Science.gov

Sample records for abundance carbon isotope

  1. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are ?13C ? 25-75 and ?18O ? 15-35, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0-130 C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (?18O ? 5) and the C isotopes were controlled by equilibrium with CO and/or CH4 (?13C ? -33 or -20 for CO- or CH4-dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (?18O ? -5.5, and ?13C ? -31 or -17 for CO- or CH4-dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10-40 C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (?13C ? 65-80) and less altered samples (?13C ? 30-40). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (?18O ? -9.25, and ?13C ? -21 or -8 for CO- or CH4-dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2-rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO-dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2-H2O ices that experienced temperatures of >50-100 K suggests that the chondrites formed at radial distances of <4-15 AU.

  2. Carbon isotopes and light element abundances in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Halbout, Jerome; Mayeda, Toshiko K.; Clayton, Robert N.

    1986-10-01

    A stepped combustion technique was used to measure the abundance of C, N, SO2 and H2O in seven carbonaceous chondrites. Details of the experimental procedures are provided, noting the necessity of adding fresh material at several of the 50 C increments (from 200-1200 C) to compensate for the small sizes of the samples. Samples from the Orgueil, Murchison, Cold Bokkeveld and Murray, Renazzo, Allende and Mokoia meteorites were examined. An extensive tabulation is provided of the elemental releases over various temperature intervals and comparisons are made between the release characteristics observed for the different samples. Emphasis is placed on the types and enrichments of carbon compounds detected and the compositions of the sites where releases occurred.

  3. Determination of the abundance and carbon isotope composition of elemental carbon in sediments

    NASA Astrophysics Data System (ADS)

    Bird, Michael I.; Gröcke, Darren R.

    1997-08-01

    We report measurements of the susceptibility of a variety of elemental and organic carbon samples to oxidative degradation using both acid dichromate and basic peroxide reagents. Organic carbon is rapidly oxidized using either reagent, or both reagents sequentially. Elemental carbon exhibits a wide range of susceptibilities to oxidation related both to the degree to which the precursor plant material was carbonized during pyrolysis and to the surface area available for oxidation. Despite a range of susceptibilities, a component of oxidation-resistant elemental carbon has been identified which can be reproducibly separated from organic contaminants. The carbon isotope composition (δ 13C value) of the precursor plant materials underwent a 0-1.6‰ decrease during the production of the elemental carbon by pyrolysis, while the subsequent oxidative degradation of the samples resulted in only small (generally < 0.5%o) changes in the δ 13C value of the remaining elemental carbon. The results suggest that the technique can be used to obtain records of elemental carbon abundance in marine sediment cores, and thus a record of the intensity of biomass burning on adjacent continental land masses in the geologic past. In addition, the δ 13C value of the elemental carbon can provide an indication of the type of vegetation being burnt.

  4. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  5. Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Guo, Laodong

    2014-11-01

    There exists increasing evidence supporting the important role of black carbon in global carbon cycles. Particulate black carbon (PBC) is allochthonous and has distinct reactivities compared to the bulk particulate organic carbon (tot-POC) in marine environments. However, the abundance, geochemical behavior of PBC and its importance in oceanic carbon budget remain poorly understood. Here we report the abundance, distribution, and stable isotopic signatures of BC derived from the chemo-thermal oxidation (CTO-375) method (BCCTO) in the Gulf of Mexico. Our results show that BCCTO abundance decreased from shelf to basin, and more than a half of riverine BCCTO could be removed over the shelf. Moreover, BCCTO is much more refractory compared to the tot-POC and has ?13C values lower than those of BC-excluded POC. These results highlight the significance of PBC in marine carbon cycles and potentially suggest the need for a new end-member term in quantifying POC sources in the ocean.

  6. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  7. Abundances in red giant stars - Nitrogen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Andersson, B.-G.; Olofsson, H.; Ukita, N.; Young, K.

    1991-01-01

    Results are presented of millimeter- and submillimeter-wave observations of HCN and HCCCN that were made of the circmustellar envelopes of eight carbon stars, including the two protoplanetary nebulae CRL 618 and CRL 2688. The observations yield a measure of the double ratio (N-14)(C-13)/(N-15)(C-12). Measured C-12/C-13 ratios are used to estimate the N-14/N-15 abundance ratio, with the resulting lower limits in all eight envelopes and possible direct determinations in two envelopes. The two determinations and four of the remaining six lower limits are found to be in excess of the terrestrial value of N-14/N-15 = 272, indicating an evolution of the nitrogen isotope ratio, which is consistent with stellar CNO processing. Observations of thermal SiO (v = 0, J = 2-1) emission show that the Si-29/Si-28 ratio can be determined in carbon stars, and further observations are indicated.

  8. Carbon, hydrogen and nitrogen in carbonaceous chondrites Abundances and isotopic compositions in bulk samples

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1985-01-01

    Whole-rock samples of 25 carbonaceous chondrites were analyzed for contents of C, H and N and delta C-13, delta D and delta N-15. Inhomogeneous distribution of these isotopes within individual meteorites is pronounced in several cases. Few systematic intermeteorite trends were observed; N data are suggestive of isotopic inhomogeneity in the early solar system. Several chondrites revealed unusual compositions which would repay further, more detailed study. The data are also useful for classification of carbonaceous chondrites; N abundance and isotopic compositions can differentiate existing taxonomic groups with close to 100 percent reliability; Al Rais and Renazzo clearly constitute a discrete 'grouplet', and there are hints that both CI and CM groups may each be divisible into two subgroups.

  9. C, N, O abundances and carbon isotope ratios in evolved stars of the open clusters Collinder 261 and NGC 6253

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Š.; Tautvaišienė, G.; Gratton, R.; Bragaglia, A.; Carretta, E.

    2012-05-01

    Context. Investigations of abundances of carbon and nitrogen in the atmospheres of evolved stars of open clusters may provide comprehensive information on chemical composition changes caused by stellar evolution. Aims: Our main aim is to increase the number of open clusters with determined carbon-to nitrogen and carbon isotope ratios. Methods: High-resolution spectra were analysed using a differential model atmosphere method. Abundances of carbon were derived using the C2 Swan (0, 1) band head at 5635.5 Å (FEROS spectra) and the C2 Swan (1, 0) band head at 4737 Å (UVES spectra). The wavelength interval 7980-8130 Å, with strong CN features was analysed to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Results: The average value of 12C/13C isotope ratios of Cr 261 is equal to 18 ± 2 in four giants and to 12 ± 1 in two clump stars; it is equal to 16 ± 1 in four clump stars of the open cluster NGC 6253. The mean C/N ratios in Cr 261 and NGC 6253 are equal to 1.67 ± 0.06 and 1.37 ± 0.09, respectively. Conclusions: The 12C/13C and C/N values in Cr 261 and NGC 6253 within limits of uncertainties agree with the theoretical model of thermohaline-induced mixing as well as with the cool-bottom processing model. Based on observations collected at ESO telescopes under programmes 65.N-0286, 169.D-0473.

  10. Carbon, nitrogen and sulfur in lunar fines 15012 and 15013 - Abundances, distributions and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Chang, S.; Lawless, J.; Romiez, M.; Kaplan, I. R.; Petrowski, C.; Sakai, H.; Smith, J. W.

    1974-01-01

    Lunar fines 15012,16 and 15013,3 were analyzed by stepwise pyrolysis and acid hydrolysis as well as complete combustion in oxygen to determine carbon, nitrogen and sulfur. In addition, hydrogen was analysed during pyrolysis as well as during hydrolysis. By comparison of the distribution frequencies of C, N, S, H2 and Fe with He-4, considered to have arisen from solar wind contribution, it is concluded that nitrogen and hydrogen have largely a solar origin. Carbon has a significant solar contribution, and metallic iron may have resulted from solar wind interaction with ferrous minerals on the lunar surface. Sulfur probably has a predominantly lunar origin. There is no direct evidence for meteorotic contribution to these samples. Solar wind interaction also has a marked effect on the stable isotope distribution of C-13/C-12, N-15/N-14, and S-34/S-32. In all cases, the heavy isotope was most enriched in the smallest grain-size fraction.

  11. Partitioning Respiration Between Plant and Microbial Sources Using Natural Abundance Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Dawson, T. E.; Tu, K. P.

    2009-12-01

    Partitioning plant and microbial respiration is important for understanding the mechanistic basis of ecosystem respiration, as each can respond to changes in environmental conditions in different ways and at different timescales. In theory, natural abundance stable C isotopes can allow source partitioning when the isotopic difference between the sources can be resolved. The longstanding notion is that such differences do not exist, yet field measurements to support this conclusion are rare. The question remains as to how much isotopic difference exists between the plant and microbial respiration and whether or not this difference is sufficient for partitioning. We addressed this question by measuring the C isotope ratios (13C/12C) of plant, microbial, and whole ecosystem respiration from three contrasting ecosystems in California. We found significant variation in the 13C/12C ratios between plant and microbial sources. However, isotopic mass balance was not observed in more than half the cases. When isotopic mass balance was observed, the largest isotopic differences were always between CO2 evolved during leaf respiration and SOC decomposition, with leaf respiration more depleted by 1-8 per mil. Within plants, the leaf respiration was more depleted than rhizosphere respiration by 2-6 per mil. Among microbial sources, litter decomposition was more depleted than SOC decomposition by 1-5 per mil. The 13C/12C ratio of bulk C and respired CO2 exhibited similar trends, but bulk C values were clearly not a good surrogate for the 13C/12C ratios of respired CO2. Based on the 13C/12C ratios of respired CO2, belowground respiration accounted for 25% in the redwood forest, 37% in the grassland and 84% in the pine forest. Belowground respiration was further partitioned between rhizosphere, litter and SOC decomposition. Each contributed nearly equal amounts in the redwood forest (30/40/30) whereas litter respiration dominated in the grassland (20/70/10) and pine forest (15/65/20). Given that there were three sources and only one isotope, these estimates for belowground partitioning were only potential ranges. We also found large temporal variation in the 13C/12C ratios of plant respiration. At the pine forest, differences between night and day were as large as 4 per mil for leaf respiration and 2.5 per mil for rhizosphere respiration. Belowground respiration changed by less than 1 per mil, and this variation appeared to be driven entirely by rhizosphere respiration (r2= 94%). The fact that isotopic mass balance was not observed on many days may have been due to this temporal variability. For example, isotopic mass balance was observed in the redwood forest when all respiration samples were collected at the same time of day (pre-dawn), whereas isotopic mass balance was not observed when respiration samples were collected from different times of the day. Partitioning is therefore possible because of relatively large isotopic differences between leaf and SOC decomposition, but care must be taken to determine all source signatures at the same time due to large temporal variability.

  12. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal flow. There was no consistent isotopic difference between rRNAs captured by the two probes, although RNA recoveries were too low for isotopic determinations at depths where methanogens and methane oxidizers are expected. Our prediction that rRNA stable carbon isotopic composition would correlate with methane supply was borne out by the comparison between background and mat sediments, but may be an oversimplification for sites within hydrothermal features. Future work will include the isotopic characterization of other potential carbon substrates, such as acetate. We are also investigating cold-seep sediments and brine pools in the Gulf of Mexico, where methane is significantly more 13C-depleted than at Guaymas Basin and may therefore leave a stronger imprint on microbial biomass.table carbon isotopes of rRNA captured with Bacterial and Archaeal probes at mat transect and background sites.

  13. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio.

    PubMed

    Ercole, Enrico; Adamo, Martino; Rodda, Michele; Gebauer, Gerhard; Girlanda, Mariangela; Perotto, Silvia

    2015-02-01

    Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time. PMID:25382295

  14. Isotopic abundances in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1977-01-01

    Results of microwave measurements in dense interstellar clouds are discussed which pertain to determinations of relative isotopic abundances. Difficulties in deriving relative abundances from observations of the relative intensities of isotopic lines are examined, and measures available for coping with these complications are outlined. Results are presented concerning the relative abundances of C-13, O-17, O-18, N-15, Si-30, S-33, S-34, and D in a variety of interstellar clouds; the consistency of these results is evaluated. It is concluded that: (1) the relative abundances of C-13 and O-17 in interstellar clouds are generally higher than those in the solar system; (2) the abundances of N-15 and D are lower than the solar-system values; (3) the O-18 abundance is possibly higher than in the solar system; and (4) there are substantial variations in the isotopic abundances between different large interstellar clouds, with some of these variations not dependent on distance from the galactic center alone.

  15. Natural Carbon Isotope Abundance of Plasma Metabolites and Liver Tissue Differs between Diabetic and Non-Diabetic Zucker Diabetic Fatty Rats

    PubMed Central

    Godin, Jean-Philippe; Ross, Alastair B.; Cléroux, Marilyn; Pouteau, Etienne; Montoliu, Ivan; Moser, Mireille; Kochhar, Sunil

    2013-01-01

    Background ‘You are what you eat’ is an accurate summary for humans and animals when it comes to carbon isotope abundance. In biological material, natural13C/12C ratio is subject to minute variations due to diet composition (mainly from ingestion of C3 and C4 metabolism plants) and to the discrimination between ‘light’ and ‘heavy’ isotopes during biochemical reactions (isotope effects and isotopic fractionation). Methodology/Principal Findings Carbon isotopic abundance was measured in ZDF (fa/+) and ZDF (fa/fa), (lean and obese-diabetic rats respectively) fed the same diet. By analysing plasma metabolites (glucose and non-esterified fatty acids), breath and liver tissue by high-precision isotope ratio mass spectrometry, we demonstrate for the first time statistically distinguishable metabolic carbon isotope abundance between ZDF (fa/+) and ZDF (fa/fa) rats based on plasma glucose, palmitic, oleic, linoleic, arachidonic acids and bulk analysis of liver tissue (P<0.005) resulting into clear isotopic fingerprints using principal component analysis. We studied the variation of isotopic abundance between both groups for each metabolite and through the metabolic pathways using the precursor/product approach. We confirmed that lipids were depleted in 13C compared to glucose in both genotypes. We found that isotopic abundance of linoleic acid (C18: 2n-6), even though both groups had the same feed, differed significantly between both groups. The likely reason for these changes between ZDF (fa/+) and ZDF (fa/fa) are metabolic dysregulation associated with various routing and fluxes of metabolites. Conclusion/Significance This work provides evidence that measurement of natural abundance isotope ratio of both bulk tissue and individual metabolites can provide meaningful information about metabolic changes either associated to phenotype or to genetic effects; irrespective of concentration. In the future measuring the natural abundance δ13C of key metabolites could be used as endpoints for studying in vivo metabolism, especially with regards to metabolic dysregulation, and development and progression of metabolic diseases. PMID:24086387

  16. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  17. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (?13C) and radiocarbon (?14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with ?13C signatures for PLFAs that were generally within ~3 of that reported for oil sands bitumen (~ -30), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The ?14C values of PLFAs ranged from -906 to -586 and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes. Further research needs to examine the role which priming processes play in controlling the fate of organic contaminants in Athabasca oil sands tailings ponds, such as understanding to what extent the addition of labile material may hinder or enhance microbial uptake of fossil carbon. This knowledge can be subsequently used to optimize conditions which favour natural attenuation processes in reclamation sites following mine closure.

  18. Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance.

    PubMed

    Frossard, Victor; Verneaux, Valrie; Millet, Laurent; Magny, Michel; Perga, Marie-Elodie

    2015-06-01

    Stable C isotope ratio (?(13)C) values of chironomid remains (head capsules; HC) were used to infer changes in benthic C sources over the last 150 years for two French sub-Alpine lakes. The HCs were retrieved from a series of sediment cores from different depths. The HC ?(13)C values started to decrease with the onset of eutrophication. The HC ?(13)C temporal patterns varied among depths, which revealed spatial differences in the contribution of methanotrophic bacteria to the benthic secondary production. The estimates of the methane (CH4)-derived C contribution to chironomid biomass ranged from a few percent prior to the 1930s to up to 30 % in recent times. The chironomid fluxes increased concomitantly with changes in HC ?(13)C values before a drastic decrease due to the development of hypoxic conditions. The hypoxia reinforced the implication for CH4-derived C transfer to chironomid production. In Lake Annecy, the HC ?(13)C values were negatively correlated to total organic C (TOC) content in the sediment (Corg), whereas no relationship was found in Lake Bourget. In Lake Bourget, chironomid abundances reached their maximum with TOC contents between 1 and 1.5 % Corg, which could constitute a threshold for change in chironomid abundance and consequently for the integration of CH4-derived C into the lake food webs. Our results indicated that the CH4-derived C contribution to the benthic food webs occurred at different depths in these two large, deep lakes (deep waters and sublittoral zone), and that the trophic transfer of this C was promoted in sublittoral zones where O2 gradients were dynamic. PMID:25630956

  19. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high compared to N-MORB mantle source estimates (72-134 ppm) based upon CO2/Nb ratios [2, 3]; however, they are in good agreement with those from submarine glasses on adjacent segments from the Reykjanes and Kolbeinsey ridges [4,5]. Significantly, the model-derived δ13C estimate is close to the mean Icelandic geothermal value, implying that fluids closely resemble source values, i.e. they likely represent the exsolved component. Integrating the estimated source CO2 content with magma production values of 0.079 km3/yr [6] yields a CO2 flux of ~1.2 x 1011 mol CO2 yr-1for Iceland, representing ~ 5.4 % of the total carbon ridge flux of 2.2 x 1012 mol CO2 yr-1 [7]. Thus, the average CO2 flux estimate for Iceland is ~2.2 x 108 mol CO2 yr-1km-1 strike of ridge axis, which compares to an overall ridge flux (including Iceland) of ~2.9 x 107 mol CO2 yr-1km-1. This difference highlights both heterogeneity in source volatile contents and magma production rates as important controls for determining mantle CO2 fluxes. [1] Poreda et al., 1992 [2] Saal et al., 2002. [3] Shaw et al., 2010. [4] de Leeuw, 2007 [5] Macpherson et al., 2005. [6] Thordarson et al., 2007 [7] Marty et al., 1998.

  20. Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.

    NASA Astrophysics Data System (ADS)

    Erba, E.

    2005-12-01

    The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic winter or reversed greenhouse conditions resulting from a draw-down of carbon dioxide after accelerated weathering and massive burial of organic carbon-rich sediments in the oceans.

  1. Stellar Isotopic Abundances in the Milky Way: Insights into the Origin of Carbon and Neutron-Capture Elements

    NASA Astrophysics Data System (ADS)

    Guo, Michelle; Zhang, A.; Kirby, E. N.; Guhathakurta, P.

    2014-01-01

    Elements heavier than iron are formed by the capture of neutrons onto lighter nuclei. Neutron capture happens via two separate processes: the rapid neutron capture process (r-process) that occurs in supernovae, and slow neutron capture process (s-process) that occurs in less-massive stars. This work used high-resolution spectroscopy, synthetic model spectra, and a least-squares fit to show that the ratio of 12C to 13C increases proportionally with [Fe/H]. The new results agree with the conclusions of Lucatello et al. (2006) and Frebel (2008), and show significant improvement that contains less scattering of data points. Analysis of the obtained isotope ratios suggests that the carbon in most stars of the sample originated in supernovae. This paper also presents a method to calculate the europium isotope ratio by modeling the shapes of absorption lines. The range of europium isotopic ratios agrees with previous theoretical predictions about the classical model of heavy element nucleosynthesis, and the work presents new insight into the origins of life in the universe. We thank the US National Science Foundation, the UCSC Science Internship Program, and the Lick Observatory where the spectra were obtained.

  2. [Effects of intensive agricultural production on farmland soil carbon and nitrogen contents and their delta13C and delta15N isotope abundances].

    PubMed

    Yang, Guang-Rong; Hao, Xiying; Li, Chun-Li; Wang, Zi-Lin; Li, Yong-Mei

    2012-03-01

    Farmland soil carbon and nitrogen contents under intensive agricultural production are the important indices for the assessment of the soil fertility sustainability. This paper measured the soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (TN), and delta13C and delta15N isotope abundances of four types of farmland, i.e., conventional rice-broad bean rotation field, open vegetable field, 3-year plastic covered greenhouse field, and > 10-year plastic covered greenhouse field, aimed to understand the effects of intensive agricultural production degree on soil properties. In the open vegetable field, 3-year plastic covered greenhouse field, and > 10-year plastic covered greenhouse field, the soil (0-20 cm) pH decreased by 1.1, 0.8, and 0.7, and the soil EC was 4.2, 4.9, and 5.2 folds of that in conventional rice-broad bean rotation field, respectively. With the increasing year of plastic covered greenhouse production, the soil SOC and TN contents decreased after an initial increase. Comparing with those under rice-broad bean rotation, the SOC content in 0-20, 20-40, 40-60, 60-80 and 80-100 cm soil layers in >10-year plastic covered greenhouse decreased by 54%, 46%, 60%, 63%, and 59%, and the TN content decreased by 53%, 53%, 71%, 82%, and 85%, respectively. Intensive agricultural production degree had significant effects on the soil SOC and TN contents and delta13C and delta15N abundances. The delta13C abundance was significantly negatively correlated with the soil SOC, suggesting that the soil delta13C abundance could be regarded as an index for the assessment of carbon cycle in farmland soils under effects of human activities. PMID:22720621

  3. Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon, and noble gases in lunar basalts: Insights into interior and surface processes on the Moon

    NASA Astrophysics Data System (ADS)

    Mortimer, J.; Verchovsky, A. B.; Anand, M.; Gilmour, I.; Pillinger, C. T.

    2015-07-01

    Simultaneous static-mode mass spectrometric measurements of nitrogen, carbon, helium, neon, and argon extracted from the same aliquot of sample by high-resolution stepped combustion have been made for a suite of six lunar basalts. Collecting abundance and isotopic data for several elements simultaneously from the same sample aliquot enables more detailed identification of different volatile components present in the basalts by comparing release patterns for volatiles across a range of temperature steps. This approach has yielded new data, from which new insights can be gained regarding the indigenous volatile inventory of the Moon. By taking into account N and C data for mid-temperature steps, unaffected by terrestrial contamination or cosmogenic additions, it is possible to determine the indigenous N and C signatures of the lunar basalts. With an average δ15N value of around +0.35‰, the indigenous N component seen in these samples is similar within error to other (albeit limited in number) isotopic measurements of indigenous lunar N. Average C/N ratios for indigenous volatiles in these six basalt samples are much lower than those of the terrestrial depleted mantle, or bulk silicate Earth, possibly suggesting much less C in the lunar interior, relative to N, than on Earth. Cosmogenic isotopes in these samples are well-correlated with published sample exposure ages, and record the rate of in situ production of spallogenic volatiles within material on the lunar surface.

  4. ISOTOPIC TITANIUM ABUNDANCES IN LOCAL M DWARFS

    SciTech Connect

    Chavez, Joy; Lambert, David L. E-mail: dll@astro.as.utexas.edu

    2009-07-10

    Relative abundances of the five stable isotopes of titanium ({sup 46}Ti to {sup 50}Ti) are measured for 11 M dwarfs belonging to the thin disk (four stars), thick disk (three stars), the halo (one star), and either the thick or the thin disk (three stars). Over the metallicity range of the sample (-1< [Fe/H] <0), the isotopic ratios are approximately constant at the solar system ratios. There is no discernible difference between the isotopic ratios for thin and thick disk stars. Isotopic ratios are in fair accord with recent calculations of Galactic chemical evolution despite the fact that such calculations underpredict [Ti/Fe] by about 0.4 dex at all metallicities.

  5. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  6. Variation in soil organic carbon abundance and isotopic composition mediated by landslide activity in the Sierra de Las Minas, Guatemala

    NASA Astrophysics Data System (ADS)

    Restrepo, C.

    2013-12-01

    Tropical mountains play an important role in biogeochemical cycles worldwide due to complex interaction between geomorphic and ecosystem processes. The strength of these interactions, however, is likely to vary along the steep environmental gradients found in mountainous terrain. Here we focus on soil organic carbon and ask how landsliding alters soil organic carbon density, C:N ratios and ?13C and ?15N along the broad climatic gradients observed in the Sierra de Las Minas (SLM) of eastern Guatemala. Soils were sampled in intact forest and 14 year-old landside sites underlain by gneiss in the southern dry to mesic (Motagua) and northern wet (Polochic) aspects of the SLM along wide elevation, temperature, and precipitation gradients. Soils samples (10 cm depth increments down to 30 cm) from each site were processed to estimate soil bulk density and obtain total carbon and nitrogen, and ?13C and ?15N. Soil organic carbon density exhibited a greater variability in forests of the Motagua (10-170 MgC ha-1) than the Polochic (40-160 MgC ha-1) whereas the opposite was true in landslides (5-40 MgC ha-1 versus10-90 MgC ha-1 in the Motagua and Polochic, respectively). Soil organic carbon density was related non-linearly with mean annual temperature (MAT) and mean total annual precipitation (MAP) but the strength and sign of the interactions differed with aspect and habitats which suggests that landsliding has different potentials to mobilize and fix carbon along the complex environmental gradients of the SLM. Similarly, the C:N ratios and ?13C and ?15N values varied between forests and landslides of the Motagua and Polochic sides of the SLM suggesting important differences in the carbon cycle and thus functioning of montane ecosystems mediated by landslide activity. Results of our work are critical both for characterizing the size of soil organic carbon stocks and pinpointing the source of carbon mobilized by landsliding in the SLM.

  7. NITROGEN AND CARBON STABLE ISOTOPE ABUNDANCES SUPPORT THE MYCO-HETEROTROPHIC NATURE AND HOST-SPECIFICITY OF CERTAIN ACHLOROPHYLLOUS PLANTS

    EPA Science Inventory


    ? Over 400 species of achlorophyllous vascular plants are thought to obtain all carbon from symbiotic fungi. Consequently, they are termed ?myco-heterotrophic.' However, direct evidence of myco-heterotrophy in these plants is limited.
    ? During an investigation of the pat...

  8. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada - An alkaline, meromictic lake

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Des Marais, D. J.

    1983-01-01

    The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.

  9. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  10. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Bhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D., Jr.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  11. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  12. Compact Planetary Nebulae. Carbon Abundances

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, Silvia

    We are Interested In investigating a set of young, compact, high density planetary nebulae In order to establish general characteristics that will help us understand better the evolution of planetary nebulae. In particular we are interested In deriving carbon abundances of J320, PC 11, NGC 6644, NGC 6790, NGC 6833, IC 5117, and He 2-2. At present there are several compact planetary nebulae for which there are IUE data available. We propose to enlarge the sample

  13. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  14. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  15. Carbon isotopic fractionation in heterotrophic microbial metabolism

    SciTech Connect

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-10-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. 38 references.

  16. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  17. Variable Carbon Isotopes in ALH84001 Carbonates

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2002-12-01

    The Martian meteorite ALH84001 contains a small amount of carbonate that was deposited from aqueous fluids on the Martian surface approximately 3.9 Ga.. McKay et al. (1996) proposed evidence for the existence of life preserved within the carbonate grains. In order to determine the nature of the ancient Martian aqueous system we have combined previously collected oxygen isotopic data with new carbon isotopic measurements performed on the Cameca 6f ion microprobe at Arizona State University. Isotopic measurements were made at high mass resolution with a spot size of 10 microns. The measured carbon isotopic values range from 29.2 to 64.5 (PDB) with an average uncertainty of +/-1.6 (1? ). These data agree very well with previous acid dissolution and stepped combustion experiments which range from a ?13C of +32 to +41 . As observed with the oxygen isotopic data, the carbon isotopic composition is correlated with the chemical composition of the carbonates. This allows us to establish that the earliest (Ca-rich) carbonates had the lightest carbon isotopic composition while the latest forming (Mg-rich) carbonates had the heaviest carbon isotopic composition. The large range of carbon isotopic compositions measured in this study cannot be explained by previously proposed models. Temperature change or a Rayleigh distillation process caused by progressive carbonate precipitation are insufficient to create the observed carbon isotopic compositions. Furthermore, processes such as evaporation or photosynthesis will not produce large carbon isotopic variations due to rapid isotopic equilibration with the atmosphere. We propose two possible models for the formation of the ALH84001 carbonates consistent with the isotopic data collected thus far. Carbonates could have formed from an evolving system where the carbon and oxygen isotopic composition of the carbonates reflects a mixing between magmatic hydrothermal fluids and fluids in equilibrium with an isotopically heavy atmosphere. Alternatively, carbon enrichment could have occurred as a portion of the carbon dioxide is reduced through abiotic Fischer-Tropsch synthesis or biologically mediated methanogenesis. In this scenario, cooling of the system over time would be necessary to create observed oxygen isotopic values.

  18. Climatic/Hydrologic Oscillations since 155,000 yr B.P. at Owens Lake, California, Reflected in Abundance and Stable Isotope Composition of Sediment Carbonate

    USGS Publications Warehouse

    Menking, K.M.; Bischoff, J.L.; Fitzpatrick, J.A.; Burdette, J.W.; Rye, R.O.

    1997-01-01

    Sediment grain size, carbonate content, and stable isotopes in 70-cm-long (???1500-yr) channel samples from Owens Lake core OL-92 record many oscillations representing climate change in the eastern Sierra Nevada region since 155,000 yr B.P. To first order, the records match well the marine ??18O record. At Owens Lake, however, the last interglaciation appears to span the entire period from 120,000 to 50,000 yr B.P., according to our chronology, and was punctuated by numerous short periods of wetter conditions during an otherwise dry climate. Sediment proxies reveal that the apparent timing of glacial-interglacial transitions, notably the penultimate one, is proxy-dependent. In the grain-size and carbonate-content records this transition is abrupt and occurs at ??? 120,000 yr B.P. In contrast, in the isotopic records the transition is gradual and occurs between 145,000 and 120,000 yr B. P. Differences in timing of the transition are attributed to variable responses by proxies to climate change. ?? 1997 University of Washington.

  19. 238U series isotopes and 232Th in carbonates and black shales from the Lesser Himalaya: implications to dissolved uranium abundances in Ganga-Indus source waters.

    PubMed

    Singh, S K; Dalai, Tarun K; Krishnaswami, S

    2003-01-01

    238U and (232)Th concentrations and the extent of (238)U-(234)U-(230)Th radioactive equilibrium have been measured in a suite of Precambrian carbonates and black shales from the Lesser Himalaya. These measurements were made to determine their abundances in these deposits, their contributions to dissolved uranium budget of the headwaters of the Ganga and the Indus in the Himalaya and to assess the impact of weathering on (238)U-(234)U-(230)Th radioactive equilibrium in them. (238)U concentrations in Precambrian carbonates range from 0.06 to 2.07 microg g(-1). The 'mean' U/Ca in these carbonates is 2.9 ng U mg(-1) Ca. This ratio, coupled with the assumption that all Ca in the Ganga-Indus headwaters is of carbonate origin and that U and Ca behave conservatively in rivers after their release from carbonates, provides an upper limit on the U contribution from these carbonates, to be a few percent of dissolved uranium in rivers. There are, however, a few streams with low uranium concentrations, for which the carbonate contribution could be much higher. These results suggest that Precambrian carbonates make only minor contributions to the uranium budget of the Ganga-Indus headwaters in the Himalaya on a basin wide scale, however, they could be important for particular streams. Similar estimates of silicate contribution to uranium budget of these rivers using U/Na in silicates and Na* (Na corrected for cyclic and halite contributions) in river waters show that silicates can contribute significantly (approximately 40% on average) to their U balance. If, however, much of the uranium in these silicates is associated with weathering resistant minerals, then the estimated silicate uranium component would be upper limits. Uranium concentration in black shales averages about 37 microg g(-1). Based on this concentration, supply of U from at least approximately 50 mg of black shales per liter of river water is needed to balance the average river water U concentration, 1.7 microg L(-1) in the Ganga-Indus headwaters. Data on the abundance and distribution of black shales in their drainage basin are needed to test if this requirement can be met. (234)U/(238)U activity ratios in both carbonates and black shales are at or near equilibrium, thus preferential mobilization of (234)U from these deposits, if any, is within analytical uncertainties. (230)Th is equivalent to or in excess of (238)U in most of the carbonates. (230)Th/(238)U>1 indicates that during weathering, uranium is lost preferentially over Th. (232)Th concentrations in carbonates are generally quite low, <0.5 microg g(-1), though with a wide range, 0.01-4.8 microg g(-1). The variation in its concentrations seem to be regulated by aluminosilicate content of the carbonates as evident from the strong positive correlation between (232)Th and Al. PMID:12634002

  20. The abundances of elements and isotopes in the solar wind

    NASA Technical Reports Server (NTRS)

    Gloeckler, George; Geiss, Johannes

    1988-01-01

    Studies of the chemical and isotopic composition of the solar wind are reviewed. Solar wind abundance measurements are discussed and solar wind, coronal, and photospheric abundances for elements between H and Fe are presented. Also, consideration is given to the determination of the solar wind isotopic composition of the noble gases using foil collection techniques and the observation of solar wind heavy ions with the mass per charge spectrometer on ISEE-3. Other topics include solar wind observations with solid state detectors, solar wind abundances in the magnetosheath and the plasma sheet, and high-mass resolution measurements of chemical elements and isotopes in the solar wind.

  1. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  2. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  3. Isotopic abundance in atom trap trace analysis

    DOEpatents

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  4. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Glinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand). PMID:18529015

  5. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    SciTech Connect

    HOLDEN, N.E.

    2005-08-13

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

  6. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) 10-6.

  7. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  8. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  9. Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru; Sugiura, Naoji; Marrocchi, Yves; Takahata, Naoto; Hoppe, Peter; Shirai, Kotaro; Sano, Yuji; Hiyagon, Hajime

    2015-07-01

    We have performed in situ analyses of C and O isotopic compositions, trace element concentrations, and cathodoluminescence (CL) intensities on calcite in Murchison, a weakly altered CM chondrite. We found that the trace element (Mg, Mn, and Fe) concentrations are heterogeneous within single calcite grains. Grain to grain heterogeneity is even more pronounced. The analyzed calcite grains can be separated into two distinct types with respect to their C isotopic ratios, trace element concentrations, and CL characteristics: Calcite grains with higher δ13CPDB values (∼75‰) have low trace element concentrations and uniformly dark CL, while grains with lower δ13C values (∼35‰) have higher trace element concentrations and CL zoning. In contrast to the C isotopic ratios, O isotopic ratios are similar for both types of calcites (δ18OSMOW ∼ 34‰). The O isotopic ratios, trace element concentrations, and CL characteristics provide no evidence for C-isotope evolution in fluids from a single C reservoir by Rayleigh-type isotope fractionation (i.e., removal of C-bearing gaseous species). Also, it seems difficult to explain the O and C isotopic compositions of the two types of calcites by their formation at different temperatures from a single fluid. Instead, the δ13C variation suggests the presence of at least two C reservoirs with different isotopic ratios in the aqueous fluids from which the calcites precipitated. The C reservoirs with lower δ13C values are likely to be organic matter. The same holds for the C reservoirs with higher δ13C values which might have significant contributions from the 13C-enriched grains identified in meteoritic insoluble organic matter. Thermodynamic calculations show that calcite with lower Fe concentrations formed under more reduced conditions than calcite with higher Fe concentrations. If this is the case, the 13C-rich organic grains may have been destroyed and dissolved in the fluids under more reduced conditions than other organic components. The fact that the two types of calcites were found in different domains in the same thin section suggests that microenvironments with diverse physicochemical conditions such as redox states were present at scales of 100's μm.

  10. Literature survey of isotopic abundance data for 1987-1989

    SciTech Connect

    Holden, N.E. )

    1989-08-09

    I have compiled all of the data on isotopic abundance measurements and their variation in nature for the time period since the last General Assembly. Most of the data deals with the variations in the abundances as given by per mil deviations from some standard. As such, they are not of major interest to the Atomic Weights Commission. However, there were some measurements which are of general interest in this list.

  11. Carbon-13 isotopic abundance and concentration of atmospheric methane for background air in the Southern and Northern Hemispheres from 1978 to 1989

    SciTech Connect

    Stevens, C.M.; Sepanski; Morris, L.J.

    1995-03-01

    Atmospheric methane (CH{sub 4}) may become an increasingly important contributor to global warming in future years. Its atmospheric concentration has risen, doubling over the past several hundred years, and additional methane is thought to have a much greater effect on climate, on a per molecule basis, than additional C0{sub 2} at present day concentrations (Shine et al. 1990). The causes of the increase of atmospheric CH{sub 4} have been difficult to ascertain because of a lack of quantitative knowledge of the fluxes (i.e., net emissions) from the numerous anthropogenic and natural sources. The goal of CH{sub 4} isotopic studies is to provide a constraint (and so reduce the uncertainties) in estimating the relative fluxes from the various isotopically distinct sources, whose combined fluxes must result in the measured atmospheric isotopic composition, after the fractionating effect of the atmospheric removal process is considered. In addition, knowledge of the spatial and temporal changes in the isotopic composition of atmospheric CH{sub 4}, along with estimates of the fluxes from some of the major sources, makes it possible to calculate growth rates for sources whose temporal emissions trends would be difficult to measure directly.

  12. Carbon and nitrogen stable isotopic inventory of the most abundant demersal fish captured by benthic gears in southwestern Iceland (North Atlantic)

    NASA Astrophysics Data System (ADS)

    Sarà, Gianluca; de Pirro, Maurizio; Sprovieri, Mario; Rumolo, Paola; Halldórsson, Halldór Pálmar; Svavarsson, Jörundur

    2009-12-01

    Stable isotopes (δ13C and δ15N) were used to examine the origin of organic matter for the most representative demersal species of the SW Icelandic fishery, accounting for over 70% of landings of those species in the North Atlantic. Samples were collected during a 2-week period in early September 2004 from landings and directly during fishing cruises. Stable isotopes showed that particulate organic matter and sedimentary organic matter were at the base of the food web and appeared to fill two different compartments: the pelagic and the benthic. The pelagic realm was composed of only capelin and sandeel; krill and redfish occupied an intermediate position between pelagic and benthic realms; while anglerfish, haddock, cod and ling resulted as the true demersal species while tusk, rays and plaice were strongly linked to the benthic habitat.

  13. On the enrichment of low-abundant isotopes of light chemical elements by gas centrifuges

    NASA Astrophysics Data System (ADS)

    Borisevich, V. D.; Morozov, O. E.; Zaozerskiy, Yu. P.; Shmelev, G. M.; Shipilov, Yu. D.

    2000-08-01

    A brief review of the main areas for the application of the isotopes 15N and 13C is made. Separation of the nitrogen isotopes in a single gas centrifuge in the form of pure nitrogen, ammonia, and trifluoride of nitrogen as well as the carbon isotopes in the form of carbon dioxide has been studied by means of numerical simulation. The parameters of the centrifugal machine investigated were close to the parameters of the Iguassu machine. The dependence of the efficiency criterion versus the basic parameters of the separation process has been explored in the computational experiments. Comparisons of the calculated results with the experimental data have shown good agreement. The results obtained have demonstrated the possibility of using gas centrifuge technology to enrich successfully the low-abundant isotopes of light chemical elements.

  14. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect

    Keeling, Ralph

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  15. The carbon monoxide abundance in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1976-01-01

    The steady-state abundance of carbon monoxide in interstellar clouds is calculated as a function of optical depth, density, and temperature. The molecular reactions which lead to CO can be initiated by the following ion-molecule reactions: H(+) + O yields O(+) + H, C(+) + H2 yields CH2(+) + a photon, and H3(+) + C and O. As the ultraviolet radiation field is attenuated, C(+) is transformed primarily into CO and C I. There are characteristic column densities for the transition to CO corresponding to the optical depths for attenuating this field at different wavelengths. For thick, low-temperature clouds the attenuation of the fields which ionize carbon, sulfur, and heavy metals is important for CO production initiated by H3(+). Complete conversion to CO does not necessarily occur, and considerable neutral carbon may be expected even in optically thick clouds. Comparison of integrated column densities of CO with extinction are in reasonable agreement with observations.

  16. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  17. Mass Spectrometric Measurement of Martian Krypton and Xenon Isotopic Abundance

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Mauersberger, K.

    1993-01-01

    The Viking gas chromatograph mass spectrometer experiment provided significant data on the atmospheric composition at the surface of Mars, including measurements of several isotope ratios. However, the limited dynamic range of this mass spectrometer resulted in marginal measurements for the important Kr and Xe isotopic abundance. The Xe-129 to Xe-132 ratio was measured with an uncertainty of 70%, but none of the other isotope ratios for these species were obtained. Accurate measurement of the Xe and Kr isotopic abundance in this atmosphere provides an important data point in testing theories of planetary formation and atmospheric evolution. The measurement is also essential for a stringent test for the Martian origin of the SNC meteorites, since the Kr and Xe fractionation pattern seen in gas trapped in glassy nodules of an SNC (EETA 79001) is unlike any other known solar system resevoir. Current flight mass spectrometer designs combined with the new technology of a high-performance vacuum pumping system show promise for a substantial increase in gas throughput and the dynamic range required to accurately measure these trace species. Various aspects of this new technology are discussed.

  18. Isotope tracers of organic carbon during artificial recharge

    SciTech Connect

    Davisson, M.L.

    1998-02-09

    This project developed an analytical technique for measuring the isotope abundance for 14C and 13C in total organic carbon (TOC) in order to test whether these measurements can trace TOC interaction with sedimentary material at the bottom of rivers and lakes, soils, and subsurface aquifer rocks.

  19. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  20. Metallicity-Dependent Isotopic Abundances and the Impact of Helium Rate Uncertainties in Massive Stars

    NASA Astrophysics Data System (ADS)

    West, Christopher

    2013-03-01

    All stellar evolution models for nucleosynthesis require an initial isotopic abundance set to use as a starting point, because nuclear reactions occur between isotopes. Generally, our knowledge of isotopic abundances of stars is fairly incomplete except for the Solar System. We develop a first model for a complete average isotopic decomposition as a function of metallicity. Our model is based on the underlying nuclear astrophysics processes, and is fitted to observational data, rather than traditional forward galactic chemical evolution modeling which integrates stellar yields beginning from big bang nucleosynthesis. We first decompose the isotopic solar abundance pattern into contributions from astrophysical sources. Each contribution is then assumed to scale as a function of metallicity. The resulting total isotopic abundances are summed into elemental abundances and fitted to available halo and disk stellar data to constrain the model's free parameter values. This procedure allows us to use available elemental observational data to reconstruct and constrain both the much needed complete isotopic evolution that is not accessible to current observations, and the underlying astrophysical processes. Our model finds a best fit for Type Ia supernovae contributing ˜0.7 to the solar Fe abundance, and Type Ia onset occurring at [Fe/H]~1.2, in agreement with typical values. The completed model can be used in future nucleosynthesis studies. We also perform a preliminary analysis to assess the impact of our isotopic scaling model on the resulting nucleosynthesis of massive stars, compared to a linear interpolation method. Using these two input methods we compute a limited grid of stellar models, and compare the final nucleosynthesis to observations. The compactness parameter was first used to assess which models would likely explode as successful supernovae, and contribute explosive nucleosynthesis yields. We find a better agreement to solar observations using the scaling model compared to the linear interpolation method, for the six s--only isotopes along the weak s--process path. As a second project, we study the sensitivity of presupernova evolution and supernova nucleosynthesis yields of massive stars to variations of the helium-burning reaction rates within the range of their uncertainties. The current solar abundances from Lodders (2010) are used for the initial stellar composition. We compute a grid of 12 initial stellar masses and 176 models per stellar mass to explore the effects of independently varying the 12C(alpha,gamma)16O and 3alpha reaction rates, denoted Ralpha,12 and R3alpha, respectively. The production factors of both the intermediate-mass elements (A=16--40) and the s--only isotopes along the weak s--process path ( 70Ge, 76Se, 80Kr, 82Kr, 86Sr, and 87Sr) were found to be in reasonable agreement with predictions for variations of R3alpha and Ralpha,12 of +/-25%; the s--only isotopes, however, tend to favor higher values of R3alpha than the intermediate-mass isotopes. The experimental uncertainty (one standard deviation) in R3alpha(Ralpha,12 ) is approximately +/-10%(+/-25%). The results show that a more accurate measurement of one of these rates would decrease the uncertainty in the other as inferred from the present calculations. We also observe sharp changes in production factors and standard deviations for small changes in the reaction rates, due to differences in the convection structure of the star. The compactness parameter was used to assess which models would likely explode as successful supernovae, and hence contribute explosive nucleosynthesis yields. We also provide the approximate remnant masses for each model and the carbon mass fractions at the end of core-helium burning as a key parameter for later evolution stages.

  1. Nitrogen isotope abundances in the recent solar wind.

    PubMed

    Kim, J S; Kim, Y; Marti, K; Kerridge, J F

    1995-06-01

    Although lunar crystalline rocks are essentially devoid of nitrogen, the same is not true of the lunar regolith. The nitrogen contents of individual regolith samples (which can be as high as 0.012% by mass) correlate strongly with abundances of noble gases known to be implanted in the lunar surface by solar radiation, indicating that lunar regolith nitrogen is also predominantly of solar origin. The large variability in 15N/14N ratios measured in different regolith samples may thus reflect long-term changes in the isotopic composition of the solar radiation. But attempts to explain these variations have been hampered by the lack of any firm constraint on 15N/14N in the present solar wind. Here we report measurements of nitrogen isotopes from two lunar samples that have had simple (and relatively recent) exposure histories. We find that nitrogen implanted in the lunar surface during the past 10(5) to 5 x 10(7) years has a 15N/14N ratio approximately 40% higher than that in the terrestrial atmosphere, which is substantially lower than most previous estimates. This isotopic signature probably represents the best measure of 15N/14N in the present-day solar wind. PMID:7760930

  2. Carbon isotope controlled molecular switches

    NASA Astrophysics Data System (ADS)

    Foster, Brian K.

    Single molecules represent one fundamental limit to the downscaling of electronics. As a prototype element for carbon-based nanoscale science and technology, the detailed behavior of carbon monoxide (CO) on the copper surface Cu(111) has been investigated. These investigations span from individual carbon isotope resolution, to single molecules, to compact clusters assembled by molecular manipulation via a homemade scanning tunneling microscope (STM). Sub-nanoscale devices, composed of only a few molecules, which exploit both lone CO properties and molecule-molecule interaction, have been designed and assembled. The devices function as bi-stable switches and can serve as classical bits with densities > 50 Tbits/cm2. Operated in the nuclear mass sensitive regime, each switch can also function as a molecular "centrifuge" capable of identifying the isotope of a single carbon atom in real-time. A model, based on electron-vibron couping and inelastic tunneling, has been developed and explains the dynamic behavior of the switch. The interaction between pairs of switches was also explored and it was found that their behavior ranges from completely independent to strongly coupled. Larger nanostructures, which were composed of many sub-switches organized to leverage the fully coupled interaction, link two spatially separated "bits" on the surface. Such a linked system can set or read a state non-locally, which is equivalent to bidirectional information transfer. The linked system has also exhibited logic functionality. These experiments demonstrate scalable molecular cells for information storage, and for information processing through cellular automata logic schemes.

  3. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    NASA Astrophysics Data System (ADS)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal ?13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high ?13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same as the deep ocean carbon isotopic variability recorded in co-occurring benthic foraminifera. These reinterpretations bear not only on the assumed venting of carbon through the high latitude surface ocean, but also on the "preformed" carbon isotopic variability throughout the interior of the Pleistocene oceans.

  4. A Clumped Isotope Calibration for Lacustrine Carbonates

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B. A.; Mering, J. A.; Petryshyn, V. A.; Dunbar, R. B.; Cohen, A. S.; Liu, X.; Kaufman, D. S.; Eagle, R.; Tripati, A.

    2014-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of past climate reconstructions. Unfortunately, many terrestrial proxies—tree rings, speleothems, leaf margin analyses, etc.—are influenced by the effects of both temperature and precipitation. Methods that can isolate the effects of temperature alone are needed, and clumped isotope thermometry has the potential to be a useful tool for determining terrestrial climates. Multiple studies have shown that the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed and may be a useful proxy for reconstructing temperatures on land. An in-depth survey of lacustrine carbonates, however, has not yet been published. Therefore we have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of modern lake samples' carbonate minerals in phosphoric acid and comparing results to independently known estimates of lake water temperature and air temperature. Some of the sample types we have investigated include endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  5. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (?13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (?13Ccarb < -5 per mil). Mechanisms that account for the magnitude, the facies distribution and the global abundance of these isotopically extreme carbonates in Neoproterozoic successions remain poorly understood. Little is also known about organisms and metabolisms that cycled carbon in these carbonate strata, because they rarely contain well-preserved organic-rich fossils. To better understand the cycling of carbon during the deposition of the 715-635 Ma Tayshir member of the Tsagaan Oloom Formation, Mongolia, we analyzed ?13Cfossil of two types of organic fossils that occur in 13C- enriched carbonates (+ 5 to 9.9 per mil) and within 13C-depleted carbonates of the Tayshir anomaly (-3 to -6 per mil). Because these organic microfossils are remarkably similar to the tests of modern planktonic, herbivorous tintinnid ciliates and benthic macroscopic red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with 1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (?13Ccarb < -3 per mil) and 3 different strata predating the Tayshir anomaly (?13Ccarb > +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (?13Cfossil), with values of -23 1 per mil both within 13C-enriched and 13C-depleted carbonates. The isotopic difference between ?13Cfossil and 13C-enriched carbonates is 28 to 30 per mil, suggesting maximal isotopic fractionation by primary producers, and little environmental (or diagenetic) processing of primary photosynthetic carbon. The carbonates of the Tayshir anomaly preserve two organic materials: matrix or bulk carbon characterized by a ?13Corg that covaries with ?13Ccarb, and a small, but morphologically diagnostic component whose ?13Cfossil values do not covary with ?13Ccarb. The stratigraphic thickness (~ 50 m) and isotopic heterogeneity of the organic matter within the Tayshir anomaly (~ 50 m) suggest a prolonged and large contribution of organic carbon remineralization.

  6. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1991-04-01

    This is the final report which was a thirty-four month project conducted to develop and demonstrate stable carbon isotope analysis as a method to quantitatively distinguish the source of carbon in products of coal/petroleum coprocessing. The work included assessing precision, accuracy, the range of application and the significance of selective isotopic fractionation effects. A method was devised to correct for selective isotopic fractionation errors. The method was demonstrated through application with samples from twelve continuous-unit coprocessing tests. A data base of carbon isotope analyses is appended. 21 refs.

  7. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-02-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  8. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  9. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  10. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  11. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  12. The carbon isotopic composition of ecosystem breath

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.

  13. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application an authentic continuous-unit products. The experimental details used for stable carbon isotope analyses by the organization that performs most of those analyses under this contract are described. A method was developed previously under this contract to correct the carbon sourcing calculations performed from stable carbon isotope analyses for selective isotopic fractionation. The method relies on three assumptions. This quarter, a study was completed to define the sensitivity of the carbon sourcing results to errors in the assumptions. Carbon contents and carbon isotope ratios were determined for the available feeds and product fractions from HRI bench-scale coprocessing Run 238-10 (Texas lignite/Hondo vacuum still bottoms (VSB), Texas lignite/Cold Lake VSB and Westerholt coal/Cold Lake VSB). These data were used for carbon sourcing calculations and individual feedstock conversion calculations. A previously devised means for correcting for selective isotope fractionation was applied. 6 refs., 30 figs., 16 tabs.

  14. Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator.

    PubMed

    Dorn, R I; Deniro, M J

    1985-03-22

    Stable carbon isotope ratios of organic matter in rock varnishes of Holocene age from western North America and the Middle East show a strong association with the environment. This isotopic variability reflects the abundance of plants with different photosynthetic pathways in adjacent vegetation. Analyses of different layers of varnish on late Pleistocene desert landforms indicate that the carbon isotopic composition of varnish organic matter is a paleoenvironmental indicator. PMID:17777781

  15. Preliminary report on isotope abundance measurements in groundwater samples from the Talbert Injection Barrier Area, Orange County Water District

    SciTech Connect

    Hudson, G.B.; Davisson, M.L.; Velsko, C.; Niemeyer, S.; Esser, B.; Beiriger, J.

    1995-02-01

    This report discusses isotope abundance measurements made on a collection of groundwater samples from the Orange County Water District. The water samples were collected in May, 1994 as part of a preliminary study conducted by LLNL to assess the feasibility of tracing and dating reclaimed water used in the Talbert Injection Barrier. A set of samples were collected both near to and far from the barrier and also at different depths in available monitoring wells. A variety of elements were selected for isotopic analysis; hydrogen (tritium), helium, neon, carbon, chlorine and strontium. The tritium abundance combined with the {sup 3}He and {sup 20}Ne abundance provides a method for age dating young (< 40 yr.) groundwater. The abundance of {sup 14}C provides an age dating technique for older (1,000--50,000 yr.) groundwater. The concentrations of {sup 36}Cl and {sup 87}Sr/{sup 86}Sr give information on sea water mixing and water-rock chemical interactions.

  16. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-01-01

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  17. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-12-31

    The purpose of obtaining stable carbon isotope analyses of coprocessing products is to determine the amount of coal (or petroleum) carbon that is present in any reaction product. This carbon-sourcing of distillate fractions, soluble resid, and insoluble organic matter, etc. is useful in modeling reactions, and evaluating synergistic effects if they exist.

  18. Carbon and its isotopes in mid-oceanic basaltic glasses

    USGS Publications Warehouse

    Des Marais, D.J.; Moore, J.G.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8??? enriched in 13C, relative to dissolved carbon. Despite this fractionation, ??13CPDB values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the ??13CPDB of mantle carbon likely lies between -5 and -7. The carbon abundances and ??13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 ?? 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. ?? 1984.

  19. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Sptl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate ?18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing temperatures indicate incomplete isotopic equilibration during precipitation of CCC. Fine-crystalline carbonate powder (<50 ?m, CCCfine) is thought to have formed in thin water films. Fast freezing causes strong isotopic disequilibrium effects related to rapid reaction rates, fast CO2 degassing, and limited isotopic equilibration (Clark and Lauriol, 1992) resulting in very positive ?13C (up to +18) and ?18O values (up to -2; Lacelle, 2007; Sptl, 2008; k et al., 2008). Larger crystals (mm to cm size, CCCcoarse) are thought to have formed in slow gradually freezing pool water (k et al., 2008), where super-saturation is created through ion rejection from the forming ice. This leads to slow mineral growth and strongly 18O-depleted CaCO3 (?18O: -24 to -10; k et al., 2012), but it is unknown whether CCCcoarse grows at isotopic equilibrium. Carbonate clumped isotope analyses (reported as ?47) are typically used to determine the formation temperature of carbonate minerals (Eiler, 2007, 2011; Affek, 2012). However, the sensitivity of ?47 to degassing makes it valuable also for the investigation of isotopic disequilibrium (Guo, 2008; Kluge and Affek, 2012). The carbonate clumped isotope thermometry is based on the temperature-dependent overabundance of 13C-18O bonds in the crystal lattice compared to a stochastic distribution.Depending on the conditions during carbonate formation, a varying degree of disequilibrium has been observed in clumped and oxygen isotopes of 'normal' speleothems (e.g., Mickler et al., 2006; Tremaine et al., 2011) complicating their interpretation. For stalagmites, an offset in ?18O of about 1 with respect to the isotopic equilibrium value is typically observed (McDermott et al., 2011) with a corresponding large offset in clumped isotopes (Affek et al., 2008; Daron et al., 2011; Kluge and Affek, 2012). Initial degassing of CO2 from water that enters the low pCO2 cave environment (compared to the high CO2 levels found in soils) leads to an enrichment in 13C and 18O in DIC and depletion in ?47. Oxygen isotope e

  20. Martian carbon dioxide: Clues from isotopes in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.

    1993-01-01

    Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.

  1. Total carbon and sulfur abundances in Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Yanai, K.

    1979-01-01

    Total carbon and sulfur abundances have been measured in five Antarctic meteorites. Two C2 carbonaceous chondrites Yamato 74662 and Allan Hills 77306 have sulfur abundances (3.490 plus or minus .040% and 3.863 plus or minus 0.050% respectively) similar to other C2 chondrites but their carbon abundances (1.514 plus or minus 0.050% and 1.324 plus or minus .040% respectively) are lower than previously measured C2 chondrites. The decreased carbon abundances may reflect the effects of weathering in cold environments. Carbon and sulfur abundances for one C4 carbonaceous chondrite, one E4 enstatite chondrite and one ureilite are similar to values reported previously for meteorites of the same petrologic grades.

  2. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1990-05-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Activities for this quarter include: method development -- investigation of selective fractionation. Three petroleum atmospheric still bottoms (ASBs) were separated by distillation and solubility fractionation to determine the homogeneity of the carbon isotope ratios of the separated fractions. These same three petroleum ASBs and three geographically distinct coals were pyrolyzed at 800{degree}F for 30 min and hydrogenated over a CoMo catalyst at 750{degree}F for 60 min to determine the effects of these treatments on the isotopic compositions of the produce fractions. Twelve coal liquefaction oils were analyzed for carbon isotope ratios. These oils were derived from subbituminous and bituminous coals from the first- and second-stage reactors in the thermal/catalytic and modes; validation and application, analysis. Carbon isotope analyses of samples from HRI bench unit coprocessing run 238-2 (Taiheiyo coal/Maya VSB) were analyzed. A method to correct for selective isotopic fractionation was developed and applied to the data. Five coprocessing samples were analyzed at the request of SRI International. 12 refs., 15 figs., 24 tabs.

  3. Spatial isotopic heterogeneity during the Guttenberg isotopic carbon excursion: Mechanisms and implications for craton-wide isotope gradients

    NASA Astrophysics Data System (ADS)

    Metzger, J. G.; Fike, D. A.

    2012-12-01

    The carbon isotopic compositions of carbonate carbon (δ13Ccarb) and organic carbon (δ13Corg) in marine limestones are frequently used as paleoenvironmental proxies and as chemostratigraphic tools for aligning strata. These functions are predicated upon the assumption that isotopic variability in these strata reflects the secular variation in the marine reservoir of dissolved inorganic carbon (DIC). As such, the utility of these isotopic systems largely depends on the assumed spatial homogeneity of marine δ13CDIC. While other isotope systems such as sulfate and strontium have been shown to be extremely well mixed in the modern ocean, a 1-2‰ range in δ13CDIC exists over the entire depth and latitude range of the ocean. This variability in δ13CDIC is largely the result of differences in the local balance of organic carbon fixation and export (increasing δ13CDIC) and/or organic carbon oxidation (decreasing δ13CDIC). The preservation of such isotopic variability in the geologic record has been advocated on several occasions. In particular, previous workers have argued for an ocean-to-interior seaway isotopic gradient in δ13Ccarb, δ13Corg, and ɛNd across Laurentia during the Late Ordovician across the interval that spans the Guttenberg Isotopic Carbon Excursion (GICE). Here we examine two Late Ordovician-aged sections from Missouri, USA that contain the GICE. At first glace, our data showed high degree of stratigraphic and lateral variability. Detailed petrographic and geochemical (e.g., trace element abundance) screening reveals that the majority of the isotopic heterogeneity in our sections is the result of local syndepositional/diagenetic alteration - and not the result of primary gradients in δ13CDIC between the localities examined. Our 'least-altered' δ13Ccarb profile matches closely with previously published records from Iowa; however, sections adjacent both to our locations in Missouri and to the similar δ13Ccarb profile in Iowa are characterized by variable and more depleted δ13Ccarb profiles. This pattern of long-range reproducibility (several hundred km) and short-range (~10s of km) heterogeneity is not consistent with a craton-scale gradient in δ13CDIC. Rather, these observations suggest local depositional conditions and diagenetic alteration are the sources of substantial δ13Ccarb heterogeneity. Detailed petrographic and geochemical analyses are necessary to constrain the mechanisms that give rise to isotopic heterogeneity and, in particular to support interpretations of primary (i.e., water column) gradients in ocean chemistry.

  4. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates. PMID:25393769

  5. Clumped Isotopes Applied to Carbonate Diagenesis and High Temperature Systems

    NASA Astrophysics Data System (ADS)

    John, C. M.; Jourdan, A.; Kluge, T.; Dale, A.; Davis, S.; Vandeginste, V.

    2012-12-01

    The field of clumped isotopes is concerned with the state of ordering of natural substances and aims at constraining the abundance of 18O-13C bonds (i.e. a 'clump') within the lattice of carbonate minerals. Measuring the difference between the abundance of 18O-13C bonds in a sample relative to a stochastic distribution of isotopologues offers a single-phase paleothermometer applicable to all carbonate phases. Most of the applications of clumped isotopes to date have been in the field of paleoclimate, but applications to diagenetic systems are becoming more common. The independence of clumped isotopes from the isotopic composition of the diagenetic fluid reduces ambiguities when interpreting paragenesis, fluid flow history, and thermal history of basins. This presentation will synthesize the results of several projects within our group that collectively aim at understanding and applying clumped isotopes to diagenetic systems. One example of project including diagenesis and clumped isotope is a study of low-temperature diagenetic calcite in a salt dome in Oman (Jebel Madar). Jebel Madar is an ideal case study as large fracture-related crystals can be sampled for both clumped isotopes and fluid inclusions. Results show a good match between single-phase fluid inclusions suggesting temperature of precipitations below 90-50C, and clumped isotope data measured on the same crystals. The low-temperature study reveals the history of gradual cooling and progressive mixing between two sources of diagenetic fluids in the fracture of Jebel Madar, and highlights the potential of clumped isotope for diagenetic studies. However, applications at high-temperatures are currently more challenging because of the lack of empirical calibrations above 50C. A second project is thus focused on a series of high-temperature lab precipitation experiments for calibrations at high temperature, while a third project explores applicability of clumped isotopes to cemented siliciclastic units. The long-term aim of our research efforts is thus calibration at subsurface conditions, and application of clumped isotope to unravel the diagenetic history of both carbonate and siliciclastic sequences. We would like to acknowledge the financial support of QCCSRC (funded jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park) and a BP Case studentship from the EPSRC.

  6. Carbon and nitrogen abundances determined from transition layer lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  7. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  8. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation.

    PubMed

    Hayes, J M; Popp, B N; Takigiku, R; Johnson, M W

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age (Cenomanian-Turonian) from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production (which led to the biosynthesis of the molecular precursors of the geoporphyrins) and in secondary processes (those mediating the transformation of primary organic material into sedimentary total organic carbon). It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record, and that, in these sediments, TOC is enriched in 13C relative to its primary precursor by 0.6 to 2.8%. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variations in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate. This correlation is attributed to effects of environmental changes on the marine foodweb. These may have included increased atmospheric oxygen associated with the Cenomanian-Turonian oceanic anoxic event. The isotopic fractionation associated with fixation of carbon by primary producers is observed to have varied by 1.5% during the interval of deposition. It is suggested that this change is due to a variation in the makeup of the community of primary producers and/or to a decrease in the atmospheric abundance of CO2 during the oceanic anoxic event. PMID:11539781

  9. The abundance of carbon monoxide in Jupiter

    NASA Technical Reports Server (NTRS)

    Beer, R.; Taylor, F. W.

    1978-01-01

    Spectra of Jupiter in the 5-micron window region have been acquired. From these it is deduced that (1) the presence of CO in Jupiter is verified; (2) the column abundance is approximately 0.016 cm amagat (identical to 4.3 by 10 to the 17th power mol/sq cm); and (3) the CO is probably nonuniformly mixed in the atmosphere, being concentrated into the stratosphere.

  10. Carbon abundances of sdO stars from SPY

    NASA Astrophysics Data System (ADS)

    Hirsch, Heiko; Heber, Uli

    2009-06-01

    Strer et al. (2007) recently suggested a classification of sdOs according to supersolar and subsolar helium abundances, with only the helium-enriched stars showing signes of carbon and/or nitrogen in their optical spectra. We aim to derive reliable carbon and nitrogen abundances by fitting synthetic spectra to data obtained with the UVES spectrograph at ESO. Here we present our first results of the analysis of carbon abundances in hot subdwarf O stars. By constructing a grid of model atmospheres consisting of hydrogen, helium and carbon we were able to derive atmospheric parameters of nine carbon rich sdOs. We find log(NC/Ntotal) up to ten times higher than the solar value, while the mean value for the effective temperature and the surface gravity is slightly lower than derived by helium-hydrogen models only. Surprisingly, we also find three fast rotators among our program stars.

  11. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  12. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, ?47) and provides estimates of the carbonate formation temperature independent of the ?18O value of the water from which the carbonate grew; ?47 is measured simultaneously with conventional measurements of carbonate ?13C and ?18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of ?47 values to a sample's thermal history. However, the thermometer is sufficiently precise to answer many important questions in this area, making the investigation of sub-surface processes an excellent target for future investigations.

  13. P-Process nucleosynthesis and the abundances of the minor isotopes of tin

    NASA Astrophysics Data System (ADS)

    de Laeter, J. R.; Rosman, K. J. R.; Loss, R. D.

    1984-04-01

    Tin has 10 isotopes, and the mode of production of these isotopes span the range of nucleosynthetic processes first proposed by Burbidge et al. (1957). A number of isotopic anomalies in the solar system have to be interpreted as primordial inhomogeneities, produced by incomplete mixing of the solar nebula. The quantitative classification of the minor tin isotopes according to the nucleosynthetic processes described by Ward and Beer (1981) is considered to be an essential prerequisite for deciphering possible isotopic anomalies which may provide a unique insight into the stellar conditions responsible for their production. No anomalies were found in an analysis of whole rock samples, whereas isotopic anomalies are now known to exist in inclusions of certain carbonaceous chondrites. A table listing the accurate isotopic abundances for the minor isotopes in terrestrial sample is presented. The data provide the basis for a study of cosmochemical isotopic anomalies in meteoritic materials.

  14. The isotope abundances and the atomic weight of cadmium by a metrological approach

    NASA Astrophysics Data System (ADS)

    Pritzkow, W.; Wunderli, S.; Vogl, J.; Fortunato, G.

    2007-03-01

    Gravimetric synthetic mixtures of seven enriched, purified cadmium isotope materials were used to determine the correction factors for mass fractionation (MC-TIMS) and mass discrimination (MC-ICP-MS). The isotope abundance ratios determined for various natural cadmium materials represents the isotope composition for natural cadmium materials. Correction of the isotope abundance ratios observed yielded isotope abundances of 106Cd 0.012450(8), 108Cd 0.008884(4), 110Cd 0.124846(16), 111Cd 0.127955(14), 112Cd 0.241110(38), 113Cd 0.122254(22), 114Cd 0.287439(60) and 116Cd 0.075183(32). The newly determined atomic weight of natural cadmium based on SI-traceable evaluation of the isotope abundance ratios is 112.41384(18). The cadmium material designated in the paper as Cd-2211 can be used as an isotope reference material with a [delta](114Cd/110Cd)-value of 0[per mille sign]. The results obtained show that the uncertainties for the isotope abundances and the atomic weight given as IUPAC values for cadmium are overestimated.

  15. Abundances of Linear Carbon-Chain Molecules in Supernovae

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Deneault, E.; Meyer, B. S.; The, L.-S.

    2001-01-01

    This paper evaluates the condensation of carbon solids in a gas of pure C and O atoms when these exist within the interior of an expanding young supernova. We calculate the abundances of large carbon molecules, which serve as nucleations for condensation of graphites. Additional information is contained in the original extended abstract.

  16. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    We propose to develop new technologies with support provided by PIDDP that will enable the in situ measurements of abundances and stable isotope ratios in important radiatively and biogenically active gases such as carbon dioxide, carbon monoxide, water, methane, nitrous oxide, and hydrogen sulfide to very high precision (0.1 per mil or better for the isotopic ratios, for example). Such measurements, impossible at present, could provide pivotal new constraints on the global (bio)geochemical budgets of these critical species, and could also be used to examine the dynamics of atmospheric transport on Mars, Titan, and other solar system bodies. We believe the combination of solid state light sources with imaging of the IR laser induced fluorescence (IR-LIF) via newly available detector arrays will make such in situ measurements possible for the first time. Even under ambient terrestrial conditions, the LIF yield from vibrational excitation of species such as water and carbon dioxide should produce emission measures well in excess of ten billion photons/sec from samples volumes of order 1 c.c. These count rates can, in principle, yield detection limits into the sub-ppt range that are required for the in situ isotopic study of atmospheric trace gases. While promising, such technologies are relatively immature, but developing rapidly, and there are a great many uncertainties regarding their applicability to in situ IR-LIF planetary studies. We therefore feel PIDDP support will be critical to developing these new tools, and propose a three-year program to combine microchip near-IR lasers with low background detection axes and state-of-the-art HgCdTe detectors developed for astronomical spectroscopy to investigate the sensitivity of IR-LIF under realistic planetary conditions, to optimize the optical pumping and filtering schemes for important species, and to apply the spectrometer to the non-destructive measurement of stable isotopes in a variety of test samples. These studies form the necessary precursors to the development of compact, lightweight stable isotope/trace gas sensors for future planetary missions.

  17. Variations in Lead Isotopic Abundances in Sprague-Dawley Rat Tissues: Possible Reason of Formation

    PubMed Central

    Liu, Duojian; Wu, Jing; Ouyang, Li; Wang, Jingyu

    2014-01-01

    It has been reported in previous research that the lead isotopic composition of blood, urine and feces samples statistically differed from the given lead sources in Sprague-Dawley (SD) rats. However, the reason for this phenomenon is still unclear. An animal experiment was performed to investigate the lead isotope fractionation in diverse biological samples (i.e., lungs, liver, kidneys, bone) and to explore the possible reasons. SD rats were intratracheally instilled with lead acetate at the concentrations of 0, 0.02, 0.2, and 2 mg/kg body weight. Biological samples were collected for lead isotope analysis using an inductively coupled plasma mass spectrometry (ICP-MS). Significant differences are observed in lead isotope abundances among the diverse biological samples. The lead isotope abundances (206Pb, 207Pb and 208Pb) in diverse biological samples show different degrees and directions of departure from the given lead source. The results suggest that differences in enrichment or depletion capacity for each lead isotope in the various tissues might lead to the variation in lead isotopic abundances in tissues. Moreover, a nonlinear relationship between the blood lead level and the lead isotope abundances in liver and bone is observed. When the whole-blood level is higher than 50 ng/mL, the lead isotopic compositions of biological samples tend to be the same. Thus, the data support the speculation of a fractionation functional threshold. PMID:24587048

  18. Influence of paleoenvironment on the carbon isotope compositions of pedogenic carbonate formed in Paleozoic vertic paleosols

    SciTech Connect

    Mora, C.I.; Driese, S.G.; Seager, P.G. . Dept. of Geological Sciences)

    1992-01-01

    Pedogenic carbonate occurs in numerous vertic-featured paleosols developed in Paleozoic red bed successions of the southern and central Appalachians. The authors note systematic differences in the delta C-13 values of soil carbonate developed during pedogenesis in coastal-marine and distal alluvial plain environments as compared to pedogenesis in proximal alluvial plain environments. These differences have been measured in pedogenic carbonate occurring in late Silurian (Bloomsburg Fm.) vertic-featured paleosols. Evidence for pre-existing marine skeletal material in these paleosols has been observed only in the lowermost portions of the Bloomsburg Fm.; other paleosols were apparently devoid of any precursor carbonate phase. Therefore, the heavier isotopic signatures of pedogenic carbonate within coastal-marine and distal alluvial plain environments may be due to contributions from marine spray, marine or brackish groundwaters, or to less-extensive biological activity. Although carbonate nodules are commonly developed in all environments, rhizoliths appear to be more abundant in paleosols developed in proximal alluvial plain environments. Despite the large differences in carbon isotope compositions attributed to paleoenvironment, these vertic-featured paleosols share common patterns of carbonate cementation and isotopic trends (nodules enriched in C-13 relative to rhizoliths). Thus, despite the different pedogenic paleoenvironments, there were similar physico-chemical controls on soil carbonate precipitation. Better understanding of the paleoclimatic information retained in paleosols will require thorough petrographic, sedimentologic and geochemical studies.

  19. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Burke, F.P.

    1990-07-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. The program is designed to address a substantial, demonstrated need of coprocessing research (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique currently is in routine use for other applications. Progress is discussed. 7 refs., 7 figs., 12 tabs.

  20. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  1. Stable carbon isotope measurements using laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Sauke, T. B.; Becker, J. F.

    1991-01-01

    The 2300 cm(exp -1) spectral region is especially interesting because (12)CO2 and (13)CO2 bands overlap in such a way that their rotational lines have approximately equal absorbance at the anticipated isotopic ratio (approximately 90) of carbon on Earth and Mars. Pairs of rotational lines we have studied are separated by as little as 0.050 cm(exp -1), but are well resolved with a tunable diode laser. Using sophisticated sweep integration and signal averaging techniques, we have measured the stable isotope ratio in carbon dioxide to a precision of better than 1 percent.

  2. STABLE CARBON ISOTOPE ANALYSIS OF NUCLEIC ACIDS TO TRACE SOURCES OF DISSOLVED SUBSTRATES USED BY ESTUARINE BACTERIA

    EPA Science Inventory

    The natural abundance of stable carbon isotopes measured in bacterial nucleic acids that were extracted from estuarine bacterial concentrates were used to trace sources of organic matter for bacteria in.aquatic environments. he stable carbon isotope ratios of P. aeruginosa and nu...

  3. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  4. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  5. Carbon dioxide solubility and carbon isotope fractionation in basaltic melt

    SciTech Connect

    Mattey, D.P. Univ. of Tasmania, Hobart )

    1991-11-01

    Carbon dioxide solubility and isotope fractionation data for a MORB composition at 1,200-1,400C and 5-20 kbar have been obtained using piston-cylinder apparatus and stepped-heating mass spectrometry. Carbon dioxide solubility in basalt melt at 5, 10 and 20 kbar is 0.15-0.17%, 0.45-0.51%, and 1.49%, respectively. Values for {Delta}Co{sub 2}(vap) - CO 2/3{sup {minus}} (basalt melt), obtained from the difference between the isotopic compositions for coexisting vapor and melt, vary from 1.8% to 2.2%. A review of measured and estimated values for carbon isotope fractionation between CO{sub 2} vapor and carbon dissolved in basic melts shows variation from 1.8% to 4.6%. Results of this study and other considerations favor relatively small equilibrium CO{sub 2} vapor melt fractionation factors around 2%.

  6. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  7. Carbon, nitrogen, and oxygen abundances in Sirius and Vega

    SciTech Connect

    Lambert, D.L.; Roby, S.W.; Bell, R.A.

    1982-03-15

    Carbon, nitrogen, and oxygen abundances are obtained from C I, N I, and O I high excitation permitted lines in the spectra of the standard A star Vega and the ''hot'' Am star Sirius. Vega has normal abundances. Relative to Vega, Sirius is C deficient by 0.60 dex, N enhanced by 0.22 dex, and O deficient by 0.27 dex.

  8. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  9. Abundance of atomic carbon /C I/ in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.

    1981-01-01

    The abundance of interstellar neutral atomic carbon is investigated by means of its ground state fine-structure line emission at 492 GHz using the 91.5 cm telescope of NASAs Kuiper Airborne Observatory. Atomic carbon is found to be very abundant in dense interstellar molecular clouds with column densities of about 10 to the 19th per sq cm. Because the observations have considerably greater column densities than current theories of carbon chemistry, it is suggested that the physical conditions of these clouds are not as simple as assumed in the models. Various situations are discussed which would lead to large C I abundances, including the possibility that the chemical lifetimes of the clouds are relatively short.

  10. Measurement of isotopic abundances in collected stratospheric ozone samples

    NASA Technical Reports Server (NTRS)

    Schueler, B.; Morton, J.; Mauersberger, K.

    1990-01-01

    Enrichment of heavy O3 isotopes has been measured in collected stratospheric samples. A balloon-borne cryogenic sampler was used to gather six O3 samples between 26 and 35 km in three flights. Subsequent laboratory mass spectrometer analysis of rare O3 isotopes at both mass 49 and 50 has resulted in more precise measurements than have previously been reported with in situ and ground-based techniques. In one flight, (O-50)3 was enriched by 12-16 percent and (O-49)3 by 9-11 percent, both increasing with altitude. In the remaining two flights, the isotope enrichment was nearly mass-independent at 8-9 percent. The enrichments in O3 at mass 50 are less than the large 40 percent value observed in some stratospheric measurements but similar to (O-49)3 and (O-50)3 fractionations produced in laboratory-generated ozone.

  11. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-03-01

    Research on coprocessing materials/products continued. Major topics reported here are described below. Microautoclave runs are described in which gases and insoluble organic matter produced from five coals and gases produced from three petroleum resids were analyzed to study feedstock/product selective isotopic fractionation. Selective isotopic fractionation was further explored through isotope analysis of the feed New Mexico coal and products from a continuous coal liquefaction run (HRI CC-10 or 227-68). Feeds (Texas lignite/Maya VSB) and products from two HRI continuous coprocessing runs (227-54 and 238-12) were analyzed. The results were corrected for selective isotopic fractionation and carbon sourcing was performed for the product fractions. {sup 1}H-NMR and phenolic -OH determinations are reported for all continuous unit samples obtained under this contract. 13 refs., 17 figs., 40 tabs.

  12. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and separations. The system couples a high-resolution ion mobility (IM) drift cell to the front end of a mass spectrometer (MS) allowing for chemical separation prior to isotope distribution analyses. This will yield isotope ratio measurement capabilities with minimal sample preparation.

  13. Carbon isotopic exchange between dissolved inorganic and organic carbon

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Freeman, K. H.; House, C. H.; Arthur, M. A.

    2009-12-01

    The pools of inorganic and organic carbon are often considered to be separate and distinct. Isotopic exchange between the inorganic and organic carbon pools in natural waters is rarely considered plausible at low temperatures owing to kinetic barriers to exchange. In certain circumstances, however carboxyl carbon of dissolved organic matter (DOM) may be subject to exchange with the dissolved inorganic carbon (DIC) pool. We report results from an isotopic labeling experiment that resulted in rapid methanogen-catalyzed isotopic exchange between DIC and the carboxyl carbon of acetate. This exchange rapidly mixes the isotopic composition of the DIC pool into the dissolved organic carbon (DOC) acetate pool. This exchange is likely associated with the reversible nature of the carbon monoxide dehydrogenase enzyme. In nature, many decarboxylase enzymes are also reversible and some can be shown to facilitate similar exchange reactions. Those decarboxylase enzymes that are important in lignin decomposition and other organic carbon (OC) transformations may help to mask the isotopic composition of the precursor DOC with as much as 15% contribution from DIC. Though this dilution is unlikely to matter in soils where DOC and DIC are similar in composition, this exchange may be extremely important in systems where the stable or radioisotope composition of DOC and DIC differ significantly. As an example of the importance of this effect, we demonstrate that the stable and radiocarbon isotopic composition of fluvial DOC could be altered by mixing with marine DIC to produce a DOC composition similar to those observed in the deep marine DOC pool. We hypothesize that this exchange resolves the conundrum of apparently old (>5 kyr) marine-derived DOC. If most of the carboxyl carbon of pre-aged, terrestrial-derived DOC (15% of total carbon) is subject to exchange with marine DIC, the resulting carbon isotopic composition of deep DOC will be similar to that observed in deep marine studies. DOC observed in the deep ocean might therefore have a terrestrial DOC carbon skeleton with a carboxyl-rich component that is marine in origin.

  14. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1989-06-01

    The program is designed to address a substantial, demonstrated need of the coprocessing community (both exploratory and development) for a technique to quantitatively distinguish the contributions of the individual coprocessing feedstocks to the various products. The carbon isotope technique is currently in routine use for other applications. Results achieved this quarter include: Feed and product fractions from a Kentucky 9 coal/Kentucky tar sand bitumen coprocessing bench unit run at the Kentucky Center for Applied Energy Research (CAER) were analyzed for carbon isotope ratios. Corrections were made to the coal carbon recoveries and selectivities from the products of HRI Run 227-53. Feeds (Westerholt coal/Cold Lake VSB) and products from two periods of HRI coprocessing Run 238-1 were analyzed. Three petroleum samples and three coal samples were pyrolyzed at 800{degree}F for 30 min to determine the effect of pyrolysis on the isotopic homogeneity of each petroleum and coal sample. Products from each pyrolysis test were separated into five fractions; an additional set of coprocessing samples and a set of two-stage coal liquefaction samples were obtained from HRI for future work; work performed by the Pennsylvania State University show that microscopy is a promising method for distinguishing coal and petroleum products in residual coprocessing materials; and coal and petroleums that have large differences in carbon isotope ratios were identified for Auburn University. 7 refs., 2 figs., 12 tabs.

  15. The Late Miocene Carbon Isotope Shift and Marine Biological Productivity.

    NASA Astrophysics Data System (ADS)

    Diester-Haass, L.; Billups, K.; Emeis, K. C.

    2004-12-01

    The late Miocene global carbon isotope shift of approximately 1 per mil is not well understood. Is it linked to ocean-related processes such as the AƒAøAøâ_sA¬A.â_oBiologic BloomAƒAøAøâ_sA¬ \\(Farrell et al., 1995\\), or to changes in type \\(C3/C4 plants\\) or cover of terrestrial vegetation? Here we examine the evolution of marine biological productivity during the isotope shift at ODP Site 846 \\(Pacific equatorial upwelling, where the AƒAøAøâ_sA¬A.â_oBiologic BloomAƒAøAøâ_sA¬ has been first described, Farrell al, 1995\\) and at Indian Ocean Site 721 \\(monsoon-driven upwelling\\), and compare their productivity history with non upwelling locations in the Atlantic Ocean. The onset of the carbon isotope shift is accompanied at all locations by an increase in paleoproductivity derived from benthic foraminiferal accumulation rates \\(expressed as gC/cm2 * ky; Huerguera, 2000\\) and increased abundance of Uvigerina spp.. At the equatorial upwelling sites the increase is comparable to half present-day values to present-day values; in the Atlantic Ocean paleoproductivity increases from present-day up to 3 times present-day values. But the productivity maxima are not concurrent. The carbon isotope shift is accompanied by severe carbonate dissolution and reduced ventilation of bottom waters, as reflected in the occurrence of pyrite and good preservation of cartilageous fish debris. Carbonate preservation is good since about 6 Ma despite high productivity. We discuss changing deep water circulation patterns, increased weathering and continental nutrient delivery, as well as erosion of terrestrial vegetation as possible factors to explain our findings.

  16. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    USGS Publications Warehouse

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  17. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  18. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol?shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  19. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with contemporary in situ measurements by the Curiosity rover to investigate the degree of agreement between in situ and remote methods and potentially to calibrate the spectroscopic constants required to accurately evaluate isotope ratios all over Mars.

  20. DETERMINING INTERSTELLAR CARBON ABUNDANCES FROM STRONG-LINE TRANSITIONS

    SciTech Connect

    Sofia, U. J.; Parvathi, V. S.; Babu, B. R. S.; Murthy, J.

    2011-01-15

    Carbon is arguably the most important element in the interstellar medium, yet its abundance in gas and dust is poorly understood due to a paucity of data. We explore the possibility of substantially increasing our knowledge of interstellar carbon by applying and assessing a new method for determining the column density of the dominant ion of interstellar carbon in diffuse neutral lines of sight. The method relies on profile fitting of the strong transition of C II at 1334 A in spectra continuum normalized with stellar models. We apply our method to six sight lines for which the carbon abundance has previously been determined with a weak intersystem absorption transition. Our strong-line method consistently shows a significantly lower gas-phase C abundance than the measurements from the weak lines. This result implies that more carbon could reside in dust than was previously thought. This has implications for dust models, which often suffer from a lack of sufficient carbon to plausibly explain extinction. There is no immediately clear explanation for the difference found between the strong- and weak-line C II determinations, but there are indications that the results from the method presented here have advantages over the weak-line column densities. If this is the case, then the reported oscillator strength for the C II transition at 2325 A may be too small. Our findings further suggest that damping wings modeled with a single absorption component may not produce accurate abundances. This problem could affect a large number of H I abundances determined through absorption line analysis that are reported in the literature.

  1. CARBON ISOTOPE AND ISOTOPOMER FRACTIONATION IN COLD DENSE CLOUD CORES

    SciTech Connect

    Furuya, Kenji; Aikawa, Yuri; Sakai, Nami; Yamamoto, Satoshi

    2011-04-10

    We construct a gas-grain chemical network model which includes carbon isotopes ({sup 12}C and {sup 13}C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios ({sup 12}CX/{sup 13}CX), and the isotopomer ratios ({sup 12}C{sup 13}CX/{sup 13}C{sup 12}CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have CX/{sup 13}CX ratios greater than the elemental abundance ratio of [{sup 12}C/{sup 13}C]. On the other hand, molecules formed from CO molecules have CX/{sup 13}CX ratios smaller than the [{sup 12}C/{sup 13}C] ratio. We reproduce the observed C{sup 13}CH/{sup 13}CCH ratio in TMC-1, if the isotopomer-exchange reaction, {sup 13}CCH + H {r_reversible} C{sup 13}CH + H + 8.1 K, proceeds with the forward rate coefficient k{sub f} > 10{sup -11} cm{sup 3} s{sup -1}. However, the C{sup 13}CS/{sup 13}CCS ratio is lower than that observed in TMC-1. We then assume the isotopomer-exchange reaction catalyzed by the H atom, {sup 13}CCS + H {r_reversible} C{sup 13}CS + H + 17.4 K. In the model with this reaction, we reproduce the observed C{sup 13}CS/{sup 13}CCS, CCS/C{sup 13}CS, and CCS/{sup 13}CCS ratios simultaneously.

  2. Carbon Isotope Record of Ancient Oceans

    NASA Astrophysics Data System (ADS)

    Veizer, J.; Frauenstein, F.

    2008-12-01

    Commencing with the 80's it became generally accepted that ?13CDIC of the oceans is characterised not only be spatial but also temporal variability. This eventually led to the concept of carbon isotope stratigraphy. The Phanerozoic ? 13C trend, originally defined by whole rock data on carbonates, was subsequently confirmed by measurements based on marine low-Mg calcitic shells (Veizer et al., 1999, Chemical Geology, 161, 59-88). Yet even the shell-based data define only a band of about 3 - 4 width that reflects both the physical properties of the environment as well as the so-called vital effects of the shell secretion processes. This alone, amplified by uncertainties of dating and correlations, should restrict the utility of carbon isotope stratigraphy as a global (as opposed to local or regional) correlation tool to spikes in excess of the band itself. In the Precambrian, the Neo- and Paleoproterozoic time spans contain carbonate rocks with a large spread, but mostly highly positive, ? 13C values, setting them apart from the rest of the record with "normal" marine signature of ~ 0 . These were interpreted as reflecting the global "Snowball Earth" and/or the "Great Oxidation Event" scenarios. Yet, the Paleoproterozoic carbonates of South Africa (Pretoria-Postmasburg Group) contain 13C-enriched isotope values only in near-shore basins, changing regionally from + 10 to - 2.5 2.5 (Frauenstein, 2005, Ph.D. Thesis, Ruhr Universitaet, Bochum). These trends are therefore local/regional rather than global phenomena. Carbonates from the Duitschland formation trend to lighter ? 18O values, from - 3 to - 20 , towards the Bushveld complex. Concurrently, their ? 13C values decrease from +10 to +5 , or increase from - 2.5 to + 5 , also in the direction of the Bushveld complex. Modelling suggests that the converging isotope trends could have resulted from alteration in a rock buffered system at a temperature of about 80C.

  3. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Lancet, M.S.; Winschel, R.A.; Burke, F.P.

    1991-02-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, when necessary, corrections are applied to account for it. Precision, accuracy and range of applicability are being defined. The value of accessory analytical techniques also is being assessed. Previously reported data on samples from HRI bench-scale coprocessing Runs 227-53 (Texas lignite/Maya ASB and Texas lignite/Maya VSB) and 238-1 (Westerholt coal/Cold Lake VSB) were corrected for selective isotopic fractionation. Carbon sourcing was performed on samples from HRI bench-scale coprocessing Run 227-60 (Texas lignite/Maya VSB) and samples from UOP bench-scale coprocessing Run 26 (Illinois 6 coal/Lloydminster vacuum resid); the latter data were corrected for isotopic fractionation, though the former could not be corrected. A paper presented at the 1990 DOE Direct Liquefaction Contractor's Review Meeting is appended. 15 refs., 21 figs., 22 tabs.

  4. s-process studies - Xenon and krypton isotopic abundances

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Ward, R. A.

    1978-01-01

    We propose an analysis of the s-process contributions to the isotopes of xenon and krypton. The object is to aid studies of the possibility that meteorites may contain gas that was carried in presolar grains that were grown in stellar ejecta and that were not degassed prior to incorporation into parent bodies. That model suggests routine interstellar fractionation of s-isotopes from r-isotopes owing to differential incorporation into dust. We show that a deficiency of s-process nuclei cannot yield details of Xe-X, but the gross similarities are strong enough to lead one to think that such a deficiency may play a role in a more complicated explanation. We predict the existence of an s-rich complement somewhere if fractional separation of this type has played a role in Xe-X. We show that the analogous decomposition of krypton is more uncertain, and we call for measurements of neutron-capture cross sections to alleviate these uncertainties.

  5. Abundance of carbon and magnesium in the Orion nebula

    SciTech Connect

    Perinotto, M.; Patriarchi, P.

    1980-01-01

    The Orion nebula has been observed in two positions with IUE (International Ultraviolet Explorer) in the low-resolution mode (approx.7 A) and in the spectral range 1150--3200 A. Emission lines of C II), C III), (O II), and He I have been measured and used to determine what is probably the first reliable abundance of carbon in H II regions. The logarithmic total abundance of carbon is found to be 8.4 close to the solar value. In contrast with the situation in the planetary nebula of similar excitation, IC 418, where the resonance Mg II lambda2800 line is observed to be relatively strong, in the Orion nebula the lambda2800 line is not detectable. an upper limit for the magnesium abundance of the order of 10 times smaller than in the Sun is suggested.

  6. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  7. Carbon isotopic composition of individual Precambrian microfossils.

    PubMed

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment. PMID:11543502

  8. A Modern Analogue for Proterozoic Inverse Carbon Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Diefendorf, A. F.; Freeman, K. H.; Pearson, A.

    2008-12-01

    The carbon isotope distribution preserved in sedimentary lipids changes near the Neoproterozoic-Cambrian boundary. In older samples, n-alkyl lipids contain more 13C than both isoprenoid lipids and kerogen [1]. In younger samples, the opposite prevails. Although extreme heterotrophy has been invoked as a mechanism to explain the enrichment in 13C [2], here we suggest another explanation. The switch may reflect a fundamental transition from an oligotrophic ocean dominated by prokaryotic biomass, to an ocean in which carbon fixation is more intensive and burial is dominated by eukaryotic biomass. An analogue for Proterozoic ordering is found in the modern, oligotrophic Pacific Ocean, where n-alkyl lipids of picoplankton (0.2-0.5 ?m particulate matter) contain excess 13C relative to the same lipids found in larger size classes (> 0.5 ?m). Picoplanktonic lipids are heavier isotopically (-18 ) than both the sterols of eukaryotes (-23 to -26 ) and the total organic matter (-20 ; TOM). The 0.2-0.5 ?m size class also has a distinct chain-length abundance profile. Although large particles must be the vehicle for total carbon export, paradoxically the lipid component of export production appears to be dominated by the 0.2-0.5 ?m source. The picoplanktonic chain lengths and isotopic composition dominate lipids of TOM at 670 meters. When the ratio of prokaryotic to eukaryotic production is high, as in the modern central Pacific Ocean, it appears that exported material has an inverse carbon isotope signature similar to that preserved in Precambrian samples. [1] Logan, G. A. et al., Nature 376:53-56 (1995). [2] Rothman, D. H. et al., PNAS 100:8124-8129 (2003).

  9. Empirical Solar Abundance Scaling Laws of Supernova {gamma} Process Isotopes

    SciTech Connect

    Hayakawa, Takehito; Iwamoto, Nobuyuki; Kajino, Toshitaka; Shizum, Toshiyuki; Umeda, Hideyuki; Nomoto, Ken'Ichi

    2008-11-11

    Analyzing the solar system abundances, we have found two empirical abundance scaling laws concerning the p- and s-nuclei with the same atomic number. They are evidence that the 27 p-nuclei are synthesized by the supernova {gamma}-process. The scalings lead to a novel concept of 'universality of {gamma}-process' that the s/p and p/p ratios of nuclei produced by individual {gamma}-processes are almost constant, respectively. We have calculated the ratios of materials produced by the {gamma}-process based on core-collapse supernova explosion models under various astrophysical conditions and found that the scalings hold for individual {gamma}-processes independent of the conditions assumed. The results further suggest an extended universality that the s/p ratios in the {gamma}-process layers are not only constant but also centered on a specific value of 3. With this specific value and the scaling of the s/p ratios, we estimate that the ratios of the s-process abundance contributions from the AGB stars to the massive stars are almost 6.7 for the s-nuclei of A>90 in the solar system.

  10. Carbon chain abundance in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Bauschlicher, C. W. Jr; Langhoff, S. R.

    1999-01-01

    Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).

  11. Precision performance of a Cavity Ring-down isotope spectrometer for carbon and oxygen isotopes of carbonate materials

    NASA Astrophysics Data System (ADS)

    Cunningham, K. L.; Hoffnagle, J.; He, Y.; Fleck, D.; Saad, N.; Dennis, K.

    2013-12-01

    We have developed a novel laser spectrometer intended specifically for the measurement of δ18O and δ13C in solid carbonate material. Carbonate carbon and oxygen isotopes provide key contributions into our understanding of climate, biogeochemical processes and the carbon cycle. For this reason, the isotopic measurements of carbonates are one of the most abundant measures made by Earth scientists today. Conventional measurement techniques using isotope ratio mass spectrometry (IRMS), although optimized and prevalent, require dedicated personnel and can be expensive to operate. Here we present a new laser-based technique that will simplify measurements of δ18Ocarb and δ13Ccarb without compromising precision. To date, there have been no laser-based instruments with a demonstrated ability to meet the requirements of the carbonates community -- typically better than 0.1 ‰ for δ13C and δ18O for CO2 evolved from 1 mg of pure CaCO3. We will present data showing that the new Picarro G2171-i spectrometer meets these requirements. The spectrometer uses the laser-based spectroscopy technique of Cavity Ring-Down Spectroscopy (CRDS), a technology that has been successfully applied to many other isotopic ratio measurements including δ13C of CO2, δ13C of CH4, and δ18O and δD of H2O. The spectrometer has been optimized to analyze the absorption spectra of concentrated CO2, specifically the isotopologues 12C16O16O, 13C16O16O, 12C16O18O, and 12C18O16O. We employ a new sample delivery technique that enables a longer integration time period, and hence more precise data. Long-term results for a run of 540 pulses of tank CO2 (90 hours) records a 1σ standard deviation precision for δ18O and δ13C of < 0.08 ‰ and < 0.055 ‰, respectively. We coupled the CRDS spectrometer to an optimized sample acidification system and analyzed standards to assess the accuracy of the CRDS. We will present an inter-comparison between CRDS and IRMS for carbonates using standards commonly used as isotopic reference material for the calibration of IRMS instruments. The new CRDS spectrometer will provide researchers with a simplified option to accelerate the pace and breadth of carbonates-based research.

  12. Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2006-01-01

    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.

  13. Current and relic carbon using natural abundance carbon-13

    SciTech Connect

    layse,MF; Clapp,CE; Allmaras,RR; Linden,D.R; Molina, JAE.; Copeland,SM; Dowdy,RH

    2002-05-01

    The role of agricultural practices on soil carbon (C) dynamics is critical to improved soil management. The main objective was to examine the C interactions resulting from crop changes under different tillage and residue treatments.

  14. BOREAS TE-5 Leaf Carbon Isotope Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This documentation describes leaf carbon isotope data that were collected in 1993 and 1994 at the NSA and SSA OJP sites, the SSA OBS site, and the NSA UBS site. In addition, leaf carbon isotope data were collected in 1994 only at the NSA and SSA OA sites. These data was collected to provide seasonal integrated physiological information for 10 to 15 common species at these 6 BOREAS sites. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. Is my C isotope excursion global, local, or both? Insights from the Mg and Ca isotopic composition of primary, diagenetic, and authigenic carbonates

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Blättler, C. L.; Husson, J. M.

    2014-12-01

    The C isotopic composition of ancient limestones and dolomites is a widely used proxy for the global geochemical cycles of carbon and oxygen in the ocean-atmosphere system and a critical tool for chemostratigraphy in Precambrian rocks. Although relatively robust to diagenesis, the C isotopic composition of bulk carbonates can be reset when conditions favor high water-to-rock ratios or fluids with high C concentrations and distinct isotopic compositions. Authigenic carbonates and different pools of primary carbonate (e.g. calcite vs. aragonite) may also bias the C isotopic composition of bulk carbonates if they are both abundant and isotopically distinct. New approaches to quantifying contributions from diagenesis, authigenesis, and mixing of primary carbonates to the C isotopic composition of bulk sedimentary carbonates are needed. Here we present preliminary Mg and Ca isotope data sets of primary, diagenetic, and authigenic carbonates, both modern and ancient. We show that recrystallization, dolomitization, and authigenesis produce Mg and Ca isotope fingerprints that may be used to identify and characterize these processes in ancient carbonate sediments.

  16. Isotope abundances of solar coronal material derived from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.

    1989-01-01

    Coronal isotopic abundances for the elements He, C, N, O, Ne, and Mg are derived from previously published measurements of the isotopic composition of solar energetic particles by first measuring, and then correcting for, the charge-to-mass-dependent fractionation due to solar flare acceleration and propagation processes. The resulting coronal composition generally agrees with that of other samples of solar system material, but the previously noted difference between the solar flare and solar wind Ne-22/Ne-20 ratios remains unresolved.

  17. On krypton isotopic abundances in the sun and in the solar wind

    NASA Technical Reports Server (NTRS)

    Marti, K.

    1980-01-01

    The Kr isotopic systematics in the meteorite Pesyanoe which is known to contain solar-type gases, are reported. Discrepancies in the isotopic data of fractions released at stepwise increasing temperatures cannot be reconciled with spallation Kr components, although spallation effects are significant. Fractionation mechanisms on the parent body and in the solar wind source region are considered and the implications for solar abundances discussed.

  18. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  19. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within 0.2? of precision and 0.3 of error using 0.05 or 0.2mL of aqueous solutions with acetone concentrations of 0.3-121mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3days including a fasting period of 24h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease. Graphical abstract The natural carbon isotopic composition of acetone in urine can be determined using HS-SPME-GCC-IRMS and can provide information on changes in the availability of glucose in the liver. PMID:26718914

  20. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology.

    PubMed

    Gannes, L Z; Martínez del Rio, C; Koch, P

    1998-03-01

    Chemical, biological, and physical processes lead to distinctive "isotopic signatures" in biological materials that allow tracing of the origins of organic substances. Isotopic variation has been extensively used by plant physiological ecologists and by paleontologists, and recently ecologists have adopted the use of stable isotopes to measure ecosystem patterns and processes. To date, animal physiological ecologists have made minimal use of naturally occurring stable isotopes as tracers. Here we provide a review of the current and potential uses of naturally occurring stable isotopes in animal physiological ecology. We outline the physical and biological processes that lead to variation in isotopic abundance in plants and animals. We summarize current uses in animal physiological ecology (diet reconstruction and animal movement patterns), and suggest areas of research where the use of stable isotopes can be fruitful (protein balance and turnover and the allocation of dietary nutrients). We argue that animal physiological ecologists can benefit from including the measurement of naturally occurring stable isotopes in their battery of techniques. We also argue that animal physiologists can make an important contribution to the emerging field of stable isotopes in biology by testing experimentally the plethora of assumptions upon which the techniques rely. PMID:9683412

  1. Equations for Lipid Normalization of Carbon Stable Isotope Ratios in Aquatic Bird Eggs

    PubMed Central

    Elliott, Kyle H.; Davis, Mikaela; Elliott, John E.

    2014-01-01

    Stable isotope ratios are biogeochemical tracers that can be used to determine the source of nutrients and contaminants in avian eggs. However, the interpretation of stable carbon ratios in lipid-rich eggs is complicated because 13C is depleted in lipids. Variation in 13C abundance can therefore be obscured by variation in percent lipids. Past attempts to establish an algebraic equation to correct carbon isotope ratios for lipid content in eggs have been unsuccessful, possibly because they relied partly on data from coastal or migratory species that may obtain egg lipids from different habitats than egg protein. We measured carbon, nitrogen and sulphur stable isotope ratios in 175 eggs from eight species of aquatic birds. Carbon, nitrogen and sulphur isotopes were enriched in lipid-extracted egg samples compared with non extracted egg samples. A logarithmic equation using the C∶N ratio and carbon isotope ratio from the non extracted egg tissue calculated 90% of the lipid-extracted carbon isotope ratios within ±0.5‰. Calculating separate equations for eggs laid by species in different habitats (pelagic, offshore and terrestrial-influenced) improved the fit. A logarithmic equation, rather than a linear equation as often used for muscle, was necessary to accurately correct for lipid content because the relatively high lipid content of eggs compared with muscle meant that a linear relationship did not accurately approximate the relationship between percent lipids and the C∶N ratio. Because lipid extraction alters sulphur and nitrogen isotope ratios (and cannot be corrected algebraically), we suggest that isotopic measurement on bulk tissue followed by algebraic lipid normalization of carbon stable isotope ratio is often a good solution for homogenated eggs, at least when it is not possible to complete separate chemical analyses for each isotope. PMID:24465384

  2. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

  3. Further carbon isotope measurements of LEW 88516

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1993-03-01

    Douglas et al. have previously analyzed the carbon content and isotopic composition of a crushed sample (sub-sample 13) of the shergottite, LEW 88516. The powder, which was from a relatively large portion of the meteorite in order to obtain a representative sample, was distributed amongst the scientific community. However, it is probable that the preparation procedure was not optimized for the purposes of carbon measurements. Indeed, it was found that LEW 88516,13 contained over 1200 ppm carbon, a concentration which is greater than that present in any other SNC meteorite. That a close relative, ALH A77005, contains only 141 ppm carbon seems to implicate the preparation procedure as being responsible for the apparently high carbon content of LEW 88516. However, it may also be the nature of the fine powder which has resulted in contamination. The observation of high carbon content in LEW 88516,13 highlights the extreme difficulty of trying to obtain representative samples of whole meteorites for this kind of investigation. Presented herein are some further measurements of LEW 88516 which should serve to clarify some of the issues raised by the previous investigation.

  4. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  5. Radiogenic Carbon Isotopes in Authigenic Carbonate from Lake Neusiedl, Austria

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Steier, Peter; Gier, Susanne; Draganits, Erich; Kogelbauer, Ilse

    2015-04-01

    Formation of authigenic carbonate in Lake Neusiedl, Austia, has been reported since the 1960ies. The reaction pathways resulting in carbonate precipitation (protodolomite and high magnesium calcite) have yet to be identified. Lake Neusiedl is a shallow lake without significant sediment accumulation but constant reworking of sediment due to its shallow depth (1.8m) and influence by wind. The sediments are water-saturated silts and clays that overly Neogene sediments. The age of Lake Neusiedl is unknown due to its low sedimentation rate and constant remixing of sediment. Dating of authigenic minerals is an alternative method to determine the minimum age of water present - even episodically - at the location. We characterize the sediments mineralogy in different size fractions by X-Ray Diffractometry (XRD), Simultaneous Themo Analysis (STA) and Fourier Transform Infra Red Spectroscopy, stable carbon and oxygen isotopes as well as radiogenic carbon. To describe the authigenic carbonates and find the fractions with highest authigenic carbonate minerals we investigate the size fractions <4 µm, <3 µm, <2 µm, <1 µm, 0.5 µm and <0.2 µm. The "coarser" fractions (4 µm to 2 µm) contain detrital minerals such as chlorite, muscovite, quartz, feldspar, stoichiometric calcite and stoichiometric dolomite as well as authigenic high Mg calcite. Radiogenic carbon ages increase with increasing grain size from 850 years before present to 2300 years before present and indicate a very slow growth rate or episodic growth of authigenic carbonate phases.

  6. Isotope labeling pattern study of central carbon metabolites using GC/MS.

    PubMed

    Jung, Joon-Young; Oh, Min-Kyu

    2015-01-01

    Determination of fluxes by (13)C tracer experiments depends on monitoring the (13)C labeling pattern of metabolites during isotope experiments. In metabolome-based (13)C metabolic flux analysis, liquid chromatography combined with mass spectrometry or tandem mass spectrometry (LC/MS or LC/MS/MS, respectively) has been mainly used as an analytical platform for isotope pattern studies of central carbon metabolites. However, gas chromatography with mass spectrometry (GC/MS) has several advantages over LC/MS, such as high sensitivity, low cost, ease of operation, and availability of mass spectra databases for comparison. In this study, analysis of isotope pattern for central carbon metabolites using GC/MS was demonstrated. First, a proper set of mass ions for central carbon metabolites was selected based on carbon backbone information and structural isomers of mass fragment ions. A total of 34 mass fragment ions was selected and used for the quantification of 25 central carbon metabolites. Then, to quantify isotope fractions, a natural mass isotopomer library for selected mass fragment ions was constructed and subtracted from isotopomer mass spectra data. The results revealed a surprisingly high abundance of partially labeled (13)C intermediates, such as 56.4% of fructose 6-phosphate and 47.6% of dihydroxyacetone phosphate at isotopic steady state, which were generated in the pentose phosphate pathway. Finally, dynamic changes of isotope fragments of central metabolites were monitored with a U-(13)C glucose stimulus response experiment in Kluyveromyces marxianus. With a comprehensive study of isotope patterns of central carbon metabolites using GC/MS, 25 central carbon metabolites and their isotopic fractions were successfully quantified. Dynamic and precise acquisition of isotope pattern can then be used in combination with proper kinetic models to calculate metabolic fluxes. PMID:25463204

  7. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Lollar, Barbara Sherwood; Lacrampe-Couloume, Georges; Seewald, Jeffrey S.

    2010-05-01

    A series of laboratory experiments were performed to investigate the relative contributions of CO and other single-carbon compounds to abiotic synthesis of organic compounds in hydrothermal environments. Experiments were conducted by heating aqueous solutions of CO, CO 2, HCOOH, or CH 4 at 250 °C under reducing conditions, and observing production of CH 4 and other hydrocarbons. Native Fe was included in the experiments as a source of H 2 through reaction with water and as a potential catalyst. Experiments with CO or HCOOH as the carbon source resulted in rapid generation of CH 4 and other hydrocarbons that closely resembled typical products of Fischer-Tropsch organic synthesis. In contrast, experiments using CO 2 or CH 4 as the carbon source yielded no detectable hydrocarbon products. Carbon isotope measurements of reaction products from the CO experiments indicate that the CH 4 and other hydrocarbons were substantially depleted in 13C, with CH 4 δ 13C values 30 to 34‰ lighter than the initial CO. Most of the fractionation apparently occurs during attachment of CO to the catalyst surface and subsequent reduction to surface-bound methylene. The initial step in polymerization of these methylene units to form hydrocarbons involves a small, positive fractionation, so that ethane and ethene are slightly enriched in 13C relative to CH 4. However, subsequent addition of carbon molecules to the growing hydrocarbon chain proceeds with no net observable fractionation, so that the isotopic compositions of the C 3+ light hydrocarbons are controlled by isotopic mass balance. This result is consistent with a previously proposed model for carbon isotopic patterns of light hydrocarbons in natural samples. The abundance and isotopic composition of light hydrocarbons produced with HCOOH as the carbon source were similar to those generated with CO, but the isotopic compositions of non-volatile hydrocarbons diverged, suggesting that the higher hydrocarbons were formed by different mechanisms in the CO and HCOOH experiments. The experiments indicate that CO, and possibly HCOOH, may be critical intermediates in the abiotic formation of organic compounds in geologic environments, and suggest that the low levels of these compounds present in most hydrothermal systems could represent a bottleneck restricting the extent of abiotic organic synthesis in some circumstances.

  8. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  9. The origin of fluorine: abundances in AGB carbon stars revisited

    NASA Astrophysics Data System (ADS)

    Abia, C.; Cunha, K.; Cristallo, S.; de Laverny, P.

    2015-09-01

    Context. Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 ?m region have recently become available, facilitating a revision of the F content in asymptotic giant branch (AGB) stars. Aims: AGB carbon stars are the only observationally confirmed sources of fluorine. Currently, there is no consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Methods: Using new spectroscopic tools and local thermodynamical equilibrium spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J, and SC, spanning a wide range of metallicities. Results: On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling the radiative/convective interface at the base of the convective envelope in a different way. Conclusions: New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.

  10. A new solar carbon abundance based on non-LTE CN molecular spectra

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Linsky, J. L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggest a revised carbon abundance for the sun. We recommend a value of log carbon abundance = 8.35 plus or minus 0.15 which is significantly lower than the presently accepted value of log carbon abundance = 8.55. This revision may have important consequences in astrophysics.

  11. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates

    NASA Technical Reports Server (NTRS)

    Kaufman, Alan J.; Hayes, J. M.; Klein, C.

    1990-01-01

    Results are presented on parallel analyses of carbonate and chert microbands in segments from the early Proterozoic Dales Gorge Member of the Brockman Iron Formation (western Australia), including data on isotopic, chemical, and mineralogic variations in microbanded carbonates, cherts, and coexisting minerals in four core segments from Paraburdoo and one from Wittenoom. It is shown that patterns of variation observed in isotopic abundance and mineral composition can be consistently explained in terms of diagenetic replacement of fine-grained primary precipitates by secondary ones, rather than by mineral-dependent fractionations, metamorphism, or the influence of large volumes of water in an open system.

  12. 39Ar detection at the 10(-16) isotopic abundance level with atom trap trace analysis.

    PubMed

    Jiang, W; Williams, W; Bailey, K; Davis, A M; Hu, S-M; Lu, Z-T; O'Connor, T P; Purtschert, R; Sturchio, N C; Sun, Y R; Mueller, P

    2011-03-11

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric 39Ar (half-life=269??yr), a cosmogenic isotope with an isotopic abundance of 810(-16). In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors. PMID:21469788

  13. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  14. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  15. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  16. Biological control of calcium isotopic abundances in the global calcium cycle

    SciTech Connect

    Skulan, J.; DePaolo, D.J.; Owens, T.L.

    1997-06-01

    Measurements of {sup 44}Ca/{sup 40}Ca, expressed as {delta}{sup 44}Ca, were made on igneous rocks and on shell and bone material from modern organisms to investigate the magnitude and origins of calcium isotopic fractionation in nature. The results document a span of 4{per_thousand} in {delta}{sup 44}Ca, measured with the double spike technique to a precision of {+-}0.15{per_thousand}. Volcanic rocks, including basalt and rhyolite, show little variability and cluster near {delta}{sup 44}Ca = 0 {+-}0.2. Systematic analysis of biological samples indicates that biological processing of calcium discriminates against heavy isotopes, and that biological fractionation is the primary generator of calcium isotopic fractionation in nature. Preliminary data suggest that calcium becomes isotopically lighter as it moves through food chains. Calcium carbonate shells of marine microorganisms and deep-sea carbonate ooze have {delta}{sup 44}Ca about 1.0{per_thousand}, lower than seawater; this fractionation causes seawater to be enriched in heavy calcium ({delta}{sup 44}Ca = +0.9) relative to igneous rocks. Marine organisms consequently are isotopically heavier than their terrestrial counterparts at similar trophic level. The calcium isotopic composition of living and fossil organisms may record information on diet and environment. 22 refs., 3 figs., 2 tabs.

  17. Preservation of carbonate clumped isotopes in sedimentary paleoclimate archives

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Shenton, B.; Perez-Huerta, A.

    2014-12-01

    Carbonate clumped isotope thermometry is increasingly used to reconstruct paleotemperatures of ancient terrestrial environments. One promising application is elucidating paleoelevation from carbonate archives such as paleosols, lacustrine marls, and fossil freshwater shells. Unlike conventional stable isotope approaches (e.g., mineral ?18O or ?D), clumped isotope thermometry is independent of the isotopic composition of the precipitating waters and can therefore be used to reconstruct elevation by both the temperature-altitude relationship and the rainfall ?18O-altitude relationship. However, interpretation of clumped isotope data is not without its own complications. Like conventional stable isotopes, clumped isotope paleotemperatures can be effectively reset to warmer values by dissolution/reprecipitation-type diagenesis during sedimentary burial. It is also known that carbonate clumped isotope bonds (i.e., 13C-18O) are susceptible to 'reordering' in the solid mineral lattice at warmer burial temperatures, with laboratory studies of natural carbonates indicating activation of this phenomenon at temperatures as low as 100 C over geologic timescales. A challenge in applying carbonate clumped isotope thermometry to natural samples is now evaluating terrestrial archives with respect to both types of alteration: 'open-system' alteration and 'closed-system' bond reordering. In this talk we will review our experimental efforts to constrain the kinetics of clumped isotope reordering, with relevance to low-temperature carbonates like fossil shells and early diagenetic minerals, and present new laboratory data that further inform our theoretical framework for the mechanism(s) of 13C-18O bond reordering. Together with traditional analytical and petrographic screening for recrystallization, empirical and laboratory studies of carbonate clumped isotope reordering represent the next steps in evaluating isotopic records of paleoclimate, paleobiology, and paleoelevation that are emerging from clumped isotope analyses.

  18. Carbon allocation in plants and ecosystems - insights from stable isotope studies

    NASA Astrophysics Data System (ADS)

    Gessler, Arthur

    2014-05-01

    Trees are large global stores of carbon (C) that will be impacted by increased carbon dioxide levels and climate change. However, at present we cannot properly predict the carbon balance of forests in future as we lack knowledge on how plant physiological processes, the transfer of carbon within the plant, carbon storage, and remobilization in the plant tissues as well as the release of carbon from the roots to the soil interact with environmental drivers and ecosystem-scale processes. This paper will summarise how stable isotope techniques can give new insights in the fate of newly assimilated C in plants and ecosystems on time scales from hours to seasons and it will include studies either characterizing temporal and spatial variation in the natural abundance of carbon and oxygen isotopes or applying isotopically enriched tracers. It comprises the assessment of the mechanisms of C partitioning among specific metabolic pathways, between plant organs and into various ecosystem C pools with different residence times. Moreover stable isotopes are highly suitable tools to characterise the role of the phloem, which is the central long-distance conveyer distributing C from source to sinks and thus plays a central role in linking sites and structures of storage, growth and other metabolic activities. A deeper understanding of these processes and their interaction with environmental drivers is critical for predicting how trees and ecosystems will respond to coming global environmental changes, including increased temperature, altered precipitation, and elevated carbon dioxide concentrations.

  19. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was primarily dominated by C3/C4 plant composition and then ancillary environmental conditions. Along latitude, plant and litter carbon pools in northern ecosystems have slower turnover rates (i.e., higher 14C/12C) than those in tropical ecosystems. However, humus carbon in northern ecosystems with very long mean residence times has lower 14C/12C ratio, most of bomb-derived radioactive carbon lingered still in plant biomass. Now, we are attempting to examine the model estimations by comparing with atmospheric measurements.

  20. Atmospheric parameters and carbon abundance for hot DB white dwarfs

    NASA Astrophysics Data System (ADS)

    Koester, D.; Provencal, J.; Gnsicke, B. T.

    2014-08-01

    Atmospheric parameters for hot DB (helium atmosphere) white dwarfs near effective temperatures of 25 000 K are extremely difficult to determine from optical spectroscopy. The neutral He lines reach a maximum in this range and change very little with effective temperature and surface gravity. Moreover, an often unknown amount of hydrogen contamination can change the resulting parameters significantly. This is particularly unfortunate because this is the range of variable DBV or V777 Her stars. Accurate atmospheric parameters are needed to help or confirm the asteroseismic analysis of these objects. Another important aspect is the new class of white dwarfs - the hot DQ - whose spectra are dominated by carbon lines. The analysis shows that their atmospheres are pure carbon. The origin of these stars is not yet understood, but they may have an evolutionary link with the hotter DBs, as studied here. Our aim is to determine accurate atmospheric parameters and element abundances and study the implications for the evolution of white dwarfs of spectral classes DB and hot DQ. High-resolution UV spectra of five DBs were studied with model atmospheres. We determined stellar parameters and abundances or upper limits of C and Si. These objects were compared with cooler DBs below 20 000 K. We find photospheric C and no other heavy elements - with extremely high limits on the C/Si ratio - in two of the five hot DBs. We compare various explanations for this unusual composition that have been proposed in the literature: accretion of interstellar or circumstellar matter, radiative levitation, carbon dredge-up from the deeper interior below the helium layer, and a residual stellar wind. None of these explanations is completely satisfactory, and the problem of the origin of the hot DQ remains an open question.

  1. Variation of carbon isotopic composition of seawater DIC in Western Tethys for the Middle Jurassic

    NASA Astrophysics Data System (ADS)

    O'Dogherty, L.; Bill, M.; Sandoval, J.; Aguado, R.

    2008-12-01

    An accurate chronostratigraphic calibration of carbon-isotope stratigraphy is necessary to clarify the relationship between the paleocarbon cycle, ocean carbon reservoirs and the faunal evolutionary processes. Marine carbonate sequences with high macro and microfossil content coupled with carbon isotope investigations permit biostratigraphic dating at the subzone level, and thus achieve an accurate chronostratigraphic calibration. Mid-Jurassic age rhythmic marl and marly limestone sequences located in the Southern Iberian paleomargin (Spain) represent ideal sections to link the stable carbon isotope curves directly to ammonite zones and subzones in the western Tethys. From the Upper Toarcian to the late Bathonian ?13C values of marine carbonates on the Iberian paleomargin are consistent with variations of carbon isotope compositions of seawater DIC in western Tethys. Positive ?13C variations are associated with high abundances of eutrophic, calcareous nannofossil taxa and strong increases in radiolarian abundance suggesting a period of high biological productivity. The positive ?13C excursions are compatible with enhanced biological productivity due to the preferential assimilation of 12C by marine organisms, thus enriching the remaining inorganic carbon with 13C. A slight offset is observed between the sections in the Iberian paleomargin and sections from the northern and southern margins of the western Tethys. This drift reflects variations in carbon isotopic composition of seawater DIC associated with changes in the oxidation rate of organic carbon in different oceanic areas of the western Tethys. Lower ?13C values in the Iberian paleomargin were probably associated with higher oxidation rates of continentally derived organic carbon than in the Umbrian-Marche-Sabina basin, which is characterized by carbonate stratigraphic sequences far from the influence of terrestrial sediments. During the Upper Aalenian, Subbetic and Apennines marine carbonates have similar ?13C values suggesting a mixing of DIC seawater reservoirs in the western Tethys, probably related to a change in oceanic circulation and a better mixing of seawater masses which contribute to increased nutrient availability and therefore an increase in marine productivity. The carbon isotope values of carbonates are not linearly correlated with extinction rates and ammonite diversity. However, the main faunal turnovers follow minimum ?13C values in which extinct taxa are replaced by new ones. Therefore, radiation episodes are associated with increasing ?13C values. Detailed analyses of faunal turnovers may be used as a proxy for identifying major paleoenvironmental and ecosystems crises in the Middle Jurassic.

  2. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7 for gasoline engine, and from -26.2 to -20.7 for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 2.1, and for gasoline vehicle with catalytic converter, the ratios were -21.4 0.7. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27). For gasoline vehicle, the isotopic fractionation (?13C) between HCHO and fuel isotopic ratios was 7.4 0.7, which was higher than that of HCHO from stand-alone gasoline engine (?13Cmax = 2.7), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, ?13C was 5.7 2.0, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for the accordance of carbon isotopic data.

  3. Mercury Abundances and Isotopic Compositions in the Murchison (CM) and Allende (CV)Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.

    2001-01-01

    The abundance and isotopic composition of Hg was determined in bulk samples of both the Murchison (CM) and Allende (CV) carbonaceous chondrites using single- and multi-collector inductively coupled plasma mass spectrometry (ICP-MS). The bulk abundances of Hg are 294 6 15 ng/g in Murchison and 30.0 6 1.5 ng/g in Allende. These values are within the range of previous measurements of bulk Hg abundances by neutron activation analysis (NAA). Prior studies suggested that both meteorites contain isotopically anomalous Hg, with d l 96/202Hg values for the anomalous, thermal-release components from bulk samples ranging from 2260 %o to 1440 9/00 in Murchison and from 2620 9/00 to 1540 9/00 in Allende (Jovanovic and Reed, 1976a; 1976b; Kumar and Goel, 1992). Our multi-collector ICP-MS measurements suggest that the relative abundances of all seven stable Hg isotopes in both meteorites are identical to terrestrial values within 0.2 to 0.5 9/00m. On-line thermal-release experiments were performed by coupling a programmable oven with the singlecollector ICP-MS. Powdered aliquots of each meteorite were linearly heated from room temperature to 900 C over twenty-five minutes under an Ar atmosphere to measure the isotopic composition of Hg released fiom the meteorites as a h c t i o n of temperature. In separate experiments, the release profiles of S and Se were determined simultaneously with Hg to constrain the Hg distribution within the meteorites and to evaluate the possibility of Se interferences in previous NAA studies. The Hg-release patterns differ between Allende and Murchison. The Hg-release profile for Allende contains two distinct peaks, at 225" and 343"C, whereas the profile for Murchison has only one peak, at 344 C. No isotopically anomalous Hg was detected in the thermal-release experiments at a precision level of 5 to 30 9/00, depending on the isotope ratio. In both meteorites the Hg peak at ;340"C correlates with a peak in the S-release profile. This correlation suggests that Hg is associated with S-bearing phases and, thus, that HgS is a major Hg-bearing phase in both meteorites. The Hg peak at 225 C for Allende is similar to release patterns of physically adsorbed Hg on silicate and metal grains.

  4. Absolute and Relative Isotope Abundances Measured by Tunable Diode Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tucker, George Franklin

    The potential for measuring absolute and relative isotope abundances by high resolution spectroscopy with tunable diode lasers as sources was studied. In order to achieve the sensitivity necessary to determine the absolute abundances of molecules containing long-lived radionuclides such as ('14)C an ('129)I, a resonant spectrophone based on the photoacoustic effect was used for detection. For safety, NH(,3) was used as a sample with air as a buffer gas when characterizing the performance of the TDL-spectrophone system. Frequency modulation of the TDL was employed. The optimum operating pressure was found to be 6.6 kPa(50 Torr). Substitution of Kr as a buffer gas yielded a fourfold increase in signal. It is estimated that with currently available TDLs a photoacoustic spectrometer should be capable of detecting ('14)CO(,2) and CH('129)I at the levels present in nuclear reactor containment gases. An isotope shift of CH(,3)('129) I relative to CH(,3)('127)I in the (nu)(,6) band of (0.0135 (+OR-) 0.0006) cm('-1) was measured by TDL linear absorption spectroscopy. To perform relative isotope abundance measurements a TDL was tuned over two adjacent, but well-resolved, rotation -vibration absorption lines, one of each isotopic species, while the transmitted radiation was monitored with a HgCdTe detector. The P(26) line of the (nu)(,1) band of N(,2)('18)O at 1225.3671 cm('-1) and the P(63) line of the (nu)(,1) band of N(,2)('16)O at 1225.4879 cm('-1) were chosen, for their line strength ratio is inversely proportional to the ratio of their natural abundances, and thereby yielded approximately equal absorbance for each isotopic species. A double-beam, single-detector spectrometer with wavelength modulation to minimize the effects of laser power and cell temperature fluctuations, has been adapted for use with a TDL. After samples of known ('18)O enrichment were used to calibrate the spectrometer, the (delta)('18)O of tropospheric N(,2)O was measured to be (8.05 (+OR-) 0.17)('o)/oo relative to a laboratory standard, or approximately 42('o)/oo relative to standard mean ocean water. After 190 days at 24(DEGREES)C no oxygen isotope exchange was observed between N(,2)('16)O and H(,2)('18)O.

  5. Cryogenian glaciation and the onset of carbon-isotope decoupling.

    PubMed

    Swanson-Hysell, Nicholas L; Rose, Catherine V; Calmet, Claire C; Halverson, Galen P; Hurtgen, Matthew T; Maloof, Adam C

    2010-04-30

    Global carbon cycle perturbations throughout Earth history are frequently linked to changing paleogeography, glaciation, ocean oxygenation, and biological innovation. A pronounced carbonate carbon-isotope excursion during the Ediacaran Period (635 to 542 million years ago), accompanied by invariant or decoupled organic carbon-isotope values, has been explained with a model that relies on a large oceanic reservoir of organic carbon. We present carbonate and organic matter carbon-isotope data that demonstrate no decoupling from approximately 820 to 760 million years ago and complete decoupling between the Sturtian and Marinoan glacial events of the Cryogenian Period (approximately 720 to 635 million years ago). Growth of the organic carbon pool may be related to iron-rich and sulfate-poor deep-ocean conditions facilitated by an increase in the Fe:S ratio of the riverine flux after Sturtian glacial removal of a long-lived continental regolith. PMID:20431011

  6. Carbon and its isotopes in mid-oceanic basaltic glasses

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Moore, J. G.

    1984-01-01

    Sample surface carbon, mantle carbon dioxide in vesicles, and mantle carbon dissolved in glasses, are the three carbon components evident in the 11 mid-oceanic basalts presently analyzed. The total carbon content may be controlled by the depth of the shallowest ridge magma chamber, and carbon isotopic fractionation accompanies magma degassing. Using He-3 and carbon data for submarine hydrothermal fluids, the present day midoceanic ridge carbon flux is approximately estimated to be 1.0 x 10 to the 13th g C/yr, requiring 8 Gyr to accumulate the earth's present crustal carbon inventory.

  7. LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS

    SciTech Connect

    Masseron, Thomas; Johnson, Jennifer A.; Lucatello, Sara; Karakas, Amanda; Plez, Bertrand; Beers, Timothy C.; Christlieb, Norbert E-mail: jaj@astronomy.ohio-state.edu

    2012-05-20

    Carbon-enhanced metal-poor (CEMP) stars are believed to show the chemical imprints of more massive stars (M {approx}> 0.8 M{sub Sun }) that are now extinct. In particular, it is expected that the observed abundance of Li should deviate in these stars from the standard Spite lithium plateau. We study here a sample of 11 metal-poor stars and a double-lined spectroscopic binary with -1.8 < [Fe/H] < -3.3 observed with the Very Large Telescope/UVES spectrograph. Among these 12 metal-poor stars, there are 8 CEMP stars for which we measure or constrain the Li abundance. In contrast to previous arguments, we demonstrate that an appropriate regime of dilution permits the existence of 'Li-Spite plateau and C-rich' stars, whereas some of the 'Li-depleted and C-rich' stars call for an unidentified additional depletion mechanism that cannot be explained by dilution alone. We find evidence that rotation is related to the Li depletion in some CEMP stars. Additionally, we report on a newly recognized double-lined spectroscopic binary star in our sample. For this star, we develop a new technique from which estimates of stellar parameters and luminosity ratios can be derived based on a high-resolution spectrum alone, without the need for input from evolutionary models.

  8. Mass transfer and carbon isotope evolution in natural water systems

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, L.N.; Pearson, F.J., Jr.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  9. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  10. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean

    NASA Astrophysics Data System (ADS)

    Prasanna, K.; Ghosh, Prosenjit; Bhattacharya, S. K.; Mohan, K.; Anilkumar, N.

    2016-02-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ18O and δ13C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75–200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ18O and δ13C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a ‘vital effect’ or a higher calcification rate. An interesting pattern of increase in the δ13C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ13C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.

  11. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean

    PubMed Central

    Prasanna, K.; Ghosh, Prosenjit; Bhattacharya, S. K.; Mohan, K.; Anilkumar, N.

    2016-01-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ18O and δ13C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75–200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ18O and δ13C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a ‘vital effect’ or a higher calcification rate. An interesting pattern of increase in the δ13C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ13C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude. PMID:26903274

  12. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean.

    PubMed

    Prasanna, K; Ghosh, Prosenjit; Bhattacharya, S K; Mohan, K; Anilkumar, N

    2016-01-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ(18)O and δ(13)C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ(18)O and δ(13)C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a 'vital effect' or a higher calcification rate. An interesting pattern of increase in the δ(13)C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ(13)C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude. PMID:26903274

  13. Stable carbon and sulfur isotopes as records of the early biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, David J.

    1989-01-01

    The abundance ratios of the stable isotopes of light elements such as carbon and sulfur can differ between various naturally-occurring chemical compounds. If coexisting compounds have achieved mutual chemical and isotopic equilibrium, then the relative isotopic composition can record the conditions at which equilibrium was last maintained. If coexisting chemical compounds indeed formed simultaneously but had not achieved mutual equilibrium, then their relative isotopic compositions often reflect the conditions and mechanisms associated with the kinetically controlled reactions responsible for their production. In the context of Mars, the stable isotopic compositions of various minerals might record not only the earlier environmental conditions of the planet, but also whether or not the chemistry of life ever occurred there. Two major geochemical reservoirs occur in Earth's crust, both for carbon and sulfur. In rocks formed in low temperature sedimentary environments, the oxidized forms of these elements tend to be enriched in the isotope having the larger mass, relative to the reduced forms. In sediments where the organics and sulfides were formed by biological processes, these isotopic contrasts were caused by the processes of biological CO2 fixation and dissimilatory sulfate reduction. Such isotopic contrasts between oxidized and reduced forms of carbon and sulfur are permitted by thermodynamics at ambient temperatures. However, nonbiological chemical reactions associated with the production of organic matter and the reduction of organics and sulfides are extremely slow at ambient temperatures. Thus the synthesis of organics and sulfides under ambient conditions illustrates life's profound role as a chemical catalyst that has altered the chemistry of Earth's crust. Because the stable isotopes of carbon and sulfur can reflect their chemistry, they are useful probes of the Martian surface.

  14. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.

    2012-05-01

    Tricyclic diterpenoids and pentacyclic triterpenoids are nearly exclusively produced by gymnosperms and angiosperms, respectively. Even though both classes of terpenoids have long been recognized as plant biomarkers, their potential use as phylogenetically specific δ13C proxies remains largely unexplored. Little is known of how terpenoid abundance and carbon isotope composition vary either with plant phylogenetic position, functional group, or during synthesis. Here, we report terpenoid abundances and isotopic data for 44 tree species in 21 families, representing both angiosperms and gymnosperms, and both deciduous and evergreen leaf habits. Di- and triterpenoid abundances are significantly higher in evergreens compared to deciduous species, reflecting differences in growth strategies and increased chemical investment in longer-lived leaves. Carbon isotope abundances of terpenoid lipids are similar to leaf tissues, indicating biosynthetic isotope effects are small for both the MVA (-0.4‰) and MEP (-0.6‰) pathways. Leaf and molecular isotopic patterns for modern plants are consistent with observations of amber, resins and plant biomarkers in ancient sediments. The δ13C values of ancient diterpenoids are higher than triterpenoids by 2-5‰, consistent with observed isotopic differences between gymnosperms and angiosperms leaves, and support the relatively small lipid biosynthetic effects reported here. All other factors being equal, evergreen plants will dominate the abundance of terpenoids contributed to soils, sediments and ancient archives, with similar inputs estimated for angiosperm and gymnosperm trees when scaled by litter flux.

  15. Isotope composition of carbon in amino acids of solid bitumens

    NASA Astrophysics Data System (ADS)

    Shanina, S. N.; Bushnev, D. A.

    2014-06-01

    Primary data are presented on the isotope composition of carbon in individual amino acids from solid bitumens and several biological objects. The amino acids of biological objects are characterized by wide variations of the isotope composition of carbon. This fact occurs owing to the difference in biochemical paths of metabolism resulting in the synthesis of individual amino acids. The ?13C values are somewhat decreased for individual amino acids in asphaltenes, varying from -7.7 to -31.7. The carbon of amino acids is weighted in kerits from Bad'el' compared to asphaltenes. All the natural bitumens retain the characteristic trend for natural substances: the isotopically heavy and light amino acids by carbon are glycine and leucine, respectively. The isotope composition of amino-acid carbon is lightened compared to natural bitumens in the samples formed under a pronounced thermal impact (asphalt-like crust and kirishite).

  16. An investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1977-01-01

    An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

  17. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Nordström, B.; Hansen, T. T.; Kennedy, C. R.; Placco, V. M.; Beers, T. C.; Andersen, J.; Cescutti, G.; Chiappini, C.

    2016-04-01

    Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =-2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims: Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods: Atmospheric parameters for our programme stars were estimated from a combination of V-K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results: Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions: The derived stellar abundances trace the formation processes and sites of our sample stars. The [C/N] abundance ratio is useful for identifying stars with chemical compositions unaffected by internal mixing, and the [Sr/Ba] abundance ratio allows us to distinguish between CEMP-s stars with AGB progenitors and the CEMP-no stars. Suggested formation sites for the latter include faint supernovae with mixing and fallback and/or primordial, rapidly-rotating, massive stars (spinstars). X-Shooter spectra have thus proved to be valuable tools in the continued search for their origin. Based on observations obtained at ESO Paranal Observatory, programmes 084.D-0117(A) and 085.D-0041(A).

  18. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  19. Chemical and Isotopic Study of Lab-formed Carbonates Under Cryogenic and Hydrothermal Conditions

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Golden, D. C.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Aqueous environments on early Mars were probably relatively short-lived and localized, as evidenced by the lack of abundant secondary minerals detected by the TES instrument. In order to better understand the aqueous history of early Mars we need to be able to interpret the evidence preserved in secondary minerals formed during these aqueous events. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments as illustrated by the carbonates preserved in ALH84001. Carbonates formed in short-lived, dynamic aqueous events often preserve kinetic rather than equilibrium chemical and isotopic processes, and predicting the behavior of such systems is facilitated by empirical data.

  20. Carbon isotopic characterisation of dissolved organic matter during water treatment.

    PubMed

    Bridgeman, John; Gulliver, Pauline; Roe, Jessie; Baker, Andy

    2014-01-01

    Water treatment is a series of physio-chemical processes to aid organic matter (OM) removal, which helps to minimise the formation of potentially carcinogenic disinfection by-products and microbial regrowth. Changes in OM character through the treatment processes can provide insight into the treatment efficiency, but radiogenic isotopic characterisation techniques have yet to be applied. Here, we show for the first time that analysis of (13)C and (14)C of dissolved organic carbon (DOC) effectively characterises dissolved OM through a water treatment works. At the sites investigated: post-clarification, DOC becomes isotopically lighter, due to an increased proportion of relatively hydrophilic DOC. Filtration adds 'old' (14)C-DOC from abrasion of the filter media, whilst the use of activated carbon adds 'young' (14)C-DOC, most likely from the presence of biofilms. Overall, carbon isotopes provide clear evidence for the first time that new sources of organic carbon are added within the treatment processes, and that treated water is isotopically lighter and typically younger in (14)C-DOC age than untreated water. We anticipate our findings will precipitate real-time monitoring of treatment performance using stable carbon isotopes, with associated improvements in energy and carbon footprint (e.g. isotopic analysis used as triggers for filter washing and activated carbon regeneration) and public health benefits resulting from improved carbon removal. PMID:24075722

  1. Molecular and stable carbon isotopic compositions of hopanoids in seep carbonates from the South China Sea continental slope

    NASA Astrophysics Data System (ADS)

    Guan, Hongxiang; Sun, Yongge; Mao, Shengyi; Zhu, Xiaowei; Wu, Nengyou

    2014-10-01

    The lipid biomarkers of hopanoids in cold seep carbonates from the South China Sea continental slope were investigated by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-isotope ratio-mass spectrometer (GC-ir-MS). The distribution of hopanes/hopenes shows a preference for the biological 17?(H), 21?(H)-over the geological 17?(H), 21?(H)-configuration. This interpretation is in agreement with the strong odd-even preference of long-chain n-alkanes in those samples, suggesting that the ?? hopanes may be the early diagenetic products of biohopanoids and the ??, ?? configurations of hopanes were mainly derived from allochthonous sources contributing to the organic matter of the carbonates. In terms of hopanoid acids, the C30 to C33 17?(H), 21?(H)-hopanoid acids were detected with C32 17?(H), 21?(H)-hopanoid acid being the most abundant. However, there is a significant difference in stable carbon isotopic compostions of the C32 17?(H), 21?(H)-hopanoic acid among samples (-30.7 to -69.8). The ?13C values match well with the carbon isotopic compositions of SRB-derived iso-/anteiso-C15:0 fatty acids in the samples, which strongly depend on the carbon utilization types by microbe. The most abundant compound of hopanols detected in the samples, C30-17?(H), 21?(H)-hopanol, may be a good indicator of diagenetic product of type I methanotrophs. The molecular and carbon isotopic compositions of hopanoids demonstrate clearly that there is a combination contribution of both SRB and type I or type X methanotrophs to the source organism in the seep carbonates from the South China Sea continental slope.

  2. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100C) exchange likely occurs on timescales of 10 4 to 10 8 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of ?D values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by 75 to 140 at equilibrium (30C). Thus large differences in ?D between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D 2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes.

  3. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Popp, Brian N.; Takigiku, Ray; Johnson, Marcus W.

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production and in secondary processes. It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record and that, in these sediments, TOC is enriched in C-13 relative to its primary precursor by 0.6 to 2.8 percent. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variation in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate.

  4. Heavy Element Abundances and Isotope Anomalies in HR7775 and Chi LUPI

    NASA Astrophysics Data System (ADS)

    Brandt, John

    1995-07-01

    Over the past few years a GTO team project hasobtained extensive GHRS echelle data of UV transitionsof heavy elements in the Hg-Mn stars chi Lupi andKappa Cancri. Isotopic anomalies, in which only theheaviest isotope of Hg, Pt and Tl is present, havebeen observed in chi Lupi, but are apparently absentin Kappa Cancri. Kappa Cancri is distinguished fromchi Lupi by both its higher effective temperature andits larger Mn abundance. To help constraintheoretical interpretations of the abundance andisotope anomalies, this program will observe the Hg-Mnstar HR7775, which has the same effective temperatureas chi-Lupi, but also has substantially higher Mn andBi abundances. Observations of HR 7775 will includelines of B III, S I, Au II and III, Pt I, II, and III,Hg II and III, Ru II, Zr III, Ge I, As I, Cd II, Gd III,Ta II, Sb II and N I. Additional observations ofchi Lupi will also be obtained including observationsof Bi III, Tl III, Cu II and Ir II.

  5. ISO/GUM UNCERTAINTIES AND CIAAW (UNCERTAINTY TREATMENT FOR RECOMMENDED ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES)

    SciTech Connect

    HOLDEN,N.E.

    2007-07-23

    The International Organization for Standardization (ISO) has published a Guide to the expression of Uncertainty in Measurement (GUM). The IUPAC Commission on Isotopic Abundance and Atomic Weight (CIAAW) began attaching uncertainty limits to their recommended values about forty years ago. CIAAW's method for determining and assigning uncertainties has evolved over time. We trace this evolution to their present method and their effort to incorporate the basic ISO/GUM procedures into evaluations of these uncertainties. We discuss some dilemma the CIAAW faces in their present method and whether it is consistent with the application of the ISO/GUM rules. We discuss the attempt to incorporate variations in measured isotope ratios, due to natural fractionation, into the ISO/GUM system. We make some observations about the inconsistent treatment in the incorporation of natural variations into recommended data and uncertainties. A recommendation for expressing atomic weight values using a tabulated range of values for various chemical elements is discussed.

  6. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  7. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  8. A measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; Greiner, D. E.; Bieser, F. S.; Crawford, H. J.; Heckman, H. H.; Lindstrom, P. J.

    1980-01-01

    The paper reports the results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (80-230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space the following values are found: C-13/C = 0.067 + or - 0.008, N-15/N = 0.54 + or - 0.03, O-17/O less than 0.027, and O-18/O - 0.019 + or - 0.003.

  9. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Mahaffy, Paul R.; Webster, Christopher R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie A.; Manning, Heidi; Owen, Tobias; Pepin, Robert O.; Squyres, Steven; Trainer, Melissa; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Lveill, Richard; Marchand, Genevive; Snchez, Pablo Sobrn; Favot, Laurent; Cody, George; Steele, Andrew; Flckiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Isral, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Prez, Ren; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodrguez, Javier Caride; Blzquez, Isaas Carrasco; Gmez, Felipe Gmez; Gmez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jimnez, Mercedes Marn; Martnez-Fras, Jess; Martn-Soler, Javier; Martn-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muoz; Lpez, Sara Navarro; Peinado-Gonzlez, Vernica; Pla-Garca, Jorge; Manfredi, Jos Antonio Rodriguez; Romeral-Planell, Julio Jos; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, Mara-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Fairn, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Gnther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanp, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Ccile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jrmie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schrder, Susanne; Toplis, Mike; Lewin, ric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Isral, Guy; Szopa, Cyril; Dromart, Gilles; Robert, Franois; Sautter, Violaine; Le Moulic, Stphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; Franois, Pascaline; Raulin, Franois; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agns; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Jones, Andrea; Martin, David K.

    2013-07-01

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(0.007); argon-40 (40Ar), 0.0193(0.0001); nitrogen (N2), 0.0189(0.0003); oxygen, 1.45(0.09) 10-3; carbon monoxide, < 1.0 10-3; and 40Ar/36Ar, 1.9(0.3) 103. The 40Ar/N2 ratio is 1.7 times greater and the 40Ar/36Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The 40Ar/36Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature ?13C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

  10. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover.

    PubMed

    Mahaffy, Paul R; Webster, Christopher R; Atreya, Sushil K; Franz, Heather; Wong, Michael; Conrad, Pamela G; Harpold, Dan; Jones, John J; Leshin, Laurie A; Manning, Heidi; Owen, Tobias; Pepin, Robert O; Squyres, Steven; Trainer, Melissa

    2013-07-19

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(0.007); argon-40 ((40)Ar), 0.0193(0.0001); nitrogen (N2), 0.0189(0.0003); oxygen, 1.45(0.09) 10(-3); carbon monoxide, < 1.0 10(-3); and (40)Ar/(36)Ar, 1.9(0.3) 10(3). The (40)Ar/N2 ratio is 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The (40)Ar/(36)Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature ?(13)C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss. PMID:23869014

  11. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  12. Cryogenian-Ediacaran Carbon Isotope Stratigraphy of the Amadeus Basin, Central Australia

    NASA Astrophysics Data System (ADS)

    Joubert, R. L.; Verdel, C.; Schultz, I.

    2014-12-01

    Deciphering the nature of extreme Neoproterozoic climatic and biogeochemical perturbations hinges on correlating sedimentary sequences within and across different basins. To improve these correlations within central Australia, we have focused on the abundant and laterally extensive glaciogenic and carbonate deposits of the Amadeus Basin. Here, we present new high-resolution carbonate C isotope profiles from Cryogenian-Ediacaran stratigraphic successions (the Areyonga, Aralka, Olympic, and Julie Formations) that are particularly well exposed in the northeastern part of the basin. The data appear to span a duration of >100 Ma, from the end of the older Cryogenian glaciation to the upper Ediacaran. In addition to major isotopic excursions resembling those described from other Neoproterozoic successions, the Amadeus Basin isotopic profiles display consistent fine-scale patterns and lateral trends that allow us to identify diachronous strata and refine the overall stratigraphic and tectonic architecture of the basin.

  13. On the volatile inventory of Titan from isotopic abundances in nitrogen and methane.

    PubMed

    Lunine, J I; Yung, Y L; Lorenz, R D

    1999-01-01

    We analyze recently published nitrogen and hydrogen isotopic data to constrain the initial volatile abundances on Saturn's giant moon Titan. The nitrogen data are interpreted in terms of a model of non-thermal escape processes that lead to enhancement in the heavier isotope. We show that these data do not, in fact, strongly constrain the abundance of nitrogen present in Titan's early atmosphere, and that a wide range of initial atmospheric masses (all larger than the present value) can yield the measured enhancement. The enrichment in deuterated methane is now much better determined than it was when Pinto et al. (1986. Nature 319, 388-390) first proposed a photochemical mechanism to preferentially retain the deuterium. We develop a simple linear theory to provide a more reliable estimate of the relative dissociation rates of normal and deuterated methane. We utilize the improved data and models to compute initial methane reservoirs consistent with the observed enhancement. The result of this analysis agrees with an independent estimate for the initial methane abundance based solely on the present-day rate of photolysis and an assumption of steady state. This consistency in reservoir size is necessary but not sufficient to infer that methane photolysis has proceeded steadily over the age of the solar system to produce large quantities of less volatile organics. Our analysis indicates an epoch of early atmospheric escape of nitrogen, followed by a later addition of methane by outgassing from the interior. The results also suggest that Titan's volatile inventory came in part or largely from a circum-Saturnian disk of material more reducing than the surrounding solar nebula. Many of the ambiguities inherent in the present analysis can be resolved through Cassini-Huygens data and a program of laboratory studies on isotopic and molecular exchange processes. The value of, and interest in, the Cassini-Huygens data can be greatly enhanced if such a program were undertaken prior to the prime phase of the mission. PMID:11543194

  14. Hot bottom burning in asymptotic giant branch stars and its effect on oxygen isotopic abundances

    NASA Technical Reports Server (NTRS)

    Boothroyd, Arnold I.; Sackmann, I.-JULIANA; Wasserburg, G. J.

    1995-01-01

    A self-consistent calculation of asymptotic giant branch (AGB) evolution was carried out, including nucleosynthesis at the base of the convective envelope (hot bottom burning). Hot bottom burning was found to occur for stars between approximately 4.5 and approximately 7 solar mass, producing envelopes with O-18/O-16 less than or equal to 10(exp -6) and 10(exp -3) approximately less than or equal O-17/O-16 approximately less than or equal to 10(exp -1). The O-17 abundance depends sensitively on the nuclear O-17-destruction rate; this rate is only loosely constrained by the requirement that first and second dredge-up models match O-isotope observations of red giant branch (RGB) stars (Boothroyd, Sackmann, & Wasserburg 1994). In some cases, high mass-loss rates can terminate hot bottom burning before further O-17 enrichment takes place or even before all O-18 is destroyed. These predictions are in accord with the very limited stellar observations of J type carbon stars on the AGB and with some of the circumstellar Al2O3 grains from meteorites. In contrast, precise data from a number of grains and data from most low-mass S and C AGB stars (approximately less than 1.7 solar mass) lie in a region of the O-18/O-16 versus O-17/O-16 diagram that is not accessible by first and second dredge-up or by hot bottom burning. We conclude that for AGB stars, the standard models of stellar evolution are not in accord with these observations. We surmise that an additional mixing mechanism must exist that transports material from the cool bottom of the stellar convective envelope to a depth at which O-18 is destroyed. This 'cool bottom processing' mechanism on the AGB is similar to extra mixing mechanisms proposed to explain the excess C-13 (and depleted C-12) observed in the earlier RGB stage of evolution and the large Li-7 depletion observed in low-mass main-sequence stars.

  15. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  16. Oxygen isotopic abundances in the atmospheres of seven red giant stars

    SciTech Connect

    Harris, M.J.; Lambert, D.L.

    1984-10-15

    Abundances ratios of the oxygen isotopes have been measured in ..cap alpha.. Tau, ..beta.. And, ..mu.. Gem, ..cap alpha.. Her, ..beta.. Peg, ..gamma.. Dra, and ..cap alpha.. Boo. In all the stars the /sup 16/O//sup 18/O ratios are similar; the mean value is 475, which is consistent with the solar system value /sup 16/O//sup 18/O = 490. The /sup 16/O//sup 17/O ratios range from approx.1000 for ..beta.. Peg and ..cap alpha.. Boo to /sup 16/O//sup 17/O = 160 for ..beta.. And.

  17. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    EPA Science Inventory

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  18. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  19. Carbon isotope fractionation during calcium carbonate precipitation induced by ureolytic bacteria

    NASA Astrophysics Data System (ADS)

    Millo, Christian; Dupraz, S.; Ader, M.; Guyot, F.; Thaler, C.; Foy, E.; Mnez, B.

    2012-12-01

    Ureolytic bacteria have been proposed as model organisms to investigate the potential of subsurface microorganisms to enhance carbon capture and storage through solubility- and mineral-trapping of CO2 induced by bacterial ureolysis and carbonate formation. Ideally, CO2 incorporation into carbonates can be readily traced using carbon isotope measurements. However, the carbon isotope systematics of bacterial ureolysis and associated carbonate precipitation is still poorly known. We determined the carbon isotope fractionations expressed during ureolysis and carbonate precipitation induced by Sporosarcina pasteurii at 30 C. Our results indicate that bacterial ureolysis proceeds as a Rayleigh distillation characterized by a 13C-enrichment factor equal to -12.5. As precipitation proceeds, the ?13C value of CaCO3, initially 1-2.1 lower than that of dissolved inorganic carbon (DIC), evolves progressively until it is 0.5 higher than that of the DIC, i.e. close to the value predicted for isotopic equilibrium. The minor isotope disequilibrium at the onset of precipitation and its rapid evolution towards isotopic equilibrium point to bacterial carbonates as reliable recorders of the carbon isotope composition of DIC. This corroborates the potential utility of 13C-tracing for the quantification of microbially-induced CO2 sequestration into solid carbonates and DIC.

  20. Intramolecular carbon isotope distribution in chlorophyll and its geochemical derivatives

    NASA Astrophysics Data System (ADS)

    Bogacheva, M. P.; Kodina, L. A.; Galimov, E. M.

    Data are presented on the carbon isotope distribution (? 13C values) in fragments of chlorophyll and hemin molecules, and certain main groups of oil hydrocarbons with special reference to isoprenoids. The same relationship is observed between the carbon isotope compositions of the tetrapyrrole nucleus, phytol and possible precursors of the n-alkanes (fatty acids), on one hand, and petroporphyrins, isoprenoids and n-alkanes respectively in oil, on the other hand.

  1. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes it feasible to observe its less common isotopologues. As a step in our investigation of C-13 fractionation patterns in the ISM, we here present comparisons between observations of the C-13 fraction in formaldehyde, and chemical fractionation models.

  2. Stable isotopes of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions

    NASA Astrophysics Data System (ADS)

    Hansen, Hans Jrgen

    2006-11-01

    Repeated short-time negative excursions from the general trend of organic carbon isotopes occur at, and shortly after, the Permo-Triassic and Cretaceous-Tertiary mass extinctions. The cause of these excursions is unexplained since an extinction event can only explain one excursion at each boundary. At the P/T boundary one negative excursion occurs shortly before the boundary proper followed by one at the boundary, followed by several excursions that can be correlated in both marine and terrestrial environments over larger geographical distances. Also at the K/T boundary negative excursions in organic carbon, which can be correlated, occur after the boundary in both marine and terrestrial settings. As both mass extinctions occurred contemporaneously with major continental flood basalts, the present study focuses on the possible effect of eruption of flood basalts on the atmospheric carbon isotopic budget. The carbon isotopic compositions of forty different basalts, from the time span of Albian to the Recent, and predominantly continental flood, were measured. The isotopic composition of the CO 2 gas released by basalts is generally accepted as being rather heavy (- 5 PDB) based on observations from Hawaii. This is in strong contrast to the observed values in this study, which showed that the gas released had an average isotopic value of around - 23 PDB. Acid digestion by HF left a residue of elemental carbon with isotopic values in the range of - 24 to almost - 28 PDB. This corresponds to the carbon released during stepped heating experiments in the temperature range from 200 to 600 C. Since basalt in a molten state has a temperature of > 600 C and since the most negative carbon (i.e. the elemental carbon) is released below that temperature, it suggests that the most isotopically negative component is not present as elemental carbon above temperatures of 600 C. In view of the recorded isotopic composition of - 24 for gas collected at a temperature between 700 and 800 C from Mauna Loa, it seems that the generally assumed - 5 is unrepresentative for flood basalts. It is therefore possible that high intensity volcanic episodes have caused the repeated negative excursions. It is further suggested that the short-time non-secular isotopic variation pattern of organic carbon through time may be a record of volcanic activity. The episodic nature of volcanism precludes it from being causally related to the secular variations. Elemental carbon from four different kimberlites yielded carbon isotopic values similar to those from basalts. It is suggested that the Boudouard reaction (2CO = C + CO 2) may be responsible for the formation of the elemental carbon.

  3. [Terrestrial plant stable carbon isotope composition and global change].

    PubMed

    Zheng, Shuxi; Shangguan, Zhouping

    2006-04-01

    Stable carbon isotope analysis is a rapid and reliable technique developed in recent years, and has been widely applied to reconstruct the sequences of atmospheric CO2 concentration changes, clarify the hysteresis effect and junior effect of temperature and precipitation on tree growth, and distinguish the distributions of plants with different photosynthetic pathways. The water use efficiency (WUE) of different plant functional groups and the variations of plant WUE with tempo-spatial and climatic changes can be also indicated by determining plant carbon isotope composition. In this paper, the effects of environmental factors, e.g., atmospheric CO2 concentration, air temperature, precipitation, and altitude on terrestrial plant carbon isotope composition were discussed, and the advances and applications of carbon isotope technique in global change research were summarized. Furthermore, the existing and disputed problems in carbon isotope analysis were discussed, and the future trends of carbon isotope technique in global change research were prospected, aimed to widen people's knowledge and promote the development of this technique. PMID:16836111

  4. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  5. Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites

    NASA Astrophysics Data System (ADS)

    Riches, Amy J. V.; Day, James M. D.; Walker, Richard J.; Simonetti, Antonio; Liu, Yang; Neal, Clive R.; Taylor, Lawrence A.

    2012-11-01

    Coupled 187Os/188Os compositions and highly-siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for eight angrite achondrite meteorites that include quenched- and slowly-cooled textural types. These data are combined with new major- and trace-element concentrations determined for bulk-rock powder fractions and constituent mineral phases, to assess angrite petrogenesis. Angrite meteorites span a wide-range of HSE abundances from <0.005 ppb Os (e.g., Northwest Africa [NWA] 1296; Angra dos Reis) to >100 ppb Os (NWA 4931). Chondritic to supra-chondritic 187Os/188Os (0.1201-0.2127) measured for Angra dos Reis and quenched-angrites correspond to inter- and intra-sample heterogeneities in Re/Os and HSE abundances. Quenched-angrites have chondritic-relative rare-earth-element (REE) abundances at 10-15CI-chondrite, and their Os-isotope and HSE abundance variations represent mixtures of pristine uncontaminated crustal materials that experienced addition (<0.8%) of exogenous chondritic materials during or after crystallization. Slowly-cooled angrites (NWA 4590 and NWA 4801) have fractionated REE-patterns, chondritic to sub-chondritic 187Os/188Os (0.1056-0.1195), as well as low-Re/Os (0.03-0.13), Pd/Os (0.071-0.946), and relatively low-Pt/Os (0.792-2.640). Sub-chondritic 187Os/188Os compositions in NWA 4590 and NWA 4801 are unusual amongst planetary basalts, and their HSE and REE characteristics may be linked to melting of mantle sources that witnessed prior basaltic melt depletion. Angrite HSE-Yb systematics suggest that the HSE behaved moderately-incompatibly during angrite magma crystallization, implying the presence of metal in the crystallizing assemblage. The new HSE abundance and 187Os/188Os compositions indicate that the silicate mantle of the angrite parent body(ies) (APB) had HSE abundances in chondritic-relative proportions but at variable abundances at the time of angrite crystallization. The HSE systematics of angrites are consistent with protracted post-core formation accretion of materials with chondritic-relative abundances of HSE to the APB, and these accreted materials were rapidly, yet inefficiently, mixed into angrite magma source regions early in Solar System history.

  6. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  7. Paleodietary reconstruction using stable isotopes and abundance analysis of bovids from the Shungura Formation of South Omo, Ethiopia.

    PubMed

    Negash, Enquye W; Alemseged, Zeresenay; Wynn, Jonathan G; Bedaso, Zelalem K

    2015-11-01

    Preservation of the stable carbon isotopic composition of fossil tooth enamel enables us to estimate the relative proportion of C3 versus C4 vegetation in an animal's diet, which, combined with analysis of faunal abundance, may provide complementary methods of paleoenvironmental reconstruction. To this end, we analyzed stable carbon isotopic composition (?(13)C values) of tooth enamel from four bovid tribes (Tragelaphini, Aepycerotini, Reduncini, and Alcelaphini) derived from six members of the Shungura Formation (Members B, C, D, F, G, and L; ages from ca. 2.90-1.05Ma (millions of years ago) in the Lower Omo Valley of southwestern Ethiopia. The bovids show a wide range of ?(13)C values within taxa and stratigraphic members, as well as temporal changes in the feeding strategies of taxa analyzed throughout the middle to late Pliocene and early Pleistocene. Such variation suggests that the use of actualistic approaches for paleoenvironmental reconstruction may not always be warranted. Alcelaphini was the only taxon analyzed that retained a consistent dietary preference throughout the sequence, with entirely C4-dominated diets. Reduncini had a mixed C3/C4 to C4-dominated diet prior to 2.4Ma, after which this taxon shifted to a largely C4-dominated diet. Aepycerotini generally showed a mixed C3/C4 diet, with a period of increased C4 diet from 2.5 to 2.3Ma. Tragelaphini showed a range of mixed C3/C4 diets, with a median value that was briefly nearer the C4 end member from 2.9 to 2.4Ma but was otherwise towards the C3 end member. These isotopic results, combined with relative abundance data for these bovids, imply that the environment of the Lower Omo Valley consisted of a mosaic of closed woodlands, with riverine forests and open grasslands. However, our data also signify that the overall environment gradually became more open, and that C4 grasses became more dominant. Finally, these results help document the range and extent of environments and potential diets that were available to the four hominin species encountered in the Shungura sequence. PMID:26341031

  8. Eocene-Miocene carbon-isotope and floral record from brown coal seams in the Gippsland Basin of southeast Australia

    NASA Astrophysics Data System (ADS)

    Holdgate, Guy R.; McGowran, Brian; Fromhold, Tom; Wagstaff, Barbara E.; Gallagher, Stephen J.; Wallace, Malcolm W.; Sluiter, Ian R. K.; Whitelaw, Michael

    2009-01-01

    The carbon-isotope and palynological record through 580 m thick almost continuous brown coal in southeast Australia's Gippsland Basin is a relatively comprehensive southern hemisphere Middle Eocene to Middle Miocene record for terrestrial change. The carbon isotope ? 13C coal values of these coals range from - 27.7 to - 23.2. This isotopic variability follows gymnosperm/angiosperm fluctuations, where higher ratios coincide with heavier ?13C values. There is also long-term variability in carbon isotopes through time. From the Eocene greenhouse world of high gymnosperm-heavier ?13C coal values, there is a progressive shift to lighter ?13C coal values that follows the earliest (Oi1?) glacial events around 33 Ma (Early Oligocene). The overlying Oligocene-Early Miocene brown coals have lower gymnosperm abundance, associated with increased % Nothofagus (angiosperm), and lightening of isotopes during Oligocene cooler conditions. The Miocene palynological and carbon-isotope record supports a continuation to the Oligocene trends until around the late Early Miocene (circa 19 Ma) when a warming commenced, followed by an even stronger isotope shift around 16 Ma that peaked in the Middle Miocene when higher gymnosperm abundance and heavier isotopes prevailed. The cycle between the two major warm peaks of Middle Eocene and Middle Miocene was circa 30 Ma long. This change corresponds to a fall in inferred pCO 2 levels for the same period. The Gippsland data suggest a link between gymnosperm abundance, long-term plant ?13C composition, climatic change, and atmospheric pCO 2. Climatic deterioration in the Late Miocene terminated peat accumulation in the Gippsland Basin and no further significant coals formed in southeast Australia. The poor correspondence between this terrestrial isotope data and the marine isotope record is explained by the dominant control on ?13C by the gymnosperm/angiosperm abundance, although in turn this poor correspondence may reflect palaeoclimate control. From the brown coal seam dating, the coal appears to have accumulated during a considerable part of the allocated 30 Ma Cenozoic time period. These brown coal carbon isotope and palynological data appear to record a more gradual atmospheric carbon isotope change compared to the marine record.

  9. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1979-01-01

    The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.

  10. The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Bekker, A.; Catling, D.; Foriel, J.; Guy, B. M.; Kah, L. C.; Machel, H. G.; Montañez, I. P.; Poulton, S. W.

    2015-08-01

    The Earth's surface has undergone major transitions in its redox state over the past three billion years, which have affected the mobility and distribution of many elements. Here we use Se isotopic and abundance measurements of marine and non-marine mudrocks to reconstruct the evolution of the biogeochemical Se cycle from ∼3.2 Gyr onwards. The six stable isotopes of Se are predominantly fractionated during redox reactions under suboxic conditions, which makes Se a potentially valuable new tool for identifying intermediate stages from an anoxic to a fully oxygenated world. δ82/78Se shows small fractionations of mostly less than 2‰ throughout Earth's history and all are mass-dependent within error. In the Archean, especially after 2.7 Gyr, we find an isotopic enrichment in marine (+0.37 ± 0.27‰) relative to non-marine samples (-0.28 ± 0.67‰), paired with increasing Se abundances. Student t-tests show that these trends are statistically significant. Although we cannot completely rule out the possibility of volcanic Se addition, these trends may indicate the onset of oxidative weathering on land, followed by non-quantitative reduction of Se oxyanions during fluvial transport. The Paleoproterozoic Great Oxidation Event (GOE) is not reflected in the marine δ82/78Se record. However, we find a major inflection in the secular δ82/78Se trend during the Neoproterozoic, from a Precambrian mean of +0.42 ± 0.45‰ to a Phanerozoic mean of -0.19 ± 0.59‰. This drop probably reflects the oxygenation of the deep ocean at this time, stabilizing Se oxyanions throughout the water column. Since then, reduction of Se oxyanions has likely been restricted to anoxic basins and diagenetic environments in sediments. In light of recent Cr isotope data, it is likely that oxidative weathering before the Neoproterozoic produced Se oxyanions in the intermediate redox state SeIV, whereas the fully oxidized species SeVI became more abundant after the Neoproterozoic rise of atmospheric oxygen.

  11. Rocket ultraviolet spectroscopy of comet Halley and abundance of carbon monoxide and carbon

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Feldman, P. D.; Dymond, K. F.; Sahnow, D. J.

    1986-01-01

    Two far ultraviolet observations of comet Halley made on 26 February, 1986 and 13 March, 1986 with a sounding rocket experiment are reported. The observed CO spatial profiles can be modelled by a radial outflow model for a parent molecule and suggest that the CO is produced directly from the nucleus of the comet. Using the observed O I emission profile to deduce the H2O production rate, the abundance of CO relative to H2O is found to be 20 percent + or - 5 percent for the first flight and 17 percent + or - 4 percent for the second flight, making CO the second most abundant parent molecule in the coma. The derived production rate of atomic carbon is consistent with that expected from the photodissociation of carbon monoxide.

  12. Locations of marine animals revealed by carbon isotopes.

    PubMed

    MacKenzie, Kirsteen M; Palmer, Martin R; Moore, Andy; Ibbotson, Anton T; Beaumont, William R C; Poulter, David J S; Trueman, Clive N

    2011-01-01

    Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available. PMID:22355540

  13. Locations of marine animals revealed by carbon isotopes

    PubMed Central

    MacKenzie, Kirsteen M.; Palmer, Martin R.; Moore, Andy; Ibbotson, Anton T.; Beaumont, William R. C.; Poulter, David J. S.; Trueman, Clive N.

    2011-01-01

    Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available. PMID:22355540

  14. Variations in carbon and nitrogen stable isotopes of cryoconite

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.

    2012-12-01

    Cryoconite is biogenic surface dust on snow and ice, and is commoly observed on glaciers worldwide. Because of their dark coloration, cryoconite substantially reduce surface albedo and accelerate melting of glaciers. Therefore, it is important to understand formation process of cryoconite to evaluate its effect on glacier melting. Although cryoconite consists of mineral particles and organic matter, organic fraction is more important in terms of albedo effect because it is usually darker color and accounts for major part of cryoconite in volume. The organic matter is derived from photosynthetic microbes such as cyanobacteria, and/or from windblown organic matter from ground soil around glaciers. Carbon (C) and nitrogen (N) stable isotopes of the organic matter could be useful to know their sources and to understand their cycles on glaciers. In this study, I analyzed carbon and nitrogen stable isotopes of cryoconite collected from 6 sites of different elevation from May to September on an Alaska glacier (Gulkana Glacier) to know their spatial and seasonal variations. I also analyze those collected from glaciers in Asia and Arctic to compare them among different geographical locations. Results on the Alaska glacier show that C and N stable isotopes of cryoconite organic mater significantly varied among elevations and seasons. C isotope was generally higher in lower elevation, probably due to higher photosynthetic activity in the lower elevation. In contrast, N isotope was constant on the ice area, but was lower in the snow area where the red snow algae were blooming. N isotope may be reflective of nitrogen availavility on the glacier surface. Geograpical comparison shows large variations in C and N isotopes among regions: higher C and N isotopes on Asian glaciers, lower C and N isotopes in Alaska, and lower C and higher N isotopes on Arctic glaciers. The isotope values suggest that algal production is a major carbon source on most of glaciers, but their productivity and nirotogen cycle largely varied among the regions.

  15. The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records.

    PubMed

    Zachos, James C; Bohaty, Steven M; John, Cedric M; McCarren, Heather; Kelly, Daniel C; Nielsen, Tina

    2007-07-15

    The Palaeocene-Eocene thermal maximum (PETM) is characterized by a global negative carbon isotope excursion (CIE) and widespread dissolution of seafloor carbonate sediments. The latter feature supports the hypothesis that the PETM and CIE were caused by the rapid release of a large mass (greater than 2000Gt C) of 12C-enriched carbon. The source of this carbon, however, remains a mystery. Possible sources include volcanically driven thermal combustion of organic-rich sediment, dissociation of seafloor methane hydrates and desiccation and oxidation of soil/sediment organics. A key constraint on the source(s) is the rate at which the carbon was released. Fast rates would be consistent with a catastrophic event, e.g. massive methane hydrate dissociation, whereas slower rates might implicate other processes. The PETM carbon flux is currently constrained by high-resolution marine and terrestrial records of the CIE. In pelagic bulk carbonate records, the onset of the CIE is often expressed as a single- or multiple-step excursion extending over 10(4) years. Individual planktonic shell records, in contrast, always show a single-step CIE, with either pre-excursion or excursion isotope values, but no transition values. Benthic foraminifera records, which are less complete owing to extinction and diminutive assemblages, show a delayed excursion. Here, we compile and evaluate the individual planktonic shell isotope data from several localities. We find that the most expanded records consistently show a bimodal isotope distribution pattern regardless of location, water depth or depositional facies. This suggests one of several possibilities: (i) the isotopic composition of the surface ocean/atmosphere declined in a geologic instant (<500yr), (ii) that during the onset of the CIE, most shells of mixed-layer planktonic foraminifera were dissolved, or (iii) the abundances or shell production of these species temporarily declined, possibly due to initial pH changes. PMID:17513259

  16. Carbon isotope systematics of a mantle ``hotspot'': a comparison of Loihi Seamount and MORB glasses

    NASA Astrophysics Data System (ADS)

    Exley, R. A.; Mattey, D. P.; Clague, D. A.; Pillinger, C. T.

    1986-06-01

    The carbon isotope geochemistry of glasses from Loihi Seamount has been compared with that of MORB glasses. Stepped heating shows two carbon components in both sample suites: (1) isotopically light carbon ( avg. ? 13C = -26.3 ) released < 600C, ascribed to surficial contamination, and (2) isotopically heavy carbon released > 600C, regarded as indigenous. The high-temperature component in MORB samples varied from 52 to 169 ppm C, average ? 13C = -6.6 , consistent with previous studies (overall MORD average ? 13C = -6.4 0.9 ), and new results for Indian Ocean glasses are similar to Atlantic and Pacific Ocean samples. Carbon release profiles produced by stepped heating may be typical of locality, but there are no significant differences in ? 13C values between MORB samples from different areas. Lower yields (17-110 ppm C) correlated with depth in the Loihi samples suggest that they are partially degassed. This degassing has not affected ? 13C values significantly (avg. -5.8). Loihi tholeiites have higher ? 13C (avg. -5.6) than the alkali basalts (avg. -7.1). Carbon abundances correlate well with He concentration data. Comparison of the ? 13C values with trace element and He, Sr, Nd, and Pb isotope data from the literature suggests that the Loihi samples with highest ? 13C have high 3He/ 4He and possibly the least depleted 143Nd/ 144Nd and 87Sr/ 86Sr. The carbon isotope data are consistent with previous models for Loihi involving several mantle sources, lithospheric contamination, and mixing. The slightly higher ? 13C of Loihi tholeiites suggests that the undegassed "plume" component manifested by high 3He/ 4He values might have ? 13C about 1 higher than the MORB average.

  17. Measurement of stable carbon isotope ratios of non-methane hydrocarbons and halocarbons

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A. T.

    2012-09-01

    Within the realm of volatile organic compounds, hydrocarbons and halocarbons form a sizable proportion of carbon input to the atmosphere. Within these compound categories, the light non-methane hydrocarbons (NMHC, two to seven carbon atoms) and monocarbon halocarbons have a special place as these have strong, if not exclusive, anthropogenic (human-caused) sources. With common atmospheric molar mixing ratios in the parts-per-trillion (10-12 mole/mole) to parts-per-billion (10-9 mole/mole) range, these trace gases, though decidedly minor constituants of the atmosphere, have diverse consequences due to their atmospheric presence and their removal processes. Effects range from causing ground level air pollution and resulting hazards to health, to contributing to anthropogenic climate change and the destruction of the ozone layer in the stratosphere, among many others. The existance of stable isotopes (otherwise identical atoms with varying amounts of neutrons that do not spontaneously disintegrate) in several elements relevant to atmospheric chemistry and physics is a boon to research. Their presence in molecules is detectable by mass and cause small intra- and intermolecular property changes. These changes range from the physical (e.g. boiling point variation) to the chemical (reaction rate variation) and can influence external interactions as well. The measurement of the ratio of a minor stable isotope of an element to the major one (the stable isotope ratio) can be used to establish source fingerprints, trace the interaction dynamics, and refine the understanding of the relative contribution of sources and sinks to the atmosphere as a whole. The stable minor stable isotope of carbon, 13C, has a natural abundance of approximately 1.1 %. It has a sufficient fractional mass difference from its major isotope as to cause significant effects, making it ideal for measuring the ratios and properties of hydro- and halocarbons. In order to enable a better understanding of the behavior of these compounds in terms of their sources, sinks, inter- and intramolecular processes, it was decided in 2006 to develop an instrument capable of selectively measuring NMHC mixing ratios and stable carbon isotope ratios for use in the laboratory of the Atmospheric Physics and Chemistry Group at Universiteit Utrecht. This thesis documents the successful development, construction, testing and first applications of this stable carbon isotope ratio instrument. It is divided into five chapters, representing the content of three publications and additional material: an introduction; a method section; and applications: analysis of NMHC stable carbon isotopes in urban ambient air, laboratory measurments of the isotope effects in UV degradation of monocarbon chlorofluorocarbons, isotope analysis of diverse gases from firn air samples from Greenland, plus a section on future perspectives

  18. [Carbon isotope fractionation inplants]. Final report

    SciTech Connect

    O`Leary, M.H.

    1990-12-31

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  19. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006-2008

    NASA Astrophysics Data System (ADS)

    Cai, Yihua; Guo, Laodong; Wang, Xuri; Aiken, George

    2015-11-01

    Sources, abundance, isotopic compositions, and export fluxes of dissolved inorganic carbon (DIC), dissolved and colloidal organic carbon (DOC and COC), and particulate organic carbon (POC), and their response to hydrologic regimes were examined through monthly sampling from the Lower Mississippi River during 2006-2008. DIC was the most abundant carbon species, followed by POC and DOC. Concentration and ?13C of DIC decreased with increasing river discharge, while those of DOC remained fairly stable. COC comprised 61 3% of the bulk DOC with similar ?13C abundances but higher percentages of hydrophobic organic acids than DOC, suggesting its aromatic and diagenetically younger status. POC showed peak concentrations during medium flooding events and at the rising limb of large flooding events. While ?13C-POC increased, ?15N of particulate nitrogen decreased with increasing discharge. Overall, the differences in ?13C between DOC or DIC and POC show an inverse correlation with river discharge. The higher input of soil organic matter and respired CO2 during wet seasons was likely the main driver for the convergence of ?13C between DIC and DOC or POC, whereas enhanced in situ primary production and respiration during dry seasons might be responsible for their isotopic divergence. Carbon export fluxes from the Mississippi River were estimated to be 13.6 Tg C yr-1 for DIC, 1.88 Tg C yr-1 for DOC, and 2.30 Tg C yr-1 for POC during 2006-2008. The discharge-normalized DIC yield decreased during wet seasons, while those of POC and DOC increased and remained constant, respectively, implying variable responses in carbon export to the increasing discharge.

  20. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  1. Experimental determination of carbon isotope fractionation between graphite and carbonated silicate melt under upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Mizutani, Shogo; Satish-Kumar, M.; Yoshino, Takashi

    2014-04-01

    Carbon isotope fractionation between graphite and carbonated silicate melt was determined at 5 GPa and in the temperature range between 1400 and 1900 C. High pressure experiments were carried out in the carbon-saturated model harzbergite system (Enstatite-Magnesite-Olivine-Graphite), where carbonated silicate melt and graphite were the two stable carbon-bearing phases in the run products. Carbonated silicate melting resulted in an isotopic fractionation between graphite and carbon in the silicate melt, where the carbon in the melt is 13C enriched than co-existing graphite. 13C enrichment in carbonate melt when compared to graphite was further confirmed in experiments where redox melting between olivine and graphite produced carbonate melt as well as carbonate reduction experiments to form graphite. Although a quantitative estimate of fractionation between carbonate melt and graphite could not be obtained, our results indicate that mantle melting in the presence of graphite can result in progressive 13C carbon isotope enrichment in carbonate melt and depletion in graphite, which can be an alternate explanation for the carbon isotopic heterogeneity observed in the mantle derived carbon.

  2. Stable carbon isotope fractionations of the hyperthermophilic crenarchaeon Metallosphaera sedula.

    PubMed

    van der Meer, M T; Schouten, S; Rijpstra, W I; Fuchs, G; Sinninghe Damsté, J S

    2001-03-01

    The stable carbon isotopic compositions of the inorganic carbon source, bulk cell material, and isoprenoid lipids of the hyperthermophilic crenarchaeon Metallosphaera sedula, which uses a 3-hydroxypropionate-like pathway for autotrophic carbon fixation, have been measured. Bulk cell material was approximately 3 per thousand enriched in 13C relative to the dissolved inorganic carbon, and 2 per thousand depleted in 13C relative to isoprenoid membrane lipids. The isotope data suggested that M. sedula uses mainly bicarbonate rather than CO(2) as inorganic carbon source, which is in accordance with a 3-hydroxypropionate-like carbon fixation pathway. To the best of our knowledge this is the first report of 13C fractionation effects of such a hyperthermophilic crenarchaeon. PMID:11257550

  3. Paleogene plants fractionated carbon isotopes similar to modern plants

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Currano, Ellen D.; Mueller, Kevin E.

    2015-11-01

    The carbon isotope composition (δ13 C) of terrestrial plant biomarkers, such as leaf waxes and terpenoids, provides insights into past carbon cycling. The δ13 C values of modern plant biomarkers are known to be sensitive to climate and vegetation type, both of which influence fractionation during lipid biosynthesis by altering plant carbon supply and its biochemical allocation. It is not known if fractionation observed in living plants can be used to interpret fossil lipids because plant biochemical characteristics may have evolved during the Cenozoic in response to changes in global climate and atmospheric CO2. The goal of this study was to determine if fractionation during photosynthesis (Δleaf) in the Paleogene was consistent with expectations based on living plants. To study plant fractionation during the Paleogene, we collected samples from eight stratigraphic beds in the Bighorn Basin (Wyoming, USA) that ranged in age from 63 to 53 Ma. For each sample, we measured the δ13 C of angiosperm biomarkers (triterpenoids and n-alkanes) and, abundance permitting, conifer biomarkers (diterpenoids). Leaf δ13 C values estimated from different angiosperms biomarkers were consistently 2‰ lower than leaf δ13 C values for conifers calculated from diterpenoids. This difference is consistent with observations of living conifers and angiosperms and the consistency among different biomarkers suggests ancient εlipid values were similar to those in living plants. From these biomarker-based δ13Cleaf values and independent records of atmospheric δ13 C values, we calculated Δleaf. These calculated Δleaf values were then compared to Δleaf values modeled by applying the effects that precipitation and major taxonomic group in living plants have on Δleaf values. Calculated and modeled Δleaf values were offset by less than a permil. This similarity suggests that carbon fractionation in Paleogene plants changed with water availability and major taxonomic group to about the same degree it does today. Further, paleoproxy data suggest at least two of the stratigraphic beds were deposited at times when pCO2 levels were higher than today. Biomarker data from these beds are not consistent with elevated Δleaf values, possibly because plants adapted carbon uptake and assimilation characteristics to pCO2 changes over long timescales.

  4. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with dairy activities (tractor exhaust) from plumes and sources in air enriched in methane and ammonia from bovine activities including waste maintenance. Methodology, laboratory data, field data from COWGAS, and field data from the COMEX campaign acquired by LGR's carbon isotope analyzer as well as other COMEX analyzers are presented.

  5. Submicron Measurements of Mg Isotopes in Biogenic Carbonates Using Laser Ablation-MC-ICPMS: New Window into Biomineralisation

    NASA Astrophysics Data System (ADS)

    Sadekov, A.; Lloyd, N. S.; Misra, S.; Funcke, A.; Shuttleworth, S.; Langer, G.; Bijma, J.; Elderfield, H.

    2014-12-01

    Magnesium is one of the most abundant elements in the earth's crust and in seawater. Fractionation of its stable isotopes has been shown to be useful indicators of many geological, chemical and biological processes. For example, biogenic carbonates display ~5‰ range of d26Mg values, which is attributed to variable degree of biological control on Mg ions during biomineralisation. Understanding this biological control is essential for developing proxies based on biogenic carbonates. Current methods of magnesium isotope measurements in carbonates are often time consuming and require relatively large volumes of samples. In this work, we present a new approach of measuring Mg isotopes in biogenic carbonates using Laser Ablation MC-ICP-MS. We will show that this microanalytical approach provides accurate and relatively fast measurements of Mg isotopes in biological carbonate with precision down to 0.2‰ (1sd). We will also present examples on how this new method can provide additional information about foraminiferal biomineralisation. For example, we will demonstrate submicron variation in Mg isotopes across shells of Orbulina universa, which are linked to high and low Mg/Ca layers in this species. We will also report changes in Mg isotope composition of benthic foraminifera Amphistegina sp. cultured in seawater with different Mg/Ca values. Both examples will be used to draw attention to the complexity and possibilities of multiple mechanisms of Mg incorporation into biogenic carbonates during biomineralisation.

  6. Using SPIRAL (Single Pollen Isotope Ratio AnaLysis) to estimate C 3- and C 4-grass abundance in the paleorecord

    NASA Astrophysics Data System (ADS)

    Nelson, David M.; Hu, Feng Sheng; Scholes, Daniel R.; Joshi, Neeraj; Pearson, Ann

    2008-05-01

    C 3 and C 4 grasses differ greatly in their responses to environmental controls and influences on biogeochemical processes (e.g. water, carbon, and nutrient cycling). Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. Stable carbon isotopic analysis of individual grains of grass pollen using a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer holds promise for improving C 3 and C 4 grass reconstructions. This technique, SPIRAL (Single Pollen Isotope Ratio AnaLysis), has only been evaluated using pollen of known C 3 and C 4 grasses. To test the ability of SPIRAL to reproduce the abundance of C 3 and C 4 grasses on the landscape, we measured ?13C values of > 1500 individual grains of grass pollen isolated from the surface sediments of ten lakes in areas that span a large gradient of C 3- and C 4-grass abundance, as determined from vegetation surveys. Results indicate a strong positive correlation between the ?13C-based estimates of % C 4-grass pollen and the abundance of C 4 grasses on the landscape. The % C 4-grass pollen slightly underestimates the actual abundance of C 4 grasses at sites with high proportions of C 4 grasses, which can be corrected using regression analysis. Comparison of the % C 4-grass pollen with C/N and ?13C measurements of bulk organic matter illustrates the distinct advantages of grass-pollen ?13C as a proxy for distinguishing C 3 and C 4 shifts within the grass family. Thus SPIRAL promises to advance our understanding of grassland ecology and evolution.

  7. Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale

    NASA Technical Reports Server (NTRS)

    Chicarelli, M. I.; Hayes, J. M.; Popp, B. N.; Eckardt, C. B.; Maxwell, J. R.

    1993-01-01

    The carbon and nitrogen isotopic compositions of seven of the most abundant alkylporphyrins from the Serpiano oil shale (marine, Triassic) were determined. For the C31 and C32 butanoporphyrins, values of delta 13CPDB and delta 15NAIR averaged -24.0% and -3.1%. In contrast, the C31 and C32 methylpropanoporphyrins, DPEP, and a C30 13-nor etioporphyrin had delta 13C and delta 15N values averaging -27.5 and -3.3%, respectively. Carbon and nitrogen isotopic values for kerogen averaged -30.8 and -0.9, whereas those for total extract averaged -31.6, and -4.0%. The butanoporphyrins apparently derive from a biological source different from that giving rise to the other porphyrins, their 13C enrichment not being related to carbon isotopic fractionation accompanying diagenetic reactions. The delta 15N values for all the porphyrins indicate that the depletion of 15N observed in the kerogen is of primary origin. Consistent with the very high abundance of hopanoids and methyl hopanoids in the aliphatic hydrocarbon fraction, it is suggested that cyanobacterial fixation of N2 may have been the main cause of 15N depletion.

  8. The early Cretaceous carbon- and oxygen-isotope record

    NASA Astrophysics Data System (ADS)

    Grocke, D. R.; Coccioni, R.; Price, G. D.; Arthur, M. A.

    2003-04-01

    Bulk-carbonate carbon- and oxygen-isotope analyses have been conducted on marlstones from a biostratigraphically-continuous section (Berriasian-Aptian) from Ro Argos, SE Spain. The stratigraphic succession at Ro Argos consists of rhythmic limestones with a bed thickness between 0.5-75cm that are inter-bedded with marlstones with a thickness between 0.005-1m. The limestone beds through the succession are considered to be the result of differential dissolution and cementation during diagenesis, and so only the marlstones have been analyzed for isotopic ratios. Carbon- and oxygen-isotope ratios through the entire section show both short- and long-term variation, although only the major shifts will be discussed in this abstract. Carbon-isotope ratios fluctuate between -1 ppm and +1.2 ppm during the Berriasian and Lower Valanginian, with a rapid positive excursion at the base of the Upper Valanginian to +2.6 ppm. Values subsequently decline gradually towards background values (+0.4 ppm to +1.6 ppm) during the Hauterivian. From the mid-Barremian carbon-isotope ratios fluctuate in two major cycles between -1 ppm to +2.2 ppm. The Lower Aptian records a major negative excursion from a background of +1.8 ppm to -2.5 ppm (that is equivalent to OAE1a), followed by a rapid shift to +3.3 ppm. No correlation is found between carbon- and oxygen-isotope ratios and although there may be some diagenetic overprint we interpret the oxygen-isotope curve in terms of temporal shifts in palaeotemperature; the oxygen-isotope range for the entire stratigraphic section is between -4.6 ppm to -1.8 ppm. The Berriasian has relatively positive oxygen-isotope ratios (cool), although by the Lower Valanginian the values become more negative (warm) peaking in the Upper Valanginian. Oxygen-isotope ratios gradually increase throughout the remainder of the stratigraphic section to a peak in the mid-Barremian (cool), followed by a rapid drop to more negative (warm) ratios and increase once again to more positive ratios (cool) in the Lower Aptian. Although global sea-level changes may also affect oxygen-isotope ratios it is intriguing to note that both warm periods coincide with the initiation of large igneous provinces (Paran-Etendeka, Valanginian; Ontong Java Plateau, Late Barremian).

  9. A method for carbon stable isotope analysis of methyl halides and chlorofluorocarbons at pptv concentrations.

    PubMed

    Archbold, Marie E; Redeker, Kelly R; Davis, Simon; Elliot, Trevor; Kalin, Robert M

    2005-01-01

    A pre-concentration system has been validated for use with a gas chromatography/mass spectrometry/isotope ratio mass spectrometer (GC/MS/IRMS) to determine ambient air (13)C/(12)C ratios for methyl halides (MeCl and MeBr) and chlorofluorocarbons (CFCs). The isotopic composition of specific compounds can provide useful information on their atmospheric budgets and biogeochemistry that cannot be ascertained from abundance measurements alone. Although pre-concentration systems have been previously used with a GC/MS/IRMS for atmospheric trace gas analysis, this is the first study also to report system validation tests. Validation results indicate that the pre-concentration system and subsequent separation technologies do not significantly alter the stable isotopic ratios of the target methyl halides, CFC-12 (CCl(2)F(2)) and CFC-113 (C(2)Cl(3)F(3)). Significant, but consistent, isotopic shifts of -27.5 per thousand to -25.6 per thousand do occur within the system for CFC-11 (CCl(3)F), although the shift is correctible. The method presented has the capacity to separate these target halocarbons from more than 50 other compounds in ambient air samples. Separation allows for the determination of stable carbon isotope ratios of five of these six target trace atmospheric constituents within ambient air for large volume samples (carbon isotope results similar to published values for (13)C/(12)C analysis of MeCl (-39.1 per thousand) and CFC-113 (-28.1 per thousand). However, this is the first paper reporting stable carbon isotope signatures for CFC-11 (-29.4 per thousand) and CFC-12 (-37.0 per thousand). PMID:15645502

  10. Does burial diagenesis reset pristine isotopic compositions in paleosol carbonates?

    NASA Astrophysics Data System (ADS)

    Bera, M. K.; Sarkar, A.; Tandon, S. K.; Samanta, A.; Sanyal, P.

    2010-11-01

    Sedimentological study of early Oligocene continental carbonates from the fluvial Dagshai Formation of the Himalayan foreland basin, India resulted in the recognition of four different types namely, soil, palustrine, pedogenically modified palustrine and groundwater carbonates. Stable oxygen and carbon isotopic ( δ18O and δ13C) analyses of fabric selective carbonate microsamples show that although the pristine isotopic compositions are largely altered during deep-burial diagenesis, complete isotopic homogenization does not occur. δ18O and δ13C analyses of ~ 200 calcrete and palustrine carbonates from different stratigraphic horizons and comparison with δ18O of more robust bioapatite (fossil vertebrate tooth) phase show that dense micrites (~ > 70% carbonate) invariably preserve the pristine δ18O value (mean) of ~ - 9.8‰, while altered carbonates show much lower δ18O value ~ - 13.8‰. Such inhomogeneity causes large intra-sample and intra-soil profile variability as high as > 5‰, suggesting that soils behave like a closed system where diagenetic overprinting occurs in local domains. A simple fluid-rock interaction model suggests active participation of clay minerals to enhance the effect of fluid-rock ratio in local domains during diagenesis. This places an upper limit of 70% micrite concentration above which the effect of diagenetic alteration is minimal. Careful sampling of dense micritic part of the soil carbonate nodules, therefore, does provide pristine isotopic composition and it is inappropriate, as proposed recently, to reject the paleoclimatic potential of all paleosol carbonates affected by burial diagenesis. Based on pristine δ13C value of - 8.8 ± 0.2‰ in soil carbonates an atmospheric CO 2 concentration between ~ 764 and ~ 306 ppmv is estimated for the early Oligocene (~ 31 Ma) Dagshai time. These data show excellent agreement between two independent proxy records (viz. soil carbonate and marine alkenone) and support early Oligocene survival of the Antarctic ice sheet.

  11. The evolution of carbon, sulphur and titanium isotopes from high redshift to the local Universe

    NASA Astrophysics Data System (ADS)

    Hughes, G. L.; Gibson, B. K.; Carigi, L.; Snchez-Blzquez, P.; Chavez, J. M.; Lambert, D. L.

    2008-11-01

    Recent observations of carbon, sulphur and titanium isotopes at redshifts z~1 and in the local stellar disc and halo have opened a new window into the study of isotopic abundance patterns and the origin of the chemical elements. Using our Galactic chemical evolution code GETOOL, we have examined the evolution of these isotopes within the framework of a Milky Way-like system. We have three aims in this work: first, to test the claim that novae are required, in order to explain the carbon isotope patterns in the Milky Way; secondly, to test the claim that sulphur isotope patterns at high redshift require an initial mass function (IMF) biased towards massive stars; and thirdly, to test extant chemical evolution models against new observations of titanium isotopes that suggest an anti-correlation between trace-to-dominant isotopes with metallicity. Based upon our dual-infall galactic chemical evolution modelling of a Milky Way-like system and the subsequent comparison with these new and unique data sets, we conclude the following: novae are not required to understand the evolution of 12C/13C in the solar neighbourhood; a massive star-biased IMF is consistent with the low ratios of 12C/13C and 32S/34S seen in one high-redshift late-type spiral, but the consequent super-solar metallicity prediction for the interstellar medium in this system seems highly unlikely; and deficient isotopes of titanium are predicted to correlate positively with metallicity, in apparent disagreement with the new data sets; if confirmed, classical chemical evolution models of the Milky Way (and the associated supernovae nucleosynthetic yields) may need a substantial overhaul to be made consistent.

  12. Investigation of tubular handling of bicarbonate in man. A new approach utilizing stable carbon isotope fractionation.

    PubMed Central

    Burbea, Z H; Luz, B; Lazar, B; Winaver, J; Better, O S

    1983-01-01

    Two alternative mechanisms have been proposed for tubular reabsorption of bicarbonate: (a) H+ secretion and CO2 reabsorption and (b) direct reabsorption of HCO-3. In an attempt to differentiate between the two mechanisms, the present study utilized the natural abundance of stable carbon isotopes (13C, 12C) in the urinary total CO2. This novel methodology used mass spectrometric analysis of 13C/12C ratios in urinary total CO2 under normal conditions and during acetazolamide treatment. Blood and respiratory CO2 were analyzed to yield reference values. The results demonstrate that alkaline urine is preferentially enriched with 13C relative to the blood. It is suggested that this fractionation results from reaction out of isotopic equilibrium in which HCO-3 converts to CO2 during the reabsorption process in the distal nephron. The presence of carbonic anhydrase in the proximal nephron results in rapid isotopic exchange between CO2 and HCO-3 and keeps them in isotopic equilibrium. The ratio of urinary 13C/12C increases strikingly after acetazolamide administration and consequent inhibition of carbonic anhydrase in the proximal tubule. Although it is possible that in the latter case high HCO-3 generates the CO2 (ampholyte effect), the isotope fractionation indicates that CO2 rather than HCO-3 is reabsorbed. In contrast, at low urinary pH and total CO2 values, the carbon isotope composition approaches that of blood CO2. This indicates rapid CO2 exchange between urine and blood, through luminal membrane highly permeable to CO2. These results could be anticipated by a mathematical model constructed to plot 13C concentration of urinary total CO2. It is concluded that the mechanism of HCO-3 reclamation in man (and, by inference, in other mammals as well) works by conversion of HCO-3 to CO2 and reabsorption of CO2. PMID:6417168

  13. Major and trace element abundances, and Sr and Nd isotopic composition of Carbonatites from Amba Dongar, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Chandra, Jyoti; Paul, Debajyoti; Viladkar, Shrinivas G.; Sensarma, Sarajit

    2015-04-01

    Despite significant progress during the last decade, the petrogenesis of carbonatites is still highly debated regarding the exact mechanism of carbonatite magma generation (fractional crystallization of carbonated-silicate magmas, liquid immiscibility of carbonated-silicate magmas, partial melting of carbonated mantle peridotite or carbonated lherzolitic mantle) and its evolution. The Amba Dongar carbonatite complex in Chhota Udaipur district, Gujarat is the youngest Indian carbonatite complex, which intruded into the ~ 90 Ma Bagh sandstones and limestone and 68-65 Ma Deccan flood basalts. The emplacement age (40Ar/39Ar age of 650.3 Ma; Ray and Pande, 1999) coincides with the age of main pulse of Deccan flood basalts at ca. 65 Ma. We report new geochemical data (major oxide and trace element abundances, and Sr and Nd isotopic ratios) on 23 carbonatite samples from Amba Dongar. The Amba Dongar carbonatite complex consists of carbonatite (svite, and ankerite), and associated nephelinite, phonolite, and both pre- and post-carbonatite basalts. Detailed minerology of carbonatite include dominant calcite along with pyrochlore, apatite, magnetite, aegirine-augite and accessory phases. Apatite crystals are observed in carbonatite as well as in nephelinite. In svites, apatite occur in various forms including cumulus, clusters and scattered within and along the boundary of calcite crystals. Two generation of apatite crystals are commonly observed in svite and nephelinite; textural changes suggest presence of different five pulses of svitic magma during the emplacement of the svite ring dike. Bulk major oxides and trace element (including REEs) compositions of carbonatites and associated silicate rocks are determined by WD-XRF and ICP-MS, respectively. Major oxides abundances are consistent with the already available data on the Amba Dongar carbonatite complex. Trace element concentrations for the svite reveals high concentrations of Sr (929-7476 ppm), Ba (344-52072 ppm) and Nb (35-2115 ppm). The ankeritic carbonatites are extremely enriched in the incompatible trace elements (e.g., ~7-32 times higher Ba, highest REE ~40,000 ppm and ~600 ppm of Th). Chondrite-normalized REE patterns show high degree of LREE enrichment suggesting low-degree partial melting of the source. The chondrite normalized La/Yb ratio of svite and ankeritic carbonatite vary in the range 70-411. The radiogenic Sr-Nd isotopic composition of svites (87Sr/86Sr: 0.7055-0.7066; ?Nd: -6.0 to -2.2) and ankerites (0.7058-0.7081; -3.8 to -1.9) reveal more isotopic variability compared to the available data (svites 0.7054-0.706; -2.5 to -1.5; ankerites 0.7056-0.7065; -2.5 to -1.5). It is likely that EM I and II type sources are involved in the generation of Amba Dongar carbonatite complex. More data on carbonatites and associated silicate rocks will be helpful to establish the composition of parental carbonatite melts, depth of generation (lithosphere vs asthenosphere), their spatial relation with associated silicate rocks, and the evolution of the primary carbonatite melt over time.

  14. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism.

    PubMed

    Kaufman, A J; Hayes, J M; Knoll, A H; Germs, G J

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late Proterozoic seawater. Within the Damara basin, carbon-isotopic compositions of carbonates provide a potentially useful tool for the correlation of units between the Kalahari and Congo cratons. Carbonates depleted in 13C were deposited during and immediately following three separate glacial episodes in Namibia. The correspondence between ice ages and negative delta 13C excursions may reflect the effects of lowered sea levels; enhanced circulation of deep, cold, O2-rich seawater; and/or the upwelling of 13C-depleted deep water. Iron-formation is additionally associated with one of the glacial horizons, the Chuos tillite. Carbon-13 enriched isotopic abundances in immediately pre-glacial carbonates suggest that oceanographic conditions favored high rates of organic burial. It is likely that marine waters were stratified, with deep waters anoxic. A prolonged period of ocean stratification would permit the build-up of ferrous iron, probably from hydrothermal sources. At the onset of glaciation, upwelling would have brought 13C-depleted and iron-rich deep water onto shallow shelves where contact with cold, oxygenated surface waters led to the precipitation of ferric iron. PMID:11538647

  15. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism

    NASA Technical Reports Server (NTRS)

    Kaufman, A. J.; Hayes, J. M.; Knoll, A. H.; Germs, G. J.

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late Proterozoic seawater. Within the Damara basin, carbon-isotopic compositions of carbonates provide a potentially useful tool for the correlation of units between the Kalahari and Congo cratons. Carbonates depleted in 13C were deposited during and immediately following three separate glacial episodes in Namibia. The correspondence between ice ages and negative delta 13C excursions may reflect the effects of lowered sea levels; enhanced circulation of deep, cold, O2-rich seawater; and/or the upwelling of 13C-depleted deep water. Iron-formation is additionally associated with one of the glacial horizons, the Chuos tillite. Carbon-13 enriched isotopic abundances in immediately pre-glacial carbonates suggest that oceanographic conditions favored high rates of organic burial. It is likely that marine waters were stratified, with deep waters anoxic. A prolonged period of ocean stratification would permit the build-up of ferrous iron, probably from hydrothermal sources. At the onset of glaciation, upwelling would have brought 13C-depleted and iron-rich deep water onto shallow shelves where contact with cold, oxygenated surface waters led to the precipitation of ferric iron.

  16. A robust method for ammonium nitrogen isotopic analysis in freshwater and seawater at natural abundance levels

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Altabet, M. A.; Wu, T.; Hadas, O.

    2006-12-01

    Natural ammonium N isotopic abundance has been increasingly used in studies of marine and freshwater biogeochemistry. However, current methods are time-consuming, subject to interference from DON, and not reliable at low concentrations. Our new method for determining the δ15N of ammonium overcomes these difficulties by employing the oxidation of ammonium to nitrite followed by conversion of nitrite to nitrous oxide. In the first step, ammonium is quantitatively oxidized by hypobromite at pH~12. After the addition of sodium arsenite to consume excess hypobromite, yield is verified by colorimetric NO2-measurement using sulfanilamide and naphthyl ethylenediamine (NED). Nitrite is further reduced to N2O by a 1:1 sodium azide and acetic acid buffer solution using previously established procedures. Buffer concentration can be varied according to sample matrix to ensure that a reaction pH between 2 and 4 is reached. The product nitrous oxide is then isotopically analyzed using a continuous flow purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. Reliable δ15N values (±0.31‰) are obtained over a concentration range of 0.5 μM to 20 μM using 20 ml volumes of either fresh or seawater samples. Reagent blanks are very low, about 0.05 μM. There is no interference from any of the nitrogen containing compounds tested except short chain aliphatic amino acid (i.e. glycine) which typically are not present at sufficiently high environmental concentrations to pose a problem.

  17. The Carboniferous carbon isotope record from sedimentary organic matter: can we disentangle the carbon cycle?

    NASA Astrophysics Data System (ADS)

    Davies, S. J.; Bennett, C. E.; Leng, M. J.; Kearsey, T.; Marshall, J. E.; Millward, D.; Reeves, E. J.; Snelling, A.; Sherwin, J. E.

    2014-12-01

    A comprehensive analysis of the δ13C composition of sedimentary organic matter from Euramerican Carboniferous successions indicates there are significant shifts in δ13C through this key time interval. Our studies have revealed that, at an individual location, the source and delivery mechanism of the sediment contribute to the type of organic matter preserved and, in turn this influences the measured δ13C values from bulk sedimentary organic matter of organic matter. In general, where marine-derived organic matter is dominant in these Carboniferous successions then δ13C values are characteristically lower compared to the higher values encountered where terrestrial plant-derived material is most abundant. The implication of these observations is that an apparent carbon isotope excursion identified from the bulk organic matter may reflect a change in transport processes, or depositional environment, rather than a perturbation in the global carbon cycle. In our most recent studies, however, we compare δ13C values from specific wood fragments and bulk sedimentary organic matter from non-marine, marine basinal, and marine shelfal successions from the earliest Mississippian through to the early Pennsylvanian. These data indicate that early Mississippian δ13C of organic matter is far less negative (around -22%0) than material of Late Mississippian age (around -26%0), however by the early Pennsylvanian, δ13C values return to -22%0. There are some δ13C data from brachiopod carbonate from this time interval and similar shifts are indicated. Our data are beginning to address whether we can identify a primary carbon cycle signal from the Carboniferous record using δ13C from a range of sedimentary environments. If we can, there are still questions around what the record is telling us about the global carbon cycle during a period when plant groups, including lycopods and seed ferns, rapidly diversified.

  18. Late Glacial Tropical Savannas in Sundaland Inferred From Stable Carbon Isotope Records of Cave Guano

    NASA Astrophysics Data System (ADS)

    Wurster, C. M.; Bird, M. I.; Bull, I.; Dungait, J.; Bryant, C. L.; Ertunç, T.; Hunt, C.; Lewis, H. A.; Paz, V.

    2008-12-01

    During the Last Glacial Period (LGP), reduced global sea level exposed the continental shelf south of Thailand to Sumatra, Java, and Borneo to form the contiguous continent of Sundaland. However, the type and extent of vegetation that existed on much of this exposed landmass during the LGP remains speculative. Extensive bird and bat guano deposits in caves throughout this region span beyond 40,000 yr BP, and contain a wealth of untapped stratigraphic palaeoenvironmental information. Stable carbon isotope ratios of insectivorous bird and bat guano contain a reliable record of the animal's diet and, through non-specific insect predation, reflect the relative abundance of major physiological pathways in plants. Various physiological pathways of carbon fixation in plants yield differing stable carbon isotope ratios. Stable carbon isotope values of C3 plants are lower than C4 vegetation due to different enzymatic discriminations of the heavy isotope through the carbon fixing pathways. In tropical locales, grasses nearly always follow the C4 photosynthetic pathway, whereas tropical rainforest uses C3 photosynthesis, providing a proxy for vegetation and therefore climate change in the past. Here we discuss four guano stable-isotope records, based on insect cuticle and n-alkane analysis, supplemented by pollen analysis. All sites suggest a C3 dominated ecosystem for the Holocene, consistent with the wet tropical forest vegetation present at all locations. Two sites from Palawan Island, Philippines, record stable carbon isotope values of guano that document a drastic change from C3 (forest) to C4 (savanna) dominated ecosystems during the Last Glacial Maximum (LGM). A third location, at Niah Great Cave, Malaysia, indicates C3-dominant vegetation throughout the record, but does display variation in stable carbon isotope values likely linked to humidity changes. A fourth location, Batu Caves in Peninsular Malaysia, also indicates open vegetation during the LGM. Vegetation models disagree as to the nature of vegetation during the LGM in Sundaland, but our results suggest major contraction of forest area with significant implications for carbon storage during the LGM and also for understanding the development of modern biogeographic and genetic patterns in the region. Additional cave guano sites will provide further constraints on the nature of environmental change in the region over the last glacial cycle.

  19. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  20. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    SciTech Connect

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.

  1. Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene

    PubMed Central

    Mancini, Silvia A.; Ulrich, Ania C.; Lacrampe-Couloume, Georges; Sleep, Brent; Edwards, Elizabeth A.; Sherwood Lollar, Barbara

    2003-01-01

    Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (?) for carbon (range of ?1.9 to ?3.6) and hydrogen (range of ?29 to ?79) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field. PMID:12513995

  2. BOREAS TE-5 Tree Ring and Carbon Isotope Ratio Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data include tree ring widths and cellulose carbon isotope data from coniferous trees collected at the BOREAS NSA and SSA in 1993 and 1994 by the BOREAS TE-5 team. Ring width data are provided for both Picea mariana and Pinus banksiana. The carbon isotope data are provided only for Pinus banksiana. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Carbon and oxygen abundances across the Hertzsprung gap

    SciTech Connect

    Adamczak, Jens; Lambert, David L. E-mail: dll@astro.as.utexas.edu

    2014-08-10

    We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high-resolution spectra (R = 60,000) of 188 stars in the mass range 2-5 M{sub ☉} with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower-mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with T{sub eff} < 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.

  4. Contrasting the CO2-He Isotope and Relative Abundance Systematics of the Central American and IBM Arcs

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Fischer, T. P.; Shaw, A. M.; Hauri, E.; Walker, J.

    2006-12-01

    We report CO2 and He isotope and relative abundance data obtained utilizing high-T fumaroles, geothermal wells, boiling mud pots, hot springs and phenocryst-bearing lavas from both MARGINS-targeted regions. In Central America, we collected ~140 fluid and ~30 lava samples covering a total of 41 volcanic centers in Costa Rica (7), Nicaragua (8), El Salvador (10), Honduras (9) and Guatemala (7). Along the IBM arc, we sampled the islands of Uracas, Agrigan, Pagan and Alamagan in the CNMI and Oshima, Niijima, Shikinajima, Hachijojima and Aogashima in the Izu islands. Helium isotope ratios (3He/4He) reach a maximum of 8RA (where RA = air 3He/4He) with most values > 5 RA. The majority of samples have CO2/3He ratios between 1010 and 1011, as at other arcs. The ?13C of the CO2 for the majority of samples fall between -5 and 0 (PDB) consistent with a major slab input to the carbon inventory. The entire database has been assessed to identify samples unmodified by localised crustal processes (~75% of total), thereby defining the He and C systematics of the underlying mantle source. At both arcs, we utilize along-strike He-C variations to consider the relative influence of various subduction zone forcing functions on the output C-flux. We show that subducted sediment lithology, particularly down-hole C distribution and the nature (oxidized/reduced) of the C, is a major control on the output as opposed to other factors such as angle of slab dip, convergence rate, and thickness of overlying arc crust.

  5. Combining stable isotope isotope geochemistry and carbonic anhydrase activity to trace vital effect in carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Thaler, C.; Ader, M.; Menez, B.; Guyot, F. J.

    2013-12-01

    Carbonates precipitated by skeleton-forming eukaryotic organisms are often characterized by non-equilibrium isotopic signatures. This specificity is referred to as the "vital effect" and can be used as an isotopic evidence to trace life. Combining stable isotope geochemistry and enzymology (using the enzyme carbonic anhydrase) we aim to demonstrate that prokaryotes are also able to precipitate carbonate with a non-equilibrium d18OCaCO3. Indeed, if in an biomineralization experiment carbonates are precipitated with a vital effect, the addition of carbonic anhydrase should drive the system to isotope equilibrium, And provide a comparison point to estimate the vital effect range. This protocol allowed us to identify a -20‰ vital effect for the d18O of carbonates precipitated by Sporosarcina pasteurii, a bacterial model of carbonatogen metabolisms. This approach is thus a powerfull tool for the understanding of microbe carbonatogen activity and will probably bring new insights into the understanding of bacterial activity in subsurface and during diagenesis.

  6. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  7. Interpreting the Ca isotope record of marine biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Sime, Neil G.; De La Rocha, Christina L.; Tipper, Edward T.; Tripati, Aradhna; Galy, Albert; Bickle, Michael J.

    2007-08-01

    An 18 million year record of the Ca isotopic composition (? 44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. ? 44/42Ca in this record averages +0.37 0.05 (1 ? SD) and ranges from +0.21 to +0.52. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25 lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their ? 44/42Ca (i.e., by 0.06 0.06 ( n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in ? 44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (? 44/42Ca w) and for isotope fractionation associated with the production of carbonate sediments (? sed) results in unrealistically large variations in the total mass of Ca 2+ in the oceans over the Neogene. Alternatively, variations of 0.05 in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in ? 44/42Ca w of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in ? sed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in ? 44/42Ca w and ? sed have been established, modeling the Ca 2+ content of seawater from Ca isotope curves should be approached cautiously.

  8. Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures

    NASA Astrophysics Data System (ADS)

    Wada, Hideki; Suzuki, Kazuhiro

    1983-04-01

    The temperature dependence of carbon isotopic fractionations between calcite and graphite, and between dolomite and graphite are calibrated by the calcite-dolomite solvus geothermometry using marbles collected from the contact metamorphic aureole in the Kasuga area, central Japan. The carbon isotopic fractionations ( ?13CCc- Gr and ?13CDo? Gr) systematically decrease with increasing metamorphic temperature. The concordant relationships between the fractionations and solvus temperatures are approximately linear with T-2 over the temperature range. 400 to 680C: ?13CCc? Gr (%.) = 5.6 10 6 T-2 (K) - 2.4 ?13CDo? Gr (%.) = 5.9 10 6 T-2 ( K) - 1.9 These systematic relationships between fractionation and temperature suggest that carbon isotopic equilibria between carbonates and graphite were attained in many cases. The equation for the calcite-graphite system has a slope steeper than BOTTINGA'S (1969) results. It is, however, in good agreement with that of VALLEY and O'NEIL (1981) in the temperature range from 600 to 800C. Because of the relatively high sensitivity to temperature, these isotopic geothermometers are useful for determining the temperatures in moderate- to high-grade metamorphosed carbonate rocks.

  9. Carbon Abundance Plateaus among Carbon-Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Yoon, Jinmi; He, Siyu; Placco, Vinicius; Carollo, Daniela; Beers, Timothy C.

    2016-01-01

    A substantial fraction of low-metallicity stars in the Milky Way, the Carbon-Enhanced Metal-Poor (CEMP) stars, exhibit enhancements of their carbon-to-iron relative to the solar value ([C/Fe] > +0.7). They can be divided into several sub-classes, depending on the nature and degree of the observed enhancements of their neutron-capture elements, providing information on their likely progenitors. CEMP-s stars (which exhibit enhanced s-process elements) are thought to be enhanced by mass transfer from an evolved AGB companion, while CEMP-no stars (which exhibit no over-abundances of neutron-capture elements) appear to be associated with explosions of the very first generations of stars. High-resolution spectroscopic analyses are generally required in order to make these sub-classifications.Several recent studies have suggested the existence of bimodality in the distribution of absolute carbon abundances among CEMP stars -- most CEMP-no stars belong to a low-C band ((A(C) ˜ 6.5), while most CEMP-s stars reside on a high-C band (A(C) ˜ 8.25). The number of CEMP stars considered by individual studies is, however, quite small, so we have compiled all available high-resolution spectroscopic data for CEMP stars, in order to further investigate the existence of the claimed carbon bi-modality, and to consider what can be learned about the progenitors of CEMP-s and CEMP-no stars based on the observed distribution of A(C) on the individual plateaus.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  10. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates

    NASA Astrophysics Data System (ADS)

    Huang, Kang-Jun; Shen, Bing; Lang, Xian-Guo; Tang, Wen-Bo; Peng, Yang; Ke, Shan; Kaufman, Alan J.; Ma, Hao-Ran; Li, Fang-Bing

    2015-09-01

    Available Mg isotope data indicate that dolostones of different ages have overlapping range of Mg isotopic composition (?26Mg) and there is no systematic difference among different types of dolomites. To further explore the Mg isotopic systematics of dolomite formation, we measured Mg isotopic compositions of Mesoproterozoic dolostones from the Wumishan Formation in North China Block, because dolomite formation in Mesoproterozoic might have been fundamentally different from the younger counterparts. Based on petrographic observations, three texturally-different dolomite phases (dolomicrite, subhedral dolomite and anhedral dolomite) are recognized in the Wumishan dolostones. Nevertheless, these three types of dolomites have similar ?26Mg values, ranging from -1.35 to -1.72, which are indistinguishable from Neoproterozoic and Phanerozoic dolostones. To explain ?26Mg values of dolostones, we simulate the Mg isotopic system during dolomite formation by applying the one-dimensional Diffusion-Advection-Reaction (1D-DAR) model, assuming that the contemporaneous seawater is the Mg source of dolostone. The 1D-DAR modeling results indicate that the degree of dolomitization is controlled by sedimentation rate, seawater Mg concentration, temperature, and reaction rate of dolomite formation, whereas Mg isotopic composition of dolostone is not only dependent on these factors, but also affected by ?26Mg of seawater and isotope fractionation during dolomite formation. Moreover, the 1D-DAR model predicts that dolomite formation within sediments has limited range of variation in ?26Mg with respect to limestones. Furthermore, the modeling results demonstrate that dolostone is always isotopically heavier than Ca-carbonate precipitated from seawater, explaining the systematic isotopic difference between dolostones and limestones. Finally, we can infer from the 1D-DAR model that early-formed dolostone at shallower depth of sediments is always isotopically lighter than that formed in deeper sediments, suggesting the potential application of Mg isotope as a proxy for constraining dolostone formation.

  11. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900 C, in 25 intervals. The samples were then ground to a standardized grain-size (45<63? m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1 ) during heating to 650 C. A 4 increase in stable carbon isotopic composition then occurs between 650-750 C, accompanied by an increase in CI, followed by a 10 decline at temperatures above 800 C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10 below 500 C, 5-6 between 500-700 C, and 8-10 above 700 C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675 C, compared with much larger changes in oxygen isotopic composition, especially above 300 C. On average, original isotopic compositions are largely preserved for both phosphate (+/-1 ) and carbonate (+/-2 ) oxygen at <300 C. At higher temperatures, however, both phosphate and carbonate oxygen in the bioapatite are systematically depleted of oxygen-18 relative to original values.

  12. Carbon isotope systematics of a mantle "hotspot": a comparison of Loihi Seamount and MORB glasses

    USGS Publications Warehouse

    Exley, R.A.; Mattey, D.P.; Clague, D.A.; Pillinger, C.T.

    1986-01-01

    The carbon isotope geochemistry of glasses from Loihi Seamount has been compared with that of MORB glasses. Stepped heating shows two carbon components in both sample suites: (1) isotopically light carbon (avg. ??13C = -26.3???) released 600??C, regarded as indigenous. The high-temperature component in MORB samples varied from 52 to 169 ppm C, average ??13C = -6.6???, consistent with previous studies (overall MORD average ??13C = -6.4 ?? 0.9???), and new results for Indian Ocean glasses are similar to Atlantic and Pacific Ocean samples. Carbon release profiles produced by stepped heating may be typical of locality, but there are no significant differences in ??13C values between MORB samples from different areas. Lower yields (17-110 ppm C) correlated with depth in the Loihi samples suggest that they are partially degassed. This degassing has not affected ??13C values significantly (avg. -5.8???). Loihi tholeiites have higher ??13C (avg. -5.6???) than the alkali basalts (avg. -7.1???). Carbon abundances correlate well with He concentration data. Comparison of the ??13C values with trace element and He, Sr, Nd, and Pb isotope data from the literature suggests that the Loihi samples with highest ??13C have high 3He/4He and possibly the least depleted 143Nd/144Nd and 87Sr/86Sr. The carbon isotope data are consistent with previous models for Loihi involving several mantle sources, lithospheric contamination, and mixing. The slightly higher ??13C of Loihi tholeiites suggests that the undegassed "plume" component manifested by high 3He/4He values might have ??13C about 1??? higher than the MORB average. ?? 1986.

  13. Hydrocarbon analogs of cosmic dust to trace the solid carbon abundance in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Gadallah, Kamel A. K.

    2015-01-01

    The spectral changes of hydrogenated amorphous carbon (HAC) could show variable distributions of solid carbon abundance in the interstellar medium (ISM). The variable optical properties of HAC analogs, produced by the laser ablation in a high vacuum, depends on the variation in its atomic and electronic structures. The fraction of hydrogen atoms in HAC increases proportionally with the laser's power. The available solid carbon tied up in the interstellar HAC, being the carrier of the interstellar 3.4 ? m and 4.6 ? m-1 bands, is indicated by the strength of these bands. Comparing the strength of these bands with those of laboratory data indicates that the amount of carbon in HAC analogs is not inherently sufficient. The lack in the solid carbon (locked solid carbon) in these analogs can be analytically estimated to facilitate the simulation of cosmic carbon dust. The results show a reduction in the locked solid carbon when the fraction of hydrogen atoms in HAC analogs increases. When this fraction becomes approximately 0.52 relative to the total number of hydrogen and carbon atoms, there is no lack of carbon in HAC analogs. The interstellar distribution of variable solid carbon abundance is attributed to the modification of cosmic HAC, which occurs as a result of the variation in its hydrogen atom fraction and the UV processing taking place in the interstellar environments. This distribution reveals more solid carbon abundances reside in the dust phase and may assist in resolving the carbon crisis.

  14. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  15. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE TO STAND DENSITY REDUCTIONS IN OLD PINUS PONDEROSA TREES

    EPA Science Inventory

    Carbon isotope ratios ( 13C) of tree rings are commonly used for paleoclimatic reconstruction and for inferring canopy water-use efficiency (WUE). However, the responsiveness of carbon isotope discrimination ( ) to site disturbance and resource availability has only rarely been ...

  16. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  17. Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2005-06-01

    The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable ? 13C values ranging from +27 to +64 . The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO 2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth.

  18. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Kass, David M.; Ehlmann, Bethany L.; Yung, Yuk

    2014-11-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Marss atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its iso-topic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospher-ic pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Marss atmosphere, recent orbiter, lander, and rover measurements of Marss surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a frac-tionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Marss atmos-phere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Marss history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  19. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2014-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its isotopic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars's history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  20. Carbon and Oxygen Isotopic Ratios for Miras

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-01-01

    We have measured vibration-rotation first and second overtone 12C16O, 13C16O, 12C17O, 12C18O lines in 1.5 to 2.5 micron spectra of 41 Mira and SRa stars. These measurements have been used to derive 12C/13C, 16O/17O, and 16O/18O isotopic ratios. The ratios are compared to available literature values for the individual stars and the ratios are compared to isotopic ratios for various samples of evolved stars. Models for solar composition AGB stars of different initial masses are compared to the results. We find that the majority of the M stars had main sequence masses <1.5 solar mass and have not experienced the third dredge up. The progenitors of the S and C Miras in the sample were more massive but no stars in the sample show evidence of hot bottom burning.

  1. On the isotopic composition of magmatic carbon in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1992-01-01

    SNC meteorites are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC meteorites. In order to establish a firm basis for studying the isotopic systematics of carbon in the martian surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC meteorites, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC meteorites are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC meteorites to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of martian surface materials does have the necessary information with which to proceed.

  2. Hydropyrolysis as a preparative method for the compound-specific carbon isotope analysis of fatty acids.

    PubMed

    Sephton, Mark A; Meredith, Will; Sun, Cheng-Gong; Snape, Colin E

    2005-01-01

    Compound-specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry is an effective and risk-free means of investigating fatty acid metabolism. Straightforward analysis, however, leads to poor chromatographic resolution, while derivatization adds carbon thereby corrupting the starting stable isotopic composition. Hydropyrolysis is a new approach which defunctionalizes fatty acids to yield the corresponding n-alkanes thus retaining the carbon skeleton intact and improving chromatography, allowing the faithful measurement of carbon isotope ratios. PMID:15645412

  3. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.

    2004-04-01

    A series of laboratory studies were conducted to increase understanding of stable carbon ( 13C/ 12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7 (? = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H 2/CO 2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO 2 and CH 4 was found to range from 22 to 58 (1.023 ? ? ? 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H 2O and CH 4 was found to range from 127 to 275 (1.16 ? ? ? 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the ?D-H 2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H 2/CO 2. The relatively small fractionation associated with deuterium during H 2/CO 2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential reversibility in the enzymatic steps of the H 2/CO 2 pathway gives rise to variability in the observed carbon isotope fractionation. Results are further used to constrain the overall efficiency of electron consumption by way of the hydrogenase system in M. marburgensis, which is calculated to be less than 55%.

  4. Carbon Isotope Discrimination in Leaves of C3 Plants

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Gleixner, G.

    2009-04-01

    Carbon isotope composition is regarded as a powerful tool in understanding carbon cycling, both as a tracer and as a process recorder. However, accurate predictions of, for example, partitioning the net carbon flux into its components or obtaining climate information from tree rings, requires a good understanding of plant metabolism and related isotopic fractionations. Mechanistic models have concentrated largely on photosynthetic pathways and their isotopic composition. This cannot be said for respiratory processes. The mechanistic models of leaf isotope discrimination hence do not describe dawn, dusk and night very realistically or not at all. A new steady-state approach of the carbon isotope distribution in glucose potentially addresses the time of twilight and night (Tcherkez et al. 2004). Here, a new model of 13C discrimination in leaves of C3 plants is presented. The model is based on the steady-state approach of Tcherkez et al. (2004) but with much reduced complexity while retaining its general characteristics. In addition, the model introduces some new concepts such as a day-length dependent starch synthesis, night-length dependent starch degradation, energy-driven biosynthesis rates, and continuous leaf discrimination calculation for the whole diel cycle. It is therefore well adapted for biosphere-atmosphere exchange studies. The model predicts enriched sucrose and starch pools in the leaf compared to assimilated CO2. Biosynthesis on the other hand acts as the sink of the remaining, depleted carbon. The model calculates slightly different absolute starch compositions from the Tcherkez et al. (2004) model but this depends on chosen fractionation factors. The greatest difference between the two models is during dawn, dusk and night. For example, while Tcherkez et al. has changing phloem sucrose isotope composition during night, the model here predicts constant sucrose export composition. Observations seem to support rather constant phloem isotope composition but no adequate assessment is possible based on current data. References Tcherkez G., Farquhar G.D., Badeck F.-W. & Ghashghaie J. (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants, Functional Plant Biology 31, 857-877

  5. Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser.

    PubMed

    St-Jean, Gilles

    2003-01-01

    A method for the automated (13)C analysis of dissolved inorganic and organic carbon species has been developed to operate on a continuous-flow isotope ratio mass spectrometer (CF-IRMS). For natural and anthropogenic carbon species, the (13)C stable isotope has proven to be an excellent environmental tracer. Analytical performance tests were carried out on various organic compounds from easily oxidisable (sugar) to difficult (humic acid). A set of natural samples was also analysed to confirm the flexibility of the system. Analytical precision (2sigma) is typically <0.20 per thousand with sample reproducibility from 0.10-0.35 per thousand depending on reactivity of material. We believe this to be the first successful use of a total organic carbon (TOC) analyser for both dissolved inorganic and, specifically, dissolved organic species for (13)C stable isotope analysis in an automated CF-IRMS system. Routine analysis is achieved fairly quickly, is relatively simple with little or no sample manipulation, and will allow new and exciting studies for stable isotope research in both natural abundance and organic tracer studies not easily achieved before. PMID:12590390

  6. The OAE1a Negative Carbon Isotope Spike: a Stepwise Transition Revealed by a High- Resolution Biomarker Carbon Isotope Record

    NASA Astrophysics Data System (ADS)

    Mehay, S.; Keller, C. E.; Bernasconi, S. M.; Weissert, H.; Erba, E.

    2008-12-01

    Oceanic anoxic events (OAEs) are time envelopes in the Cretaceous when ocean conditions favoured the episodic deposition of organic-rich black shale, associated to a positive carbon isotope (?13C) excursion, on a global scale. The OAE1a (Early Aptian, ~120 Myr ago) is characterized by an enigmatic negative ?13C spike of up to 3 in marine carbonates and of 4 to 5 in the organic carbon at its base. This carbon-cycle perturbation is believed to reflect a massive release of 13C depleted carbon into the ocean and the atmosphere. This light carbon has been proposed to derive from the dissociation of methane hydrates. However the estimates for the sedimentary methane hydrates budget in the Cretaceous are too low to explain such a C-anomaly. The aim of this study is to elucidate the initiation of the OAE1a and thus understand the transition of the Earth systems to OAE conditions. Because exchanges between ocean and atmosphere pools are faster than the resolution of the carbon isotope records available so far for the OAE1a, a higher resolution carbon isotope study on specific biomarkers is essential. Bulk and biomarkers ?13C were measured at sampling intervals of 2000 to 6000 years on samples from the Cismon core (Southern Alps, Italy). The new carbon isotope record, including carbonates, bulk organic carbon, marine and terrestrial lipid biomarkers, shows a stepwise initiation of OAE1a which was divided into five intervals, covering ~60 kyr. Each interval is characterized by specific ?13C behaviours of marine and terrestrial markers over less than 10 kyr. This record successively describes a massive outgassing of mantle CO2, a temperature rise, an increase in carbon-isotope fractionation and partial methane hydrates dissolution. Thus, the negative ?13C spike recorded at the onset of the OAE1a was caused by a combination of different processes affecting the carbon-cycle and primarily triggered by an intense volcanic activity on the Ontong-Java Plateau.

  7. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  8. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity.

    PubMed

    Druebert, Christine; Lang, Christa; Valtanen, Kerttu; Polle, Andrea

    2009-08-01

    We tested the hypothesis that carbon productivity of beech (Fagus sylvatica) controls ectomycorrhizal colonization, diversity and community structures. Carbon productivity was limited by long-term shading or by girdling. The trees were grown in compost soil to avoid nutrient deficiencies. Despite severe limitation in photosynthesis and biomass production by shading, the concentrations of carbohydrates in roots were unaffected by the light level. Shade-acclimated plants were only 10% and sun-acclimated plants were 74% colonized by ectomycorrhiza. EM diversity was higher on roots with high than at roots with low mycorrhizal colonization. Evenness was unaffected by any treatment. Low mycorrhizal colonization had no negative effects on plant mineral nutrition. In girdled plants mycorrhizal colonization and diversity were retained although (14)C-leaf feeding showed almost complete disruption of carbon transport from leaves to roots. Carbohydrate storage pools in roots decreased upon girdling. Our results show that plant carbon productivity was the reason for and not the result of high ectomycorrhizal diversity. We suggest that ectomycorrhiza can be supplied by two carbon routes: recent photosynthate and stored carbohydrates. Storage pools may be important for ectomycorrhizal survival when photoassimilates were unavailable, probably feeding preferentially less carbon demanding EM species as shifts in community composition were found. PMID:19344334

  9. Partitioning peat respiration with stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Chanton, J.; Corbett, J.; Burdige, D. J.; Glaser, P. H.; Cooper, W. T.; Tfaily, M. M.

    2010-12-01

    Equimolar production of CO2 and CH4 is assumed with methanogenesis. However, in both field and incubation studies of peat respiration, CO2 is continually reported to be in higher concentrations than CH4. It was assumed that this is due to loss of methane with ebullition and additional CO2 production by HMW organic matter fermentation. To determine the proportions of CO2 formed from both organic matter fermentation and methanogenesis and to determine the percent loss of CH4 from ebullition, isotope mass balance equations were developed. The 13C-CO2 measured in pore water represents a mixture between the 13C-CO2 from organic matter decomposition and methanogenesis. By collecting and analyzing pore water samples for ?13C and concentrations of both CO2 and CH4, the proportion of CO2 formed from organic matter fermentation and methanogenesis was calculated. It was found that, at 0, 154, and 261 cm depths, the percent CO2 from methanogenesis was 56%, 88%, and 91%, and the percent CH4 loss due to ebullition was 69%, 79%, and 85%, respectively. These findings indicate that with increasing depth both the percent CO2 formed from methanogenesis and the percent CH4 lost increased. Incubation experiments consisting of peat from five depth intervals (30-40, 70-80, 130-140, 170-180, and 270-280cm) were used to determine the accuracy of the isotope mass balance equations based on in situ concentrations and isotopic values. Measurements were made biweekly for concentrations and ?13C of CO2 and CH4. The percents of CO2 formed from methanogenesis based on the isotope mass balance equations were found to be to be 53%, 44%, 12%, 51%, and 54% corresponding to the respective depth ranges. The ratios of CH4/CO2 measured were 51%, 39%, 4%, 41%, and 54%, respectively. The average standard deviation between these sample sets was found to be 3.5%. This indicates that the isotope mass balance equations are an appropriate model for determining in situ CO2 partitioning in these systems.

  10. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  11. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-01-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from ?13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  12. Sediment Tracking Using Carbon and Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Papanicolaou, A.

    2002-12-01

    As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. Results indicate distinct N isotopic signatures and C/N atomic ratios for forest and agriculture sediment sources. In addition, unique C and N isotopic signatures and C/N atomic ratios exist within floodplain and upland surfaces, and within the 10 centimeter profiles of erosion and deposition locations. Suspended sediment analyses are preliminary at this time. Conclusions indicate that sediment C and N isotopic signature and C/N atomic ratio are dependent upon land use and soil moisture conditions, and will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.

  13. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  14. A Comparison of Oxidized Carbon Abundances among Comets

    NASA Technical Reports Server (NTRS)

    DiSanti, M. A.; Mumma, M. J.; Bonev, B. P.; Villanueva, G. L.; Radeva, Y. L.; Magee-Sauer, K.; Gibb, E. L.

    2010-01-01

    Comets contain relatively well preserved icy material remaining from the epoch of Solar System formation, however the extent to which these ices are modified from their initial state remains a fundamental question in cometary science. As a comet approaches the Sun, sublimation of the ices contained in its nucleus (termed " native ices") releases parent volatiles into the coma, where they can be measured spectroscopically. One means of assessing the degree to which interstellar ices were processed prior to their incorporation into cometary nuclei is to measure the relative abundances of chemically-related parent volatiles. For example, formation of C2H6 by hydrogen atom addition (e.g., to C2H2) on surfaces of ice-mantled grains was proposed to explain the high C2H6 to CH4 abundance observed in C/1996 B2 (Hyakutake) [1]. The large C2H6/CH4 abundance ratios measured universally in comets, compared with those predicted by gas phase production of C2H6, establishes H-atom addition as an important and likely ubiquitous process. CO should also be hydrogenated on grain surfaces. Laboratory irradiation experiments on interstellar ice analogs indicate this to require very low temperatures (T approx. 10-25 K), the resulting yields of H2CO and CH3OH being highly dependent both on hydrogen density (i.e., fluence) and on temperature ([2],[3]). This relatively narrow range in temperature reflects a lack of mobility below 8-10 K on the one hand, and reduced sticking times for H-atoms as grain surfaces are warmed above 20 K on the other. The relative abundances of these three chemically-related molecules in comets provides one measure of the efficiency of H-atom addition to CO on pre-cometary grains (Fig. 1).

  15. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical reactions. The DIC carbon-14 corrected ages can be further constrained by measuring the carbon isotopes of DOC. Because the only source of organic carbon in aquifers is almost always greater than 40,000 years old, any organic carbon that may be added to the groundwater would contain no carbon-14. Thus, ground-water ages determined by carbon isotopes of DOC should be maximum ages that can be used to constrain DIC corrected ages.

  16. Alkane distribution and carbon isotope composition in fossil leaves: An interpretation of plant physiology in the geologic past

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2014-12-01

    The relative chain-length distribution and carbon-isotope composition of n-alkanes extracted from sedimentary rocks are important geochemical tools for investigating past terrestrial ecosystems. Alkanes preserved in ancient sediments are assumed to be contemporaneous, derived from the same ecosystem, and integrated from the biomass present on the landscape at the time of deposition. Further, there is an underlying assumption that ancient plants exhibited the same metabolic and physiological responses to climate conditions that are observed for modern plants. Interpretations of alkane abundances and isotopic signatures are complicated by the strong influence of phylogenetic affiliation and ecological factors, such as canopy structure. A better understanding of how ecosystem and taxa influence alkane properties, including homologue abundance patterns and leaf-lipid carbon isotope fractionation would help strengthen paleoecological interpretations based on these widely employed plant biomarkers. In this study, we analyze the alkane chain-length distribution and carbon-isotope composition of phytoleim and alkanes (d13Cleaf and d13Clipid) extracted from a selection of Cretaceous and Paleocene fossil leaves from the Guaduas and Cerrejon Formations of Colombia. These data were compared with data for the same families in a modern analogue biome. Photosynthetic and biosynthetic fractionation (?leaf and elipid) values determined from the fossil material indicate carbon metabolism patterns were similar to modern plants. Fossil data were incorporated in a biomass-weighted mixing model to represent the expected lipid complement of sediment arising from this ecosystem and compared with alkane measurements from the rock matrix. Modeled and observed isotopic and abundance patterns match well for alkane homologs most abundant in plants (i.e., n-C27 to n-C33). The model illustrates the importance of understanding biases in litter flux and taphonomic pressures inherent in the fossil lipid record, and it highlights the influence of community composition and forest structure on sedimentary lipids.

  17. Changing carbon isotope ratio of atmospheric carbon dioxide: implications for food authentication.

    PubMed

    Peck, William H; Tubman, Stephanie C

    2010-02-24

    Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique takes advantage of the natural difference in carbon isotope ratio between C(3) and C(4) plants. Many foods are derived from C(3) plants, but the low-cost sweeteners corn and sugar cane are C(4) plants. Most adulteration studies do not take into account the secular shift of the carbon isotope ratio of atmospheric carbon dioxide caused by fossil fuel burning, a shift also seen in plant tissues. As a result statistical tests and threshold values that evaluate authenticity of foods based on carbon isotope ratios may need to be corrected for changing atmospheric isotope values. Literature and new data show that the atmospheric trend in carbon isotopes is seen in a 36-year data set of maple syrup analyses (n = 246), demonstrating that published thresholds for cane or corn sugar adulteration in maple syrup (and other foods) have become progressively more lenient over time. PMID:20121108

  18. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  19. Carbon and sulfur isotopes as tracers of fluid-fluid and fluid-rock interaction in geothermal systems

    NASA Astrophysics Data System (ADS)

    Stefansson, A.; Keller, N. S.; Gunnarsson Robin, J.; Kjartansdottir, R.; Ono, S.; Sveinbjrnsdottir, A. E.

    2014-12-01

    Carbon and sulfur are among major components in geothermal systems. They are found in various oxidation state and present in solid phases and fluids (water and vapor). In order to study the reactions and mass movement within multiphase geothermal systems, we have combined geochemical fluid-fluid and fluid-rock modelling with sulfur and carbon isotope fractionation modelling and compared the results with measured carbon and sulfur isotopes in geothermal fluids (water and vapor) for selected low- and high-enthalpy geothermal systems in Iceland. In this study we have focused on ?34S for H2S in vapor and water and SO4 in water as well as ?13C for CO2 in vapor and water phases. Isotope fractionations for CO2 and H2S between vapor and liquid water, upon aqueous speciation and upon carbonate and sulfide mineral formation were revised. These were combined with reaction modelling involving closed system boiling and progressive water-rock interaction to constrain the mass movement and isotope abundance between various phases. The results indicate that for a closed system, carbon and sulfur isotope abundance is largely dependent on progressive fluid-fluid and fluid-rock interaction and the initial total ?34S and ?13C value of the system. Initially, upon progressive fluid rock interaction the ?34S and ?13C values for the bulk aqueous phase approach that of the host rocks. Secondary mineral formation may alter these values, the exact isotope value of the mineral and resulting aqueous phase depending on aqueous speciation and isotope fractionation factor. In turn, aqueous speciation and mineral saturation depends on progressive fluid-rock interaction, fluid-fluid interaction, temperature and acid supply to the system. Depressurization boiling also results in isotope fractionation, the exact isotope value of the vapor and aqueous phase depending on aqueous speciation and isotope fractionation fractor. In this way, carbon and sulfur isotopes may be used combined with measured values for natural fluids to constrain mass movement upon fluid-fluid and fluid-rock interaction in geothermal systems.

  20. Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?

    NASA Astrophysics Data System (ADS)

    Shirokova, L. S.; Mavromatis, V.; Bundeleva, I.; Pokrovsky, O. S.; Bnzeth, P.; Pearce, C.; Grard, E.; Balor, S.; Oelkers, E. H.

    2011-07-01

    The fractionation of Mg isotopes was determined during the cyanobacterial mediated precipitation of hydrous magnesium carbonate precipitation in both natural environments and in the laboratory. Natural samples were obtained from Lake Salda (SE Turkey), one of the few modern environments on the Earth's surface where hydrous Mg-carbonates are the dominant precipitating minerals. This precipitation was associated with cyanobacterial stromatolites which were abundant in this aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory Mg carbonate precipitation experiments were conducted in the presence of purified Synechococcus sp cyanobacteria that were isolated from the lake water and stromatolites. The hydrous magnesium carbonates nesquehonite (MgCO33H2O) and dypingite (Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake Salda water, in the presence and absence of live photosynthesizing Synechococcus sp. Bulk precipitation rates were not to affected by the presence of bacteria when air was bubbled through the system. In the stirred non-bubbled reactors, conditions similar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation, whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling, despite the fluids achieving a similar or higher degree of supersaturation. The extent of Mg isotope fractionation (?26Mgsolid-solution) between the mineral and solution in the abiotic experiments was found to be identical, within uncertainty, to that measured in cyanobacteria-bearing experiments, and ranges from -1.4 to -0.7 . This similarity refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous Mg carbonates.

  1. The Distribution of Carbon Abundances in Stars in the Milky Ways Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Guo, Michelle; Zhang, A.

    2013-01-01

    There is evidence that the Milky Way halo is comprised in part of disrupted dwarf satellite galaxies; however, the extent to which they contribute to the halos formation is unclear. To further examine the role of dwarf galaxies in building the halo, we compared the degrees of carbon enhancement of the dwarf spheroidal (dSph) galaxies and field halo populations. We generated a grid of high-resolution synthetic spectra for hypothetical stars of specific effective temperature, surface gravity, metallicity, alpha element abundance, and carbon abundance for comparison with medium-resolution observed spectra of dSph stars of unmeasured [C/Fe] but otherwise known properties. After smoothing, rebinning, and normalizing the two data sets, we varied carbon abundance to find the best carbon abundance by determining the synthetic spectrum that gave the minimal deviation. We found a lower Carbon-Enhanced Metal-Poor (CEMP) fraction in the dSph galaxies, which suggests that they have evolved over time. Whereas star formation and chemical evolution stopped for accreted galaxies, the surviving galaxies evolved to became less carbon enhanced and more metal rich. The variation in carbon abundances supports prior knowledge of dSph stars and provide a deeper understanding the formation of stars such as those of the Milky Way halo. We thank the US National Science Foundation, the UCSC Science Internship Program, and the W. M. Keck Observatory where the spectra were obtained.

  2. A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

    NASA Astrophysics Data System (ADS)

    Kessler, J. D.; Reeburgh, W. S.; Valentine, D. L.; Kinnaman, F. S.; Peltzer, E. T.; Brewer, P. G.; Southon, J.; Tyler, S. C.

    2008-12-01

    Methane (CH4) in the subsurface ocean is often supersaturated compared to equilibrium with the modern atmosphere. In order to investigate sources of CH4 to the subsurface ocean, isotope surveys (14C-CH4,?13C-CH4, ?2H-CH4) were conducted at five locations: Skan Bay (SB), Santa Barbara Basin (SBB), Santa Monica Basin (SMB), Cariaco Basin (CB), and the Guaymas Basin (GB). Depth distributions of CH4 concentration and isotopic abundance were determined for both the sediment and water column at the SB, SBB, SMB, and CB sites; CH4 emitted from seeps on the continental shelf adjacent to the SBB as well as seeps and decomposing clathrate hydrates in the GB was also collected, purified, and analyzed. Methane isotope distributions in the sediments were consistent with known methanogenic and methanotrophic activity; seep- and clathrate-hydrate-derived CH4 was found to be depleted in radiocarbon. However, surprising results were obtained in the water column at all sites investigated. In SB the radiocarbon content of the subsurface CH4 concentration maximum was on average 41% less than its suspected sediment CH4 source, suggesting CH4 seepage in the bay. In the SBB, SMB, and CB, the 14C-CH4 contents in the subsurface ocean were 1.2 to 3.6 times greater than modern carbon quantities suggesting a source of 14C from atmospheric nuclear weapons testing, nuclear power plant effluents, or cosmogenic isotope production.

  3. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the corals of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite, although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect that crystals may attain nominal mineral equilibrium clumped isotope signatures only under conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological "vital-effect" influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological "vital" effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on Δ47 is a subject that warrants further investigation.

  4. How much do carbon isotope measurements constrain glacial ocean circulation?

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Mix, A. C.

    2010-12-01

    Reconstructions of the isotopic composition of dissolved inorganic carbon in seawater (d13DIC) are often interpreted as a ventilation or circulation proxy in paleoceanography. The modern deep-sea distribution of d13C in dissolved inorganic carbon (d13DIC) is highly anti-correlated to macronutrient (PO4, NO3) and apparent oxygen utilization (AOU) patterns due to fractionation during photosynthetic carbon uptake by phytoplankton. Nutrient and AOU concentrations in freshly ventilated North Atlantic Deep Water, for example, are low (d13DIC is high), whereas older water masses contain more respired nutrients and (isotopically light) carbon and have high AOU. However, d13DIC is also influenced by fractionation during air sea gas exchange - a process that decouples d13DIC from changes in nutrients and AOU. Moreover, biological fractionation is not constant but spatially and temporally variable. Here we are using a new global three-dimensional model of stable carbon isotope cycling that includes variable biological and air-sea gas exchange fractionation effects in conjunction with modern and glacial d13C observations to reconstruct ocean circulation patterns. Model versions with different rates and patterns of ocean circulation are produced and the resulting d13C patterns are compared to a compilation of measurements from ocean sediment cores in a probabilistic approach. The method allows us to quantify the uncertainty of deep ocean mass fluxes given available d13C observations/reconstructions and provide a quantitative test of the assumption of d13C as a ventilation proxy.

  5. Carbon Isotope Ratios in Crassulacean Acid Metabolism Plants

    PubMed Central

    Szarek, Stan R.; Troughton, John H.

    1976-01-01

    A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of 14CO2 photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in temperature regime and soil water status. Carbon isotope ratios of total tissue and soluble extract fractions were relatively constant throughtout the entire year. Additionally, the ?13C values were similar in all plants of the same species along the elevational gradient, i.e. ?12.5 0.86 for O. phaeacantha and ?15.7 0.95 for Y. baccata. The results of this study indicate Crassulacean acid metabolism predominates as the major carbon pathway of these plants, which do not facultatively utilize the reductive pentose phosphate cycle of photosynthesis as the primary carboxylation reaction. PMID:16659680

  6. Determination of organic milk authenticity using carbon and nitrogen natural isotopes.

    PubMed

    Chung, Ill-Min; Park, Inmyoung; Yoon, Jae-Yeon; Yang, Ye-Seul; Kim, Seung-Hyun

    2014-10-01

    Natural stable isotopes of carbon and nitrogen ((12)C, (13)C, (14)N, (15)N) have abundances unique to each living creature. Therefore, measurement of the stable isotope ratio of carbon and nitrogen (δ(13)C=(13)C/(12)C, δ(15)N=(15)N/(14)N) in milk provides a reliable method to determine organic milk (OM) authenticity. In the present study, the mean δ(13)C value of OM was higher than that of conventional milk (CM), whereas the mean δ(15)N value of OM was lower than that of CM; nonetheless both δ(13)C and δ(15)N values were statistically different for the OM and CM (P<0.05). Furthermore, the values of δ(13)C and δ(15)N were found to differ statistically with the collection date and the milk brand (P<0.05). The combination of δ(13)C and δ(15)N values was more effective than either value alone in distinguishing between OM and CM. The results of the present study, which is based on preliminary data from a limited sample size and sampling period, could be highly valuable and helpful for consumers, the food industry, and/or government regulatory agencies as it can prevent fraudulent labelling of organic food. Further studies include additional analyses of other milk brands and analyses over longer time periods in order to accurately determine OM authenticity using stable isotopes of carbon and nitrogen. PMID:24799230

  7. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having ?26Mg compositions up to 5 lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 ?m in diameter, but with the majority have diameters of ~100 ?m. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003). Geomicrobiol. J. 20, 85-98.

  8. Silicon and carbon abundances in the Orion nebula

    NASA Technical Reports Server (NTRS)

    Rubin, Robert H.; Dufour, Reginald J.; Walter, Donald K.

    1993-01-01

    We assess the gas-phase abundances of Si and C from our recent measurements of Si(2+), C(2+), and C(+) in the Orion Nebula by expanding on our earlier 'blister' models. The C and Si abundances are derived from new IUE high-dispersion spectra of the C(2+) 1907, 1909 A and Si(2+) 1883, 1892 A lines and archival IUE data. Gas-phase Si/C = 0.016 in the Orion ionized volume and is particularly insensitive to uncertainties in extinction and temperature structure. The solar value is 0.098. Gas-phase C/H = 2.8 x 10 exp -4 and Si/H = 4.5 x 10 exp -6. Compared to solar, Si is depleted by a factor of about 8 in the ionized region, while C is much less depleted (factor of 1.3), if depleted at all. This suggests that most Si resides in dust grains even in the ionized volume. Thus, most of the observed forbidden Si II 34.8-micron emission in Orion does not arise in the H II region.

  9. Stable carbon isotopes in bivalve shells as a salinity proxy

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Poulain, C.; Mas, R.; Woule Ebongue, V.; Robert, R.; Paulet, Y.; Lorrain, A.

    2010-12-01

    Stable carbon isotopes of dissolved inorganic carbon (?13C-DIC) often vary with salinity in estuarine settings. Variations of salinity in estuaries also complicate temperature reconstructions based on oxygen isotope values in biological carbonates. Therefore having a salinity proxy could assist in estuarine temperature reconstruction as well as providing data on freshwater discharge into the estuary. Unfortunately, ?13C values in bivalve shells are potentially influenced by several sources of carbon including DIC, metabolic carbon and sediment pore-water DIC. This study first investigates the influence of these three potential carbon sources in the Manila clam (Ruditapes philippinarum) reared under laboratory conditions and then in the field during a two-year monitoring study. Metabolic carbon remained fairly constant in the laboratory (~12%) and we did not detect any difference between clams living in organic rich sediments and those in sediment free aquaria. There was a strong correlation between ?13C-shell and ?13C-DIC (r2=0.77) indicating that ?13C-shell can be used as a relative salinity indicator. In the field, calculated salinities were within the range of recorded salinities ( 5 salinity units), but there were significant differences between individuals. This study highlights the potential of using ?13C in bivalve shells as a salinity proxy, but also illustrates that large uncertainties are associated with this proxy.

  10. Systematic analysis of reaction cross sections of carbon isotopes

    SciTech Connect

    Horiuchi, W.; Suzuki, Y.; Abu-Ibrahim, B.; Kohama, A.

    2007-04-15

    We systematically analyze total reaction cross sections of carbon isotopes with N= 6-16 on a {sup 12}C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenomenological mean-field potential, which reasonably well reproduces the ground-state properties for most of the even N isotopes. We need separate studies not only for odd nuclei but also for {sup 16}C and {sup 22}C to improve their wave functions. The density of the carbon isotope is constructed by eliminating the effect of the center-of-mass motion. For the calculations of the cross sections, we take two schemes, the Glauber approximation and the eikonal model using a global optical potential. Both the reaction models successfully reproduce low and high incident energy data on the cross sections of {sup 12}C, {sup 13}C, and {sup 16}C on {sup 12}C. The calculated reaction cross sections of {sup 15}C are found to be considerably smaller than the empirical values observed at low energy. We find a consistent parametrization of the nucleon-nucleon scattering amplitude, differently from previous ones. Finally, we predict the total reaction cross section of {sup 22}C on {sup 12}C.

  11. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (?(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 0.5) 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to ?(1/2) = 17.3 h and k(SA) = -(1.2 0.5) 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ?() = -5.0 0.3 (CFC-113) and -17.8 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of ?(13)C ? -13 (HCFC-22), ?(13)C ? -35 (CFC-12) and ?(13)C ? -15 (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  12. Determining the content and 13C abundance of total dissolved carbon in water samples by TOC analyser-mass spectrometer coupling.

    PubMed

    Russow, R; Apelt, B

    2003-12-01

    A combined system consisting of a TOC analyser connected to a quadrupole MS was recently described as a way of measuring the N content and the 15N abundance of total dissolved nitrogen in aqueous samples. This work examines whether this combination of instruments can also be used for the 13C determination of the total dissolved carbon in aqueous samples. A level of precision good for 13C-enriched samples was achieved with a relative standard deviation of <3%. By using an isotope ratio MS instead of the quadrupole MS employed here, TOC-MS coupling also ought to be suitable for determining natural 13C abundances. PMID:14711176

  13. Isotopic Hg in an Allende carbon-rich residue

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  14. Isotopic HG in an Allende carbon-rich residue

    NASA Astrophysics Data System (ADS)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-12-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  15. Zn Isotope Abundances of Lunar Soils 64801, 68841, 69941, and 69961

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.

    1995-09-01

    Mass fractionation is well established for the isotopes of several elements in lunar soils, notably O, Si, K, Ca (to a lesser extent), and S (see [1,2]). Zinc is nearly as volatile as S and is associated with it in the coatings of pyroclastic deposits (see [3]). It therefore seemed plausible that zinc might also be fractionated and that the degree of fractionation might be correlated with that of sulfur. To test this inference, we have begun to measure Zn isotopic abundances in lunar soils. Here we report results for four Apollo 16 samples from which the magnetic fraction had been previously removed. The samples were ground, weighed, and dissolved in HF, HNO3 and HCl in a Teflon bomb. Zn was separated by anion exchange and analyzed isotopically by using ICP/MS. Only the data for 64Zn, 66Zn, and 68Zn are reported: The molecular ion ^35Cl^16O(sub)2+ interfered with the measurement of 67Zn and counting statistics for 70Zn gave only %-level precision. We used Zn atomic absorption solutions as standards with a known concentration of Ga added to control for instrumental drift. Measured elemental Zn contents are consistent with literature values [4-6]. The isotopic ratios of the samples were expressed as delta-values calculated relative to the corresponding isotopic ratios of the standards. No fractionation (i.e., < 0.2%/AMU) was observed for any of several ordinary chondrites, among them Suizhou and Dhajala. In all four lunar soils, however, we found delta 68Zn~2xdelta 66Zn and delta 66Zn>0 at the one-sigma level. These results indicate mass dependent fractionation. If we make the oversimplified assumption that the Zn isotopic fractionation reflects Rayleigh distillation from a single well-mixed reservoir of material from which Zn evaporated as the atom, then the fraction of Zn retained is given approximately by (1+delta ^YZn/1000)^(-2M(sub)Y/Delta M where Y=66 or 68, M is mass, and Delta M is the mass difference M(sub)Y - M(sub)64. The computations suggest that the lunar soils analyzed lost 20 to 40% of their Zn. The calculated losses of Zn are comparable to those estimated for sulfur by [1]. The degree of S mass fractionation in lunar soils appears to correlate with S content and exposure age [7,8]; Kerridge [8,9] has therefore proposed that meteorite impact vaporizes some S but delivers even more. So far, we do not see a similar correlation with exposure age in the Zn data, but the number of samples analyzed is small. The nominal losses of potassium calculated by [1] are also in the neighborhood of 30%, but may actually be much higher for certain fractions of the soil [2]. To explain the K isotopic enrichments, and in particular the contrast to Mg and Ca in which any fractionations are much smaller, Humayun and Clayton [2] point to K's volatility and tendency to concentrate in the fine fractions. Zn has higher volatility than K and is also enriched in small grains [10]. References: [1] Clayton et al. (1974) Proc. LSC 5th, 1801-1809. [2] Humayun M. and Clayton R. N. (1995) GCA, 59, 2115-2130. [3] Haskin L. and Warren P. (1991) Lunar Sourcebook: A User's Guide to the Moon (G. Heiken et al., eds.), pp. 357-474, Cambridge Univ. [4] Kr henb hl et al. (1973) Proc. LSC 4th, 1325-1348. [5] Rose et al. (1973) Proc. LSC 4th, 1149-1158. [6] Finkelman et al. (1975) Proc. LSC 6th, 1385-1398. [7] Cripe J. D. and Moore C. B. (1976) Proc. LSC 7th, 469-479. [8] Kerridge et al. (1975) GCA, 39, 137-162. [9] Kerridge et al. (1975) Proc. LSC 6th, 2151-2162. [10] Kr henb hl et al. (1977) Proc. LSC 8th, 3901-3916.

  16. {sup 39}Ar Detection at the 10{sup -16} Isotopic Abundance Level with Atom Trap Trace Analysis

    SciTech Connect

    Jiang, W.; Williams, W.; Bailey, K.; O'Connor, T. P.; Mueller, P.; Davis, A. M.; Hu, S.-M.; Sun, Y. R.; Lu, Z.-T.; Purtschert, R.; Sturchio, N. C.

    2011-03-11

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric {sup 39}Ar (half-life=269 yr), a cosmogenic isotope with an isotopic abundance of 8x10{sup -16}. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  17. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  18. Tracing paleo-ocean redox using Cr isotopes in carbonates spanning the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.; Bekker, A.

    2013-12-01

    Cr is an element whose isotopes are fractionated by redox reactions in the Earth's exogenic system, such as those occuring during oxidative weathering on the continents and scavenging into reduced marine sediments. Frei et al. (2009) proposed that the range of Cr isotope fractionation in exogenic materials in the absence of molecular oxygen would likely not extend beyond the range in igneous rocks, which is quite small (δ53Cr = -0.1 ×0.1‰). They tested their hypothesis on iron formations spanning the Great Oxidation Event (GOE) and found small fractionations that predated the GOE, but no permil level fractionation until the Neoproterozoic. We tested whether δ53Cr values in shallow-water carbonates spanning the GOE might record steps in the rise of atmospheric oxygen between 2.45 and 2.06 Ga. Carbonates representing 15 formations were chosen with depositonal ages ranging between 2.5 Ga and 1.9 Ga. We find very little Cr isotope fractionation recorded in carbonates deposited during this time with the exception of those corresponding to the peak of the Lomagundi Event at ca. 2.15 Ga. A defining characterisitic of the Lomagundi Event is the widespread prevalance of shallow-water carbonate platforms with abundant stromatolites, making their deposits an ideal lithology to record the state of the seawater Cr cycle. Five formations deposited during this time yield δ53Cr values with permil level fractionation recorded in some examples, in both positive and negative directions with respect to the igenous rock baseline. The data suggests that although the oxidative part of the Cr cycle started at least during the peak of the Lomagundi Event, the Cr(VI) reservoir and its residence time remained small, making it susceptible to local processes. 1. Frei et al. (2009) Fluctuations in Precambrian atmospheric oxygen recorded by Cr isotopes, Nature, v. 461, 250-253.

  19. In situ analysis of carbon isotopes in North American diamonds

    NASA Astrophysics Data System (ADS)

    van Rythoven, A. D.; Hauri, E. H.; Wang, J.; McCandless, T.; Shirey, S. B.; Schulze, D. J.

    2010-12-01

    Diamonds from three North American kimberlite occurrences were investigated with cathodoluminescence (CL) and secondary ion mass spectrometry (SIMS) to determine their growth history and carbon isotope composition. Diamonds analyzed include fourteen from Lynx (Quebec), twelve from Kelsey Lake (Colorado) and eleven from A154 South (Diavik mine, Northwest Territories). Growth histories for the diamonds vary from simple to highly complex based on their CL images and depending on the individual stone. Deformation laminae are evident in CL images of the Lynx diamonds that typically are brownish in color. Two to five points per diamond were analyzed by SIMS for carbon isotope composition. Sample heterogeneity is minimal in terms of δ13C (vs. PDB) values. Points within single diamond had a maximum range of approximately 1 ‰. The results for the A154 South (-6.4 to -3 ‰) and Kelsey Lake (-11.2 to -2.6 ‰) stones were in accordance with earlier reported values. The Lynx kimberlite stones have anomalously high ratios and range from -3.5 to +0.2 ‰ (average: -1.4 ‰). No previous carbon isotope analyses on diamonds from Lynx or any other eastern Superior craton occurrence have been published. The diamonds possess carbon isotope ratios higher than those for the only other reported analyses of Superior craton diamonds at Wawa, Ontario (-5.5 to -1.1 ‰). In global terms, the only published analyses of diamonds that consistently contain even higher values are those from New South Wales (Australia). However, these diamonds are alluvial and contain eclogitic and/or exotic mineral inclusions. The Lynx diamonds are entirely peridotitic and from a primary deposit. The unusually low (i.e. >-5‰) δ13C values of the Lynx (and Wawa) diamonds may indicate a different carbon reservoir for the Superior craton mantle as compared to other cratons.

  20. Carbon and hydrogen isotope fractionation by microbial methane oxidation: Improved determination

    SciTech Connect

    Mahieu, Koenraad . E-mail: Koenraad.Mahieu@Ugent.be; Visscher, Alex De; Vanrolleghem, Peter A.; Cleemput, Oswald Van

    2006-07-01

    Isotope fractionation is a promising tool for quantifying methane oxidation in landfill cover soils. For good quantification an accurate determination of the isotope fractionation factor ({alpha}) of methane oxidation based on independent batch experiments with soil samples from the landfill cover is required. Most studies so far used data analysis methods based on approximations of the Rayleigh model to determine {alpha}. In this study, the two most common approximations were tested, the simplified Rayleigh approach and the Coleman method. To do this, the original model of Rayleigh was described in measurable variables, methane concentration and isotopic abundances, and fitted to batch oxidation data by means of a weighted non-linear errors-in-variables regression technique. The results of this technique were used as a benchmark to which the results of the two conventional approximations were compared. Three types of batch data were used: simulated data, data obtained from the literature, and data obtained from new batch experiments conducted in our laboratory. The Coleman approximation was shown to be acceptable but not recommended for carbon fractionation (error on {alpha} - 1 up to 5%) and unacceptable for hydrogen fractionation (error up to 20%). The difference between the simplified Rayleigh approach and the exact Rayleigh model is much smaller for both carbon and hydrogen fractionation (error on {alpha} - 1 < 0.05%). There is also a small difference when errors in both variables (methane concentration and isotope abundance) are accounted for instead of assuming an error-free independent variable. By means of theoretical calculations general criteria, not limited to methane, {sup 13}C, or D, were developed for the validity of the simplified Rayleigh approach when using labelled compounds.

  1. [The mechanism of carbon isotope fractionation in photosynthesis and carbon dioxide component of the greenhouse effect].

    PubMed

    Ivlev, A A; Voronin, V I

    2007-01-01

    The relationship between the global climate warming, which is largely induced by increased CO2 atmospheric concentration, and the changes in carbon isotope fractionation in plants was explained in terms of the previously proposed oscillatory mechanism of photosynthesis, according to which CO2 assimilation and photorespiration are two reciprocally coupled oscillating mechanisms controlled by ribulose bisphosphate carboxylase/oxygenase switches. This explanation is confirmed by the changes in carbon isotope fractionation in the annual rings of trees and demonstrates that the light carbon isotope 12C enrichment before 1990s resulted from increased photosynthetic assimilation of CO2. The subsequent sharp 13C enrichment of the tree ring carbon until the present time suggests that the compensatory role of photosynthesis in boreal forests has been lost for the global climate. PMID:19768966

  2. Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions

    NASA Astrophysics Data System (ADS)

    Reutsky, Vadim; Borzdov, Yuri; Palyanov, Yuri; Sokol, Alexander; Izokh, Olga

    2015-12-01

    We report first results of a systematic study of carbon isotope fractionation in a carbonate fluid system under mantle PT conditions. The system models a diamond-forming alkaline carbonate fluid using pure sodium oxalate (Na2C2O4) as the starting material, which decomposes to carbonate, CO2 and elementary carbon (graphite and diamond) involving a single source of carbon following the reaction 2Na2C2O4 → 2Na2CO3 + CO2 + C. Near-liquidus behaviour of carbonate was observed at 1300 °C and 6.3 GPa. The experimentally determined isotope fractionation between the components of the system in the temperature range from 1300 to 1700 °C at 6.3 and 7.5 GPa fit the theoretical expectations well. Carbon isotope fractionation associated with diamond crystallisation from the carbonate fluid at 7.5 GPa decreases with an increase in temperature from 2.7 to 1.6 ‰. This trend corresponds to the function ΔCarbonate fluid-Diamond = 7.38 × 106 T-2.

  3. STABLE CARBON ISOTOPE ANALYSIS OF SUBFOSSIL WOOD FROM AUSTRIAN ALPS

    PubMed Central

    K?USEK, MARZENA; PAWE?CZYK, S?AWOMIRA

    2015-01-01

    The presented studies were carried out in order to check the usefulness of subfossil wood for stable isotope analysis. The aim of research was also to define the optimal method of subfossil samples preparation. Subfossil samples used during the presented studies are a part of the multi-century dendrochronological scale. This chronology originates in an area situated around a small mountain lake Schwarzersee, in Austria. The obtained results of stable carbon isotope measurements confirmed that the method of ?-cellulose extraction by the application of acidic sodium chlorite and sodium hydroxide solutions removes resins and other mobile compounds from wood. Therefore, in the case of the analysed samples, the additional chemical process of extractives removing was found to be unnecessary. Studied wood samples contained an adequate proportion of ?-cellulose similar to the values characteristic for the contemporary trees. This proved an adequate wood preservation which is essential for the conduction of isotopic research. PMID:26346297

  4. Use of carbon isotopes to identify and characterize microbial signatures in hydrothermal settings

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Pressley, S.; Coleman, J.; Liane, B. G.; Mountain, B. W.

    2004-12-01

    To further explore the diversity of the microorganisms, their adaptations to extreme environmental conditions and their relationship with geothermal sinter formation, we examined the lipids preserved in six sinters of the Taupo Volcanic Zone (TVZ), New Zealand. These sinters contain microbial remains, but the process of mineralisation has rendered them largely unidentifiable. In contrast, lipids, including free fatty acids, 1,2-diacylglycerophospholipids, 1,2-di-O-alkylglycerols, glycerol dialkyl glycerol tetraethers and 1-O-alkylglycerols, are abundant and can be used as chemotaxonomic indicators. However, interpretation of lipid data and microbial signatures can be complicated by 1) allochthonous (pollen, leaves, fungal spores) inputs; 2) the presence of novel lipids or unknown origin; and 3) the production of the same compounds by a range of microorganisms. This is particularly true in hydrothermal settings, where microorganisms will biosynthesize compounds not commonly attributed to Bacteria or Archaea. Compound-specific carbon isotope analyses can help decipher the lipid signature by distinguishing different organic matter sources. For example, in all TVZ sinters, fatty acids with carbon numbers ranging from C22 to C32 are present; typically these are attributed to higher plants but they could also represent microbial adaptations to high temperatures. Consistent with the former interpretation, in three of four sinters, high-molecular-weight fatty acid carbon isotopic compositions range from -29 to -32 per mil. However, in a fourth sinter, in which fatty acids are most abundant, their carbon isotopic compositions range from -27 to -41 per mil in a pattern indicative of mixing of two different sources, one of which is almost certainly microbial. Carbon isotopic analyses also shed new light on the sources of novel compounds. Present at one hydrothermal site is a novel series of macrocyclic diethers, analogous to macrocyclic archaeol found in M. jannaschii but with a hydrocarbon skeleton consistent with a bacterial origin. These compounds are enriched in 13C compared to co-occurring compounds, including normal diethers, suggesting that they derive from a different organism and that they utilise a carbon assimilation pathway that does not discriminate strongly against 13C (e.g. the reverse tricarboxylic acid pathway or the 3-hydroxypropionate pathway). These results, combined with environmental data, provide useful insight into the metabolism of the source organisms and, thus, their phylogeny, guiding future microbial studies of this setting.

  5. Using natural isotopic abundances to determine the source of nitrous oxide (N2O) emissions

    NASA Astrophysics Data System (ADS)

    Mothet, A.; Sebilo, M.; Laverman, A. M.; Vaury, V.; Mariotti, A.

    2012-04-01

    Numerous greenhouse gas studies have focused on carbon dioxide (CO2), whereas nitrous oxide (N2O) also plays a major role in global warming. Indeed, while nitrous oxide is 1000 times less concentrated than CO2 in the atmosphere, it is 300 times more efficient in terms of global warming potential. In addition, its atmospheric concentration increases with 0,3 % per year. According to the literature, nitrous oxide is produced, in soils and sediments, by two major processes: (1) Nitrification, mediated by autotrophic nitrifying bacteria under oxic conditions; (2) Denitrification, mediated by heterotrophic denitrifying bacteria under anoxic conditions. Denitrification induces intensive, localized and instantaneous fluxes. N2O emissions can be easily measured and modeled. In contrast, nitrification induces weak emissions, but spatially and temporally extended. Therefore, this process could represent a large potential of N2O emissions from soils and sediments. The study of isotopomer's isotopic composition of N2O, i.e. the intramolecular distribution or site preference (SP) determined by 15N measurement allows the determination of the origin of N2O emissions (nitrification vs. denitrification). Recent studies on pure cultures have showed that SP associated with nitrification is 35 ‰ while SP associated with denitrification is 0 ‰. The aim of this study was to determine SP associated with denitrification in soils and sediments, taking into account the environmental denitrifying bacterial communities, and under different environmental variables. To this end, flow-through reactors were used to determine denitrification rates at different temperatures and varying substrate (nitrate) concentrations. Site preference was measured for the different experiments. Different experiments of denitrification were realized in sediment flow through reactors under denitrifying conditions (anoxia, presence of organic matter and nitrate). We used acetylene (25°C) to block the enzyme nitrous oxide reductase, resulting in accumulation of N2O originating only from denitrification. Despite the fact that the isotopic composition of the produced N2O (15N and 18O) varies, the SP did not change significantly (SP = 6 ‰). These results compared to those of chemical denitrification show that despite very different isotopic compositions, the SP value is independent of the type of denitrification. Different nitrate concentrations (5 mM, 3 mM, 1,5 mM and 1 mM) at ambient temperature (25°C). The results of N2O production kinetics were not related to nitrate concentrations. SP of N2O are currently being analyzed. Different temperatures (35°C, 25°C and 12°C) and a nitrate concentration of 5 mM. The results of N2O production kinetics at different temperatures show an increase in N2O emissions with increasing temperature. SP of N2O are currently being analyzed. The goal for future work is to study the SP in these systems relative to salinity, pH and carbon organic concentration in denitrifying conditions but also in nitrifying conditions.

  6. Noble gas content and isotope abundances in phases of the Saint-Aubin (UNGR) iron meteorite

    NASA Astrophysics Data System (ADS)

    Nishimura, Chikako; Matsuda, Jun-Ichi; Kurat, Gero

    2008-08-01

    We analyzed the noble gas isotopes in the Fe-Ni metal and inclusions of the Saint-Aubin iron meteorite, utilizing the stepwise heating technique to separate the various components of noble gases. The light noble gases in all samples are mostly cosmogenic, with some admixture from the terrestrial atmosphere. Total abundances of noble gases in metal are one of the lowest found so far in iron meteorites and the 4He/21Ne ratio is as high as 503, suggesting that the Saint-Aubin iron meteorite was derived from a very large meteoroid in space. The exposure ages obtained from cosmogenic 3He were 9-16 Ma. Saint-Aubin is very peculiar because it contains very large chromite crystals, whichlike the metalcontain only cosmogenic and atmospheric noble gases. The noble gases in all the samples do not reveal any primordial components. The only exception is the 1000 C fraction of schreibersite which contained about 5% of the Xe-HL component. The Xe-Q and the El Taco Xe components were not found and only the Xe-HL is present in this fraction. Some presolar diamond, the only carrier for the HL component known today, must have been available during growth of the schreibersite. However, it is also possible that this excess is due to the addition of cosmogenic and fission components. In this case, all the primordial components are masked (or lost) by the later events such as cosmic-ray irradiation, heating, and radioactive decay.

  7. Carbon isotope fractionation of methyl bromide during agricultural soil fumigations

    USGS Publications Warehouse

    Bill, M.; Miller, L.G.; Goldstein, Allen H.

    2002-01-01

    The isotopic composition of methyl bromide (CH3Br) has been suggested to be a potentially useful tracer for constraining the global CH3Br budget. In order to determine the carbon isotopic composition of CH3Br emitted from the most significant anthropogenic application (pre-plant fumigation) we directly measured the ??13C of CH3Br released during commercial fumigation. We also measured the isotopic fractionation associated with degradation in agricultural soil under typical field fumigation conditions. The isotopic composition of CH3Br collected in soil several hours after injection of the fumigant was -44.5??? and this value increased to -20.7??? over the following three days. The mean kinetic isotope effect (KIE) associated with degradation of CH3Br in agricultural soil (12???) was smaller than the reported value for methylotrophic bacterial strain IMB-1, isolated from previously fumigated agricultural soil, but was similar to methylotrophic bacterial strain CC495, isolated from a pristine forest litter zone. Using this fractionation associated with the degradation of CH3Br in agricultural soil and the mean ??13C of the industrially manufactured CH3Br (-54.4???), we calculate that the agricultural soil fumigation source has a carbon isotope signature that ranges from -52.8??? to -42.0???. Roughly 65% of industrially manufactured CH3Br is used for field fumigations. The remaining 35% is used for structural and post-harvest fumigations with a minor amount used during industrial chemical manufacturing. Assuming that the structural and post-harvest fumigation sources of CH3Br are emitted without substantial fractionation, we calculate that the ??13C of anthropogenically emitted CH3Br ranges from -53.2??? to -47.5???.

  8. Titan Aerosol Formation as a Sink for Stable Carbon and Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Trainer, Melissa G.; Stern, Jennifer C.; Sebree, Joshua A.; Gautier, Thomas J.; Fuentes, Javier A.; Domagal-Goldman, Shawn D.; Mandt, Kathleen E.

    2015-11-01

    Stable isotope ratios of major elements can be used to infer much about local- and global-scale processes on a planet. On Titan, aerosol production is a significant sink of carbon and nitrogen in the atmosphere, and isotopic fractionation of these elements may be introduced during the advanced organic chemistry that leads to the condensed phase products. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have measured the isotopic fractionation associated with the formation of Titan aerosol analogs via far-UV irradiation of several methane (CH4) and nitrogen (N2) mixtures.Our initial results probed the fractionation of the aerosol product, relative to the reactant gases, as a function of CH4 abundance [1]. Our results show that the direction of carbon isotope fractionation during aerosol formation is in contrast to the expected result if the source of the fractionation is a kinetic isotope effect. The resultant fractionation in nitrogen favored the light (14N) isotope in the aerosol, with N/C ratios varying from 0.13 - 0.31. Ongoing work includes probing the effects of pressure and temperature on the direction and magnitude of the stable isotope fractionation. We will present results alongside interpretation of the driving processes, as well as implications for Titan if similar fractionation occurred during aerosol formation in the atmosphere.[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: 13C and 15N Fractionation of CH4/N2 Mixtures during Photochemical Aerosol Formation: Relevance to Titan, Icarus, in press, 2015, doi:10.1016/j.icarus.2015.04.016.

  9. Clumped isotope thermometry of modern and early Cretaceous molluscan carbonate from high-latitude seas (Invited)

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Price, G. D.; Ambrose, W. G.; Carroll, M. L.; Passey, B. H.

    2010-12-01

    The carbonate clumped isotope thermometer is based on the temperature sensitivity of the relative abundance of carbonate ion groups containing 13C-18O bonds. One application of clumped isotope thermometry is to determine the temperature of ancient seawater from the skeletal material of calcium carbonate-secreting marine organisms. The relationship between Δ47, a parameter describing isotopic clumping, and the temperature of carbonate biomineralization has been well-defined for fish otoliths, corals, foraminifera, and coccolithophore tests, but few data have been published for brachiopods and bivalve mollusks. A comprehensive evaluation of the Δ47-temperature relationship for mollusks is required for paleotemperature interpretations from the marine fossil record. Here we present a more comprehensive calibration for modern mollusks, including bivalves, cephalopods, and gastropods. Further, we focus on a subset of cold water, high-latitude species collected in the northern Barents Sea. The observed Δ47-temperature relationship is similar to the theoretical relationship presented by Guo et al. (2009) but deviates at low temperatures from the original Ghosh et al. (2007) calibration curve. This divergence could be related to methodological differences or unaccounted differences in the biomineralization of mollusks versus that of other carbonate-secreting organisms at low temperature. One advantage of clumped isotope thermometry over traditional oxygen isotope thermometry is that it does not require assumptions about the isotopic composition of the water in which the carbonate formed. This may be particularly useful in Mesozoic paleoceanography where the oxygen isotope value of seawater is uncertain. Using clumped isotope thermometry applied to early Cretaceous (Valangian) belemnite carbonate from the Yatria River, sub-polar Urals, Siberia, we find shell growth temperatures of 20-26°C at a paleolatitude of ~60-65°N. Our data imply average seawater δ18O values of 0.5-1.5‰ when used in conjunction with published temperature-δ18Ocarb-δ18Osw calibrations. This δ18O range is higher than is traditionally assumed for high-latitude Cretaceous seawater. We argue, however, that such values are plausible and may be related to different basin- or global-scale hydrologies or belemnite body fluid that was in isotopic disequilibrium with the seawater. The paired Δ47 and δ18O from the fossils rule out isotopic exchange with high temperature fluids or later diagenesis in 18O-depleted meteoric waters. We observe no textual or chemical evidence of recrystallization, and we hypothesize that these shells faithfully record early Cretaceous high-latitude seawater temperatures. The inferred temperature range of 20-26°C is substantially higher than 60-70°N modern mean annual sea surface temperature (˜-1.0 to 10.0°C) and mean summer surface temperatures (˜-0.5 to 14.5°C), implying a substantially shallower latitudinal temperature gradient during the early Cretaceous.

  10. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    NASA Astrophysics Data System (ADS)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  11. Carbon isotopes in xenoliths from the Hualalai Volcano, Hawaii, and the generation of isotopic variability

    SciTech Connect

    Pineau, F. ); Mathez, E.A. )

    1990-01-01

    The isotopic composition of carbon has been determined in a suite of xenoliths from lava of the 1800-1801 Kaupulehu eruption of Hualalai Volcano, Hawaii. Several lithologies are represented in the suite, including websterite, dunite, wehrlite, pyroxenite, and gabbro. In addition, there are composite xenoliths in which contacts between lithologies are preserved. Most of the xenoliths represent deformed cumulates. The contact relations in the composite samples indicate that the lithologies originated from the same source region, which, based on pressures determined from fluid inclusions, is estimated to be at a depth of {approx}20 km, or near the crust-mantle boundary. The observations and isotopic results demonstrate that isotopic variability can be generated by multistage fractionation processes such as degassing of CO{sub 2} from magma and precipitation of CO{sub 2}-rich fluids to form graphitic compounds. Such processes operated over regions the scales of which were determined by style and intensity of deformation and by lithology.

  12. Forward Modeling of Carbonate Proxy Data from Planktonic Foraminifera using Oxygen Isotope Tracers in a Global Ocean Model

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.

    1999-01-01

    The distribution and variation of oxygen isotopes in seawater are calculated using the Goddard Institute for Space Studies global ocean model. Simple ecological models are used to estimate the planktonic foraminiferal abundance as a function of depth, column temperature, season, light intensity, and density stratification. These models are combined to forward model isotopic signals recorded in calcareous ocean sediment. The sensitivity of the results to the changes in foraminiferal ecology, secondary calcification, and dissolution are also examined. Simulated present-day isotopic values for ecology relevant for multiple species compare well with core-top data. Hindcasts of sea surface temperature and salinity are made from time series of the modeled carbonate isotope values as the model climate changes. Paleoclimatic inferences from these carbonate isotope records are strongly affected by erroneous assumptions concerning the covariations of temperature, salinity, and delta (sup 18)O(sub w). Habitat-imposed biases are less important, although errors due to temperature-dependent abundances can be significant.

  13. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    USGS Publications Warehouse

    Des Marais, D.J.; Donchin, J.H.; Nehring, N.L.; Truesdell, A.H.

    1981-01-01

    Previous interest in light hydrocarbons from geothermal systems has focused principally on the origin of the methane1 and the estimation of subsurface temperatures from the carbon isotopic content of coexisting methane and carbon dioxide1-3. Higher molecular weight hydrocarbons were first reported in gases from Yellowstone National Park4, and have since been found to occur commonly in geothermal emanations in the western United States5. Isotopic measurements of individual geothermal hydrocarbons are now reported which help to explain the origin of these hydrocarbons. The thermal decomposition of sedimentary or groundwater organic matter is a principal source of hydrocarbons in four geothermal areas in western North America. ?? 1981 Nature Publishing Group.

  14. Descriptions of carbon isotopes within the energy density functional theory

    SciTech Connect

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  15. Carbonic anhydrase is abundant in fenestrated capillaries of cherry hemangioma.

    PubMed

    Eichhorn, M; Jungkunz, W; Wrl, J; Marsch, W C

    1994-01-01

    A strong correlation has been found between carbonic anhydrase (CA) activity and fenestrations in juxtaepithelial capillaries of several tissues, including psoriatic lesions of human skin. In the present study we demonstrate that the majority of the capillaries in cherry hemangiomas are fenestrated and histochemically react CA positively. Obviously the occurrence of CA in these capillaries corresponds to the fenestrations of venous capillaries, which are numerously revealed by electron microscopy. In normal undiseased skin no capillary staining for CA was observed. Therefore in a large proportion of the capillaries of cherry hemangiomas the correlation between fenestrations and CA activity also exists. We suggest that the histochemical demonstration of CA activity might serve as a sensitive and simple marker for fenestrated capillaries in skin tissue. PMID:7908484

  16. The use of carbon stable isotope ratios in drugs characterization

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  17. The use of carbon stable isotope ratios in drugs characterization

    SciTech Connect

    Magdas, D. A. Cristea, G. Bot, A. Mirel, V.

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  18. Regional Atmospheric Circulation Change in the North Pacific During the Holocene Inferred from Lacustrine Carbonate Oxygen Isotopes, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Abbott, M. B.; Finney, B. P.; Burns, S. J.

    2004-12-01

    Analyses of sediment cores from Jellybean Lake, a small, hydrologically-open groundwater-fed lake, provide a record of changes in North Pacific atmospheric circulation for the last 7500 years at twenty to thirty-year resolution. A regional isotope hydrology study in the southern Yukon indicates that the oxygen isotope composition of water from Jellybean Lake reflects the oxygen isotope composition of mean annual precipitation. Thus, the oxygen isotope history of Jellybean Lake inferred from sedimentary carbonate oxygen isotope ratios suggests multi-decadal shifts in the oxygen isotope composition of mean annual precipitation superimposed on century and millennial trends. Recent fluctuations of Jellybean oxygen isotopes correlate well with changes in the North Pacific Index, a measure of the intensity and position of the Aleutian Low. We propose that oxygen isotope variability of precipitation in the interior of the Yukon is related to the degree of fractionation during moisture transport from the Gulf of Alaska across the St Elias Mountains that is ultimately controlled by the position and strength of the Aleutian Low. Following this model, Aleutian Low intensity during the early to middle Holocene was relatively reduced and increasing intensity coincided with the initial onset of Neoglacial advances. Rapid shifts during the last two millennia corresponds with glacial activity, changes in North Pacific salmon abundance, and shifts in atmospheric circulation over the Beaufort Sea.

  19. Abundance and Characterization of Dissolved Organic Carbon in Suburban Streams of Baltimore, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Mora, G.; Fazekas, M.

    2014-12-01

    The contribution of streams and rivers to the carbon cycle is significant, transporting to the oceans ~1.4 Pg C/yr, with dissolved carbon corresponding to as much as 0.7 Pg C/yr. Changes in land use have the potential effect of modifying this flux, particularly in urban areas where impervious areas are common. To investigate the effect of urbanization on riverine carbon transport, we studied four first-order streams in Towson, a suburb of Baltimore, Maryland, USA. The watersheds from the studied streams exhibit different levels of urbanization as measured by the percentage of impervious areas. Samples from these four streams were taken weekly, and several chemical constituents were measured either in the field or in the laboratory. These constituents included nitrate, dissolved organic nitrogen, pH, dissolved organic carbon (DOC), total carbon, dissolved inorganic carbon (DIC), phosphate, the carbon isotopic compositions of DOC and DIC, and fluorescence intensity of the DOC. Results show that DOC concentrations were consistently below 5 mg C/L regardless of the level of imperviousness of the watershed. Similarly, carbon isotope ratios were consistent across the studied streams, with values centered around -26.4 per mil, thus suggesting a significant influx of soil-derived organic carbon originated from C3 plants that are common in the watersheds. Confirming this interpretation, fluorescence spectroscopy data suggest a humic-like origin for the DOC of the streams, thus pointing to the heterotrophic nature of the streams. The combined results suggest that the studied streams exhibit similar DOC concentrations, carbon isotopic values, and fluorescence spectra, despite their level of impervious surfaces in their watersheds.

  20. Stable carbon and nitrogen isotope enrichment in primate tissues

    PubMed Central

    Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01

    Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1701-6) contains supplementary material, which is available to authorized users. PMID:20628886

  1. Local and regional oscillations of carbon and oxygen isotopes in terestrial carbonates

    NASA Astrophysics Data System (ADS)

    Skipityt?, Raminta; Stan?ikait?, Migl?

    2014-05-01

    Stable isotope ratios of carbon and oxygen in sediment carbonates are used as a tool to identify climatic changes in the past [1], [2]. Carbon is more related to humidity whereas oxygen is thought to respond the temperature [2]. Nevertheless number of questions about local, regional and global scale impacts to these records is left. In this research work carbon and oxygen isotope ratios in lacustrine carbonates are used to identify palaeoenvironmental dynamics of different locations. Samples of lacutrine carbonates were obtained from 8 sequences of different sites in Lithuania (4), Poland (1), Belarus (1) and Kaliningrad (1). Every sequence was divided into 2 cm intervals. The study showed differences in average carbon and oxygen isotope ratios between Lithuania and other countries (Poland, Belarus and Kaliningrad). Carbon and oxygen isotope ratios in 4 sites in Lithuania are: U la ?13C -4.72 2.11, o and ?18O -9.46 1.9, o ; Zervynos ?13C -4.79 1.82, o and ?18O -9.57 1.69, o ; Rudnia ?13C -4.94 7.53, o and ?18O -9.3 3.92, o ; Pauliai ?13C -4.15 0.67, o and ?18O -9.94 1.07, o : In other countries: Poland ?13C -1.07 1.94, o and ?18O -7.69 0.95, o ; Belarus ?13C 0.97 1.94, o and ?18O -7.61 1.42, o ; Kaliningrad ?13C -1.14 1.43, o and ?18O -6.51 1.00, o : Average stable carbon and oxygen isotope values from four sites in Lithuania were -4.65 o for carbon and -9.51 o for oxygen. Despite homogeneity of average isotope signals in these four sites there are relatively large oscillations of isotopic values in Rudnia and relatively small in Pauliai. These oscillations could be related to local characteristics of particular place such as environmental conditions, water balance, input of terrigenous materials into basin, etc. Total amount of CaCO3 could also play a significant role in reconstructing palaeoenvironment from stable isotopes and creating isomaps. The comparison of isotope records from different locations could enable to separate local, regional and even global environment condition impact to isotopic values in the past. 1. Hammarlund, Dan, et al. "Climate and environment during the Younger Dryas (GS-1) as reflected by composite stable isotope records of lacustrine carbonates at Torreberga, southern Sweden." Journal of Quaternary Science 14.1 (1999): 17-28. 2. Makhnach, N., et al. "Stable oxygen and carbon isotopes in Late Glacial-Holocene freshwater carbonates from Belarus and their palaeoclimatic implications." Palaeogeography, Palaeoclimatology, Palaeoecology 209.1 (2004): 73-101.

  2. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.

    2003-01-01

    Biological marker and carbon isotopic compositions of coals and carbonaceous shales from the Upper Carboniferous strata of the Upper Silesian (USCB), Lower Silesian (LSCB), and Lublin (LCB) coal basins were determined to assess depositional conditions and sources of the organic matter. n-Alkane, sterane, and isoprenoid distribution, and carbon isotope ratios are consistent with an origin from higher plants. In some cases, pristane/phytane (Pr/Ph) ratios of carbonaceous shales (roof and floor shales) are < 1.0, while the associated coals have high ratios (??? 1.0). This suggests that reducing conditions prevailed during deposition of the shales, but a period of oxidizing conditions accompanied deposition of the coals. Steranes present in coal extracts are dominated by the 14??(H)17??(H)20R C29 stereoisomers, typical, but not conclusive, of higher plant origin. Carbonaceous shales exhibit a wider range of sterane composition, suggesting local, significant input of algal organic matter. Significant amounts of benzohopanes and gammacerane are present in some coals. Although benzohopanes are present at least in small amounts in samples from many different environments, they have been reported to occur most commonly in marine environments. The present study seems to provide the first example where benzohopanes have been reported in significant amounts in terrestrial organic matter. Gammacerane is abundant in rocks or sediments deposited in carbonate or highly saline marine environments. The finding of high gammacerane concentrations in the coals expands the depositional settings in which it has been observed and questions its utility as an independent indicator of hypersaline carbonate environments. Stable carbon isotope composition of coals, and type III kerogen in carbonaceous shales as well as correlation of stable carbon isotope composition of saturated and aromatic hydrocarbons in carbonaceous shales from both the USCB and the LSCB indicate terrigenous origin. Bitumens are always co-genetic with associated coals and kerogens. Isotopic data reveal that Sofer's genetic classification of oils is not applicable to organic matter in coals. ?? 2003 Elsevier B.V. All rights reserved.

  3. On the Stability and Abundance of Single Walled Carbon Nanotubes

    PubMed Central

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J.

    2015-01-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth. PMID:26581125

  4. On the Stability and Abundance of Single Walled Carbon Nanotubes.

    PubMed

    Hedman, Daniel; Reza Barzegar, Hamid; Rosn, Arne; Wgberg, Thomas; Andreas Larsson, J

    2015-01-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2?eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product's relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth. PMID:26581125

  5. On the Stability and Abundance of Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J.

    2015-11-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth.

  6. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; Lpez-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1-3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60-70 and 30-35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Japan.

  7. Maturation of Green River Shale Kerogen with Hydrous Pyrolysis: Characterization of Geochemical Biomarkers and Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Darnell, M.; Bissada, K. K.

    2014-12-01

    To fully understand controlling factors of organic compound generation during oil shale maturation, and systematically assess associated carbon isotope values, a series of hydrous pyrolysis experiments are performed. Kerogen was isolated from Green River shale by a set of acid treatment. Experiments are conducted at 350 °C and 300 bars of total pressure with running time of 24, 48 and 72 hours, respectively. In each experiment, the reactor contains 1.5 grams of kerogen and 30 grams of deionized water. After experiments, gaseous products are removed under cryogenic conditions for chemical and carbon isotope analyses (GC-IRMS). The bitumen product is retrieved and separated into saturated hydrocarbons, aromatics, resins, and asphaltenes (SARA) by HPLC before subsequent analyses (GC, GC-MS, and IRMS). The gaseous compounds from experiments consisted of CO2 and C1 to C4 hydrocarbons. Semiquantitative analysis indicates the yield of n-alkanes decreases with carbon number, with CO2 being more abundant than all alkanes. The δ13C value of alkanes increases with molecular weight, with CO2 having the highest value. Methane and ethane become enriched in 13C with time. In bitumen products, gravimetric analysis has shown that the abundance of aromatics increases with time, while that of asphaltenes decreases. After 72 hours, the weight percentages of saturated hydrocarbons, aromatics, resins and asphaltenes are 2.6, 42.3, 40.1, and 15.0, respectively. High resolution GC-MS results indicate low kerogen maturation after 72 hours using saturated biomarker compounds as thermal maturity indicator, such as 22S/(22S + 22R) of C31 to C35 homohopanes, tricyclics/17(H)-hopanes, and Ts/(Ts + Tm). Bulk carbon isotope value of bitumen decreases with time, with 2.5‰ lighter than original kerogen after 72 hours. In terms of different groups, saturated hydrocarbons and resins become depleted in 13C with longer reaction time, while aromatics and asphaltenes become enriched in 13C. Experiments with longer reaction time and under different physicochemical conditions are underway. That would facilitate a better understanding of oil and gas generation and carbon isotope systematics during kerogen maturation processes for effective conventional and unconventional exploration.

  8. Carbon and nitrogen isotope studies in an arctic ecosystem. Final report

    SciTech Connect

    Schell, D.M.

    1994-06-01

    The dynamics of carbon fixation and storage in tundra soils has received considerable attention with respect to global carbon cycling. Recent findings by investigators using chamber measurements of fixation/respiration rates in arctic tundra have led to the conclusion that tundra is no longer storing carbon but is instead a source of carbon dioxide to the atmosphere. The author has sought to test these conclusions and to determine methods by which the long-term accumulation or loss of carbon in tundra can be determined. Little is known, however, of the processes that control storage and the current rates of carbon fixation and peat formation in arctic Alaska. This project focused on several aspects of carbon dynamics and the roles of decomposition and herbivory at the DOE research site at Imnavait Creek, Alaska. Through the use of natural abundance stable and radioisotope techniques, several conclusions emerged. Peat carbon continues to accumulate in wetter areas of foothill valleys and on the coastal plain of arctic Alaska. Radiocarbon profiles of bomb {sup 14}C were used to date layers of vegetation and litter to obtain decomposition rates and to extrapolate these values to intersection with the permafrost horizon where further decomposition is assumed to cease. Carbon storage in riparian moss at Imnavait Creek was estimated at 3 g C/m{sup 2}-yr. Profiles of {sup 137}Cs closely matched those of {sup 14}C and may provide a more expeditious means of assessing recent carbon accumulation rates in tundra. Carbon and nitrogen stable isotope ratios in tundra vegetation vary markedly over hydrologic gradients in apparent response to changing growth rates and sources of nitrogenous nutrients. Within a taxon, {delta}{sup 15}N values varied by several {per_thousand} over a tens of meters distance.

  9. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47) from long sequences of deeply buried (⩽5 km) paleosol carbonate in the Himalayan foreland in order to evaluate potential diagenetic resetting of clumped isotope composition. We found that paleosol carbonate faithfully records plausible soil T°C(47) down to 2.5-4 km burial depth, or ˜90-125 °C. Deeper than this and above this temperature, T°C(47) in paleosol carbonate is reset to temperatures >40 °C. We observe ˜40 °C as the upper limit for T°C(47) in modern soils from soil depths >25 cm, and therefore that T°C(47) >40 °C obtained from ancient soil carbonate indicates substantially warmer climate regimes compared to the present, or non-primary temperatures produced by resetting during diagenesis. If representative, this limits the use of T°C(47) to reconstruct ancient surface temperature to modestly buried (<3-4 km) paleosol carbonates. Despite diagenetic resetting of Δ47 values, δ18O and δ13C values of the same deeply buried paleosol carbonate appear unaltered. We conclude that solid-state reordering or recrystallization of clumping of carbon and oxygen isotopes can occur in the absence of open-system exchange of paleosol carbonate with significant quantities of water or other phases.

  10. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    NASA Astrophysics Data System (ADS)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0.20 ‰ for JCp-1 and 0.15 ‰ for JCt-1, hence within uncertainty of the reported values. With the exception of one MC-ICPMS lab that provided significantly lower JCp-1 δ11B data for unoxidised material (1.7 ‰ below median), the remaining JCp-1 results reproduced within ± 0.54 ‰ for unoxidised (n=21) and ± 0.37 ‰ for oxidised standards (n=21). The JCt-1 standards did not reproduce as well, resulting in a 2 s.d. of 1.0 ‰ for both unoxidised and oxidised powders (n=21) and in places the effect of oxidation appeared to be laboratory dependent. Exclusion of one MC-ICPMS lab resulted in an improved reproducibility of 0.52 ‰ (n=18) for oxidised JCt-1 material. The mean difference for the two standard materials in the respective labs (i.e., Δδ11B = mean δ11B(JCp-1) - mean δ11B(JCt-1)) was 7.9 ± 0.9 ‰ for unoxidised (n=7) and 8.1 ± 0.7 ‰ for oxidised standards (n=7). In this presentation emphasis will also be placed on distinguishing factors leading to increased/decreased interlaboratory consistency during the preparation and analysis of biogenic carbonates for other isotopic systems. References [1] Foster, G.L. et al. (2013) Chemical Geology 358: p. 1-14. [2] Okai, T. et al. (2002) Geostandards Newsletter 26: p. 95-99. [3] Inoue, M. et al. (2004) Geostandards and Geoanalytical Research 28: p. 411-416.

  11. Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.

    2014-08-01

    Kinetic isotope effects (KIEs) during the inorganic hydration of carbon dioxide (CO2) in aqueous solution cause reduced stable carbon and oxygen isotope ratios (13C/12C and 18O/16O) in the reaction product carbonic acid (H2CO3) or bicarbonate ion (HCO3-), relative to CO2. While such KIEs are of importance in various physicochemical, geochemical, and biological systems, very few experimental and theoretical studies have attempted to determine the magnitude of the carbon and oxygen kinetic isotope fractionation (KIF) during hydration of CO2. Here I use transition state theory (TST) and quantum chemistry calculations to investigate the reaction rates of isotopic reactants CO2+nH2O (n = 1-8) along the hydration pathway to H2CO3 or HCO3-. Locating transition states is difficult and the quantum chemistry calculations time-consuming at large n. My results suggest that the hydration mechanism for n = 1-3 is unlikely to be the dominant pathway producing KIFs during CO2 hydration in aqueous solution; hydration mechanisms for n ? 4 appear more likely. For n = 4-8, the predicted KIF based on MP2/aug-cc-pVDZ calculations at 25 C is ?1.023-1.033 and ?1.013-1.015, for carbon and oxygen, respectively. However, these values are uncertain and the results of the present study suggest that new experimental work is required to accurately determine the KIF of carbon and oxygen during CO2 hydration.

  12. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution

    NASA Astrophysics Data System (ADS)

    Gellatly, Anne M.; Lyons, Timothy W.

    2005-08-01

    Concentrations of oceanic and atmospheric oxygen have varied over geologic time as a function of sulfur and carbon cycling at or near the Earth's surface. This balance is expressed in the sulfur isotope composition of seawater sulfate. Given the near absence of gypsum in pre-Phanerozoic sediments, trace amounts of carbonate-associated sulfate (CAS) within limestones or dolostones provide the best available constraints on the isotopic composition of sulfate in Precambrian seawater. Although absolute CAS concentrations, which range from those below detection to 120 ppm sulfate in this study, may be compromised by diagenesis, the sulfur isotope compositions can be buffered sufficiently to retain primary values. Stratigraphically controlled ? 34S measurements for CAS from three mid-Proterozoic carbonate successions (1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; 1.45-1.47 Ga Helena and Newland formations, Belt Supergroup, Montana, USA; and 1.65 Ga Paradise Creek Formation, McNamara Group, NW Queensland, Australia) show large isotopic variability (+9.1 to +18.9, -1.1 to +27.3, and +14.1 to +37.3, respectively) over stratigraphic intervals of 50 to 450 m. This rapid variability, ranging from scattered to highly systematic, and overall low CAS abundances can be linked to sulfate concentrations in the mid-Proterozoic ocean that were substantially lower than those of the Phanerozoic but higher than values inferred for the Archean. Results from the Belt Supergroup specifically corroborate previous arguments for seawater contributions to the basin. Limited sulfate availability that tracks the oxygenation history of the early atmosphere is also consistent with the possibility of extensive deep-ocean sulfate reduction, the scarcity of bedded gypsum, and the stratigraphic ? 34S trends and 34S enrichments commonly observed for iron sulfides of mid-Proterozoic age.

  13. Biogeochemistry of a mesotrophic lake and it's carbon isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Ehresman, W.; Sadurski, S. E.

    2010-12-01

    Crystal Lake, located in west-central Ohio, is the main lake of a series of 4 interconnected lakes. The location and orientation indicate that they are most likely moulin-induced glacial lakes. Crystal Lake is about 5 hectares (12.5 acres). The maximum depth and mean depth are about 11.9 meters and 3.8 meters, respectively. As a result of this high depth-to-surface area ratio, it creates a strong thermal stratification during warm season. The lake was classified as eutrophic lake. However, the water quality has improved in the past decades. The chlorophyll in the epillimnion and upper metalimlion is about 4 ?g/l and the Secchi disk depth is about 3.0 meters (10 feet). It is therefore reclassified as mesotrophic lake. Dissolved oxygen maximum (15.6 ppm) and pH peak (8.6) existed at 4.1 meter on August 16, 2010. At around 7.3 meter, where redox potential reading shows a sudden change from oxidizing to reducing , a ~half meter layer of dense purple sulfur bacteria coincides with turbidity, chlorophyll, and sulfate maxima. The chemical depth profiles are a result of thermal stratification, oxygenic photosynthesis by algae, non-oxygenic photosynthesis by purple sulfur bacteria, and respiration in the hypolimnion. Precipitation of calcium carbonate in the epilimnion and metalimnion is coupled by its dissolution in the hypolimnion. The purpose of the current project is to present extensive background study to form the framework for quantifying the carbon isotope evolution with multiple reaction pathways. Carbon isotope composition of dissolved inorganic carbon is being analyzed. Wigley-Plummer-Pearson mass transfer model will be used for the quantification of carbon isotope reaction pathways.

  14. Coupling Organic Carbon and Nitrogen Isotope with Carbonate Carbon Isotope Excursion Across the Early Mississippian Kinderhookian-Osagean Boundary in Great Basin, Western USA

    NASA Astrophysics Data System (ADS)

    Maharjan, D. K.; Jiang, G.; Peng, Y.; Sahoo, S. K.; Henry, R. A.

    2014-12-01

    The Early Mississippian Kinderhookian-Osagean (K-O) boundary transition represents one of the largest global perturbations of carbon cycle during Phanerozoic. This interval is characterized by large positive carbonate carbon isotope anomaly (δ13Ccarb) enriched to more than + 5‰ that has been globally recognized. Controversies exit regarding the origin and nature of this carbon isotope excursion. Here we report that a primary preservation of the K-O δ13Ccarb excursion was coupled by organic carbon isotope (δ13Corg) and organic nitrogen isotope (δ15Norg) from carbonate successions of Great Basin in Western USA. Our samples were obtained from Mountain Home (MH) and Alamo (AL) sections, represent shallow and deeper depositional environment, respectively. The values of δ13Ccarb covaried with δ13Corg in both sections, indicating photosynthetic origin of organic carbon isotope excursion during K-O. δ13Ccarb values from AL records 1-1.5‰ higher than MH, possibly related to locally higher production. Carbonate-organic carbon isotope differences (Δ13C = δ13Ccarb - δ13Corg) increase across the peak of δ13Ccarb excursion in AL section but remain invariant ∆δ13C in MH, suggesting that δ13Corg values in AL may have been imprinted with signature from secondary (chemo- and methanotrophic) biomass contribution as anoxia was developed in the distal carbonate platform. The contrasting ∆δ13C profiles in time-equivalent sections questioned the general concept that increase in ∆δ13C records elevated O2/CO2 ratios, as have been suggested for Late Cambrian and Permo-Carboniferous. Only when the temporal depositional environments did not change, the ∆δ13C may have implications for changes in O2/CO2 ratios. Nitrogen isotopes values increased to 4‰ across the K-O δ13C excursion indicating increased pelagic denitrification in response to the development of oxygen minimum zone as a result of enhanced organic carbon production, global cooling and sea-level fall. The integrated δ13Ccarb, δ13Corg, and δ15Norg data across the K-O transition support an organic carbon burial event associated with global cooling/oxygenation occurred during the Early Mississippian.

  15. Stable-isotope record of organic carbon from an evolving carbonate banktop, Bight of Abaco, Bahamas

    SciTech Connect

    Rasmussen, K.A.; Neumann, A.C. ); Haddad, R.I. )

    1990-08-01

    The stable-isotope composition ({delta}{sup 13}C) of total organic carbon (TOC) was measured as a function of depth throughout a 217-cm-thick sequence of Holocene carbonate sediment within the Bight of Abaco lagoon, Little Bahama Bank. Biofacies and lithofacies analyses indicate progressive banktop submergence and paleoenvironmental response during Holocene sea-level rise. Stable-isotope values shift markedly from {minus}27.7{per thousand} within the 7900 B.P. paleosol at the base of the core to {minus}11.1{per thousand} at the present-day sediment-water interface. An abrupt excursion toward heavy-isotope values records the first establishment of Thalassia seagrass upon open-marine flooding. A multitracer approach, combining biofacies, lithofacies, and stable-isotope analysis of TOC confirms that the dramatic +17{per thousand} shift observed in {delta}{sup 13}C was a direct result of sea-level rise and associated environmental changes over the banktop; there is little evidence of spurious diagenetic overprint. Stable-isotope analyses of organic carbon may enhance the reconstruction of carbonate sequences by revealing a distinctive geochemical signature of banktop flooding, including the onset of growth of otherwise unpreservable Thalassia seagrass.

  16. Were carbon isotopic gradients in post-snowball oceans inverted?

    NASA Astrophysics Data System (ADS)

    Halverson, G. P.; Hoffman, P. F.; MacDonald, F. A.; Higgins, J. A.; Schrag, D. P.

    2008-12-01

    In the Otavi Group of Namibia, 900 m of platform carbonate strata above the 635-Ma post-glacial cap dolostone are consistently lighter in ?13C by up to 2.5 per mil than the adjacent 180-320 m of correlative, >0.6-km-deep, foreslope strat. Assuming the foreslope carbonate was equilibrated with deeper water, the normal isotopic gradient dynamically sustained by the biological 'pump' was inverted. Geochronology of isotopically correlative Doushantuo strata in South China suggests that the inverted gradient lasted for ~2 Myr after the glacial termination. Thereafter, the inverted gradient disappears. A similar transient inverse gradient follows the older Cryogenian glaciation in Arctic Alaska. We hypothesize that the inverse gradients reflect high pCO2 in the glacial aftermaths. This had two consequences. First, the size of the DIC pool was enlarged, reducing the isotopic effect of the biological pump. Second, isotopic fractionation was strongly temperature-dependent due to the large fractionation between CO2 and CO32- coupled with the dominance of CO2(gas) among carbon species at pH<7.2. A difference in SST of ~25 between the areas of air-sea equilibration is required to account for a 2.5 per mil gradient in ?13C. This is realized in non-upwelling zones of the southern hemisphere today, where warm subtropical surface waters are underlain by Antarctic Intermediate Water. For our hypothesis to be valid, a large meridional temperature gradient must have coexisted with strong CO2 radiative forcing.

  17. Carbon isotopes in xenoliths from the Hualalai Volcano, Hawaii, and the generation of isotopic variability

    NASA Astrophysics Data System (ADS)

    Pineau, F.; Mathez, E. A.

    1990-01-01

    The isotopic composition of carbon has been determined in a suite of xenoliths from lava of the 1800-1801 Kaupulehu eruption of Hualalai Volcano, Hawaii. Several lithologies are represented in the suite, including websterite, dunite, wehrlite, pyroxenite, and gabbro. In addition, there are composite xenoliths in which contacts between lithologies are preserved. Most of the xenoliths represent deformed cumulates. The contact relations in the composite samples indicate that the lithologies originated from the same source region, which, based on pressures determined from fluid inclusions, is estimated to be at a depth of ?20 km, or near the crust-mantle boundary. Samples were heated in steps from 200 to 1475C to obtain separation of the different carbonaceous phases, and the isotopic composition of carbon released at each step was determined. Grossular glass was found to be a suitable flux to fuse refractory samples. Upon heating, carbon exhibits the typical bimodal evolution behavior observed in other studies of xenoliths and basalts. Carbon extracted from all samples at temperatures below 900C is characterized by a ?13C of about -25%. vs PDB and is thought to be composed dominantly of graphitic and organic material, which is known to be present on virtually all cracks. The ?13C of the carbon fraction extracted at 1200C and above from wehrlite and dunite is in the range-1.5%. to 5.2%., whereas that extracted from websterite ranges from -22%. to -26 Similarly, in one composite sample, the compositions of dunite and websterite were found to be -2.4%. and -7.0%., respectively. The large difference can be associated with specific petrographic features unique to each lithology. In wehrlite and dunite, carbon exists mostly as CO 2-rich inclusions in arrays representing partially annealed microcracks. The websterite xenoliths contain megascopic zones of large, irregularly-shaped inclusions. The zones traverse entire thinsections and are interpreted to represent fractures annealed at depth. Most of the carbon is believed to exist in the inclusion-rich zones and to consist of carbonaceous material precipitated from fluid. The observations and isotopic results demonstrate that isotopic variability can be generated by multistage fractionation processes such as degassing of CO 2 from magma and precipitation of CO 2-rich fluids to form graphitic compounds. Such processes operated over regions the scales of which were determined by style and intensity of deformation and by lithology.

  18. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    SciTech Connect

    Guy, R.D. ); Fogel, M.L.; Berry, J.A. )

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  19. Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon.

    PubMed

    Guy, R. D.; Fogel, M. L.; Berry, J. A.

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. PMID:12231663

  20. On strontium isotopic anomalies and odd-A p-process abundances. [in solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1978-01-01

    Several aspects of the nucleosynthesis of Sr isotopes are considered in an attempt to shed light on the problem of the Sr isotopic anomalies discovered in an inclusion of the Allende meteorite. Decomposition of the Sr isotopes into average r-, s-, and p-process nucleosynthetic classes is performed. It is suggested that the Allende inclusion most likely has an excess of s-process Sr and that the initial Sr-87/Sr-86 isotopic ratio is probably slightly more primitive than basaltic achondrites. The results also show that Sn-115 is mostly due to the r-process and that odd-A yields are very small. It is concluded that if the Sr anomaly in the inclusion is an average s enhancement, it argues somewhat in favor of a model of gas/dust fractionation of s and r isotopes during accumulation of the inclusion parent in the protosolar cloud.

  1. STABLE ISOTOPIC EVIDENCE OF CARBON AND NITROGEN USE IN CULTURED ECTOMYCORRHIZAL AND SAPROTROPHIC FUNGI

    EPA Science Inventory

    Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...

  2. Carbonate concretions as a significant component of ancient marine carbon cycles: Insights from paired organic and inorganic carbon isotope analyses of a Cretaceous shale

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.

    2014-12-01

    Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from ­-26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of organic material. These data imply that concretion growth in shallow sediments can act as a significant and long-term sink for both marine inorganic and organic carbon.

  3. Lithium isotopes and light lithophile element abundances in shergottites: Evidence for both magmatic degassing and subsolidus diffusion

    NASA Astrophysics Data System (ADS)

    Udry, Arya; McSween, Harry Y.; Hervig, Richard L.; Taylor, Lawrence A.

    2015-12-01

    Degassed magmatic water was potentially the major source of surficial water on Mars. We measured Li, B, and Be abundances and Li isotope profiles in pyroxenes, olivines, and maskelynite from four compositionally different shergottitesShergotty, QUE 94201, LAR 06319, and Tissintusing secondary ion mass spectrometry (SIMS). All three light lithophile elements (LLE) are incompatible: Li and B are soluble in H2O-rich fluids, whereas Be is insoluble. In the analyzed shergottites, Li concentration decreases and Be concentration increases from cores to rims in pyroxenes. However, B concentrations do not vary consistently with Li and Be abundances, except in QUE 94201 pyroxenes. Additionally, abundances of these three elements in olivines show a normal igneous-fractionation trend consistent with the crystallization of olivine before magma ascent and degassing. We expect that kinetic effects would lead to fractionation of 6Li in the vapor phase compared to 7Li during degassing. The Li isotope profiles, with increasing ?7Li from cores to rims, as well as Li and B profiles indicate possible degassing of hydrous fluids only for the depleted shergottite QUE 94201, as also supported by degassing models. Conversely, Shergotty, LAR 06319, and Tissint appear to have been affected by postcrystallization diffusion, based on their LLE and Li isotope profiles, accompanied by diffusion models. This process may represent an overlay on a degassing pattern. The LLE profiles and isotope profiles in QUE 94201 support the hypothesis that degassing of some basaltic shergottite magmas provided water to the Martian surface, although evidence may be obscured by subsolidus diffusion processes.

  4. Lithium isotopes and light lithophile element abundances in shergottites: Evidence for both magmatic degassing and subsolidus diffusion

    NASA Astrophysics Data System (ADS)

    Udry, Arya; McSween, Harry Y.; Hervig, Richard L.; Taylor, Lawrence A.

    2016-01-01

    Degassed magmatic water was potentially the major source of surficial water on Mars. We measured Li, B, and Be abundances and Li isotope profiles in pyroxenes, olivines, and maskelynite from four compositionally different shergottites—Shergotty, QUE 94201, LAR 06319, and Tissint—using secondary ion mass spectrometry (SIMS). All three light lithophile elements (LLE) are incompatible: Li and B are soluble in H2O-rich fluids, whereas Be is insoluble. In the analyzed shergottites, Li concentration decreases and Be concentration increases from cores to rims in pyroxenes. However, B concentrations do not vary consistently with Li and Be abundances, except in QUE 94201 pyroxenes. Additionally, abundances of these three elements in olivines show a normal igneous-fractionation trend consistent with the crystallization of olivine before magma ascent and degassing. We expect that kinetic effects would lead to fractionation of 6Li in the vapor phase compared to 7Li during degassing. The Li isotope profiles, with increasing δ7Li from cores to rims, as well as Li and B profiles indicate possible degassing of hydrous fluids only for the depleted shergottite QUE 94201, as also supported by degassing models. Conversely, Shergotty, LAR 06319, and Tissint appear to have been affected by postcrystallization diffusion, based on their LLE and Li isotope profiles, accompanied by diffusion models. This process may represent an overlay on a degassing pattern. The LLE profiles and isotope profiles in QUE 94201 support the hypothesis that degassing of some basaltic shergottite magmas provided water to the Martian surface, although evidence may be obscured by subsolidus diffusion processes.

  5. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    SciTech Connect

    Aravena, R. . Center for Groundwater Research and Wetlands Research Center); Warner, B.G. . Wetlands Research Center and Dept. of Geography); Charman, D.J. . Dept. of Geographical Sciences); Belyea, L.R. . School of Biological Sciences); Mathur, S.P. ); Dinel, H. )

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere.

  6. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87Sr/86Sr, and eolian material has 87Sr/86Sr ratios at the lower end of the pedogenic range. The average 87Sr/86Sr of Paleozoic basement from Black Marble Hill is similar to the 87Sr/86Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87Sr/86Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain.

  7. Carbon and nitrogen isotope fractionation during possible organic aerosol formation in Titan and the early Earth

    NASA Astrophysics Data System (ADS)

    Imanaka, H.

    2012-12-01

    Abiotic formation of complex organic macromolecule aerosols is important not only for the potential for prebiotic chemical evolution, but also in the global elemental cycle. The direct clues of the habitable environment and biosphere on the early Earth are mostly obtained from geological records, such as isotope signatures and biomarkers in the ancient organic sediments. The recent Cassini-Huygens mission revealed the generation of complex organic aerosols in Titan's upper atmosphere, and similar processes could have lead to the formation of organic aerosols in the early Earth atmosphere. Understanding the formation reaction network and accompanying isotope fractionation processes of the organic aerosols is necessary to constrain the active organic environment on the early Earth from the available geological evidence. We have investigated the abiotic formation of organic aerosols in simulated atmospheres of Titan and the early, with particular focus on carbon and nitrogen isotope fractionation. Laboratory aerosol analogues, termed tholins, are generated with cold plasma irradiation of reduced gas mixtures, such as N2/CH4 and N2/H2/CO. Stable isotopic ratios of 15N/14N and 13C/12C for the generated tholins are measured with an elemental analysis-isotope ratio mass spectrometer (EA-IR-MS). Our preliminary data for tholins generated from an equivalent N2/CH4 (=90/10) gas mixture at various pressures suggests the 15N isotopic fractionation up to ?15N = -20~25 permil during tholin formation, while 13C isotopic fractionation seems almost negligible. This negative ?15N is even lighter than those observed in kerogens in the Archean sediments (Beaumont and Robert, 1999; Pinti et al., 2001), and the organic haze could have contributed to the source of 15N-depleted kerogens. Furthermore, the ?15N vary with deposition pressure. Previous works demonstrated that the resulted two types of tholin are very different in chemical structure and optical properties (Imanaka et al., 2004, 2012). Although the correlation of pressure might be just an apparent one, distinct type of chemistry could be the reason of such isotopic fractionation. The two distinct ?15N could be related to the difference of dominant functional groups, such as -NH2 and -CN. Since N-H functionality is more abundant in the tholins with depleted 15N, the observed isotopic fractionation could be related to the chemical bond change from N2 to -N-H functionality.

  8. Carbon and oxygen isotopes in apatite CO/sub 2/ and co-existing calcite

    SciTech Connect

    Kolodny, Y.; Kaplan, I. R.

    1981-04-01

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO/sub 2/ and in co-existing calcite. Both C and O in apatite CO/sub 2/ are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure.

  9. Terrestrial and Meteorite Carbon Appear to Have the Same Isotopic Composition

    PubMed Central

    Libby, W. F.

    1971-01-01

    The carbon-isotope ratio recently obtained for the carbon found in the Murchison meteorite, which has been shown (by the racemic nature of twelve component amino acids) to be free of terrestrial contamination, agrees with that for average terrestrial sediments. This finding indicates that the earth and the stony meteorites contain carbon of the same isotopic composition. PMID:16591904

  10. The concentration and isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Blank, Jennifer G.; Delaney, John R.; Des Marais, David J.

    1993-01-01

    The abundance and C-13/C-12 ratios of carbon were analyzed in basaltic glass from twenty locations along the Juan de Fuca Ridge using a 3-step combustion/extraction technique. Carbon released during the first two combustion steps at 400-500 C and 600-650 C is interpreted to be secondary, and only the carbon recovered during a final combustion step at about 1200 C is thought to be indigenous to the samples. For carbon released at about 1200 C, glasses analyzed as 1-2 mm chips contained 23-146 ppm C with delta C-13 values of -4.8 to -9.3 per mil, whereas samples crushed to 38-63 microns or 63-90 microns yielded 56-103 ppm C with delta C-13 values of -6.1 to -9.2 per mil. The concentrations and isotopic compositions of the primary carbon dissolved in the glasses and present in the vesicles are similar to those previously reported for other ocean-ridge basalts. The Juan de Fuca basaltic magmas were not in equilibrium with respect to carbon when they erupted and quenched on the sea floor. Evidence of disequilibrium includes (1) a large range of carbon contents among glasses collected at similar depths, (2) a highly variable calculated carbon isotopic fractionation between melt and vapor determined by comparing crushed and uncrushed splits of the same sample, and (3) a lack of correlation between vesicle abundance, carbon concentration, and depth of eruption. Variations in carbon concentration and delta C-13 ratios along the ridge do not correlate with major element chemistry. The observed relationship between carbon concentrations and delta C-13 values may be explained by late-stage, variable degrees of open-system (Rayleigh-like) degassing.

  11. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    PubMed

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization. PMID:9545215

  12. A continuous 250,000 yr record of oxygen and carbon isotopes in ostracode and bulk-sediment carbonate from Bear Lake, Utah-Idaho

    USGS Publications Warehouse

    Bright, Jordon; Kaufman, D.S.; Forester, R.M.; Dean, W.E.

    2006-01-01

    Oxygen and carbon isotopes from a continuous, 120-m-long, carbonate-rich core from Bear Lake, Utah-Idaho, document dramatic fluctuations in the hydrologic budget of the lake over the last 250,000 yr. Isotopic analyses of bulk sediment samples capture millennial-scale variability. Ostracode calcite was analyzed from 78 levels, mainly from the upper half of the core where valves are better preserved, to compare the isotopic value of purely endogenic carbonate with the bulk sediment, which comprises both endogenic and detrital components. The long core exhibits three relatively brief intervals with abundant endogenic aragonite (50??10%) and enriched ??18O and ??13C. These intervals are interpreted as warm/dry periods when the lake retracted into a topographically closed basin. We correlate these intervals with the interglacial periods of marine oxygen-isotope stages 1, 5e, and 7a, consistent with the presently available geochronological control. During most of the time represented by the core, the lake was fresher than the modern lake, as evidenced by depleted ??18O and ??13C in bulk-sediment carbonate. ?? 2006 Elsevier Ltd. All rights reserved.

  13. The abundance and excitation of the carbon chains in interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Bujarrabal, V.; Guelin, M.; Morris, M.; Thaddeus, P.

    1981-01-01

    Emission lines from the carbon chains HC3N, HC5N, HC7N and HC9N were observed at 3 mm, 7 mm, and 1.4 cm in a number of dark clouds, Orion A and IRC(plus)10216. Non-LTE models were constructed to describe excitation and column densities. Component models for the Taurus dark cloud TMC-1 suggested that relative molecular abundances do not vary substantially along the cloud ridge, whereas the H2 density does by a factor of three. Data available for other dark clouds showed that the decrease in abundance with length from one carbon chain to the next is nearly constant, being close to 2.3. The decline in carbon chain abundance with length is steeper in Orion KL than in dark clouds by a factor of approximately four. Abundance ratios derived for the carbon star IRC(plus)10216 are uncertain, due to difficulties in modeling excitation rates in this environment.

  14. Abundance anomalies of carbon and nitrogen in the IUE spectra of Algol-type interacting binaries

    NASA Technical Reports Server (NTRS)

    Mccluskey, Carolina P. S.

    1990-01-01

    There are two primary ways in which the products of nucleosynthesis in stellar interiors may appear at the surface of a star. These are mixing and/or loss of the original unburned stellar envelope. In interacting binaries, overflow can contribute dramatically to envelope loss. The simplest abundance anomalies to be expected from nuclear burning of hydrogen, helium, or carbon would be under or over abundances H, He, C, O, Ne, and Mg. In addition, it is expected that carbon is initially severely depleted, while nitrogen is enhanced during hydrogen burning via the CNO cycle in stars above two solar masses. Other, more subtle anomalies are also expected, and elements heavier than magnesium can be created during very late evolution by nuclear burning in massive stars. Consequently, it is expected that abundance anomalies of various kinds should occur in interacting binaries where one or both stars have lost significant amounts of mass.

  15. Determination of the natural abundance ?15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    PubMed

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance ?(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the ?(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4 (-0.02 to 0.39). When applied to four sources of taurine with various ?(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance ?(15)N values of taurine over the concentration range 1.5-7.84 mol.mL(-1) in samples of biological origin. PMID:21072793

  16. Dynamic and transfert of carbon in Loire catchment using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Coularis, Cindy; Fontugne, Michel; Tisnrat-Laborde, Nadine; Pastor, Lucie; Siclet, Franoise

    2014-05-01

    Rivers have a major role in carbon transfer between continent and ocean. The organic matter exported from land represents a major source of DOC and POC in oceans. The composition and reactivity of this matter will influence its behavior and fate within the coastal areas and continental shelf. It is thus important to characterize the exported matter and its temporal variability. Stable carbon isotope ratios (d13C) and 14C activity can provide unique information on carbon sources, turnover and exchange processes. We present here a study of the carbon cycle in the Loire River and its major tributaries by combining carbon isotopes measurements and classical biogeochemical parameters (DOC, POC, DIC, pH, Temperature, Alkalinity, pH, chlorophyll ). Three campaigns were performed in April, July and October 2013. The changes in 14C signature due to the controlled liquid release of five nuclear power plants are used to get additional information on the carbon dynamics within the river. First results show a conservative behavior of the organic carbon concentrations contrary to the inorganic carbon all along the Loire River. However, the reactivity of the organic matter varies with rivers catchments and seasons. An inventory of the distribution of the different carbon phases within the Loire River and its tributaries is presented.

  17. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  18. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry.

    PubMed

    Betti, M; Rasmussen, G; Koch, L

    1996-07-01

    A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at microg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques. PMID:15045270

  19. Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient.

    PubMed

    Gavazov, Konstantin; Hagedorn, Frank; Buttler, Alexandre; Siegwolf, Rolf; Bragazza, Luca

    2016-01-01

    Peatlands are important sinks of atmospheric carbon (C) that, in response to climate warming, are undergoing dynamic vegetation succession. Here we examined the hypothesis that the uptake of nutrients by different plant growth forms (PGFs) is one key mechanism driving changes in species abundance in peatlands. Along an altitude gradient representing a natural climate experiment, we compared the variability of the stable C isotope composition (δ(13)C) and stable nitrogen (N) isotope composition (δ(15)N) in current-year leaves of two major PGFs, i.e. ericoids and graminoids. The climate gradient was associated with a gradient of vascular plant cover, which was parallelled by different concentrations of organic and inorganic N as well as the fungal/bacterial ratio in peat. In both PGFs the (13)C natural abundance showed a marginal spatial decrease with altitude and a temporal decrease with progression of the growing season. Our data highlight a primary physical control of foliar δ(13)C signature, which is independent from the PGFs. Natural abundance of foliar (15)N did not show any seasonal pattern and only in the ericoids showed depletion at lower elevation. This decreasing δ(15)N pattern was primarily controlled by the higher relative availability of organic versus inorganic N and, only for the ericoids, by an increased proportion of fungi to bacteria in soil. Our space-for-time approach demonstrates that a change in abundance of PGFs is associated with a different strategy of nutrient acquisition (i.e. transfer via mycorrhizal symbiosis versus direct fine-root uptake), which could likely promote observed and predicted dwarf shrub expansion under climate change. PMID:26433961

  20. Reaction cross sections of carbon isotopes incident on a proton

    SciTech Connect

    Abu-Ibrahim, B.; Horiuchi, W.; Kohama, A.; Suzuki, Y.

    2008-03-15

    We systematically study total reaction cross sections of carbon isotopes with N=6-16 on a proton target for wide range of incident energies. An emphasis is put on the difference from the case of a carbon target. The calculations include the reaction cross sections of {sup 19,20,22}C at 40A MeV, the data of which have recently been measured at RIKEN. The Glauber theory is used to calculate the reaction cross sections. To describe the intrinsic structure of the carbon isotopes, we use a Slater determinant generated from a phenomenological mean-field potential, and construct the density distributions. To go beyond the simple mean-field model, we adopt two types of dynamical models: One is a core+n model for odd-neutron nuclei, and the other is a core+n+n model for {sup 16}C and {sup 22}C. We propose empirical formulas which are useful in predicting unknown cross sections.

  1. The source charge and isotopic abundances of cosmic rays with Z = 9-16 - A study using new fragmentation cross sections

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.; Soutoul, A.; Ferrando, P.

    1990-01-01

    The cosmic ray source charge and isotopic abundances for charges with Z = 9-16 are reexamined using newly measured fragmentation cross sections in a standard Galactic propagation model. Compared with earlier studies, the cosmic-ray data are now consistent with no excess of Si-29 and Si-30 in the source relative to the solar coronal abundances. The excess of Mg-25 and Mg-26 is now about 1 sigma or less relative to solar coronal isotopic abundances, leaving Ne-22 as the only clearly established neutron-rich isotopic excess in the cosmic ray source. Better estimates of the source abundances of elements obtained using the new cross sections permit the conclusion that high first ionization potential (FIP) elements have a wide spread of compositional differences in the cosmic-ray source relative to solar coronal abundances, whereas elements with a low FIP have a composition similar to the solar corona.

  2. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Spero, Howard J.; Bijma, Jelle; Lea, David W.; Bemis, Bryan E.

    1997-12-01

    Stable oxygen and carbon isotope measurements on biogenic calcite and aragonite have become standard tools for reconstructing past oceanographic and climatic change. In aquatic organisms, 18O/16O ratios in the shell carbonate are a function of the ratio in the sea water and the calcification temperature. In contrast, 13C/12C ratios are controlled by the ratio of dissolved inorganic carbon in sea water and physiological processes such as respiration and symbiont photosynthesis. These geochemical proxies have been used with analyses of foraminifera shells to reconstruct global ice volumes, surface and deep ocean temperatures,, ocean circulation changes and glacial-interglacial exchange between the terrestrial and oceanic carbon pools. Here, we report experimental measurements on living symbiotic and non-symbiotic plankton foraminifera (Orbulina universa and Globigerina bulloides respectively) showing that the 13C/12C and 18O/16O ratios of the calcite shells decrease with increasing seawater [CO32-]. Because glacial-period oceans had higher pH and [CO32-] than today, these new relationships confound the standard interpretation of glacial foraminiferal stable-isotope data. In particular, the hypothesis that the glacial-interglacial shift in the 13C/12C ratio was due to a transfer of terrestrial carbon into the ocean can be explained alternatively by an increase in ocean alkalinity. A carbonate-concentration effect could also help explain some of the extreme stable-isotope variations during the Proterozoic and Phanerozoic aeons.

  3. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Lyons, W. B.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low Sigma-CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work by Doran et al. has shown that algal mats in these streams have delta C-13 values averaging -7.0%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C-13 signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C-13 geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars. Additional information is contained in the original.

  4. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O?????17O ratio was close to the MeijerLi relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately???140 ?K to??+2500 ?K with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the ?2H correction parameter of A2H??=??673 ?K / ( deviation of ?2H from VSMOW) with a combined uncertainty of 4 ?K (k??=??1, or 1?).

  5. Carbon isotope ratios and impurities in diamonds from Southern Africa

    NASA Astrophysics Data System (ADS)

    Kidane, Abiel; Koch-Müller, Monika; Morales, Luiz; Wiedenbeck, Michael; De Wit, Maarten

    2015-04-01

    We are investigating the sources of diamonds from southern Africa by studying both their carbon isotopic composition and chemical impurities. Our samples include macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Helam and Klipspringer kimberlitic deposits from South Africa, as well as micro-sized diamonds from Klipspringer and Premier kimberlites in South Africa. We have characterized the samples for their structurally bounded nitrogen, hydrogen and platelets defect using a Fourier Transmission Infrared Spectroscopy (FTIR). Using the DiaMap routine, open source software (Howell et al., 2012), IR spectra were deconvulated and quantified for their nitrogen (A, B and D components) and hydrogen contents. High to moderate nitrogen concentrations (1810 to 400 µg/g; 400 to 50 µg/g respectively) were found in diamonds from Klipspringer and Helam. Moderate to low (<50 µg/g) nitrogen concentrations were observed in diamonds from Premier and River Ranch. Type II diamonds, i.e. diamonds with no N impurities, which are presumed to have been derived from ultramafic sources, are found in the River Ranch deposit. The macro- and micro-size diamonds from the Klipspringer deposit display similar nitrogen defects, with higher nitrogen concentration and more frequent D components found in the macro-size diamonds. One of the first steps towards reliable carbon isotope studies is the development of calibration materials for SIMS carbon isotopic analyses. We have investigated candidate materials both from a polycrystalline synthetic diamond sheet and two natural gem quality diamonds from Juina (Brazil). Electron-based images of the synthetic diamond sheet, obtained using GFZ Potsdam's dual beam FIB instrument, show many diamond grains with diameters greater than 35 µm. SIMS testing of the isotopic homogeneity of the back and front sides of the synthetic sheets reveal similar 13C/12C ratio within a RSD of <1 ‰ . SIMS isotopic analyses of the two natural diamond RMs yield a constant 13C/12C ratio with RSD of better than 0.5 ‰ . Using the natural diamond as calibratrant, a preliminary result on a selected diamond from the four kimberlitic sample suites yields a δ13C in range between -3 to -7 ‰ . Reference: Howell, D., O'Neill, C. J., Grant, K. J., Griffin, W. L., Pearson, N. J., & O'Reilly, S. Y. (2012). μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diamond and Related Materials, 29, 29-36. doi:10.1016/j.diamond.2012.06.003.

  6. Physiological and environmental factors related to carbon isotopic variations in mollusc shell carbonate

    SciTech Connect

    Krantz, D.E.; Williams, D.F.; Jones, D.S.

    1985-01-01

    The carbon isotopic composition of mollusc shell carbonate has been used as a general environmental indicator in numerous studies, but relatively little is known of the factors which affect within-shell variation. Primary control of delta/sup 13/C values in shell carbonate comes from the dissolved bicarbonate source, particularly as related to marine versus fresh water. Present models explain cyclic variations in the delta/sup 13/C profiles of mollusc shells due to upwelling, phytoplankton productivity and stratification, disequilibrium with rapid shell growth, and infaunal versus epifaunal habitat. Carbon and oxygen isotopic profiles in this study were obtained from specimens of Spisula solidissima (surf clam) and Placopecten magellanicus (sea scallop) collected alive from 14 to 57 m water depths off the Virginia coast. Three main factors appear to affect the delta/sup 13/C profiles in these specimens. Isotopically light values commonly associated with the spring and occasionally the fall correspond with seasonal phytoplankton productivity. A significant negative delta/sup 13/C offset of the infaunal Spisula relative to the epifaunal Placopecten probably relates to the inclusion of isotopically more negative pore-water bicarbonate by Spisula. Additionally, occasional transient spikes in both the delta/sup 18/O and delta/sup 13/C profiles correspond to intrusion of reduced-salinity water.

  7. Isotope-based Fluvial Organic Carbon (ISOFLOC) Model: Model formulation, sensitivity, and evaluation

    NASA Astrophysics Data System (ADS)

    Ford, William I.; Fox, James F.

    2015-06-01

    Watershed-scale carbon budgets remain poorly understood, in part due to inadequate simulation tools to assess in-stream carbon fate and transport. A new numerical model termed ISOtope-based FLuvial Organic Carbon (ISOFLOC) is formulated to simulate the fluvial organic carbon budget in watersheds where hydrologic, sediment transport, and biogeochemical processes are coupled to control benthic and transported carbon composition and flux. One ISOFLOC innovation is the formulation of new stable carbon isotope model subroutines that include isotope fractionation processes in order to estimate carbon isotope source, fate, and transport. A second innovation is the coupling of transfers between carbon pools, including algal particulate organic carbon, fine particulate and dissolved organic carbon, and particulate and dissolved inorganic carbon, to simulate the carbon cycle in a comprehensive manner beyond that of existing watershed water quality models. ISOFLOC was tested and verified in a low-gradient, agriculturally impacted stream. Results of a global sensitivity analysis suggested the isotope response variable had unique sensitivity to the coupled interaction between fluvial shear resistance of algal biomass and the concentration of dissolved inorganic carbon. Model calibration and validation suggested good agreement at event, seasonal, and annual timescales. Multiobjective uncertainty analysis suggested inclusion of the carbon stable isotope routine reduced uncertainty by 80% for algal particulate organic carbon flux estimates.

  8. Oxygen and carbon isotopes in Jordanian phosphorites and associated fossils

    NASA Astrophysics Data System (ADS)

    Sadaqah, Rushdi M.; Abed, Abdulkader M.; Grimm, Kurt A.; Pufahl, Peir K.

    2007-03-01

    Stable isotopes have proven to be efficient tools for paleoenvironmental analysis and interpretation of paleotemperature. Oxygen and carbon isotopes were analyzed in carbonate flourapatite (francolite), oyster shells, tests of foraminifera and ostracods from the Phosphorite Unit throughout Jordan. Isotopic analysis showed ? 18O to be enriched in authigenic francolite in Upper Cretaceous in NW Jordan, indicating lower temperatures, a deeper depositional environment and lower salinity than Central Jordan. In Central Jordan, the local basin of Hafira shows enrichment of ? 18O indicating a deeper depositional environment than shallower highs in Mutarammil and Wadi El-Hasa. The ? 13C shows that the depositional environment was oxic to suboxic and may have reached the suboxic to anoxic interface in the deeper environment in NW Jordan. ? 18O values in tests of foraminifera and ostracods are similar to ? 18O values of authigenic phosphate, which is enriched in NW Jordan, indicating lower temperature, lower salinity and a deeper environment than Central Jordan. In Central Jordan, ? 13C shows more depletion in the Sultani section due to land derived organic carbon (food web supply) carried by terrestrial water draining to the sea. The ? 18O in oyster shells show an upward enrichment in the Wadi El-Hasa section, which indicate an increase of intense upwelling, enrichment of nutrients, development of productivity and growth of oyster buildups. Meanwhile, Hafira shows enrichment of ? 18O and lower temperature, in agreement with foraminifera and ostracods. The two samples of oysters from SE Jordan, although affected by diagenesis, show heavier oxygen to the north, indicating a deeper water environment and lower salinity in the same basin.

  9. Isotope composition of carbon in the carbonates of the Gumbeykan scheelite deposits in the southern Urals

    SciTech Connect

    Korzhinskii, A.F.; Mamchur, G.P.; Yarynych, O.A.

    1980-10-01

    Through investigations of the isotope composition of carbon of various generations and carbonates from marbles, skarns, and nested and vein scheelite orebodies, the probable source of carbon of these carbonates has been established as a mixture of sedimentary carbonates, carbon dioxide with carbonic acid that was formed by oxidation of the organic matter from sedimentary terrane (..delta..C/sup 13/ - 0.05 to -0.62%). In the calcite and dolomite phenocrysts of marble and the coarse-grained dolostone, containing scheelite, the carbon was lighter (..delta..C/sup 13/ from -0.60 to -0.87%). For the dolomite and ankerite from scheelite pockets of the Balkan deposit and quartz veins of the Buranovo, ..delta..C/sup 13/ varied from -0.44 to -0.87%. The lightest carbon found in strontianite (..delta..C/sup 13/ = -1.32%), located near the coating of the organic matter (..delta..C/sup 13/ = -1.26%) in fractures of the quartz vein of the Buranovo deposit. In the section through the orebodies and near-ore diffusion-metasomatic zones of the Balkan deposit, the lessening of carbon in the carbonates was observed, with increasing distance away from the fracture. ..delta..C/sup 13/ in the altered granitoids ranged from -0.44 to -1.03%; while in the diopside-wollastonite hornfels, from -0.89 to 1.13%. The lessening in weight of the carbon is explained by diffusional fractionation of the isotopes caused apparently by the differential movement of volatile mixtures of carbon during ore-forming processes and the formation of their diffusion-metasomatic zones.

  10. Hydropyrolysis of steroids: a preparative step for compound-specific carbon isotope ratio analysis.

    PubMed

    Sephton, Mark A; Meredith, Will; Sun, Cheng-Gong; Snape, Colin E

    2005-01-01

    Compound-specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry is an important method for the detection of steroid abuse in athletes. However, steroids in their natural form exhibit poor chromatographic resolution, while derivatization adds carbon thereby corrupting the starting stable isotopic composition. Hydropyrolysis is a new approach, which defunctionalizes steroids but leaves their carbon skeleton intact. The process improves chromatography, allowing the faithful measurement of carbon isotope ratios and enabling a more effective apportionment for the source of steroids and their metabolites. PMID:16228967

  11. Modeling Chemical and Isotopic Variations in Lab Formed Hydrothermal Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Golden, D. C.; Socki, R. A.; Guan, Y.; Ming, D. W.

    2005-01-01

    Chemical and mineralogical data (e.g. [1]) from Mars suggest that the history of liquid water on the planet was more sporadic in nature than long-lived. The non-equilibrium chemical and isotopic compositions of the carbonates preserved in the martian meteorite ALH84001 are direct evidence of ancient secondary minerals that have not undergone significant diagenesis or stabilization processes typical of long-lived aqueous systems on Earth. Thus secondary minerals and sediments on Mars may primarily record the characteristics of the aqueous environment in which they formed without being significantly overprinted by subsequent diagenetic processes during burial.

  12. The carbon isotopic composition of Novo Urei diamonds

    NASA Technical Reports Server (NTRS)

    Fisenko, A. V.; Semjenova, L. F.; Verchovsky, A. B.; Russell, S. S.; Pillinger, C. T.

    1993-01-01

    The carbon isotopic composition of diamond grains isolated from the Novo Urei meteorite are discussed. A diamond separate was obtained from 2g of whole rock using the chemical treatments described aimed at obtaining very pure diamond. X ray diffraction of the residue, which represented 5000 ppm of the parent mass, indicated only the presence of the desired mineral. The diamond crystals were 1-30 microns in diameter, and some grains had a yellow color. The chemical treatments were followed by a size separation to give a 1-10 microns and a 5-30 microns fraction, which were named DNU-1 and DNU-2, respectively.

  13. Barium isotope abundances in meteorites and their implications for early Solar System evolution

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Mezger, K.; Scherer, E. E.; Horan, M. F.; Carlson, R. W.; Upadhyay, D.; Magna, T.; Pack, A.

    2016-02-01

    Several nucleosynthetic processes contributed material to the Solar System, but the relative contributions of each process, the timing of their input into the solar nebula, and how well these components were homogenized in the solar nebula remain only partially constrained. The Ba isotope system is particularly useful in addressing these issues because Ba isotopes are synthesized via three nucleosynthetic processes (s-, r-, p-process). In this study, high precision Ba isotope analyses of 22 different whole rock chondrites and achondrites (carbonaceous chondrites, ordinary chondrites, enstatite chondrites, Martian meteorites, and eucrites) were performed to constrain the distribution of Ba isotopes on the regional scale in the Solar System. A melting method using aerodynamic levitation and CO2-laser heating was used to oxidize SiC, a primary carrier of Ba among presolar grains in carbonaceous chondrites. Destruction of these grains during the fusion process enabled the complete digestion of these samples. The Ba isotope data presented here are thus the first for which complete dissolution of the bulk meteorite samples was certain. Enstatite chondrites, ordinary chondrites, and all achondrites measured here possess Ba isotope compositions that are not resolved from the terrestrial composition. Barium isotope anomalies are evident in most of the carbonaceous chondrites analyzed, but the 135Ba anomalies are generally smaller than previously reported for similarly sized splits of CM2 meteorites. Variation in the size of the 135Ba anomaly is also apparent in fused samples from the same parent body (e.g., CM2 meteorites) and in different pieces from the same meteorite (e.g., Orgueil, CI). Here, we investigate the potential causes of variability in 135Ba, including the contribution of radiogenic 135Ba from the decay of 135Cs and incomplete homogenization of the presolar components on the <0.8 g sample scale.

  14. Variability in the carbon isotope composition of individual amino acids in plant proteins from different sources: 1 Leaves.

    PubMed

    Lynch, Anthony H; Kruger, Nicholas J; Hedges, Robert E M; McCullagh, James S O

    2016-05-01

    The natural carbon isotope composition of individual amino acids from plant leaf proteins has been measured to establish potential sources of variability. The plant leaves studied, taken from a range of plant groups (forbs, trees, grasses, and freshwater aquatic plants), showed no significant influence of either season or environment (water and light availability) on their Δδ(13)C values. Plant groups did, however, differ in carbon isotope composition, although no consistent differences were identified at the species level. A discriminant analysis model was constructed which allowed leaves from (1) nettles, (2) Pooideae, (3) other Poales, (4) trees and (5) freshwater higher plants to be distinguished from each other on the basis of their natural abundance (13)C/(12)C ratios of individual amino acids. Differences in carbon isotope composition are known to be retained, to some extent, in the tissues of their consumers, and hence an understanding of compound-specific variation in (13)C/(12)C fractional abundance in plants has the potential to provide dietary insights of value in archaeological and ecological studies. PMID:26948983

  15. A process-based model for non-equilibrium clumped isotope effects in carbonates

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Hunt, J. D.

    2015-12-01

    The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.

  16. Small mammal tooth enamel carbon isotope record of C4 grasses in late Neogene China

    NASA Astrophysics Data System (ADS)

    Arppe, Laura; Kaakinen, Anu; Passey, Benjamin H.; Zhang, Zhaoqun; Fortelius, Mikael

    2015-10-01

    The spatiotemporal pattern of the late Cenozoic spread of C4 vegetation is an important indicator of environmental change that is intertwined with the uplift of the Himalaya and Tibetan Plateau, and the development of the East Asian monsoons. To explore the spread of C4 vegetation in China and shed new light on regional climatic evolution, we measured ?13C values of more than 200 small mammal teeth (primarily rodents and lagomorphs) using a laser ablation isotope ratio mass spectrometry approach. Small mammals are highly sensitive indicators of their environment because they have limited spatial ranges and because they have minimal time-averaging of carbon isotope signatures of dietary components. The specimens originate from four classic Late Miocene fossil localities, Lufeng, Yuanmou, Lingtai, and Ertemte, along a southwest-northeast transect from Yunnan Province to Inner Mongolia. In Yunnan (Lufeng, Yuanmou) and on the Loess Plateau (Lingtai), the small mammal ?13C values record nearly pure C3 ecosystems, and mixed but C3-based ecosystems, respectively, in agreement with previous studies based on carbon isotopes of large herbivores and soil carbonates. In Inner Mongolia, the micromammalian tooth enamel ?13C record picks up the presence of C4 vegetation where large mammal samples do not, indicating a mixed yet C3-dominated ecosystem at ~ 6 Ma. As a whole, the results support a scenario of northward increasing C4 grass abundance in a pattern that mirrors northward decreasing precipitation of the summer monsoon system. The results highlight differences between large and small mammals as indicators of C4 vegetation in ancient ecosystems, particularly the ability of small mammal ?13C values to detect the presence of minor components of the vegetation structure.

  17. Abundances and isotopic compositions of rhenium and osmium in pyrite samples from the Huaibei coalfield, Anhui, China

    USGS Publications Warehouse

    Liu, Gaisheng; Chou, C.-L.; Peng, Z.; Yang, G.

    2008-01-01

    Two pyrite samples from the Shihezi Formation (Lower Permian), Huaibei coalfield, Anhui, China, have been analyzed for abundances and isotopic compositions of rhenium and osmium using negative thermal ion mass spectrometry. The Re-Os ages of the pyrites are 64.4 and 226 Ma, which are younger than the formation age of the coal seam. The pyrite samples may consist of pyrite formed at various stages during the history of coal formation. The ??Osvalues of the two pyrite samples are +17 and +18, respectively. Such high ??Osvalues are reported for the first time for recycles crustal materials from a sedimentary basin. ?? Springer-Verlag 2007.

  18. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  19. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  20. Carbon stable isotopes as indicators of coastal eutrophication.

    PubMed

    Oczkowski, Autumn; Markham, Erin; Hanson, Alana; Wigand, Cathleen

    2014-04-01

    Coastal ecologists and managers have frequently used nitrogen stable isotopes (delta15N) to trace and monitor sources of anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of delta15N data can often be challenging, as the isotope values fractionate substantially due to preferential retention and uptake by biota. There is a growing body of evidence that carbon isotopes may be a useful alternative indicator for eutrophication, as they may be sensitive to changes in primary production that result from anthropogenic nutrient inputs. We provide three examples of systems where delta13C values sensitively track phytoplankton production. First, earlier (1980s) mesocosm work established positive relationships between delta13C and dissolved inorganic nitrogen and dissolved silica concentrations. Consistent with these findings, a contemporary mesocosm experiment designed to replicate a temperate intertidal salt marsh environment also demonstrated that the system receiving supplementary nutrient additions had higher nutrient concentrations, higher chlorophyll concentrations, and higher delta13C values. This trend was particularly pronounced during the growing season, with differences less evident during senescence. And finally, these results were replicated in the open waters of Narragansett Bay, Rhode Island, USA, during a spring phytoplankton bloom. These three examples, taken together with the pre-existing body of literature, suggest that, at least in autotrophic, phytoplankton-dominated systems, delta13C values can be a useful and sensitive indicator of eutrophication. PMID:24834733

  1. CARBON ISOTOPE FRACTIONATION AND DEPLETION IN TMC1

    SciTech Connect

    Liszt, H. S.; Ziurys, L. M.

    2012-03-01

    {sup 12}C/{sup 13}C isotopologue abundance anomalies have long been predicted for gas-phase chemistry in molecules other than CO and have recently been observed in the Taurus molecular cloud (TMC) in several species hosting more than one carbon atom, i.e., CCH, CCS, CCCS, and HC{sub 3}N. Here we work to ascertain whether these isotopologic anomalies actually result from the predicted depletion of the {sup 13}C{sup +} ion in an oxygen-rich optically shielded dense gas, or from some other more particular mechanism or mechanisms. We observed {lambda}3mm emission from carbon-, sulfur-, and nitrogen-bearing isotopologues of HNC, CS, and H{sub 2}CS at three positions in Taurus (TMC1, L1527, and the NH{sub 3} peak) using the ARO 12 m telescope. We saw no evidence of {sup 12}C/{sup 13}C anomalies in our observations. Although the pool of C{sup +} is likely to be depleted in {sup 13}C, {sup 13}C is not depleted in the general pool of carbon outside CO, which probably exists mostly in the form of C{sup 0}. The observed isotopologic abundance anomalies are peculiar to those species in which they are found.

  2. Ground penetrating radar measurements show a spatial relationship between coarse root biomass and soil carbon abundance

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Caylor, K. K.; Gerlein, C.; Bhattachan, A.

    2013-05-01

    In savanna ecosystems, the dynamics of soil organic carbon are complicated by multiple sources of inputs, created by the coexistance of trees and grasses, and by spatial heterogeneity induced by a patchy vegetation structure. A previous study on the spatial pattern of soil carbon abundance on the Kalahari Transect in Southern Africa found that for savannas with sparse woody cover the semivariogram of soil carbon abundance demonstrates periodicity. It is hypothesized that the periodicity is induced by the patchy spatial distribution of the canopies and root systems of woody plants. We tested this by mapping the abundance of coarse woody roots with ground penetrating radar. Spatial patterns of soil carbon abundance were measured at our research site in a previous study. The site is on the Botswana portion of the Kalahari Transect, and has deep, homogeneous, sandy soil. We ran the ground penetrating radar over three 20 by 20 meter square plots in two perpendicular directions. We filtered the radar images to remove background noise and applied a Hilbert transform to reduce echoes. In each plot, we also dug 20 root biomass sampling pits. Using the sampling pit data, we were able to verify that there is a log-linear relationship (r2 = 0.80) between radar signal return and coarse root biomass in the upper 50 cm of soil. Semivariograms of coarse root biomass inferred from radar returns showed periodicity at similar spatial scales to the periodicity in soil carbon abundance. Our results suggest that the belowground components of woody plants, which may extend well beyond their canopies, exert a stronger influence on soil carbon cycling than the aboveground components, illustrating a key issue with the common practice of dividing arid and semiarid landscapes into "under canopy" and "inter-canopy" components in analyses of soil biogeochemistry. We were able to show that a relationship exists between ground penetrating radar returns and coarse root biomass for dry, sandy soils. However, the large amount of information needed to determine a predictive relationship suggests that ground penetrating radar may be more useful in investigating spatial patterns of root biomass than as a tool for quantifying absolute biomass abundance.

  3. Ground penetrating radar measurements show a spatial relationship between coarse root biomass and soil carbon abundance

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Gerlein, C.; Bhattachan, A.; Caylor, K. K.

    2012-12-01

    In savanna ecosystems, the dynamics of soil organic carbon are complicated by multiple sources of inputs, created by the coexistance of trees and grasses, and by spatial heterogeneity induced by a patchy vegetation structure. A previous study on the spatial pattern of soil carbon abundance on the Kalahari Transect in Southern Africa found that for savannas with sparse woody cover the semivariogram of soil carbon abundance demonstrates periodicity. It is hypothesized that the periodicity is induced by the patchy spatial distribution of canopies and root systems of woody plants. We tested this by mapping the abundance of coarse woody roots with ground penetrating radar. Spatial patterns of soil carbon abundance were measured at our research site in a previous study. The site is on the Botswana portion of the Kalahari Transect, and has deep, homogeneous, sandy soil. We ran the ground penetrating radar over three 20 by 20 meter square plots in two perpendicular directions. We filtered the radar images to remove background noise and applied a Hilbert transform to reduce echoes. In each plot, we also dug 20 root biomass sampling pits. Using the sampling pit data, we were able to verify that there is a log-linear relationship (r2 = 0.80) between radar signal return and coarse root biomass in the upper 50 cm of soil. Semivariograms of coarse root biomass inferred from radar returns showed periodicity at similar spatial scales to the periodicity in soil carbon abundance. Our results suggest that the belowground components of woody plants, which may extend well beyond their canopies, exert a stronger influence on soil carbon cycling than the aboveground components, illustrating a key issue with the common practice of dividing arid and semiarid landscapes into "under canopy" and "inter-canopy" components in analyses of soil biogeochemistry. We were able to show that a relationship exists between ground penetrating radar returns and coarse root biomass for dry, sandy soils. However, the large amount of information needed to determine a predictive relationship suggests that ground penetrating radar may be more useful in investigating spatial patterns of root biomass than as a tool for quantifying absolute biomass abundance.

  4. Martian carbonates in ALH 84001: Textural, elemental, and stable isotopic compositional evidence on their formation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Romanek, C. S.; Mittlefehldt, D. W.; Gibson, E. K., Jr.; Socki, R. A.

    1994-01-01

    Martian orthopyroxenite ALH 84001 is unusual compared to other martian meteorites in its abundance of Mg-Fe-Ca carbonites. Becasue textural evidence indicates that these carbonates are undoubtedly of martian origin, we have undertaken stable isotopic studies to elucidate their origin by evaluating whether they represent primordial martian C that was outgassing from the mantle of Mars, or volatile additions to the ALH 84001 protolith that equilibrated with the martian atmosphere. If precipitation occurred in a closed system then the isotopic results are compatible with the observed chemical zonation. A unique temperature of formation can be calculated using the difference in C-13 and O-18 between the Fe and Mg carbonates, assuming that precipitation occurred at a constant temperature. Precipitation of approximately one-half of the CO2 reservoir at 320 C can account for the observed values, with the original CO2 reservoir having a delta C-13 of approximately 45% and delta O-18 of approximately 22%. If carbonate precipitated in equilibrium with a large isotopically homogeneous CO2 reservoir (open system), isotopic differences must be attributed to a change in temperature of at least several hundreds of degrees. This temperature change is compatible with a calculated range of temperatures based on carbonate geothermometry. Clearly, carbonate in ALH 84001 is in delta O-18 disequilibrium with orthopyroxene groundmass. Most likely, the carbonate precipitated from a fluid that equilibrated with the martian atmosphere. The deposits or fluids in equilibrium with these deposits were remobilized in the crust producing the carbonate in ALH 84001. This observation establishes a link for the first time between the atmospheric and lithospheric C and O pools that reside on Mars.

  5. Late Pleistocene Variability of the Carbon Isotopic Composition of Organic Matter in the Eastern Mediterranean: Monitor of Changes in Carbon Sources and Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Fontugne, M. R.; Calvert, S. E.

    1992-02-01

    The organic carbon isotopic record of the sapropels (S1 and S3-S10) and intercalated marl oozes has been determined in a 12-m piston core from the eastern Mediterranean. The ?13Corganic values are systematically lighter (mean=-21.00.82 ) in all sapropels and heavier (mean=-18.81.07) in the marl oozes. These differences are not due to variable marine and terrestrial organic matter mixtures because all values are heavier than modern plankton in the Mediterranean, there is no relationship between the Corganic/N ratios and the isotopic values, and published information on the abundance and distribution of organic biomarkers shows that terrestrial material constitutes a minor fraction of the total organic matter. Temperature effects on isotope fractionation are also discounted because the change in ?13Corganic values between glacial and interglacial horizons is in the opposite sense. Diagenesis, which can produce relatively small changes in the carbon isotopic composition of sedimentary organic matter under certain circumstances, is unlikely to have caused the observed differences because this mechanism would cause an enrichment in 12C, implying that all values were even heavier originally, and there is no secular trend in the ?13Corganic record. The observed differences in ?13Corganic between the two lithologies are probably produced by changes in the isotopic composition and the concentration of dissolved CO2. First, freshwater flooding during the formation of the sapropels caused the isotopic composition of the dissolved inorganic carbon in the surface waters of the Mediterranean to become lighter because of the 13C deficiency in fresh waters. Hence photosynthesis would have produced isotopically lighter organic material. Second, changes in atmospheric pCO2 between glacial and interglacial periods, as shown by the Vostok ice core, caused marked changes in the concentration of free dissolved CO2 in the mixed layer; lower values during glacial maxima caused a smaller fractionation of the carbon isotopes by phytoplankton, whereas levels were less limiting during the interglacials. Concentrations of dissolved CO2 could also have been much higher during the deposition of the sapropels because of the supply of regenerated CO2 to the mixed layer by upwelling, and this could have further lightened the ?13Corganic values in the sapropels themselves. Carbon isotope records may provide an alternative method for estimating atmospheric pCO2 levels over longer time periods than can be obtained from ice cores.

  6. Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system

    NASA Astrophysics Data System (ADS)

    Schnbchler, M.; Carlson, R. W.; Horan, M. F.; Mock, T. D.; Hauri, E. H.

    2008-11-01

    The extinct radionuclide 107Pd decays to 107Ag (half-life of 6.5 Ma) and is an early solar system chronometer with outstanding potential to study volatile depletion in the early solar system. Here, a comprehensive Ag isotope study of carbonaceous and ordinary chondrites is presented. Carbonaceous chondrites show limited variations ( ?107Ag = -2.1 to +0.8) in Ag isotopic composition that correlate with the Pd/Ag ratios. Assuming a strictly radiogenic origin of these variations, a new initial 107Pd/ 108Pd of 5.9 (2.2) 10 -5 for the solar system can be deduced. Comparing the Pd-Ag and Mn-Cr data for carbonaceous chondrites suggests that Mn-Cr and Pd-Ag fractionation took place close to the time of calcium-aluminium-rich inclusion (CAI) and chondrule formation 4568 Ma ago. Using the new value for the initial 107Pd abundance, the revised ages for the iron-rich meteorites Gibeon (IVA, 8.5 +3.2/-4.6 Ma), Grant (IIIAB, 13.0 +3.5/-4.9 Ma) and Canyon Diablo (IA, 19.5 +24.1/-10.4 Ma) are consistent with cooling rates and the closure temperature of the Pd-Ag system. In contrast to carbonaceous chondrites, ordinary chondrites show large stable isotope fractionation of order of 1 permil for 107Ag/ 109Ag. This indicates that different mechanisms of volatile depletion were active in carbonaceous and ordinary chondrites. Nebular processes and accretion, as experienced by carbonaceous chondrites, did not led to significant Ag isotope fractionation, while the significant Ag isotope variations in ordinary chondrites are most likely inflicted by open system parent body metamorphism.

  7. Linear-chain structure of alpha clusters in Carbon isotopes

    NASA Astrophysics Data System (ADS)

    Baba, Tomoyuki; Chiba, Yohei; Kimura, Masaaki

    2014-09-01

    The linear-chain structure of 12C in which three alpha particles are linearly aligned has long been interested and investigated since its proposal by Morinaga, but nowadays, its existence is doubt, because its instability was shown by fill-microscopic nuclear models. However, the possible existence of linear-chains in neutron-rich carbon isotopes assisted by the valence neutrons was recently suggested based on the cluster model. Therefore, it is of importance and interest to examine their stability and investigate the stabilization mechanism based on full-microscopic model. In this presentation, we will discuss the alpha cluster states of carbon isotopes including the linear-chains based on the antisymmetrized molecular dynamics (AMD) model. For, example, we will demonstrate two different types of the alpha cluster states, that are, triangular and linear-chain configurations. Four valence neutrons occupy the molecular-orbit surrounding the cluster cores, in particular, their orbits of the linear-chain structure are ?-orbit and ?-orbit as suggested by the cluster calculation. In addition, we predict the excitation energies of two structures. We will show that the linear-chain states have very large moment of inertia and they appear near the 6He+10Be threshold energy.

  8. Applications of stable isotope ratio mass spectrometry in cattle dung carbon cycling studies.

    PubMed

    Dungait, Jennifer A J; Bol, Roland; Lopez-Capel, Elisa; Bull, Ian D; Chadwick, David; Amelung, Wulf; Granger, Steven J; Manning, David A C; Evershed, Richard P

    2010-03-15

    Understanding the fate of dung carbon (C) in soils is challenging due to the ubiquitous presence of the plant-derived organic matter (OM), the source material from which both dung-derived OM and soil organic matter (SOM) predominantly originate. A better understanding of the fate of specific components of this substantial source of OM, and thereby its contribution to C cycling in terrestrial ecosystems, can only be achieved through the use of labelled dung treatments. In this short review, we consider analytical approaches using bulk and compound-specific stable carbon isotope analysis that have been utilised to explore the fate of dung-derived C in soils. Bulk stable carbon isotope analyses are now used routinely to explore OM matter cycling in soils, and have shown that up to 20% of applied dung C may be incorporated into the surface soil horizons several weeks after application, with up to 8% remaining in the soil profile after one year. However, whole soil delta(13)C values represent the average of a wide range of organic components with varying delta(13)C values and mean residence times in soils. Several stable (13)C isotope ratio mass spectrometric methods have been developed to qualify and quantify different fractions of OM in soils and other complex matrices. In particular, thermogravimetry-differential scanning calorimetry-isotope ratio mass spectrometry (TG-DSC-IRMS) and gas chromatography-combustion-IRMS (GC-C-IRMS) analyses have been applied to determine the incorporation and turnover of polymeric plant cell wall materials from C(4) dung into C(3) grassland soils using natural abundance (13)C isotope labelling. Both approaches showed that fluxes of C derived from polysaccharides, i.e. as cellulose or monosaccharide components, were more similar to the behaviour of bulk dung C in soil than lignin. However, lignin and its 4-hydroxypropanoid monomers were unexpectedly dynamic in soil. These findings provide further evidence for emerging themes in biogeochemical investigations of soil OM dynamics that challenge perceived concepts of recalcitrance of C pools in soils, which may have profound implications for the assessment of the potential of agricultural soils to influence terrestrial C sinks. PMID:20112271

  9. Laser Spectroscopic Measurements of Carbon, Oxygen, and Hydrogen Isotope Ratios for Earth and Mars

    NASA Astrophysics Data System (ADS)

    Webster, C. R.

    2006-12-01

    Stable isotope measurements of carbon, oxygen and hydrogen isotope ratios in atmospheric and evolved gases are recognized indicators of atmospheric escape, sources and sinks, and possible biogenic origin. Strategies for choosing spectral regions for measurement will be described and the measured precision and accuracies achieved in laboratory measurements compared to isotopic standards.

  10. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschtz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps.

  11. Carbon, oxygen and sulphur isotope variations in concretions from the Upper Lias of N.E. England

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Raiswell, R.

    1981-03-01

    Carbon, oxygen and sulphur isotope data for transects across two pyrite-bearmg carbonate concretions, and their host sediments, from the Upper Lias of N.E. England show symmetrical zonation. ? 13C PDB values of the calcite cement (-12.9 to -15.4%.) indicate that most of it originated from organic matter by bacterial reduction of sulphate, augmented with marine and, to a lesser extent, fermentation derived carbonate. Organic carbon ( ?13CPDB = -26.1 to -37.0%.). reflects the admixture of allochtho-nous terrestrial organic matter with marine material and the selective preservation of isotopically light organic material through microbiological degradation. Two phases of pyrite are present in each concretion. The earlier framboidal pyrite formed throughout the sediment prior to concretionary growth and has ? 34S CD values of -22 to -26%. indicating formation by open system sulphate reduction. The later euhedral phase is more abundant and reaches values of - 2.5 to - 5.5%. at concretion margins. This phase of sulphate reduction provided the carbonate source for concretionary growth and occurred in a partially closed system. The ? 13C and ? 34S data are consistent with mineralogical and chemical evidence which suggest that both concretions formed close to the sediment surface. The ? 18O values of the calcite in one concretion ( ?18OPDB = 2.3 to -4.8%.) indicate precipitation in pore waters whose temperature and isotopic composition was close to that of overlying seawater. The other concretion is isotopically much lighter ( ?18OPDB-8.9 to -9.9%.) and large ? 18O differences between concretions in closely-spaced horizons imply that local factors control the isotopic composition of pore waters.

  12. Genesis of carbonates within Abalak and Bazhenov formations (West Siberia), revealed from stable carbon and oxygen isotopes distribution

    NASA Astrophysics Data System (ADS)

    Yurchenko, A.; Blinova, V.; Kalmikov, G. A.; Balushkina, N. S.

    2013-12-01

    Upper Jurassic deposits of Bazhenov formation are the main source rocks of the West Siberia Basin. Now the Bazhenov suite is intensively investigated not only as a source rock, but as unconventional reservoir of oil due to its vertical and lateral heterogeneity. The rocks of Bazhenov formation are composed of four main units: silica minerals, clay (predominantly hydromica), kerogen and carbonates. To predict the distribution of different lithological units it is important to reveal their genesis and facial conditions during their formation. One of the reservoir types is presented by cavernous-porous carbonates. Stable carbon and oxygen isotopes investigations has been carried out to reveal origin of carbonate material in Late Abalak - Bazhenov time. Four genetic types of carbonates have been subdivided according to mineralogical composition and stable carbon and oxygen isotopes distribution: 1) belemnites and other faunal remains; 2) secondary dolomites of Bazhenov formation; 3) secondary calcite filling cracks and composing inclusions of Abalak deposits; 4) methane-derived authigenic carbonates of Abalak formation. The first three types are presented by normal marine carbonates according to their carbon isotopes composition. Light oxygen isotopes composition indicates high temperatures during their precipitation (diagenesis). The fourth type is characterized by light carbon isotopes composition, which indicates presence of isotopically light biogenic CO2 in the environment. According to oxygen isotopic composition the carbonate material is primary and precipitated in subsurface conditions. Such carbon and oxygen isotopes composition is characteristic for methane-derived carbonates formed in the areas of active fluids discharge to the seafloor (cold seeps) as a result of Anaerobic Oxidation of Methane (AOM). Thus in Late Jurassic time active fluid escape to the sea floor took place in the West Siberia Basin.

  13. Sources of carbon isotope variation in kangaroo bone collagen and tooth enamel

    NASA Astrophysics Data System (ADS)

    Murphy, Brett P.; Bowman, David M. J. S.; Gagan, Michael K.

    2007-08-01

    The stable carbon isotopic composition (expressed as δ 13C) of herbivore remains is commonly used to reconstruct past changes in the relative abundance of C 4 versus C 3 grass biomass (C 4 relative abundance). However, the strength of the relationship between herbivore δ 13C and C 4 relative abundance in extant ecosystems has not been thoroughly examined. We determined sources of variation in δ 13C of bone collagen and tooth enamel of kangaroos ( Macropus spp.) collected throughout Australia by measuring δ 13C of bone collagen (779 individuals) and tooth enamel (694 individuals). An index of seasonal water availability, i.e. the distribution of rainfall in the C 4 versus C 3 growing seasons, was used as a proxy for C 4 relative abundance, and this variable explained a large proportion of the variation in both collagen δ 13C (68%) and enamel δ 13C (68%). These figures increased to 78% and 77%, respectively, when differences between kangaroo species were accounted for. Vegetation characteristics, such as woodiness and the presence of an open forest canopy, had no effect on collagen or enamel δ 13C. While there was no relationship between collagen δ 13C and kangaroo age at death, tooth enamel produced later in life, following weaning, was enriched in 13C by 3.5‰ relative to enamel produced prior to weaning. From the observed relationships between seasonal water availability and collagen and enamel δ 13C, enrichment factors ( ɛ∗) for collagen-diet and enamel-diet (post-weaning) were estimated to be 5.2‰ ± 0.5 (95% CI) and 11.7‰ ± 0.6 (95% CI), respectively. The findings of this study confirm that at a continental scale, collagen and enamel δ 13C of a group of large herbivores closely reflect C 4 relative abundance. This validates a fundamental assumption underpinning the use of isotopic analysis of herbivore remains to reconstruct changes in C 4 relative abundance.

  14. Method for the identification and elimination of contamination during carbon isotopic analyses of extraterrestrial samples

    SciTech Connect

    Swart, P.K.; Grady, M.M.; Pillinger, C.T.

    1983-06-30

    A stepped combustion method for the elimination of carbon-containing contamination and weathering products from meteorite and lunar samples is presented. Samples of the Allende CV3 chondrite, the Sharps and Weston ordinary chondrite falls, one ordinary and five Antarctic finds, and lunar soils from Apollo 11 were oxidized in pure O2 at increasing temperatures, from 200 to 1200 C in 100-C, 30-min steps and C yield and delta-(C-13) were measured after each step. It is found that some C contamination is present in all samples and can adversely affect C-isotopic-abundance measurements. Except for C1 and C2 carbonaceous chondrites, C combustion below 425 + or - 25 C is limited to the terrestrial contaminants, demonstrating the usefulness of stepped combustion in removing them. Graphs and tables of the results are presented and discussed. 34 references.

  15. Unusually high stable carbon isotopic values of methane from low organic carbon Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Poole, J. A.; Tazaz, A.; Chanton, J.; Bebout, B.

    2010-12-01

    Motivated by the Mars rovers’ findings of past hypersaline environments and the discovery of methane in the atmosphere of Mars, we examined methanogenesis in hypersaline ponds in Baja California Sur and in the Don Edwards National Wildlife Refuge in northern California. Methane-rich bubbles were observed to be released from below gypsum/halite crusts in these environments. The stable carbon isotopic composition of these bubbles ranged from about -30 to -40 ‰. Methane with these relatively high isotopic values would typically be considered non-biogenic, however incubations of crust and sediments samples over time resulted in the production of methane. We therefore undertook a series of measurements aimed at understanding the isotopic composition of methane in these environments. The concentrations and isotopic composition of the particulate organic carbon (POC) in these environments were measured. POC content was low (relative to most methane-producing sedimentary environments), generally less than 1%, and always less than 2% of the total mass. The isotopic composition of the POC ranged from -13 to -22 ‰. To determine the substrates used by the methanogens, 13C-labeled trimethylamine (TMA), monomethylamine, methanol, acetate and bicarbonate were added to incubation vials and the methane produced was monitored for 13C content. The main substrates used by the methanogens in these hypersaline environments were the non-competitive substrates, the methylamines and methanol. When unlabeled, but isotopically known, TMA was added to incubation vials in varying concentrations, the isotopic composition of the methane produced also varied. Little, if any, difference in the isotopic composition between the TMA and methane occurred at the lowest TMA concentration (10 µM final concentration). The lowest methane δ13C values (and so greatest fractionation between methane and TMA) occurred when the most TMA was added (1000 µM final concentration). This change in the isotopic composition of the methane produced with varying TMA concentrations, along with the high in situ methane δ13C values, suggest that the methanogens in these environments are operating at low substrate concentrations. Apparently, substrate limitation decreases isotopic fractionation during methanogenesis, which results in the abnormally high biogenic methane δ13C values.

  16. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios.

    PubMed

    Hu, Jia; Moore, David J P; Riveros-Iregui, Diego A; Burns, Sean P; Monson, Russell K

    2010-03-01

    *Understanding controls over plant-atmosphere CO(2) exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO(2) assimilation rate (A(Tree)) in a subalpine forest ecosystem. *We analysed the carbon isotope ratio (delta(13)C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate A(Tree). Estimates of A(Tree) for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. *A sensitivity analysis showed that estimates of A(Tree) were more sensitive to dynamics in E than delta(13)C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. *The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales. PMID:20100209

  17. Simulation of carbon isotope discrimination of the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Suits, N. S.; Denning, A. S.; Berry, J. A.; Still, C. J.; Kaduk, J.; Miller, J. B.; Baker, I. T.

    2005-03-01

    We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1 resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983-1993. Modeled mean annual C3 discrimination during this period is 19.2; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean ?13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal ?13C ratios in the Northern Hemisphere (20N to 60N) to values predicted from high-frequency variations in measured atmospheric CO2 and ?13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model ?13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled ?13C values for tropical forests are heavy relative to observations. Simulated zonal ?13C ratios in the Northern Hemisphere capture patterns of zonal ?13C inferred from atmospheric measurements better than previous investigations. Finally, there is still a need for additional constraints to verify that carbon isotope models behave as expected.

  18. Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials.

    PubMed

    Yeh, H W; Wang, W M

    2001-07-01

    The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences. PMID:11480769

  19. Effect of magnesium ions on the stable oxygen isotope equilibrium between dissolved inorganic carbon species and water.

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard

    2010-05-01

    Stable oxygen isotope (?18O) values of foraminiferal calcites, which represent one of the most fundamental paleoceanographic tools to reconstruct ancient seawater temperatures, are influenced by seawater pH variations. Understanding the driving mechanism for such phenomenon requires precise knowledge of the equilibrium 18O fractionation factors between dissolved inorganic carbon (DIC) species and water. An experimental study by Beck et al. (2005) successfully refined the 18O fractionation factors between DIC components and water. Based on these results, the overall 18O fractionation between total DIC and water as a function of pH can be readily calculated (e.g., Zeebe, 2007). However, these calculations may not be applicable to seawater because the fractionation factors were measured in freshwater. Natural seawater contains numerous ionic species and other dissolved constituents, which may affect the fractionation factors. For example, it has been experimentally demonstrated that the presence of magnesium ions (Mg2+) in solutions affect equilibrium carbon isotope (13C) fractionation between aqueous CO2 and carbonate ions presumably due to the enrichment of 13C isotopes in Mg-CO30 complexes (Thode et al., 1965). This suggests that the presence of Mg2+ in solutions similarly affects the 18O fractionation factors between DIC species and water. On the other hand, Beck et al. (2005) concluded that the effect of ion pairs on the ?18O equilibrium appears to be negligible. However, this conclusion may not apply to ion paring in general, because experiments were not conducted for metal ions other than Na+. Given that Mg2+ has a marked effect on the equilibrium ?13C fractionation factors and Mg-CO30 is the most abundant form of metal-CO3-complexes in natural seawater, the potential effect of Mg2+ on the 18O fractionation factors between DIC components and water needs to be examined. Here, we will present preliminary results from quantitative carbonate precipitation experiments to evaluate the influence of Mg2+ on the ?18O equilibrium in the DIC-water system. REFERENCES Beck, W.C., Grossman, E.L., and Morse, J.W. (2005). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15 , 25 and 40 C. Geochim. Cosmochim. Acta, 69, 3493-3503. Thode, H.G., Shima, M., Rees, C.E., and Krishnamurty, K.V. (1965). Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. Canad. J. Chem., 43, 582-595. Zeebe, R.E. (2007). An expression for the overall oxygen isotope fractionation between the sum of dissolved inorganic carbon and water. Geochem. Geophys. Geosyst., 8, Q09002, doi: 10.1029/2007GC001663.

  20. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy-rich ceria during re-oxidation at room temperature. The quantified oxygen isotope fractionation factors are consistent with the direct involvement of O2 in the rate limiting step for ceria reoxidation in air at room temperature. While additional parameters may reduce some of the uncertainties in our approach, this study demonstrates that isotope effects can be an encouraging tool for studying oxygen transport kinetics in ceria and other oxides. In addition, our finding warns of the special cares and limits in using ceria as an exchange medium for laboratory triple oxygen isotope analysis of CO2 or other oxygen-bearing gases.

  1. Remote Detection of Carbon Stable Isotope of CO2 for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Clegg, S. M.; Fessenden, J. E.; Dobeck, L.; Spangler, L.

    2009-12-01

    Carbon storage in geologic formations is one method to prevent carbon dioxide (CO2), produced by fossil fuel combustion, from entering the Earth's atmosphere. The monitoring, verification and accounting (MVA) of geologically sequestered CO2 is critical to measure the operation and functioning of a geologic storage site. Surface monitoring techniques need to identify seepage from the sequestration reservoir at or below ambient CO2 concentrations. The Zero Emissions Research & Technology (ZERT) group at Montana State University established a field test site where controlled amounts of CO2 are released to test the performance of CO2 detection instruments and measurement techniques. The field site allows a controlled flow rate of CO2 to be released into the near surface, just below the water table, through a 100 m long horizontal pipe. In July of 2009, a release was conducted, with a uniform flow rate of 0.2 tons per day, and the seepage rate was measured. The carbon stable isotope ratio of CO2 is a sensitive diagnostic signature to distinguish between anthropogenic and natural sources of CO2. However, natural concentrations of 13C16O2 are approximately 100 times smaller than 12C16O2. Frequency-modulated spectroscopy (FMS) is an ultra-sensitive technique developed to detect the CO2 stable carbon isotopes. An instrument has been developed that uses this FMS technique and an integrated volume over a long, open-air path to detect changes in the carbon isotope ratio. This paper will briefly describe the FMs technique and present results from instrument deployment to the ZERT field site to monitor the 13C16O2/12C16O2 stable isotope ratio. LA-UR 09-05648

  2. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  3. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with ?18O = 050 relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41 relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of ?18O = 31.05.7. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment ?18O = 1818. We present results from fully resolved spectroscopic measurements near 10.6 ?m of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power ?/??=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1: Locations of measured 18O12C16O fractional abundance on Mars (open squares). The colored tracks are Mars Express SPICAM measurements of ozone; the solid and hatched areas show contemporaneous HIPWAC measurements of ozone [6]. Figure 2 illustrates the CO2 normal-isotope and O-18 isotopologue lines measured on Mars at ~1 MHz (0.0003 cm-1) spectral resolution. The strong absorption line constrains the temperature simultaneously at the position of the measurement. The narrow mesospheric non- LTE line emission is also seen at the core of the absorption. The standard Mars Global Surveyor temperature profile was used to obtain the modeled emergent spectrum in blue. It clearly does not fit as well as the thermal profile retrieved from the CO2 absorption line profile (red fit). EPSC Abstracts Vol. 7 EPSC2012-432 2012 European Planetary Science Congress 2012 c Author(s) 2012 EPSC European Planetary Science Congress Figure 2: HIPWAC measurements of CO2 spectrum on Mars near 10.5 ?m. The broad absorption retrieves the temperature. The fitted model spectra correspond to using the standard MGS thermal profile (blue), and our retrieved profile (red). The fit to the isotopic line is excellent and yields ?18O = +914. Radiative-transfer software developed in-house at GSFC to be compatible with very high spectral resolving power [7] was used to obtain the temperature profile and spectral fit. The fit on the 952.8629 cm-1 18OC16O line retrieves ?18O = +914. There appears to be no significant enhancement in the average over the extended region measured. Additional, more global, measurements were acquired in May 2012 and these data are being analyzed. These and additional high spectral resolution ground-based global measurements of ?18O can investigate Mars' atmospheric history; help define Mars Science Laboratory (MSL) protocols to sample isotopic ratios diurnally and seasonally, throughout its prime mission; and investigate possible meridional variability due to mass-fractionation in the polar freeze-sublimate cycle, similar to effects in terrestrial polar ice formation [

  4. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    PubMed

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. PMID:26358051

  5. Theoretical effect of diffusion on isotopic abundance ratios in rocks and associated fluids

    USGS Publications Warehouse

    Senftle, F.E.; Bracken, J.T.

    1955-01-01

    Diffusion is considered as a possible process of isotope fractionation taking place throughout geologic time. Both diffusion in solids and diffusion in liquids are taken as possible mechanisms, the latter being more important. Arguments are presented to show that if significant fractionation takes place within a crystal by outward diffusion under solid-state conditions, enrichment will be evident only in elements of minor concentration. Similar conclusions are inferred for solid-state diffusion across a boundary or for diffusion in liquids. No isotopic enrichment can be expected in relatively large bodies of diffusion transported material. Although the necessary data to confirm these conclusions are scanty, it seems worth while to undertake further work in this direction. ?? 1955.

  6. Neodymium isotopes in biogenic carbonates: reliable archives of ?Nd

    NASA Astrophysics Data System (ADS)

    Montagna, P.; Goldstein, S. L.; Taviani, M.; Frank, N.; McCulloch, M. T.

    2010-12-01

    Neodymium isotope (143Nd/144Nd) compositions from dispersed authigenic ferromanganese oxide fraction in marine sediments, ferromanganese crusts, foraminiferal shells and fossil fish teeth are employed to trace provenance and water mass mixing in the past, having the advantage of not being fractionated by biological processes in the water column. In the modern ocean the different water masses ultimately derive their ?Nd values through continental weathering, erosion and particle-seawater interactions. This geochemical tracer has been only recently applied to scleractinian deep-water coral skeletons sourced from various sites and depths in the Atlantic ocean. Aragonitic corals can be precisely dated by U-series, potentially providing century-long records of intermediate and bathyal zone variability at sub-decadal resolution. Motivated by these recent findings we have investigated the Nd isotopic compositions of living specimens of various calcifying organisms collected in two key locations of the Mediterranean Sea and in the Southern Ocean. In particular, we analyzed several specimens of the aragonitic deep-water corals Desmophyllum dianthus, Lophelia pertusa, Madrepora oculata, Flabellum impensum, the temperate coral Cladocora caespitosa, the calcitic gorgonian coral Corallium rubrum, the bivalves Glans aculeata and Karnekampia bruei and the polychate Serpula vermicularis. Most of the samples were retrieved from the Strait of Sicily and the Southern Adriatic Sea at different water depths. Ten seawater samples from three new profiles in the Mediterranean were also collected at the same locations and depths, offering a unique opportunity to compare the Nd isotopic composition of biogenic carbonates directly with the surrounding ambient seawater. The Mediterranean Sea is particularly suited for this comparison exercise since it is characterized by water masses displaying a large range of ?Nd values, from -10.5 in the Western Mediterranean to -4.8 in the Eastern Mediterranean. In addition, specimens of living and fossil Desmophyllum dianthus and Lophelia pertusa were analysed for Nd concentration at fine-scale resolution using a laser ablation ICP-MS, with the aim to understand the effect of the coral microstructures on the Nd distribution. Nd isotopes in the modern biogenic carbonates analyzed thus far match the surrounding seawater and unless diagenesis is significant, we expect that these calcifying organisms can serve as reliable archives for past ocean circulation.

  7. The Abundance and Isotopic Composition of Water in Howardite-Eucrite-Diogenite Meteorites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Tartse, R.; Anand, M.; Franchi, I. A.; Grady, M. M.; Greenwood, R. C.; Charlier, B. L. A.

    2014-09-01

    Using SIMs techniques we measure OH abundances and D/H ratios in apatite grains from two Eucrites (DaG 945, DaG 844).The average ?D values of these two samples are also similar to carbonaceous chondrites, the Earth and the Moon.

  8. A chart of cosmic ray isotopes. [showing radioactive decay, abundance and nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.

    1975-01-01

    A chart has been prepared that lists some of the properties relevant to cosmic ray studies of all the significant nuclides between lithium and nickel. On this chart there are shown all the possible decays that might be of interest in the unique conditions experienced by cosmic ray nuclei, various abundance figures and the probable nucleosynthesis processes of origin.

  9. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand.

    PubMed

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (delta15N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (delta13C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months. PMID:12837300

  10. First results on stable isotopes in fluid inclusions in cryogenic carbonates from Ural Mountains (Russia)

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri; Luetscher, Mark; Sptl, Christoph; Tchterle, Paul; Kadebskaya, Olga

    2015-04-01

    Cryogenic cave carbonates (CCC) were found in a number of caves in the Ural. In contrast to the CCC previously reported from Central Europe, the Uralian CCC have larger sizes (up to 4-5 cm), which allows for more detailed petrographic and geochemical studies. CCCs from Uralian caves commonly show spherulitic shapes due to crystal splitting, supporting the model of calcite precipitating in a freezing water pond. ?18O values of studied CCCs are lower by 1 to 14 o compared to noncryogenic speleothems of Pleistocene and Holocene age from the same caves. ?18O and ?13C values are inversely correlated and typically show a fractionation between the core and the rim of individual samples. These trends are similar to those reported for CCCs from European caves (k et al., 2004). Petrographic observations performed on doubly polished, 100-150 micron-thick sections revealed abundant fluid inclusions, trapped between fibres of the spherulites. Petrographic relationships suggest that these inclusions are primary. The isotopic composition of water trapped in fluid inclusions in CCCs from two caves was analyzed following mechanical crushing at 120 C, cryo-trapping of released water, pyrolysis on glassy carbon at 1400 C (TC/EA device; Thermo), and analysis of the evolved gases on an isotope ratio mass spectrometer (Delta V Advantage; Thermo Fisher). The lack of peaks on the m/z 2 trace during the heating of the loaded crushing cell attests for a good sealing of the fluid inclusions. The measured ?D values range between -136 o and -145 o VSMOW. The values measured in CCCs are more negative than the typical values of fluid inclusion water measured in the Holocene stalagmites from central Ural (-99 to -108 ). This shift toward more negative values is attributed to the isotopic fractionation between ice and water during the freezing. Reference: k et al., 2004, Chemical Geology, 2006, 119-136.

  11. Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources.

    PubMed

    Zhao, Chen; Gu, Deqing; Nambou, Komi; Wei, Liujing; Chen, Jun; Imanaka, Tadayuki; Hua, Qiang

    2015-07-20

    Yarrowia lipolytica, a model microorganism of oleaginous yeasts with developed sophisticated genetic tools, is able to metabolize a wide range of substrates and accumulate large amounts of lipids. However, there is a lack of literature reporting the metabolic characteristics of Y. lipolytica metabolizing these substrates in a systematic view. In this study, Y. lipolytica was cultivated on a variety of carbon sources, among which cell growth and production characteristics on two representative substrates (glucose and oleic acid) were investigated in detail at metabolomic level. Metabolic pathway abundance was computed to interpret the metabolome data in a straightforward way. The results showed that most pathway abundances decreased in the shift from growth to production phase. Specifically, when cultivated on glucose, abundances of twelve pathways decreased markedly between the growth and lipid production phases, while thirteen pathways reduced and only three pathways increased significantly in abundances on oleic acid. In comparison, for the same cultivation phase only a few pathways exhibited significant changes between glucose-grown and oleic acid-grown cells. This study revealed that the pathway abundance could be used to effectively show the activity changes of pathways, providing a new perspective to employ metabolomics data for understanding cell metabolism and enhancing the production of target metabolites. PMID:25912211

  12. Stable carbon isotope values document how a Late Holocene expansion in grasslands impacted vertebrates in northwestern Madagascar

    NASA Astrophysics Data System (ADS)

    Crowley, B. E.; Samonds, K.

    2012-12-01

    Madagascar is home to some of the world's most distinctive plants and animals. Unfortunately, forest loss and habitat degradation has had a dramatic impact on both floral and faunal communities. Here we use carbon isotope values in radiocarbon-dated bones to examine how the vertebrate community at Anjohibe Cave, northwestern Madagascar, responded to a Late Holocene increase in C4 grass abundance. Our data demonstrate that major changes in the vegetation and animal community are recent phenomena at Anjohibe. Extinct lemurs and hippopotamuses were present until ca. 1500 years ago. These taxa relied exclusively on C3 resources. Locally extirpated fauna were present until 300 years ago. The majority of these species also relied on C3 resources. Their presence strongly suggests that the region surrounding the cave was more wooded than it is now, possibly as recently as 300 years ago. All introduced individuals are modern. Rats (Rattus sp.), shrews (Suncus murinus), and the giant frog Hoplobatrachus cf. tigrinus, have remarkably high carbon isotope values, implicating substantial ingestion of C4 foods. It is possible that grass abundance has increased dramatically in the past 100 years. Alternatively, opportunistically granivorous rats and shrews may selectively consume seeds from C4 grasses. In agreement with previous studies, stable isotope data reveal details of vegetation and faunal turnover in Northwestern Madagascar. Grasses have increased, forest dwelling species have vanished, and introduced taxa are exploiting a novel niche.

  13. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGESBeta

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  14. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  15. Evolution of Sulfur Isotopes and Oceanic Oxygenation Recorded in a Neoproterozoic Cap Carbonate From the Chaidam Block, China

    NASA Astrophysics Data System (ADS)

    Shen, B.; Xiao, S.; Kaufman, A.; Zhou, C.

    2006-12-01

    Neoproterozoic successions in the Chaidam Block, northwestern China, include the Hongtiegou Formation, which consists of a 20-meter thick, reddish diamictite with widespread dropstones and outsized clasts. The age of the Hongtiegou diamictite is unknown, but recent biostratigraphic correlations support a Neoproterozoic assignment. The glacial deposit is immediately overlain by a 5-meter thick carbonate of the basal Zhoujieshan Formation, which we interpret as a classic post-glacial cap carbonate. However, carbon isotope compositions of samples from this unit are near zero or slightly positive (up to ~ 2), which contrasts with the strongly negative (ca. -5) values recorded in the basal portions of most other post-glacial Neoproterozoic caps. Trace sulfate concentrations in samples of the carbonate are notably high, with an average of 366 266 ppm. In the lower 2.5 meters of the Zhoujieshan cap (stage I) sulfur isotope compositions of both carbonate associated sulfate (CAS) and sulfides isolated from the same sample are indistinguishable from each other, and rise in concert by over 10% to values around +22. Above this level (stage II), 34S abundances of sulfides continue to increase to a peak of +27, but CAS values fall back to ~15. As a result isotopic differences between sulfides and sulfates are near zero in stage I and around 10% in stage II. The evolution of both systems in the lower half of the deposit suggests that seawater sulfate must have evolved to progressively heavier 34S compositions, and that sulfate in pore waters C where sulfate reducing bacteria were active C was quantitatively reduced to pyrite. This might result from the progressive distillation of sulfate from seawater by an enhanced rain of carbonate, in addition to bacterial reduction of sulfate, in the glacial aftermath. The anomalous isotope systematics of stage II are difficult to model, but might signal a new source and higher abundances of oceanic sulfate, based on increasing CAS concentration through the cap carbonate. In this case, CAS would reflect the buffered pool of oceanic sulfate, but the higher concentrations of sulfate trapped in pore waters would be distilled and through Rayleigh distillation the instantaneous sulfide product could become enriched in 34S relative to the starting sulfate. This Rayleigh distillation signature may be preserved in Stage II cap carbonate. Alternatively, continuing post-glacial stratification and Rayleigh distillation of 34S-enriched anoxic deepwater mass relict from the glaciation (Hurtgen et al., 2006, EPSL, 245:551C570) may be responsible for the heavy 34Ssulfide values record in the cap carbonate. In sum, these results may indicate a progressive increase in oceanic sulfate due to a post-glacial increase in the oxidation state of seawater.

  16. Modelling carbon isotope composition of dissolved inorganic carbon and methane in marine porewaters

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Liu, Bo; Khalili, Arzhang; Barker Jrgensen, Bo

    2014-05-01

    Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in marine sedimentary porewaters at near surface temperatures show extremely large variation in apparent fractionation covering a range from -100 to +30 . This fractionation is essentially the result of microbial activity, but the mechanisms and factors controlling this fractionation are still incompletely understood. This study provides a reaction transport model approach to evaluate the effects of the most important processes and factors on carbon isotope distribution with the goal to better understand carbon isotope distribution in modern sediment porewaters and in the geological record. Our model results show that kinetic fractionation during methanogenesis, both through the acetoclastic and autotrophic pathways, results in a nearly symmetrical distribution of ?13C values in DIC and CH4 with respect to the isotope value of buried organic matter. An increased fractionation factor during methanogenesis leads to a larger difference between ?13CDIC and ?13CCH4. Near the sulphate methane transition zone, DIC is more depleted in 13C due to diffusive mixing with DIC produced by anaerobic oxidation of methane (AOM) and organoclastic sulphate reduction. The model also shows that an upward decrease in ?13CCH4 near the SMT can only be caused by equilibrium fractionation during AOM including a backward "leakage" of carbon from DIC to CH4 through the enzymatic pathway. However, this effect of reversibility has no influence on the DIC pool as long as methane is completely consumed at the SMT. Only a release of methane at the sediment-water interface, due to a fraction of the methane escaping re-oxidation, results in a small shift towards more positive ?13CDIC values. Methane escape at the SMT is possible if either the methane flux is too high to be entirely oxidized by AOM, or if bubbles of methane gas by-pass the sulphate reduction zone and escape episodically into the water column. A small but significant isotope effect is also caused by differential diffusion of the 12C and 13C isotopes of CH4 leading to somewhat more positive ?13CCH4 values, while DIC remains unaffected by this process. The consideration of all these effects allows a relatively good reproduction of ?13CDIC and ?13CCH4 profiles in marine sediments in diffusive systems. However, the model cannot reproduce profiles measured in seep environments, where CH4 and DIC profiles are perturbed by upward advecting, possibly thermogenic methane from greater depth. The model is now available to be applied for non-steady state systems, which ultimately will help to understand past dynamics of ?13C compositions and their diagenetic records as a result of changing microbial activity.

  17. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  18. Strontium isotope composition of runoff from a glaciated carbonate terrain

    NASA Astrophysics Data System (ADS)

    Sharp, Martin; Creaser, Robert A.; Skidmore, Mark

    2002-02-01

    The relationship between subglacial chemical weathering processes and the Sr isotope composition of runoff from Robertson Glacier, Alberta, Canada, is investigated. This glacier rests on predominantly carbonate bedrock of Upper Devonian age, but silicate minerals are also present. The provenance of solute in meltwaters is found to vary systematically with solute concentration and, by inference, subglacial water residence time. In dilute waters, the principal process of solute acquisition is calcite dissolution fueled by protons derived from the dissolution of CO 2 and subsequent dissociation of carbonic acid. At higher solute concentrations, dolomite dissolution coupled to sulfide oxidation is more important. Sr concentration is found to increase with total solute concentration in two separate meltwater streams draining from the glacier, but 87Sr/ 86Sr only increases in the eastern melt stream. Carbonate and K-feldspar sources are shown to dominate the Sr content of the western stream, irrespective of concentration. They also dominate the Sr content of the eastern stream at low and intermediate concentrations, but at higher concentrations, muscovite (with high 87Sr/ 86Sr) is also an important Sr source. This reflects the outcrop of muscovite-bearing lithologies in the catchment of the eastern stream and an increase in the rate of weathering of K-silicates relative to that of carbonates as more concentrated solutions approach saturation with respect to carbonates. Nonstoichiometric release of 87Sr/ 86Sr and preferential release of Sr over K from freshly ground K-silicate surfaces may also occur. This may help to explain the radiogenic nature of runoff from distributed subglacial drainage systems, which are characterized by long water:rock contact times and water flow through environments in which crushing and grinding of bedrock are active processes. Although the exchangeable Sr in tills has higher 87Sr/ 86Sr than local carbonate bedrock, only the more concentrated meltwaters from the eastern stream display similarly high values. The most dilute waters, which probably transport the bulk of the dissolved Sr flux from the glacier, have 87Sr/ 86Sr characteristic of local carbonate bedrock. Thus, the results suggest that although enhanced weathering of silicate minerals containing radiogenic Sr (such as muscovite) does occur in glaciated carbonate terrains, it is unlikely to contribute to any enhanced flux of radiogenic Sr from glaciated continental surfaces to the oceans.

  19. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schrder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Sptl, C.; Immenhauser, A.

    2012-11-01

    Here we explore the potential of magnesium (?26Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the ?26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean ?26Mg values (GDA: -4.26 0.07 and HK3: -4.17 0.15), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B ?26Mg: -3.96 0.04) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean ?26Mg: -4.01 0.07; BU 4 mean ?26Mg: -4.20 0.10) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: -3.00 0.73; SPA 59: -3.70 0.43) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several ?26Mg values of the Austrian and two ?26Mg values of the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well-calibrated leaching and precipitation experiments.

  20. The magnesium isotope record of cave carbonate archives

    NASA Astrophysics Data System (ADS)

    Riechelmann, S.; Buhl, D.; Schrder-Ritzrau, A.; Riechelmann, D. F. C.; Richter, D. K.; Vonhof, H. B.; Wassenburg, J. A.; Geske, A.; Sptl, C.; Immenhauser, A.

    2012-05-01

    Here we explore the potential of time-series magnesium (?26Mg) isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the ?26Mg fractionation in