Sample records for abstraction reaction efficiencies

  1. Correlation of Hydrogen-Atom Abstraction Reaction Efficiencies for Aryl Radicals with their Vertical Electron Affinities and the Vertical Ionization Energies of the Hydrogen Atom Donors

    PubMed Central

    Jing, Linhong; Nash, John J.

    2009-01-01

    The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either

  2. Reaction kinetics of hydrogen atom abstraction from isopentanol by the H atom and HO2˙ radical.

    PubMed

    Parab, Prajakta Rajaram; Heufer, K Alexander; Fernandes, Ravi Xavier

    2018-04-25

    Isopentanol is a potential next-generation biofuel for future applications to Homogeneous Charge Compression Ignition (HCCI) engine concepts. To provide insights into the combustion behavior of isopentanol, especially to its auto-ignition behavior which is linked both to efficiency and pollutant formation in real combustion systems, detailed quantum chemical studies for crucial reactions are desired. H-Abstraction reaction rates from fuel molecules are key initiation steps for chain branching required for auto-ignition. In this study, rate constants are determined for the hydrogen atom abstraction reactions from isopentanol by the H atom and HO2˙ radical by implementing the CBS-QB3 composite method. For the treatment of the internal rotors, a Pitzer-Gwinn-like approximation is applied. On comparing the computed reaction energies, the highest exothermicity (ΔE = -46 kJ mol-1) is depicted for Hα abstraction by the H atom whereas the lowest endothermicity (ΔE = 29 kJ mol-1) is shown for the abstraction of Hα by the HO2˙ radical. The formation of hydrogen bonding is found to affect the kinetics of the H atom abstraction reactions by the HO2˙ radical. Further above 750 K, the calculated high pressure limit rate constants indicate that the total contribution from delta carbon sites (Cδ) is predominant for hydrogen atom abstraction by the H atom and HO2˙ radical.

  3. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol

    NASA Astrophysics Data System (ADS)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2018-04-01

    We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.

  4. Quadrupole type mass spectrometric study of the abstraction reaction between hydrogen atoms and ethane.

    PubMed

    Bayrakçeken, Fuat

    2008-02-01

    The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.

  5. Addition and hydrogen abstraction reactions of an OH radical with 8-oxoguanine

    NASA Astrophysics Data System (ADS)

    Jena, N. R.; Mishra, P. C.

    2006-05-01

    Addition reaction of an OH radical at the C2, C4, C5 or C8 position of 8-oxoguanine (8OG) and abstraction of its H9 atom by an OH radical were studied using density functional theory (B3LYP) employing 6-31G ∗∗, 6-311++G ∗∗ and AUG-cc-pVDZ basis sets. Solvent effects of aqueous media were treated using the PCM model. It is found that the addition of an OH radical at the C4 position of 8OG would be most favored in both gas phase and aqueous media. These addition and abstraction reactions in aqueous media are both found to be barrierless.

  6. Molecular hydrogen formation on interstellar PAHs through Eley-Rideal abstraction reactions

    NASA Astrophysics Data System (ADS)

    Foley, Nolan; Cazaux, S.; Egorov, D.; Boschman, L. M. P. V.; Hoekstra, R.; Schlathölter, T.

    2018-06-01

    We present experimental data on H2 formation processes on gas-phase polycyclic aromatic hydrocarbon (PAH) cations. This process was studied by exposing coronene radical cations, confined in a radio-frequency ion trap, to gas phase H atoms. Sequential attachment of up to 23 hydrogen atoms has been observed. Exposure to atomic D instead of H allows one to distinguish attachment from competing abstraction reactions, as the latter now leave a unique fingerprint in the measured mass spectra. Modeling of the experimental results using realistic cross sections and barriers for attachment and abstraction yield a 1:2 ratio of abstraction to attachment cross sections. The strong contribution of abstraction indicates that H2 formation on interstellar PAH cations is an order of magnitude more relevant than previously thought.

  7. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    PubMed

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  8. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    ERIC Educational Resources Information Center

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  9. Theoretical kinetics study of the F((2)P) + NH3 hydrogen abstraction reaction.

    PubMed

    Espinosa-Garcia, J; Fernandez-Ramos, A; Suleimanov, Y V; Corchado, J C

    2014-01-23

    The hydrogen abstraction reaction of fluorine with ammonia represents a true chemical challenge because it is very fast, is followed by secondary abstraction reactions, which are also extremely fast, and presents an experimental/theoretical controversy about rate coefficients. Using a previously developed full-dimensional analytical potential energy surface, we found that the F + NH3 → HF + NH2 system is a barrierless reaction with intermediate complexes in the entry and exit channels. In order to understand the reactivity of the title reaction, thermal rate coefficidents were calculated using two approaches: ring polymer molecular dynamics and quasi-classical trajectory calculations, and these were compared with available experimental data for the common temperature range 276-327 K. The theoretical results obtained show behavior practically independent of temperature, reproducing Walther-Wagner's experiment, but in contrast with Persky's more recent experiment. However, quantitatively, our results are 1 order of magnitude larger than those of Walther-Wagner and reasonably agree with the Persky at the lowest temperature, questioning so Walther-Wagner's older data. At present, the reason for this discrepancy is not clear, although we point out some possible reasons in the light of current theoretical calculations.

  10. Efficient Green's Function Reaction Dynamics (GFRD) simulations for diffusion-limited, reversible reactions

    NASA Astrophysics Data System (ADS)

    Bashardanesh, Zahedeh; Lötstedt, Per

    2018-03-01

    In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.

  11. Dual-level direct dynamics studies for the hydrogen abstraction reaction of 1,1-difluoroethane with O( 3P)

    NASA Astrophysics Data System (ADS)

    Liu, Jing-yao; Li, Ze-sheng; Dai, Zhen-wen; Zhang, Gang; Sun, Chia-chung

    2004-01-01

    We present dual-level direct dynamics calculations for the CH 3CHF 2 + O( 3P) hydrogen abstraction reaction in a wide temperature range, based on canonical variational transition-state theory including small curvature tunneling corrections. For this reaction, three distinct transition states, one for α-abstraction and two for β-abstraction, have been located. The potential energy surface information is obtained at the MP2(full)/6-311G(d,p) level of theory, and higher-level single-point calculations for the stationary points are preformed at several levels, namely QCISD(T)/6-311+G(3df,3pd), G2, and G3 using the MP2 geometries, as well as at the G3//MP4SDQ/6-311G(d,p) level. The energy profiles are further refined with the interpolated single-point energies method at the G3//MP2(full)/6-311G(d,p) level. The total rate constants match the experimental data reasonable well in the measured temperature range 1110-1340 K. It is shown that at low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increases.

  12. Real-Time PCR Quantification Using A Variable Reaction Efficiency Model

    PubMed Central

    Platts, Adrian E.; Johnson, Graham D.; Linnemann, Amelia K.; Krawetz, Stephen A.

    2008-01-01

    Quantitative real-time PCR remains a cornerstone technique in gene expression analysis and sequence characterization. Despite the importance of the approach to experimental biology the confident assignment of reaction efficiency to the early cycles of real-time PCR reactions remains problematic. Considerable noise may be generated where few cycles in the amplification are available to estimate peak efficiency. An alternate approach that uses data from beyond the log-linear amplification phase is explored with the aim of reducing noise and adding confidence to efficiency estimates. PCR reaction efficiency is regressed to estimate the per-cycle profile of an asymptotically departed peak efficiency, even when this is not closely approximated in the measurable cycles. The process can be repeated over replicates to develop a robust estimate of peak reaction efficiency. This leads to an estimate of the maximum reaction efficiency that may be considered primer-design specific. Using a series of biological scenarios we demonstrate that this approach can provide an accurate estimate of initial template concentration. PMID:18570886

  13. Pericyclic Reactions: FMO Approach-Abstract of Issue 9904M

    NASA Astrophysics Data System (ADS)

    Lee, Albert W. M.; So, C. T.; Chan, C. L.; Wu, Y. K.

    1999-05-01

    previous protocols (3) on the Apple II computer, we designed Pericyclic Reactions: FMO Approach using Macromedia Director (4) to teach the two most important pericyclic reactions: electrocyclic addition and cycloaddition. Pericyclic Reactions: FMO Approach can be used in intermediate or advanced organic chemistry courses. Literature Cited 1. Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Academic: New York, 1971. 2. Fukui, K. Tetrahedron Lett. 1965, 2009, 2427. 3. Lee, A. W. M. Educ. Chem. 1988, 122. 4. Macromedia Director, version 4.0.3; Macromedia, Inc.: San Francisco, 1994. Keywords Lecture Aid; Computer Room; Organic; Pericyclic Reactions; Molecular Orbitals Hardware and Software Requirements for Pericyclic Reactions: FMO Approach

    Ordering and Information Journal of Chemical Education Software (often called JCE Software) is a publication of the Journal of Chemical Education. There is an Order Form inserted in this issue that provides prices and other ordering information. If this card is not available or if you need additional information, contact: JCE Software, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396; phone: 608/262-5153 or 800/991-5534; fax: 608/265-8094; email: jcesoft@chem.wisc.edu. Information about all our publications (including abstracts, descriptions, updates) is available from our World Wide Web site: http://JChemEd.chem.wisc.edu/JCESoft/

  14. Importance of tunneling in H-abstraction reactions by OH radicals. The case of CH4 + OH studied through isotope-substituted analogs

    NASA Astrophysics Data System (ADS)

    Lamberts, T.; Fedoseev, G.; Kästner, J.; Ioppolo, S.; Linnartz, H.

    2017-03-01

    We present a combined experimental and theoretical study focussing on the quantum tunneling of atoms in the reaction between CH4 and OH. The importance of this reaction pathway is derived by investigating isotope substituted analogs. Quantitative reaction rates needed for astrochemical models at low temperature are currently unavailable both in the solid state and in the gas phase. Here, we study tunneling effects upon hydrogen abstraction in CH4 + OH by focusing on two reactions: CH4 + OD → CH3 + HDO and CD4 + OH → CD3 + HDO. The experimental study shows that the solid-state reaction rate RCH4 + OD is higher than RCD4 + OH at 15 K. Experimental results are accompanied by calculations of the corresponding unimolecular and bimolecular reaction rate constants using instanton theory taking into account surface effects. For the work presented here, the unimolecular reactions are particularly interesting as these provide insight into reactions following a Langmuir-Hinshelwood process. The resulting ratio of the rate constants shows that the H abstraction (kCH4 + OD) is approximately ten times faster than D-abstraction (kCD4 + OH) at 65 K. We conclude that tunneling is involved at low temperatures in the abstraction reactions studied here. The unimolecular rate constants can be used by the modeling community as a first approach to describe OH-mediated abstraction reactions in the solid phase. For this reason we provide fits of our calculated rate constants that allow the inclusion of these reactions in models in a straightforward fashion.

  15. Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2018-05-01

    Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.

  16. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .

  17. Quasiclassical trajectory calculations to evaluate a kinematic constraint on internal energy in suprathreshold collision energy abstraction reactions

    NASA Astrophysics Data System (ADS)

    Shuman, Nicholas S.; Mihok, Morgan; Fistik, Margaret; Valentini, James J.

    2005-08-01

    Experimentally observed product quantum state distributions across a wide range of abstraction reactions at suprathreshold collision energies have shown a strong bias against product internal energy. Only a fraction, sometimes quite a small fraction, of the energetically accessible product quantum states are populated. Picconatto et al. [J. Chem. Phys. 114, 1663 (2001)] noted a simple mathematical relationship between the highest-energy rovibrational states observed and the kinematics of the reaction system. They proposed a reaction model based on reaction kinematics that quantitatively explains this behavior. The model is in excellent agreement with measured quantum state distributions. The assumptions of the model invoke detailed characteristics of reactive trajectories at suprathreshold collision energies. Here we test those assumptions using quasiclassical trajectory calculations for the abstraction reactions H +HCl→H2+Cl, D +HCl→HD+Cl, and H +DCl→HD+Cl. Trajectories were run on a potential-energy surface calculated with a London-Eyring-Polyani-Sato function with a localized 3-center term (LEPS-3C) previously shown to accurately reproduce experimentally observed product state distributions for the H +HCl abstraction reaction. The trajectories sample collision energies near threshold and also substantially above it. Although the trajectories demonstrate some aspects of the model, they show that it is not valid. However, the inadequacy of the proposed model does not invalidate the apparent kinematic basis of the observed energy constraint. The present results show that there must be some other molecular behavior rooted in the reaction kinematics that is the explanation and the source of the constraint.

  18. Theoretical derivation for reaction rate constants of H abstraction from thiophenol by the H/O radical pool

    PubMed Central

    Batiha, Marwan; Altarawneh, Mohammednoor; Al-Harahsheh, Mohammad; Altarawneh, Ibrahem; Rawadieh, Saleh

    2011-01-01

    Reaction and activation energy barriers are calculated for the H abstraction reactions (C6H5SH + X• → C6H5S + XH, X = H, OH and HO2) at the BB1K/GTLarge level of theory. The corresponding reactions with H2S and CH3SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K–2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. ΔfH298o of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures. PMID:22485200

  19. Hydrogen-abstraction reactions of fully hydrogenated fullerene cages with the amino radical: a density functional study

    NASA Astrophysics Data System (ADS)

    Anafcheh, Maryam

    2018-01-01

    We have applied density functional theory calculations to study the reactions of NH2 + CnHn (n = 20, 40, 50, 60, 70 and 80). Due to the hard curvature in C20 cage, the NH2• + C20H20 → NH3 + C20H19• reaction is nearly thermoneutral with a high potential barrier height. For the CnHn fulleranes with n > 20 the transition states appear earlier on the reaction paths, as can be anticipated for exothermic reactions. Using the spherical excess parameter, we distinguished different curvatures on the surfaces of fullerane cages. The reaction enthalpies ΔH°298 and potential barrier heights ΔETS of the considered reactions indicate good correlation with the values of ϕi parameter, showing an upward trend with the curvature increasing at carbon sites. We have also investigated the H-abstraction of the chemical derivatives of the C20H20 cage (C20H19-CH3, C20H19-CH2CH3 and C20H19-CH2CH2CH3) in comparison to the corresponding isolated alkanes (CH4, C2H6 and C3H8). Overall, it could be inferred that the H-abstraction from the primary and secondary C-H bonds of isolated alkanes could occur more easily than fullarane derivatives.

  20. Reaction of an Iron(IV) Nitrido Complex with Cyclohexadienes: Cycloaddition and Hydrogen-Atom Abstraction

    PubMed Central

    2015-01-01

    The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927

  1. Vocal reaction times to unilaterally presented concrete and abstract words: towards a theory of differential right hemispheric semantic processing.

    PubMed

    Rastatter, M; Dell, C W; McGuire, R A; Loren, C

    1987-03-01

    Previous studies investigating hemispheric organization for processing concrete and abstract nouns have provided conflicting results. Using manual reaction time tasks some studies have shown that the right hemisphere is capable of analyzing concrete words but not abstract. Others, however, have inferred that the left hemisphere is the sole analyzer of both types of lexicon. The present study tested these issues further by measuring vocal reaction times of normal subjects to unilaterally presented concrete and abstract items. Results were consistent with a model of functional localization which suggests that the minor hemisphere is capable of differentially processing both types of lexicon in the presence of a dominant left hemisphere.

  2. Theoretical investigation on H abstraction reaction mechanisms and rate constants of sevoflurane with the OH radical

    NASA Astrophysics Data System (ADS)

    Ren, Hongjiang; Li, Xiaojun; Qu, Yingjuan; Li, Feng

    2018-01-01

    The H abstraction reaction mechanism for sevoflurane with an ·OH radical was investigated theoretically using dual levels B3LYP/6-311++G(d, p)//QCISD(T)/6-311G(d, p). Thermochemistry properties at 298.15-2000 K were analyzed with the standard statistical thermodynamics method. Three pathways P(1), P(2) and P(3) were found and corresponded to the H13, H14 and H15 abstractions reactions with the Gibbs free barriers of 54.86, 55.05 and 54.86 kJ mol-1, respectively. The corresponding rate constants for three pathways over a wide temperature range of 298.15-2000 K were calculated and the results are in good agreement with the experimental data.

  3. Newly proposed proton-abstraction roundabout with backside attack mechanism for the SN2 reaction at the nitrogen center in F- + NH2Cl.

    PubMed

    Li, Yongfang; Wang, Dunyou

    2018-05-07

    Recent studies have improved our understanding of the mechanism and dynamics of the bimolecular nucleophilic substitution (S N 2) reaction at the carbon center. Nonetheless, the S N 2 reaction at the nitrogen center has received scarce attention and is less understood. Herein, we propose a new reaction mechanism for the S N 2 reaction at the nitrogen center in the F - + NH 2 Cl reaction using ab initio molecular dynamics calculations. The newly proposed mechanism involves the rotation of NHCl with one proton of NH 2 Cl abstracted by the nucleophile, followed by the classical backside-attack process. The double-inversion mechanism revealed recently for the S N 2 reaction at the carbon center is also observed for the title reaction at the nitrogen center. In contrast to the F - + CH 3 Cl reaction with a proton abstraction-induced first inversion transition state, the F - + NH 2 Cl reaction is a hydrogen bond-induced inversion. This newly proposed reaction mechanism opens a reaction channel to avoid the proton abstraction mechanism at low collision energy. The double-inversion mechanism of the title reaction with a negative first-inversion transition relative to the energy of the reactants is expected to have larger contribution to the reaction rate than the F - + CH 3 Cl reaction with a positive first-inversion transition state.

  4. Reaction Kinetics of Hydrogen Atom Abstraction from C4-C6 Alkenes by the Hydrogen Atom and Methyl Radical.

    PubMed

    Wang, Quan-De; Liu, Zi-Wu

    2018-06-14

    Alkenes are important ingredients of realistic fuels and are also critical intermediates during the combustion of a series of other fuels including alkanes, cycloalkanes, and biofuels. To provide insights into the combustion behavior of alkenes, detailed quantum chemical studies for crucial reactions are desired. Hydrogen abstractions of alkenes play a very important role in determining the reactivity of fuel molecules. This work is motivated by previous experimental and modeling evidence that current literature rate coefficients for the abstraction reactions of alkenes are still in need of refinement and/or redetermination. In light of this, this work reports a theoretical and kinetic study of hydrogen atom abstraction reactions from C4-C6 alkenes by the hydrogen (H) atom and methyl (CH 3 ) radical. A series of C4-C6 alkene molecules with enough structural diversity are taken into consideration. Geometry and vibrational properties are determined at the B3LYP/6-31G(2df,p) level implemented in the Gaussian-4 (G4) composite method. The G4 level of theory is used to calculate the electronic single point energies for all species to determine the energy barriers. Conventional transition state theory with Eckart tunneling corrections is used to determine the high-pressure-limit rate constants for 47 elementary reaction rate coefficients. To faciliate their applications in kinetic modeling, the obtained rate constants are given in the Arrhenius expression and rate coefficients for typical reaction classes are recommended. The overall rate coefficients for the reaction of H atom and CH 3 radical with all the studied alkenes are also compared. Branching ratios of these reaction channels for certain alkenes have also been analyzed.

  5. Enzyme efficiency: An open reaction system perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Kinshuk, E-mail: kb36@rice.edu; Bhattacharyya, Kamal, E-mail: pchemkb@gmail.com

    2015-12-21

    A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for verymore » small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k{sub 2}/K{sub M}. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.« less

  6. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  7. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    PubMed

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  8. An intermediate level of abstraction for computational systems chemistry.

    PubMed

    Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F

    2017-12-28

    Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  9. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    PubMed

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  10. Theoretical study on the mechanism of the reaction of FOX-7 with OH and NO2 radicals: bimolecular reactions with low barrier during the decomposition of FOX-7

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Dong; Zhang, Li-Li

    2017-12-01

    The decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7) attracts great interests, while the studies on bimolecular reactions during the decomposition of FOX-7 are scarce. This study for the first time investigated the bimolecular reactions of OH and NO2 radicals, which are pyrolysis products of ammonium perchlorate (an efficient oxidant usually used in solid propellant), with FOX-7 by computational chemistry methods. The molecular geometries and energies were calculated using the (U)B3LYP/6-31++G(d,p) method. The rate constants of the reactions were calculated by canonical variational transition state theory. We found three mechanisms (H-abstraction, OH addition to C and N atom) for the reaction of OH + FOX-7 and two mechanisms (O abstraction and H abstraction) for the reaction of NO2 + FOX-7. OH radical can abstract H atom or add to C atom of FOX-7 with barriers near to zero, which means OH radical can effectively degrade FOX-7. The O abstraction channel of the reaction of NO2 + FOX-7 results in the formation of NO3 radical, which has never been detected experimentally during the decomposition of FOX-7.

  11. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.

  12. An efficient graph theory based method to identify every minimal reaction set in a metabolic network

    PubMed Central

    2014-01-01

    Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal

  13. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  14. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies.

    PubMed

    Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik

    2012-05-10

    Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins), conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. We describe STEPS, a stochastic reaction-diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction-diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. STEPS simulates models of cellular reaction-diffusion systems with complex

  15. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications.

  16. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  17. Abstracts Produced Using Computer Assistance.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    2000-01-01

    Describes an experiment that evaluated features of TEXNET abstracting software, compared the use of keywords and phrases that were automatically extracted, tested hypotheses about relations between abstractors' backgrounds and their reactions to abstracting assistance software, and obtained ideas for further features to be developed in TEXNET.…

  18. State-to-State integral cross section for the H+H2O-->H2+OH abstraction reaction.

    PubMed

    Zhang, Dong H; Xie, Daiqian; Yang, Minghui; Lee, Soo-Y

    2002-12-31

    The initial state selected time-dependent wave-packet method was extended to calculate the state-to-state integral cross section for the title reaction with H2O in the ground rovibrational state on the potential energy surface of Yang, Zhang, Collins, and Lee. One OH bond length was fixed in the study, which is justifiable for the abstraction reaction, but the remaining 5 degrees of freedom were treated exactly. It was found that the H2 molecule is produced vibrationally cold for collision energy up to 1.6 eV. The OH rotation takes away about 4% of total available energy in the products, while the fraction of energy going to H2 rotation increases with collision energy to about 20% at 1.6 eV.

  19. HRSSA - Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  20. Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.

    PubMed

    Thanh, Vo Hong; Zunino, Roberto; Priami, Corrado

    2017-01-01

    Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.

  1. Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6

    NASA Astrophysics Data System (ADS)

    Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.

    2003-11-01

    Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2→H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.

  2. Recent advances in heterocycle generation using the efficient Ugi multiple-component condensation reaction.

    PubMed

    Tempest, Paul A

    2005-11-01

    The current trend of rising research spending and falling numbers of novel chemical entities continues to drive efforts aimed at increasing efficiency in the drug discovery process. Strategic issues, such as assigning resources to poorly validated targets have been implicated in the declining productivity of recent years. Tactical approaches employed to improve this situation include attempts to speed the discovery process toward decision points in a timely manner. Accelerating the optimization of high-throughput screening hits is a goal in streamlining the discovery process, and the use of multiple-component condensation (MCC) reactions have proved useful toward this end. MCC reactions are powerful and efficient tools for the generation of diverse compound sets. Collections of compounds can be synthesized with all of the required diversity elements included in a single synthetic step. One of the most widely investigated MCC reactions is the Ugi four-component condensation. This review highlights disclosures of the Ugi reaction published over the past two years (2003 to 2005) in three areas: (i) Ugi reaction in conjunction with post-condensation cyclization; (ii) bifunctional condensations leading to heterocyclic cores; and (iii) general findings relating to linear products or interesting improvements in the basic Ugi reaction.

  3. Theoretical and kinetic study of the hydrogen atom abstraction reactions of esters with H(O.)2 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2013-12-27

    This work details an ab initio and chemical kinetic study of the hydrogen atom abstraction reactions by the hydroperoxyl radical (HȮ2) on the following esters: methyl ethanoate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl isobutyrate, ethyl ethanoate, propyl ethanoate, and isopropyl ethanoate. Geometry optimizations and frequency calculations of all of the species involved, as well as the hindrance potential descriptions for reactants and transition states, have been performed with the Møller-Plesset (MP2) method using the 6-311G(d,p) basis set. A validation of all of the connections between transition states and local minima was performed by intrinsic reaction coordinate calculations. Electronic energies for all of the species are reported at the CCSD(T)/cc-pVTZ level of theory in kcal mol(-1) with the zero-point energy corrections. The CCSD(T)/CBS (extrapolated from CCSD(T)/cc-pVXZ, in which X = D, T, Q) was used for the reactions of methyl ethanoate + HȮ2 radicals as a benchmark in the electronic energy calculations. High-pressure limit rate constants, in the temperature range 500-2000 K, have been calculated for all of the reaction channels using conventional transition state theory with asymmetric Eckart tunneling corrections. The 1-D hindered rotor approximation has been used for the low frequency torsional modes in both reactants and transition states. The calculated individual and total rate constants are reported for all of the reaction channels in each reaction system. A branching ratio analysis for each reaction site has also been investigated for all of the esters studied in this work.

  4. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble

    PubMed Central

    2017-01-01

    A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269–279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng–Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn. PMID:28737933

  5. Fenton-like reaction: a possible way to efficiently remove illicit drugs and pharmaceuticals from wastewater.

    PubMed

    Mackuľak, Tomáš; Mosný, Michal; Grabic, Roman; Golovko, Oksana; Koba, Olga; Birošová, Lucia

    2015-03-01

    We analyzed 13 psychoactive pharmaceuticals, illicit drugs and their metabolites in wastewater treatment plant influent and effluent and the possibility of their degradation by biological and chemical processes. Tramadol (413-853 ng/L) and methamphetamine (460-682 ng/L) were the most concentrated compounds in the wastewater in winter and summer, respectively. A significant decrease in the concentration of tramadol in wastewater was measured during the summer. The lowest efficiency was observed for tramadol, venlafaxine, citalopram and oxazepam (∼ 10%) and the highest efficiency was observed for amphetamine and THC-COOH (∼ 80%). The efficiency of compound degradation via the Fenton reaction, a modified Fenton reaction and different degradation (by algae, wood-rotting fungi and enzymes at influent versus effluent) was determined. The Fenton reaction and its modification were efficient at eliminating these substances in comparison with the tested biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less

  7. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  8. Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions.

    PubMed

    Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua

    2018-06-14

    Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    NASA Astrophysics Data System (ADS)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  10. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  11. Ni xWO 2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction

    DOE PAGES

    Xi, Zheng; Mendoza-Garcia, Adriana; Zhu, Huiyuan; ...

    2017-01-13

    Ni xWO 2.72 nanorods (NRs) are synthesized by a one-pot reaction of Ni(acac) 2 and WCl 4. In the rod structure, Ni(II) intercalates in the defective perovskite-type WO 2.72 and is stabilized. The Ni xWO 2.72 NRs show the x-dependent electrocatalysis for the oxygen evolution reaction (OER) in 0.1M KOH with Ni 0.78WO 2.72 being the most efficient, even outperforming the commercial Ir-catalyst. Lastly, the synthesis is not limited to Ni xWO 2.72 but can be extended to M xWO 2.72 (M = Co, Fe) as well, providing a new class of oxide-based catalysts for efficient OER and other energymore » conversion reactions.« less

  12. Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions.

    PubMed

    Cui, Jiabin; Li, Yongjia; Liu, Lei; Chen, Lin; Xu, Jun; Ma, Jingwen; Fang, Gang; Zhu, Enbo; Wu, Hao; Zhao, Lixia; Wang, Leyu; Huang, Yu

    2015-10-14

    We report a highly efficient photocatalyst comprised of Cu7S4@Pd heteronanostructures with plasmonic absorption in the near-infrared (NIR)-range. Our results indicated that the strong NIR plasmonic absorption of Cu7S4@Pd facilitated hot carrier transfer from Cu7S4 to Pd, which subsequently promoted the catalytic reactions on Pd metallic surface. We confirmed such enhancement mechanism could effectively boost the sunlight utilization in a wide range of photocatalytic reactions, including the Suzuki coupling reaction, hydrogenation of nitrobenzene, and oxidation of benzyl alcohol. Even under irradiation at 1500 nm with low power density (0.45 W/cm(2)), these heteronanostructures demonstrated excellent catalytic activities. Under solar illumination with power density as low as 40 mW/cm(2), nearly 80-100% of conversion was achieved within 2 h for all three types of organic reactions. Furthermore, recycling experiments showed the Cu7S4@Pd were stable and could retain their structures and high activity after five cycles. The reported synthetic protocol can be easily extended to other Cu7S4@M (M = Pt, Ag, Au) catalysts, offering a new solution to design and fabricate highly effective photocatalysts with broad material choices for efficient conversion of solar energy to chemical energy in an environmentally friendly manner.

  13. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  14. Formal modeling of a system of chemical reactions under uncertainty.

    PubMed

    Ghosh, Krishnendu; Schlipf, John

    2014-10-01

    We describe a novel formalism representing a system of chemical reactions, with imprecise rates of reactions and concentrations of chemicals, and describe a model reduction method, pruning, based on the chemical properties. We present two algorithms, midpoint approximation and interval approximation, for construction of efficient model abstractions with uncertainty in data. We evaluate computational feasibility by posing queries in computation tree logic (CTL) on a prototype of extracellular-signal-regulated kinase (ERK) pathway.

  15. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  16. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  17. Efficient determination of average valence of manganese in manganese oxides by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-08-18

    This work investigates a new reaction headspace gas chromatographic (HS-GC) technique for efficient quantifying average valence of manganese (Mn) in manganese oxides. This method is on the basis of the oxidation reaction between manganese oxides and sodium oxalate under the acidic condition. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively analyzed by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 20min at 80°C. The relative standard deviation of this reaction HS-GC method in the precision testing was within 1.08%, the relative differences between the new method and the reference method (titration method) were no more than 5.71%. The new HS-GC method is automated, efficient, and can be a reliable tool for the quantitative analysis of average valence of manganese in the manganese oxide related research and applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Transportation Energy Efficiency Program (TEEP) Report Abstracts

    DOT National Transportation Integrated Search

    1977-04-15

    This bibliography summarizes the published research accomplished for the Department of Transportation's Transportation Energy Efficiency Program and its predecessor, the Automotive Energy Efficiency Program. The reports are indexed by corporate autho...

  19. Fluorine atom abstraction by Si(100). I. Experimental

    NASA Astrophysics Data System (ADS)

    Tate, M. R.; Gosalvez-Blanco, D.; Pullman, D. P.; Tsekouras, A. A.; Li, Y. L.; Yang, J. J.; Laughlin, K. B.; Eckman, S. C.; Bertino, M. F.; Ceyer, S. T.

    1999-08-01

    In the interaction of low energy F2 with Si(100) at 250 K, a dissociative chemisorption mechanism called atom abstraction is identified in which only one of the F atoms is adsorbed while the other F atom is scattered into the gas phase. The dynamics of atom abstraction are characterized via time-of-flight measurements of the scattered F atoms. The F atoms are translationally hyperthermal but only carry a small fraction (˜3%) of the tremendous exothermicity of the reaction. The angular distribution of F atoms is unusually broad for the product of an exothermic reaction. These results suggest an "attractive" interaction potential between F2 and the Si dangling bond with a transition state that is not constrained geometrically. These results are in disagreement with the results of theoretical investigations implying that the available potential energy surfaces are inadequate to describe the dynamics of this gas-surface interaction. In addition to single atom abstraction, two atom adsorption, a mechanism analogous to classic dissociative chemisorption in which both F atoms are adsorbed onto the surface, is also observed. The absolute probability of the three scattering channels (single atom abstraction, two atom adsorption, and unreactive scattering) for an incident F2 are determined as a function of F2 exposure. The fluorine coverage is determined by integrating the reaction probabilities over F2 exposure, and the reaction probabilities are recast as a function of fluorine coverage. Two atom adsorption is the dominant channel [P2=0.83±0.03(95%, N=9)] in the limit of zero coverage and decays monotonically to zero. Single atom abstraction is the minor channel (P1=0.13±0.03) at low coverage but increases to a maximum (P1=0.35±0.08) at about 0.5 monolayer (ML) coverage before decaying to zero. The reaction ceases at 0.94±0.11(95%, N=9) ML. Thermal desorption and helium diffraction confirm that the dangling bonds are the abstraction and adsorption sites. No Si lattice

  20. High-Level Data-Abstraction System

    NASA Technical Reports Server (NTRS)

    Fishwick, P. A.

    1986-01-01

    Communication with data-base processor flexible and efficient. High Level Data Abstraction (HILDA) system is three-layer system supporting data-abstraction features of Intel data-base processor (DBP). Purpose of HILDA establishment of flexible method of efficiently communicating with DBP. Power of HILDA lies in its extensibility with regard to syntax and semantic changes. HILDA's high-level query language readily modified. Offers powerful potential to computer sites where DBP attached to DEC VAX-series computer. HILDA system written in Pascal and FORTRAN 77 for interactive execution.

  1. Olfactory language and abstraction across cultures

    PubMed Central

    Burenhult, Niclas; Stensmyr, Marcus; de Valk, Josje; Hansson, Bill S.

    2018-01-01

    Olfaction presents a particularly interesting arena to explore abstraction in language. Like other abstract domains, such as time, odours can be difficult to conceptualize. An odour cannot be seen or held, it can be difficult to locate in space, and for most people odours are difficult to verbalize. On the other hand, odours give rise to primary sensory experiences. Every time we inhale we are using olfaction to make sense of our environment. We present new experimental data from 30 Jahai hunter-gatherers from the Malay Peninsula and 30 matched Dutch participants from the Netherlands in an odour naming experiment. Participants smelled monomolecular odorants and named odours while reaction times, odour descriptors and facial expressions were measured. We show that while Dutch speakers relied on concrete descriptors, i.e. they referred to odour sources (e.g. smells like lemon), the Jahai used abstract vocabulary to name the same odours (e.g. musty). Despite this differential linguistic categorization, analysis of facial expressions showed that the two groups, nevertheless, had the same initial emotional reactions to odours. Critically, these cross-cultural data present a challenge for how to think about abstraction in language. This article is part of the theme issue ‘Varieties of abstract concepts: development, use and representation in the brain’. PMID:29915007

  2. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation.

    PubMed

    Morison, K R; Hutchinson, C A

    2009-01-01

    The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.

  3. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  4. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values.

    PubMed

    Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup; Silva, Rafael; Sathe, Bhaskar R; Mikmeková, Eliška; Asefa, Tewodros

    2014-04-22

    Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbon-oxygen reaction efficiency in air gap switch with graphite electrodes under high current pulse discharge

    NASA Astrophysics Data System (ADS)

    Dai, Hongyu; Li, Lee; Peng, Ming-yang; Xiong, Jiaming; Wu, Haibo; Yu, Bin

    2017-12-01

    In order to reduce the effect of residual carbon on the insulation performance, after the GW-hundreds kiloampere graphite-electrode switch turning on, the chemical kinetics of the carbon-oxygen reaction is analyzed. The capacitive pulsed experimental circuit is used to reconstruct the actual condition of high power and high current discharge. The carbon-oxygen reaction efficiency is analyzed using a Fourier transform infrared spectrometer and a flue gas analyzer. The research shows that the gas products include NOX, O3, CH4, and COX. Through the quantitative analysis, the conversion efficiency of COX increases with the augment of the accumulated transferred charge, and the change law of the CO generation efficiency has an extreme value. With the corresponding calculation and the observation of the scanning electron microscope, it is found that most of the carbon consumed from the graphite electrodes is converted to amorphous elemental carbon, and the insufficiency of the carbon-oxygen reaction leads to the problem of carbon residue, for 20%-45% of elemental carbon is not oxidized. The size of amorphous elemental carbon is about several micrometers to tens micrometers by the analysis of metallographic microscope. In the condition of compressed air, changing the amount of transferred charge is helpful to improve the carbon-oxygen reaction efficiency and inhibit the problem of carbon residue.

  6. Optimization of the Efficiency of a Neutron Detector to Measure (α, n) Reaction Cross-Section

    NASA Astrophysics Data System (ADS)

    Perello, Jesus; Montes, Fernando; Ahn, Tony; Meisel, Zach; Joint InstituteNuclear Astrophysics Team

    2015-04-01

    Nucleosynthesis, the origin of elements, is one of the greatest mysteries in physics. A recent particular nucleosynthesis process of interest is the charge-particle process (cpp). In the cpp, elements form by nuclear fusion reactions during supernovae. This process of nuclear fusion, (α,n), will be studied by colliding beam elements produced and accelerated at the National Superconducting Cyclotron Laboratory (NSCL) to a helium-filled cell target. The elements will fuse with α (helium nuclei) and emit neutrons during the reaction. The neutrons will be detected for a count of fused-elements, thus providing us the probability of such reactions. The neutrons will be detected using the Neutron Emission Ratio Observer (NERO). Currently, NERO's efficiency varies for neutrons at the expected energy range (0-12 MeV). To study (α,n), NERO's efficiency must be near-constant at these energies. Monte-Carlo N-Particle Transport Code (MCNP6), a software package that simulates nuclear processes, was used to optimize NERO configuration for the experiment. MCNP6 was used to simulate neutron interaction with different NERO configurations at the expected neutron energies. By adding additional 3He detectors and polyethylene, a near-constant efficiency at these energies was obtained in the simulations. With the new NERO configuration, study of the (α,n) reactions can begin, which may explain how elements are formed in the cpp. SROP MSU, NSF, JINA, McNair Society.

  7. HETERODIMERIZATION OF PROPYLENE AND VINYLARENES: FUNCTIONAL GROUP COMPATIBILITY IN A HIGHLY EFFICIENT NI-CATALYZED CARBON-CARBON BOND-FORMING REACTION. (R826120)

    EPA Science Inventory

    Abstract

    Unlike heterodimerization reactions of ethylene and vinylarenes, no such synthetically useful reactions using propylene are known. We find that propylene reacts with various vinylarenes in the presence of catalytic amounts of [(allyl)NiBr]2, triphen...

  8. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient abstract data type components for distributed and parallel systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastani, F.; Hilal, W.; Iyengar, S.S.

    1987-10-01

    One way of improving software system's comprehensibility and maintainability is to decompose it into several components, each of which encapsulates some information concerning the system. These components can be classified into four categories, namely, abstract data type, functional, interface, and control components. Such a classfication underscores the need for different specification, implementation, and performance-improvement methods for different types of components. This article focuses on the development of high-performance abstract data type components for distributed and parallel environments.

  10. Kinetic Study of the Aroxyl-Radical-Scavenging Activity of Five Fatty Acid Esters and Six Carotenoids in Toluene Solution: Structure-Activity Relationship for the Hydrogen Abstraction Reaction.

    PubMed

    Mukai, Kazuo; Yoshimoto, Maya; Ishikura, Masaharu; Nagaoka, Shin-Ichi

    2017-08-17

    A kinetic study of the reaction between an aroxyl radical (ArO • ) and fatty acid esters (LHs 1-5, ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) has been undertaken. The second-order rate constants (k s ) for the reaction of ArO • with LHs 1-5 in toluene at 25.0 °C have been determined spectrophotometrically. The k s values obtained increased in the order of LH 1 < 2 < 3 < 4 < 5, that is, with increasing the number of double bonds included in LHs 1-5. The k s value for LH 5 was 2.93 × 10 -3 M -1 s -1 . From the result, it has been clarified that the reaction of ArO • with LHs 1-5 was explained by an allylic hydrogen abstraction reaction. A similar kinetic study was performed for the reaction of ArO • with six carotenoids (Car-Hs 1-6, astaxanthin 1, β-carotene 2, lycopene 3, capsanthin 4, zeaxanthin 5, and lutein 6). The k s values obtained increased in the order of Car-H 1 < 2 < 3 < 4 < 5 < 6. The k s value for Car-H 6 was 8.4 × 10 -4 M -1 s -1 . The k s values obtained for Car-Hs 1-6 are in the same order as that of the values for LHs 1-5. The results of detailed analyses of the k s values for the above reaction indicated that the reaction was also explained by an allylic hydrogen abstraction reaction. Furthermore, the structure-activity relationship for the reaction was discussed by taking the result of density functional theory calculation reported by Martinez and Barbosa into account.

  11. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  12. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet.

    PubMed

    Buljubasich, L; Blümich, B; Stapf, S

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H2O2. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    NASA Astrophysics Data System (ADS)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  14. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei, E-mail: meiguit@163.com

    2016-09-15

    Three new metal coordination complexes, namely, [Co(BPO){sub 2}(H{sub 2}O){sub 4}](BS){sub 2}(H{sub 2}O){sub 2} (1), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](ABS){sub 2}(H{sub 2}O){sub 2} (2), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](MBS){sub 2}(H{sub 2}O){sub 2} (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1–3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O–H···O/N) and packing interactions (C–H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesismore » of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. - Graphical abstract: Three new metal coordination complexes with bipyridinyl-oxadiazole were obtained under hydrothermal conditions, which display a zero-dimensional motif, and show high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. Display Omitted.« less

  15. Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers.

    PubMed

    Katsikadakos, D; Hardalupas, Y; Taylor, A M K P; Hunt, P A

    2012-07-21

    Hydrogen abstraction reactions by the methyl radical from n-butanol have been investigated at the ROCBS-QB3 level of theory. Reaction energies and product geometries for the most stable conformer of n-butanol (ROH) have been computed, the reaction energies order α < γ < β < δ < OH. The preference for n-butane to favour H-abstraction at C(β) and C(γ) while, in contrast, n-butanol favours radical reactions at the C(α) carbon is rationalised. Transition state (TS) barriers and geometries for the most stable conformer of n-butanol are presented, and discussed with respect to the Hammond postulate. The reaction barriers order as α < OH < γ < β < δ. This relative ordering is not consistent with product radical stability, C-H bond dissociation energies or previous studies using O[combining dot above]H and HO[combining dot above](2) radicals. We provide a molecular orbital based rationalisation for this ordering and answer two related questions: Why is the γ-channel more stable than the β-channel? Why do the two C(γ)-H H-abstraction TS differ in energy? The method and basis set dependence of the TS barriers is investigated. The Boltzmann probability distribution for the n-butanol conformers suggests that low energy conformers are present in approximately equal proportions to the most stable conformer at combustion temperatures where ĊH(3) radicals are present. Thus, the relative significance of the various H-abstraction channels has been assessed for a selection of higher energy conformers (ROH'). Key results include finding that higher energy n-butanol conformers (E(ROH') > E(ROH)) can generate lower energy product radicals, E(ROH') < E(ROH). Moreover, higher energy conformers can also have a globally competitive TS energy for H-abstraction.

  16. Free-standing ternary NiWP film for efficient water oxidation reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yunpeng; Zhou, Kuo; Ma, Lili; Liang, Yanqin; Yang, Xianjin; Cui, Zhenduo; Zhu, Shengli; Li, Zhaoyang

    2018-03-01

    High-efficient catalysts for oxygen evolution reaction (OER) is of great concern in improving energy efficiency for water splitting. Here we report a high-performance OER electrocatalyst of nickel-tungsten-phosphorus (NiWP) film prepared by template method. This free-standing ternary electrocatalyst exhibits a remarkable electrocatalytic activity of OER in alkaline medium due to the synergetic effect among these elements and the good electrical conductivity. The reported NiWP composite catalyst has an overpotential of as low as 0.4 V (vs. RHE) at 30 mA cm-2, better than that of the commercial RuO2 catalyst. Moreover, a small charge transfer resistance of 4.06 Ω and a Tafel slope of 68 mV dec-1 demonstrate the outstanding catalytic activity.

  17. Thyra Abstract Interface Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A.

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilities to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Codemore » also currently exists for testing objects and providing composite objects such as product vectors.« less

  18. THE DYNAMICS OF HYDROGEN ATOM ABSTRACTION FROM POLYATOMIC MOLECULES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIU,X.; SUITS,A.G.

    2002-11-21

    The hydrogen atom abstraction reaction is an important fundamental process that is extensively involved in atmospheric and combustion chemistry. The practical significance of this type of reaction with polyatomic hydrocarbons is manifest, which has led to many kinetics studies. The detailed understanding of these reactions requires corresponding dynamics studies. However, in comparison to the A + HX {radical} AH + X reactions, the study of the dynamics of A + HR {yields} AH + R reactions is much more difficult, both experimentally and theoretically (here and in the following, A stands for an atom, X stands for a halogen atom,more » and R stands for a polyatomic hydrocarbon radical). The complication stems from the structured R, in contrast to the structureless X. First of all, there are many internal degrees of freedom in R that can participate in the reaction. In addition, there are different carbon sites from which an H atom can be abstracted, and the dynamics are correspondingly different; there are also multiple identical carbon sites in HR and in the picture of a local reaction, there exist competitions between neighboring H atoms, and so on. Despite this complexity, there have been continuing efforts to obtain insight into the dynamics of these reactions. In this chapter, some examples are presented, including the reactions of ground state H, Cl, and O atoms, with particular focus on our recent work using imaging to obtain the differential cross sections for these reactions.« less

  19. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  20. Graphene Facilitated Removal of Labetalol in Laccase-ABTS System: Reaction Efficiency, Pathways and Mechanism

    PubMed Central

    Dong, Shipeng; Xiao, Huifang; Huang, Qingguo; Zhang, Jian; Mao, Liang; Gao, Shixiang

    2016-01-01

    The widespread occurrence of the beta-blocker labetalol causes environmental health concern. Enzymatic reactions are highly efficient and specific offering biochemical transformation of trace contaminants with short reaction time and little to none energy consumption. Our experiments indicate that labetalol can be effectively transformed by laccase-catalyzed reaction using 2, 2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator, while no significant removal of labetalol can be achieved in the absence of ABTS. A total of three products were identified. It is interesting that the presence of graphene greatly increased the reaction rate while not changed the products. In the presence of 100 μg/L graphene, the pseudo-first-order reaction rate constant was increased ~50 times. We found that the enhancement of graphene is probably attributed to the formation and releasing of ABTS2+ which has a much greater reactivity towards labetalol when graphene is present. This study provides fundamental information for laccase-ABTS mediated labetalol reactions and the effect of graphene, which could eventually lead to development of novel methods to control beta-blocker contamination. PMID:26891761

  1. Generating effective project scheduling heuristics by abstraction and reconstitution

    NASA Technical Reports Server (NTRS)

    Janakiraman, Bhaskar; Prieditis, Armand

    1992-01-01

    A project scheduling problem consists of a finite set of jobs, each with fixed integer duration, requiring one or more resources such as personnel or equipment, and each subject to a set of precedence relations, which specify allowable job orderings, and a set of mutual exclusion relations, which specify jobs that cannot overlap. No job can be interrupted once started. The objective is to minimize project duration. This objective arises in nearly every large construction project--from software to hardware to buildings. Because such project scheduling problems are NP-hard, they are typically solved by branch-and-bound algorithms. In these algorithms, lower-bound duration estimates (admissible heuristics) are used to improve efficiency. One way to obtain an admissible heuristic is to remove (abstract) all resources and mutual exclusion constraints and then obtain the minimal project duration for the abstracted problem; this minimal duration is the admissible heuristic. Although such abstracted problems can be solved efficiently, they yield inaccurate admissible heuristics precisely because those constraints that are central to solving the original problem are abstracted. This paper describes a method to reconstitute the abstracted constraints back into the solution to the abstracted problem while maintaining efficiency, thereby generating better admissible heuristics. Our results suggest that reconstitution can make good admissible heuristics even better.

  2. Tandem Aldol-Michael Reactions in Aqueous Diethylamine Medium: A Greener and Efficient Approach to Bis-Pyrimidine Derivatives

    PubMed Central

    Al-Majid, Abdullah M.; Barakat, Assem; AL-Najjar, Hany J.; Mabkhot, Yahia N.; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2013-01-01

    A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a–i and 4a–e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%–99%). PMID:24317435

  3. Controlling Gas-Phase Reactions for Efficient Charge Reduction Electrospray Mass Spectrometry of Intact Proteins

    PubMed Central

    Frey, Brian L.; Lin, Yuan; Westphall, Michael S.; Smith, Lloyd M.

    2006-01-01

    Charge reduction electrospray mass spectrometry (CREMS) reduces the charge states of electrospray-generated ions, which concentrates the ions from a protein into fewer peaks spread over a larger m/z range, thereby increasing peak separation and decreasing spectral congestion. An optimized design for a CREMS source is described that provides an order-of-magnitude increase in sensitivity compared to previous designs and provides control over the extent of charge reduction. Either a corona discharge or an α-particle source was employed to generate anions that abstract protons from electrosprayed protein cations. These desired ion/ion proton transfer reactions predominated, but some oxidation and ion-attachment reactions also occurred leading to new peaks or mass-shifted broader peaks while decreasing signal intensity. The species producing these deleterious side-reactions were identified, and conditions were found that prevented their formation. Spectrometer m/z biases were examined because of their effect upon the signal intensity of higher m/z charge-reduced protein ions. The utility of this atmospheric pressure CREMS was demonstrated using a cell lysate fraction from E. coli. The spectral simplification afforded by CREMS reveals more proteins than are observed without charge reduction. PMID:16198118

  4. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

    PubMed

    Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa

    2010-02-21

    We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

  5. Theoretical study of the thermodynamics and kinetics of hydrogen abstractions from hydrocarbons.

    PubMed

    Vandeputte, Aäron G; Sabbe, Maarten K; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B

    2007-11-22

    Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of comparison with experimental data or with results obtained from computationally demanding high level of theory calculations. For this benchmark study two composite methods (CBS-QB3 and G3B3) and two density functional theory (DFT) methods, MPW1PW91/6-311G(2d,d,p) and BMK/6-311G(2d,d,p), were selected. All four methods succeeded well in describing the thermochemical properties of the five studied hydrogen abstraction reactions. High-level Weizmann-1 (W1) calculations indicated that CBS-QB3 succeeds in predicting the most accurate reaction barrier for the hydrogen abstraction of methane by methyl but tends to underestimate the reaction barriers for reactions where spin contamination is observed in the transition state. Experimental rate coefficients were most accurately predicted with CBS-QB3. Therefore, CBS-QB3 was selected to investigate the influence of both the 1D hindered internal rotor treatment about the forming bond (1D-HR) and tunneling on the rate coefficients for a set of 21 hydrogen abstraction reactions. Three zero curvature tunneling (ZCT) methods were evaluated (Wigner, Skodje & Truhlar, Eckart). As the computationally more demanding centrifugal dominant small curvature semiclassical (CD-SCS) tunneling method did not yield significantly better agreement with experiment compared to the ZCT methods, CD-SCS tunneling contributions were only assessed for the hydrogen abstractions by methyl from methane and ethane. The best agreement with experimental rate coefficients was found when Eckart tunneling and 1D-HR corrections were applied. A mean deviation of a factor 6 on the rate coefficients is found for

  6. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

    PubMed Central

    Li, Hong; Ke, Fei; Zhu, Junfa

    2018-01-01

    The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal−organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm2 at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test. PMID:29414838

  7. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  8. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    NASA Astrophysics Data System (ADS)

    Hirdt, J. A.; Brown, D. A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  9. Promoting adverse drug reaction reporting: comparison of different approaches

    PubMed Central

    Ribeiro-Vaz, Inês; Santos, Cristina Costa; Cruz-Correia, Ricardo

    2016-01-01

    ABSTRACT OBJECTIVE To describe different approaches to promote adverse drug reaction reporting among health care professionals, determining their cost-effectiveness. METHODS We analyzed and compared several approaches taken by the Northern Pharmacovigilance Centre (Portugal) to promote adverse drug reaction reporting. Approaches were compared regarding the number and relevance of adverse drug reaction reports obtained and costs involved. Costs by report were estimated by adding the initial costs and the running costs of each intervention. These costs were divided by the number of reports obtained with each intervention, to assess its cost-effectiveness. RESULTS All the approaches seem to have increased the number of adverse drug reaction reports. We noted the biggest increase with protocols (321 reports, costing 1.96 € each), followed by first educational approach (265 reports, 20.31 €/report) and by the hyperlink approach (136 reports, 15.59 €/report). Regarding the severity of adverse drug reactions, protocols were the most efficient approach, costing 2.29 €/report, followed by hyperlinks (30.28 €/report, having no running costs). Concerning unexpected adverse drug reactions, the best result was obtained with protocols (5.12 €/report), followed by first educational approach (38.79 €/report). CONCLUSIONS We recommend implementing protocols in other pharmacovigilance centers. They seem to be the most efficient intervention, allowing receiving adverse drug reactions reports at lower costs. The increase applied not only to the total number of reports, but also to the severity, unexpectedness and high degree of causality attributed to the adverse drug reactions. Still, hyperlinks have the advantage of not involving running costs, showing the second best performance in cost per adverse drug reactions report. PMID:27143614

  10. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    PubMed

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  12. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions

    NASA Astrophysics Data System (ADS)

    Nguyen, John D.; D'Amato, Erica M.; Narayanam, Jagan M. R.; Stephenson, Corey R. J.

    2012-10-01

    Radical reactions are a powerful class of chemical transformations. However, the formation of radical species to initiate these reactions has often required the use of stoichiometric amounts of toxic reagents, such as tributyltin hydride. Recently, the use of visible-light-mediated photoredox catalysis to generate radical species has become popular, but the scope of these radical precursors has been limited. Here, we describe the identification of reaction conditions under which photocatalysts such as fac-Ir(ppy)3 can be utilized to form radicals from unactivated alkyl, alkenyl and aryl iodides. The generated radicals undergo reduction via hydrogen atom abstraction or reductive cyclization. The reaction protocol utilizes only inexpensive reagents, occurs under mild reaction conditions, and shows exceptional functional group tolerance. Reaction efficiency is maintained upon scale-up and decreased catalyst loading, and the reaction time can be significantly shortened when the reaction is performed in a flow reactor.

  13. Quantum Dynamics Study of the Potential Energy Minima Effect on Energy Efficiency for the F- + CH3Cl → FCH3 + Cl- Reaction.

    PubMed

    Li, Yida; Wang, Yuping; Wang, Dunyou

    2017-04-13

    The Polanyi rules on the energy efficiency on reactivity are summarized solely from the locations of barriers on the potential energy surfaces. Here, our quantum dynamics study for the F - + CH 3 Cl → FCH 3 + Cl - reaction shows that the two potential energy minima in the entrance channel on the potential energy surface play an essential role in energy efficiency on reactivity. The reactivity of this reaction is dominated by the low collision energies where two distinctive reaction mechanisms involve the two minima in the entrance channel. Overall, the Cl-CH 3 stretching motion and C-H 3 umbrella motion both are more efficient than the translational motion in promoting this reaction. Although this reaction has a negative energy barrier, our study shows that it is the minima in the entrance channel, together with the energy barrier relative to these minima, that determine the energy efficacy on reactivity.

  14. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction

    DOE PAGES

    Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; ...

    2016-04-11

    In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have beenmore » made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR).« less

  15. Abstracts and research accomplishments of university coal research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  16. First Evidence of Vibrationally Driven Bimolecular Reactions in Solution: Reactions of Br Atoms with Dimethylsulfoxide and Methanol.

    PubMed

    Shin, Jae Yoon; Shaloski, Michael A; Crim, F Fleming; Case, Amanda S

    2017-03-23

    We present evidence for vibrational enhancement of the rate of bimolecular reactions of Br atoms with dimethylsulfoxide (DMSO) and methanol (CH 3 OH) in the condensed phase. The abstraction of a hydrogen atom from either of these solvents by a Br atom is highly endoergic: 3269 cm -1 for DMSO and 1416 or 4414 cm -1 for CH 3 OH, depending on the hydrogen atom abstracted. Thus, there is no thermal abstraction reaction at room temperature. Broadband electronic transient absorption shows that following photolysis of bromine precursors Br atoms form van der Waals complexes with the solvent molecules in about 5 ps and this Br • -solvent complex undergoes recombination. To explore the influence of vibrational energy on the abstraction reactions, we introduce a near-infrared (NIR) pump pulse following the photolysis pulse to excite the first overtone of the C-H (or O-H) stretch of the solvent molecules. Using single-wavelength detection, we observe a loss of the Br • -solvent complex that requires the presence of both photolysis and NIR pump pulses. Moreover, the magnitude of this loss depends on the NIR wavelength. Although this loss of reactive Br supports the notion of vibrationally driven chemistry, it is not concrete evidence of the hydrogen-abstraction reaction. To verify that the loss of reactive Br results from the vibrationally driven bimolecular reaction, we examine the pH dependence of the solution (as a measure of the formation of the HBr product) following long-time irradiation of the sample with both photolysis and NIR pump beams. We observe that when the NIR beam is on-resonance, the hydronium ion concentration increases fourfold as compared to that when it is off-resonance, suggesting the formation of HBr via a vibrationally driven hydrogen-abstraction reaction in solution.

  17. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F(-) + CH3F SN2 and proton-abstraction reactions.

    PubMed

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-28

    We develop a full-dimensional global analytical potential energy surface (PES) for the F(-) + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol(-1), respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol(-1), respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol(-1). Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F(-) + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ∼40 kcal mol(-1), and retention trajectories via double inversion are found above Ecoll = ∼ 30 kcal mol(-1), and at Ecoll = ∼ 50 kcal mol(-1), the front-side attack cross sections start to increase very rapidly. At

  18. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F- + CH3F SN2 and proton-abstraction reactions

    NASA Astrophysics Data System (ADS)

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-01

    We develop a full-dimensional global analytical potential energy surface (PES) for the F- + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol-1, respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol-1, respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol-1. Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F- + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ˜40 kcal mol-1, and retention trajectories via double inversion are found above Ecoll = ˜ 30 kcal mol-1, and at Ecoll = ˜ 50 kcal mol-1, the front-side attack cross sections start to increase very rapidly. At low Ecoll, the

  19. A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions

    PubMed Central

    Saa, Pedro; Nielsen, Lars K.

    2015-01-01

    Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP) capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol), a transition region (-2> ΔGr >-20 kJ/mol) and a constant elasticity region (ΔGr <-20 kJ/mol). We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only the kinetic

  20. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirdt, J.A.; Brown, D.A., E-mail: dbrown@bnl.gov

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of socialmore » networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.« less

  1. N-Heterocyclic carbene-catalyzed direct cross-aza-benzoin reaction: Efficient synthesis of α-amino-β-keto esters.

    PubMed

    Uno, Takuya; Kobayashi, Yusuke; Takemoto, Yoshiji

    2012-01-01

    An efficient catalytic synthesis of α-amino-β-keto esters has been newly developed. Cross-coupling of various aldehydes with α-imino ester, catalyzed by N-heterocyclic carbene, leads chemoselectively to α-amino-β-keto esters in moderate to good yields with high atom efficiency. The reaction mechanism is discussed, and it is proposed that the α-amino-β-keto esters are formed under thermodynamic control.

  2. Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction.

    PubMed

    Zhou, Xuemei; Shen, Xuetao; Xia, Zhaoming; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-09-16

    Nano-/micrometer multiscale hierarchical structures not only provide large surface areas for surface redox reactions but also ensure efficient charge conductivity, which is of benefit for utilization in areas of electrochemical energy conversion and storage. Herein, hollow fluffy cages (HFC) of Co3O4, constructed of ultrathin nanosheets, were synthesized by the formation of Co(OH)2 hollow cages and subsequent calcination at 250 °C. The large surface area (245.5 m2 g(-1)) of HFC Co3O4 annealed at 250 °C ensures the efficient interaction between electrolytes and electroactive components and provides more active sites for the surface redox reactions. The hierarchical structures minimize amount of the grain boundaries and facilitate the charge transfer process. Thin thickness of nanosheets (2-3 nm) ensures the highly active sites for the surface redox reactions. As a consequence, HFC Co3O4 as the supercapacitor electrode exhibits a superior rate capability, shows an excellent cycliability of 10,000 cycles at 10 A g(-1), and delivers large specific capacitances of 948.9 and 536.8 F g(-1) at 1 and 40 A g(-1), respectively. Catalytic studies of HFC Co3O4 for oxygen evolution reaction display a much higher turnover frequency of 1.67×10(-2) s(-1) in pH 14.0 KOH electrolyte at 400 mV overpotential and a lower Tafel slope of 70 mV dec(-1). HFC Co3O4 with the efficient electrochemical activity and good stability can remain a promising candidate for the electrochemical energy conversion and storage.

  3. USSR and Eastern Europe Scientific Abstracts, Chemistry, Number 52

    DTIC Science & Technology

    1977-02-23

    547.26� REACTION OF TRIPHENYLPHOSPHORUS AND TRIALKYL PHOSPHITES WITH BENZOTRICHLORIDES Leningrad ZHURNAL OBSHCHEY KHIMII in Russian Vol 46(108...Sciences UkrSSR [Abstract] Triphenylphosphorus is reacted with benzotrichloride in benzene with heating to give triphenyl dichlorophosphoran and...C0H6)3P=O 1 39 Cuprous chloride was found to catalyze the reaction of benzotrichloride with phosphites in the presence of heating to 120-140°C

  4. Reaction chemistry and collisional processes in multiple devices for resolving isobaric interferences in ICP-MS.

    PubMed

    Bandura, D R; Baranov, V I; Tanner, S D

    2001-07-01

    A low-level review of the fundamentals of ion-molecule interactions is presented. These interactions are used to predict the efficiencies of collisional fragmentation, energy damping and reaction for a variety of neutral gases as a function of pressure in a rf-driven collision/reaction cell. It is shown that the number of collisions increases dramatically when the ion energies are reduced to near-thermal (< 0.1 eV), because of the ion-induced dipole and ion-dipole interaction. These considerations suggest that chemical reaction can be orders of magnitude more efficient at improving the analyte signal/background ratio than can collisional fragmentation. Considerations that lead to an appropriate selection of type of gas, operating pressure, and ion energies for efficient operation of the cell for the alleviation of spectral interferences are discussed. High efficiency (large differences between reaction efficiencies of the analyte and interference ions, and concomitant suppression of secondary chemistry) might be required to optimize the chemical resolution (determination of an analyte in the presence of an isobaric interference) when using ion-molecule chemistry to suppress the interfering ion. In many instances atom transfer to the analyte, which shifts the analytical m/z by the mass of the atom transferred, provides high chemical resolution, even when the efficiency of reaction is relatively low. Examples are given of oxidation, hydroxylation, and chlorination of analyte ions (V+, Fe+, As+, Se+, Sr+, Y+, and Zr+) to improve the capability of determination of complex samples. Preliminary results are given showing O-atom abstraction by CO from CaO+ to enable the determination of Fe in high-Ca samples.

  5. Abstract shapes of RNA.

    PubMed

    Giegerich, Robert; Voss, Björn; Rehmsmeier, Marc

    2004-01-01

    The function of a non-protein-coding RNA is often determined by its structure. Since experimental determination of RNA structure is time-consuming and expensive, its computational prediction is of great interest, and efficient solutions based on thermodynamic parameters are known. Frequently, however, the predicted minimum free energy structures are not the native ones, leading to the necessity of generating suboptimal solutions. While this can be accomplished by a number of programs, the user is often confronted with large outputs of similar structures, although he or she is interested in structures with more fundamental differences, or, in other words, with different abstract shapes. Here, we formalize the concept of abstract shapes and introduce their efficient computation. Each shape of an RNA molecule comprises a class of similar structures and has a representative structure of minimal free energy within the class. Shape analysis is implemented in the program RNAshapes. We applied RNAshapes to the prediction of optimal and suboptimal abstract shapes of several RNAs. For a given energy range, the number of shapes is considerably smaller than the number of structures, and in all cases, the native structures were among the top shape representatives. This demonstrates that the researcher can quickly focus on the structures of interest, without processing up to thousands of near-optimal solutions. We complement this study with a large-scale analysis of the growth behaviour of structure and shape spaces. RNAshapes is available for download and as an online version on the Bielefeld Bioinformatics Server.

  6. An Efficient Process for Pd-Catalyzed C–N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

    PubMed Central

    Fors, Brett P.; Davis, Nicole R.; Buchwald, Stephen L.

    2009-01-01

    An investigation into Pd-catalyzed C–N cross-coupling reactions of aryl iodides is described. NaI is shown to have a significant inhibitory effect on these processes. By switching to a solvent system in which the iodide byproduct was insoluble, reactions of aryl iodides were accomplished with the same efficiencies as aryl chlorides and bromides. Using catalyst systems based on certain biarylphosphine ligands, aryl iodides were successfully reacted with an array of primary and secondary amines in high yields. Lastly, reactions of heteroarylamines and heteroaryliodides were also conducted in high yields. PMID:19348431

  7. Efficient Three-Component Strecker Reaction of Aldehydes/Ketones via NHC-Amidate Palladium(II) Complex Catalysis

    PubMed Central

    Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil

    2009-01-01

    A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413

  8. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B

    2014-10-09

    Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.

  9. An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions

    NASA Astrophysics Data System (ADS)

    Weise, Steffen; Messig, Danny; Meyer, Bernd; Hasse, Christian

    2013-06-01

    A large number of methods for simulating reactive flows exist, some of them, for example, directly use detailed chemical kinetics or use precomputed and tabulated flame solutions. Both approaches couple the research fields computational fluid dynamics and chemistry tightly together using either an online or offline approach to solve the chemistry domain. The offline approach usually involves a method of generating databases or so-called Lookup-Tables (LUTs). As these LUTs are extended to not only contain material properties but interactions between chemistry and turbulent flow, the number of parameters and thus dimensions increases. Given a reasonable discretisation, file sizes can increase drastically. The main goal of this work is to provide methods that handle large database files efficiently. A Memory Abstraction Layer (MAL) has been developed that handles requested LUT entries efficiently by splitting the database file into several smaller blocks. It keeps the total memory usage at a minimum using thin allocation methods and compression to minimise filesystem operations. The MAL has been evaluated using three different test cases. The first rather generic one is a sequential reading operation on an LUT to evaluate the runtime behaviour as well as the memory consumption of the MAL. The second test case is a simulation of a non-premixed turbulent flame, the so-called HM1 flame, which is a well-known test case in the turbulent combustion community. The third test case is a simulation of a non-premixed laminar flame as described by McEnally in 1996 and Bennett in 2000. Using the previously developed solver 'flameletFoam' in conjunction with the MAL, memory consumption and the performance penalty introduced were studied. The total memory used while running a parallel simulation was reduced significantly while the CPU time overhead associated with the MAL remained low.

  10. Proceedings of the international conference on nuclear physics, August 24-30, 1980, Berkeley, California. Volume 1. Abstracts. [Berkeley, California, August 24-30, 1980 (abstracts only)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    This volume contains all abstracts (931) received by the conference organizers before June 20, 1980. The abstracts are grouped according to the following topics: nucleon-nucleon interactions, free and in nuclei; distribution of matter, charge, and magnetism; exotic nuclei and exotic probes; giant resonances and other high-lying excitations; applications of nuclear science; nuclei with large angular momentum and deformation; heavy-ion reactions and relaxation phenomena; new techniques and instruments; pion absorption and scattering by nuclei; and miscellaneous. Some of these one-page abstracts contain data. A complete author index is provided. (RWR)

  11. Information Leakage Analysis by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Zanioli, Matteo; Cortesi, Agostino

    Protecting the confidentiality of information stored in a computer system or transmitted over a public network is a relevant problem in computer security. The approach of information flow analysis involves performing a static analysis of the program with the aim of proving that there will not be leaks of sensitive information. In this paper we propose a new domain that combines variable dependency analysis, based on propositional formulas, and variables' value analysis, based on polyhedra. The resulting analysis is strictly more accurate than the state of the art abstract interpretation based analyses for information leakage detection. Its modular construction allows to deal with the tradeoff between efficiency and accuracy by tuning the granularity of the abstraction and the complexity of the abstract operators.

  12. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; hide

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  13. Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water.

    PubMed

    Toth, Janie E; Rickman, Kimberly A; Venter, Andre R; Kiddle, James J; Mezyk, Stephen P

    2012-10-11

    Over the past several decades, the increased use of artificial sweeteners as dietary supplements has resulted in rising concentrations of these contaminants being detected in influent waters entering treatment facilities. As conventional treatments may not quantitatively remove these sweeteners, radical-based advanced oxidation and reduction (AO/RP) treatments could be a viable alternative. In this study, we have established the reaction kinetics for both hydroxyl ((•)OH) and sulfate (SO(4)(•-)) radical reaction with five common artificial sweeteners, as well as their associated reaction efficiencies. Rate constants for acesulfame K, aspartame, rebaudioside A, saccharin, and sucralose were <2 × 10(7), (2.28 ± 0.02) × 10(9), (2.1 ± 0.1) × 10(8), <2 × 10(7), and (1.7 ± 0.1) × 10(8) M(-1) s(-1) for the sulfate radical, and (3.80 ± 0.27) × 10(9), (6.06 ± 0.05) × 10(9), (9.97 ± 0.12) × 10(9), (1.85 ± 0.01) × 10(9), and (1.50 ± 0.01) × 10(9) M(-1) s(-1) for the hydroxyl radical, respectively. These latter values have to be combined with their corresponding reaction efficiencies of 67.9 ± 0.9, 52.2 ± 0.7, 43.0 ± 2.5, 52.7 ± 2.9, and 98.3 ± 3.5% to give effective rate constants for the hydroxyl radical reaction that can be used in the modeling of the AOP based removal of these contaminants.

  14. Evaluating Data Abstraction Assistant, a novel software application for data abstraction during systematic reviews: protocol for a randomized controlled trial.

    PubMed

    Saldanha, Ian J; Schmid, Christopher H; Lau, Joseph; Dickersin, Kay; Berlin, Jesse A; Jap, Jens; Smith, Bryant T; Carini, Simona; Chan, Wiley; De Bruijn, Berry; Wallace, Byron C; Hutfless, Susan M; Sim, Ida; Murad, M Hassan; Walsh, Sandra A; Whamond, Elizabeth J; Li, Tianjing

    2016-11-22

    Data abstraction, a critical systematic review step, is time-consuming and prone to errors. Current standards for approaches to data abstraction rest on a weak evidence base. We developed the Data Abstraction Assistant (DAA), a novel software application designed to facilitate the abstraction process by allowing users to (1) view study article PDFs juxtaposed to electronic data abstraction forms linked to a data abstraction system, (2) highlight (or "pin") the location of the text in the PDF, and (3) copy relevant text from the PDF into the form. We describe the design of a randomized controlled trial (RCT) that compares the relative effectiveness of (A) DAA-facilitated single abstraction plus verification by a second person, (B) traditional (non-DAA-facilitated) single abstraction plus verification by a second person, and (C) traditional independent dual abstraction plus adjudication to ascertain the accuracy and efficiency of abstraction. This is an online, randomized, three-arm, crossover trial. We will enroll 24 pairs of abstractors (i.e., sample size is 48 participants), each pair comprising one less and one more experienced abstractor. Pairs will be randomized to abstract data from six articles, two under each of the three approaches. Abstractors will complete pre-tested data abstraction forms using the Systematic Review Data Repository (SRDR), an online data abstraction system. The primary outcomes are (1) proportion of data items abstracted that constitute an error (compared with an answer key) and (2) total time taken to complete abstraction (by two abstractors in the pair, including verification and/or adjudication). The DAA trial uses a practical design to test a novel software application as a tool to help improve the accuracy and efficiency of the data abstraction process during systematic reviews. Findings from the DAA trial will provide much-needed evidence to strengthen current recommendations for data abstraction approaches. The trial is registered

  15. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  16. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    DOE PAGES

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  17. Extension of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction by Bromine Atom and Comparison to Chlorine Atom and Hydroxyl Radical.

    PubMed

    Poutsma, Marvin L

    2016-01-21

    Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp(3)-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR3 → HCl/HOH + •CR3); the reaction enthalpy effect was represented by the independent variable ΔrH and the "polar effect" by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here, we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. Despite lower expectations because the available database is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k298,Br = -0.147 ΔrH - 4.32 ΣF - 4.28 ΣR - 12.38 with r(2) = 0.92) was modestly successful and useful for initial predictions. The coefficient of ΔrH was ∼4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the "polar effect". Although the mean unsigned deviation of 0.79 log k298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. The major outliers are briefly discussed.

  18. Modelling abstraction licensing strategies ahead of the UK's water abstraction licensing reform

    NASA Astrophysics Data System (ADS)

    Klaar, M. J.

    2012-12-01

    Within England and Wales, river water abstractions are licensed and regulated by the Environment Agency (EA), who uses compliance with the Environmental Flow Indicator (EFI) to ascertain where abstraction may cause undesirable effects on river habitats and species. The EFI is a percentage deviation from natural flow represented using a flow duration curve. The allowable percentage deviation changes with different flows, and also changes depending on an assessment of the sensitivity of the river to changes in flow (Table 1). Within UK abstraction licensing, resource availability is expressed as a surplus or deficit of water resources in relation to the EFI, and utilises the concept of 'hands-off-flows' (HOFs) at the specified flow statistics detailed in Table 1. Use of a HOF system enables abstraction to cease at set flows, but also enables abstraction to occur at periods of time when more water is available. Compliance at low flows (Q95) is used by the EA to determine the hydrological classification and compliance with the Water Framework Directive (WFD) for identifying waterbodies where flow may be causing or contributing to a failure in good ecological status (GES; Table 2). This compliance assessment shows where the scenario flows are below the EFI and by how much, to help target measures for further investigation and assessment. Currently, the EA is reviewing the EFI methodology in order to assess whether or not it can be used within the reformed water abstraction licensing system which is being planned by the Department for Environment, Food and Rural Affairs (DEFRA) to ensure the licensing system is resilient to the challenges of climate change and population growth, while allowing abstractors to meet their water needs efficiently, and better protect the environment. In order to assess the robustness of the EFI, a simple model has been created which allows a number of abstraction, flow and licensing scenarios to be run to determine WFD compliance using the

  19. Imaginal, semantic, and surface-level processing of concrete and abstract words: an electrophysiological investigation.

    PubMed

    West, W C; Holcomb, P J

    2000-11-01

    Words representing concrete concepts are processed more quickly and efficiently than words representing abstract concepts. Concreteness effects have also been observed in studies using event-related brain potentials (ERPs). The aim of this study was to examine concrete and abstract words using both reaction time (RT) and ERP measurements to determine (1) at what point in the stream of cognitive processing concreteness effects emerge and (2) how different types of cognitive operations influence these concreteness effects. Three groups of subjects performed a sentence verification task in which the final word of each sentence was concrete or abstract. For each group the truthfulness judgment required either (1) image generation, (2) semantic decision, or (3) evaluation of surface characteristics. Concrete and abstract words produced similar RTs and ERPs in the surface task, suggesting that postlexical semantic processing is necessary to elicit concreteness effects. In both the semantic and imagery tasks, RTs were shorter for concrete than for abstract words. This difference was greatest in the imagery task. Also, in both of these tasks concrete words elicited more negative ERPs than abstract words between 300 and 550 msec (N400). This effect was widespread across the scalp and may reflect activation in a linguistic semantic system common to both concrete and abstract words. ERPs were also more negative for concrete than abstract words between 550 and 800 msec. This effect was more frontally distributed and was most evident in the imagery task. We propose that this later anterior effect represents a distinct ERP component (N700) that is sensitive to the use of mental imagery. The N700 may reflect the a access of specific characteristics of the imaged item or activation in a working memory system specific to mental imagery. These results also support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute

  20. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  1. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    PubMed

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Two palladium-catalyzed domino reactions from one set of substrates/reagents: efficient synthesis of substituted indenes and cis-stilbenoid hydrocarbons from the same internal alkynes and hindered Grignard reagents.

    PubMed

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2007-01-18

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction, and a C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides efficient access to useful polysubstituted indenes and cis-substituted stilbenes and may offer a new means of development of tandem/domino reactions in a more efficient way. [reaction: see text].

  3. The α-Effect and Competing Mechanisms: The Gas-Phase Reactions of Microsolvated Anions with Methyl Formate

    NASA Astrophysics Data System (ADS)

    Thomsen, Ditte L.; Nichols, Charles M.; Reece, Jennifer N.; Hammerum, Steen; Bierbaum, Veronica M.

    2014-02-01

    The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase SN2 reactions of the microsolvated HOO-(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO-(H2O) with that of microsolvated normal alkoxy nucleophiles, RO-(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO-(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the SN2 and BAC2 reactivity compared with the unsolvated analogs. HOO-(H2O) reacts with methyl formate exclusively via the BAC2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the BAC2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the BAC2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.

  4. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  5. Mass Communication: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1981 (Vol. 41 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 47 titles deal with a variety of topics, including the following: (1) the effect of source variation upon children's reactions to television commercials; (2) covert observation as a means of measuring the affective states of…

  6. Concrete Model Checking with Abstract Matching and Refinement

    NASA Technical Reports Server (NTRS)

    Pasareanu Corina S.; Peianek Radek; Visser, Willem

    2005-01-01

    We propose an abstraction-based model checking method which relies on refinement of an under-approximation of the feasible behaviors of the system under analysis. The method preserves errors to safety properties, since all analyzed behaviors are feasible by definition. The method does not require an abstract transition relation to he generated, but instead executes the concrete transitions while storing abstract versions of the concrete states, as specified by a set of abstraction predicates. For each explored transition. the method checks, with the help of a theorem prover, whether there is any loss of precision introduced by abstraction. The results of these checks are used to decide termination or to refine the abstraction, by generating new abstraction predicates. If the (possibly infinite) concrete system under analysis has a finite bisimulation quotient, then the method is guaranteed to eventually explore an equivalent finite bisimilar structure. We illustrate the application of the approach for checking concurrent programs. We also show how a lightweight variant can be used for efficient software testing.

  7. Extension of structure-reactivity correlations for the hydrogen abstraction reaction by bromine atom and comparison to chlorine atom and hydroxyl radical

    DOE PAGES

    Poutsma, Marvin L.

    2015-12-14

    Recently we presented structure-reactivity correlations for the gas-phase ambient-temperature rate constants for hydrogen abstraction from sp 3-hybridized carbon by chlorine atom and hydroxyl radical (Cl•/HO• + HCR 3 → HCl/HOH + •CR 3); the reaction enthalpy effect was represented by the independent variable Δ rH and the polar effect by the independent variables F and R, the Hammett constants for field/inductive and resonance effects. Both these reactions are predominantly exothermic and have early transition states. Here we present a parallel treatment for Br• whose reaction is significantly endothermic with a correspondingly late transition state. In spite of lower expectations becausemore » the available data base is less extensive and much more scattered and because long temperature extrapolations are often required, the resulting least-squares fit (log k 298,Br = –0.147 Δ rH –4.32 ΣF –4.28 ΣR –12.38 with r 2 = 0.92) was modestly successful and useful for initial predictions. The coefficient of Δ rH was ~4-fold greater, indicative of the change from an early to a late transition state; meanwhile the sizable coefficients of ΣF and ΣR indicate the persistence of the polar effect. Although the mean unsigned deviation of 0.79 log k 298 units is rather large, it must be considered in the context of a total span of over 15 log units in the data set. Lastly, the major outliers are briefly discussed.« less

  8. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells.

    PubMed

    Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki

    2013-12-07

    Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.

  9. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    PubMed Central

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  10. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  11. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  12. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    2017-01-01

    Dendritic nanostructures are capturing increasing attentions in electrocatalysis owing to their unique structural features and low density. Herein, we report for the first time bromide ions mediated synthesis of low-Pt-content PdCuPt ternary nanodendrites via galvanic replacement reaction between Pt precursor and PdCu template in aqueous solution. The experimental results show that the ternary PdCuPt nanodendrites present enhanced electrocatalytic performance for oxygen reduction reaction in acid solution compared with commercial Pt/C as well as some state-of-the-art catalysts. In details, the mass activity of the PdCuPt catalyst with optimized composition is 1.73 A/mgPt at 0.85 V vs RHE, which is 14 timesmore » higher than that of commercial Pt/C catalyst. Moreover, the long-term stability test demonstrates its better durability in acid solution. After 5k cycles, there is still 70% electrochemical surface area maintained. This method provides an efficient way to synthesize trimetallic alloys with controllable composition and specific structure for oxygen reduction reaction.« less

  13. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Li, Feng; Jung, Sun-Min; Okyay, Mahmut Sait; Ahmad, Ishfaq; Kim, Seok-Jin; Park, Noejung; Jeong, Hu Young; Baek, Jong-Beom

    2017-05-01

    The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential and have fast kinetics. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt-H bond is associated with the fastest reaction rate for the HER. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (˜65 kcal mol-1), but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s-1 in 0.5 M H2SO4 solution; 0.75 H2 s-1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm-2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

  14. Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions

    PubMed Central

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M.; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials. PMID:23860418

  15. Efficient fabrication of nanoporous si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions.

    PubMed

    Luo, Wei; Wang, Xingfeng; Meyers, Colin; Wannenmacher, Nick; Sirisaksoontorn, Weekit; Lerner, Michael M; Ji, Xiulei

    2013-01-01

    Magnesiothermic reduction can directly convert SiO2 into Si nanostructures. Despite intense efforts, efficient fabrication of highly nanoporous silicon by Mg still remains a significant challenge due to the exothermic reaction nature. By employing table salt (NaCl) as a heat scavenger for the magnesiothermic reduction, we demonstrate an effective route to convert diatom (SiO2) and SiO2/GeO2 into nanoporous Si and Si/Ge composite, respectively. Fusion of NaCl during the reaction consumes a large amount of heat that otherwise collapses the nano-porosity of products and agglomerates silicon domains into large crystals. Our methodology is potentially competitive for a practical production of nanoporous Si-based materials.

  16. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

    PubMed

    Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa

    2010-01-21

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

  17. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.

    PubMed

    Abdul Khaliq, R; Kafafy, Raed; Salleh, Hamzah Mohd; Faris, Waleed Fekry

    2012-11-16

    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.

  18. Kinetics of the hydrogen atom abstraction reactions from 1-butanol by hydroxyl radical: theory matches experiment and more.

    PubMed

    Seal, Prasenjit; Oyedepo, Gbenga; Truhlar, Donald G

    2013-01-17

    In the present work, we study the H atom abstraction reactions by hydroxyl radical at all five sites of 1-butanol. Multistructural variational transition state theory (MS-VTST) was employed to estimate the five thermal rate constants. MS-VTST utilizes a multifaceted dividing surface that accounts for the multiple conformational structures of the transition state, and we also include all the structures of the reactant molecule. The vibrational frequencies and minimum energy paths (MEPs) were computed using the M08-HX/MG3S electronic structure method. The required potential energy surfaces were obtained implicitly by direct dynamics employing interpolated variational transition state theory with mapping (IVTST-M) using a variational reaction path algorithm. The M08-HX/MG3S electronic model chemistry was then used to calculate multistructural torsional anharmonicity factors to complete the MS-VTST rate constant calculations. The results indicate that torsional anharmonicity is very important at higher temperatures, and neglecting it would lead to errors of 26 and 32 at 1000 and 1500 K, respectively. Our results for the sums of the site-specific rate constants agree very well with the experimental values of Hanson and co-workers at 896-1269 K and with the experimental results of Campbell et al. at 292 K, but slightly less well with the experiments of Wallington et al., Nelson et al., and Yujing and Mellouki at 253-372 K; nevertheless, the calculated rates are within a factor of 1.61 of all experimental values at all temperatures. This gives us confidence in the site-specific values, which are currently inaccessible to experiment.

  19. MoS2 @HKUST-1 Flower-Like Nanohybrids for Efficient Hydrogen Evolution Reactions.

    PubMed

    Wang, Chengli; Su, Yingchun; Zhao, Xiaole; Tong, Shanshan; Han, Xiaojun

    2018-01-24

    A novel MoS 2 -based flower-like nanohybrid for hydrogen evolution was fabricated through coating the Cu-containing metal-organic framework (HKUST-1) onto MoS 2 nanosheets. It is the first time that MoS 2 @HKUST-1 nanohybrids have been reported for the enhanced electrochemical performance of HER. The morphologies and components of the MoS 2 @HKUST-1 flower-like nanohybrids were characterized by scanning electron microscopy, X-ray diffraction analysis and Fourier transform infrared spectroscopy. Compared with pure MoS 2 , the MoS 2 @HKUST-1 hybrids exhibit enhanced performance on hydrogen evolution reaction with an onset potential of -99 mV, a smaller Tafel slope of 69 mV dec -1 , and a Faradaic efficiency of nearly 100 %. The MoS 2 @HKUST-1 flower-like nanohybrids exhibit excellent stability in acidic media. This design opens new possibilities to effectively synthesize non-noble metal catalysts with high performance for the hydrogen evolution reaction (HER). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reaction of Pentanol isomers with OH radical – A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Aazaad, Basheer; Lakshmipathi, Senthilkumar

    2018-05-01

    The stability of all the three isomeric forms of Pentanol has been examined with relative energy analysis. Even though 2-Pentanol is predicted to be most stable isomeric form, all the three isomeric forms undergo hydrogen atom abstraction reaction with OH radical. Among the proposed 18 different hydrogen atom abstraction reaction, the abstraction from CH2 and CH functional group is found to be a favourable reactive site with low energy barrier in M06-2X/6-311+G(d,p) level of theory. Wiberg bond order analysis shows all the abstraction reactions are concreted but not synchronic in nature. Using force analysis, the calculated work done of individual reaction regions illustrates that structural rearrangements drive the reaction with higher contribution to the energy barrier. The rate constant calculated at M06-2X method for the most favourable reaction is well matched with available experimental data. Using the reported atmospheric OH concentration (1 × 106 molecules/cm3), the life time of 1-Pentanol, 2-Pentanol and 3-Pentanol has calculated to be 18.66, 0.36 and 2.86 days, respectively.

  1. First application of an efficient and versatile ligand for copper-catalyzed cross-coupling reactions of vinyl halides with N-heterocycles and phenols.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Namjoshi, Ojas A; Cook, James M

    2010-02-05

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency, that is, mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance.

  2. First Application of An Efficient and Versatile Ligand for Copper-Catalyzed Cross-Coupling Reactions of Vinyl Halides with N-Heterocycles and Phenols

    PubMed Central

    Kabir, M. Shahjahan; Lorenz, Michael; Namjoshi, Ojas A.; Cook, James M.

    2010-01-01

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency i.e., mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance. PMID:20039699

  3. Ab initio and kinetic study of the reaction of ketones with OH for T = 500-2000 K. Part I: hydrogen-abstraction from H3CC(O)CH(3-x)(CH3)x, x = 0 ↦ 2.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Curran, Henry J

    2011-06-21

    A theoretical study is presented of the mechanism and kinetics of the reactions of the hydroxyl radical with three ketones: dimethyl (DMK), ethylmethyl (EMK) and iso-propylmethyl (iPMK) ketones. CCSD(T) values extrapolated to the basis set limit are used to benchmark the computationally less expensive methods G3 and G3MP2BH&H, for the DMK + OH reaction system. These latter methods are then used in computations involving the reactions of the larger ketones. All possible abstraction channels have been modeled. A stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel has been recognized in part of the abstracting processes. High-pressure limit rate constants of the title reactions have been calculated in the temperature range of 500-2000 K using the Variflex code including Eckart tunneling corrections. Variable reaction coordinate transition state theory (VRC-TST) has been used for the rate constants of the barrier-less entrance channel. Calculated total rate constants (cm(3) mol(-1) s(-1)) are reported as follows: k(DMK) = 1.32 × 10(2)×T(3.30)exp(503/T), k(EMK) = 3.84 × 10(1)×T(3.51)exp(1515/T), k(iPMK) = 2.08 × 10(1)×T(3.58)exp(2161/T). Group rate constants (on a per H atom basis) for different carbon sites in title reactions have also been provided.

  4. Density functional theory study of hydrogen atom abstraction from a series of para-substituted phenols: why is the Hammett σ(p)+ constant able to represent radical reaction rates?

    PubMed

    Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi

    2011-06-03

    The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.

  5. Reaction of Chlorosulfonyl Isocyanate (CSI) with Fluorosubstituted Alkenes: Evidence of a Concerted Pathway for Reaction of CSI with Fluorosubstituted Alkenes (Preprint)

    DTIC Science & Technology

    2010-06-01

    ABSTRACT Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with monofluoroalkenes. A vinyl fluorine atom on...SO2Cl R F O ‡ N SO2Cl F R O Abstract: Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with...monofluoroalkenes. A vinyl fluorine atom on an alkene raises the energy of a step-wise transition state more than the energy of the competing concerted

  6. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-04-24

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  7. Magnetic Field Effect: An Efficient Tool To Investigate The Mechanism Of Reactions Using Laser Flash Photolysis Technique

    NASA Astrophysics Data System (ADS)

    Basu, Samita; Bose, Adity; Dey, Debarati

    2008-04-01

    Magnetic field effect combined with laser flash photolysis technique have been used to study the mechanism of interactions between two drug-like quinone molecules, Menadione (1,4-naphthoquinone, MQ) and 9, 10 Anthraquinone (AQ) with one of the DNA bases, Adenine in homogeneous acetonitrile/water and heterogeneous micellar media. A switchover in reaction mode from electron transfer to hydrogen abstraction is observed with MQ on changing the solvent from acetonitrile/water to micelle; whereas, AQ retains its mode of interaction towards Adenine as electron transfer in both the media due to its bulky structure compared to MQ.

  8. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    PubMed

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.

  9. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions

    NASA Astrophysics Data System (ADS)

    Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H. A. M.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N. H.

    2016-03-01

    Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.

  10. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    PubMed

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  11. Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: Non-nearest-neighbor effects

    NASA Astrophysics Data System (ADS)

    Bentz, Jonathan L.; Kozak, John J.; Nicolis, Gregoire

    2005-08-01

    The influence of non-nearest-neighbor displacements on the efficiency of diffusion-reaction processes involving one and two mobile diffusing reactants is studied. An exact analytic result is given for dimension d=1 from which, for large lattices, one can recover the asymptotic estimate reported 30 years ago by Lakatos-Lindenberg and Shuler. For dimensions d=2,3 we present numerically exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via the theory of finite Markov processes and supported by Monte Carlo simulations. Qualitatively different results are found between processes occurring on d=1 versus d>1 lattices, and between results obtained assuming nearest-neighbor (only) versus non-nearest-neighbor displacements.

  12. Efficient assembly of polysubstituted pyrroles via a (3 + 2) cycloaddition/skeletal rearrangement/redox isomerization cascade reaction.

    PubMed

    Yu, Yuanyuan; Wang, Chunyu; He, Xinze; Yao, Xiaotong; Zu, Liansuo

    2014-07-03

    An unprecedented cascade strategy, used in conjunction with a redox isomerization, for the synthesis of 3-allyl pyrroles is reported. In a single step, readily accessible simple starting materials are transformed into highly substituted pyrroles with high efficiency. The products obtained contain allyl substituents, which can be readily elaborated to other useful functional groups. The reaction proceeds through an unusual (3 + 2) cycloaddition/skeletal rearrangement/redox isomerization pathway.

  13. Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets.

    PubMed

    Finkenauer, Lauren R; Lu, Qingyun; Hakem, Ilhem F; Majidi, Carmel; Bockstaller, Michael R

    2017-09-26

    A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets. For the case of thiol-based surfactants in ethanol, the yield of nanodroplet formation increased with the number of carbon atoms in the aliphatic part. In the case of the most effective surfactant system-octadecanethiol-the nanodroplet yield increased by about 370% as compared to pristine ethanol. The rather low overall efficiency of the reaction process along with the incompatibility of surfactant-stabilized EGaIn nanodroplets in nonpolar organic solvents suggests that the stabilization mechanism differs from the established self-assembled monolayer formation process that has been widely observed in nanoparticle formation.

  14. Process improvement: a multi-registry database abstraction success story.

    PubMed

    Abrich, Victor; Rokey, Roxann; Devadas, Christopher; Uebel, Julie

    2014-01-01

    The St. Joseph Hospital/Marshfield Clinic Cardiac Database Registry submits data to the National Cardiovascular Data Registry (NCDR) and to the Society of Thoracic Surgeons (STS) National Database. Delayed chart abstraction is problematic, since hospital policy prohibits patient care clarifications made to the medical record more than 1 month after hospital discharge. This can also lead to late identification of missed care opportunities and untimely notification to providers. Our institution was 3.5 months behind in retrospective postdischarge case abstraction. A process improvement plan was implemented to shorten this delay to 1 month postdischarge. Daily demand of incoming cases and abstraction capacity were determined for 4 employees. Demand was matched to capacity, with the remaining time allocated to reducing backlog. Daily demand of new cases was 17.1 hours. Daily abstraction capacity was 24 hours, assuming 6 hours of effective daily abstraction time per employee, leaving 7 hours per day for backlogged case abstraction. The predicted time to reach abstraction target was 10 weeks. This was accomplished after 10 weeks, as predicted, leading to a 60% reduction of backlogged cases. The delay of postdischarge chart abstraction was successfully shortened from 3.5 months to 1 month. We intend to maintain same-day abstraction efficiency without reaccumulating substantial backlog.

  15. PS2-06: Best Practices for Advancing Multi-site Chart Abstraction Research

    PubMed Central

    Blick, Noelle; Cole, Deanna; King, Colleen; Riordan, Rick; Von Worley, Ann; Yarbro, Patty

    2012-01-01

    Background/Aims Multi-site chart abstraction studies are becoming increasingly common within the HMORN. Differences in systems among HMORN sites can pose significant obstacles to the success of these studies. It is therefore crucial to standardize abstraction activities by following best practices for multi-site chart abstraction, as consistency of processes across sites will increase efficiencies and enhance data quality. Methods Over the past few months the authors have been meeting to identify obstacles to multi-site chart abstraction and to address ways in which multi-site chart abstraction processes can be systemized and standardized. The aim of this workgroup is to create a best practice guide for multi-site chart abstraction studies. Focus areas include: abstractor training, format for chart abstraction (database, paper, etc), data quality, redaction, mechanism for transferring data, site specific access to medical records, IRB/HIPAA concerns, and budgetary issues. Results The results of the workgroup’s efforts (the best practice guide) will be presented by a panel of experts at the 2012 HMORN conference. The presentation format will also focus on discussion among attendees to elicit further input and to identify areas that need to be further addressed. Subsequently, the best practice guide will be posted on the HMORN website. Discussion The best practice guide for multi-site chart abstraction studies will establish sound guidelines and serve as an aid to researchers embarking on multi-site chart abstraction studies. Efficiencies and data quality will be further enhanced with standardized multi-site chart abstraction practices.

  16. Titanium isopropoxide as efficient catalyst for the aza-Baylis-Hillman reaction. Selective formation of alpha-methylene-beta-amino acid derivatives.

    PubMed

    Balan, Daniela; Adolfsson, Hans

    2002-04-05

    The direct formation of alpha-methylene-beta-amino acid derivatives is achieved using the aza version of the Baylis-Hillman protocol. The products are readily formed in a three-component one-pot reaction between arylaldehydes, sulfonamides, and alpha,beta-unsaturated carbonyl compounds. The reaction is efficiently catalyzed by titanium isopropoxide and 2-hydroxyquinuclidine in the presence of molecular sieves. The protocol allows for structural variation of the substrates, tolerating electron-poor and electron-rich arylaldehydes and various Michael acceptors.

  17. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Liang, Jingwen; Hassan, Mehboob; Zhu, Dongsheng; Guo, Liping; Bo, Xiangjie

    2017-03-15

    Nitrogen-doped graphene (N/GR) has been considered as active metal-free electrocatalysts for oxygen reduction reaction (ORR). However, the nitrogen (N) doping efficiency is very low and only few N atoms are doped into the framework of GR. To boost the N doping efficiency, in this work, a confined pyrolysis method with high N doping efficiency is used for the preparation of cobalt nanoparticles/nitrogen-doped GR (Co/N/GR). Under the protection of SiO 2 , the inorganic ligand NH 3 in cobalt amine complex ([Co(NH 3 ) 6 ] 3+ ) is trapped in the confined space and then can be effectively doped into the framework of GR without the introduction of any carbon residues. Meanwhile, due to the redox reaction between the cobalt ions and carbon atoms of GR, Co nanoparticles are supported into the framework of N/GR. Due to prevention of GR layer aggregation with SiO 2 , the Co/N/GR with high dispersion provides sufficient surface area and maximum opportunity for the exposure of Co nanoparticles and active sites of N dopant. By combination of enhanced N doping efficiency, Co nanoparticles and high dispersion of GR sheets, the Co/N/GR is remarkably active, cheap and selective noble-metal free catalysts for ORR. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reaction mechanism and kinetics of the degradation of terbacil initiated by OH radical - A theoretical study

    NASA Astrophysics Data System (ADS)

    Ponnusamy, S.; Sandhiya, L.; Senthilkumar, K.

    2018-02-01

    The reaction of terbacil with OH radical is studied by using electronic structure calculations. The reaction of terbacil with OH radical is found to proceed by H-atom abstraction, Cl-atom abstraction and OH addition reactions. The initially formed alkyl radical will undergo atmospheric transformation in the presence of molecular oxygen leading to the formation of peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals is studied. The rate constant is calculated for the H-atom abstraction reactions over the temperature range of 200-1000 K. The results obtained from electronic structure calculations and kinetic study show that the H-atom abstraction reaction is more favorable. The calculated lifetime of terbacil is 24 h in normal atmospheric OH concentration. The rate constant calculated for H-atom abstraction reactions is 6 × 10-12, 4.4 × 10-12 and 3.2 × 10-12 cm3molecule-1s-1, respectively which is in agreement with the previous literature value of 1.9 × 10-12 cm3molecule-1s-1.

  19. An ab initio/Rice-Ramsperger-Kassel-Marcus study of the hydrogen-abstraction reactions of methyl ethers, H(3)COCH(3-x)(CH(3))(x), x = 0-2, by OH; mechanism and kinetics.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Curran, Henry J

    2010-07-14

    A theoretical study of the mechanism and kinetics of the H-abstraction reaction from dimethyl (DME), ethylmethyl (EME) and iso-propylmethyl (IPME) ethers by the OH radical has been carried out using the high-level methods CCSD(T)/CBS, G3 and G3MP2BH&H. The computationally less-expensive methods of G3 and G3MP2BH&H yield results for DME within 0.2-0.6 and 0.7-0.9 kcal mol(-1), respectively, of the coupled cluster, CCSD(T), values extrapolated to the basis set limit. So the G3 and G3MP2BH&H methods can be confidently used for the reactions of the higher ethers. A distinction is made between the two different kinds of H-atoms, classified as in/out-of the symmetry plane, and it is found that abstraction from the out-of-plane H-atoms proceeds through a stepwise mechanism involving the formation of a reactant complex in the entrance channel and product complex in the exit channel. The in-plane H-atom abstractions take place through a more direct mechanism and are less competitive. Rate constants of the three reactions have been calculated in the temperature range of 500-3000 K using the Variflex code, based on the weak collision, master equation/microcanonical variational RRKM theory including tunneling corrections. The computed total rate constants (cm(3) mol(-1) s(-1)) have been fitted as follows: k(DME) = 2.74 xT(3.94) exp (1534.2/T), k(EME) = 20.93 xT(3.61) exp (2060.1/T) and k(IPME) = 0.55 xT(3.93) exp (2826.1/T). Expressions of the group rate constants for the three different carbon sites are also provided.

  20. Ab Initio Kinetics of Hydrogen Abstraction from Methyl Acetate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals.

    PubMed

    Tan, Ting; Yang, Xueliang; Krauter, Caroline M; Ju, Yiguang; Carter, Emily A

    2015-06-18

    The kinetics of hydrogen abstraction by five radicals (H, O((3)P), OH, CH3, and HO2) from methyl acetate (MA) is investigated theoretically in order to gain further understanding of certain aspects of the combustion chemistry of biodiesels, such as the effect of the ester moiety. We employ ab initio quantum chemistry methods, coupled cluster singles and doubles with perturbative triples correction (CCSD(T)) and multireference averaged coupled pair functional theory (MRACPF2), to predict chemically accurate reaction energetics. Overall, MRACPF2 predicts slightly higher barrier heights than CCSD(T) for MA + H/CH3/O/OH, but slightly lower barrier heights for hydrogen abstraction by HO2. Based on the obtained reaction energies, we also report high-pressure-limit rate constants using transition state theory (TST) in conjunction with the separable-hindered-rotor approximation, the variable reaction coordinate TST, and the multi-structure all-structure approach. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predictions are in good agreement with available experimental results. Abstractions from both of the methyl groups in MA are expected to contribute to consumption of the fuel as they exhibit similar rate coefficients. The reactions involving the OH radical are predicted to have the highest rates among the five abstracting radicals, while those initiated by HO2 are expected to be the lowest.

  1. Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions.

    PubMed

    Chen, Zhao-Yang; Duan, Long-Fa; Sheng, Tian; Lin, Xiao; Chen, Ya-Feng; Chu, You-Qun; Sun, Shi-Gang; Lin, Wen-Feng

    2017-06-21

    Core-shell composites with strong phase-phase contact could provide an incentive for catalytic activity. A simple, yet efficient, H 2 O-mediated method has been developed to synthesize a mesoscopic core-shell W@WC architecture with a dodecahedral microstructure, via a one-pot reaction. The H 2 O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities toward hydrogen evolution and nitrobenzene electroreduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano-WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC, and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.

  2. A Hydrazone-Based Covalent Organic Framework as an Efficient and Reusable Photocatalyst for the Cross-Dehydrogenative Coupling Reaction of N-Aryltetrahydroisoquinolines.

    PubMed

    Liu, Wanting; Su, Qing; Ju, Pengyao; Guo, Bixuan; Zhou, Hui; Li, Guanghua; Wu, Qiaolin

    2017-02-22

    A hydrazone-based covalent organic framework (COF) was synthesized by condensation of 2,5-dimethoxyterephthalohydrazide with 1,3,5-triformylbenzene under solvothermal conditions. The COF material exhibits excellent porosity with a BET surface area of up to 1501 m 2  g -1 , high crystallinity, and good thermal and chemical stability. Moreover, it showed efficient photocatalytic activity towards cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and nucleophiles such as nitromethane, acetone, and phenylethyl ketone. The metal-free catalytic system also offers attractive advantages including simplicity of operation, wide substrate adaptability, ambient reaction conditions, and robust recycling capability of the catalyst, thus providing a promising platform for highly efficient and reusable photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.

    PubMed

    Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir

    2018-06-12

    The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.

  4. Biomimicry Promotes the Efficiency of a 10-Step Sequential Enzymatic Reaction on Nanoparticles, Converting Glucose to Lactate.

    PubMed

    Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L; Lata, James P; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M; Bergkvist, Magnus; Sherwood, Robert W; Zhang, Sheng; Travis, Alexander J

    2017-01-02

    For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biomimicry promotes the efficiency of a 10-step sequential enzymatic reaction on nanoparticles, converting glucose to lactate

    PubMed Central

    Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L.; Lata, James P.; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M.; Bergkvist, Magnus; Sherwood, Robert W.; Zhang, Sheng; Travis, Alexander J.

    2016-01-01

    For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. PMID:27901298

  6. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP)more » using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.« less

  7. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants.

    PubMed

    Liu, Weipeng; Zhu, Minjun; Liu, Hongxing; Wei, Jitao; Zhou, Xiaoming; Xing, Da

    2016-07-15

    Searching for a strategy to enhance the efficiency of nucleic acid amplification and achieve exquisite discrimination of nucleic acids at the single-base level for biological detection has become an exciting research direction in recent years. Here, we have developed a simple and universal primer design strategy which produces a fascinating effect on isothermal strand displacement amplification (iSDA). We refer to the resultant primer as "invading stacking primer (IS-Primer)" which is based on contiguous stacking hybridization and toehold-mediated exchange reaction and function by merely changing the hybridization location of the primer. Using the IS-Primer, the sensitivity in detecting the target miR-21 is improved approximately five fold compared with the traditional iSDA reaction. It was further demonstrated that the IS-Primer acts as an invading strand to initiate branch migration which can increase the efficiency of the untwisting of the hairpin probe. This effect is equivalent to reducing the free energy of the stem, and the technique shows superior selectivity for single-base mismatches. By demonstrating the enhanced effect of the IS-Primer in the iSDA reaction, this work may provide a potentially new avenue for developing more sensitive and selective nucleic acids assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    DOE PAGES

    Wang, Jie; Han, Lili; Lin, Ruoqian; ...

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo 2O 4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo 2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo 2O 4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo 2O 4/C nanoparticles exhibit superior long-term stability for both themore » ORR and OER compared to commercial Pt/C. The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less

  9. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yang, Shuting; Mao, Xinxin; Cao, Zhaoxia; Yin, Yanhong; Wang, Zhichao; Shi, Mengjiao; Dong, Hongyu

    2018-01-01

    Onion-derived nitrogen, sulfur self-doped nanoporous carbon spheres (NSC) as efficient metal-free electrocatalyst were synthesized via a facile hydrothermal and subsequent pyrolysis process. The typical NSC with a high BET specific surface area of 1558 m2 g-1, contains 6.23 at.% N and 0.36 at.% S, and possesses high concentration of pyridinic and graphitic nitrogen species. Experimentally, the best performance was the NSC-A2 which showed excellent catalytic activity to oxygen reduction reaction via a 4 electron mechanism with an onset potential of 0.88 V (vs. RHE), and a superior stability comparable to commercial Pt/C catalyst. The high electrocatalytic activity is attributed to not only the synergistic effect of N and S dual doping in carbon and the sufficient active sites, but also its high BET specific surface area and suitable microporous structure. The results demonstrate that it is a simple and scalable approach for preparing efficient and low-cost carbon-based electrocatalysts for oxygen reduction reaction.

  10. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate.

    PubMed

    Davis, Kathryn M; Badu-Tawiah, Abraham K

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O 2 •- ) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution. Graphical Abstract ᅟ.

  11. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen.

    PubMed

    Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2011-03-07

    We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions. © 2011 American Institute of Physics.

  12. The hydrogen abstraction reaction O({sup 3}P) + CH{sub 4}: A new analytical potential energy surface based on fit to ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Lavado, Eloisa; Corchado, Jose C.; Espinosa-Garcia, Joaquin, E-mail: joaquin@unex.es

    2014-02-14

    Based exclusively on high-level ab initio calculations, a new full-dimensional analytical potential energy surface (PES-2014) for the gas-phase reaction of hydrogen abstraction from methane by an oxygen atom is developed. The ab initio information employed in the fit includes properties (equilibrium geometries, relative energies, and vibrational frequencies) of the reactants, products, saddle point, points on the reaction path, and points on the reaction swath, taking especial caution respecting the location and characterization of the intermediate complexes in the entrance and exit channels. By comparing with the reference results we show that the resulting PES-2014 reproduces reasonably well the whole setmore » of ab initio data used in the fitting, obtained at the CCSD(T) = FULL/aug-cc-pVQZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical surface we perform an extensive dynamics study using quasi-classical trajectory calculations, comparing the results with recent experimental and theoretical data. The excitation function increases with energy (concave-up) reproducing experimental and theoretical information, although our values are somewhat larger. The OH rotovibrational distribution is cold in agreement with experiment. Finally, our results reproduce experimental backward scattering distribution, associated to a rebound mechanism. These results lend confidence to the accuracy of the new surface, which substantially improves the results obtained with our previous surface (PES-2000) for the same system.« less

  13. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by carbon-centered radicals.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2014-06-23

    Hydrogen abstractions are important elementary reactions in a variety of reacting media at high temperatures in which oxygenates and hydrocarbon radicals are present. Accurate kinetic data are obtained from CBS-QB3 ab initio (AI) calculations by using conventional transition-state theory within the high-pressure limit, including corrections for hindered rotation and tunneling. From the obtained results, a group-additive (GA) model is developed that allows the Arrhenius parameters and rate coefficients for abstraction of the α-hydrogen from a wide range of oxygenate compounds to be predicted at temperatures ranging from 300 to 1500 K. From a training set of 60 hydrogen abstractions from oxygenates by carbon-centered radicals, 15 GA values (ΔGAV°s) are obtained for both the forward and reverse reactions. Among them, four ΔGAV°s refer to primary contributions, and the remaining 11 ΔGAV°s refer to secondary ones. The accuracy of the model is further improved by introducing seven corrections for cross-resonance stabilization of the transition state from an additional set of 43 reactions. The determined ΔGAV°s are validated upon a test set of AI data for 17 reactions. The mean absolute deviation of the pre-exponential factors (log A) and activation energies (E(a)) for the forward reaction at 300 K are 0.238 log(m(3)  mol(-1)  s(-1)) and 1.5 kJ mol(-1), respectively, whereas the mean factor of deviation <ρ> between the GA-predicted and the AI-calculated rate coefficients is 1.6. In comparison with a compilation of 33 experimental rate coefficients, the <ρ> between the GA-predicted values and these experimental values is only 2.2. Hence, the constructed GA model can be reliably used in the prediction of the kinetics of α-hydrogen-abstraction reactions between a broad range of oxygenates and oxygenate radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol.

    PubMed

    Shahrisa, Aziz; Teimuri-Mofrad, Reza; Gholamhosseini-Nazari, Mahdi

    2015-02-01

    A variety of organocatalysts has been screened for the synthesis of arylaminonaphthols. It has been shown that (N,N-dimethylethanolamine) is a highly efficient organocatalyst for the direct synthesis of a novel class of arylaminonaphthols via three-component condensation of 2-naphthol, aldehydes, and arylamines under solvent-free conditions. Mild, one-pot, and green reaction conditions, relatively short reaction times and good yields make this protocol highly significant. 25 new compounds have been synthesized by this method.

  15. Diffusion and reactivity of ground-state nitrogen atoms N(4S) between 3 and 15 K: application to the hydrogen abstraction reaction from methane under non-energetic conditions

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Krim, Lahouari

    2015-07-01

    We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.

  16. Theoretical chemical kinetic study of the H-atom abstraction reactions from aldehydes and acids by Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2014-12-26

    We have performed a systematic, theoretical chemical kinetic investigation of H atom abstraction by Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals from aldehydes (methanal, ethanal, propanal, and isobutanal) and acids (methanoic acid, ethanoic acid, propanoic acid, and isobutanoic acid). The geometry optimizations and frequencies of all of the species in the reaction mechanisms of the title reactions were calculated using the MP2 method and the 6-311G(d,p) basis set. The one-dimensional hindered rotor treatment for reactants and transition states and the intrinsic reaction coordinate calculations were also determined at the MP2/6-311G(d,p) level of theory. For the reactions of methanal and methanoic acid with Ḣ atoms and ȮH, HȮ2, and ĊH3 radicals, the calculated relative electronic energies were obtained with the CCSD(T)/cc-pVXZ (where X = D, T, and Q) method and were extrapolated to the complete basis set limit. The electronic energies obtained with the CCSD(T)/cc-pVTZ method were benchmarked against the CCSD(T)/CBS energies and were found to be within 1 kcal mol(-1) of one another. Thus, the energies calculated using the less expensive CCSD(T)/cc-pVTZ method were used in all of the reaction mechanisms and in calculating our high-pressure limit rate constants for the title reactions. Rate constants were calculated using conventional transition state theory with an asymmetric Eckart tunneling correction, as implemented in Variflex. Herein, we report the individual and average rate constants, on a per H atom basis, and total rate constants in the temperature range 500-2000 K. We have compared some of our rate constant results to available experimental and theoretical data, and our results are generally in good agreement.

  17. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher; Fernàndez-Garcia, Daniel

    2015-04-01

    Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the

  18. Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel

    2014-09-01

    Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the

  19. Substrate-Directed Catalytic Selective Chemical Reactions.

    PubMed

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  20. Efficiency of the High Efficiency Total Absorption Spectrometer (HECTOR)

    NASA Astrophysics Data System (ADS)

    Sprowal, Zaire; Simon, Anna; Reingold, Craig; Spyrou, Artemis; Naqvi, Farheen; Dombos, Alexander; Palmisano, Alicia; Anderson, Tyler; Anderson, Samuel; Moylan, Shane; Seymour, Christopher; Skulski, Michael; Smith, Mallory K.; Strauss, Sabrina; Kolk, Byant Vande

    2016-09-01

    The p-process is a nucleosynthesis process that occurs in explosive environments such as type II and Ia supernovae and is responsible for production of heavy proton rich nuclei. Gamma rays emitted during these explosions induce several photo-disintegration reactions: (γ,n), (γ,p), and (γ , α). To study these interactions, the inverse of these reactions are measured experimentally. The High Efficiency TOtal absorption spectrometeR (HECTOR) at the University of Notre Dame was built for measuring these reactions. Standard gamma sources 60Co and 137Cs and known resonances in 27Al(p, γ)28Si reaction were used to experimentally determine HECTOR's summing efficiency. Here, the preliminary analysis will be presented and the results will be compared to the Geant4 simulation of the array. This work was supported by the National Science Foundation under the Grant Number PHYS-1614442.

  1. Abstracts for the Venus Geoscience Tutorial and Venus Geologic Mapping Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Abstracts and tutorial are presented from the workshop. Representative titles are: Geology of Southern Guinevere Planitia, Venus, Based on Analyses of Goldstone Radar Data; Tessera Terrain: Characteristics and Models of Origin; Venus Volcanism; Rate Estimates from Laboratory Studies of Sulfur Gas-Solid Reactions; and A Morphologic Study of Venus Ridge Belts.

  2. Coupling Radar Rainfall to Hydrological Models for Water Abstraction Management

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; MacDonald, Ken

    2015-04-01

    The impacts of climate change and growing water use are likely to put considerable pressure on water resources and the environment. In the UK, a reform to surface water abstraction policy has recently been proposed which aims to increase the efficiency of using available water resources whilst minimising impacts on the aquatic environment. Key aspects to this reform include the consideration of dynamic rather than static abstraction licensing as well as introducing water trading concepts. Dynamic licensing will permit varying levels of abstraction dependent on environmental conditions (i.e. river flow and quality). The practical implementation of an effective dynamic abstraction strategy requires suitable flow forecasting techniques to inform abstraction asset management. Potentially the predicted availability of water resources within a catchment can be coupled to predicted demand and current storage to inform a cost effective water resource management strategy which minimises environmental impacts. The aim of this work is to use a historical analysis of UK case study catchment to compare potential water resource availability using modelled dynamic abstraction scenario informed by a flow forecasting model, against observed abstraction under a conventional abstraction regime. The work also demonstrates the impacts of modelling uncertainties on the accuracy of predicted water availability over range of forecast lead times. The study utilised a conceptual rainfall-runoff model PDM - Probability-Distributed Model developed by Centre for Ecology & Hydrology - set up in the Dove River catchment (UK) using 1km2 resolution radar rainfall as inputs and 15 min resolution gauged flow data for calibration and validation. Data assimilation procedures are implemented to improve flow predictions using observed flow data. Uncertainties in the radar rainfall data used in the model are quantified using artificial statistical error model described by Gaussian distribution and

  3. Mild and efficient molybdenum-mediated Pauson-Khand-type reaction.

    PubMed

    Adrio, Javier; Rivero, Marta Rodríguez; Carretero, Juan Carlos

    2005-02-03

    [reaction: see text] The molybdenum-mediated Pauson-Khand reaction promoted by Mo(CO)3(DMF)3 takes place under very mild conditions in the absence of any promoter. High yields in Pauson-Khand adducts are obtained in the cyclization of a wide variety of functionalized 1,6- and 1,7-enynes. Enynes bearing electron withdrawing groups at the alkene terminus are particularly good substrates.

  4. Reading Achievement: Characteristics Associated with Success and Failure: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," April through June 1978 (Vol. 38 Nos. 10 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 20 titles deal with a variety of topics, including the following: the relationships between reading achievement and such factors as dependency, attitude toward reading, mastery of word attack skills, reaction time on selected…

  5. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  6. Fundamental Researches on the High-speed and High-efficiency Steelmaking Reaction

    NASA Astrophysics Data System (ADS)

    Kitamura, Shin-ya; Shibata, Hiroyuki; Maruoka, Nobuhiro

    2012-06-01

    Traditionally, steelmaking reactions have been analyzed by thermodynamics. Recently, software packages that can be used to calculate the equilibrium conditions have improved greatly. In some cases, information obtained in this software is useful for analyzing the steelmaking reaction. On the other hand, in industrial operation, steelmaking reactions, i.e., decarburization, dephosphorization, desulfurization or nitrogen removal, do not reach the equilibrium condition. Therefore, the kinetic model is very important for gaining a theoretical understanding of the steelmaking reaction. In this paper, the following recent research activities were shown; 1) mass transfer of impurities between solid oxide and liquid slag, 2) simulation model of hot metal dephosphorization by multiphase slag, 3) evaluation of reaction rate at bath surface in gas-liquid reaction system and 4) condition for forming of metal emulsion by bottom bubbling.

  7. Effects of semantic neighborhood density in abstract and concrete words.

    PubMed

    Reilly, Megan; Desai, Rutvik H

    2017-12-01

    Concrete and abstract words are thought to differ along several psycholinguistic variables, such as frequency and emotional content. Here, we consider another variable, semantic neighborhood density, which has received much less attention, likely because semantic neighborhoods of abstract words are difficult to measure. Using a corpus-based method that creates representations of words that emphasize featural information, the current investigation explores the relationship between neighborhood density and concreteness in a large set of English nouns. Two important observations emerge. First, semantic neighborhood density is higher for concrete than for abstract words, even when other variables are accounted for, especially for smaller neighborhood sizes. Second, the effects of semantic neighborhood density on behavior are different for concrete and abstract words. Lexical decision reaction times are fastest for words with sparse neighborhoods; however, this effect is stronger for concrete words than for abstract words. These results suggest that semantic neighborhood density plays a role in the cognitive and psycholinguistic differences between concrete and abstract words, and should be taken into account in studies involving lexical semantics. Furthermore, the pattern of results with the current feature-based neighborhood measure is very different from that with associatively defined neighborhoods, suggesting that these two methods should be treated as separate measures rather than two interchangeable measures of semantic neighborhoods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential.

    PubMed

    Jeon, Dahee; Kim, Jisoo; Shin, Jaedon; Hidayat, Zahra Ramadhany; Na, Soyoung; Lee, Yunho

    2016-11-15

    Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optimizing Chemical Reactions with Deep Reinforcement Learning.

    PubMed

    Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N

    2017-12-27

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

  10. Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model.

    PubMed

    Neic, Aurel; Campos, Fernando O; Prassl, Anton J; Niederer, Steven A; Bishop, Martin J; Vigmond, Edward J; Plank, Gernot

    2017-10-01

    Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.

  11. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    PubMed

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  12. Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model

    NASA Astrophysics Data System (ADS)

    Neic, Aurel; Campos, Fernando O.; Prassl, Anton J.; Niederer, Steven A.; Bishop, Martin J.; Vigmond, Edward J.; Plank, Gernot

    2017-10-01

    Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.

  13. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  14. NASA Patent Abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 21) Abstracts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 87 patents and applications introduced into the NASA scientific and technical information system during the period of January 1982 through June 1982. Each entry consists of a citation, an abstract, and in mose cases, a key illustration selected from the patent or patent application.

  15. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction.

    PubMed

    Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A

    2017-08-04

    The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.

  16. Grounding Abstractness: Abstract Concepts and the Activation of the Mouth

    PubMed Central

    Borghi, Anna M.; Zarcone, Edoardo

    2016-01-01

    One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools) proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth). While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk) are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts. PMID:27777563

  17. Optimizing Chemical Reactions with Deep Reinforcement Learning

    PubMed Central

    2017-01-01

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability. PMID:29296675

  18. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2017-11-28

    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  19. Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakawa, Takeshi; Okajima, Toshihide; Kuroda, Shun'ichi

    A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate {alpha}-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the {alpha}-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reactionmore » of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.« less

  20. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step

  1. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  2. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    PubMed Central

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-01-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting. PMID:27748380

  3. On the Use of "Green" Metrics in the Undergraduate Organic Chemistry Lecture and Lab to Assess the Mass Efficiency of Organic Reactions

    ERIC Educational Resources Information Center

    Andraos, John; Sayed, Murtuzaali

    2007-01-01

    A general analysis of reaction mass efficiency and raw material cost is developed using an Excel spread sheet format which can be applied to any chemical transformation. These new methods can be easily incorporated into standard laboratory exercises.

  4. People’s Republic of China Scientific Abstracts, Number 173.

    DTIC Science & Technology

    1977-08-03

    ABSTRACT: The quickened pace in socialist construction in recent years and the increased demand for sandarac varnish as a wood primer and paint solvent...good thinner—mixes well with other varnishes and lacquers. Moreover, its environmental pollution and capital outlay are low, requiring minimum...reaction in manufacture, and the varnishing properties of the new resin in detail. 5292 CSO: 4009 GENETICS AND BREEDING AUTHOR: None ORG

  5. A new era for homolytic aromatic substitution: replacing Bu3SnH with efficient light-induced chain reactions.

    PubMed

    Gurry, Michael; Aldabbagh, Fawaz

    2016-04-28

    Herein is a pertinent review of recent photochemical homolytic aromatic substitution (HAS) literature. Issues with using the reductant Bu3SnH in an oxidative process where the net loss of a hydrogen atom occurs is discussed. Nowadays more efficient light-induced chain reactions are used resulting in HAS becoming a synthetic mechanism of choice rivaling organometallic, transition-metal and electrophilic aromatic substitution protocols. The review includes aromatic substitution as part of a tandem or cascade reaction, Pschorr reaction, as well as HAS facilitated by ipso-substitution, and Smiles rearrangement. Recently visible-light photoredox catalysis, which is carried out at room temperature has become one of the most important means of aromatic substitution. The main photoredox catalysts used are polypyridine complexes of Ru(ii) and Ir(iii), although eosin Y is an alternative allowing metal-free HAS. Other radical initiator-free aromatic substitutions have used 9-mesityl-10-methylacridinium ion and N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) as the photoredox catalyst, UV-light, photoinduced electron-transfer, zwitterionic semiquinone radical anions, and Barton ester intermediates.

  6. Topical 5-Fluorouracil associated skin reaction

    PubMed Central

    Chughtai, Komal; Gupta, Rahul; Upadhaya, Sunil

    2017-01-01

    Abstract Topical 5- Fluorouracil (5-FU) is used more frequently to treat actinic keratosis. We are presenting a skin reaction as a side effect of this medication. Treatment for such cases of 5-FU-induced skin reactions is based on proper skin care and treatment of any superimposed infections. Medical providers should be aware of such side effects to provide their patients with proper instructions to avoid complications. PMID:28845237

  7. Accelerated isothermal nucleic acid amplification in betaine-free reaction.

    PubMed

    Ma, Cuiping; Wang, Yifan; Zhang, Pansong; Shi, Chao

    2017-08-01

    Betaine was used as a common additive to isothermal nucleic acid amplification reactions because of lowering the melting temperature (Tm) of DNA. Herein, we reported a novel finding that betaine was inhibiting the reaction efficiency of isothermal amplification reactions. In this work, we have verified this finding by classical loop-mediated isothermal amplification that the addition of 0.8 M betaine inhibited the efficiency of reaction dropping to approximately 1%. Additionally, we clarified the mechanism of betaine hindering isothermal amplification reactions with a molecular barrier to lower associate rate constant K1 for intermolecular hybridization. This finding would be very significant for studies on the interaction between small molecule substance and DNA, and the development of point-of-care testing because of simplifying reaction system and increasing reaction efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reading, Comprehension, and Memory Processes: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through September 1978 (Vol. 39 Nos. 1 through 3).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 12 titles deal with the following topics: advance organizers; a comparison of the effectiveness and efficiency of behavioral objectives and sample tests; anaphoric nominal substitution and its relationship to reading…

  9. Mn(2+)-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions.

    PubMed

    Li, Yifan; Sun, Jianhui; Sun, Sheng-Peng

    2016-08-05

    In this work, we report a novel Mn(2+)-mediated Fenton-like process based on Fe(III)-NTA complex that is super-efficient at circumneutral pH range. Kinetics experiments showed that the presence of Mn(2+) significantly enhanced the effectiveness of Fe(III)-NTA complex catalyzed Fenton-like reaction. The degradation rate constant of crotamiton (CRMT), a model compound, by the Fe(III)- NTA_Mn(2+) Fenton-like process was at least 1.6 orders of magnitude larger than that in the absence of Mn(2+). Other metal ions such as Ca(2+), Mg(2+), Co(2+) and Cu(2+) had no impacts or little inhibitory effect on the Fe(III)-NTA complex catalyzed Fenton-like reaction. The generation of hydroxyl radical (HO) and superoxide radical anion (O2(-)) in the Fe(III)-NTA_Mn(2+) Fenton-like process were suggested by radicals scavenging experiments. The degradation efficiency of CRMT was inhibited significantly (approximately 92%) by the addition of HO scavenger 2-propanol, while the addition of O2(-) scavenger chloroform resulted in 68% inhibition. Moreover, the results showed that other chelating agents such as EDTA- and s,s-EDDS-Fe(III) catalyzed Fenton-like reactions were also enhanced significantly by the presence of Mn(2+). The mechanism involves an enhanced generation of O2(-) from the reactions of Mn(2+)-chelates with H2O2, indirectly promoting the generation of HO by accelerating the reduction rate of Fe(III)-chelates to Fe(II)- chelates. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitative analysis of total starch content in wheat flour by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-09-01

    This paper proposed a new reaction headspace gas chromatographic (HS-GC) method for efficiently quantifying the total starch content in wheat flours. A certain weight of wheat flour was oxidized by potassium dichromate in an acidic condition in a sealed headspace vial. The results show that the starch in wheat flour can be completely transferred to carbon dioxide at the given conditions (at 100 °C for 40 min) and the total starch content in wheat flour sample can be indirectly quantified by detecting the CO 2 formed from the oxidation reaction. The data showed that the relative standard deviation of the reaction HS-GC method in the precision test was less than 3.06%, and the relative differences between the new method and the reference method (titration method) were no more than 8.90%. The new reaction HS-GC method is automated, accurate, and can be a reliable tool for determining the total starch content in wheat flours in both laboratory and industrial applications. Graphical abstract The total starch content in wheat flour can be indirectly quantified by the GC detection of the CO 2 formed from the oxidation reaction between wheat flour and potassium dichromate in an acidic condition.

  11. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    NASA Astrophysics Data System (ADS)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  12. Extension of structure-reactivity correlations for the hydrogen abstraction reaction to methyl radical and comparison to chlorine atom, bromine atom, and hydroxyl radical

    DOE PAGES

    Poutsma, Marvin L.

    2016-06-07

    In this study, we presented structure-reactivity correlations for the gas-phase rate constants for hydrogen abstraction from sp3-hybridized carbon by three electrophilic radicals (X • + HCR 3 → XH + •CR 3; X = Cl •, HO •, and Br); the reaction enthalpy effect was represented by the independent variable Δ rH and the polar effect by the independent variables F and R, the Hammett-Taft constants for field/inductive and resonance effects. Here we present a parallel treatment for the less electronegative CH 3 •. In spite of a limited and scattered data base, the resulting least-squares fit [log k 437(CHmore » 3 •) = 0.0251(Δ rH) + 0.96(ΣF) 0.56(ΣR) – 19.15] was modestly successful and useful for initial predictions. As expected, the polar effect appears to be minor and its directionality, i.e., the philicity of CH 3, may depend on the nature of the substituents.« less

  13. Extension of structure-reactivity correlations for the hydrogen abstraction reaction to methyl radical and comparison to chlorine atom, bromine atom, and hydroxyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, Marvin L.

    In this study, we presented structure-reactivity correlations for the gas-phase rate constants for hydrogen abstraction from sp3-hybridized carbon by three electrophilic radicals (X • + HCR 3 → XH + •CR 3; X = Cl •, HO •, and Br); the reaction enthalpy effect was represented by the independent variable Δ rH and the polar effect by the independent variables F and R, the Hammett-Taft constants for field/inductive and resonance effects. Here we present a parallel treatment for the less electronegative CH 3 •. In spite of a limited and scattered data base, the resulting least-squares fit [log k 437(CHmore » 3 •) = 0.0251(Δ rH) + 0.96(ΣF) 0.56(ΣR) – 19.15] was modestly successful and useful for initial predictions. As expected, the polar effect appears to be minor and its directionality, i.e., the philicity of CH 3, may depend on the nature of the substituents.« less

  14. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    NASA Astrophysics Data System (ADS)

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2014-10-01

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.

  15. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento

    2014-10-07

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concretemore » biological models.« less

  16. Quality of life in children with adverse drug reactions: a narrative and systematic review.

    PubMed

    Del Pozzo-Magaña, Blanca R; Rieder, Michael J; Lazo-Langner, Alejandro

    2015-10-01

    Adverse drug reactions are a common problem affecting adults and children. The economic impact of the adverse drug reactions has been widely evaluated; however, studies of the impact on the quality of life of children with adverse drug reactions are scarce. The aim was to evaluate studies assessing the health-related quality of life of children with adverse drug reactions. We conducted a systematic review that included the following electronic databases: MEDLINE, EMBASE and the Cochrane Library (including the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Controlled Trials Register and the Health Technology Assessment Databases). Nine studies were included. Four of the studies were conducted in children with epilepsy; the rest of them involved children with chronic viral hepatitis, Crohn's disease, paediatric cancer and multiple adverse drug reactions compared with healthy children. Based on their findings, authors of all studies concluded that adverse drug reactions had a negative impact on the quality of life of children. No meta-analysis was conducted given the heterogeneous nature of the studies. To date, there is no specific instrument that measures quality of life of children with adverse drug reactions, and the information available is poor and variable. In general, adverse drug reactions have a negative impact on the quality of life of affected children. For those interested in this area, more work needs to be done to improve tools that help to evaluate efficiently the health-related quality of life of children with adverse drug reactions and chronic diseases. © 2014 The British Pharmacological Society.

  17. Quality of life in children with adverse drug reactions: a narrative and systematic review

    PubMed Central

    Del Pozzo-Magaña, Blanca R; Rieder, Michael J; Lazo-Langner, Alejandro

    2015-01-01

    Aims Adverse drug reactions are a common problem affecting adults and children. The economic impact of the adverse drug reactions has been widely evaluated; however, studies of the impact on the quality of life of children with adverse drug reactions are scarce. The aim was to evaluate studies assessing the health-related quality of life of children with adverse drug reactions. Methods We conducted a systematic review that included the following electronic databases: MEDLINE, EMBASE and the Cochrane Library (including the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Controlled Trials Register and the Health Technology Assessment Databases). Results Nine studies were included. Four of the studies were conducted in children with epilepsy; the rest of them involved children with chronic viral hepatitis, Crohn’s disease, paediatric cancer and multiple adverse drug reactions compared with healthy children. Based on their findings, authors of all studies concluded that adverse drug reactions had a negative impact on the quality of life of children. No meta-analysis was conducted given the heterogeneous nature of the studies. Conclusions To date, there is no specific instrument that measures quality of life of children with adverse drug reactions, and the information available is poor and variable. In general, adverse drug reactions have a negative impact on the quality of life of affected children. For those interested in this area, more work needs to be done to improve tools that help to evaluate efficiently the health-related quality of life of children with adverse drug reactions and chronic diseases. PMID:24833305

  18. Theoretical study of the hydrogen abstraction of substituted phenols by nitrogen dioxide as a source of HONO.

    PubMed

    Shenghur, Abraham; Weber, Kevin H; Nguyen, Nhan D; Sontising, Watit; Tao, Fu-Ming

    2014-11-20

    The mild yet promiscuous reactions of nitrogen dioxide (NO2) and phenolic derivatives to produce nitrous acid (HONO) have been explored with density functional theory calculations. The reaction is found to occur via four distinct pathways with both proton coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms available. While the parent reaction with phenol may not be significant in the gas phase, electron donating groups in the ortho and para positions facilitate the reduction of nitrogen dioxide by electronically stabilizing the product phenoxy radical. Hydrogen bonding groups in the ortho position may additionally stabilize the nascent resonantly stabilized radical product, thus enhancing the reaction. Catechol (ortho-hydroxy phenol) has a predicted overall free energy change ΔG(0) = -0.8 kcal mol(-1) and electronic activation energy Ea = 7.0 kcal mol(-1). Free amines at the ortho and para positions have ΔG(0) = -3.8 and -1.5 kcal mol(-1); Ea = 2.3 and 2.1 kcal mol(-1), respectively. The results indicate that the hydrogen abstraction reactions of these substituted phenols by NO2 are fast and spontaneous. Hammett constants produce a linear correlation with bond dissociation energy (BDE) demonstrating that the BDE is the main parameter controlling the dark abstraction reaction. The implications for atmospheric chemistry and ground-level nitrous acid production are discussed.

  19. Hydrogen abstraction from deoxyribose by a neighboring 3'-uracil peroxyl radical.

    PubMed

    Schyman, Patric; Eriksson, Leif A; Laaksonen, Aatto

    2009-05-07

    Theoretical examination of the reactivity of the uracil-5-peroxyl radical when abstracting a hydrogen atom from a neighboring 5'-deoxyribose in 5'-ApU-5-peroxyl-3' has been performed using density functional theory with the MPWB1K functional. Halogenated uracils are often used as radiosensitizers in DNA since the reactive uracil-5-yl radical is formed upon radiation and is known to create strand break and alkali-labile sites. Under aerobic conditions, such as in the cell, it has been proposed that the uracil-5-peroxyl radical is formed and would be the damaging agent. Our results show low reactivity for the uracil-5-peroxyl radical, determined by calculating the activation and reaction energies for the plausible hydrogen abstraction sites C1', C2', and C3' of the neighboring 5'-deoxyribose. These findings support the hypothesis that hydrogen abstraction primarily occurs by the uracil-5-yl radical, also under aerobic conditions, prior to formation of the peroxyl radical.

  20. Copper(II)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo compounds: a facile and efficient synthesis of 1,2,3-triazoles.

    PubMed

    Li, Yi-Jin; Li, Xue; Zhang, Shao-Xiao; Zhao, Yu-Long; Liu, Qun

    2015-07-25

    A novel copper-catalyzed [3+2] cycloaddition reaction of secondary amines with α-diazo compounds has been developed via a cross-dehydrogenative coupling process. The reaction involves a sequential aerobic oxidation/[3+2] cycloaddition/oxidative aromatization procedure and provides an efficient method for the construction of 1,2,3-triazoles in a single step in an atom-economic manner from readily available starting materials under very mild conditions.

  1. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  2. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  3. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  4. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  5. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  6. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction

    NASA Astrophysics Data System (ADS)

    Wang, Fulong; Xue, Huaiguo; Tian, Zhiqun; Xing, Wei; Feng, Ligang

    2018-01-01

    Developing catalyst promoter for Pd/C catalyst is significant for the catalytic ability improvement in energy transfer related electrochemical reactions. Herein, we demonstrate Fe2P as an efficient catalyst promoter in Pd/C catalyst system for formic acid electro-oxidation in fuel cells reactions. Adding Fe2P in the Pd/C catalyst system greatly increases the performances for formic acid oxidation by 3-4 times; the CO stripping technique displays two kinds of active sites formation in the Pd-Fe2P/C catalyst system coming from the interaction of Pd, Fe2P and Pd oxide species and both are more efficient for formic acid and CO-species electrooxidation. The smaller charge transfer resistance and Tafel slope for formic acid oxidation indicate the improvements in kinetics by Fe2P in the Pd-Fe2P/C system. The nanostructured hybrid units of Pd, Fe2P and carbon are evidently visible in the high resolution microscopy images and XPS technique confirmes the electronic effect in the catalyst system. The promotion effect of Fe2P in the catalyst system arising from the structure, composition and electronic effect changes is discussed with the help from multiple physical and electrochemical techniques. It is concluded that Fe2P as a significant catalyst promoter will have potential application in energy transfer related electrochemical reactions.

  7. Biologically inspired design of feedback control systems implemented using DNA strand displacement reactions.

    PubMed

    Foo, Mathias; Sawlekar, Rucha; Kulkarni, Vishwesh V; Bates, Declan G

    2016-08-01

    The use of abstract chemical reaction networks (CRNs) as a modelling and design framework for the implementation of computing and control circuits using enzyme-free, entropy driven DNA strand displacement (DSD) reactions is starting to garner widespread attention in the area of synthetic biology. Previous work in this area has demonstrated the theoretical plausibility of using this approach to design biomolecular feedback control systems based on classical proportional-integral (PI) controllers, which may be constructed from CRNs implementing gain, summation and integrator operators. Here, we propose an alternative design approach that utilises the abstract chemical reactions involved in cellular signalling cycles to implement a biomolecular controller - termed a signalling-cycle (SC) controller. We compare the performance of the PI and SC controllers in closed-loop with a nonlinear second-order chemical process. Our results show that the SC controller outperforms the PI controller in terms of both performance and robustness, and also requires fewer abstract chemical reactions to implement, highlighting its potential usefulness in the construction of biomolecular control circuits.

  8. A hierarchical SVG image abstraction layer for medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  9. Hydrogen atom abstraction from aldehydes - OH + H2CO and O + H2CO

    NASA Technical Reports Server (NTRS)

    Dupuis, M.; Lester, W. A., Jr.

    1984-01-01

    The essential features of the potential energy surfaces governing hydrogen abstraction from formaldehyde by oxygen atom and hydroxyl radical have been characterized with ab inito multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions. The results are consistent with a very small activation energy for the OH + H2CO reaction, and an activation energy of a few kcal/mol for the O + H2CO reaction. In the transition state structure of both systems, the attacking oxygen atom is nearly collinear with the attacked CH bond.

  10. Effect of metal ions on the reactions of the cumyloxyl radical with hydrogen atom donors. Fine control on hydrogen abstraction reactivity determined by Lewis acid-base interactions.

    PubMed

    Salamone, Michela; Mangiacapra, Livia; DiLabio, Gino A; Bietti, Massimo

    2013-01-09

    A time-resolved kinetic study on the effect of metal ions (M(n+)) on hydrogen abstraction reactions from C-H donor substrates by the cumyloxyl radical (CumO(•)) was carried out in acetonitrile. Metal salt addition was observed to increase the CumO(•) β-scission rate constant in the order Li(+) > Mg(2+) > Na(+). These effects were explained in terms of the stabilization of the β-scission transition state determined by Lewis acid-base interactions between M(n+) and the radical. When hydrogen abstraction from 1,4-cyclohexadiene was studied in the presence of LiClO(4) and Mg(ClO(4))(2), a slight increase in rate constant (k(H)) was observed indicating that interaction between M(n+) and CumO(•) can also influence, although to a limited extent, the hydrogen abstraction reactivity of alkoxyl radicals. With Lewis basic C-H donors such as THF and tertiary amines, a decrease in k(H) with increasing Lewis acidity of M(n+) was observed (k(H)(MeCN) > k(H)(Li(+)) > k(H)(Mg(2+))). This behavior was explained in terms of the stronger Lewis acid-base interaction of M(n+) with the substrate as compared to the radical. This interaction reduces the degree of overlap between the α-C-H σ* orbital and a heteroatom lone-pair, increasing the C-H BDE and destabilizing the carbon centered radical formed after abstraction. With tertiary amines, a >2-order of magnitude decrease in k(H) was measured after Mg(ClO(4))(2) addition up to a 1.5:1 amine/Mg(ClO(4))(2) ratio. At higher amine concentrations, very similar k(H) values were measured with and without Mg(ClO(4))(2). These results clearly show that with strong Lewis basic substrates variations in the nature and concentration of M(n+) can dramatically influence k(H), allowing for a fine control of the substrate hydrogen atom donor ability, thus providing a convenient method for C-H deactivation. The implications and generality of these findings are discussed.

  11. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction

    PubMed Central

    Shock, David D.; Freudenthal, Bret D.; Beard, William A.; Wilson, Samuel H.

    2017-01-01

    DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium. PMID:28759020

  12. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    PubMed

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  13. Reaction wheels for kinetic energy storage

    NASA Astrophysics Data System (ADS)

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  14. Reaction wheels for kinetic energy storage

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1984-01-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  15. Metal-catalyzed Decarboxylative Fluoroalkylation Reactions.

    PubMed

    Ambler, Brett R; Yang, Ming-Hsiu; Altman, Ryan A

    2016-12-01

    Metal-catalyzed decarboxylative fluoroalkylation reactions enable the conversion of simple O-based substrates into biologically relevant fluorinated analogs. Herein, we present decarboxylative methods that facilitate the synthesis of trifluoromethyl- and difluoroketone-containing products. We highlight key mechanistic aspects that are critical for efficient catalysis, and that inspired our thinking while developing the reactions.

  16. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V

    2017-07-26

    We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.

  17. The efficiency of non-photochemical fluorescence quenching by cation radicals in photosystem II reaction centers.

    PubMed

    Paschenko, V Z; Churin, A A; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Maksimov, E G; Mamedov, M D

    2016-12-01

    In a direct experiment, the rate constants of photochemical k p and non-photochemical k p + quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680 + Q A - state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680 + was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680 + Pheo - in PS II RC. Thus, for the first time, the ratio k p + /k p  ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.

  18. Evolution of structure-reactivity correlations for the hydrogen abstraction reaction by chlorine atom.

    PubMed

    Poutsma, Marvin L

    2013-01-31

    Empirical structure-reactivity correlations are developed for log k(298), the gas-phase rate constants for the reaction (Cl(•) + HCR(3) → ClH + CR(3)(•)). It has long been recognized that correlation with Δ(r)H is weak. The poor performance of the linear Evans-Polanyi formulation is illustrated and was little improved by adding a quadratic term, for example, by making its slope smoothly dependent on Δ(r)H [η ≡ (Δ(r)H - Δ(r)H(min))/(Δ(r)H(max) - Δ(r)H(min))]. The "polar effect" ((δ-)Cl---H---CR(3)(δ+))(++) has also been long discussed, but there is no formalization of this dependence based on widely available independent variable(s). Using the sum of Hammett constants for the R substituents also gave at best modest correlations, either for σ(para) or for its dissection into F (field/inductive) and R (resonance) effects. Much greater success was achieved by combining these approaches with the preferred independent variable set being either [(Δ(r)H)(2), Δ(r)H, ΣF, and ΣR] or [η, Δ(r)H, ΣF, and ΣR]. For 64 rate constants that span 7 orders of magnitude, these correlation formulations give r(2) > 0.87 and a mean unsigned deviation of <0.5 log k units, with even better performance if primary, secondary, and tertiary reaction centers are treated separately.

  19. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.

    PubMed

    Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping

    2015-04-29

    Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.

  20. Adenine specific DNA chemical sequencing reaction.

    PubMed Central

    Iverson, B L; Dervan, P B

    1987-01-01

    Reaction of DNA with K2PdCl4 at pH 2.0 followed by a piperidine workup produces specific cleavage at adenine (A) residues. Product analysis revealed the K2PdCl4 reaction involves selective depurination at adenine, affording an excision reaction analogous to the other chemical DNA sequencing reactions. Adenine residues methylated at the exocyclic amine (N6) react with lower efficiency than unmethylated adenine in an identical sequence. This simple protocol specific for A may be a useful addition to current chemical sequencing reactions. Images PMID:3671067

  1. Pauson-Khand reactions in a photochemical flow microreactor.

    PubMed

    Asano, Keisuke; Uesugi, Yuki; Yoshida, Jun-ichi

    2013-05-17

    Pauson-Khand reactions were achieved at ambient temperature without any additive using a photochemical flow microreactor. The efficiency of the reaction was better than that in a conventional batch reactor, and the reaction could be operated continuously for 1 h.

  2. A theoretical study of the H-abstraction reactions from HOI by moist air radiolytic products (H, OH, and O (3P)) and iodine atoms (2P(3/2)).

    PubMed

    Hammaecher, Catherine; Canneaux, Sébastien; Louis, Florent; Cantrel, Laurent

    2011-06-23

    The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.

  3. SU-F-T-376: The Efficiency of Calculating Photonuclear Reaction On High-Energy Photon Therapy by Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, S; Fujibuchi, T

    Purpose: Secondary-neutrons having harmful influences to a human body are generated by photonuclear reaction on high-energy photon therapy. Their characteristics are not known in detail since the calculation to evaluate them takes very long time. PHITS(Particle and Heavy Ion Transport code System) Monte Carlo code since versions 2.80 has the new parameter “pnimul” raising the probability of occurring photonuclear reaction forcibly to make the efficiency of calculation. We investigated the optimum value of “pnimul” on high-energy photon therapy. Methods: The geometry of accelerator head based on the specification of a Varian Clinac 21EX was used for PHITS ver. 2.80. Themore » phantom (30 cm * 30 cm * 30 cm) filled the composition defined by ICRU(International Commission on Radiation Units) was placed at source-surface distance 100 cm. We calculated the neutron energy spectra in the surface of ICRU phantom with “pnimal” setting 1, 10, 100, 1000, 10000 and compared the total calculation time and the behavior of photon using PDD(Percentage Depth Dose) and OCR(Off-Center Ratio). Next, the cutoff energy of photon, electron and positron were investigated for the calculation efficiency with 4, 5, 6 and 7 MeV. Results: The calculation total time until the errors of neutron fluence become within 1% decreased as increasing “pnimul”. PDD and OCR showed no differences by the parameter. The calculation time setting the cutoff energy like 4, 5, 6 and 7 MeV decreased as increasing the cutoff energy. However, the errors of photon become within 1% did not decrease by the cutoff energy. Conclusion: The optimum values of “pnimul” and the cutoff energy were investigated on high-energy photon therapy. It is suggest that using the optimum “pnimul” makes the calculation efficiency. The study of the cutoff energy need more investigation.« less

  4. 2018 Congress Poster Abstracts

    PubMed

    2018-02-21

    Each abstract has been indexed according to the first author. Abstracts appear as they were submitted and have not undergone editing or the Oncology Nursing Forum’s review process. Only abstracts that will be presented appear here. Poster numbers are subject to change. For updated poster numbers, visit congress.ons.org or check the Congress guide. Data published in abstracts presented at the ONS 43rd Annual Congress are embargoed until the conclusion of the presentation. Coverage and/or distribution of an abstract, poster, or any of its supplemental material to or by the news media, any commercial entity, or individuals, including the authors of said abstract, is strictly prohibited until the embargo is lifted. Promotion of general topics and speakers is encouraged within these guidelines.

  5. Eco-friendly polyethylene glycol promoted Michael addition reactions of α,β-unsaturated carbonyl compounds

    EPA Science Inventory

    Abstract- Intra- and inter-nucleophilic addition reactions of different unsaturated compounds were found to be highly effective without any additives in PEG-400 as a recyclable reaction medium under neutral conditions.

  6. Gas-phase reactions of phenyl radicals with aromatic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahr, A.; Stein, S.E.

    1988-08-25

    Relative rates of reactions of phenyl radicals with a series of aromatic and polycyclic aromatic compounds are reported. Most studies were done in static reactors at 450/degrees/C using diphenyl diketone (benzil) as the phenyl radical source. Reactions with the following molecules are reported: benzene, toluene, p-xylene, 1,3,5-trimethylbenzene, phenol, bromobenzene, naphthalene, biphenyl, anthracene, 9-methylanthracene, and triphenylene. For reactions with substituted benzenes, H abstraction is the dominant reaction. Relative rates of phenylation at different sites do not closely follow established trends for rates of radical attack. It is proposed that these deviations are primarily due to a dependence of the degree ofmore » reversibility on the specific site of phenylation. These studies also show that the rates of phenyl and H-atom migration around the ring in adduct radicals are slow relative to dissociation. Also, by use of these results to link literature rate data from high and low temperatures, a rate expression for H abstraction from p-xylene by phenyl of 10/sup 9.6/ exp(-4.4 kcal/RT) M/sup /minus/1/ s/sup /minus/1/ is derived.« less

  7. Model studies of hydrogen atom addition and abstraction processes involving ortho-, meta-, and para-benzynes.

    PubMed

    Clark, A E; Davidson, E R

    2001-10-31

    H-atom addition and abstraction processes involving ortho-, meta-, and para-benzyne have been investigated by multiconfigurational self-consistent field methods. The H(A) + H(B)...H(C) reaction (where r(BC) is adjusted to mimic the appropriate singlet-triplet energy gap) is shown to effectively model H-atom addition to benzyne. The doublet multiconfiguration wave functions are shown to mix the "singlet" and "triplet" valence bond structures of H(B)...H(C) along the reaction coordinate; however, the extent of mixing is dependent on the singlet-triplet energy gap (DeltaE(ST)) of the H(B)...H(C) diradical. Early in the reaction, the ground-state wave function is essentially the "singlet" VB function, yet it gains significant "triplet" VB character along the reaction coordinate that allows H(A)-H(B) bond formation. Conversely, the wave function of the first excited state is predominantly the "triplet" VB configuration early in the reaction coordinate, but gains "singlet" VB character when the H-atom is close to a radical center. As a result, the potential energy surface (PES) for H-atom addition to triplet H(B)...H(C) diradical is repulsive! The H3 model predicts, in agreement with the actual calculations on benzyne, that the singlet diradical electrons are not coupled strongly enough to give rise to an activation barrier associated with C-H bond formation. Moreover, this model predicts that the PES for H-atom addition to triplet benzyne will be characterized by a repulsive curve early in the reaction coordinate, followed by a potential avoided crossing with the (pi)1(sigma*)1 state of the phenyl radical. In contrast to H-atom addition, large activation barriers characterize the abstraction process in both the singlet ground state and first triplet state. In the ground state, this barrier results from the weakly avoided crossing of the dominant VB configurations in the ground-state singlet (S0) and first excited singlet (S1) because of the large energy gap between S0

  8. An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Ilie, Silvana

    2017-12-01

    Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.

  9. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    PubMed Central

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2016-01-01

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871

  10. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction.

    PubMed

    Cummins, Dustin R; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D; Sunkara, Mahendra K; Gupta, Gautam

    2016-06-10

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

  11. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; ...

    2016-06-10

    In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoO x/MoS 2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase inmore » current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoO x core in the core-shell nanowires, which leads to improved electrocatalytic performance.« less

  12. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  13. Efficient conversion of 3He(n,tp) and 10B(n, α7Li) reaction energies into far-ultraviolet radiation by noble gas excimers

    NASA Astrophysics Data System (ADS)

    Hughes, Patrick P.; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2011-03-01

    Previous work showed that the 3He(n , tp) reaction in a cell of 3He at atmospheric pressure generated tens of far-ultraviolet (FUV) photons per reacted neutron. Here we report amplification of that signal by factors of 1000 when noble gases are added to the cell. Calibrated filter-detector measurements show that this large signal is due to noble-gas excimer emissions, and that the nuclear reaction energy is converted to FUV radiation with efficiencies of up to 30 % . Our results have been placed on an absolute scale through calibrations at the NIST SURF III Synchrotron and Center for Neutron Research. We have also seen large neutron-induced FUV signals when the 3He gas in our system is replaced with a 10B film target; an experiment on substituting 3He with BF3 is underway. Our results suggest possibilities for high-efficiency, non-3He neutron detectors as an alternative to existing proportional counters.

  14. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  15. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel

  16. Extension of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction to the Methyl Radical and Comparison to the Chlorine Atom, Bromine Atom, and Hydroxyl Radical.

    PubMed

    Poutsma, Marvin L

    2016-07-07

    Recently, we presented structure-reactivity correlations for the gas-phase rate constants for hydrogen abstraction from sp(3)-hybridized carbon by three electrophilic radicals (X(•) + HCR3 → XH + (•)CR3; X = Cl(•), HO(•), and Br(•)); the reaction enthalpy effect was represented by the independent variable ΔrH and the "polar effect" by the independent variables F and R, the Hammett-Taft constants for field/inductive and resonance effects. Here we present a parallel treatment for the less electronegative CH3(•). In spite of a limited and scattered database, the resulting least-squares fit [log k437(CH3(•)) = -0.0251(ΔrH) + 0.96(ΣF) - 0.56(ΣR) - 19.15] was modestly successful and useful for initial predictions. As expected, the polar effect appears to be minor and its directionality, i.e., the "philicity" of CH3(•), may depend on the nature of the substituents.

  17. Revealing a double-inversion mechanism for the F⁻+CH₃Cl SN2 reaction.

    PubMed

    Szabó, István; Czakó, Gábor

    2015-01-19

    Stereo-specific reaction mechanisms play a fundamental role in chemistry. The back-side attack inversion and front-side attack retention pathways of the bimolecular nucleophilic substitution (SN2) reactions are the textbook examples for stereo-specific chemical processes. Here, we report an accurate global analytic potential energy surface (PES) for the F(-)+CH₃Cl SN2 reaction, which describes both the back-side and front-side attack substitution pathways as well as the proton-abstraction channel. Moreover, reaction dynamics simulations on this surface reveal a novel double-inversion mechanism, in which an abstraction-induced inversion via a FH···CH₂Cl(-) transition state is followed by a second inversion via the usual [F···CH₃···Cl](-) saddle point, thereby opening a lower energy reaction path for retention than the front-side attack. Quasi-classical trajectory computations for the F(-)+CH₃Cl(ν1=0, 1) reactions show that the front-side attack is a fast direct, whereas the double inversion is a slow indirect process.

  18. Information-Theoretical Complexity Analysis of Selected Elementary Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Molina-Espíritu, M.; Esquivel, R. O.; Dehesa, J. S.

    We investigate the complexity of selected elementary chemical reactions (namely, the hydrogenic-abstraction reaction and the identity SN2 exchange reaction) by means of the following single and composite information-theoretic measures: disequilibrium (D), exponential entropy(L), Fisher information (I), power entropy (J), I-D, D-L and I-J planes and Fisher-Shannon (FS) and Lopez-Mancini-Calbet (LMC) shape complexities. These quantities, which are functionals of the one-particle density, are computed in both position (r) and momentum (p) spaces. The analysis revealed that the chemically significant regions of these reactions can be identified through most of the single information-theoretic measures and the two-component planes, not only the ones which are commonly revealed by the energy, such as the reactant/product (R/P) and the transition state (TS), but also those that are not present in the energy profile such as the bond cleavage energy region (BCER), the bond breaking/forming regions (B-B/F) and the charge transfer process (CT). The analysis of the complexities shows that the energy profile of the abstraction reaction bears the same information-theoretical features of the LMC and FS measures, however for the identity SN2 exchange reaction does not hold a simple behavior with respect to the LMC and FS measures. Most of the chemical features of interest (BCER, B-B/F and CT) are only revealed when particular information-theoretic aspects of localizability (L or J), uniformity (D) and disorder (I) are considered.

  19. The Effect of Teaching the Entire Academic Year of High School Chemistry Utilizing Abstract Reasoning

    ERIC Educational Resources Information Center

    Page, Michael F. Z.; Escott, Patrick; Silva, Maritza; Barding, Gregory A., Jr.

    2018-01-01

    This case study demonstrates the ability of high school chemistry students, with varying levels of math preparation, to experience learning-gains on state and district assessments as it relates to chemical reactions, thermodynamics, and kinetics. These advances were predicated on the use of a teaching style rooted in abstract reasoning. The…

  20. How does tunneling contribute to counterintuitive H-abstraction reactivity of nonheme Fe(IV)O oxidants with alkanes?

    PubMed

    Mandal, Debasish; Ramanan, Rajeev; Usharani, Dandamudi; Janardanan, Deepa; Wang, Binju; Shaik, Sason

    2015-01-21

    This article addresses the intriguing hydrogen-abstraction (H-abstraction) and oxygen-transfer (O-transfer) reactivity of a series of nonheme [Fe(IV)(O)(TMC)(Lax)](z+) complexes, with a tetramethyl cyclam ligand and a variable axial ligand (Lax), toward three substrates: 1,4-cyclohexadiene, 9,10-dihydroanthracene, and triphenyl phosphine. Experimentally, O-transfer-reactivity follows the relative electrophilicity of the complexes, whereas the corresponding H-abstraction-reactivity generally increases as the axial ligand becomes a better electron donor, hence exhibiting an antielectrophilic trend. Our theoretical results show that the antielectrophilic trend in H-abstraction is affected by tunneling contributions. Room-temperature tunneling increases with increase of the electron donation power of the axial-ligand, and this reverses the natural electrophilic trend, as revealed through calculations without tunneling, and leads to the observed antielectrophilic trend. By contrast, O-transfer-reactivity, not being subject to tunneling, retains an electrophilic-dependent reactivity trend, as revealed experimentally and computationally. Tunneling-corrected kinetic-isotope effect (KIE) calculations matched the experimental KIE values only if all of the H-abstraction reactions proceeded on the quintet state (S = 2) surface. As such, the present results corroborate the initially predicted two-state reactivity (TSR) scenario for these reactions. The increase of tunneling with the electron-releasing power of the axial ligand, and the reversal of the "natural" reactivity pattern, support the "tunneling control" hypothesis (Schreiner et al., ref 19). Should these predictions be corroborated, the entire field of C-H bond activation in bioinorganic chemistry would lay open to reinvestigation.

  1. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 08)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This bibliography is issued in two sections; abstracts and indexes. The Abstract Section cites 180 patents and applications for patents introduced into the NASA scientific and technical information system during the period of July 1975 through December 1975. Each entry in the Abstract Section consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent. The index Section contains entries for 2,905 patents and applications for patent citations covering the period May 1969 through December 1975. The Index Section contains five indexes -- subject, inventor, source, number and accession number.

  2. Highly Efficient Multiple-Anchored Fluorescent Probe for the Detection of Aniline Vapor Based on Synergistic Effect: Chemical Reaction and PET.

    PubMed

    Jiao, Zinuo; Zhang, Yu; Xu, Wei; Zhang, Xiangtao; Jiang, Haibo; Wu, Pengcheng; Fu, Yanyan; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2017-05-26

    A multiple-anchored fluorescent probe ((((hexane-1,6-diylbis(2,7-bis(4-formyl)-phenyl)-9H-fluorine-9,9-diyl))-bis(hexane-6,1-diyl))-bis(9H-carbazole-9,3,6-triyl))-tetrakis(benzene-4,1-diyl))-tetraformyl-(8FP-2F) with eight aldehyde groups was designed and synthesized. The molecule has four branches and highly twisted structure. Furthermore, it tends to self-assemble into nanospheres, which is beneficial for gaseous analyte penetration and high fluorescence quantum efficiency. Among gaseous analytes, detection of aniline vapor is extraordinarily important in the control of environmental issues and human diseases. Herein, 8FP-2F was introduced to detect aniline vapor with distinguished sensitivity and selectivity via simple Schiff base reaction at room temperature. After exposure to saturate aniline vapor, the 89% fluorescence of 8FP-2F was quenched in 50 s and the detection limit was as low as 3 ppb. Further study showed the suitable HOMO/LUMO energy levels and matched orbital symmetry between probe and aniline molecules ensured chemical reaction and PET process work together. The synergistic effect resulted in a significant sensing performance and fluorescence quenching toward aniline vapor. Moreover, the multiple active sites structure of 8FP-2F means it could be applied for constructing many interesting structures and highly efficient organic optoelectronic functional materials.

  3. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    PubMed

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  4. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification

    PubMed Central

    Sekiguchi, Yukiko; Nakamura, Kensuke; Kawaguchi, Yoshirou; Honda, Takeshi; Hasegawa, Jun

    2018-01-01

    The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S) and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ. PMID:29474426

  5. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification.

    PubMed

    Iwamoto, Mitsuhiro; Sekiguchi, Yukiko; Nakamura, Kensuke; Kawaguchi, Yoshirou; Honda, Takeshi; Hasegawa, Jun

    2018-01-01

    The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S) and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ.

  6. Abstraction kinetics of H-atom by OH radical from pinonaldehyde (C10H16O2): ab initio and transition-state theory calculations.

    PubMed

    Dash, Manas Ranjan; Rajakumar, B

    2012-06-21

    The kinetics and abstraction rate coefficients of hydroxyl radical (OH) reaction with pinonaldehyde were computed using G3(MP2) theory and transition-state theory (TST) between 200 and 400 K. Structures of the reactants, reaction complexes (RCs), product complexes (PCs), transition states (TSs), and products were optimized at the MP2(FULL)/6-31G* level of theory. Fifteen transition states were identified for the title reaction and confirmed by intrinsic reaction coordinate (IRC) calculations. The contributions of all the individual hydrogens in the substrate molecule to the total reaction are computed. The quantum mechanical tunneling effect was computed using Wigner's and Eckart's methods (both symmetrical and unsymmetrical methods). The reaction exhibits a negative temperature dependent rate coefficient, k(T) = (1.97 ± 0.34) × 10(-13) exp[(1587 ± 48)/T] cm(3) molecule(-1) s(-1), k(T) = (3.02 ± 0.56) × 10(-13) exp[(1534 ± 52/T] cm(3) molecule(-1) s(-1), and k(T) = (4.71 ± 1.85) × 10(-14) exp[(2042 ± 110)/T] cm(3) molecule(-1) s(-1) with Wigner's, Eckart's symmetrical, and Eckart's unsymmetrical tunneling corrections, respectively. Theoretically calculated rate coefficients are found to be in good agreement with the experimentally measured ones and other theoretical results. It is shown that hydrogen abstraction from -CHO position is the major channel, whereas H-abstraction from -COCH(3) is negligible. The atmospheric lifetime of pinonaldehyde is computed to be few hours and found to be in excellent agreement with the experimentally estimated ones.

  7. Deterministic binary vectors for efficient automated indexing of MEDLINE/PubMed abstracts.

    PubMed

    Wahle, Manuel; Widdows, Dominic; Herskovic, Jorge R; Bernstam, Elmer V; Cohen, Trevor

    2012-01-01

    The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI.

  8. Deterministic Binary Vectors for Efficient Automated Indexing of MEDLINE/PubMed Abstracts

    PubMed Central

    Wahle, Manuel; Widdows, Dominic; Herskovic, Jorge R.; Bernstam, Elmer V.; Cohen, Trevor

    2012-01-01

    The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI. PMID:23304369

  9. Methoxyflurane: I. An overview. II. An abstracted literature collection, 1947--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, E.M.; Ricci, B.E.

    1977-07-01

    Evidence presented in the literature suggests that methoxyflurane (Penthrane) (MOF) is a potent and efficacious anesthetic. At the same time, however, observed adverse reactions indicate that additional data are needed to determine the feasibility for continued widespread use of MOF. Experimental and clinical evidence clearly demonstrates that the ionic metabolites of MOF (fluoride and oxalate ions) are the toxic moieties responsible for the resultant physiologic maladies. This report on methoxyflurane is comprised of an overview and an abstracted literature collection.

  10. Abstracting Concepts and Methods.

    ERIC Educational Resources Information Center

    Borko, Harold; Bernier, Charles L.

    This text provides a complete discussion of abstracts--their history, production, organization, publication--and of indexing. Instructions for abstracting are outlined, and standards and criteria for abstracting are stated. Management, automation, and personnel are discussed in terms of possible economies that can be derived from the introduction…

  11. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 07)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and Section 2 - Indexes. This issue of the Abstract Section cites 158 patents and applications for patent introduced into the NASA scientific and technical information system during the period of January 1975 through June 1975. Each entry in the Abstract Section consists of a citation, an abstract, and, in most cases, a key illustration selected from the patent or application for patent. This issue of the Index Section contains entries for 2830 patent and application for patent citations covering the period May 1969 through June 1975. The index section contains five indexes -- subject, inventor, source, number and accession number.

  12. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 09)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and Section 2 - Indexes. This issue of the Abstract Section cites 200 patents and applications for patent introduced into the NASA scientific and technical information system during the period of January 1976 through June 1976. Each entry in the Abstract Section consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent. This issue of the Index Section contains entries for 2994 patent and application for patent citations covering the period May 1969 through June 1976. The Index Section contains five indexes -- subject, inventor, source, number and accession number.

  13. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 13)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and Section 2 - Indexes. This issue of the Abstract Section cites 161 patents and applications for patent introduced into the NASA scientific and technical information system during the period January 1978 through June 1978. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  14. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

    PubMed

    Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice

    2012-03-09

    The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  15. Numerical Analysis of Microwave Heating on Saponification Reaction

    NASA Astrophysics Data System (ADS)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  16. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-10-01

    Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.

  17. Ab Initio Theoretical Studies on the Kinetics of Hydrogen Abstraction Type Reactions of Hydroxyl Radicals with CH3CCl2F and CH3CClF2

    NASA Astrophysics Data System (ADS)

    Saheb, Vahid; Maleki, Samira

    2018-03-01

    The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2 d,2 p) basis set and MP2 method along with 6-311+G( d, p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2 d,2 p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2 d,2 p) and MP2/6-311+G( d, p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.

  18. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    PubMed

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Abstract Interpreters for Free

    NASA Astrophysics Data System (ADS)

    Might, Matthew

    In small-step abstract interpretations, the concrete and abstract semantics bear an uncanny resemblance. In this work, we present an analysis-design methodology that both explains and exploits that resemblance. Specifically, we present a two-step method to convert a small-step concrete semantics into a family of sound, computable abstract interpretations. The first step re-factors the concrete state-space to eliminate recursive structure; this refactoring of the state-space simultaneously determines a store-passing-style transformation on the underlying concrete semantics. The second step uses inference rules to generate an abstract state-space and a Galois connection simultaneously. The Galois connection allows the calculation of the "optimal" abstract interpretation. The two-step process is unambiguous, but nondeterministic: at each step, analysis designers face choices. Some of these choices ultimately influence properties such as flow-, field- and context-sensitivity. Thus, under the method, we can give the emergence of these properties a graph-theoretic characterization. To illustrate the method, we systematically abstract the continuation-passing style lambda calculus to arrive at two distinct families of analyses. The first is the well-known k-CFA family of analyses. The second consists of novel "environment-centric" abstract interpretations, none of which appear in the literature on static analysis of higher-order programs.

  20. Hemispheric Specialization and Recognition Memory for Abstract and Realistic Pictures: A Comparison of Painters and Laymen

    ERIC Educational Resources Information Center

    Vogt, S.; Magnussen, S.

    2005-01-01

    Recognition memory and hemispheric specialization were assessed for abstract colour/black and white pictures of sport situations in painters and visually naive subjects using a forced choice yes/no tachistoscopic procedure. Reaction times showed a significant three-way interaction of picture type, expertise, and visual field, indicating that…

  1. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  2. A beta-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions.

    PubMed

    Lv, Xin; Bao, Weiliang

    2007-05-11

    Employing ethyl 2-oxocyclohexanecarboxylate as a novel, efficient, and versatile ligand, the copper-catalyzed coupling reactions of various N/O/S nucleophilic reagents with aryl halides could be successfully carried out under mild conditions. A variety of products including N-arylamides, N-arylimidazoles, aryl ethers, and aryl thioethers were synthesized in good to excellent yields.

  3. Highly efficient preparation of selectively isotope cluster-labeled long chain fatty acids via two consecutive C(sp3)-C(sp3) cross-coupling reactions.

    PubMed

    Lethu, Sébastien; Matsuoka, Shigeru; Murata, Michio

    2014-02-07

    An efficient synthesis involving two copper-catalyzed alkyl-alkyl coupling reactions has been designed to easily access doubly isotope-labeled fatty acids. Such NMR- and IR-active compounds were obtained in excellent overall yields and will be further used for determining the conformation of an alkyl chain of lipidic biomolecules upon interaction with proteins.

  4. Theoretical study of the kinetics of reactions of the monohalogenated methanes with atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-04-01

    Ab initio calculations at the G2 level were used in a theoretical description of the kinetics and mechanism of the hydrogen abstraction reactions from fluoro-, chloro- and bromomethane by chlorine atoms. The profiles of the potential energy surfaces show that mechanism of the reactions under investigation is complex and consists of two - in the case of CH3F+Cl - and of three elementary steps for CH3Cl+Cl and CH3Br+Cl. The heights of the energy barrier related to the H-abstraction are of 8-10 kJ mol(-1), the lowest value corresponds to CH3Cl+Cl and the highest one to CH3F+Cl. The rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The kinetic equations derived in this study[Formula: see text]and[Formula: see text]allow a description of the kinetics of the reactions under investigation in the temperature range of 200-3000 K. The kinetics of reactions of the entirely deuterated reactants were also included in the kinetic analysis. Results of ab initio calculations show that D-abstraction process is related with the energy barrier of 5 kJ mol(-1) higher than the H-abstraction from the corresponding non-deuterated reactant molecule. The derived analytical equations for the reactions, CD3X+Cl, CH2X+HCl and CD2X+DCl (X = F, Cl and Br) are a substantial supplement of the kinetic data necessary for the description and modeling of the processes of importance in the atmospheric chemistry.

  5. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols.

    PubMed

    Chen, Yao-Jung; Chen, Hsin-Hung

    2006-11-23

    1,1,1-tris(hydroxymethyl)ethane was presented as a new, efficient, and versatile tridentate O-donor ligand suitable for the copper-catalyzed formation of C-N, C-S, and C-O bonds. This inexpensive and commercially available tripod ligand has been demonstrated to facilitate the copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols to afford the corresponding desired products in good to excellent yields. [reaction: see text].

  6. ASTRONAUTICS INFORMATION. Abstracts Vol. III, No. 1. Abstracts 3,082- 3,184

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-01-01

    Abstracts are presented on astronautics. The abstracts are generally restricted to spaceflight and to applicable techniques and data. The publication covers the period of January 1961. 102 references. (J.R.D.)

  7. Online access to journal abstracts and articles.

    PubMed

    Giedd, J N; Smith, K G

    1997-01-01

    Advances in information technology now offer several options for child and adolescent psychopharmacologists to navigate the increasingly complex terrain of scientific literature and keep abreast of the rapidly changing advances in our field. MEDLINE, the world's largest database of medical literature, can be accessed and searched by a variety of free or fee-based services. In addition to efficient retrieval of citations and abstracts based on subject, author, or title, many of these services now provide, for a fee, the entire text and graphics of articles (displayed on computer screen, faxed, or mailed). There are also current awareness services to alert the user when new requested literature become available as well as services to send via e-mail the tables of contents of requested journals (sometimes prior to paper publication). For online citation and abstract retrieval, we found that free services, such as PubMed, performed as good or better than fee-based services. Physicians' Online, sponsored by the pharmaceutical industry, offered the lowest price for full-text manuscript delivery. In this article, we review literature search, delivery, and update services and offer some tips on how to most effectively use these resources.

  8. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn; Fan, Xiaohong; Chen, Aoling

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphicalmore » abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.« less

  9. ASTRONAUTICS INFORMATION. ABSTRACTS, VOL. V, NO. 3. Abstracts 5,201- 5,330

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardgrove, B.J.; Warren, F.L. comps.

    1962-03-01

    Abstracts of astronautics information covering the period March 1962 are presented. The 129 abstracts cover the subject of spaceflight and applicable data and techniques. Author, subject, and source indexes are included. (M.C.G.)

  10. Precursor-Surface Reactions in Plasma Deposition of Silicon Thin Films

    NASA Astrophysics Data System (ADS)

    Bakos, Tamas

    2005-03-01

    Device-quality hydrogenated amorphous silicon (a-Si:H) thin films are usually grown by plasma deposition under conditions where the SiH3 radical is the dominant deposition precursor. In this presentation, we report results of first-principles density functional theory calculations on the interactions of the SiH3 radical with the crystalline Si(100)-(2x1):H surface in conjunction with molecular-dynamics simulations of a-Si:H thin film growth by SiH3 radicals, which elucidate the pathways and energetics of surface reactions that govern important film properties. In particular, we show that an SiH3 radical can insert into strained surface Si-Si dimer bonds, abstract surface H through an Eley-Rideal mechanism, and passivate surface dangling bonds; these reactions follow exothermic and barrierless pathways that lead to a temperature-independent growth rate in agreement with experimental measurements. We also identify a thermally activated surface H abstraction process, in which the SiH3 radical diffuses through overcoordinated surface Si atoms until it encounters a favorable site for H abstraction; the diffusion and H-abstraction steps have commensurate activation barriers. This mechanism explains partly the reduction of the film H content at elevated substrate temperatures.

  11. Catalytic Conia-ene and related reactions.

    PubMed

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-07

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.

  12. Check Sample Abstracts.

    PubMed

    Alter, David; Grenache, David G; Bosler, David S; Karcher, Raymond E; Nichols, James; Rajadhyaksha, Aparna; Camelo-Piragua, Sandra; Rauch, Carol; Huddleston, Brent J; Frank, Elizabeth L; Sluss, Patrick M; Lewandrowski, Kent; Eichhorn, John H; Hall, Janet E; Rahman, Saud S; McPherson, Richard A; Kiechle, Frederick L; Hammett-Stabler, Catherine; Pierce, Kristin A; Kloehn, Erica A; Thomas, Patricia A; Walts, Ann E; Madan, Rashna; Schlesinger, Kathie; Nawgiri, Ranjana; Bhutani, Manoop; Kanber, Yonca; Abati, Andrea; Atkins, Kristen A; Farrar, Robert; Gopez, Evelyn Valencerina; Jhala, Darshana; Griffin, Sonya; Jhala, Khushboo; Jhala, Nirag; Bentz, Joel S; Emerson, Lyska; Chadwick, Barbara E; Barroeta, Julieta E; Baloch, Zubair W; Collins, Brian T; Middleton, Owen L; Davis, Gregory G; Haden-Pinneri, Kathryn; Chu, Albert Y; Keylock, Joren B; Ramoso, Robert; Thoene, Cynthia A; Stewart, Donna; Pierce, Arand; Barry, Michelle; Aljinovic, Nika; Gardner, David L; Barry, Michelle; Shields, Lisa B E; Arnold, Jack; Stewart, Donna; Martin, Erica L; Rakow, Rex J; Paddock, Christopher; Zaki, Sherif R; Prahlow, Joseph A; Stewart, Donna; Shields, Lisa B E; Rolf, Cristin M; Falzon, Andrew L; Hudacki, Rachel; Mazzella, Fermina M; Bethel, Melissa; Zarrin-Khameh, Neda; Gresik, M Vicky; Gill, Ryan; Karlon, William; Etzell, Joan; Deftos, Michael; Karlon, William J; Etzell, Joan E; Wang, Endi; Lu, Chuanyi M; Manion, Elizabeth; Rosenthal, Nancy; Wang, Endi; Lu, Chuanyi M; Tang, Patrick; Petric, Martin; Schade, Andrew E; Hall, Geraldine S; Oethinger, Margret; Hall, Geraldine; Picton, Avis R; Hoang, Linda; Imperial, Miguel Ranoa; Kibsey, Pamela; Waites, Ken; Duffy, Lynn; Hall, Geraldine S; Salangsang, Jo-Anne M; Bravo, Lulette Tricia C; Oethinger, Margaret D; Veras, Emanuela; Silva, Elvia; Vicens, Jimena; Silva, Elvio; Keylock, Joren; Hempel, James; Rushing, Elizabeth; Posligua, Lorena E; Deavers, Michael T; Nash, Jason W; Basturk, Olca; Perle, Mary Ann; Greco, Alba; Lee, Peng; Maru, Dipen; Weydert, Jamie Allen; Stevens, Todd M; Brownlee, Noel A; Kemper, April E; Williams, H James; Oliverio, Brock J; Al-Agha, Osama M; Eskue, Kyle L; Newlands, Shawn D; Eltorky, Mahmoud A; Puri, Puja K; Royer, Michael C; Rush, Walter L; Tavora, Fabio; Galvin, Jeffrey R; Franks, Teri J; Carter, James Elliot; Kahn, Andrea Graciela; Lozada Muñoz, Luis R; Houghton, Dan; Land, Kevin J; Nester, Theresa; Gildea, Jacob; Lefkowitz, Jerry; Lacount, Rachel A; Thompson, Hannis W; Refaai, Majed A; Quillen, Karen; Lopez, Ana Ortega; Goldfinger, Dennis; Muram, Talia; Thompson, Hannis

    2009-02-01

    The following abstracts are compiled from Check Sample exercises published in 2008. These peer-reviewed case studies assist laboratory professionals with continuing medical education and are developed in the areas of clinical chemistry, cytopathology, forensic pathology, hematology, microbiology, surgical pathology, and transfusion medicine. Abstracts for all exercises published in the program will appear annually in AJCP.

  13. Determination of GTA Welding Efficiencies

    DTIC Science & Technology

    1993-03-01

    continue on reverse if ncessary andidentify by block number) A method is developed for estimating welding efficiencies for moving arc GTAW processes...Dutta, Co-Advi r Department of Mechanical Engineering ii ABSTRACT A method is developed for estimating welding efficiencies for moving arc GTAW ...17 Figure 10. Miller Welding Equipment ............. ... 18 Figure 11. GTAW Torch Setup for Automatic Welding. . 19 Figure 12

  14. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.

    PubMed

    Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2017-08-22

    A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.

  15. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  16. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  17. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  18. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  19. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    DTIC Science & Technology

    2008-06-22

    ABSTRACT We apply the “effective mode volume” theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in... Electroluminescence efficiency enhancement using metal nanoparticles J. B. Khurgin,1 G. Sun,2,a and R. A. Soref3 1Department of Electrical and Computer...published online 17 July 2008 We apply the “effective mode volume” theory to evaluate enhancement of the electroluminescence efficiency of semiconductor

  20. A theoretical study on the mechanism and dynamics of reactions (CF3)2CHOCH2F/(CF3)2CHOCHF2 with OH radical

    NASA Astrophysics Data System (ADS)

    Wang, Chunzhang; Wen, Jinmiao; He, Hongqing; Wang, Li

    2014-11-01

    The information related with the mechanism of reactions (CF3)2CHOCH2F + OH (R1) and (CF3)2CHOCHF2 + OH (R2) was explored theoretically at the BMC-CCSD//BMK/6-311 + G(d,p) level. Based on the optimised structures, energies, and other information, the rate constants were evaluated by the canonical variational transition-state theory with small curvature tunneling contributions in a temperature range of 220-2000 K. For each reaction, there are both hydrogen-abstraction and displacement channels. In addition, more than one hydrogen atom can be abstracted. The relationship between hydrogen abstraction and displacement, between different hydrogen-abstraction channels, and between reactions R1 and R2 are elucidated.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  3. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  4. A scalable moment-closure approximation for large-scale biochemical reaction networks

    PubMed Central

    Kazeroonian, Atefeh; Theis, Fabian J.; Hasenauer, Jan

    2017-01-01

    Abstract Motivation: Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The number of state variables of these approximating models, however, grows at least quadratically with the number of biochemical species. This limits their application to small- and medium-sized processes. Results: In this article, we present a scalable moment-closure approximation (sMA) for the simulation of statistical moments of large-scale stochastic processes. The sMA exploits the structure of the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields approximating models whose number of state variables depends predominantly on local properties, i.e. the average node degree of the reaction network, instead of the overall network size. The resulting complexity reduction is assessed by studying a range of medium- and large-scale biochemical reaction networks. To evaluate the approximation accuracy and the improvement in computational efficiency, we study models for JAK2/STAT5 signalling and NFκB signalling. Our method is applicable to generic biochemical reaction networks and we provide an implementation, including an SBML interface, which renders the sMA easily accessible. Availability and implementation: The sMA is implemented in the open-source MATLAB toolbox CERENA and is available from https://github.com/CERENADevelopers/CERENA. Contact: jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881983

  5. Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis

    PubMed Central

    Cozens, Christopher

    2018-01-01

    Abstract Engineering proteins for designer functions and biotechnological applications almost invariably requires (or at least benefits from) multiple mutations to non-contiguous residues. Several methods for multiple site-directed mutagenesis exist, but there remains a need for fast and simple methods to efficiently introduce such mutations – particularly for generating large, high quality libraries for directed evolution. Here, we present Darwin Assembly, which can deliver high quality libraries of >108 transformants, targeting multiple (>10) distal sites with minimal wild-type contamination (<0.25% of total population) and which takes a single working day from purified plasmid to library transformation. We demonstrate its efficacy with whole gene codon reassignment of chloramphenicol acetyl transferase, mutating 19 codons in a single reaction in KOD DNA polymerase and generating high quality, multiple-site libraries in T7 RNA polymerase and Tgo DNA polymerase. Darwin Assembly uses commercially available enzymes, can be readily automated, and offers a cost-effective route to highly complex and customizable library generation. PMID:29409059

  6. Mapping the Complete Reaction Path of a Complex Photochemical Reaction.

    PubMed

    Smith, Adam D; Warne, Emily M; Bellshaw, Darren; Horke, Daniel A; Tudorovskya, Maria; Springate, Emma; Jones, Alfred J H; Cacho, Cephise; Chapman, Richard T; Kirrander, Adam; Minns, Russell S

    2018-05-04

    We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.

  7. Mapping the Complete Reaction Path of a Complex Photochemical Reaction

    NASA Astrophysics Data System (ADS)

    Smith, Adam D.; Warne, Emily M.; Bellshaw, Darren; Horke, Daniel A.; Tudorovskya, Maria; Springate, Emma; Jones, Alfred J. H.; Cacho, Cephise; Chapman, Richard T.; Kirrander, Adam; Minns, Russell S.

    2018-05-01

    We probe the dynamics of dissociating CS2 molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.

  8. Abstracts

    ERIC Educational Resources Information Center

    American Biology Teacher, 1976

    1976-01-01

    Presents abstracts of 63 papers to be presented at the 1976 Convention of the National Association of Biology Teachers, October 14-17, 1976, Denver, Colorado. Papers cover a wide range of biology and science education topics with the majority concentrating upon the convention's main program, "Ecosystems: 1776-1976-?". (SL)

  9. Research Abstracts of 1982.

    DTIC Science & Technology

    1982-12-01

    Third Molars in Naval Personnel,- (Abstract #1430) 7. A. SEROWSKI* and F. AKER --"The Effect of Marine and Fresh-Water Atmospheric Environments on...Packaged Dental Instrument4’, (Abstract #1133) 8. I. L. SHKLAIR*, R. W. GAUGLER, R. G. WALTER -.The Effect of Three Surfactants on Controlling Caries...Insoluble Streptococcal Glucan"’. e (Abstract #102) - _/_ / 10. R. G. WALTER* and I. L. SHKLAIR - The Effect of T-10 Dextran on Caries and Plaque in

  10. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    PubMed

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  11. Direct catalytic asymmetric aldol-Tishchenko reaction.

    PubMed

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  12. Exploring the Unknown: Detection of Fast Variability of Starlight (Abstract)

    NASA Astrophysics Data System (ADS)

    Stanton, R. H.

    2017-12-01

    (Abstract only) In previous papers the author described a photometer designed for observing high-speed events such as lunar and asteroid occultations, and for searching for new varieties of fast stellar variability. A significant challenge presented by such a system is how one deals with the large quantity of data generated in order to process it efficiently and reveal any hidden information that might be present. This paper surveys some of the techniques used to achieve this goal.

  13. Abstraction in perceptual symbol systems.

    PubMed Central

    Barsalou, Lawrence W

    2003-01-01

    After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648

  14. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 05)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This bibliography is issued in two sections: Section 1 - Abstracts, and section 2 - Indexes. The abstract section cites 217 patents and applications for patent introduced into the NASA scientific and technical information system during the period of January 1974 through June 1974. Each entry consists of a citation, an abstract, and, in most cases, a key illustration selected from the patent or application for patent. The index section contains entries for 2653 patent and application for patent citations covering the period May 1969 through June 1974. The index section contains five indexes -- subject, inventor, source, number and accession number.

  15. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  16. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 32)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Abstracts are provided for 136 patents and patent applications entered into the NASA scientific and technical information system during the period July through December 1987. Each entry consists of a citation , an abstract, and in most cases, a key illustration selected from the patent or patent application.

  17. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 29)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Abstracts are provided for 115 patents and patent applications entered into the NASA scientific and technical information system during the period January 1986 through June 1986. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent application.

  18. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  19. High-level theoretical characterization of the vinoxy radical (•CH2CHO) + O2 reaction

    NASA Astrophysics Data System (ADS)

    Weidman, Jared D.; Allen, Ryan T.; Moore, Kevin B.; Schaefer, Henry F.

    2018-05-01

    Numerous processes in atmospheric and combustion chemistry produce the vinoxy radical (•CH2CHO). To understand the fate of this radical and to provide reliable energies needed for kinetic modeling of such processes, we have examined its reaction with O2 using highly reliable theoretical methods. Utilizing the focal point approach, the energetics of this reaction and subsequent reactions were obtained using coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] extrapolated to the complete basis set limit. These extrapolated energies were appended with several corrections including a treatment of full triples and connected quadruple excitations, i.e., CCSDT(Q). In addition, this study models the initial vinoxy radical + O2 reaction for the first time with multireference methods. We predict a barrier for this reaction of approximately 0.4 kcal mol-1. This result agrees with experimental findings but is in disagreement with previous theoretical studies. The vinoxy radical + O2 reaction produces a 2-oxoethylperoxy radical which can undergo a number of unimolecular reactions. Abstraction of a β-hydrogen (a 1,4-hydrogen shift) and dissociation back to reactants are predicted to be competitive to each other due to their similar barriers of 21.2 and 22.3 kcal mol-1, respectively. The minimum-energy β-hydrogen abstraction pathway produces a hydroperoxy radical (QOOH) that eventually decomposes to formaldehyde, CO, and •OH. Two other unimolecular reactions of the peroxy radical are α-hydrogen abstraction (38.7 kcal mol-1 barrier) and HO2• elimination (43.5 kcal mol-1 barrier). These pathways lead to glyoxal + •OH and ketene + HO2• formation, respectively, but they are expected to be uncompetitive due to their high barriers.

  20. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  1. Enrichment Effects of Gestures and Pictures on Abstract Words in a Second Language.

    PubMed

    Repetto, Claudia; Pedroli, Elisa; Macedonia, Manuela

    2017-01-01

    Laboratory research has demonstrated that multisensory enrichment promotes verbal learning in a foreign language (L2). Enrichment can be done in various ways, e.g., by adding a picture that illustrates the L2 word's meaning or by the learner performing a gesture to the word (enactment). Most studies have tested enrichment on concrete but not on abstract words. Unlike concrete words, the representation of abstract words is deprived of sensory-motor features. This has been addressed as one of the reasons why abstract words are difficult to remember. Here, we ask whether a brief enrichment training by means of pictures and by self-performed gestures also enhances the memorability of abstract words in L2. Further, we explore which of these two enrichment strategies is more effective. Twenty young adults learned 30 novel abstract words in L2 according to three encoding conditions: (1) reading, (2) reading and pairing the novel word to a picture, and (3) reading and enacting the word by means of a gesture. We measured memory performance in free and cued recall tests, as well as in a visual recognition task. Words encoded with gestures were better remembered in the free recall in the native language (L1). When recognizing the novel words, participants made less errors for words encoded with gestures compared to words encoded with pictures. The reaction times in the recognition task did not differ across conditions. The present findings support, even if only partially, the idea that enactment promotes learning of abstract words and that it is superior to enrichment by means of pictures even after short training.

  2. Enrichment Effects of Gestures and Pictures on Abstract Words in a Second Language

    PubMed Central

    Repetto, Claudia; Pedroli, Elisa; Macedonia, Manuela

    2017-01-01

    Laboratory research has demonstrated that multisensory enrichment promotes verbal learning in a foreign language (L2). Enrichment can be done in various ways, e.g., by adding a picture that illustrates the L2 word’s meaning or by the learner performing a gesture to the word (enactment). Most studies have tested enrichment on concrete but not on abstract words. Unlike concrete words, the representation of abstract words is deprived of sensory-motor features. This has been addressed as one of the reasons why abstract words are difficult to remember. Here, we ask whether a brief enrichment training by means of pictures and by self-performed gestures also enhances the memorability of abstract words in L2. Further, we explore which of these two enrichment strategies is more effective. Twenty young adults learned 30 novel abstract words in L2 according to three encoding conditions: (1) reading, (2) reading and pairing the novel word to a picture, and (3) reading and enacting the word by means of a gesture. We measured memory performance in free and cued recall tests, as well as in a visual recognition task. Words encoded with gestures were better remembered in the free recall in the native language (L1). When recognizing the novel words, participants made less errors for words encoded with gestures compared to words encoded with pictures. The reaction times in the recognition task did not differ across conditions. The present findings support, even if only partially, the idea that enactment promotes learning of abstract words and that it is superior to enrichment by means of pictures even after short training. PMID:29326617

  3. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 31)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Abstracts are provided for 85 patents and patent applications entered into the NASA scientific and technical information system during the period January 1987 through June 1987. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  4. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 24)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Abstracts are provided for 167 patents and patent applications entered into the NASA scientific and technical information system during the period July 1983 through December 1983. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  5. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 27)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Abstracts are provided for 92 patents and patent applications entered into the NASA scientific and technical information system during the period January 1985 through June 1985. Each entry consist of a citation, and abstract, and in most cases, a key illustration selected from the patent or patent application.

  6. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 45)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Abstracts are provided for 137 patents and patent applications entered into the NASA scientific and technical information system during the period Jan. 1994 through Jun. 1994. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  7. NASA patent abstracts bibliography. A continuing bibliography (supplement 22). Section 1: Abstracts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Abstracts are cited for 234 patents and patent applications introduced into the NASA scientific and technical information system during the period July 1982 through December 1982. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  8. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 35)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Abstracts are provided for 58 patents and patent applications entered into the NASA scientific and technical information systems during the period January 1989 through June 1989. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  9. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 37)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Abstracts are provided for 76 patents and patent applications entered into the NASA scientific and technical information systems during the period January 1990 through June 1990. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  10. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 30)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Abstracts are provided for 105 patents and patent applications entered into the NASA scientific and technical information system during the period July 1986 through December 1986. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  11. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 38)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts are provided for 132 patents and patent applications entered into the NASA scientific and technical information system during the period July 1990 through December 1990. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  12. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 39)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts are provided for 154 patents and patent applications entered into the NASA scientific and technical information systems during the period Jan. 1991 through Jun. 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  13. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 43)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Abstracts are provided for 128 patents and patent applications entered into the NASA scientific and technical information system during the period Jan. 1993 through Jun. 1993. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  14. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 42)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Abstracts are provided for 174 patents and patent applications entered into the NASA scientific and technical information system during the period July 1992 through December 1992. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  15. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 36)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Abstracts are provided for 63 patents and patent applications entered into the NASA scientific and technical information systems during the period July 1989 through December 1989. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  16. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 40)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Abstracts are provided for 181 patents and patent applications entered into the NASA scientific and technical information system during the period July 1991 through December 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  17. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 28)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Abstracts are provided for 109 patents and patent applications entered into the NASA Scientific and Technical Information System during the period July 1985 through December 1985. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  18. NASA Patent Abstracts Bibliography: A Continuing Bibliography. Section 1: Abstracts (Supplement 48)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Abstracts are provided for 85 patents and patent applications entered into the NASA scientific and technical information system during the period July 1995 through December 1995. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  19. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 25)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Abstracts are provided for 102 patents and patent applications entered into the NASA scientific and technical information system during the period January 1984 through June 1984. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  20. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 33)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Abstracts are provided for 16 patents and patent applications entered into the NASA scientific and technical information systems during the period January 1988 through June 1988. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  1. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 15)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Abstracts are cited for 240 patents and applications for patents introduced into the NASA scientific system during the period of January 1979 through June 1979. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  2. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 26)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Abstracts are provided for 172 patents and patent applications entered into the NASA scientific and technical information system during the period July 1984 through December 1984. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  3. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 16)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Abstracts are cited for 138 patents and patent applications introduced into the NASA scientific and technical information system during the period July 1979 through December 1979. Each entry cib consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  4. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 23)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Abstracts are cited for 129 patents and patent applications introduced into the NASA scientific and technical information system during the period January 1983 through June 1983. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  5. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 18)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Abstracts are cited for 120 patents and patent applications for patents introduced into the NASA scientific system during the period of July 1980 through December 1980. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  6. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 34)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Abstracts are provided for 124 patents and patent applications entered into the NASA scientific and technical information systems during the period July 1988 through December 1988. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  7. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 41)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Abstracts are provided for 131 patents and patent applications entered into the NASA scientific and technical information system during the period Jan. 1992 through Jun. 1992. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  8. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 44)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Abstracts are provided for 131 patents and patent applications entered into the NASA scientific and technical information system during the period Jun. 1993 through Dec. 1993. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  9. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 20)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 165 patents and patent applications introduced into the NASA scientific and technical information system during the period July 1981 through December 1981. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application.

  10. Abstraction and art.

    PubMed

    Gortais, Bernard

    2003-07-29

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music.

  11. [An increase in efficiency of adaptations and a weakening of organism protective reactions in the process of biological evolution].

    PubMed

    Ivanov, K P

    2014-01-01

    The main direction of evolution of living organisms is development of the central nervous system and sense organ, an increase of energy exchange development of homoiothermia, development of the more and more complex forms of behavior, an increase in energy expenditure in connection with an increase of the organism activity, and development of adaptation to the habitat. Such fundamental processes were subjected and have been subjected to numerous studies and discussions. However, in different animals there exist different species peculiarities of evolution of physiological functions, from which finally formed are fundamental evolutionary processes. We studied some of these specific processes by dividing them into two categories. The first category is "Increase of efficiency of adaptation" in development of biological evolution. By this term we mean development of amazing by perfection specific physiological mechanisms of adaptive character. The second category is "Weakening of protective organism reactions". By this we understand disturbance of protective mechanisms of the organism immune system, discoordination of movement of leukocytes along microvessels, the absence of efficient collateral circulation in brain and in heart, etc.

  12. The intermolecular Pauson-Khand reaction.

    PubMed

    Gibson, Susan E; Mainolfi, Nello

    2005-05-13

    Five membered carbocycles are important building blocks for many biologically active molecules. Moreover, substituted cyclopentenones (e.g. cyclopentenone prostaglandins) exhibit characteristic biological activity. The efficiency and atom economy of the Pauson-Khand reaction render this process potentially one of the most attractive methods for the synthesis of such compounds. Although it was discovered in its intermolecular form, the scope of the intermolecular Pauson-Khand reaction has always been limited by the poor reactivity and selectivity of the alkene component. The past decade, especially the last three years, has seen concerted efforts to broaden the scope of this reaction. In this overview, we provide a comprehensive and critical coverage of the intermolecular Pauson-Khand reaction based on the reactivity characteristics of different classes of alkenes and a rationalization of successes and misfortunes in this area.

  13. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 19)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Abstracts are cited for 130 patents and patent applications introduced into the NASA scientific and technical information system during the period of January 1981 through July 1981. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  14. Cooperative Educational Abstracting Service (CEAS). (Abstract Series No. 103-122, March 1972).

    ERIC Educational Resources Information Center

    International Bureau of Education, Geneva (Switzerland).

    This document is a compilation of 20 English-language abstracts concerning various aspects of education in Switzerland, New Zealand, Chile, Poland, Argentina, Pakistan, Malaysia, Thailand, and France. The abstracts are informative in nature, each being approximately 1,500 words in length. They are based on documents submitted by each of the…

  15. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 17)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Abstracts are cited for 150 patents and applications for patents introduced into the NASA scientific and technical information system during the period January 1980 through June 1980. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  16. NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 14)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Abstracts are cited for 213 patents and applications for patent introduced into the NASA scientific and technical information system during the period of July 1978 through December 1978. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent.

  17. SIAM conference on applications of dynamical systems. Abstracts and author index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  18. Theoretical study on the multi-channel reaction of OH radical with 5-methylcytosine

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Jin, Lingxia; Wang, Weina; Lu, Jian; Yang, Jianming

    2007-08-01

    All the possible addition and hydrogen abstraction reactions of OH radical with 5-methylcytosine (5-MeC) have been investigated at B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p)+ZPE level. The results indicate that OH radical may form complexes with 5-MeC, and the reaction is assumed to occur from these complexes. The estimated activation energies corresponding to addition reactions at N3, C4, C5 and C6 sites of the 5-MeC are 80.96, 63.41, 0.00 and 0.30 kJ/mol, respectively. The order of stability of adducts is P4(C6) > P3(C5) > P2(C4) > P1(N3). The activation energies corresponding to the H9, H10, H11, and H14 abstraction reactions from the 5-MeC are all small, and the stabilization of the products is P8(H14) > P6(H10) > P5(H9) > P7(H11).

  19. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines.

    PubMed

    Bon, Robin S; Hong, Chongen; Bouma, Marinus J; Schmitz, Rob F; de Kanter, Frans J J; Lutz, Martin; Spek, Anthony L; Orru, Romano V A

    2003-10-02

    [reaction: see text] The three-component condensation between an amine, an aldehyde, and an alpha-acidic isocyanide efficiently provides substituted 2-imidazolines in a one-pot reaction under mild conditions.

  20. Strategies for generating peptide radical cations via ion/ion reactions.

    PubMed

    Gilbert, Joshua D; Fisher, Christine M; Bu, Jiexun; Prentice, Boone M; Redwine, James G; McLuckey, Scott A

    2015-02-01

    Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon-iodine (C-I) bond are subjected to UVPD with 266-nm photons, which selectively cleaves the C-I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even-electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non-covalent complexes in the electrospray process. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  2. Abstraction and reformulation in artificial intelligence.

    PubMed

    Holte, Robert C; Choueiry, Berthe Y

    2003-07-29

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense.

  3. Contemporary screening approaches to reaction discovery and development.

    PubMed

    Collins, Karl D; Gensch, Tobias; Glorius, Frank

    2014-10-01

    New organic reactivity has often been discovered by happenstance. Several recent research efforts have attempted to leverage this to discover new reactions. In this Review, we attempt to unify reported approaches to reaction discovery on the basis of the practical and strategic principles applied. We concentrate on approaches to reaction discovery as opposed to reaction development, though conceptually groundbreaking approaches to identifying efficient catalyst systems are also considered. Finally, we provide a critical overview of the utility and application of the reported methods from the perspective of a synthetic chemist, and consider the future of high-throughput screening in reaction discovery.

  4. An efficient synthesis of symmetric and unsymmetric bis-(β-aminoamides) via Ugi multicomponent reaction.

    PubMed

    La Spisa, Fabio; Feo, Alberto; Mossetti, Riccardo; Tron, Gian Cesare

    2012-12-07

    A library of symmetrical and unsymmetrical bis-(β-aminoamides) has been prepared starting from symmetrical secondary diamines by using a double Ugi four-component reaction. A sacrifical Mumm rearrangement, thanks to the use of 2-hydroxymethyl benzoic acid, is necessary to suppress the competing split-Ugi reaction, increasing the yield and simplifying the purification step. The scope, the reaction conditions, and the role of water in trapping the nitrilium intermediate are also discussed.

  5. Advances in copper-catalyzed C-C coupling reactions and related domino reactions based on active methylene compounds.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2012-06-01

    Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient Boundaries.

    DTIC Science & Technology

    1981-11-01

    and idmntify by block nimbec) .. j Efficiency Structure Intermediate markets S20. ABSTRACT (Continue an tewwe aid. it necessary and identify by Weock...the Winter of 1980; and at the Mini-Conference on Strategy, Marketing , and Organi- zation held at the Graduate School of Management, UCLA, during the...deciding among various transaction goverance mechanisms, market mechanisms would always be chosen. As we argue below, however, market mechanisms often do

  7. An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions.

    PubMed

    Kim, D J; Oh, H J; Park, T H; Choo, J B; Lee, S H

    2005-03-01

    The focus of this paper is on the fabrication of a PDMS-based passive efficient micromixer to be easily integrated into the other on-chip microfluidic system. The mixing is achieved by "strong stretching and folding," which employs a three-dimensional microchannel structure. By the simultaneously vertical and transversal dispersion of fluids, strong advection is developed. Owing to this powerful mixing performance (more than 70% of the mixing is accomplished within 2.3 mm over a wide range of Reynold number (Re)), the smaller integrative mixer can be realized. The feasibility and the potential usefulness of an integrative micromixer were evaluated by incorporating two mixers into the microchannel for the spectroscopic detection of a glucose-catalyst reaction. The results demonstrate a promising performance for diverse applications in the assay or synthesis of biological or chemical materials.

  8. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  9. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  10. Metacognition and abstract reasoning.

    PubMed

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue.

  11. Variables affecting efficiency of molasses fermentation wastewater ozonation.

    PubMed

    Coca, M; Peña, M; González, G

    2005-09-01

    The main operating variables affecting ozonation efficiencies of wastewater from beet molasses alcoholic fermentation have been studied. Semibatch experiments have been performed in order to analyze the influence of pH, bicarbonate ion, temperature and stirring rate on color and organic matter removals. The efficiencies were similar regardless of the pH, which indicates that direct reactions of ozone with wastewater organics were predominant to radical reactions. Gel permeation chromatography confirmed the reduction in the concentration of organics absorbing light at 475 nm after ozonation. The elimination of bicarbonate ion, strong inhibitor of hydroxyl radical reactions, yielded an improvement in both color and COD reduction efficiencies. Acidification for removing bicarbonate ions produced a shift of colored compounds to smaller molecular weights. The highest efficiencies were achieved at 40 degrees C. Color and COD reductions at 40 degrees C were about 90% and 37%, respectively. In no case, the percentage of TOC removed was higher than 10-15%. Stirring rate had a slightly positive effect during the first stage of the ozonation showing that mass transfer played a role only during the initial reaction phase when direct attack of ozone molecules to aromatic/olefinic structures of colored substances was the predominant pathway.

  12. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  13. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    NASA Technical Reports Server (NTRS)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  14. Imbalance between abstract and concrete repetitive thinking modes in schizophrenia.

    PubMed

    Maurage, Pierre; Philippot, Pierre; Grynberg, Delphine; Leleux, Dominique; Delatte, Benoît; Mangelinckx, Camille; Belge, Jan-Baptist; Constant, Eric

    2017-10-01

    Repetitive thoughts can be divided in two modes: abstract/analytic (decontextualized and dysfunctional) and concrete/experiential (problem-focused and adaptive). They constitute a transdiagnostic process involved in many psychopathological states but have received little attention in schizophrenia, as earlier studies only indexed increased ruminations (related to dysfunctional repetitive thoughts) without jointly exploring both modes. This study explored the two repetitive thinking modes, beyond ruminations, to determine their imbalance in schizophrenia. Thirty stabilized patients with schizophrenia and 30 matched controls completed the Repetitive Response Scale and the Mini Cambridge-Exeter Repetitive Thought Scale, both measuring repetitive thinking modes. Complementary measures related to schizophrenic symptomatology, depression and anxiety were also conducted. Compared to controls, patients with schizophrenia presented an imbalance between repetitive thinking modes, with increased abstract/analytic and reduced concrete/experiential thoughts, even after controlling for comorbidities. Schizophrenia is associated with stronger dysfunctional repetitive thoughts (i.e. abstract thinking) and impaired ability to efficiently use repetitive thinking for current problem-solving (i.e. concrete thinking). This imbalance confirms the double-faced nature of repetitive thinking modes, whose influence on schizophrenia's symptomatology should be further investigated. The present results also claim for evaluating these processes in clinical settings and for rehabilitating the balance between opposite repetitive thinking modes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Concept Formation and Abstraction.

    ERIC Educational Resources Information Center

    Lunzer, Eric A.

    1979-01-01

    This paper examines the nature of concepts and conceptual processes and the manner of their formation. It argues that a process of successive abstraction and systematization is central to the evolution of conceptual structures. Classificatory processes are discussed and three levels of abstraction outlined. (Author/SJL)

  16. Abstraction Techniques for Parameterized Verification

    DTIC Science & Technology

    2006-11-01

    approach for applying model checking to unbounded systems is to extract finite state models from them using conservative abstraction techniques. Prop...36 2.5.1 Multiple Reference Processes . . . . . . . . . . . . . . . . . . . 36 2.5.2 Adding Monitor Processes...model checking to complex pieces of code like device drivers depends on the use of abstraction methods. An abstraction method extracts a small finite

  17. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    PubMed Central

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  18. Intelligence, Reaction Times, and Peripheral Nerve Conduction Velocity.

    ERIC Educational Resources Information Center

    Vernon, Philip A.; Mori, Monica

    1992-01-01

    In 2 studies with 85 and 88 undergraduates, respectively, peripheral nerve conduction velocity (NCV) was significantly correlated with IQ score and reaction times, and NCV and reaction time contributed significantly, in combination, to prediction of IQ. Results are interpreted in terms of a neural efficiency model of intelligence. (Author/SLD)

  19. An abstract approach to evaporation models in rarefied gas dynamics

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; van der Mee, C. V. M.

    1984-03-01

    Strong evaporation models involving 1D stationary problems with linear self-adjoint collision operators and solutions in abstract Hilbert spaces are investigated analytically. An efficient algorithm for locating the transition from existence to nonexistence of solutions is developed and applied to the 1D and 3D BGK model equations and the 3D BGK model in moment form, demonstrating the nonexistence of stationary evaporation states with supersonic drift velocities. Applications to similar models in electron and phonon transport, radiative transfer, and neutron transport are suggested.

  20. Geophysical abstracts 167, October-December 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  1. Geophysical abstracts 164, January-March 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. A new table of contents, alphabetically arranged, has been adapted to show more clearly the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  2. Geophysical abstracts 166, July-September 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  3. Geophysical abstracts 165, April-June 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  4. Electrochemical preparation of tris(tert-butyldimethylsilyl)cyclopropene and its hydride abstraction to tris(tert-butyldimethylsilyl)cyclopropenium tetrafluoroborate

    PubMed Central

    Buchholz, Herwig A.; Prakash, G. K. Surya; Deffieux, Denis; Olah, George A.

    1999-01-01

    Electrochemical reductive tert-butyldimethylsilylation of tetrachlorocyclopropene to 1,2,3-tris(tert-butyldimethylsilyl)cyclopropene, a potential strained precursor for Diels–Alder and related cycloaddition reactions, is described. By hydride abstraction with nitrosonium tetrafluoroborate, 1,2,3-tris(tert-butyldimethylsilyl)cyclopropene is ionized quantitatively to Hückeloid 2π aromatic tris(tert-butyldimethylsilyl)cyclopropenium tetrafluoroborate. PMID:10468551

  5. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhan, Tianrong; Zhang, Yumei; Liu, Xiaolin; Lu, SiSi; Hou, Wanguo

    2016-11-01

    Highly active and low-cost bifunctional electrocatalysts for oxygen evolution and reduction reactions (OER and ORR) hold a heart position for the renewable energy technologies such as metal-air batteries and fuel cells. Here, we reported the synthesis of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanohybrid via the facile solvothermal method followed by chemical reduction. The template role of surfactant and the hybridization of rGO supplied the NiFe-LDH/rGO catalyst with a porous nanostructure and an enhanced conductivity, favoring both mass transport and charge communication of electrocatalytic reactions. The NiFe-LDH/rGO composite not only displayed highly efficient OER activity in alkaline solution with a low onset overpotential of 240 mV, but also only needed an overpotential of 250 mV to reach the 10 mA cm-2 current density. The NiFe-LDH/rGO nanohybrid also offered excellent ORR catalytic activity with onset potential at 0.796 V in alkaline media. The rotating-disk and rotating-ring-disk electrodes both revealed that the ORR on NiFe-LDH/rGO mainly involved a direct four-electron reaction pathways accompanying part of the two-electron process. The excellent bifunctional activity of the NiFe-LDH/rGO nanohybrid could be attributed to the synergistic effects of rGO and NiFe-LDH components due to the strongly coupled interactions.

  6. Energy Research Abstracts. [DOE abstract journal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Energy Research Abstracts (ERA) provides abstracting and indexing coverage of all scientific and technical reports, journal articles, conference papers and proceedings, books, patents, theses, and monographs originated by the US Department of Energy, its laboratories, energy centers, and contractors. ERA also covers other energy information prepared in report form by federal and state government organizations, foreign governments, and domestic and foreign universities and research organizations. ERA coverage of non-report literature is limited to that generated by Department of Energy activity. ERA is comprehensive in its subject scope, encompassing the DOE's research, development, demonstration, and technological programs resulting from its broadmore » charter for energy sources, conservation, safety, environmental impacts, and regulation. Corporate, author, subject, report number, and contract number indexes are included. ERA is available on an exchange basis to universities, research intitutions, industrial firms, and publishers of scientific information. Federal, state, and municipal agencies concerned with energy development, conservation, and usage may obtain ERA free of charge. Inquiries should be directed to the Technical Information Center, P.O. Box 62, Oak Ridge, Tennessee 37830. ERA is available to the public on a subscription basis for 24 semimonthly issues including a semiannual index and an annual index. All citations announced in ERA exist as separate records in the DOE Energy Data Base.« less

  7. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  8. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  9. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    PubMed

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  10. Product screening of fast reactions in IR-laser-heated liquid water filaments in a vacuum by mass spectrometry.

    PubMed

    Charvat, A; Stasicki, B; Abel, B

    2006-03-09

    In the present article a novel approach for rapid product screening of fast reactions in IR-laser-heated liquid microbeams in a vacuum is highlighted. From absorbed energies, a shock wave analysis, high-speed laser stroboscopy, and thermodynamic data of high-temperature water the enthalpy, temperature, density, pressure, and the reaction time window for the hot water filament could be characterized. The experimental conditions (30 kbar, 1750 K, density approximately 1 g/cm3) present during the lifetime of the filament (20-30 ns) were extreme and provided a unique environment for high-temperature water chemistry. For the probe of the reaction products liquid beam desorption mass spectrometry was employed. A decisive feature of the technique is that ionic species, as well as neutral products and intermediates may be detected (neutrals as protonated aggregates) via time-of-flight mass spectrometry without any additional ionization laser. After the explosive disintegration of the superheated beam, high-temperature water reactions are efficiently quenched via expansion and evaporative cooling. For first exploratory experiments for chemistry in ultrahigh-temperature, -pressure and -density water, we have chosen resorcinol as a benchmark system, simple enough and well studied in high-temperature water environments much below 1000 K. Contrary to oxidation reactions usually present under less extreme and dense supercritical conditions, we have observed hydration and little H-atom abstraction during the narrow time window of the experiment. Small amounts of radicals but no ionic intermediates other than simple proton adducts were detected. The experimental findings are discussed in terms of the energetic and dense environment and the small time window for reaction, and they provide firm evidence for additional thermal reaction channels in extreme molecular environments.

  11. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  12. Ruthenium nanocatalysis on redox reactions.

    PubMed

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  13. Optical Excitation of Carbon Nanotubes Drives Localized Diazonium Reactions

    PubMed Central

    2016-01-01

    Covalent chemistries have been widely used to modify carbon nanomaterials; however, they typically lack the precision and efficiency required to directly engineer their optical and electronic properties. Here, we show, for the first time, that visible light which is tuned into resonance with carbon nanotubes can be used to drive their functionalization by aryldiazonium salts. The optical excitation accelerates the reaction rate 154-fold (±13) and makes it possible to significantly improve the efficiency of covalent bonding to the sp2 carbon lattice. Control experiments suggest that the reaction is dominated by a localized photothermal effect. This light-driven reaction paves the way for precise nanochemistry that can directly tailor carbon nanomaterials at the optical and electronic levels. PMID:27588432

  14. Co-operative Educational Abstracting Service (CEAS). [Abstract Series No. 1-4, 1969-1971].

    ERIC Educational Resources Information Center

    International Bureau of Education, Geneva (Switzerland).

    This document is a compilation of 163 English-language abstracts concerning various aspects of education in Australia, Brazil, Bulgaria, Denmark, Finland, France, Hungary, Iceland, India, Israel, Japan, Mexico, Nigeria, Philippines, Thailand, UAR, U.S., USSR, and Yugoslavia. The abstracts are informative in nature and are approximately 1,500 words…

  15. Kinetic and ab initio theoretical study of hydrogen atom abstraction from thiols by thiyl radicals: Basis rate expressions for reactions of sulfur-centered radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnajjar, M.S.; Garrossian, M.S.; Autrey, S.T.

    1992-08-20

    Arrhenius rate expressions were determined for the abstraction of hydrogen atom from thiophenol and hexanethiol by the octanethiyl radical at 25-100 {degrees}C in nonane. Octanethiyl radicals were produced by steady-state photolysis of octyl thiobenzoate. Analysis of octyl disulfide and octanethiyl radical. For hexanethiol, log (k{sub abs}/K{sub t}{sup 1/2}) = (2.94 {plus_minus} 0.29) - (3.84 {plus_minus}0.41)/0, and for thiophenol, log (k{sub abs}/k{sub 5}{sup 1/2}) = (2.56 {plus_minus} 0.19) - (2.88 {plus_minus} 0.28)/0;0=2.3RT kcal/mol. Combining these expressions with the Smoluchowski expression for self-termination of octanethiyl in nonane, log (k{sub t}{sup 1/2}) = 5.96 - 1.335/0, which employs experimental diffusion coefficients of octanethiolmore » and a spin selection factor {sigma} = 1, yields, for thiophenol, log (k{sub abs}/M{sup {minus}1}s{sup {minus}1}) = (8.52 {plus_minus} 0.18) = (4.22 {plus_minus} 0.27)/0, and for hexanethiol, log (k{sub abs}/M{sup {minus}1} s{sup {minus}1}) = (8.90 {plus_minus} 0.29) = (5.18 {plus_minus} 0.41)/0 (errors are 2{sigma}). The rate of disappearance of octanethiyl/diphenylketyl radical pairs in SDS micelles, determined by nanosecond optical spectroscopy, was found to be unchanged in a 700-G magnetic field, providing evidence for rapid intersystem crossing of sulfur-centered radical pairs and support for the assignment of {sigma} = 1 above. Ab initio electronic structure calculations on the reaction HS{sup {lg_bullet}} + HSH {r_arrow} HSH + {sup {lg_bullet}}SH, performed at SCF and correlated levels, predict an activation barrier of {Delta}H{sub 298} {sup {double_dagger}}= 4.6 kcal/mol, in close agreement with the experimental barrier for the octanethiyl + hexanethiol reactions. 43 refs., 5 figs., 4 tabs.« less

  16. A DNA-scaffold platform enhances a multi-enzymatic cycling reaction.

    PubMed

    Mashimo, Yasumasa; Mie, Masayasu; Kobatake, Eiry

    2018-04-01

    We explored the co-localization of multiple enzymes on a DNA backbone via a DNA-binding protein, Gene-A* (A*-tag) to increase the efficiency of cascade enzymatic reactions. Firefly luciferase (FLuc) and pyruvate orthophosphate dikinase (PPDK) were genetically fused with A*-tag and modified with single-stranded (ss) DNA via A*-tag. The components were assembled on ssDNA by hybridization, thereby enhancing the efficiency of the cascading bioluminescent reaction producing light emission from pyrophosphate. The activity of A*-tag in each enzyme was investigated with dye-labeled DNA. Co-localization of the enzymes via hybridization was examined using a gel shift assay. The multi-enzyme complex showed significant improvement in the overall efficiency of the cascading reaction in comparison to a mixture of free enzymes. A*-tag is highly convenient for ssDNA modification of versatile enzymes, and it can be used for construction of functional DNA-enzyme complexes.

  17. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction

    DOE PAGES

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei; ...

    2018-03-21

    Exploring low-cost and highly efficient electrocatalysts toward the oxygen evolution reaction (OER) is of significant importance, although facing great challenges for sustainable energy systems. In this study, amorphous NiFe-based porous nanocubes (Ni–Fe–O–P, Ni–Fe–O–B, and Ni–Fe–O–S) are successfully synthesized via simple and cost-effective one-step calcination of Ni–Fe based metal–organic frameworks (MOFs) and heteroatom containing molecules. The resulting three materials maintain a well-defined porous nanocube morphology with heteroatoms uniformly distributed in the structure. The unique porous structure can effectively provide more active sites and shorten the mass transport distance. Additionally, the introduction of P, B or S can tune the electronic structure,more » which is favorable for accelerating the charge transfer, and may lead to the formation of the higher average oxidative valence of Ni species during the OER process. Benefiting from the above desirable properties, all three materials exhibit excellent OER electrocatalytic activities and outstanding long-term stability in a home-made zinc air battery. Lastly, this work not only provides a general approach for the synthesis of highly efficient electrocatalysts based on earth-abundant elements but also highlights the potential prospects of MOFs in energy conversion and storage devices.« less

  19. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei

    Exploring low-cost and highly efficient electrocatalysts toward the oxygen evolution reaction (OER) is of significant importance, although facing great challenges for sustainable energy systems. In this study, amorphous NiFe-based porous nanocubes (Ni–Fe–O–P, Ni–Fe–O–B, and Ni–Fe–O–S) are successfully synthesized via simple and cost-effective one-step calcination of Ni–Fe based metal–organic frameworks (MOFs) and heteroatom containing molecules. The resulting three materials maintain a well-defined porous nanocube morphology with heteroatoms uniformly distributed in the structure. The unique porous structure can effectively provide more active sites and shorten the mass transport distance. Additionally, the introduction of P, B or S can tune the electronic structure,more » which is favorable for accelerating the charge transfer, and may lead to the formation of the higher average oxidative valence of Ni species during the OER process. Benefiting from the above desirable properties, all three materials exhibit excellent OER electrocatalytic activities and outstanding long-term stability in a home-made zinc air battery. Lastly, this work not only provides a general approach for the synthesis of highly efficient electrocatalysts based on earth-abundant elements but also highlights the potential prospects of MOFs in energy conversion and storage devices.« less

  20. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  1. Scientific meeting abstracts: significance, access, and trends.

    PubMed Central

    Kelly, J A

    1998-01-01

    Abstracts of scientific papers and posters that are presented at annual scientific meetings of professional societies are part of the broader category of conference literature. They are an important avenue for the dissemination of current data. While timely and succinct, these abstracts present problems such as an abbreviated peer review and incomplete bibliographic access. METHODS: Seventy societies of health sciences professionals were surveyed about the publication of abstracts from their annual meetings. Nineteen frequently cited journals also were contacted about their policies on the citation of meeting abstracts. Ten databases were searched for the presence of meetings abstracts. RESULTS: Ninety percent of the seventy societies publish their abstracts, with nearly half appearing in the society's journal. Seventy-seven percent of the societies supply meeting attendees with a copy of each abstract, and 43% make their abstracts available in an electronic format. Most of the journals surveyed allow meeting abstracts to be cited. Bibliographic access to these abstracts does not appear to be widespread. CONCLUSIONS: Meeting abstracts play an important role in the dissemination of scientific knowledge. Bibliographic access to meeting abstracts is very limited. The trend toward making meeting abstracts available via the Internet has the potential to give a broader audience access to the information they contain. PMID:9549015

  2. The hexadehydro-Diels-Alder reaction.

    PubMed

    Hoye, Thomas R; Baire, Beeraiah; Niu, Dawen; Willoughby, Patrick H; Woods, Brian P

    2012-10-11

    Arynes (aromatic systems containing, formally, a carbon-carbon triple bond) are among the most versatile of all reactive intermediates in organic chemistry. They can be 'trapped' to give products that are used as pharmaceuticals, agrochemicals, dyes, polymers and other fine chemicals. Here we explore a strategy that unites the de novo generation of benzynes-through a hexadehydro-Diels-Alder reaction-with their in situ elaboration into structurally complex benzenoid products. In the hexadehydro-Diels-Alder reaction, a 1,3-diyne is engaged in a [4+2] cycloisomerization with a 'diynophile' to produce the highly reactive benzyne intermediate. The reaction conditions for this simple, thermal transformation are notable for being free of metals and reagents. The subsequent and highly efficient trapping reactions increase the power of the overall process. Finally, we provide examples of how this de novo benzyne generation approach allows new modes of intrinsic reactivity to be revealed.

  3. Foundations of the Bandera Abstraction Tools

    NASA Technical Reports Server (NTRS)

    Hatcliff, John; Dwyer, Matthew B.; Pasareanu, Corina S.; Robby

    2003-01-01

    Current research is demonstrating that model-checking and other forms of automated finite-state verification can be effective for checking properties of software systems. Due to the exponential costs associated with model-checking, multiple forms of abstraction are often necessary to obtain system models that are tractable for automated checking. The Bandera Tool Set provides multiple forms of automated support for compiling concurrent Java software systems to models that can be supplied to several different model-checking tools. In this paper, we describe the foundations of Bandera's data abstraction mechanism which is used to reduce the cardinality (and the program's state-space) of data domains in software to be model-checked. From a technical standpoint, the form of data abstraction used in Bandera is simple, and it is based on classical presentations of abstract interpretation. We describe the mechanisms that Bandera provides for declaring abstractions, for attaching abstractions to programs, and for generating abstracted programs and properties. The contributions of this work are the design and implementation of various forms of tool support required for effective application of data abstraction to software components written in a programming language like Java which has a rich set of linguistic features.

  4. [Development of boomerang-type intramolecular cascade reactions and application to natural product synthesis].

    PubMed

    Takasu, K

    2001-12-01

    Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.

  5. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  6. Quantum Chemical Study of CH3 + O2 Combustion Reaction System: Catalytic Effects of Additional CO2 Molecule.

    PubMed

    Masunov, Artëm E; Wait, Elizabeth; Vasu, Subith S

    2017-08-03

    The supercritical carbon dioxide diluent is used to control the temperature and to increase the efficiency in oxycombustion fossil fuel energy technology. It may affect the rates of combustion by altering mechanisms of chemical reactions, compared to the ones at low CO 2 concentrations. Here, we investigate potential energy surfaces of the four elementary reactions in the CH 3 + O 2 reactive system in the presence of one CO 2 molecule. In the case of reaction CH 3 + O 2 → CH 2 O + OH (R1 channel), van der Waals (vdW) complex formation stabilizes the transition state and reduces the activation barrier by ∼2.2 kcal/mol. Alternatively, covalently bonded CO 2 may form a six-membered ring transition state and reduce the activation barrier by ∼0.6 kcal/mol. In case of reaction CH 3 + O 2 → CH 3 O + O (R2 channel), covalent participation of CO 2 lowers the barrier for the rate limiting step by 3.9 kcal/mol. This is expected to accelerate the R2 process, important for the branching step of the radical chain reaction mechanism. For the reaction CH 3 + O 2 → CHO + H 2 O (R3 channel) with covalent participation of CO 2 , the activation barrier is lowered by 0.5 kcal/mol. The reaction CH 2 O + OH → CHO + H 2 O (R4 channel) involves hydrogen abstraction from formaldehyde by OH radical. Its barrier is reduced from 7.1 to 0.8 kcal/mol by formation of vdW complex with spectator CO 2 . These new findings are expected to improve the kinetic reaction mechanism describing combustion processes in supercritical CO 2 medium.

  7. Water Pollution Abstracts. Volume 43, Number 4, Abstracts 645-849.

    DTIC Science & Technology

    WATER POLLUTION, *ABSTRACTS, PURIFICATION, WASTES(INDUSTRIAL), CONTROL, SEWAGE, WATER SUPPLIES, PUBLIC HEALTH, PETROLEUM PRODUCTS, DEGRADATION, DAMS...ESTUARIES, PLANKTON, PHOTOSYNTHESIS, VIRUSES, SEA WATER , MICROBIOLOGY, UNITED KINGDOM.

  8. Modeling of uncertainties in biochemical reactions.

    PubMed

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  9. Modeling chemical reactions for drug design.

    PubMed

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  10. Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: Evidence for one electron oxidation of the metal center and corrin ring destruction.

    PubMed

    Dassanayake, Rohan S; Farhath, Mohamed M; Shelley, Jacob T; Basu, Soumitra; Brasch, Nicola E

    2016-10-01

    Kinetic and mechanistic studies on the reaction of a major intracellular vitamin B 12 form, cob(II)alamin (Cbl(II)), with hypochlorous acid/hypochlorite (HOCl/OCl - ) have been carried out. Cbl(II) (Co(II)) is rapidly oxidized by HOCl to predominately aquacobalamin/hydroxycobalamin (Cbl(III), Co(III)) with a second-order rate constant of 2.4×10 7 M -1 s -1 (25.0°C). The stoichiometry of the reaction is 1:1. UHPLC/HRMS analysis of the product mixture of the reaction of Cbl(II) with 0.9mol equiv. HOCl provides support for HOCl being initially reduced to Cl and subsequent H atom abstraction from the corrin macrocycle occurring, resulting in small amounts of corrinoid species with two or four H atoms fewer than the parent cobalamin. Upon the addition of excess (H)OCl further slower reactions are observed. Finally, SDS-PAGE experiments show that HOCl-induced damage to bovine serum albumin does not occur in the presence of Cbl(II), providing support for Cbl(II) being an efficient HOCl trapping agent. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    PubMed

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  12. Efficient simulation of intrinsic, extrinsic and external noise in biochemical systems

    PubMed Central

    Pischel, Dennis; Sundmacher, Kai; Flassig, Robert J.

    2017-01-01

    Abstract Motivation: Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most biochemical systems, approximate methods are used to obtain a solution. Results: In this study, a method to efficiently simulate the various sources of noise simultaneously is proposed and benchmarked on several examples. The method relies on the combination of the sigma point approach to describe extrinsic and external variability and the τ-leaping algorithm to account for the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo calculations demonstrates an immense computational advantage while losing an acceptable amount of accuracy. Additionally, the application to parameter optimization problems in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge computational burden. To give further insight, a MATLAB script is provided including the proposed method applied to a simple toy example of gene expression. Availability and implementation: MATLAB code is available at Bioinformatics online. Contact: flassig@mpi-magdeburg.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881987

  13. Data Abstraction in GLISP.

    ERIC Educational Resources Information Center

    Novak, Gordon S., Jr.

    GLISP is a high-level computer language (based on Lisp and including Lisp as a sublanguage) which is compiled into Lisp. GLISP programs are compiled relative to a knowledge base of object descriptions, a form of abstract datatypes. A primary goal of the use of abstract datatypes in GLISP is to allow program code to be written in terms of objects,…

  14. Youth Studies Abstracts. Vol. 4 No. 3.

    ERIC Educational Resources Information Center

    Youth Studies Abstracts, 1985

    1985-01-01

    This volume contains 169 abstracts of documents dealing with youth and educational programs for youth. Included in the volume are 97 abstracts of documents dealing with social and educational developments; 56 abstracts of program reports, reviews, and evaluations; and 16 abstracts of program materials. Abstracts are grouped according to the…

  15. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Nesreen S.; Surface Chemistry and Catalytic Studies Group, King Abdulaziz University; Menzel, Robert

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%,more » respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH. - Graphical abstract: CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. - Highlights: • CuAl LDH/GO and CoAl LDH/GO hybrid materials with different LDH compositions were prepared. • Hybrids were fully characterised and their catalytic efficiency over the Classic Ullman Reaction was studied. • CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) in 25 min reaction times. • GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs. • After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.« less

  16. Knowledge acquisition for temporal abstraction.

    PubMed

    Stein, A; Musen, M A; Shahar, Y

    1996-01-01

    Temporal abstraction is the task of detecting relevant patterns in data over time. The knowledge-based temporal-abstraction method uses knowledge about a clinical domain's contexts, external events, and parameters to create meaningful interval-based abstractions from raw time-stamped clinical data. In this paper, we describe the acquisition and maintenance of domain-specific temporal-abstraction knowledge. Using the PROTEGE-II framework, we have designed a graphical tool for acquiring temporal knowledge directly from expert physicians, maintaining the knowledge in a sharable form, and converting the knowledge into a suitable format for use by an appropriate problem-solving method. In initial tests, the tool offered significant gains in our ability to rapidly acquire temporal knowledge and to use that knowledge to perform automated temporal reasoning.

  17. Modeling Chemical Growth Processes in Titan's Atmosphere: 1. Theoretical Rates for Reactions between Benzene and the Ethynyl (C2H) and Cyano (CN) Radicals at Low Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2006-01-01

    Density functional theory calculations at the B3LYP/6-31+G** level were employed to characterize the critical points for adducts, isomers, products, and intervening transition states for the reactions between benzene and the ethynyl (C2H) or cyano (CN) radicals. Both addition reactions were found to have no barriers in their entrance channels, making them efficient at the low temperature and pressure conditions that prevail in the haze-forming region of Titan's atmosphere as well as in the dense interstellar medium (ISM). The dominant products are ethynylbenzene (C6H5C2H) and cyanobenzene (C6H5CN). Hydrogen abstraction reactions were also characterized but found to be non-competitive. Trajectory calculations based on potentials fit to about 600 points calculated at the ROMP2/6-31+G** level for each interaction surface were used to determine reaction rates. The rates incorporated any necessary corrections for back reactions as ascertained from a multiwell treatment used to determine outcome distributions over the range of temperatures and pressures pertinent to Titan and the ISM and are in good agreement with the limited available experimental data.

  18. Hydrogen Abstraction by Chlorine Atom from Small Organic Molecules Containing Amino Acid Functionalities: An Assessment of Theoretical Procedures

    NASA Astrophysics Data System (ADS)

    Taylor, Mark S.; Ivanic, Sandra A.; Wood, Geoffrey P. F.; Easton, Christopher J.; Bacskay, George B.; Radom, Leo

    2009-07-01

    A high-level quantum chemistry investigation has been carried out for the abstraction by chlorine atom of hydrogen from methane and five monosubstituted methanes, chosen to reflect the chemical functionalities contained in amino acids and peptides. A modified W1' procedure is used to calculate benchmark barriers and reaction energies for the six reactions. The reactions demonstrate a broad range of barrier heights and reaction energies, which can be rationalized using curve-crossing and molecular orbital theory models. In addition, the performance of a range of computationally less demanding electronic structure methods is assessed for calculating the energy profiles for the six reactions. It is found that the G3X(MP2)-RAD procedure compares best with the W1' benchmark, demonstrating a mean absolute deviation (MAD) from W1' of 2.1 kJ mol-1. The more economical RMP2/G3XLarge and UB2-PLYP/G3XLarge methods are also shown to perform well, with MADs from W1' of 2.9 and 3.0 kJ mol-1, respectively.

  19. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition

    PubMed Central

    Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto

    2016-01-01

    Abstract Nanocomposite SiOx particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiOx matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH4 promotes reduction in the oxygen content x of SiOx, and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD. PMID:27933114

  20. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  1. Efficiency of PRECIS Role Operators.

    ERIC Educational Resources Information Center

    Mahapatra, M.; Biswas, S. C.

    1984-01-01

    Describes research which measured the efficiency of role operators through frequency of appearances in PRECIS input strings for 200 abstracts related to taxation, genetic psychology, and Shakespearian drama. Frequencies of appearance of major categories of role operators, role operators in different subjects, individual main line operators, and…

  2. Surfactant-Assisted Phase-Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction.

    PubMed

    Wu, Ya-Pan; Zhou, Wei; Zhao, Jun; Dong, Wen-Wen; Lan, Ya-Qian; Li, Dong-Sheng; Sun, Chenghua; Bu, Xianhui

    2017-10-09

    Reported herein are two new polymorphic Co-MOFs (CTGU-5 and -6) that can be selectively crystallized into the pure 2D or 3D net using an anionic or neutral surfactant, respectively. Each polymorph contains a H 2 O molecule, but differs dramatically in its bonding to the framework, which in turn affects the crystal structure and electrocatalytic performance for hydrogen evolution reaction (HER). Both experimental and computational studies find that 2D CTGU-5 which has coordinates water and more open access to the cobalt site has higher electrocatalytic activity than CTGU-6 with the lattice water. The integration with co-catalysts, such as acetylene black (AB) leads to a composite material, AB&CTGU-5 (1:4) with very efficient HER catalytic properties among reported MOFs. It exhibits superior HER properties including a very positive onset potential of 18 mV, low Tafel slope of 45 mV dec -1 , higher exchange current density of 8.6×10 -4  A cm -2 , and long-term stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  4. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  5. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Bin; Hübner, René; Sasaki, Kotaro

    The development of core–shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd xAu-Pt core–shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd xAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core–shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2,more » which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core–shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core–shell electrocatalysts.« less

  6. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction

    DOE PAGES

    Cai, Bin; Hübner, René; Sasaki, Kotaro; ...

    2018-02-08

    The development of core–shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd xAu-Pt core–shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd xAu alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core–shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2,more » which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core–shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core–shell electrocatalysts.« less

  7. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions.

    PubMed

    Zhang, Xiaoping; Kong, Rong-Mei; Du, Huitong; Xia, Lian; Qu, Fengli

    2018-05-22

    The development of a sustainable route to ammonia production is one of the most attractive targets in chemistry. The primary method of ammonia production, Haber-Bosch process, can bring about excessive consumption of fossil fuels and large CO2 emission. In this communication, we develop a VN nanowire array on carbon cloth (VN/CC) as a high-performance catalyst for the nitrogen reduction reaction (NRR) under ambient conditions. Such an electrocatalyst achieves high ammonia yield (2.48 × 10-10 mol-1 s-1 cm-2) and faradaic efficiency (3.58%) at -0.3 V versus RHE in 0.1 M HCl, outperforming most reported results for N2 fixation under ambient conditions, and even comparing favorably with those obtained under high temperatures and/or pressures. This work not only provides us an attractive catalyst material for the NRR in acidic media, but would also open up an exciting new avenue to the rational design and fabrication of transition metal nitrides for the NRR.

  8. The Eschenmoser coupling reaction under continuous-flow conditions

    PubMed Central

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  9. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  10. Efficient Destruction of Pollutants in Water by a Dual-Reaction-Center Fenton-like Process over Carbon Nitride Compounds-Complexed Cu(II)-CuAlO2.

    PubMed

    Lyu, Lai; Yan, Dengbiao; Yu, Guangfei; Cao, Wenrui; Hu, Chun

    2018-04-03

    Carbon nitride compounds (CN) complexed with the in-situ-produced Cu(II) on the surface of CuAlO 2 substrate (CN-Cu(II)-CuAlO 2 ) is prepared via a surface growth process for the first time and exhibits exceptionally high activity and efficiency for the degradation of the refractory pollutants in water through a Fenton-like process in a wide pH range. The reaction rate for bisphenol A removal is ∼25 times higher than that of the CuAlO 2 . According to the characterization, Cu(II) generation on the surface of CuAlO 2 during the surface growth process results in the marked decrease of the surface oxygen vacancies and the formation of the C-O-Cu bridges between CN and Cu(II)-CuAlO 2 in the catalyst. The electron paramagnetic resonance (EPR) analysis and density functional theory (DFT) calculations demonstrate that the dual reaction centers are produced around the Cu and C sites due to the cation-π interactions through the C-O-Cu bridges in CN-Cu(II)-CuAlO 2 . During the Fenton-like reactions, the electron-rich center around Cu is responsible for the efficient reduction of H 2 O 2 to • OH, and the electron-poor center around C captures electrons from H 2 O 2 or pollutants and diverts them to the electron-rich area via the C-O-Cu bridge. Thus, the catalyst exhibits excellent catalytic performance for the refractory pollutant degradation. This study can deepen our understanding on the enhanced Fenton reactivity for water purification through functionalizing with organic solid-phase ligands on the catalyst surface.

  11. Stable and efficient nitrogen-containing-carbon based electrocatalysts for reactions in energy conversion systems.

    PubMed

    Wang, Sicong; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2018-05-17

    High activity and stability are crucial for practical electrocatalysts used for reactions in fuel cells, metal-air batteries and water electrolysis including ORR, HER, OER and oxidation reactions of formic acid and alcohols. N-C based electrocatalysts have shown promising prospects for catalyzing these reactions, however, there is no systematic review for strategies toward engineering active and stable N-C based electrocatalysts reported by far. Herein, a comprehensive comparison of recently reported N-C based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, relationships between electrocatalytic reactions and element selections for modifying N-C based materials are discussed. Afterwards, synthesis methods for N-C based electrocatalysts are summarized, and synthetic strategies for highly stable N-C based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    PubMed

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  13. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  14. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaoğlu, E., E-mail: ekaraoglu@fatih.edu.tr; Özel, U.; Caner, C.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4}more » nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.« less

  15. Harnessing the Efficiency of 0(1D) Insertion Reactions for Prebiotic Astrochemistry

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna

    We propose a THz spectroscopic study of the small prebiotic molecules aminomethanol, methanediol, and methoxymethanol. These target molecules are predicted as the dominant products of photo-driven grain surface chemistry in interstellar environments, and are precursors to important prebiotic molecules like sugars and amino acids. These molecules are also expected to be major contributors to the spectral line density in the submillimeter spectral surveys from the Herschel and SOFIA observatories. We will use our custom mixing source to produce these molecules through O(1D) insertion reactions with the precursor molecules methyl amine, methanol, and dimethyl ether, respectively. We will then record their rotational spectra across the THz frequency range using our existing submillimeter spectrometer. This research will increase the science return from NASA missions because the target molecules serve as tracers of the simplest organic chemistry that can occur in starforming regions. This chemistry begins with methanol, which is the predominant organic molecule observed in interstellar ices. Methanol photodissociation leads to small organic radicals such as CH3O, CH2OH, and CH3. These radicals can undergo combination reactions on interstellar ices to form many of the complex organic molecules that are routinely observed in star-forming regions. Our target molecules aminomethanol, methanediol, and methoxymethanol are some of the simplest molecules that can form from this type of chemistry, and serve as tracers of ice mantle liberation in star-forming regions. These molecules also participate in gas-phase reactions that lead to amino acids and sugars, and as such are fundamentally important prebiotic molecules in interstellar environments. These types of small organic molecules also have high spectral line density, and are major contributors to line confusion in observational spectral surveys such as those conducted by Herschel and SOFIA. Therefore, the proposed research

  16. Facile and efficient room temperature solid state reaction enabled synthesis of antimony nanoparticles embedded within reduced graphene oxide for enhanced sodium-ion storage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiukui; Wu, Ping; Jiang, Li; Zhang, Xiaofang; Shi, Hongxia; Zhu, Xiaoshu; Wei, Shaohua; Zhou, Yiming

    2018-06-01

    Herein, a very simple and cost-effective solid state reaction method is employed to obtain, for the first time, the antimony nanoparticles embedded within reduced graphene oxide matrices (designated as Sb/rGO). By directly grinding antimony chloride and sodium hydroxide together at room temperature in the presence of graphene oxide (GO), Sb4O5Cl2 precursor was quickly obtained, which is evenly incorporated in the graphene oxide matrices. After subsequent chemical reduction by NaBH4, the Sb/rGO composite was successfully synthesized. The as-prepared Sb/rGO composite consists of uniform Sb nanoparticles of sub-20 nm, all of which have been wrapped in and protected by the rGO matrices. The Sb nanoparticles serve as a sufficient sodium ion reservoir while the rGO matrices provide highly efficient pathways for transport of sodium ions and electrons. Moreover, the volume expansion of Sb during sodiation can be buffered in the rGO matrices. As a result, the Sb/rGO composite exhibits excellent electrochemical performance in sodium-ion batteries (SIBs), including an enhanced cycling stability with a highly reversible charge capacity of 455 mA h g-1 after 45 cycles at 100 mA g-1, and a coulombic efficiency exceeding 98% during cycling. The findings in the present work pave the way to not only synthesize the designated promising electrode materials for high performance SIBs, but also thoroughly understand the solid-state reaction.

  17. Abstracts of contributed papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  18. CoBr2-TMTU-zinc catalysed-Pauson-Khand reaction.

    PubMed

    Wang, Yuefan; Xu, Lingmin; Yu, Ruocheng; Chen, Jiahua; Yang, Zhen

    2012-08-25

    A cobalt-TMTU complex, derived from the in situ reduction of CoBr(2) with Zn in the presence of TMTU, can catalyze Pauson-Khand reaction at a balloon pressure of CO, which enables the synthesis of structurally diverse cyclopentenones. This catalytic system works efficiently for both intermolecular and intramolecular PK reactions.

  19. Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes.

    PubMed

    Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie

    2018-01-24

    The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.

  20. Using Natural Language Processing to Improve Efficiency of Manual Chart Abstraction in Research: The Case of Breast Cancer Recurrence

    PubMed Central

    Carrell, David S.; Halgrim, Scott; Tran, Diem-Thy; Buist, Diana S. M.; Chubak, Jessica; Chapman, Wendy W.; Savova, Guergana

    2014-01-01

    The increasing availability of electronic health records (EHRs) creates opportunities for automated extraction of information from clinical text. We hypothesized that natural language processing (NLP) could substantially reduce the burden of manual abstraction in studies examining outcomes, like cancer recurrence, that are documented in unstructured clinical text, such as progress notes, radiology reports, and pathology reports. We developed an NLP-based system using open-source software to process electronic clinical notes from 1995 to 2012 for women with early-stage incident breast cancers to identify whether and when recurrences were diagnosed. We developed and evaluated the system using clinical notes from 1,472 patients receiving EHR-documented care in an integrated health care system in the Pacific Northwest. A separate study provided the patient-level reference standard for recurrence status and date. The NLP-based system correctly identified 92% of recurrences and estimated diagnosis dates within 30 days for 88% of these. Specificity was 96%. The NLP-based system overlooked 5 of 65 recurrences, 4 because electronic documents were unavailable. The NLP-based system identified 5 other recurrences incorrectly classified as nonrecurrent in the reference standard. If used in similar cohorts, NLP could reduce by 90% the number of EHR charts abstracted to identify confirmed breast cancer recurrence cases at a rate comparable to traditional abstraction. PMID:24488511

  1. The Effect of Heme Environment on the Hydrogen Abstraction Reaction of Camphor in P450cam Catalysis: A QM/MM Study

    PubMed Central

    Altun, Ahmet; Guallar, Victor; Friesner, Richard A.; Shaik, Sason; Thiel, Walter

    2010-01-01

    The discrepancies between the published QM/MM studies (Schöneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126, 4017 / Guallar, V.; Friesner, R. A. J. Am. Chem. Soc. 2004, 126, 8501) on H-abstraction of camphor in P450cam have largely been resolved. The crystallographic water molecule 903 situated near the oxo atom of Compound I acts as a catalyst for H-abstraction, lowering the barrier by about 4 kcal/mol. Spin density at the A-propionate side chain of heme can occur in the case of incomplete screening, but has no major effect on the computed barrier. PMID:16551096

  2. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  3. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  4. Abstracting and indexing guide

    USGS Publications Warehouse

    ,; ,

    1974-01-01

    These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.

  5. Publication Abstracts.

    ERIC Educational Resources Information Center

    Johns Hopkins Univ., Baltimore, MD. Center for the Study of Social Organization of Schools.

    This booklet contains abstracts of 62 documents published by the Johns Hopkins University Center for the Study of Social Organization of Schools from September 1967 to May 1970. The majority of the documents are research studies in the areas of desegregation, language development, educational opportunity, and educational games--most of them…

  6. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  7. State-resolved differential and integral cross sections for the Ne + H{sub 2}{sup +} (v = 0–2, j = 0) → NeH{sup +} + H reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu

    State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less

  8. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  9. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun

    2017-01-01

    Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.

  10. Unraveling the Mechanism of the Photodeprotection Reaction of 8-Bromo- and 8-Chloro-7-hydroxyquinoline Caged Acetates

    PubMed Central

    Ma, Jiani; Rea, Adam C; An, Huiying; Ma, Chensheng; Guan, Xiangguo; Li, Ming-De; Su, Tao; Yeung, Chi Shun; Harris, Kyle T; Zhu, Yue; Nganga, Jameil L; Fedoryak, Olesya D; Dore, Timothy M; Phillips, David Lee

    2012-01-01

    Abstract Photoremovable protecting groups (PPGs) when conjugated to biological effectors forming “caged compounds” are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8-chloro-7-hydroxyquinolin-2-yl)methyl acetate (CHQ-OAc) and (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time-resolved spectroscopic studies using transient emission (ns-EM), transient absorption (ns-TA), transient resonance Raman (ns-TR2), and time-resolved resonance Raman (ns-TR3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ-OAc, but not CHQ-OAc. A high fluorescence quantum yield and a more efficient excited-state proton transfer (ESPT) in CHQ-OAc compared to BHQ-OAc explain the lower quantum efficiency of CHQ-OAc relative to BHQ-OAc. PMID:22511356

  11. SEER Abstracting Tool (SEER*Abs)

    Cancer.gov

    With this customizable tool, registrars can collect and store data abstracted from medical records. Download the software and find technical support and reference manuals. SEER*Abs has features for creating records, managing abstracting work and data, accessing reference data, and integrating edits.

  12. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian

    2018-05-01

    Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.

  13. The Abstraction Process of Limit Knowledge

    ERIC Educational Resources Information Center

    Sezgin Memnun, Dilek; Aydin, Bünyamin; Özbilen, Ömer; Erdogan, Günes

    2017-01-01

    The RBC+C abstraction model is an effective model in mathematics education because it gives the opportunity to analyze research data through cognitive actions. For this reason, we aim to examine the abstraction process of the limit knowledge of two volunteer participant students using the RBC+C abstraction model. With this aim, the students'…

  14. Gradient-based multiconfiguration Shepard interpolation for generating potential energy surfaces for polyatomic reactions.

    PubMed

    Tishchenko, Oksana; Truhlar, Donald G

    2010-02-28

    This paper describes and illustrates a way to construct multidimensional representations of reactive potential energy surfaces (PESs) by a multiconfiguration Shepard interpolation (MCSI) method based only on gradient information, that is, without using any Hessian information from electronic structure calculations. MCSI, which is called multiconfiguration molecular mechanics (MCMM) in previous articles, is a semiautomated method designed for constructing full-dimensional PESs for subsequent dynamics calculations (classical trajectories, full quantum dynamics, or variational transition state theory with multidimensional tunneling). The MCSI method is based on Shepard interpolation of Taylor series expansions of the coupling term of a 2 x 2 electronically diabatic Hamiltonian matrix with the diagonal elements representing nonreactive analytical PESs for reactants and products. In contrast to the previously developed method, these expansions are truncated in the present version at the first order, and, therefore, no input of electronic structure Hessians is required. The accuracy of the interpolated energies is evaluated for two test reactions, namely, the reaction OH+H(2)-->H(2)O+H and the hydrogen atom abstraction from a model of alpha-tocopherol by methyl radical. The latter reaction involves 38 atoms and a 108-dimensional PES. The mean unsigned errors averaged over a wide range of representative nuclear configurations (corresponding to an energy range of 19.5 kcal/mol in the former case and 32 kcal/mol in the latter) are found to be within 1 kcal/mol for both reactions, based on 13 gradients in one case and 11 in the other. The gradient-based MCMM method can be applied for efficient representations of multidimensional PESs in cases where analytical electronic structure Hessians are too expensive or unavailable, and it provides new opportunities to employ high-level electronic structure calculations for dynamics at an affordable cost.

  15. Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR

    PubMed Central

    Lievens, Antoon; Van Aelst, S.; Van den Bulcke, M.; Goetghebeur, E.

    2012-01-01

    Current methodology in real-time Polymerase chain reaction (PCR) analysis performs well provided PCR efficiency remains constant over reactions. Yet, small changes in efficiency can lead to large quantification errors. Particularly in biological samples, the possible presence of inhibitors forms a challenge. We present a new approach to single reaction efficiency calculation, called Full Process Kinetics-PCR (FPK-PCR). It combines a kinetically more realistic model with flexible adaptation to the full range of data. By reconstructing the entire chain of cycle efficiencies, rather than restricting the focus on a ‘window of application’, one extracts additional information and loses a level of arbitrariness. The maximal efficiency estimates returned by the model are comparable in accuracy and precision to both the golden standard of serial dilution and other single reaction efficiency methods. The cycle-to-cycle changes in efficiency, as described by the FPK-PCR procedure, stay considerably closer to the data than those from other S-shaped models. The assessment of individual cycle efficiencies returns more information than other single efficiency methods. It allows in-depth interpretation of real-time PCR data and reconstruction of the fluorescence data, providing quality control. Finally, by implementing a global efficiency model, reproducibility is improved as the selection of a window of application is avoided. PMID:22102586

  16. Kinetics of self-decomposition and hydrogen atom transfer reactions of substituted phthalimide N-oxyl radicals in acetic acid.

    PubMed

    Cai, Yang; Koshino, Nobuyoshi; Saha, Basudeb; Espenson, James H

    2005-01-07

    Kinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.) which was found to follow second-order kinetics. In the self-decomposition of 4-methyl-N-hydroxyphthalimide (4-Me-NHPI), H-atom abstraction competes with self-decomposition in the presence of excess 4-Me-NHPI. The second set of reactions studied is hydrogen atom transfer from NHPI to PINO(.), e.g., PINO(.) + 4-Me-NHPI <=> NHPI + 4-Me-PINO(.). The substantial KIE, k(H)/k(D) = 11 for both forward and reverse reactions, supports the assignment of H-atom transfer rather than stepwise electron-proton transfer. These data were correlated with the Marcus cross relation for hydrogen-atom transfer, and good agreement between the experimental and the calculated rate constants was obtained. The third reaction studied is hydrogen abstraction by PINO(.) from p-xylene and toluene. The reaction becomes regularly slower as the ring substituent on PINO(.) is more electron donating. Analysis by the Hammett equation gave rho = 1.1 and 1.8 for the reactions of PINO(.) with p-xylene and toluene, respectively.

  17. Promoting adverse drug reaction reporting: comparison of different approaches.

    PubMed

    Ribeiro-Vaz, Inês; Santos, Cristina Costa; Cruz-Correia, Ricardo

    2016-01-01

    To describe different approaches to promote adverse drug reaction reporting among health care professionals, determining their cost-effectiveness. We analyzed and compared several approaches taken by the Northern Pharmacovigilance Centre (Portugal) to promote adverse drug reaction reporting. Approaches were compared regarding the number and relevance of adverse drug reaction reports obtained and costs involved. Costs by report were estimated by adding the initial costs and the running costs of each intervention. These costs were divided by the number of reports obtained with each intervention, to assess its cost-effectiveness. All the approaches seem to have increased the number of adverse drug reaction reports. We noted the biggest increase with protocols (321 reports, costing 1.96 € each), followed by first educational approach (265 reports, 20.31 €/report) and by the hyperlink approach (136 reports, 15.59 €/report). Regarding the severity of adverse drug reactions, protocols were the most efficient approach, costing 2.29 €/report, followed by hyperlinks (30.28 €/report, having no running costs). Concerning unexpected adverse drug reactions, the best result was obtained with protocols (5.12 €/report), followed by first educational approach (38.79 €/report). We recommend implementing protocols in other pharmacovigilance centers. They seem to be the most efficient intervention, allowing receiving adverse drug reactions reports at lower costs. The increase applied not only to the total number of reports, but also to the severity, unexpectedness and high degree of causality attributed to the adverse drug reactions. Still, hyperlinks have the advantage of not involving running costs, showing the second best performance in cost per adverse drug reactions report.

  18. Abstracts of Research Papers 1970.

    ERIC Educational Resources Information Center

    Drowatzky, John N., Ed.

    This publication includes the abstracts of 199 research papers presented at the 1970 American Association for Health, Physical Education, and Recreation convention in Seattle, Washington. Abstracts from symposia on environmental quality education, obesity, motor development, research methods, and laboratory equipment are also included. Each…

  19. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  20. Clarifying the abstracts of systematic literature reviews*

    PubMed Central

    Hartley, James

    2000-01-01

    Background: There is a small body of research on improving the clarity of abstracts in general that is relevant to improving the clarity of abstracts of systematic reviews. Objectives: To summarize this earlier research and indicate its implications for writing the abstracts of systematic reviews. Method: Literature review with commentary on three main features affecting the clarity of abstracts: their language, structure, and typographical presentation. Conclusions: The abstracts of systematic reviews should be easier to read than the abstracts of medical research articles, as they are targeted at a wider audience. The aims, methods, results, and conclusions of systematic reviews need to be presented in a consistent way to help search and retrieval. The typographic detailing of the abstracts (type-sizes, spacing, and weights) should be planned to help, rather than confuse, the reader. PMID:11055300

  1. An index of the literature for bimolecular gas phase cation-molecule reaction kinetics

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.

    2003-01-01

    This is an index to the literature for gas phase bimolecular positive ionmolecule reactions. Over 2300 references are cited. Reaction rate coefficients and product distributions of the reactions are abstracted out of the original citations where available. This index is intended to cover the literature from 1936 to 2003. This is a continuation of several surveys: the original (Huntress Astrophys. J. Suppl. Ser., 33, 495 (1977)), an expansion (Anicich and Huntress, Astrophys. J. Suppl. Ser. 62, 553 (1986)), a supplement (Anicich, Astrophys. J. Suppl. Ser. 84, 215 (1993)), and an evaluation (Anicich, V. G. J. Phys. Chem. Ref. Data 22,1469 (1993b). The Table of reactions is listed by reactant ion.

  2. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst

    NASA Astrophysics Data System (ADS)

    Bujdák, Juraj; Rode, Bernd M.

    1999-10-01

    Catalytic efficiencies of clay (hectorite), silica and alumina were tested in peptide bond formation reactions of glycine (Gly), alanine (Ala), proline (Pro), valine (Val) and leucine (Leu). The reactions were performed as drying/wetting (hectorite) and temperature fluctuation (silica and alumina) experiments at 85 °C. The reactivity of amino acids decreased in order Gly > Ala > Pro ~ Val ~ Leu. The highest catalytic efficiency was observed for alumina, the only catalyst producing oligopeptides in all investigated reaction systems. The peptide bond formation on alumina is probably catalyzed by the same sites and via similar reaction mechanisms as some alumina-catalyzed dehydration reactions used in industrial chemistry.

  3. Gallium (III) triflate catalyzed efficient Strecker reaction of ketones and their fluorinated analogs

    PubMed Central

    Prakash, G. K. Surya; Mathew, Thomas; Panja, Chiradeep; Alconcel, Steevens; Vaghoo, Habiba; Do, Clement; Olah, George A.

    2007-01-01

    The synthesis of α-aminonitriles and their fluorinated analogs has been carried out in high yield and purity by the Strecker reaction from the corresponding ketones and amines with trimethylsilyl cyanide using gallium triflate in dichloromethane. Monofluoro-, difluro-, or trifluoromethyl groups can be incorporated into the α-aminonitrile product by varying the nature of the fluorinated ketones. Study with various fluorinated and nonfluorinated ketones reveals that the choice of proper catalyst and the solvent system (suitable metal triflates as a catalyst and dichloromethane as a solvent) plays the key role in the direct Strecker reactions of ketones. PMID:17360416

  4. Mechanistic aspects of hydrogen abstraction for phenolic antioxidants. Electronic structure and topological electron density analysis.

    PubMed

    Singh, Nakul; O'Malley, Patrick J; Popelier, Paul L A

    2005-02-21

    Density functional calculations using the B3LYP functional are used to provide insight into the hydrogen abstraction mechanism of phenolic antioxidants. The energy profiles for 13 ortho, meta, para and di-methyl substituted phenols with hydroperoxyl radical have been determined. An excellent correlation between the enthalpy (DeltaH) and activation energy (DeltaEa) was found, obeying the Evans-Polanyi rule. The effects of hydrogen bonding on DeltaEa are also discussed. Electron donating groups at the ortho and para positions are able to lower the activation energy for hydrogen abstraction. The highly electron withdrawing fluoro substituent increases the activation energies relative to phenol at the meta position but not at the para position. The electron density is studied using the atoms in molecules (AIM) approach. Atomic and bond properties are extracted to describe the hydrogen atom abstraction mechanism. It is found that on going from reactants to transition state, the hydrogen atom experiences a loss in volume, electronic population and dipole moment. These features suggest that the phenol hydroperoxyl reactions proceed according to a proton coupled electron transfer (PCET) as opposed to a hydrogen atom transfer (HAT) mechanism.

  5. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  6. Modeling of Water-Breathing Propulsion Systems Utilizing the Aluminum-Seawater Reaction and Solid-Oxide Fuel Cells

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component

  7. Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium.

    PubMed

    Zhang, Ming; Ettelaie, Rammile; Yan, Tao; Zhang, Suojiang; Cheng, Fangqin; Binks, Bernard P; Yang, Hengquan

    2017-12-06

    We develop a novel strategy to more effectively and controllably process continuous enzymatic or homogeneous catalysis reactions based on nonaqueous Pickering emulsions. A key element of this strategy is "bottom-up" construction of a macroscale continuous flow reaction system through packing catalyst-containing micron-sized ionic liquid (IL) droplet in oil in a column reactor. Due to the continuous influx of reactants into the droplet microreactors and the continuous release of products from the droplet microreactors, catalysis reactions in such a system can take place without limitations arising from establishment of the reaction equilibrium and catalyst separation, inherent in conventional batch reactions. As proof of the concept, enzymatic enantioselective trans-esterification and CuI-catalyzed cycloaddition reactions using this IL droplet-based flow system both exhibit 8 to 25-fold enhancement in catalysis efficiency compared to their batch counterparts, and a durability of at least 4000 h for the enantioselective trans-esterification of 1-phenylethyl alcohol, otherwise unattainable in their batch counterparts. We further establish a theoretical model for such a catalysis system working under nonequilibrium conditions, which not only supports the experimental results but also helps to predict reaction progress at a microscale level. Being operationally simple, efficient, and adaptive, this strategy provides an unprecedented platform for practical applications of enzymes and homogeneous catalysts even at a controllable level.

  8. How is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine: hydrogen abstraction or nitrogen oxidation?

    PubMed

    Hirao, Hajime; Chuanprasit, Pratanphorn; Cheong, Ying Yi; Wang, Xiaoqing

    2013-06-03

    A precise understanding of the mechanism-based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug-drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism-based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1-dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene-type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C-H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N-H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene-type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450-catalyzed reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Food Science and Technology Abstracts.

    ERIC Educational Resources Information Center

    Cohen, Elinor; Federman, Joan

    1979-01-01

    Introduces the reader to the Food Science and Technology Abstracts, a data file that covers worldwide literature on human food commodities and aspects of food processing. Topics include scope, subject index, thesaurus, searching online, and abstracts; tables provide a comparison of ORBIT and DIALOG versions of the file. (JD)

  10. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).

    PubMed

    Raghunath, P; Lin, M C

    2010-12-30

    Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.

  11. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    PubMed

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  12. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study.

    PubMed

    Xie, Hong-Bin; Li, Chao; He, Ning; Wang, Cheng; Zhang, Shaowen; Chen, Jingwen

    2014-01-01

    Monoethanolamine (MEA) is a benchmark and widely utilized solvent in amine-based postcombustion CO2 capture (PCCC), a leading technology for reducing CO2 emission from fossil fuel power plants. The large-scale implementation of PCCC would lead to inevitable discharges of amines to the atmosphere. Therefore, understanding the kinetics and mechanisms of the transformation of representative amine MEA in the atmosphere is of great significance for risk assessment of the amine-based PCCC. In this study, the H-abstraction reaction of MEA with ·OH, and ensuing reactions of produced MEA-radicals, including isomerization, dissociation, and bimolecular reaction MEA-radicals+O2, were investigated by quantum chemical calculation [M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p)] and kinetic modeling. The calculated overall rate constant [(7.27 × 10(-11)) cm(3) molecule(-1) s(-1)] for H-abstraction is in excellent agreement with the experimental value [(7.02 ± 0.46) × 10(-11) cm(3) molecule(-1) s(-1)]. The results show that the product branching ratio of NH2CH2 · CHOH (MEA-β) (43%) is higher than that of NH2 · CHCH2OH (MEA-α) (39%), clarifying that MEA-α is not an exclusive product. On the basis of the unveiled reaction mechanisms of MEA-radicals + O2, the proton transfer reaction mass spectrometry signal (m/z 60.044), not recognized in the experiment, was identified.

  13. High Throughput Engineering to Revitalize a Vestigial Electron Transfer Pathway in Bacterial Photosynthetic Reaction Centers*

    PubMed Central

    Faries, Kaitlyn M.; Kressel, Lucas L.; Wander, Marc J.; Holten, Dewey; Laible, Philip D.; Kirmaier, Christine; Hanson, Deborah K.

    2012-01-01

    Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization. PMID:22247556

  14. Knoevenagel Reaction of Unprotected Sugars

    NASA Astrophysics Data System (ADS)

    Scherrmann, Marie-Christine

    The Knoevenagel reaction of unprotected sugars was investigated in the 1950s using zinc chloride as promoter. The so-called Garcia Gonzalez reaction had been almost forgotten for 50 years, until the emergence of new water tolerant catalysts having Lewis acid behavior. The reaction was thus reinvestigated and optimal conditions have been found to prepare trihydroxylated furan derivatives from pentose or β-tetrahydrofuranylfuran from hexoses with non-cyclic β-keto ester or β-diketones. Other valuable compounds such as β-linked tetrahydrobenzofuranyl glycosides or hydroxyalkyl-3,3,6,6,-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione can be obtained using cyclic β-dicarbonylic derivatives. Apart from one report in the 1950s, the Knoevenagel reaction of unprotected carbohydrate in basic condition has been studied only in the mid-1980s to prepare C-glycosyl barbiturates from barbituric acids and, later on, from non-cyclic β-diketones, β-C-glycosidic ketones. The efficient method exploited to prepare such compounds has found an industrial development in cosmetics.

  15. Ruthenium-catalyzed metathesis reactions of ortho- and meta-dialkenyl-carboranes: efficient ring-closing and acyclic diene polymerization reactions.

    PubMed

    Guron, Marta; Wei, Xiaolan; Carroll, Patrick J; Sneddon, Larry G

    2010-07-05

    The ruthenium-catalyzed metathesis reactions of dialkenyl-substituted ortho- and meta-carboranes provide excellent routes to both cyclic-substituted o-carboranes and new types of main-chain m-carborane polymers. The adjacent positions of the two olefins in the 1,2-(alkenyl)(2)-o-carboranes strongly favor the formation of ring-closed (RCM) products with the reactions of 1,2-(CH(2)=CHCH(2))(2)-1,2-C(2)B(10)H(10) (1), 1,2-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,2-C(2)B(10)H(10) (2), 1,2-(CH(2)=CHSiMe(2))(2)-1,2-C(2)B(10)H(10) (3), 1,2-(CH(2)=CHCH(2)SiMe(2))(2)-1,2-C(2)B(10)H(10) (4), and 1,2-[CH(2)=CH(CH(2))(4)SiMe(2)](2)-1,2-C(2)B(10)H(10) (5) affording 1,2-(-CH(2)CH=CHCH(2)-)-C(2)B(10)H(10) (10), 1,2-[-CH(2)(CH(2))(3)CH=CH(CH(2))(3)CH(2)-]-1,2-C(2)B(10)H(10) (11), 1,2-[-SiMe(2)CH=CHSiMe(2)-]-1,2-C(2)B(10)H(10) (12), 1,2-[-SiMe(2)CH(2)CH=CHCH(2)SMe(2)-]-C(2)B(10)H(10) (13), and 1,2-[-SiMe(2)(CH(2))(4)CH=CH(CH(2))(4)SiMe(2)-]-C(2)B(10)H(10) (14), respectively, in 72-97% yields. On the other hand, the reaction of 1,2-(CH(2)-CHCH(2)OC(=O))(2)-1,2-C(2)B(10)H(10) (6) gave cyclo-[1,2-(1',8'-C(=O)OCH(2)CH=CHCH(2)OC(=O))-1,2-C(2)B(10)H(10)](2) (15a) and polymer 15b resulting from intermolecular metathesis reactions. The nonadjacent positions of the alkenyl groups in the 1,7-(alkenyl)(2)-m-carboranes, 1,7-(CH(2)=CHCH(2))(2)-1,7-C(2)B(10)H(10) (7), 1,7-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,7-C(2)B(10)H(10) (8), and 1,7-(CH(2)=CHCH(2)SiMe(2))(2)-1,7-C(2)B(10)H(10) (9), disfavor the formation of RCM products, and in these cases, acyclic diene metathesis polymerizations (ADMET) produced new types of main chain m-carborane polymers. The structures of 3, 9, 11, 12, 13, and 15a were crystallographically confirmed.

  16. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less

  17. Kinetics and Thermodynamics of the Reaction between the (•)OH Radical and Adenine: A Theoretical Investigation.

    PubMed

    Milhøj, Birgitte O; Sauer, Stephan P A

    2015-06-18

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the (•)OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the ωB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimized with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X, and ωB97X-D), in combination with Pople and Dunning basis sets, all of which have been employed in similar investigations in the literature. Improved energies are obtained through single point calculations with CCSD(T) and the same basis sets, and reaction rate constants are calculated for all methods both without tunneling corrections and with the Wigner, Bell, and Eckart corrections. In comparison to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the ωB97X-D/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method, all subreactions of the reaction between adenine and the (•)OH radical are investigated. The total rate constants for hydrogen abstraction and addition for adenine are predicted with this method to be 1.06 × 10(-12) and 1.10 × 10(-12) cm(3) molecules(-1) s(-1), respectively. Abstractions of H61 and H62 contribute the most, while only addition to the C8 carbon is found to be of any significance, in contrast to previous claims that addition is the dominant reaction pathway. The overall rate constant for the complete reaction is found to be 2.17 × 10(-12) cm(3) molecules(-1) s(-1), which agrees exceptionally well with experimental results.

  18. Newborn infants perceive abstract numbers

    PubMed Central

    Izard, Véronique; Sann, Coralie; Spelke, Elizabeth S.; Streri, Arlette

    2009-01-01

    Although infants and animals respond to the approximate number of elements in visual, auditory, and tactile arrays, only human children and adults have been shown to possess abstract numerical representations that apply to entities of all kinds (e.g., 7 samurai, seas, or sins). Do abstract numerical concepts depend on language or culture, or do they form a part of humans' innate, core knowledge? Here we show that newborn infants spontaneously associate stationary, visual-spatial arrays of 4–18 objects with auditory sequences of events on the basis of number. Their performance provides evidence for abstract numerical representations at the start of postnatal experience. PMID:19520833

  19. Innovation Abstracts; Volume XIV, 1992.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1992-01-01

    This series of 30 one- to two-page abstracts covering 1992 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) faculty recognition and orientation; (2) the Amado M. Pena, Jr., Scholarship Program; (3) innovative teaching techniques, with individual abstracts…

  20. Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs).

    PubMed

    Visentin, Sonja; Medana, Claudio; Barge, Alessandro; Giancotti, Valeria; Cravotto, Giancarlo

    2010-05-21

    The application of microwaves as an efficient form of volumetric heating to promote organic reactions was recognized in the mid-1980 s. It has a much longer history in the food research and industry where microwave irradiation was studied in depth to optimize food browning and the development of desirable flavours from Maillard reactions. The microwave-promoted Maillard reaction is a challenging synthetic method to generate molecular diversity in a straightforward way. In this paper we present a new rapid and efficient one-pot procedure for the preparation of pentosidine and other AGEs under microwave irradiation.

  1. Abstraction of an Affective-Cognitive Decision Making Model Based on Simulated Behaviour and Perception Chains

    NASA Astrophysics Data System (ADS)

    Sharpanskykh, Alexei; Treur, Jan

    Employing rich internal agent models of actors in large-scale socio-technical systems often results in scalability issues. The problem addressed in this paper is how to improve computational properties of a complex internal agent model, while preserving its behavioral properties. The problem is addressed for the case of an existing affective-cognitive decision making model instantiated for an emergency scenario. For this internal decision model an abstracted behavioral agent model is obtained, which ensures a substantial increase of the computational efficiency at the cost of approximately 1% behavioural error. The abstraction technique used can be applied to a wide range of internal agent models with loops, for example, involving mutual affective-cognitive interactions.

  2. Studying the effect of graphene-ZnO nanocomposites on polymerase chain reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vinay, E-mail: winn201@gmail.com; Rajaura, Rajveer; Sharma, Preetam Kumar

    An emerging area of research is improving the efficiency of the polymerase chain reaction (PCR) by using nanoparticles. With graphene nano-flakes showing promising results, in this paper we report the effect of Graphene-ZnO nanocomposites on Polymerase Chain reaction (PCR) efficiency. G-ZnO nanocomposites were efficiently synthesized via in situ chemical method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) image confirms the formation of nanocomposites. ZnO nanoparticles of size range ~20-30 nm are uniformly attached on the graphene sheets. No amplification during PCR indicates inhibitory activity of G-ZnO nanocomposites which points the fingers at ZnO moiety of the G-ZnO compositemore » for no amplification during our PCR reaction. Further work should concentrate on finding out the main inhibitory mechanism involved in inhibition of PCR using G-ZnO composites.« less

  3. Innovation Abstracts, Volume XV, 1993.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1993-01-01

    This volume of 30 one- to two-page abstracts from 1993 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) role-playing to encourage critical thinking; (2) team learning techniques to cultivate business skills; (3) librarian-instructor partnerships to create…

  4. Vague Language in Conference Abstracts

    ERIC Educational Resources Information Center

    Cutting, Joan

    2012-01-01

    This study examined abstracts for a British Association for Applied Linguistics conference and a Sociolinguistics Symposium, to define the genre of conference abstracts in terms of vague language, specifically universal general nouns (e.g. people) and research general nouns (e.g. results), and to discover if the language used reflected the level…

  5. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  6. Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.

    PubMed

    Anglada, Josep M; Gonzalez, Javier

    2009-12-07

    The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).

  7. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    PubMed

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reaction mechanism of molybdoenzyme formate dehydrogenase.

    PubMed

    Leopoldini, Monica; Chiodo, Sandro G; Toscano, Marirosa; Russo, Nino

    2008-01-01

    Formate dehydrogenase is a molybdoenzyme of the anaerobic formate hydrogen lyase complex of the Escherichia coli microorganism that catalyzes the oxidation of formate to carbon dioxide. The two proposed mechanisms of reaction, which differ in the occurrence of a direct coordination or not of a SeCys residue to the molybdenum metal during catalysis were analyzed at the density functional level in both vacuum and protein environments. Some DF functionals, in addition to the very popular B3LYP one, were employed to compute barrier heights. Results revealed the role played by the SeCys residue in performing the abstraction of the proton from the formate substrate. The computation of the energetic profiles for both mechanisms indicated that the reaction barriers are higher when the selenium is directly coordinated to the metal, whereas less energy is required when SeCys is not a ligand at the molybdenum site.

  9. Innovation Abstracts, Volume XVI, 1994.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1994-01-01

    This volume of 30 one- to two-page abstracts highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) music in the biology classroom; (2) pairing English as a second language and freshman composition students in writing activities; (3) moot court exercises in…

  10. A grounded theory of abstraction in artificial intelligence.

    PubMed Central

    Zucker, Jean-Daniel

    2003-01-01

    In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed. PMID:12903672

  11. A grounded theory of abstraction in artificial intelligence.

    PubMed

    Zucker, Jean-Daniel

    2003-07-29

    In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed.

  12. Enhancing photosynthesis in plants: the light reactions.

    PubMed

    Cardona, Tanai; Shao, Shengxi; Nixon, Peter J

    2018-04-13

    In this review, we highlight recent research and current ideas on how to improve the efficiency of the light reactions of photosynthesis in crops. We note that the efficiency of photosynthesis is a balance between how much energy is used for growth and the energy wasted or spent protecting the photosynthetic machinery from photodamage. There are reasons to be optimistic about enhancing photosynthetic efficiency, but many appealing ideas are still on the drawing board. It is envisioned that the crops of the future will be extensively genetically modified to tailor them to specific natural or artificial environmental conditions. © 2018 The Author(s).

  13. Abstract Spatial Reasoning as an Autistic Strength

    PubMed Central

    Stevenson, Jennifer L.; Gernsbacher, Morton Ann

    2013-01-01

    Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven’s Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level – concrete vs. abstract – and test domain – spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength. PMID:23533615

  14. Construct Abstraction for Automatic Information Abstraction from Digital Images

    DTIC Science & Technology

    2006-05-30

    objects and features and the names of objects of objects and features. For example, in Figure 15 the parts of the fish could be named the ‘mouth... fish -1 fish -2 fish -3 tennis shoe tennis racquet...of abstraction and generality. For example, an algorithm might usefully find a polygon ( blob ) in an image and calculate numbers such as the

  15. Tips to Understanding and Writing Manuscript Abstracts

    ERIC Educational Resources Information Center

    Plakhotnik, Maria S.

    2017-01-01

    An abstract represents a short summary of key elements of the manuscript. The purpose of this essay is to discuss the function, contents, and types of manuscript abstracts. The essay concludes with a few tips for authors to writing effective abstracts.

  16. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  17. A seven-degree-of-freedom, time-dependent quantum dynamics study on the energy efficiency in surmounting the central energy barrier of the OH + CH{sub 3} → O + CH{sub 4} reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengxiu; Wang, Yuping; Li, Yida

    2015-04-28

    A time-dependent, quantum reaction dynamics calculation with seven degrees of freedom was carried out to study the energy efficiency in surmounting the approximate center energy barrier of OH + CH{sub 3}. The calculation shows the OH vibration excitations greatly enhance the reactivity, whereas the vibrational excitations of CH{sub 3} and the rotational excitations hinder the reactivity. On the basis of equal amount of total energy, although this reaction has a slight early barrier, it is the OH vibrational energy that is the dominate force in promoting the reactivity, not the translational energy. The studies on both the forward O +more » CH{sub 4} and reverse OH + CH{sub 3} reactions demonstrate, for these central barrier reactions, a small change of the barrier location can significantly change the energy efficacy roles on the reactivity. The calculated rate constants agree with the experimental data.« less

  18. A tandem cross-metathesis/semipinacol rearrangement reaction.

    PubMed

    Plummer, Christopher W; Soheili, Arash; Leighton, James L

    2012-05-18

    An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.

  19. Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction.

    PubMed

    Li, Qun; Wang, Xianfu; Tang, Kai; Wang, Mengfan; Wang, Chao; Yan, Chenglin

    2017-12-26

    Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu 7 S 4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu 7 S 4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu 7 S 4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm -2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu 7 S 4 . This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.

  20. Simultaneous determination of main reaction components in the reaction mixture during biodiesel production.

    PubMed

    Sánek, Lubomír; Pecha, Jiří; Kolomazník, Karel

    2013-03-01

    The proposed analytical method allows for simultaneous determination by GC using a programed temperature vaporization injector and a flame ionization detector of the main reaction components (i.e. glycerol, methyl esters, mono-, di-, and triacylglycerols) in the reaction mixture during biodiesel production. The suggested method is convenient for the rapid and simple evaluation of the kinetic data gained during the transesterification reaction and, also partially serves as an indicator of the quality of biodiesel and mainly, as the indicator of the efficiency of the whole production process (i.e. the conversion of triacylglycerols to biodiesel and its time progress). The optimization of chromatographic conditions (e.g. the oven temperature program, injector setting, amount of derivatization reagent, and the derivatization reaction time) was performed. The method has been validated with crude samples of biodiesel made from waste-cooking oils in terms of linearity, precision, accuracy, sensitivity, and limits of detection and quantification. The results confirmed a satisfactory degree of accuracy and repeatability (the mean RSDs were usually below 2%) necessary for the reliable quantitative determination of all components in the considerable concentration range (e.g. 10-1100 μg/mL in case of methyl esters). Compound recoveries ranging from 96 to 104% were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.