomy for Vehicles and Habitats Project (SAVH) sponsored by the Explorations Technology Development Program, which is seeking to mature autonomy technology for application to the new Crew Exploration Vehicle (CEV) that will replace the Space Shuttle.

  7. Concrete and abstract Voronoi diagrams

    SciTech Connect

    Klein, R. )

    1989-01-01

    The Voronoi diagram of a set of sites is a partition of the plane into regions, one to each site, such that the region of each site contains all points of the plane that are closer to this site than to the other ones. Such partitions are of great importance to computer science and many other fields. The challenge is to compute Voronoi diagrams quickly. The problem is that their structure depends on the notion of distance and the sort of site. In this book the author proposes a unifying approach by introducing abstract Voronoi diagrams. These are based on the concept of bisecting curves which are required to have some simple properties that are actually possessed by most bisectors of concrete Voronoi diagrams. Abstract Voronoi diagrams can be computed efficiently and there exists a worst-case efficient algorithm of divide-and-conquer type that applies to all abstract Voronoi diagrams satisfying a certain constraint. The author shows that this constraint is fulfilled by the concrete diagrams based no large classes of metrics in the plane.

  8. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  9. Youth Studies Abstracts. Vol. 4 No. 3.

    ERIC Educational Resources Information Center

    Youth Studies Abstracts, 1985

    1985-01-01

    This volume contains 169 abstracts of documents dealing with youth and educational programs for youth. Included in the volume are 97 abstracts of documents dealing with social and educational developments; 56 abstracts of program reports, reviews, and evaluations; and 16 abstracts of program materials. Abstracts are grouped according to the…

  10. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  11. Evaluation and Application of Alternative Air Pollution Exposure Metrics in Air Pollution Epidemiology Studies

    EPA Science Inventory

    ABSTRACT: Periodic review, revision and subsequent implementation of the National Ambient Air Quality Standards for criteria air pollutants rely upon various types of scientific air quality, exposure, toxicological dose-response and epidemiological information. Exposure assessmen...

  12. Mean absorption coefficient of H2O-air-MgCl2/CaCl2/NaCl thermal plasmas

    NASA Astrophysics Data System (ADS)

    Hannachi, R.; Cressault, Y.; Salem, D.; Teulet, Ph; Béji, L.; Ben Lakhdar, Z.

    2012-12-01

    Under the local thermodynamic equilibrium hypothesis, the mean absorption coefficients (MACs) were calculated for H2O-air-MgCl2/CaCl2/NaCl thermal plasmas in a temperature range from 300 to 30 000 K and at atmospheric pressure. The MACs were computed under the hypothesis of isothermal plasmas which allows a good description of the radiation absorbed in cold regions. In this study, we took into account the absorption radiation resulting from the atomic continuum, molecular continuum, atomic lines and some molecular bands. Free-free transitions (bremsstrahlung) and free-bound (electron-ion recombination and electron attachment) or bound-free transitions in terms of absorption were considered for the calculation of atomic continuum. For bound-bound transitions, natural, resonance, van der Waals, Stark and Doppler effects were taken into account for the line broadenings while the escape factors were used to treat the self-absorption of the resonance lines. Molecular continuum was considered for the main molecules (H2, O2, N2, OH, NO, H2O, N2O, NO2, O3, NO3 and N2O5) whereas we studied only diatomic systems O2, N2, NO and N_2^+ for the absorption of molecular bands. The influence of the proportion of MgCl2, CaCl2 or NaCl in a water-air mixture was analysed as the effect of the strong self-absorbed resonance lines of the alkaline salts (Ca, Ca+, Na, Na+, Mg, Mg+, Cl and Cl+). Our results show that a low concentration of alkaline salts (less than 1% in molar proportions) in the plasma increased the MACs at low temperatures (T < 10 000 K) due to the resonance lines mainly localized in the near-UV and visible spectral regions in opposition to hydrogen, oxygen or nitrogen species for which 90% of them exist in ultraviolet. In addition to the atomic and molecular continuum, the absorption radiation of molecular bands is important at low temperatures.

  13. Operating System Abstraction Layer (OSAL)

    NASA Technical Reports Server (NTRS)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  14. IEEE conference record--Abstracts

    SciTech Connect

    Not Available

    1992-01-01

    The following topics were covered in this meeting: basic plasma phenomena and plasma waves; plasma diagnostics; space plasma diagnostics; magnetic fusion; electron, ion and plasma sources; intense electron and ion beams; intense beam microwaves; fast wave M/W devices; microwave plasma interactions; plasma focus; ultrafast Z-pinches; plasma processing; electrical gas discharges; fast opening switches; magnetohydrodynamics; electromagnetic and electrothermal launchers; x-ray lasers; computational plasma science; solid state plasmas and switches; environmental/energy issues in plasma science; vacuum electronics; plasmas for lighting; gaseous electronics; and ball lightning and other spherical plasmas. Separate abstracts were prepared for 278 papers of this conference.

  15. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  16. Generation Of Atmospheric Pressure Non-Thermal Plasma By Diffusive And Constricted Discharges In Rest And Flowing Gases (Air And Nitrogen)

    NASA Astrophysics Data System (ADS)

    Akishev, Y.; Grushin, M.; Karalnik, V.; Kochetov, I.; Napartovich A.; Trushkin N.

    2010-07-01

    Weekly ionized non-thermal plasma (NTP) is of great interest for many applications because of its strong non-equilibrium state wherein an average electron energy Te exceeds markedly gas temperature Tg, i.e. electrons in the NTP are strongly overheated compared to neutral gas. Energetic electrons due to frequent collisions with the neutrals excite and dissociate effectively atoms and molecules of the plasma-forming gas that results in a creation of physically-, and bio-chemically active gaseous medium in a practically cold background gas. At present there are many kinds of plasma sources working at low and atmospheric pressure and using MW, RF, low frequency, pulsed and DC power supplies for NTP generation. The NTP at atmospheric pressure is of considerable interest for practice. A reason is that sustaining the NTP at atmospheric pressure at first allows us to avoid the use of expensive vacuum equipment and second gives opportunity to use the NTP for treatment of the exhausted gases and polluted liquids. The second opportunity cannot be realized at all with use of the NTP at low pressure. Main subject of this talk is low current atmospheric pressure gas discharges powering with DC power supplies. Plasma forming gases are air and nitrogen which are much cheaper compared to rare gases like He or Ar. Besides, great interest to molecular nitrogen as plasma forming gas is caused first of all its unique capability to accumulate huge energy in vibration, electron (metastables) and dissociated (atomic) states providing high chemical reactivity of the activated nitrogen. All active particles mentioned above have a long lifetime, and they can be therefore transported for a long distance away from place of their generation. Different current modes (diffusive and constricted) of these discharges are discussed. Experimental and numerical results on generation of chemically active species in the diffusive and constricted mode are presented. Some data on the usage of the

  17. Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Connord, V.; Hingana, H.; Teulet, Ph; Gleizes, A.

    2011-12-01

    This paper is devoted to the calculation of equilibrium compositions, thermodynamic properties (mass density, enthalpy and specific heat at constant pressure) and transport coefficients (viscosity, electrical conductivity and thermal conductivity) of air/CO2/N2-CF3I mixtures. These data are computed in the temperature range 300 K-50 kK and pressure between 1 and 32 bar. Results obtained for pure gases (CF3I, CO2, air and N2) are systematically compared with SF6. Transport coefficients for N2, CO2, CF3I and mixtures of CO2, N2 or air with CF3I are also confronted with previous published values. Particular attention is paid to the collision integral database by the use of the most accurate and recent cross-sections or interaction potentials available in the literature.

  18. Abstract Expression Grammar Symbolic Regression

    NASA Astrophysics Data System (ADS)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  19. Toward Millimagnitude Photometric Calibration (Abstract)

    NASA Astrophysics Data System (ADS)

    Dose, E.

    2014-12-01

    (Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.

  20. Experience with abstract notation one

    NASA Technical Reports Server (NTRS)

    Harvey, James D.; Weaver, Alfred C.

    1990-01-01

    The development of computer science has produced a vast number of machine architectures, programming languages, and compiler technologies. The cross product of these three characteristics defines the spectrum of previous and present data representation methodologies. With regard to computer networks, the uniqueness of these methodologies presents an obstacle when disparate host environments are to be interconnected. Interoperability within a heterogeneous network relies upon the establishment of data representation commonality. The International Standards Organization (ISO) is currently developing the abstract syntax notation one standard (ASN.1) and the basic encoding rules standard (BER) that collectively address this problem. When used within the presentation layer of the open systems interconnection reference model, these two standards provide the data representation commonality required to facilitate interoperability. The details of a compiler that was built to automate the use of ASN.1 and BER are described. From this experience, insights into both standards are given and potential problems relating to this development effort are discussed.

  1. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  2. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  3. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  4. Extended abstracts: Ninth battery and electrochemical contractors' conference

    SciTech Connect

    Not Available

    1989-11-01

    This document contains the extended abstracts for presentations scheduled for the Ninth Battery and Electrochemical Contractors' Conference, highlighting research supporting by the US Department of Energy and the Electric Power Research Institute. It is intended to be a technical overview for engineers and scientists in government, industry, and academia who are interested in learning more about electrochemical energy storage. The abstracts are grouped according to the following technical sessions: Introductory Session; Sodium/Sulfur Battery Development; Planning, Analysis, and Technology Transfer; Fuel Cells; Zinc/Bromine Battery Development; Aqueous Battery Development; Non-Aqueous Batteries; Battery Testing and Evaluation; and Metal/Air Batteries.

  5. Thermal insulator

    SciTech Connect

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  6. The stability and generation pattern of thermally formed isocyanic acid (ICA) in air - potential and limitations of proton transfer reaction-mass spectrometry (PTR-MS) for real-time workroom atmosphere measurements.

    PubMed

    Jankowski, Mikolaj Jan; Olsen, Raymond; Thomassen, Yngvar; Molander, Paal

    2016-07-13

    Isocyanic acid (ICA) in vapour phase has been reported to be of unstable nature, making the occupational hygienic relevance of ICA questionable. The stability of pure ICA in clean air at different humidity conditions was investigated by Fourier transform-infrared spectrometric (FT-IR) measurements. Furthermore, the stability of ICA in a complex atmosphere representative thermal degradation hot-work procedures were examined by performing parallel measurements by proton transfer reaction-mass spectrometric (PTR-MS) instrumentation and off-line denuder air sampling using di-n-butylamine (as a derivatization agent prior to liquid chromatography mass spectrometric (LC-MS) determination). The apparent half-life of ICA in pure ICA atmospheres was 16 to 4 hours at absolute humidity (AH) in the range 4.2 to 14.6 g m(-3), respectively. In a complex atmosphere at an initial AH of 9.6 g m(-3) the apparent half-life of ICA was 8 hours, as measured with the denuder method. Thus, thermally formed ICA is to be considered as a potential occupational hazard with regard to inhalation. The generation pattern of ICA formed during controlled gradient (100-540 °C) thermal decomposition of different polymers in the presence of air was examined by parallel PTR-MS and denuder air sampling. According to measurement by denuder sampling ICA was the dominant aliphatic isocyanate formed during the thermal decomposition of all polymers. The real-time measurements of the decomposed polymers revealed different ICA generation patterns, with initial appearance of thermally released ICA in the temperature range 200-260 °C. The PTR-MS ICA measurements was however affected by mass overlap from other decomposition products at m/z 44, illustrated by a [ICA]Denuder/[ICA]PTR-MS ratio ranging from 0.04 to 0.90. These findings limits the potential use of PTR-MS for real time measurements of thermally released ICA in field, suggesting parallel sampling with short-term sequential off-line methodology. PMID

  7. LDEF: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Gouger, H. Garland (Editor)

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication.

  8. LDEF: A bibliography with abstracts

    NASA Astrophysics Data System (ADS)

    Gouger, H. Garland

    1992-11-01

    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication.

  9. An abstract approach to music.

    SciTech Connect

    Kaper, H. G.; Tipei, S.

    1999-04-19

    In this article we have outlined a formal framework for an abstract approach to music and music composition. The model is formulated in terms of objects that have attributes, obey relationships, and are subject to certain well-defined operations. The motivation for this approach uses traditional terms and concepts of music theory, but the approach itself is formal and uses the language of mathematics. The universal object is an audio wave; partials, sounds, and compositions are special objects, which are placed in a hierarchical order based on time scales. The objects have both static and dynamic attributes. When we realize a composition, we assign values to each of its attributes: a (scalar) value to a static attribute, an envelope and a size to a dynamic attribute. A composition is then a trajectory in the space of aural events, and the complex audio wave is its formal representation. Sounds are fibers in the space of aural events, from which the composer weaves the trajectory of a composition. Each sound object in turn is made up of partials, which are the elementary building blocks of any music composition. The partials evolve on the fastest time scale in the hierarchy of partials, sounds, and compositions. The ideas outlined in this article are being implemented in a digital instrument for additive sound synthesis and in software for music composition. A demonstration of some preliminary results has been submitted by the authors for presentation at the conference.

  10. Ozone Conference II: Abstract Proceedings

    SciTech Connect

    1999-11-01

    Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications. Included in the presentations were topics on: (1) Ozone fumigation; (2) Ozone generation techniques; (3) System and design applications; (4) Prewater treatment requirements; (5) Poultry water reuse; (6) Soil treatments with ozone gas; and (7) Post-harvest aqueous and gaseous ozone research results. A live videoconference between Tulare and Washington, D.C. was held to discuss the regulators' view from inside the beltway. Attendees participated in two Roundtable Question and Answer sessions and visited fifteen exhibits and demonstrations. The attendees included university and governmental researchers, regulators, consultants and industry experts, technology developers and providers, and corporate and individual end-users. This report is comprised of the Abstracts of each presentation, biographical sketches for each speaker and a registration/attendees list.

  11. 1986 annual information meeting. Abstracts

    SciTech Connect

    Not Available

    1986-01-01

    Abstracts are presented for the following papers: Geohydrological Research at the Y-12 Plant (C.S. Haase); Ecological Impacts of Waste Disposal Operations in Bear Creek Valley Near the Y-12 Plant (J.M. Loar); Finite Element Simulation of Subsurface Contaminant Transport: Logistic Difficulties in Handling Large Field Problems (G.T. Yeh); Dynamic Compaction of a Radioactive Waste Burial Trench (B.P. Spalding); Comparative Evaluation of Potential Sites for a High-Level Radioactive Waste Repository (E.D. Smith); Changing Priorities in Environmental Assessment and Environmental Compliance (R.M. Reed); Ecology, Ecotoxicology, and Ecological Risk Assessment (L.W. Barnthouse); Theory and Practice in Uncertainty Analysis from Ten Years of Practice (R.H. Gardner); Modeling Landscape Effects of Forest Decline (V.H. Dale); Soil Nitrogen and the Global Carbon Cycle (W.M. Post); Maximizing Wood Energy Production in Short-Rotation Plantations: Effect of Initial Spacing and Rotation Length (L.L. Wright); and Ecological Communities and Processes in Woodland Streams Exhibit Both Direct and Indirect Effects of Acidification (J.W. Elwood).

  12. Attracting Girls into Physics (abstract)

    NASA Astrophysics Data System (ADS)

    Gadalla, Afaf

    2009-04-01

    A recent international study of women in physics showed that enrollment in physics and science is declining for both males and females and that women are severely underrepresented in careers requiring a strong physics background. The gender gap begins early in the pipeline, from the first grade. Girls are treated differently than boys at home and in society in ways that often hinder their chances for success. They have fewer freedoms, are discouraged from accessing resources or being adventurous, have far less exposure to problem solving, and are not encouraged to choose their lives. In order to motivate more girl students to study physics in the Assiut governorate of Egypt, the Assiut Alliance for the Women and Assiut Education District collaborated in renovating the education of physics in middle and secondary school classrooms. A program that helps in increasing the number of girls in science and physics has been designed in which informal groupings are organized at middle and secondary schools to involve girls in the training and experiences needed to attract and encourage girls to learn physics. During implementation of the program at some schools, girls, because they had not been trained in problem-solving as boys, appeared not to be as facile in abstracting the ideas of physics, and that was the primary reason for girls dropping out of science and physics. This could be overcome by holding a topical physics and technology summer school under the supervision of the Assiut Alliance for the Women.

  13. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  14. MHD Contractors' Review Meeting: Abstracts

    NASA Astrophysics Data System (ADS)

    The objectives of the Integrated Topping Cycle project are to design, construct, and deliver all prototypical hardware necessary to conduct long duration integrated MHD topping cycle proof-of-concept tests at the Component Development and Integration Facility (CDIF) in Butte, Montana. The results of the long duration tests will augment the existing engineering data base on MHD power train reliability, maintainability, durability, and performance, and will serve as a basis for scaling up to the early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include the following three systems: (1) a slagging coal combustion subsystem with a rated capacity of 50 MW thermal input, capable of operation with eastern (Illinois) or western (Montana Rosebud) coal; (2) a channel subsystem consisting of a segmented supersonic nozzle, channel (with current controls), and diffuser, capable of power output of 1.5 MW(sub e); and (3) a current consolidation subsystem to interface the channel with the existing facility inverter.

  15. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  16. Annotating user-defined abstractions for optimization

    SciTech Connect

    Quinlan, D; Schordan, M; Vuduc, R; Yi, Q

    2005-12-05

    This paper discusses the features of an annotation language that we believe to be essential for optimizing user-defined abstractions. These features should capture semantics of function, data, and object-oriented abstractions, express abstraction equivalence (e.g., a class represents an array abstraction), and permit extension of traditional compiler optimizations to user-defined abstractions. Our future work will include developing a comprehensive annotation language for describing the semantics of general object-oriented abstractions, as well as automatically verifying and inferring the annotated semantics.

  17. OIL POLLUTION ABSTRACTS. VOLUME 6, NUMBER 1

    EPA Science Inventory

    Oil Pollution Abstracts (formerly entitled Oil Pollution Reports) is a quarterly compilation of abstracts of current oil pollution related literature and research projects. Comprehensive coverage of oil pollution and its prevention and control is provided, with emphasis on the aq...

  18. An algorithm for generating abstract syntax trees

    NASA Technical Reports Server (NTRS)

    Noonan, R. E.

    1985-01-01

    The notion of an abstract syntax is discussed. An algorithm is presented for automatically deriving an abstract syntax directly from a BNF grammar. The implementation of this algorithm and its application to the grammar for Modula are discussed.

  19. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  20. 2013 SYR Accepted Poster Abstracts.

    PubMed

    2013-01-01

    SYR 2013 Accepted Poster abstracts: 1. Benefits of Yoga as a Wellness Practice in a Veterans Affairs (VA) Health Care Setting: If You Build It, Will They Come? 2. Yoga-based Psychotherapy Group With Urban Youth Exposed to Trauma. 3. Embodied Health: The Effects of a Mind�Body Course for Medical Students. 4. Interoceptive Awareness and Vegetable Intake After a Yoga and Stress Management Intervention. 5. Yoga Reduces Performance Anxiety in Adolescent Musicians. 6. Designing and Implementing a Therapeutic Yoga Program for Older Women With Knee Osteoarthritis. 7. Yoga and Life Skills Eating Disorder Prevention Among 5th Grade Females: A Controlled Trial. 8. A Randomized, Controlled Trial Comparing the Impact of Yoga and Physical Education on the Emotional and Behavioral Functioning of Middle School Children. 9. Feasibility of a Multisite, Community based Randomized Study of Yoga and Wellness Education for Women With Breast Cancer Undergoing Chemotherapy. 10. A Delphi Study for the Development of Protocol Guidelines for Yoga Interventions in Mental Health. 11. Impact Investigation of Breathwalk Daily Practice: Canada�India Collaborative Study. 12. Yoga Improves Distress, Fatigue, and Insomnia in Older Veteran Cancer Survivors: Results of a Pilot Study. 13. Assessment of Kundalini Mantra and Meditation as an Adjunctive Treatment With Mental Health Consumers. 14. Kundalini Yoga Therapy Versus Cognitive Behavior Therapy for Generalized Anxiety Disorder and Co-Occurring Mood Disorder. 15. Baseline Differences in Women Versus Men Initiating Yoga Programs to Aid Smoking Cessation: Quitting in Balance Versus QuitStrong. 16. Pranayam Practice: Impact on Focus and Everyday Life of Work and Relationships. 17. Participation in a Tailored Yoga Program is Associated With Improved Physical Health in Persons With Arthritis. 18. Effects of Yoga on Blood Pressure: Systematic Review and Meta-analysis. 19. A Quasi-experimental Trial of a Yoga based Intervention to Reduce Stress and

  1. At the HeART of Abstraction

    ERIC Educational Resources Information Center

    Berdit, Nancy

    2006-01-01

    Abstraction has long been a concept difficult to define for students. Students often feel the pressure of making their artwork "look real" and frustration can often lead to burnout in the classroom. In this article, the author describes how her lesson on abstraction has alleviated much of that pressure as students created an abstract acrylic…

  2. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  3. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  4. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  5. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  6. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  7. Writing a Structured Abstract for the Thesis

    ERIC Educational Resources Information Center

    Hartley, James

    2010-01-01

    This article presents the author's suggestions on how to improve thesis abstracts. The author describes two books on writing abstracts: (1) "Creating Effective Conference Abstracts and Posters in Biomedicine: 500 tips for Success" (Fraser, Fuller & Hutber, 2009), a compendium of clear advice--a must book to have in one's hand as one prepares a…

  8. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins. PMID:7834229

  9. Comparison of the Failures during Cyclic Oxidation of Yttria-Stabilized (7 to 8 Weight Percent) Zirconia Thermal Barrier Coatings Fabricated via Electron Beam Physical Vapor Deposition and Air Plasma Spray

    NASA Astrophysics Data System (ADS)

    Yanar, N. M.; Helminiak, M.; Meier, G. H.; Pettit, F. S.

    2011-04-01

    The failures during oxidation of electron beam physical vapor deposition (EBPVD) and air plasma spray (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) on different bond coats, namely, platinum-modified aluminide and NiCoCrAlY, are described. It is shown that oxidation of the bond coats, along with defects existing near the TBC/bond coat interface, plays a very important role in TBC failures. Procedures to improve TBC performance via modifying the oxidation characteristics of the bond coats and removing the as-processed defects are discussed. The influence of exposure conditions on TBC lives is described and factors such as cycle frequency and thermal gradients are discussed.

  10. Research & writing basics: elements of the abstract.

    PubMed

    Krasner, D; Van Rijswijk, L

    1995-04-01

    Writing an abstract is a challenging skill that requires precision and care. Criteria for well-formulated abstracts and abstract guidelines for 2 types of articles (empirical studies and reviews or theoretical articles) as well as a description of the content of a structured abstract are presented. Details were gleaned from a review of the literature including the American Medical Association Manual of Style, Eighth Edition and the Publication Manual of the American Psychological Association, Fourth Edition. A good abstract is like a crystal: it is a clear, sharp synthesis that elucidates meaning for the reader. PMID:7546111

  11. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  12. Improving Hiroshima Air-Over-Ground Thermal/Epithermal Activation Calculations Using a MUSH Model to Show the Importance of Local Shielding

    SciTech Connect

    Pace, J.V.

    2002-02-14

    Achieving agreement between measured and calculated neutron activation data resulting from Hiroshima and Nagasaki A-bomb detonations has been a major problem since the early 1980's. This has been particularly true for the materials that are activated by thermal and epithermal neutrons. Since thermal and epithermal neutrons are not transported very far from the weapon, the local shielding environment around the measurement location can be very important. A set of calculations incorporating an average density local-environment material (mush) has been made to demonstrate that the local environment plays an important role in the calculation-measurement agreement process. The optimum solution would be to include the local environment in all thermal neutron response calculations.

  13. Effects of sintering and mixed oxide growth on the interface cracking of air-plasma-sprayed thermal barrier coating system at high temperature

    NASA Astrophysics Data System (ADS)

    Lv, Bowen; Xie, Hua; Xu, Rong; Fan, Xueling; Zhang, Weixu; Wang, T. J.

    2016-01-01

    Sintering and mixed oxide (MO) growth significantly affect the thermal and mechanical properties of thermal barrier coating system (TBCs) in gas turbine at high temperature. In this work, we numerically analyzed the effects of sintering and MO growth on the interface cracking of TBCs. A thermal-elasto-viscoplastic constitutive model was introduced, in which the effect of sintering was studied using a spherical shell model. Based on the same spherical shell model and our previous experimental observations, we theoretically derived the evolution of relative density and applied this constitutive model to the sintering of ceramic coating. The numerical results showed that viscosity, initial porosity of ceramic and the growth rate of MO had significant effects on interface cracking. In contrast, the influence of initial pore size of ceramic coating was neglectable. Suggestions were also made for the choice of material during TBCs design.

  14. Dynamic thermal environment and thermal comfort.

    PubMed

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. PMID:26171688

  15. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Analysis of complex networks using aggressive abstraction.

    SciTech Connect

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving - we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  18. Prefrontal cortex organization: dissociating effects of temporal abstraction, relational abstraction, and integration with FMRI.

    PubMed

    Nee, Derek Evan; Jahn, Andrew; Brown, Joshua W

    2014-09-01

    The functions of the prefrontal cortex (PFC) underlie higher-level cognition. Varying proposals suggest that the PFC is organized along a rostral-caudal gradient of abstraction with more abstract representations/processes associated with more rostral areas. However, the operational definition of abstraction is unclear. Here, we contrasted 2 prominent theories of abstraction--temporal and relational--using fMRI. We further examined whether integrating abstract rules--a function common to each theory--recruited the PFC independently of other abstraction effects. While robust effects of relational abstraction were present in the PFC, temporal abstraction effects were absent. Instead, we found activations specific to the integration of relational rules in areas previously shown to be associated with temporal abstraction. We suggest that previous effects of temporal abstraction were due to confounds with integration demands. We propose an integration framework to understand the functions of the PFC that resolves discrepancies in prior data. PMID:23563962

  19. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDY

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hr onto the graphitic adsorbent Carbopack X packed in a stainless steel tube badge (6.3 mm o.d., 5 mm i.d., and 90 mm in length) with analysis by thermal desorption/gas chromatography (GC)/mass spectrometry (MS) has been evaluated in con...

  20. Thermal Clothing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.

  1. Thermal comfort following immersion.

    PubMed

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles. PMID:25485520

  2. Developing Creativity and Abstraction in Representing Data

    ERIC Educational Resources Information Center

    South, Andy

    2012-01-01

    Creating charts and graphs is all about visual abstraction: the process of representing aspects of data with imagery that can be interpreted by the reader. Children may need help making the link between the "real" and the image. This abstraction can be achieved using symbols, size, colour and position. Where the representation is close to what…

  3. Content Differences for Abstract and Concrete Concepts

    ERIC Educational Resources Information Center

    Wiemer-Hastings, Katja Katja; Xu, Xu

    2005-01-01

    Concept properties are an integral part of theories of conceptual representation and processing. To date, little is known about conceptual properties of abstract concepts, such as idea. This experiment systematically compared the content of 18 abstract and 18 concrete concepts, using a feature generation task. Thirty-one participants listed…

  4. Annual Abstract Series of Educational Material.

    ERIC Educational Resources Information Center

    Shelesnyak, M. C., Ed.

    1980-01-01

    This is the fifth annual collection of abstracts of educational materials presented by the Educational Materials Review Board of the American Physiological Society under the direction of the Education Committee. The collection includes abstracts of articles, papers, textbooks, books, handbooks, and symposia which are valuable in teaching…

  5. Abstracting in the Context of Spontaneous Learning

    ERIC Educational Resources Information Center

    Williams, Gaye

    2007-01-01

    There is evidence that spontaneous learning leads to relational understanding and high positive affect. To study spontaneous abstracting, a model was constructed by combining the RBC model of abstraction with Krutetskii's mental activities. Using video-stimulated interviews, the model was then used to analyze the behavior of two Year 8 students…

  6. National Workplace Literacy Program. 1993 Abstracts.

    ERIC Educational Resources Information Center

    Office of Vocational and Adult Education (ED), Washington, DC. National Workplace Literacy Program.

    This publication presents the abstracts of the 57 National Workplace Literacy Program 1993 projects. Each abstract provides the following information: project title; award number; project director; awardee; address; telephone and fax numbers; funds by fiscal year (federal and nonfederal); award period; federal project officer; objectives;…

  7. A Hybrid Method for Abstracting Newspaper Articles.

    ERIC Educational Resources Information Center

    Liu, James; Wu, Yan; Zhou, Lina

    1999-01-01

    Introduces a hybrid method for abstracting Chinese text that integrates the statistical approach with language understandings, incorporating some linguistics heuristics and segmentation into the abstracting process. Initial responses from application to Chinese newspaper articles show that the method contributes much to the flexibility and…

  8. Abstractions of Awareness: Aware of What?

    NASA Astrophysics Data System (ADS)

    Metaxas, Georgios; Markopoulos, Panos

    This chapter presents FN-AAR, an abstract model of awareness systems. The purpose of the model is to capture in a concise and abstract form essential aspects of awareness systems, many of which have been discussed in design essays or in the context of evaluating specific design solutions.

  9. Foundations of the Bandera Abstraction Tools

    NASA Technical Reports Server (NTRS)

    Hatcliff, John; Dwyer, Matthew B.; Pasareanu, Corina S.; Robby

    2003-01-01

    Current research is demonstrating that model-checking and other forms of automated finite-state verification can be effective for checking properties of software systems. Due to the exponential costs associated with model-checking, multiple forms of abstraction are often necessary to obtain system models that are tractable for automated checking. The Bandera Tool Set provides multiple forms of automated support for compiling concurrent Java software systems to models that can be supplied to several different model-checking tools. In this paper, we describe the foundations of Bandera's data abstraction mechanism which is used to reduce the cardinality (and the program's state-space) of data domains in software to be model-checked. From a technical standpoint, the form of data abstraction used in Bandera is simple, and it is based on classical presentations of abstract interpretation. We describe the mechanisms that Bandera provides for declaring abstractions, for attaching abstractions to programs, and for generating abstracted programs and properties. The contributions of this work are the design and implementation of various forms of tool support required for effective application of data abstraction to software components written in a programming language like Java which has a rich set of linguistic features.

  10. New Features in the ADS Abstract Service

    NASA Technical Reports Server (NTRS)

    Eichhorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Kurtz, Michael J.; Henneken, Edwin A.; Thompson, Donna M.; Murray, Stephen S.

    2005-01-01

    The NASA-ADS Abstract Service provides a sophisticated search capability for the literature in Astronomy, Planetary Sciences, Physics/Geophysics, and Space Instrumentation. The ADS is funded by NASA and access to the ADS services is free to anybody world-wide without restrictions. It allows the user to search the literature by author, title, and abstract text.

  11. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  12. Tour the Galaxy of the Abstract.

    ERIC Educational Resources Information Center

    Kennedy, Patricia

    2003-01-01

    Describes an abstract art unit in which students in an introductory art course created abstract art inspired by the work of M. C. Escher. Explains that some students are unsure of their drawing ability. States this unit helps them overcome their fears. (CMK)

  13. Some Call It Stone: Teaching Abstract Sculpture

    ERIC Educational Resources Information Center

    Asher, Rikki

    2004-01-01

    Abstract visual art is not for everybody. Some people find it threatening, uncomfortable, and often, inaccessible. Understandably, this can result in a lack of attention paid to nonrepresentational works of art in the visual arts curriculum. This article describes an experiential, hands-on, field trip that sought to demystify abstract sculpture,…

  14. Romanian Scientific Abstracts, Volume 10 Number 3.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main numerical sequence. The December issue includes a subject index for the material included throughout the year. It also indicates, in an appended table, the numerical symbol of…

  15. Romanian Scientific Abstracts, Volume 10 Number 1.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  16. Romanian Scientific Abstracts, Volume 10 Number 6.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  17. Romanian Scientific Abstracts, Volume 10 Number 4.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numeric sequence. The December issue includes a subject index for the material included…

  18. Romanian Scientific Abstracts, Volume 10 Number 5.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numeric sequence. The December issue includes a subject index for the material included…

  19. Romanian Scientific Abstracts, Volume 9 Number 11.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  20. Romanian Scientific Abstracts, Volume 9 Number 12.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. T8e entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  1. Romanian Scientific Abstracts, Volume 10 Number 2.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. T entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  2. Youth Studies Abstracts. Vol. 4 No. 1.

    ERIC Educational Resources Information Center

    Youth Studies Abstracts, 1985

    1985-01-01

    This volume contains abstracts of 76 projects (most of which were conducted in Australia and New Zealand) concerned with programs for youth and with social and educational developments affecting youth. The abstracts are arranged in the following two categories: (1) Social and Educational Developments: Policy, Analysis, Research; and (2) Programs:…

  3. Interactional Metadiscourse in Research Article Abstracts

    ERIC Educational Resources Information Center

    Gillaerts, Paul; Van de Velde, Freek

    2010-01-01

    This paper deals with interpersonality in research article abstracts analysed in terms of interactional metadiscourse. The evolution in the distribution of three prominent interactional markers comprised in Hyland's (2005a) model, viz. hedges, boosters and attitude markers, is investigated in three decades of abstract writing in the field of…

  4. Writing Abstracts for Free-Text Searching.

    ERIC Educational Resources Information Center

    Fidel, Raya

    1986-01-01

    This study surveyed abstracting policies and guidelines used by producers of bibliographic databases that aim to enhance free-text retrieval. Results indicate editors consider content of abstracts and their language as primary factors in retrieval enhancement. Most recommend that concepts and form be coordinated with controlled vocabulary…

  5. A Microfilm Index to "Chemical Abstracts"

    ERIC Educational Resources Information Center

    Robinson, F.

    1973-01-01

    To improve access to the recent Chemical Abstracts,'' a cumulative quarterly index, based on the keyword phrases, has been produced in microfilm form. The index is available soon after the end of each quarter. Abstract titles are included in the index, thus increasing its value as a working tool. (4 references) (Author/SJ)

  6. Clad Degradation- Summary and Abstraction for LA

    SciTech Connect

    D. Stahl

    2004-10-01

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO{sub 2}, which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO{sub 2}. The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes

  7. Abstracted publications related to the Hanford environment, 1980 to 1988

    SciTech Connect

    Becker, C.D.; Gray, R.H.

    1989-05-01

    This abstracted bibliography provides a reference to the diverse environmental activities conducted on the Hanford Site from 1980 through 1988. It includes 500 reports and articles that were prepared largely by onsite contractors and the Department of Energy. Documents contained here were separated into eight subject areas: air and atmosphere, aquatic ecology, effluents and wastes, geology and hydrology, Hanford Site, radioactivity, terrestrial ecology, and socioeconomics. These areas form the basis of a key word index, which is intended to help the reader locate subjects of interest. An author index is also included.

  8. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  9. Experimental investigation on a decentralized air handling terminal: procedure of aeraulic and thermal performance determination of the entire unit in several operating conditions

    NASA Astrophysics Data System (ADS)

    Gendebien, S.; Prieels, L.; Lemort, V.

    2012-11-01

    A new local ventilation device is actually developed in such a way to procure ventilation "on demand" in each room, with a maximal effectiveness. It consists in a wall or window frame mounted plane-parallel box, containing two (injection and extraction) fans, an electronic control, and a heat recovery exchanger. The present paper describes the experimental investigations carried out on some single components and on the entire unit in order to characterize the aeraulic and thermal performance of the device.

  10. An engineering approach to controlling indoor air quality.

    PubMed Central

    Woods, J E

    1991-01-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821369

  11. Abstract spatial reasoning as an autistic strength.

    PubMed

    Stevenson, Jennifer L; Gernsbacher, Morton Ann

    2013-01-01

    Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven's Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level--concrete vs. abstract--and test domain--spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength. PMID:23533615

  12. Cooling of Gas Turbines I - Effects of Addition of Fins to Blade Tips and Rotor, Admission of Cooling Air Through Part of Nozzles, and Change in Thermal Conductivity of Turbine Components

    NASA Technical Reports Server (NTRS)

    Brown, Byron

    1947-01-01

    An analysis was developed for calculating the radial temperature distribution in a gas turbine with only the temperatures of the gas and the cooling air and the surface heat-transfer coefficient known. This analysis was applied to determine the temperatures of a complete wheel of a conventional single-stage impulse exhaust-gas turbine. The temperatures were first calculated for the case of the turbine operating at design conditions of speed, gas flow, etc. and with only the customary cooling arising from exposure of the outer blade flange and one face of the rotor to the air. Calculations were next made for the case of fins applied to the outer blade flange and the rotor. Finally the effects of using part of the nozzles (from 0 to 40 percent) for supplying cooling air and the effects of varying the metal thermal conductivity from 12 to 260 Btu per hour per foot per degree Farenheit on the wheel temperatures were determined. The gas temperatures at the nozzle box used in the calculations ranged from 1600F to 2000F. The results showed that if more than a few hundred degrees of cooling of turbine blades are required other means than indirect cooling with fins on the rotor and outer blade flange would be necessary. The amount of cooling indicated for the type of finning used could produce some improvement in efficiency and a large increase in durability of the wheel. The results also showed that if a large difference is to exist between the effective temperature of the exhaust gas and that of the blade material, as must be the case with present turbine materials and the high exhaust-gas temperatures desired (2000F and above), two alternatives are suggested: (a) If metal with a thermal conductivity comparable with copper is used, then the blade temperature can be reduced by strong cooling at both the blade tip and root. The center of the blade will be less than 2000F hotter than the ends; (b) With low conductivity materials some method of direct cooling other than

  13. Writing, reviewing, and presenting an abstract.

    PubMed

    Strauss, R G

    1991-01-01

    Abstracts afford an opportunity to report data at professional meetings and, when published, in the literature. Accordingly, they should be prepared with great care. When writing an abstract, anticipate questions the reviewer will ask when judging it and provide complete answers. The presentation of an abstract should follow similar thought processes. State why a problem or question is important, how you addressed it, what you found, and how your findings can be applied to the issue at hand. Slides and text should provide coordinated visual and auditory input, respectively, to ensure complete comprehension. PMID:1816248

  14. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  15. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  16. Pulmonary toxicology of respirable particles. [Lead abstract

    SciTech Connect

    Sanders, C.L.; Cross, F.T.; Dagle, G.E.; Mahaffey, J.A.

    1980-09-01

    Separate abstracts were prepared for the 44 papers presented in these proceedings. The last paper (Stannard) in the proceedings is an historical review of the field of inhalation toxicology and is not included in the analytics. (DS)

  17. OIL POLLUTION ABSTRACTS. VOLUME 6, NUMBER 2

    EPA Science Inventory

    Oil Pollution Abstracts (formerly entitled Oil Pollution Reports) is a quarterly compilation of current literature and research project summaries. Comprehensive coverage of oil pollution and its prevention and control is provided, with emphasis on the aquatic environment. This is...

  18. Program Aims at Improving Abstract Reasoning

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1977

    1977-01-01

    Describes a program being conducted within the chemistry department of Xavier University, New Orleans, Louisiana, to improve the abstract reasoning abilities of freshmen science majors. The project is based upon the philosophy developed by Jean Piaget. (SL)

  19. Introducing Abstraction to Junior High Students.

    ERIC Educational Resources Information Center

    Costanzo, Nancy

    1981-01-01

    Suggests a way to introduce abstract art to junior high school students who, more than students of any other age, emphasize realism both in their artwork and in their appreciation of works of art. (Author/SJL)

  20. Masking failures of multidimensional sensors (extended abstract)

    NASA Technical Reports Server (NTRS)

    Chew, Paul; Marzullo, Keith

    1990-01-01

    When a computer monitors a physical process, the computer uses sensors to determine the values of the physical variables that represent the state of the process. A sensor can sometimes fail, however, and in the worst case report a value completely unrelated to the true physical value. The work described is motivated by a methodology for transforming a process control program that can not tolerate sensor failure into one that can. In this methodology, a reliable abstract sensor is created by combining information from several real sensors that measure the same physical value. To be useful, an abstract sensor must deliver reasonably accurate information at reasonable computational cost. Sensors are considered that deliver multidimensional values (e.g., location or velocity in three dimensions, or both temperature and pressure). Geometric techniques are used to derive upper bounds on abstract sensor accuracy and to develop efficient algorithms for implementing abstract sensors.

  1. Earth Sciences Division collected abstracts: 1980

    SciTech Connect

    Henry, A.L.; Hornady, B.F.

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  2. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  3. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  4. Air tightness of buildings in Finland

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo T.

    2001-03-01

    There are no requirements of building air tightness in Finland. Buildings always have thermal bridges and air leak routes, whose impact in decreasing comfort depends on the structures and the way of constructing. Uncontrolled air leaks are cooling the structures and causing draft and, in the long run, defects. These air leaks and thermal bridges can be found only by thermal scanning. In Finland building air tightness has been measured for over 20 years. The procedure includes two stages, in which the target is scanned by a thermal imager. The paper is based on the results of over 200 tests of one-family and detached houses. The air tightness level has improved, but there are still problems in the structural details. The monitoring procedure for therm scanning of buildings should be further developed (there is no generally accepted practice at the moment), as well as air tightness requirements should be created.

  5. Development and validation by accuracy profile of a method for the analysis of monoterpenes in indoor air by active sampling and thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Marlet, Christelle; Lognay, Georges

    2010-09-15

    The technique of thermal desorption (TD)-GC/MS was evaluated for the measurement of monoterpenes in indoor air. The validation strategy was intentionally oriented towards routine use and the reliability of the method rather than extreme performance. For this reason, validation by accuracy profile was chosen. The accuracy profile procedure, which is based on the concept of total error (bias+standard deviation), guarantees that a known proportion of future results obtained with the method will be within acceptance limits. For all the compounds tested in the present study, alpha-pinene, alpha-terpineol, beta-pinene, d-limonene, Delta(3)-carene, camphene, 1,8-cineole, p-cymene, linalool, but not in the case of carvone, the accuracy profile procedure established that at least 95% of the future results obtained would be within the +/-15% acceptance limits of the validated method over the whole defined concentration range. Other parameters, such as selectivity, recovery, repeatability, stability of the molecules of interest and the effect of temperature, were also determined. The performance of the described method was finally evaluated by the analysis of indoor air from new timber frame constructions. PMID:20801323

  6. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    SciTech Connect

    Munson, D.E.; Hoag, D.L.; Ball, J.R.

    1995-07-01

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991.

  7. Magnetron sputtered Si-B-C-N films with high oxidation resistance and thermal stability in air at temperatures above 1500 deg. C

    SciTech Connect

    Vlcek, Jaroslav; Hreben, Stanislav; Kalas, Jiri; Capek, Jiri; Zeman, Petr; Cerstvy, Radomir; Perina, Vratislav; Setsuhara, Yuichi

    2008-09-15

    Novel quaternary Si-B-C-N materials are becoming increasingly attractive because of their possible high-temperature and harsh-environment applications. In the present work, amorphous Si-B-C-N films were deposited on Si and SiC substrates by reactive dc magnetron cosputtering using a single C-Si-B or B{sub 4}C-Si target in nitrogen-argon gas mixtures. A fixed 75% Si fraction in the target erosion areas, a rf induced negative substrate bias voltage of -100 V, a substrate temperature of 350 deg. C, and a total pressure of 0.5 Pa were used in the depositions. The corresponding discharge and deposition characteristics (such as the ion-to-film-forming particle flux ratio, ion energy per deposited atom, and deposition rate) are presented to understand complex relationships between process parameters and film characteristics. Films deposited under optimized conditions (B{sub 4}C-Si target, 50% N{sub 2}+50% Ar gas mixture), possessing a composition (in at. %) Si{sub 32-34}B{sub 9-10}C{sub 2-4}N{sub 49-51} with a low (less than 5 at. %) total content of hydrogen and oxygen, exhibited extremely high oxidation resistance in air at elevated temperatures (even above 1500 deg. C). Formation of protective surface layers (mainly composed of Si and O) was proved by high-resolution transmission electron microscopy, Rutherford backscattering spectrometry, and x-ray diffraction measurements after oxidization. Amorphous structure of the Si-B-C-N films was maintained under the oxidized surface layers after annealing in air up to 1700 deg. C (a limit imposed by thermogravimetric analysis in oxidative atmospheres)

  8. Thermal energy storage test facility

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  9. Thermal oxidation of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Glebova, N. V.; Nechitailov, A. A.; Kukushkina, Yu. A.; Sokolov, V. V.

    2011-05-01

    The process of the thermal oxidation of various carbon nanomaterials (multiwalled carbon nanotubes, carbon black, nanoporous carbon and graphite) used in the catalytic layers of electrochemical energy converters (electrolyzers, fuel cells) has been studied. The thermal stability of these materials has been determined. Relationships between the structural characteristics of carbon nanomaterials and the parameters of their thermal oxidation in air have determined using the methods of differential thermal analysis and adsorption-structure analysis.

  10. High performance channel injection sealant invention abstract

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  11. Technology Solutions Case Study: Preventing Thermal Bypass

    SciTech Connect

    none,

    2012-10-01

    This project highlights the importance of continuous air barriers in full alignment with insulation to prevent thermal bypasses and achieve high energy performance, and recommends use of ENERGY STAR's Thermal Bypass Inspection Checklist.

  12. Southern Orthopaedic Association Abstract Publication Rate.

    PubMed

    Tait, Mark Adam; Petrus, Cara; Barnes, C Lowry

    2016-01-01

    The purpose of this study was to determine the publication rate of manuscripts presented at the Southern Orthopaedic Association's (SOA) annual meetings. An extensive literature search was performed using Google Scholar and PubMed search engines and all accepted abstracts (posters or podium presentations) presented at an SOA annual meeting from 2005 to 2011 were evaluated. A total of 568 abstracts were presented at SOA meetings between 2005 and 2011. Of these, 234 (41%) were published in the peer-reviewed literature. The publication rate was 66% in 2005 and 28% in 2010. The average time from presentation to peer-reviewed publication was 1.6 ± 0.24 years (range, 2 years in 2006 to 1 year in 2011). The SOA publication rate was comparable with other major orthopaedic conference publication rates, yet more than half of all abstracts remain unpublished. SOA attendees should be aware that approximately 40% of all accepted presentations will go unpublished. PMID:27518291

  13. Information Leakage Analysis by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Zanioli, Matteo; Cortesi, Agostino

    Protecting the confidentiality of information stored in a computer system or transmitted over a public network is a relevant problem in computer security. The approach of information flow analysis involves performing a static analysis of the program with the aim of proving that there will not be leaks of sensitive information. In this paper we propose a new domain that combines variable dependency analysis, based on propositional formulas, and variables' value analysis, based on polyhedra. The resulting analysis is strictly more accurate than the state of the art abstract interpretation based analyses for information leakage detection. Its modular construction allows to deal with the tradeoff between efficiency and accuracy by tuning the granularity of the abstraction and the complexity of the abstract operators.

  14. Fall Meeting abstract submission inspires science poetry

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-08-01

    When the 4 August deadline for submitting Fall Meeting abstracts passed, AGU had received more than 20,000 abstracts, a record-breaking number. The submission process had an unexpected by-product: It inspired some scientists to write haiku on Twitter. (Haiku is a form of Japanese poetry typically having three lines, the first with five syllables, the second with seven, and the third with five.) The following are examples of the haiku tweets, with the hashtag #AGU11AbstractHaiku. (For those who want to keep updated about the Fall Meeting on Twitter, the hashtag is #AGU11.) For more information about the meeting, including registration and housing, visit http://sites.agu.org/fallmeeting/.

  15. Abstracting and indexing in the medical sciences.

    PubMed

    Welt, I D

    1962-07-01

    Abstracts and indexes constitute the most popular means of assuring adequate retrieval of the many thousands of papers published every year in the ever expanding field of medicine. Different types of abstracts and indexes are available for different purposes and to meet varying user requirements. The problem of "keeping up" with developments in one's own field of endeavour can usually be solved by qualified abstractors. Most indexes serve the purpose of assuring the retrieval of pertinent documents. However, in order to retrieve specific pieces of information which are absolutely indispensible to the medical practitioner or scientist, a new approach is needed. This technique, which is termed the "combined index-abstract" method, has been employed successfully for the handling of a large body of specific items of information in a restricted area of experimental and clinical pharmacology. PMID:21735878

  16. Computing abstraction hierarchies by numerical simulation

    SciTech Connect

    Bundy, A.; Giunchiglia, F.; Sebastiani, R.; Walsh, T.

    1996-12-31

    We present a novel method for building ABSTRIPS-style abstraction hierarchies in planning. The aim of this method is to minimize the amount of backtracking between abstraction levels. Previous approaches have determined the criticality of operator preconditions by reasoning about plans directly. Here, we adopt a simpler and faster approach where we use numerical simulation of the planning process. We demonstrate the theoretical advantages of our approach by identifying some simple properties lacking in previous approaches but possessed by our method. We demonstrate the empirical advantages of our approach by a set of four benchmark experiments using the ABTWEAK system. We compare the quality of the abstraction hierarchies generated with those built by the ALPINE and HIGHPOINT algorithms.

  17. Earth Sciences Division collected abstracts: 1979

    SciTech Connect

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  18. 2011 statistical abstract of the United States

    USGS Publications Warehouse

    Krisanda, Joseph M.

    2011-01-01

    The Statistical Abstract of the United States, published since 1878, is the authoritative and comprehensive summary of statistics on the social, political, and economic organization of the United States.


    Use the Abstract as a convenient volume for statistical reference, and as a guide to sources of more information both in print and on the Web.


    Sources of data include the Census Bureau, Bureau of Labor Statistics, Bureau of Economic Analysis, and many other Federal agencies and private organizations.

  19. Drilling and thermal gradient measurements at US Marine Corps Air Ground Combat Center, Twentynine Palms, California. Final report, October 1, 1983-March 31, 1984

    SciTech Connect

    Trexler, D.T.; Flynn, T.; Ghusn, G. Jr.

    1984-01-01

    Seven temperature gradient holes were drilled at the Marine Corps Air Ground Combat Center, Twentynine Palms, California, as part of a cooperative research and development program, jointly funded by the Navy and Department of Energy. The purpose of this program was to assess geothermal resources at selected Department of Defense installations. Drill site selection was based on geophysical anomalies delineated by combined gravity, ground magnetic and aeromagnetic surveys. Temperature gradients ranged from 1.3/sup 0/C/100 m (1/sup 0/F/100 ft.) in hole No. 1 to 15.3/sup 0/C/100 m (8.3/sup 0/F/100 ft.) in temperature gradient hole No. 6. Large, positive geothermal gradients in temperature gradient holes 5 and 6, combined with respective bottom hole temperatures of 51.6/sup 0/C (125/sup 0/F) and 67/sup 0/C (153/sup 0/F), indicate that an extensive, moderate-temperature geothermal resource is located on the MCAGCC. The geothermal reservoir appears to be situated in old, unconsolidated alluvial material and is structurally bounded on the east by the Mesquite Lake fault and on the west by the Surprise Spring fault. If measured temperature gradients continue to increase at the observed rate, temperatures in excess of 80/sup 0/C (178/sup 0/F) can be expected at a depth of 2000 feet.

  20. Fluorine atom abstraction by Si(100). I. Experimental

    NASA Astrophysics Data System (ADS)

    Tate, M. R.; Gosalvez-Blanco, D.; Pullman, D. P.; Tsekouras, A. A.; Li, Y. L.; Yang, J. J.; Laughlin, K. B.; Eckman, S. C.; Bertino, M. F.; Ceyer, S. T.

    1999-08-01

    In the interaction of low energy F2 with Si(100) at 250 K, a dissociative chemisorption mechanism called atom abstraction is identified in which only one of the F atoms is adsorbed while the other F atom is scattered into the gas phase. The dynamics of atom abstraction are characterized via time-of-flight measurements of the scattered F atoms. The F atoms are translationally hyperthermal but only carry a small fraction (˜3%) of the tremendous exothermicity of the reaction. The angular distribution of F atoms is unusually broad for the product of an exothermic reaction. These results suggest an "attractive" interaction potential between F2 and the Si dangling bond with a transition state that is not constrained geometrically. These results are in disagreement with the results of theoretical investigations implying that the available potential energy surfaces are inadequate to describe the dynamics of this gas-surface interaction. In addition to single atom abstraction, two atom adsorption, a mechanism analogous to classic dissociative chemisorption in which both F atoms are adsorbed onto the surface, is also observed. The absolute probability of the three scattering channels (single atom abstraction, two atom adsorption, and unreactive scattering) for an incident F2 are determined as a function of F2 exposure. The fluorine coverage is determined by integrating the reaction probabilities over F2 exposure, and the reaction probabilities are recast as a function of fluorine coverage. Two atom adsorption is the dominant channel [P2=0.83±0.03(95%, N=9)] in the limit of zero coverage and decays monotonically to zero. Single atom abstraction is the minor channel (P1=0.13±0.03) at low coverage but increases to a maximum (P1=0.35±0.08) at about 0.5 monolayer (ML) coverage before decaying to zero. The reaction ceases at 0.94±0.11(95%, N=9) ML. Thermal desorption and helium diffraction confirm that the dangling bonds are the abstraction and adsorption sites. No Si lattice

  1. A noncontact thermal microprobe for local thermal conductivity measurement.

    PubMed

    Zhang, Yanliang; Castillo, Eduardo E; Mehta, Rutvik J; Ramanath, Ganpati; Borca-Tasciuc, Theodorian

    2011-02-01

    We demonstrate a noncontact thermal microprobe technique for measuring the thermal conductivity κ with ∼3 μm lateral spatial resolution by exploiting quasiballistic air conduction across a 10-100 nm air gap between a joule-heated microprobe and the sample. The thermal conductivity is extracted from the measured effective thermal resistance of the microprobe and the tip-sample thermal contact conductance and radius in the quasiballistic regime determined by calibration on reference samples using a heat transfer model. Our κ values are within 5%-10% of that measured by standard steady-state methods and theoretical predictions for nanostructured bulk and thin film assemblies of pnictogen chalcogenides. Noncontact thermal microprobing demonstrated here mitigates the strong dependence of tip-sample heat transfer on sample surface chemistry and topography inherent in contact methods, and allows the thermal characterization of a wide range of nanomaterials. PMID:21361625

  2. A noncontact thermal microprobe for local thermal conductivity measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Yanliang; Castillo, Eduardo E.; Mehta, Rutvik J.; Ramanath, Ganpati; Borca-Tasciuc, Theodorian

    2011-02-01

    We demonstrate a noncontact thermal microprobe technique for measuring the thermal conductivity κ with ˜3 μm lateral spatial resolution by exploiting quasiballistic air conduction across a 10-100 nm air gap between a joule-heated microprobe and the sample. The thermal conductivity is extracted from the measured effective thermal resistance of the microprobe and the tip-sample thermal contact conductance and radius in the quasiballistic regime determined by calibration on reference samples using a heat transfer model. Our κ values are within 5%-10% of that measured by standard steady-state methods and theoretical predictions for nanostructured bulk and thin film assemblies of pnictogen chalcogenides. Noncontact thermal microprobing demonstrated here mitigates the strong dependence of tip-sample heat transfer on sample surface chemistry and topography inherent in contact methods, and allows the thermal characterization of a wide range of nanomaterials.

  3. ENVITEC shows off air technologies

    SciTech Connect

    McIlvaine, R.W.

    1995-08-01

    The ENVITEC International Trade Fair for Environmental Protection and Waste Management Technologies, held in June in Duesseldorf, Germany, is the largest air pollution exhibition in the world and may be the largest environmental technology show overall. Visitors saw thousands of environmental solutions from 1,318 companies representing 29 countries and occupying roughly 43,000 square meters of exhibit space. Many innovations were displayed under the category, ``thermal treatment of air pollutants.`` New technologies include the following: regenerative thermal oxidizers; wet systems for removing pollutants; biological scrubbers;electrostatic precipitators; selective adsorption systems; activated-coke adsorbers; optimization of scrubber systems; and air pollution monitors.

  4. System operation: Continuous volatile organic compound air monitoring of 56 ozone precursors with the Perkin-Elmer 8700 GC and automatic thermal desorption system

    SciTech Connect

    Radenheimer, P.; Gibich, J.; Ogle, L.

    1994-12-31

    As part of the Coastal Oxidant Assessment for Southeast Texas (COAST) program, two sites were chosen by the Texas Natural Resource Conservation Commission (TRNCC) and equipped with a Perkin-Elmer VOC system composed of the 8700 Gas Chromatograph, ATD-400 Automatic Thermal Desorption and Turbochrom III Data system on DEC computers. The systems were equipped with a dual capillary column application capable of resolving 56 distinct target ozone precursors. These components were separated and quantified on an hourly basis 24 hours each day. Each system generated 96 data files and approximately 30 documentation files each day totaling nearly 3 megabytes of information. The system was fully automated and monitored rigorously via high-speed modem communication. The modem communication proved to be essential in the handling of the large volume of data generated each day. A fully automated data transfer system was developed to allow unattended file archiving thus eliminating many problems associated with manual handling of files and facilitating the rapid evaluation of the data. This paper will identify the major issues in operation and maintenance of these systems (not including the chromatographic application). Problems which were encountered can be subdivided into 2 categories, (a) hardware system problems such as power failures, equipment malfunction and temperature/humidity fluctuations, and (b) software issues: capability/incompatibility, bugs, communication problems and a plethora of computer or computer-related issues (confusion).

  5. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 13)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and Section 2 - Indexes. This issue of the Abstract Section cites 161 patents and applications for patent introduced into the NASA scientific and technical information system during the period January 1978 through June 1978. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  6. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 07)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and Section 2 - Indexes. This issue of the Abstract Section cites 158 patents and applications for patent introduced into the NASA scientific and technical information system during the period of January 1975 through June 1975. Each entry in the Abstract Section consists of a citation, an abstract, and, in most cases, a key illustration selected from the patent or application for patent. This issue of the Index Section contains entries for 2830 patent and application for patent citations covering the period May 1969 through June 1975. The index section contains five indexes -- subject, inventor, source, number and accession number.

  7. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 09)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and Section 2 - Indexes. This issue of the Abstract Section cites 200 patents and applications for patent introduced into the NASA scientific and technical information system during the period of January 1976 through June 1976. Each entry in the Abstract Section consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent. This issue of the Index Section contains entries for 2994 patent and application for patent citations covering the period May 1969 through June 1976. The Index Section contains five indexes -- subject, inventor, source, number and accession number.

  8. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 08)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This bibliography is issued in two sections; abstracts and indexes. The Abstract Section cites 180 patents and applications for patents introduced into the NASA scientific and technical information system during the period of July 1975 through December 1975. Each entry in the Abstract Section consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent. The index Section contains entries for 2,905 patents and applications for patent citations covering the period May 1969 through December 1975. The Index Section contains five indexes -- subject, inventor, source, number and accession number.

  9. Adult Education Dissertation Abstracts: 1968-1969.

    ERIC Educational Resources Information Center

    Grabowski, Stanley M., Ed.; Loague, Nehume, Ed.

    This bibliography contains citations, abstracts, and ordering information for 303 dissertations pertinent to the education or training of adults. Studies are classified by broad subject headings used in the ERIC Clearinghouse on Adult Education. Each section of the classification is identified by a four-digit number, with a one-, two-, or…

  10. Carbon Monoxide, A Bibliography With Abstracts.

    ERIC Educational Resources Information Center

    Cooper, Anna Grossman

    Included is a review of the carbon monoxide related literature published from 1880 to 1966. The 983 references with abstracts are grouped into these broad categories: Analysis, Biological Effects, Blood Chemistry, Control, Criteria and Standards, Instruments and Techniques, Sampling and Network Operations, and Sources. The Biological Effects group…

  11. Development of Abstract Grammatical Categorization in Infants

    ERIC Educational Resources Information Center

    Cyr, Marilyn; Shi, Rushen

    2013-01-01

    This study examined abstract syntactic categorization in infants, using the case of grammatical gender. Ninety-six French-learning 14-, 17-, 20-, and 30-month-olds completed the study. In a preferential looking procedure infants were tested on their generalized knowledge of grammatical gender involving pseudonouns and gender-marking determiners.…

  12. Abstracts of Research Papers 1977 AAHPER Convention.

    ERIC Educational Resources Information Center

    Sage, George H., Ed.

    This volume of abstracts describes papers written on the following topics: (1) Strength Physiology; (2) Learning Disabilities (motor); (3) Physiology - General; (4) Work Capacity; (5) Measurement and Recreation; (6) Biomechanics; (7) Professional Preparation (physical education); (8) Muscle Performance; (9) Sociology of Sport; (10) History of…

  13. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  14. Natural radiation environment III. [Lead Abstract

    SciTech Connect

    Gesell, T.F.; Lowder, W.M.

    1980-01-01

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  15. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  16. Mr. Birmingham and His New Star (Abstract)

    NASA Astrophysics Data System (ADS)

    O'Neill, J.

    2016-06-01

    (Abstract only) The year 2016 sees two anniversaries connected with the Irish astronomer John Birmingham (1816-1884): the 200th anniversary of his birth and the 150th anniversary of his discovery of the nova outburst in T Coronae Borealis.

  17. Hilson Adolescent Profile (HAP): Hilson Research Abstracts.

    ERIC Educational Resources Information Center

    Hilson Research Inc., Kew Gardens, NY.

    Abstracts and bibliographic citations are given for the following documents concerned with the use and characteristics of the Hilson Adolescent Profile (HAP): (1) "Use of the Hilson Adolescent Profile To Compare Juvenile Offenders with Junior and Senior High School Students" (R. E. Inwald and K. E. Brobst); (2) "The Effectiveness of Social Work in…

  18. Searching Social Work Abstracts: A Review.

    ERIC Educational Resources Information Center

    Mendelsohn, Henry N.

    1986-01-01

    A subject profile using 39 concepts central to the practice of social work was searched in Social Work Abstracts (SWAB), PsycINFO, ERIC, and Social SciSearch. Social work practice concepts and search strategy, search term results, journal titles searched, and source coverage and date of most recently indexed article are noted. (EJS)

  19. Heat pipe technology. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 55 publications on the theory, design, development, fabrication, and testing of heat pipes. Applications covered include solar, nuclear, and thermoelectric energy conversion. A book (in Russian) on low temperature heat pipes is included as well as abstracts when available. Indexes provided list authors, titles/keywords (permuted) and patents.

  20. Integrating model abstraction into monitoring strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed and performed to investigate the opportunities and benefits of integrating model abstraction techniques into monitoring strategies. The study focused on future applications of modeling to contingency planning and management of potential and actual contaminant release sites wi...

  1. Annual Report: Automatic Informative Abstracting and Extracting.

    ERIC Educational Resources Information Center

    Earl, L. L.; And Others

    The development of automatic indexing, abstracting, and extracting systems is investigated. Part I describes the development of tools for making syntactic and semantic distinctions of potential use in automatic indexing and extracting. One of these tools is a program for syntactic analysis (i.e., parsing) of English, the other is a dictionary of…

  2. Contextualising Numeracy: Abstract Tools at the Coalface.

    ERIC Educational Resources Information Center

    Lukin, Annabelle

    1998-01-01

    A social semiotic approach to math is necessary because of the increasing significance of abstract tools in the workplace. A case study from the coal mining industry illustrates the need to recognize mathematics as a socially constructed system and to contextualize math instruction. (SK)

  3. ANNUAL REPORT-AUTOMATIC INDEXING AND ABSTRACTING.

    ERIC Educational Resources Information Center

    Lockheed Missiles and Space Co., Palo Alto, CA. Electronic Sciences Lab.

    THE INVESTIGATION IS CONCERNED WITH THE DEVELOPMENT OF AUTOMATIC INDEXING, ABSTRACTING, AND EXTRACTING SYSTEMS. BASIC INVESTIGATIONS IN ENGLISH MORPHOLOGY, PHONETICS, AND SYNTAX ARE PURSUED AS NECESSARY MEANS TO THIS END. IN THE FIRST SECTION THE THEORY AND DESIGN OF THE "SENTENCE DICTIONARY" EXPERIMENT IN AUTOMATIC EXTRACTION IS OUTLINED. SOME OF…

  4. Does Abstracting Threaten a Sustainable Future?

    ERIC Educational Resources Information Center

    Grant, Lyle K.

    2012-01-01

    In abstraction, or conceptual behavior, people discriminate features or properties of their surroundings. This permits people to respond selectively and precisely to specialized features of their environment, which has had many benefits, including steady advances in science and technology. Within psychology, J. R. Kantor and B. F. Skinner…

  5. Static Abstractions and the Teaching of Writing.

    ERIC Educational Resources Information Center

    Connors, Robert J.

    The element of static abstractions (SAs)--any pseudoheuristic listing of derived nominals whose purpose is to define good structure in prose writing--is one of the important historical components of the current traditional rhetoric inherited from the nineteenth century. SAs, of which unity, coherence, and emphasis are the best known examples, have…

  6. Heat pipe technology: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The annual supplement on heat pipe technology for 1971 is presented. The document contains 101 references with abstracts and 47 patents. The subjects discussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design, development, and fabrication of heat pipes, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  7. Conference Abstracts: Computers in Physics Instruction.

    ERIC Educational Resources Information Center

    Baird, William E.

    1989-01-01

    Provides selected abstracts from the Computers in Physics Instruction conference held on August 1-5, 1988. Topics include: wave and particle motion, the CT programing language, microcomputer-based laboratories, student written simulations, concept maps, summer institutes, computer bulletin boards, interactive video, and videodisks. (MVL)

  8. The Eggen Card Project (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Silvis, G.

    2015-06-01

    (Abstract only) At the 2013 meeting we kicked off the Eggen Card project. This project was to make the huge collection of photometric observations made by Olin Eggen accessible to researchers. My poster this year is to report progress and encourage more members to participate.

  9. Coding the Eggen Cards (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Silvis, G.

    2014-06-01

    (Abstract only) A look at the Eggen Portal for accessing the Eggen cards. And a call for volunteers to help code the cards: 100,000 cards must be looked at and their star references identified and coded into the database for this to be a valuable resource.

  10. Abstract Schemas in Children's Chess Cognition.

    ERIC Educational Resources Information Center

    Horgan, Dianne; And Others

    The nature and development of semantic processing in chess was investigated in a study involving younger players from 6 through 18 years of age. Efforts were directed toward establishing the assertion that skilled players' memory for chess positions depends largely upon the availability of pre-stored schema (PSS) that are both abstract and…

  11. Situated Learning in an Abstract Algebra Classroom

    ERIC Educational Resources Information Center

    Ticknor, Cindy S.

    2012-01-01

    Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…

  12. Abstracts of Research. July 1974-June 1975.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Computer and Information Science Research Center.

    Abstracts of research papers in computer and information science are given for 68 papers in the areas of information storage and retrieval; human information processing; information analysis; linguistic analysis; artificial intelligence; information processes in physical, biological, and social systems; mathematical techniques; systems…

  13. Using Group Explorer in Teaching Abstract Algebra

    ERIC Educational Resources Information Center

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-01-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in…

  14. Reducing Abstraction When Learning Graph Theory

    ERIC Educational Resources Information Center

    Hazzan, Orit; Hadar, Irit

    2005-01-01

    This article presents research on students' understanding of basic concepts in Graph Theory. Students' understanding is analyzed through the lens of the theoretical framework of reducing abstraction (Hazzan, 1999). As it turns out, in spite of the relative simplicity of the concepts that are introduced in the introductory part of a traditional…

  15. Searching Chemical Abstracts Online in Undergraduate Chemistry.

    ERIC Educational Resources Information Center

    Krumpolc, Miroslav; And Others

    1987-01-01

    Discusses the advantages of conducting online computer searches of "Chemical Abstracts." Introduces the logical sequences involved in searching an online database. Explains Boolean logic, proximity operators, truncation, searchable fields, and command language, as they relate to the use of online searches in undergraduate chemistry programs. (TW)

  16. Cool Cats: Feline Fun with Abstract Art.

    ERIC Educational Resources Information Center

    Lambert, Phyllis Gilchrist

    2002-01-01

    Presents a lesson that teaches students about abstract art in a fun way. Explains that students draw cats, learn about the work of Pablo Picasso, and, in the style of Picasso, combine the parts of the cats (tail, legs, head, body) together in unconventional ways. (CMK)

  17. A Photographic Assignment for Abstract Algebra

    ERIC Educational Resources Information Center

    Warrington, Gregory S.

    2009-01-01

    We describe a simple photographic assignment appropriate for an abstract algebra (or other) course. Students take digital pictures around campus of various examples of symmetry. They then classify these pictures according to which of the 17 plane symmetry groups they belong. (Contains 2 figures.)

  18. Abstract Journals: A Survey of Patent Coverage.

    ERIC Educational Resources Information Center

    Rimmer, Brenda M.

    1988-01-01

    Describes a survey of 33 British, French, German, and U.S. abstract journals that examined their coverage of patent specifications. The standards for the identification of patent documents developed by the World Intellectual Property Organization are discussed, and an appendix provides a listing of the patent coverage by the country of each…

  19. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  20. Abstracts of Energy Materials for College Classes.

    ERIC Educational Resources Information Center

    Messenger, Roger A.; And Others

    This guide provides citations and abstracts for 250 energy-related resources which can be used to incorporate energy education into the structure of existing college courses. In addition to citing books, articles, unpublished papers, films, and videotapes, the resource guide cites sets of class notes and course outlines that have been filed with…